WorldWideScience

Sample records for accelerating factor cd55

  1. The Expression and Action of Decay-Accelerating Factor (CD55 in Human Malignancies and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jan-Henrik Mikesch

    2006-01-01

    Full Text Available Decay-accelerating factor (DAF, CD55 is physiologically acting as an inhibitor of the complement system, but is also broadly expressed in malignant tumours. Here DAF seems to exert different functions beyond its immunological role such as e.g. promotion of tumorigenesis, decrease of complement mediated tumor cell lysis, autocrine loops for cell rescue and evasion of apoptosis, neoangiogenesis, invasiveness, cell motility, and metastasis via oncogenic tyrosine kinase pathways and specific seven-span transmembrane receptors (CD97 binding. Therefore, DAF has already become a target for therapy. In this paper we review the role of DAF in human malignancies as described in different basic, diagnostic and experimental therapeutic studies.

  2. Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin).

    OpenAIRE

    Niehans, G A; Cherwitz, D. L.; Staley, N A; D. J. Knapp; Dalmasso, A.P.

    1996-01-01

    Normal human tissues express membrane-associated complement inhibitory proteins that protect these tissues from damage by autologous complement. To determine whether neoplasms also express these proteins, we examined the distribution of the complement inhibitors decay-accelerating factor (DAF), CD59 (protectin), and membrane cofactor protein in frozen samples of human breast, colon, kidney, and lung carcinomas and in adjacent non-neoplastic tissues, using immunohistochemistry. All samples wer...

  3. Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin).

    Science.gov (United States)

    Niehans, G A; Cherwitz, D L; Staley, N A; Knapp, D J; Dalmasso, A P

    1996-07-01

    Normal human tissues express membrane-associated complement inhibitory proteins that protect these tissues from damage by autologous complement. To determine whether neoplasms also express these proteins, we examined the distribution of the complement inhibitors decay-accelerating factor (DAF), CD59 (protectin), and membrane cofactor protein in frozen samples of human breast, colon, kidney, and lung carcinomas and in adjacent non-neoplastic tissues, using immunohistochemistry. All samples were also studied for deposition of C3 fragments and activated C5b-9. Differences between normal tissues and the corresponding neoplasms were often observed, with loss or gain of expression of one or more inhibitors. Ductal carcinomas of the breast showed the most variation in phenotype; some tumors expressed only one inhibitor while others expressed different combinations of two or three inhibitors. Colon carcinomas, by contrast, stained intensely for all inhibitors. Renal cell carcinomas had weak to moderate expression of one to three inhibitors, generally DAF and CD59, whereas non-small cell carcinomas of the lung usually expressed CD59 and membrane cofactor protein with variable DAF immunoreactivity. The two small cell carcinomas of the lung showed little or no staining for any inhibitor. Activated C5b-9 deposition was seen adjacent to tumor nests in a minority of carcinomas and showed no correlation with complement inhibitor expression. C3 fragment deposition was minimal. Our results demonstrate that most carcinomas, with the exception of small cell carcinomas of the lung, do express one or more complement inhibitors at a level likely to inhibit complement-mediated cellular damage. Unexpectedly, large quantities of DAF and CD59 were often observed in tumor stroma, with only limited deposition in normal connective tissue. This suggests that carcinomas may supplement the activity of membrane-associated complement inhibitors by release of soluble forms of DAF and CD59 into the

  4. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Olga N Karpus

    Full Text Available BACKGROUND: CD55 (decay-accelerating factor is a complement-regulatory protein highly expressed on fibroblast-like synoviocytes (FLS. CD55 is also a ligand for CD97, an adhesion-type G protein-coupled receptor abundantly present on leukocytes. Little is known regarding the regulation of CD55 expression in FLS. METHODS: FLS isolated from arthritis patients were stimulated with pro-inflammatory cytokines and Toll-like receptor (TLR ligands. Transfection with polyinosinic-polycytidylic acid (poly(I:C and 5'-triphosphate RNA were used to activate the cytoplasmic double-stranded (dsRNA sensors melanoma differentiation-associated gene 5 (MDA5 and retinoic acid-inducible gene-I (RIG-I. CD55 expression, cell viability, and binding of CD97-loaded beads were quantified by flow cytometry. RESULTS: CD55 was expressed at equal levels on FLS isolated from patients with rheumatoid arthritis (RA, osteoarthritis, psoriatic arthritis and spondyloarthritis. CD55 expression in RA FLS was significantly induced by IL-1β and especially by the TLR3 ligand poly(I:C. Activation of MDA5 and RIG-I also enhanced CD55 expression. Notably, activation of MDA5 dose-dependently induced cell death, while triggering of TLR3 or RIG-I had a minor effect on viability. Upregulation of CD55 enhanced the binding capacity of FLS to CD97-loaded beads, which could be blocked by antibodies against CD55. CONCLUSIONS: Activation of dsRNA sensors enhances the expression of CD55 in cultured FLS, which increases the binding to CD97. Our findings suggest that dsRNA promotes the interaction between FLS and CD97-expressing leukocytes.

  5. Production of multiple transgenic Yucatan miniature pigs expressing human complement regulatory factors, human CD55, CD59, and H-transferase genes.

    Directory of Open Access Journals (Sweden)

    Young-Hee Jeong

    Full Text Available The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC compared with the human umbilical vein endothelial cells (HUVEC. Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative

  6. Distinct CD55 Isoform Synthesis and Inhibition of Complement-Dependent Cytolysis by Hepatitis C Virus.

    Science.gov (United States)

    Kwon, Young-Chan; Kim, Hangeun; Meyer, Keith; Di Bisceglie, Adrian M; Ray, Ranjit

    2016-08-15

    CD55/DAF, one of the regulators of complement activation, is known to limit excess complement activation on the host cell surface by accelerating the decay of C3 convertase. We reported previously that hepatitis C virus (HCV) infection or virus core protein expression upregulates CD55 expression. CD55 associates with HCV particles, potentially protecting HCV from lysis in circulation. An increase in CD55 on the surface of HCV-infected cells may inhibit complement-mediated cell killing. In this study, we show that Abs against cancer cell surface proteins induce complement-dependent cytolysis or Ab-dependent cell-mediated cytotoxicity of immortalized human hepatocytes in the presence of CD55-blocking Ab. CD55 has a secreted isoform (sCD55) that is generated by alternative splicing. We observed that sCD55 is induced in HCV-infected or HCV replicon-harboring cells, as well as in liver biopsy samples from chronically HCV-infected patients. Conditioned medium from HCV-infected hepatoma cells (Huh7.5 cells) or immortalized human hepatocytes inhibited C3 convertase activity and complement-dependent cytolysis of sheep blood erythrocytes. Chronically HCV-infected patient sera inhibited C3 convertase activity, further implicating HCV-specific impairment of complement function in infected humans. CD55-blocking Ab inhibited erythrocyte lysis by conditioned medium, suggesting that CD55/sCD55 impairs convertase activity. Together, our data show that HCV infection induces sCD55 expression in HCV-infected cell culture-conditioned medium and inhibits C3 convertase activity. This may have implications for modulating complement-mediated immune function in the microenvironment and on HCV-harboring cells. PMID:27357152

  7. Identification of human CD55 displayed on the surface of yeast%酵母表面呈现的人CD55的鉴定

    Institute of Scientific and Technical Information of China (English)

    郭波; 谢佩蓉; 邹强; 郑萍; 杨劲

    2001-01-01

    目的 鉴定酵母细胞表面呈现的人CD55,探讨诱导时间对呈现的影响。方法 PCR从CD55-pBluescriptM13质粒扩增出全长的CD55cDNA,酶切后克隆到酵母表面呈现载体pYD1,构建CD55-pYD1重组质粒后,转化酵母细胞。抗CD55单抗间接荧光标记染色法检测所呈现CD55的免疫学活性。通过FACS检测人血清处理后酵母表面C5b-9的沉积探讨CD55的生物学活性。同时还用FACS检测了不同诱导时间呈现CD55的细胞的百分率。结果 酵母表面呈现的CD55分子能与抗CD55不同表位的单抗结合,并且能减少细胞表面C5b-9的沉积。在诱导20h左右表面呈现CD55的细胞百分率达最高。结论 在酵母细胞表面呈现的CD55分子具有免疫学和生物学活性,对酵母呈现CD55的最佳诱导时间为20h。

  8. Biological activity, membrane-targeting modification, and crystallization of soluble human decay accelerating factor expressed in E. coli

    OpenAIRE

    White, Jennifer; Lukacik, Petra; Esser, Dirk; Steward, Michael; Giddings, Naomi; Bright, Jeremy R.; Fritchley, Sarah J.; Morgan, B. Paul; Lea, Susan M.; Smith, Geoffrey P.; Smith, Richard A. G.

    2004-01-01

    Decay-accelerating factor (DAF, CD55) is a glycophosphatidyl inositol-anchored glycoprotein that regulates the activity of C3 and C5 convertases. In addition to understanding the mechanism of complement inhibition by DAF through structural studies, there is also an interest in the possible therapeutic potential of the molecule. In this report we describe the cloning, expression in Escherichia coli, isolation and membrane-targeting modification of the four short consensus repeat domains of sol...

  9. Expression of membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of patients on peritoneal dialysis therapy.

    Science.gov (United States)

    Sei, Yumi; Mizuno, Masashi; Suzuki, Yasuhiro; Imai, Masaki; Higashide, Keiko; Harris, Claire L; Sakata, Fumiko; Iguchi, Daiki; Fujiwara, Michitaka; Kodera, Yasuhiro; Maruyama, Shoichi; Matsuo, Seiichi; Ito, Yasuhiko

    2015-06-01

    We investigated the expression of membrane complement regulators (CRegs), CD46, CD55 and CD59 in human mesothelial cells, and correlated with clinical background and level of complement (C) activation products in peritoneal dialysis (PD) fluids (PDF) to clarify influence of the C activation system in PD patients. Expression of CRegs was assessed on primary cultures of mesothelial cells (HPMC) harvested from PD fluid of 31 PD patients. Because expression of CD55 but not CD46 and CD59 in mesothelial cells was significantly correlated to value of dialysate-to-plasma creatinine concentration ratio (D/P Cre) (p<0.005) as an indicator of peritoneal function, we focused on analysis of CD55 expression of HPMCs in comparison with levels of C activation products in the PDF of the PD patients, and their background factors. When comparing expression of the CRegs between systemic neutrophils and HPMC, no correlation was observed, supporting that change of CRegs' expression in HPMC was independently occurring in the peritoneum. Expression of CD55 protein in HPMC was closely correlated with expression at the mRNA level (p<0.0001) and was inversely correlated with levels of sC5b-9 (p<0.05), but not C3, C4, IL6 and CA125 in the PDF. Complications of diabetes, usage of icodextrin and residual renal function were not correlated with change of CD55 expression in HPMCs. Our data show that the process of PD therapy modifies expression of CD55 on peritoneal mesothelium and triggers local C activation. These findings support efforts to modify PD therapy to limit effects on activation and regulation of the C system.

  10. Role of CD97stalk and CD55 as molecular markers for prognosis and therapy of gastric carcinoma patients

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; CHEN Li; PENG Shu-you; CHEN Zhou-xun; HOANG-VU C

    2005-01-01

    Objectives: To explore the mechanism of development and aggressiveness in gastric carcinomas by investigating the expression and role of CD97 and its cellular ligand CD55 in gastric carcinomas. Methods: Tumor and corresponding normal mucosal tissue, collected from 39 gastric carcinoma patients, were examined by immunohistochemistry and RT-PCR for the expression of CD97 and CD55. Results: CD97stalk was strongly stained on scattered tumor cells or small tumor cell clusters at the invasion front of gastric carcinomas. The expression of CD97stalk was frequently observed in tumors of stage Ⅰ and T1 gastric carcinoma patients. The expression of CD97stalk between Stage Ⅰ and Stage Ⅱ, Ⅲ, Ⅳ specimens showed significant difference (P<0.05), between T1 and T2, T3, T4 specimens also showed significant difference (P<0.05). Specimens with tumor invasion depth limited in mucosa of T 1 specimens showed higher positive CD55 expression than specimens with the same tumor invasion depth in T2, T3, T4 specimens, the expression of CD55 between T1 and T2, T3, T4 specimens was significantly different (P<0.05).There was strong correlation between the distribution patterns of CD97stalk and CD55 on tumor tissues (r=0.73, P<0.05). Signet ring cell carcinomas frequently contained strong CD97stalk and CD55-staining. Conclusions: Our results suggest that CD97stalk is probably involved in the growth, invasion and aggressiveness of gastric carcinomas by binding its cellular ligand CD55. CD97stalk and CD55 could be useful as molecular markers for prognosis and therapy of gastric carcinoma patients.

  11. Increased deposition of C3b on red cells with low CR1 and CD55 in a malaria-endemic region of western Kenya: Implications for the development of severe anemia

    Directory of Open Access Journals (Sweden)

    Odera Michael M

    2008-08-01

    Full Text Available Abstract Background Severe anemia due to Plasmodium falciparum malaria is a major cause of mortality among young children in western Kenya. The factors that lead to the age-specific incidence of this anemia are unknown. Previous studies have shown an age-related expression of red cell complement regulatory proteins, which protect erythrocytes from autologous complement attack and destruction. Our primary objective was to determine whether in a malaria-endemic area red cells with low levels of complement regulatory proteins are at increased risk for complement (C3b deposition in vivo. Secondarily, we studied the relationship between red cell complement regulatory protein levels and hemoglobin levels. Methods Three hundred and forty-two life-long residents of a malaria-holoendemic region of western Kenya were enrolled in a cross-sectional study and stratified by age. We measured red cell C3b, CR1, CD55, and immune complex binding capacity by flow cytometry. Individuals who were positive for malaria were treated and blood was collected when they were free of parasitemia. Analysis of variance was used to identify independent variables associated with the %C3b-positive red cells and the hemoglobin level. Results Individuals between the ages of 6 and 36 months had the lowest red cell CR1, highest %C3b-positive red cells, and highest parasite density. Malaria prevalence also reached its peak within this age group. Among children ≤ 24 months of age the %C3b-positive red cells was usually higher in individuals who were treated for malaria than in uninfected individuals with similarly low red cell CR1 and CD55. The variables that most strongly influenced the %C3b-positive red cells were age, malaria status, and red cell CD55 level. Although it did not reach statistical significance, red cell CR1 was more important than red cell CD55 among individuals treated for malaria. The variables that most strongly influenced the hemoglobin level were age, the %C3b

  12. Optimization of the factors that accelerate leaching

    International Nuclear Information System (INIS)

    The prediction of long-term leachability of low-level radioactive waste forms is an essential element of disposal-site performance assessment. This report describes experiments and modeling techniques used to develop an accelerated leach test that meets this need. The acceleration in leaching rates caused by the combinations of two or more factors were experimentally determined. These factors were identified earlier as being able to individually accelerate leaching. They are: elevated temperature, the size of the waste form, the ratio of the volume of leachant to the surface area of the waste form, and the frequency of replacement of the leachant. The solidification agents employed were ones that are currently used to treat low-level radioactive wastes, namely portland type I cement, bitumen, and vinyl ester-styrene. The simulated wastes, sodium sulfate, sodium tetraborate, and incinerator ash, are simplified representatives of typical low-level waste streams. Experiments determined the leaching behavior of the radionuclides of cesium (Cs-137), strontium (Sr-85), and cobalt (Co-60 or Co-57) from several different formulations of solidification agents and waste types. Leaching results were based upon radiochemical and elemental analyses of aliquots of the leachate, and on its total alkalinity and pH at various times during the experiment (up to 120 days). Solid phase analyses were carried out by Scanning/Electron Microscopy and Energy Dispersive Spectroscopy on the waste forms before and after some leaching experiments. 43 refs., 96 figs., 16 tabs

  13. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  14. DECAY ACCELERATING FACTOR AND COLORECTAL CANCER

    Institute of Scientific and Technical Information of China (English)

    高雪芹; 鲁艳芹; 韩金祥

    2004-01-01

    Objective: To review the significance of decay accelerating factor (DAF) in the eolorectal cancer, we searched the data from PubMed and selected the related articles for review. It was found that DAF were expressed in the adenomas and adenocarcinoma of colorectal tissues. The release of DAF in the stool of the patients was also detectable. It increased more significantly in the stool of patients with colorectal cancer than other gastrointestinal cancer. Its detection by ELISA method may render a good test for the noninvasive diagnosis of colorectal cancer. It can be concluded that DAF is expressed extensively in colorectal cancer. And the detection of DAF released in the stool of colorectal cancer patients may be a good noninvasive method for the diagnosis of colorectal cancer.

  15. Decreased expression of complement regulatory proteins, CD55 and CD59, on peripheral blood leucocytes in patients with type 2 diabetes and macrovascular diseases

    Institute of Scientific and Technical Information of China (English)

    MA Xi-wen; CHANG Zhi-wen; QIN Ming-zhao; SUN Ying; HUANG Hui-lian; HE Yan

    2009-01-01

    Background Macro- and microvascular diseases are the leading cause of morbidity and mortality in diabetic patients, but their mechanisms remain unclear. Recent reports provide evidence that the levels of CD55 and CD59 are decreased in diabetic microvascular diseases. However, very little is known about the levels of CD55 and CD59, the relationship between them and carotid artery intima-media thickness, and the effects of statins on CD55 and CD59 in diabetic macrovascular diseases.Methods The mean fluorescence intensity (MFI) of CD55 and CD59 expression on peripheral blood leucocyte subsets (lymphocytes, monocytes and neutrophils) was studied using flow cytometry, and carotid artery intima-media thickness was measured using B-mode ultrasonography in 23 healthy subjects (controls), 19 patients with type 2 diabetes (T2DM), and 43 patients with type 2 diabetes and macrovascular diseases (T2DM-M). The patients with T2DM-M were assigned to two subgroups based on whether statins were used: group with statins (n=23) and group without statins (n=20).Results Compared with the controls and T2DM, the MFI of CD55 positive neutrophils was significantly lower in T2DM-M (P=0.049 vs controls and P=0.033 vs T2DM); similarly, the MFI of CD59 positive monocytes was also lower in T2DM-M (P=0.038 vs controls and P=0.043 vs T2DM). The MFI of CD59 positive neutrophils in T2DM-M was lower than in T2DM (P=0.032). The levels of CD55 and CD59 were negatively associated with age and blood pressure (r=-0.245--0.352, P=0.041-0.003), but not acute-phase reactants and carotid artery intima-media thickness. The levels of CD55 and CD59 increased after treatment with statins, but the results were not significantly different (P >0.05).Conclusions CD55 and CD59 expressions on peripheral blood leucocytes are decreased in T2DM patients with macrovascular diseases. The results suggest that the decreased levels of complement regulatory proteins might play an important role in diabetic macrovascular

  16. LU factorization for accelerator-based systems

    KAUST Repository

    Agullo, Emmanuel

    2011-12-01

    Multicore architectures enhanced with multiple GPUs are likely to become mainstream High Performance Computing (HPC) platforms in a near future. In this paper, we present the design and implementation of an LU factorization using tile algorithm that can fully exploit the potential of such platforms in spite of their complexity. We use a methodology derived from previous work on Cholesky and QR factorizations. Our contributions essentially consist of providing new CPU/GPU hybrid LU kernels, studying the impact on performance of the looking variants as well as the storage layout in presence of pivoting, tuning the kernels for two different machines composed of multiple recent NVIDIA Tesla S1070 (four GPUs total) and Fermi-based S2050 GPUs (three GPUs total), respectively. The hybrid tile LU asymptotically achieves 1 Tflop/s in single precision on both hardwares. The performance in double precision arithmetic reaches 500 Gflop/s on the Fermi-based system, twice faster than the old GPU generation of Tesla S1070. We also discuss the impact of the number of tiles on the numerical stability. We show that the numerical results of the tile LU factorization will be accurate enough for most applications as long as the computations are performed in double precision arithmetic. © 2011 IEEE.

  17. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    KAUST Repository

    Heckmann, J M

    2009-08-13

    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198CG SNP (odds ratio8.6; P0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5?-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198CG SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression. © 2010 Macmillan Publishers Limited. All rights reserved.

  18. O papel das proteínas reguladoras do complemento CD55/CD59 em células de sangue periférico de pacientes com lúpus eritematoso sistêmico The role of CD55/CD59 complement regulatory proteins on peripheral blood cells of systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    Ana Paula Alegretti

    2009-06-01

    Full Text Available CD55 e CD59 são proteínas de membrana ancoradas por glicosilfosfatidilinositol que apresentam propriedades reguladoras da ativação da cascata do complemento. Essa regulação ocorre através da inibição da C3 convertase pelo CD55 e prevenção da etapa final de polimerização do complexo de ataque à membrana pelo CD59. Deficiência na expressão dessas proteínas pode estar associada a uma maior ativação do sistema complemento, inclusive do complexo de ataque à membrana, levando à morte celular. Pacientes com lúpus eritematoso sistêmico, com anemia hemolítica e linfopenia, parecem apresentar uma deficiência adquirida de CD55 e CD59. Contudo, os mecanismos que modulam essa diminuída expressão continuam desconhecidos e o seu impacto nas manifestações do lúpus eritematoso sistêmico precisa ser mais bem estudado.CD55 and CD59 are glycosylphosphatidylinositol-anchored proteins with regulatory properties on the activating cascades of the complement system. This regulation occurs through inhibition of the C3-convertase formation by CD55, and prevention of the terminal polymerization of the membrane attack complex by CD59. Deficiency in the expression of these proteins can be associated with increased susceptibility to complement-mediated cell death. Systemic lupus erythematosus patients with hemolytic anemia and lymphopenia seem to have an acquired deficiency of CD55 and CD59 proteins. However, the mechanisms involved in this deficiency and its impact on the clinical manifestation of SLE needs to be further investigated.

  19. Effects of amlodipine on expression of CD55 and CD59 on aorta in streptozotocin-induced diabetic apoE-knock out mice%氨氯地平对糖尿病载脂蛋白E基因敲除小鼠CD55和CD59表达的影响

    Institute of Scientific and Technical Information of China (English)

    马西文; 秦明照; 赵焕英; 常志文; 张勇; 宋爱丽

    2011-01-01

    Objective To investigate the levels of CD55 and CD59 expression on aortas, and the effects of amlodipine on diabetic atherosclerotic mice. Methods Thirty-two male apoE-knock out mice were obtained at 6 weeks of age. After 1 week of acclimatization,animals were divided into three groups atherosclerotic (AS) group(n= 10) , diabetic atherosclerotic(D-AS) group(n=12), and amlodipine(D-AM)group(n=10). Venous bloods were collected for analysis of glucose and lipids, and aortas were prepared for atherosclerotic plaques, immunofluorescence and real-time PCR. Results Compared with AS group,the body weight was decreased,and glucose,TCLDL-C and atherosclerotic plaques were increased in D-AS group ( P< 0. 01). Compared with D-AS group,the body weight was increased,and atherosclerotic plaques were decreased in D-AM group (P<0. 01). Immunofluorescence showed that expression of CD55 and CD59 was lower in D-AS group than that in AS group,and was higher in D-AM group than that in D-AS group. Conclusions The protein expression levels of CD55 and CD59 on aortas in diabetic apoE-knock out mice might be lower than that in apoE-knock out mice. After treatment with amlodipine, protein expression of CD55 and CD59 could be upregulated, independent of the effect on blood pressure in diabetic apoE-knock out mice.%目的 观察糖尿病载脂蛋白E基因敲除小鼠主动脉组织中CD55、CD59表达变化及氨氯地平对其表达的影响.方法 32只雄性6周龄载脂蛋白E基因敲除小鼠随机分为动脉粥样硬化(AS)组10只、糖尿病AS组(D-AS组)12只、氨氯地平干预组(D-AM组)10只.监测生化指标,测量AS斑块面积;采用免疫荧光和实时定量PCR法检测蛋白和mRNA的变化,观察氨氯地平对CD55和CD59表达的影响.结果 与AS组比较,D-AS组体重明显下降,差异有统计学意义(P<0.01),血糖、TC及LDL-C明显升高,差异有统计学意义(P<0.01),平均AS斑块面积增加,差异有统计学意义(P<0.05).与D-AS组比较,D-AM

  20. Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Bulanov, S V; Esirkepov, T Zh; Kando, M; Pegoraro, F; Leemans, W P

    2016-01-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it trans...

  1. Accelerated Gibbs Sampling for Infinite Sparse Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andrzejewski, D M

    2011-09-12

    The Indian Buffet Process (IBP) gives a probabilistic model of sparse binary matrices with an unbounded number of columns. This construct can be used, for example, to model a fixed numer of observed data points (rows) associated with an unknown number of latent features (columns). Markov Chain Monte Carlo (MCMC) methods are often used for IBP inference, and in this technical note, we provide a detailed review of the derivations of collapsed and accelerated Gibbs samplers for the linear-Gaussian infinite latent feature model. We also discuss and explain update equations for hyperparameter resampling in a 'full Bayesian' treatment and present a novel slice sampler capable of extending the accelerated Gibbs sampler to the case of infinite sparse factor analysis by allowing the use of real-valued latent features.

  2. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    Science.gov (United States)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2016-05-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  3. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  4. Recombinant basic fibroblast growth factor accelerates wound healing.

    Science.gov (United States)

    McGee, G S; Davidson, J M; Buckley, A; Sommer, A; Woodward, S C; Aquino, A M; Barbour, R; Demetriou, A A

    1988-07-01

    Basic fibroblast growth factor (bFGF) stimulates extracellular matrix metabolism, growth, and movement of mesodermally derived cells. We have previously shown that collagen content in polyvinyl alcohol sponges increased after bFGF treatment. We hypothesized that bFGF-treated incisional wounds would heal more rapidly. After intraperitoneal pentobarbital anesthesia, male, 200- to 250-g, Sprague-Dawley rats (n = 27) each underwent two sets of paired, transverse, dorsal incisions closed with steel sutures. On Day 3 postwounding, 0.4 ml of bFGF (recombinant, 400 ng. Synergen) or normal saline was injected into one of each paired incisions. Animals were killed with ether on postwounding Days 5, 6, and 7 and their dorsal pelts were excised. Fresh or formalin-fixed wound strips were subjected to tensile strength measurements using a tensiometer. Breaking energy was calculated. Wound collagen content (hydroxyproline) was measured in wound-edge samples following hydrolysis using high-performance liquid chromatography. There was an overall significant increase in fresh wound tensile strength (13.7 +/- 1.06 vs 19.1 +/- 1.99 g/mm, P less than 0.01) and wound breaking energy (476 +/- 47 vs 747 +/- 76 mm2, P less than 0.001) in bFGF-treated incisions. There was an increase in wound collagen content which was not statistically significant and there was no difference in fixed incisional tensile strength. Histologic examination showed better organization and maturation in bFGF wounds. Recombinant bFGF accelerates normal rat wound healing. This may be due to earlier accumulation of collagen and fibroblasts and/or to greater collagen crosslinking in bFGF-treated wounds. PMID:3392988

  5. Neutron dose per fluence and weighting factors for use at high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  6. Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors

    Directory of Open Access Journals (Sweden)

    Chandhoke Vikas

    2006-02-01

    Full Text Available Abstract Background It has been recently reported that major pathogens Staphylococcus aureus and Pseudomonas aeruginosa accelerate a normal process of cell surface syndecan-1 (Synd1 ectodomain shedding as a mechanism of host damage due to the production of shedding-inducing virulence factors. We tested if acceleration of Synd1 shedding takes place in vitro upon treatment of epithelial cells with B. anthracis hemolysins, as well as in vivo during anthrax infection in mice. Results The isolated anthrax hemolytic proteins AnlB (sphingomyelinase and AnlO (cholesterol-binding pore-forming factor, as well as ClnA (B. cereus homolog of B. anthracis phosphatidyl choline-preferring phospholipase C cause accelerated shedding of Synd1 and E-cadherin from epithelial cells and compromise epithelial barrier integrity within a few hours. In comparison with hemolysins in a similar range of concentrations, anthrax lethal toxin (LT also accelerates shedding albeit at slower rate. Individual components of LT, lethal factor and protective antigen are inactive with regard to shedding. Inhibition experiments favor a hypothesis that activities of tested bacterial shedding inducers converge on the stimulation of cytoplasmic tyrosine kinases of the Syk family, ultimately leading to activation of cellular sheddase. Both LT and AnlO modulate ERK1/2 and p38 MAPK signaling pathways, while JNK pathway seems to be irrelevant to accelerated shedding. Accelerated shedding of Synd1 also takes place in DBA/2 mice challenged with Bacillus anthracis (Sterne spores. Elevated levels of shed ectodomain are readily detectable in circulation after 24 h. Conclusion The concerted acceleration of shedding by several virulence factors could represent a new pathogenic mechanism contributing to disruption of epithelial or endothelial integrity, hemorrhage, edema and abnormal cell signaling during anthrax infection.

  7. Key Factors Affecting a Technology Entrepreneur's Choice of Incubator or Accelerator

    Directory of Open Access Journals (Sweden)

    Diane A. Isabelle

    2013-02-01

    Full Text Available Technology entrepreneurship rarely succeeds in isolation; increasingly, it occurs in interconnected networks of business partners and other organizations. For entrepreneurs lacking access to an established business ecosystem, incubators and accelerators provide a possible support mechanism for access to partners and resources. Yet, these relatively recent approaches to supporting entrepreneurship are still evolving. Therefore, it can be challenging for entrepreneurs to assess these mechanisms and to make insightful decisions on whether or not to join an incubator or accelerator, and which incubator or accelerator best meets their needs. In this article, five key factors that entrepreneurs should take into consideration about incubators and accelerators are offered. Insights are drawn from two surveys of managers and users of incubators and accelerators. An understanding of these five key success factors (stage of venture, fit with incubator’s mission, selection and graduation policies, services provided, and network of partners and potential pitfalls will help entrepreneurs confidently enter into a relationship with an incubator or accelerator.

  8. Accelerated cognitive decline in patients with type 2 diabetes : MRI correlates and risk factors

    NARCIS (Netherlands)

    Reijmer, Yael D.; van den Berg, Esther; de Bresser, Jeroen; Kessels, Roy P. C.; Kappelle, L. Jaap; Algra, Ale; Biessels, Geert Jan

    2011-01-01

    Background Type 2 diabetes mellitus is associated with an increased risk of cognitive decline and dementia. We examined brain imaging correlates and vascular and metabolic risk factors of accelerated cognitive decline in patients with type 2 diabetes. Methods Cognitive functioning and brain volume a

  9. Adipose-derived Stromal Cells Overexpressing Vascular Endothelial Growth Factor Accelerate Mouse Excisional Wound Healing

    OpenAIRE

    Nauta, Allison; Seidel, Catharina; Deveza, Lorenzo; Montoro, Daniel; Grova, Monica; Ko, Sae Hee; Hyun, Jeong; Geoffrey C Gurtner; Longaker, Michael T.; Yang, Fan

    2012-01-01

    Angiogenesis is essential to wound repair, and vascular endothelial growth factor (VEGF) is a potent factor to stimulate angiogenesis. Here, we examine the potential of VEGF-overexpressing adipose-derived stromal cells (ASCs) for accelerating wound healing using nonviral, biodegradable polymeric vectors. Mouse ASCs were transfected with DNA plasmid encoding VEGF or green fluorescent protein (GFP) using biodegradable poly (β-amino) esters (PBAE). Cells transfected using Lipofectamine 2000, a c...

  10. Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization

    CERN Document Server

    Gillis, Nicolas

    2011-01-01

    Nonnegative matrix factorization (NMF) is a data analysis technique used in a great variety of applications such as text mining, image processing, hyperspectral data analysis, computational biology, and clustering. In this paper, we consider two well-known algorithms designed to solve NMF problems, namely the multiplicative updates of Lee and Seung and the hierarchical alternating least squares of Cichocki et al. We propose a simple way to significantly accelerate their convergence, based on a careful analysis of the computational cost needed at each iteration. This acceleration technique can also be applied to other algorithms, which we illustrate on the projected gradient method of Lin. The efficiency of the accelerated algorithms is empirically demonstrated on image and text datasets, and compares favorably with a state-of-the-art alternating nonnegative least squares algorithm. Finally, we provide a theoretical argument based on the properties of NMF and its solutions that explains in particular the very ...

  11. Coagulation factor Va binds to human umbilical vein endothelial cells and accelerates protein C activation.

    OpenAIRE

    Maruyama, I.; Salem, H H; Majerus, P W

    1984-01-01

    In vitro the rate of protein C activation by thrombin is significantly accelerated by two distinct cofactors (a) the endothelial cell surface protein, thrombomodulin, and (b) human coagulation Factor Va. We have recently reported that the activity of Factor Va is contained in the 78,000-D light chain. In this study we have investigated the effects of Factor Va and its light chain on the activation of protein C in the presence of cultured endothelial cells. Thrombin-catalyzed protein C activat...

  12. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [University of Maryland; Antonsen, Thomas M. [University of Maryland; Kishek, Rami [University of Maryland

    2014-07-25

    This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.

  13. Accelerated Discovery of Thermoelectric Materials: Combinatorial Facility and High-Throughput Measurement of Thermoelectric Power Factor.

    Science.gov (United States)

    García-Cañadas, Jorge; Adkins, Nicholas J E; McCain, Stephen; Hauptstein, Bastian; Brew, Ashley; Jarvis, David J; Min, Gao

    2016-06-13

    A series of processes have been developed to facilitate the rapid discovery of new promising thermoelectric alloys. A novel combinatorial facility where elements are wire-fed and laser-melted was designed and constructed. Different sample compositions can be achieved by feeding different element wires at specific rates. The composition of all the samples prepared was tested by energy dispersive X-ray spectroscopy (EDS). Then, their thermoelectric properties (power factor) at room temperature were screened in a specially designed new high-throughput setup. After the screening, the thermoelectric properties can be mapped with the possibility of identifying compositional trends. As a proof-of-concept, a promising thermoelectric ternary system, Al-Fe-Ti, has been identified, demonstrating the capability of this accelerated approach.

  14. Root Mean Square Acceleration (RMS, Crest Factor and Hand- Arm Vibration Dose Value In Tiller Users

    Directory of Open Access Journals (Sweden)

    PARVIN NASSIRI

    2015-10-01

    Full Text Available The purpose of this study was to assess exposure to hand-arm vibration in tiller users, Forty users of tiller in northeastern provinces of Iran were examined to measure hand-arm vibration parameters such as root mean square acceleration (RMS, total equivalent acceleration, Vibration Dose Value (VDV and crest factor in three directions (x, y, and z and various operating modes for comparing them with the relevant permitted standard levels. The hand-arm vibration measurement was done according to the standards ISO 5349-1 and ISO 5349-2. The obtained results indicated that the exposure level in three modes of rota-tilling, transportation and idling were equal to 16.95, 14.16 and 8.65 m/s2, respectively. In all measurement modes, the exposure to vibration in the direction x was greater than that of y and z. Moreover, the average crest factor was calculated less than six. The highest vibration dose values were measured in rota-tilling mode when the tiller was in 2nd  gear (60.76 m/s1.75 and 1st gear (56.83 m/s1.75. The results indicated that the permitted working time was only few seconds and there was a risk of musculoskeletal disorders. The present study emphasizes on the need for interventional and control managerial measures to eliminate or reduce hand-arm vibration transmitted to the tiller users' hands for avoiding major problems such as musculoskeletal disorders, discomfort and  premature fatigue. In this regard, further studies are required to identify vibration sources in different types of tillers.

  15. Small field detector correction factors: effects of the flattening filter for Elekta and Varian linear accelerators.

    Science.gov (United States)

    Tyler, Madelaine K; Liu, Paul Z Y; Lee, Christopher; McKenzie, David R; Suchowerska, Natalka

    2016-01-01

    Flattening filter-free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization cham-bers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ± 0.9% across all field sizes measured. Solid-state detectors showed an increased dependence on the flattening filter of up to ± 1.6%. Measured diode response was within ± 1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ± 1.6% is accepted. PMID:27167280

  16. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    International Nuclear Information System (INIS)

    Highlights: ► Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. ► Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. ► Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. ► Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. ► Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic β-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  17. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan-Ying, E-mail: biozyy@163.com [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Huang, Xin-Yuan [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000 (China); Chen, Zheng-Wang [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  18. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Directory of Open Access Journals (Sweden)

    Layla Parker-Katiraee

    2007-05-01

    Full Text Available Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  19. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Science.gov (United States)

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage. PMID:17480121

  20. Inhibition of nuclear factor of activated T-cells (NFAT suppresses accelerated atherosclerosis in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Anna V Zetterqvist

    Full Text Available OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ-induced diabetes in apolipoprotein E(-/- mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.

  1. Modulation of PBMC-decay accelerating factor (PBMC-DAF) and cytokines in rheumatoid arthritis.

    Science.gov (United States)

    Pahwa, Roma; Kumar, Uma; Das, Nibhriti

    2016-03-01

    Studies have suggested that abnormal expression of complement regulatory proteins and cytokines contribute significantly to the path-physiology of rheumatoid arthritis. In this context, Decay accelerating factor (DAF) a complement regulatory protein is gaining increased attention. With the notion that immune effecter mechanisms are all interlinked and circulating peripheral blood mononuclear cells (PBMCs) should have a role in a systemic disease like rheumatoid arthritis, we studied the modulation and significance of PBMC-DAF and cytokines in RA. Seventy-five RA patients and 75 healthy controls were recruited. Expression of DAF and cytokines (IFN-γ, IL-17A and IL-10) in the PBMCs of patients and controls was determined. Correlations among DAF, cytokines, and disease activity were evaluated by standard statistical methods. The effect of IFN-γ, IL-17A, and IL-10 on the expression of DAF in patients and controls was studied in vitro. Expression of PBMC-DAF declined in patients both at mRNA and surface level and correlated negatively with the disease activity. Expression of IFN-γ also declined in patients but correlated positively with DAF and negatively with disease activity. Expression of IL-17A and IL-10 was higher in patients. The levels correlated positively with disease activity and negatively with DAF both in patients and controls. In vitro studies indicated that IFN-γ up-regulated DAF expression in PBMCs, whereas IL-17A and IL-10 had negative effect on the same. The decline in the PBMC-DAF is a contributing factor in manifestations of RA. Cytokine environment contributes to this decline. These findings brought novel insights into the complement-cytokine axis in the path-physiology of RA. PMID:26906204

  2. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [Univ. of Maryland, College Park, MD (United States)

    2014-07-22

    This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.

  3. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid

    International Nuclear Information System (INIS)

    Membrane-associated decay accelerating factor (DAF) of human erythrocytes (E/sup hu/) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the E/sup hu/ acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact E/sup hu/ with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated for urine. Nitrous acid deamination cleavage of E/sup hu/ DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H] ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. The findings indicate that DAF and AChE are anchored in E/sup hu/ by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi

  4. Accelerated partial-breast irradiation with interstitial implants. Analysis of factors affecting cosmetic outcome

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Oliver J.; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav [University Hospital Erlangen (Germany). Dept. of Radiation Oncology

    2009-03-15

    Purpose: To analyze patient-, disease-, and treatment-related factors for their impact on cosmetic outcome (CO) after interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 171 patients with early breast cancer were recruited in Erlangen for this subanalysis of the German-Austrian APBI phase II-trial. 58% (99/171) of the patients received pulsed-dose-rate (PDR), and 42% (72/171) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy each hour. Total treatment time was 3-4 days. Endpoint of this evaluation was the CO, graded as excellent, good, fair, or poor. Patients were divided in two groups with an excellent (n = 102) or nonexcellent (n = 69) cosmetic result. Various factors were analyzed for their impact on excellent CO. Results: The median follow-up time was 52 months (range: 21-91 months). Cosmetic results were rated as excellent in 59.6% (102/171), good in 29.8% (51/171), fair in 9.9% (17/171), and poor in 0.6% (1/171). The initial cosmetic status was significantly worse for the nonexcellent CO group (p = 0.000). The percentage of patients who received PDR brachytherapy APBI was higher in the nonexcellent CO group (68.1% vs. 51%; p = 0.026). Acute toxicity was higher in the nonexcellent CO group (24.6% vs. 12.7%; p = 0.045). Furthermore, the presence of any late toxicity was found to be associated with a worse cosmetic result (65.2% vs. 18.6%; p = 0.000). In detail, the appearance of skin hyperpigmentation (p = 0.034), breast tissue fibrosis (p = 0.000), and telangiectasia (p = 0.000) had a negative impact on CO. Conclusion: The initial, surgery-associated cosmetic status, brachytherapy modality, and the presence of acute and late toxicities were found to have an impact on overall CO. Our data have proven

  5. Accelerated partial-breast irradiation with interstitial implants. Analysis of factors affecting cosmetic outcome

    International Nuclear Information System (INIS)

    Purpose: To analyze patient-, disease-, and treatment-related factors for their impact on cosmetic outcome (CO) after interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 171 patients with early breast cancer were recruited in Erlangen for this subanalysis of the German-Austrian APBI phase II-trial. 58% (99/171) of the patients received pulsed-dose-rate (PDR), and 42% (72/171) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy each hour. Total treatment time was 3-4 days. Endpoint of this evaluation was the CO, graded as excellent, good, fair, or poor. Patients were divided in two groups with an excellent (n = 102) or nonexcellent (n = 69) cosmetic result. Various factors were analyzed for their impact on excellent CO. Results: The median follow-up time was 52 months (range: 21-91 months). Cosmetic results were rated as excellent in 59.6% (102/171), good in 29.8% (51/171), fair in 9.9% (17/171), and poor in 0.6% (1/171). The initial cosmetic status was significantly worse for the nonexcellent CO group (p = 0.000). The percentage of patients who received PDR brachytherapy APBI was higher in the nonexcellent CO group (68.1% vs. 51%; p = 0.026). Acute toxicity was higher in the nonexcellent CO group (24.6% vs. 12.7%; p = 0.045). Furthermore, the presence of any late toxicity was found to be associated with a worse cosmetic result (65.2% vs. 18.6%; p = 0.000). In detail, the appearance of skin hyperpigmentation (p 0.034), breast tissue fibrosis (p = 0.000), and telangiectasia (p = 0.000) had a negative impact on CO. Conclusion: The initial, surgery-associated cosmetic status, brachytherapy modality, and the presence of acute and late toxicities were found to have an impact on overall CO. Our data have proven that

  6. Study of some risk factors and accelerating factors of heart attack and the delay reasons in referring to theMazandaran Cardiac Center in 2009

    Directory of Open Access Journals (Sweden)

    Hedayat Jafari

    2009-01-01

    Full Text Available 12 3 4 (Received 21 October, 2009 ; Accepted 13 January, 2010AbstractBackground and purpose: Coronary artery disease (CAD particularly of the acute myocardial infraction (MI is one of the main causes of mortality in the developing countries. Considering the complication of the disease, the aim of this study was to investigate risk and accelerating factors of heart attack and the reason of the patients' delay in referring to Mazandaran Cardiac Center in 2009.Materials and methods: This cross-sectional study was preformed on 200 acute myocardial infarction (AMI patients. The criteria of diagnosis for AMI in this study was ST elevation of ECG, increase of CKMB above 25 in three phases and increase of Troponin-1 above 1nd/ml and also LDH increase: The demographic information, history of having specific and related disease and the heart attack accelerating factors and the reason of delay in referring to cardiac center was recorded in questionnaire. The collected data were coded, then analyzed by X2 test and ANOVA test using u. SPSS soft wave.Results: Of 200 patients under study, 57% were male. With mean age and BMI of 62.02 years and of 26.66 respectively. The major risk factor in incidence of heart attack in this study first was high blood pressure (24.7 % and the second one was diabetes mellitus 15.5 %. The accelerating factors of heart attack were heavy physical activity (25.3 %, sudden wake ups (25.2 %, and mental work along with tension (12.6 % respectively.Conclusion: Considering the risk factors and heart attack accelerating factors, providing proper education to the public, it is possible it reduce the number of heart attack cases and implement proper strategy to reduce the delay in referring of such patients to a cardiac center. J Mazand Univ Med Sci 2009; 19(73: 69-74 (Persian.

  7. Accelerated Partial Breast Irradiation With Interstitial Implants: Risk Factors Associated With Increased Local Recurrence

    International Nuclear Information System (INIS)

    Purpose: To analyze patient, disease, and treatment-related factors regarding their impact on local control after interstitial multicatheter accelerated partial breast irradiation (APBI). Methods and Materials: Between November 2000 and April 2005, 274 patients with early breast cancer were recruited for the German-Austrian APBI Phase II trial ( (ClinicalTrials.gov) identifier: NCT00392184). In all, 64% (175/274) of the patients received pulsed-dose-rate (PDR) brachytherapy and 36% (99/274) received high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy each hour. Total treatment time was 3 to 4 days. Results: The median follow-up time was 64 months (range, 9-110). The actuarial 5-year local recurrence free survival rate (5-year LRFS) was 97.7%. Comparing patients with an age <50 years (49/274) vs. ≥50 years (225/274), the 5-year LRFS resulted in 92.5% and 98.9% (exact p = 0.030; 99% confidence interval, 0.029-0.032), respectively. Antihormonal treatment (AHT) was not applied in 9% (24/274) of the study population. The 5-year LRFS was 99% and 84.9% (exact p = 0.0087; 99% confidence interval, 0.0079-0.0094) in favor of the patients who received AHT. Lobular histology (45/274) was not associated with worse local control compared with all other histologies (229/274). The 5-year LRFS rates were 97.6% and 97.8%, respectively. Conclusions: Local control at 5 years is excellent and comparable to therapeutic successes reported from corresponding whole-breast irradiation trials. Our data indicate that patients <50 years of age ought to be excluded from APBI protocols, and that patients with hormone-sensitive breast cancer should definitely receive adjuvant AHT when interstitial multicatheter APBI is performed. Lobular histology need not be an exclusion criterion for future APBI trials.

  8. Combined action of magnetic activated water and some cosmic flight factors (acceleration, radiation) of animals

    International Nuclear Information System (INIS)

    Investigations were carried out on albino mice, line ''H'', half of them being exposed to the action of water running through a constant magnetic field. The animals were divided in the following subgroups: 1. Twenty experimental (receiving magnetic activated water - MAW) and 20 control mice were exposed to the action of positive acceleration of 20 G in the course of 5 minutes. 2. Twenty experimental mice (MAW) and 20 control mice were exposed to a positive transverse acceleration 24 hours before gamma irradiation with 600 R. The parameters studied were: survival, main duration of life, protection coefficient (α), changes in body weight and in erythrocytes and leucocytes counts in the peripheral blood. The results of these experiments show that after irradiation the observed parameters undergo milder changes in the experimental (MAW) than in the control groups, i.e. MAW exerts a distinct antiradiation effect, which is not reduced after exposure to the combined action of acceleration and radiation. (author)

  9. Platelets accelerate gastric ulcer healing through presentation of vascular endothelial growth factor

    OpenAIRE

    Wallace, John L; Dicay, Michael; McKnight, Webb; Dudar, Genevieve K

    2006-01-01

    Platelets contain an array of growth factors that can modulate healing processes, including both pro- (e.g., vascular endothelial growth factor (VEGF)) and antiangiogenic (e.g., endostatin) factors. Previous studies have shown that circulating platelets contribute significantly to gastric ulcer healing, acting as a delivery system for these growth factors to the site of injury. In this study, we examined the effects of orally administered human platelets on the healing of gastric ulcers in ra...

  10. Time to accelerate integration of human factors and ergonomics in patient safety.

    Science.gov (United States)

    Gurses, Ayse P; Ozok, A Ant; Pronovost, Peter J

    2012-04-01

    Progress toward improving patient safety has been slow despite engagement of the health care community in improvement efforts. A potential reason for this sluggish pace is the inadequate integration of human factors and ergonomics principles and methods in these efforts. Patient safety problems are complex and rarely caused by one factor or component of a work system. Thus, health care would benefit from human factors and ergonomics evaluations to systematically identify the problems, prioritize the right ones, and develop effective and practical solutions. This paper gives an overview of the discipline of human factors and ergonomics and describes its role in improving patient safety. We provide examples of how human factors and ergonomics principles and methods have improved both care processes and patient outcomes. We provide five major recommendations to better integrate human factors and ergonomics in patient safety improvement efforts: build capacity among health care workers to understand human factors and ergonomics, create market forces that demand the integration of human factors and ergonomics design principles into medical technologies, increase the number of human factors and ergonomic practitioners in health care organizations, expand investments in improvement efforts informed by human factors and ergonomics, and support interdisciplinary research to improve patient safety. In conclusion, human factors and ergonomics must play a more prominent role in health care if we want to increase the pace in improving patient safety.

  11. Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells. Third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Lathrop, J.W.; Hartman, R.A.; Saylor, C.R.

    1981-01-01

    The third year of the accelerated reliability testing program concentrated on electrical measurement instrumentation and in modeling cell behavior in the second quadrant. In addition, some preliminary work was done on correlating cell color changes with electrical degradation. Not reported are results of continuing accelerated stress tests on state of the art cells. A number of new cells were added to the program, but not in time for sufficient data to be obtained, while the older cells are undergoing extended test periods and new data are not yet available on them. The all-digital, microprocessor controlled, short interval tester, which was designed and fabricated, has replaced the manual measurement procedure formerly used. This has improved measurement accuracy and repeatability, reduced measurement time, and through coordinated data management procedures, eliminated data errors. A complete description of the tester including schematics and software is given and its operating procedures described. A computer model, based on the thermal and electrical properties of the cells and encapsulating materials, was developed to relate cell temperature to electrical characteristics in the second quadrant. This model adequately predicted the behavior of both encapsulated and unencapsulated cells, although accurate temperature measurements on encapsulated cells were difficult to obtain. In addition, only cells of one type were used for comparison and other cell types may require different parameter values for fitting. Use of the model should permit the prediction of a cell's sensitivity to degradation in the second quadrant. The computer program is listed together with a description of its operation.

  12. Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints

    Science.gov (United States)

    Kudryavtsev, A. S.; Okhapkin, K. A.; Mikhailov, M. S.; Skutin, V. S.; Zubova, G. E.; Fedotov, B. V.

    2016-06-01

    In the process of the investigation of the heat resistance of a 0.07C-12Cr-Ni-Mo-V-Nb steel of the martensitic-ferritic class, a reduction was revealed in the long-term strength of its welded joints to below the level of the strength of the base metal. To establish the causes for the accelerated failure of the welded joints, an imitation of the thermal cycles was carried out that produce the structure of the heataffected zone using a dilatometer. In the samples with the structure that corresponds to that of the heataffected zone, a local zone of softening was revealed. The investigations of the metal structure using transmission electron microscopy have shown that the reduction in the creep rupture strength was caused by structural changes under the conditions of the thermal cycle of welding upon the staying of the steel in the temperature range between the Ac 1 and Ac 3 points.

  13. Investigation of reliability attributes and accelerated stress factors of terrestrial solar cells. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Lathrop, J.W.; Prince, J.L.

    1980-04-01

    The work covered in this report represents the second year's effort of a continuing program to determine the reliability attributes of terrestrial solar cells. Three main tasks were undertaken during the reporting period: (1) a study of the electrical behavior of cells in the second (reverse) quadrant, (2) the accelerated stress testing of three new state of the art cells and (3) the continued bias-temperature testing of four Block II type silicon cells at 78/sup 0/C and 135/sup 0/C. Electrical characteristics measured in the second quadrant were determined to be a function of the cell's thermal behavior with breakdown depending on the initiation of localized heating. This implied that high breakdown cells may be more fault tolerant when forced to operate in the second quadrant - a result contrary to conventional thinking. The accelerated stress tests used in the first (power) quadrant were bias-temperature, bias-temperature-humidity, temperature-humidity, thermal shock, and thermal cycle. The new type cells measured included an EFG cell, a polycrystalline cell, and a Czochralski cell. Electrical parameters measured included I/sub SC/, V/sub OC/, P/sub M/, and I/sub M/. Incorporated in the report are the distributions of prestress electrical data for all cell types. Significant differences in the response to the various stress tests were observed between cell types. A microprocessed controlled, short interval solar cell tester was designed and construction initiated on a prototype for use in the program.

  14. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice.

    OpenAIRE

    Kawaida, K; Matsumoto, K.; Shimazu, H.; Nakamura, T.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan)

    1994-01-01

    Although acute renal failure is encountered with administration of nephrotoxic drugs, ischemia, or unilateral nephrectomy, there has been no effective drug which can be used in case of acute renal failure. Hepatocyte growth factor (HGF) is a potent hepatotropic factor for liver regeneration and is known to have mitogenic, motogenic, and morphogenic activities for various epithelial cells, including renal tubular cells. Intravenous injection of recombinant human HGF into mice remarkably suppre...

  15. Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice.

    Science.gov (United States)

    Ramakrishnan, Parameswaran; Yui, Mary A; Tomalka, Jeffrey A; Majumdar, Devdoot; Parameswaran, Reshmi; Baltimore, David

    2016-08-01

    The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel-deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel-deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4(+) and CD8(+) T cells from c-Rel-deficient NOD mice showed significantly decreased T-cell receptor-induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel-competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel-deficient NOD mice. The results suggest that c-Rel-dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel-dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell-dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity. PMID:27217485

  16. Hepatocyte Growth Factor Prevents Acute Renal Failure of Accelerates Renal Regeneration in mice

    Science.gov (United States)

    Kawaida, Kouichi; Matsumoto, Kunio; Shimazu, Hisaaki; Nakamura, Toshikazu

    1994-05-01

    Although acute renal failure is encountered with administration of nephrotoxic drugs, ischemia, or unilateral nephrectomy, there has been no effective drug which can be used in case of acute renal failure. Hepatocyte growth factor (HGF) is a potent hepatotropic factor for liver regeneration and is known to have mitogenic, motogenic, and morphogenic activities for various epithelial cells, including renal tubular cells. Intravenous injection of recombinant human HGF into mice remarkably suppressed increases in blood urea nitrogen and serum creatinine caused by administration of cisplatin, a widely used antitumor drug, or HgCl_2, thereby indicating that HGF strongly prevented the onset of acute renal dysfunction. Moreover, exogenous HGF stimulated DNA synthesis of renal tubular cells after renal injuries caused by HgCl_2 administration and unilateral nephrectomy and induced reconstruction of the normal renal tissue structure in vivo. Taken together with our previous finding that expression of HGF was rapidly induced after renal injuries, these results allow us to conclude that HGF may be the long-sought renotropic factor for renal regeneration and may prove to be effective treatment for patients with renal dysfunction, especially that caused by cisplatin.

  17. Development of prediction method of flow accelerated corrosion (1). Evaluation of hydraulic factors and its correlation with thinning rate

    International Nuclear Information System (INIS)

    Flow Accelerated Corrosion (FAC) requires considerable attention in plant piping management, for its potential of catastrophic pipe rupture of main piping systems. In view of fluid dynamics, the most essential factor to be considered is mass transfer at the inner surface of the pipe. In the previous report, the authors have proposed a new mass transfer coefficient model, which is adaptable to various types of piping elements with strong turbulence, by introducing the idea of 'Effective Friction Velocity' from the hydraulics in the viscous sub-layer along the wall. And in the present report, the model has been revised with rational logic, and verified with additional data obtained in FAC experiments with AVT water condition and CFD for the flow in the experiments. Furthermore, some discussion was made by considering the correlation of the thinning rate and the product of mass transfer and iron solubility, for the prospect of thinning rate prediction. (author)

  18. Identification of the Imprinted KLF14 Transcription Factor Undergoing Human-Specific Accelerated Evolution

    OpenAIRE

    Layla Parker-Katiraee; Carson, Andrew R; Takahiro Yamada; Philippe Arnaud; Robert Feil; Abu-Amero, Sayeda N; Moore, Gudrun E.; Masahiro Kaneda; Perry, George H.; Stone, Anne C.; Charles Lee; Makiko Meguro-Horike; Hiroyuki Sasaki; Keiko Kobayashi; Kazuhiko Nakabayashi

    2007-01-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryon...

  19. Persistent seroma after intraoperative placement of MammoSite for accelerated partial breast irradiation: Incidence, pathologic anatomy, and contributing factors

    International Nuclear Information System (INIS)

    Purpose: To investigate the incidence of, and possible factors associated with, seroma formation after intraoperative placement of the MammoSite catheter for accelerated partial breast irradiation. Methods and Materials: This study evaluated 38 patients who had undergone intraoperative MammoSite catheter placement at lumpectomy or reexcision followed by accelerated partial breast irradiation with 34 Gy in 10 fractions. Data were collected regarding dosimetric parameters, including the volume of tissue enclosed by the 100%, 150%, and 200% isodose shells, dose homogeneity index, and maximal dose at the surface of the applicator. Clinical and treatment-related factors were analyzed, including patient age, patient weight, history of diabetes and smoking, use of reexcision, interval between surgery and radiotherapy, total duration of catheter placement, total excised specimen volume, and presence or absence of postprocedural infection. Seroma was verified by clinical examination, mammography, and/or ultrasonography. Persistent seroma was defined as seroma that was clinically detectable >6 months after radiotherapy completion. Results: After a median follow-up of 17 months, the overall rate of any detectable seroma was 76.3%. Persistent seroma (>6 months) occurred in 26 (68.4%) of 38 patients, of whom 46% experienced at least modest discomfort at some point during follow-up. Of these symptomatic patients, 3 required biopsy or complete cavity excision, revealing squamous metaplasia, foreign body giant cell reaction, fibroblasts, and active collagen deposition. Of the analyzed dosimetric, clinical, and treatment-related variables, only body weight correlated positively with the risk of seroma formation (p = 0.04). Postprocedural infection correlated significantly (p = 0.05) with a reduced risk of seroma formation. Seroma was associated with a suboptimal cosmetic outcome, because excellent scores were achieved in 61.5% of women with seroma compared with 83% without seroma

  20. Accelerated circumferential strain quantification of the left ventricle using CIRCOME: simulation and factor analysis

    Science.gov (United States)

    Moghaddam, Abbas N.; Finn, J. Paul

    2008-03-01

    Circumferential strain of the left ventricle reflects myocardial contractility and is considered a key index of cardiac function. It is also an important parameter in the quantitative evaluation of heart failure. Circumferential compression encoding, CIRCOME, is a novel method in cardiac MRI to evaluate this strain non-invasively and quickly. This strain encoding technique avoids the explicit measurement of the displacement field and does not require calculation of strain through spatial differentiation. CIRCOME bypasses these two time-consuming and noise sensitive steps by directly using the frequency domain (k-space) information from radially tagged myocardium, before and after deformation. It uses the ring-shaped crown region of the k-space, generated by the taglines, to reconstruct circumferentially compression-weighted images of the heart before and after deformation. CIRCOME then calculates the circumferential strain through relative changes in the compression level of corresponding regions before and after deformation. This technique can be implemented in 3D as well as 2D and may be employed to estimate the overall global or regional circumferential strain. The main parameters that affect the accuracy of this method are spatial resolution, signal to noise ratio, eccentricity of the center of radial taglines their fading and their density. Also, a variety of possible image reconstruction and filtering options may influence the accuracy of the method. This study describes the pulse sequence, algorithm, influencing factors and limiting criteria for CIRCOME and provides the simulated results.

  1. The Accelerating And Constraining Factors Of The Coordinated And Balanced Development Of Regions

    Directory of Open Access Journals (Sweden)

    Vladimir Stepanovich Bochko

    2015-03-01

    Full Text Available In the article, the hypothesis that the modern industrial-technological process causes complication of socio-economic space and conducts to amplification its integrity, which, in turn, causes the need for the coordinated and balanced development, is proved. The process of complication of economic space is revealed as a result of number growth of communications caused by creation of the enterprises and organizations, by the change of structure of manufacture and increase of an educational level of the population. The characteristics of a new quality of economic space are given. The factors of the coordinated and balanced development of territories are allocated. The contents «a commercial combination» is shown. The necessity of transition to the system innovation thinking in conditions of becoming complicated economic space is proved. The idea of use «rebalancing of the economy « as a new vision of equation in conditions of crisis situations is offered. The conclusion is made that the result of theoretical and practical searches should become formation vital stability of development of territories, which is provided with intelligence — technological and moral — ethical level of the population, living on it

  2. Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    Science.gov (United States)

    Aizawa, Kazuya; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-11-01

    Gene therapy using wound healing-associated growth factor gene has received much attention as a new strategy for improving the outcome of tissue transplantation. We delivered plasmid DNA coding for human hepatocyte growth factor (hHGF) to rat free skin grafts by the use of laser-induced stress waves (LISWs); autografting was performed with the grafts. Systematic analysis was conducted to evaluate the adhesion properties of the grafted tissue; angiogenesis, cell proliferation, and reepithelialization were assessed by immunohistochemistry, and reperfusion was measured by laser Doppler imaging as a function of time after grafting. Both the level of angiogenesis on day 3 after grafting and the increased ratio of blood flow on day 4 to that on day 3 were significantly higher than those in five control groups: grafting with hHGF gene injection alone, grafting with control plasmid vector injection alone, grafting with LISW application alone, grafting with LISW application after control plasmid vector injection, and normal grafting. Reepithelialization was almost completed on day 7 even at the center of the graft with LISW application after hHGF gene injection, while it was not for the grafts of the five control groups. These findings demonstrate the validity of our LISW-based HGF gene transfection to accelerate the adhesion of grafted skins.

  3. A Tandem Repeat in Decay Accelerating Factor 1 Is Associated with Severity of Murine Mercury-Induced Autoimmunity

    Directory of Open Access Journals (Sweden)

    David M. Cauvi

    2014-01-01

    Full Text Available Decay accelerating factor (DAF, a complement-regulatory protein, protects cells from bystander complement-mediated lysis and negatively regulates T cells. Reduced expression of DAF occurs in several systemic autoimmune diseases including systemic lupus erythematosus, and DAF deficiency exacerbates disease in several autoimmune models, including murine mercury-induced autoimmunity (mHgIA. Daf1, located within Hmr1, a chromosome 1 locus associated in DBA/2 mice with resistance to mHgIA, could be a candidate. Here we show that reduced Daf1 transcription in lupus-prone mice was not associated with a reduction in the Daf1 transcription factor SP1. Studies of NZB mice congenic for the mHgIA-resistant DBA/2 Hmr1 locus suggested that Daf1 expression was controlled by the host genome and not the Hmr1 locus. A unique pentanucleotide repeat variant in the second intron of Daf1 in DBA/2 mice was identified and shown in F2 intercrosses to be associated with less severe disease; however, analysis of Hmr1 congenics indicated that this most likely reflected the presence of autoimmunity-predisposing genetic variants within the Hmr1 locus or that Daf1 expression is mediated by the tandem repeat in epistasis with other genetic variants present in autoimmune-prone mice. These studies argue that the effect of DAF on autoimmunity is complex and may require multiple genetic elements.

  4. Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-01-01

    Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.

  5. Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

    Energy Technology Data Exchange (ETDEWEB)

    Dzyuba, A.; /Fermilab /Novosibirsk State U.; Romanenko, A.; /Fermilab; Cooley, L.D.; /Fermilab

    2010-07-13

    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H{sub pen}. Such defects were argued to be the worst case by Buzdin and Daumens, [1998 Physica C 294 257], whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter {kappa}. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H{sub pen} when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H{sub pen} was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of {kappa}. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by {approx}20%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  6. Comparison of Tissue-Maximum Ratio and Output Factors ESTRO booklet with 6 for Siemens Primus accelerator Mevatron; Comparacion de Tissue-Maximum Ratio y Output Factors con el ESTYRO booklet 6 para un acelerador Siemens Primus Mevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lupiani Castellanos, J.; Quinones Rodriguez, L. A.; Richarte Reina, J. M.; Ramos Caballero, L. J.; Angulo Pain, E.; Castro Ramierez, I. J.; Iborra Oquendo, M. A.; Urena Llinares, A.

    2011-07-01

    The ESTRO Booklet 6 gives the numerical data collected in four different sizes and different accelerators for different beam qualities. Although the end of this guide is the calculation and verification of monitor units, the data we have used Siemens Primus accelerator Mevatron 6 MV photons to perform quality control of the experimental measurements for the tissue-maximum ratio (TMR) and the output factor (OF) in air yen dummy.

  7. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization.

    Science.gov (United States)

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2016-01-01

    In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate. PMID:27073853

  8. Factors Predictive of Symptomatic Radiation Injury After Linear Accelerator-Based Stereotactic Radiosurgery for Intracerebral Arteriovenous Malformations

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Christopher, E-mail: cherbert@bccancer.bc.ca [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Moiseenko, Vitali [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); McKenzie, Michael [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Redekop, Gary [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Hsu, Fred [Department of Radiation Oncology, British Columbia Cancer Agency, Abbotsford, BC (Canada); Gete, Ermias; Gill, Brad; Lee, Richard; Luchka, Kurt [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); Haw, Charles [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Lee, Andrew [Department of Neurosurgery, Royal Columbian Hospital, New Westminster, BC (Canada); Toyota, Brian [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Martin, Montgomery [Department of Medical Imaging, British Columbia Cancer Agency, Vancouver, BC (Canada)

    2012-07-01

    Purpose: To investigate predictive factors in the development of symptomatic radiation injury after treatment with linear accelerator-based stereotactic radiosurgery for intracerebral arteriovenous malformations and relate the findings to the conclusions drawn by Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC). Methods and Materials: Archived plans for 73 patients who were treated at the British Columbia Cancer Agency were studied. Actuarial estimates of freedom from radiation injury were calculated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used for analysis of incidence of radiation injury. Log-rank test was used to search for dosimetric parameters associated with freedom from radiation injury. Results: Symptomatic radiation injury was exhibited by 14 of 73 patients (19.2%). Actuarial rate of symptomatic radiation injury was 23.0% at 4 years. Most patients (78.5%) had mild to moderate deficits according to Common Terminology Criteria for Adverse Events, version 4.0. On univariate analysis, lesion volume and diameter, dose to isocenter, and a V{sub x} for doses {>=}8 Gy showed statistical significance. Only lesion diameter showed statistical significance (p < 0.05) in a multivariate model. According to the log-rank test, AVM volumes >5 cm{sup 3} and diameters >30 mm were significantly associated with the risk of radiation injury (p < 0.01). The V{sub 12} also showed strong association with the incidence of radiation injury. Actuarial incidence of radiation injury was 16.8% if V{sub 12} was <28 cm{sup 3} and 53.2% if >28 cm{sup 3} (log-rank test, p = 0.001). Conclusions: This study confirms that the risk of developing symptomatic radiation injury after radiosurgery is related to lesion diameter and volume and irradiated volume. Results suggest a higher tolerance than proposed by QUANTEC. The widely differing findings reported in the literature, however, raise considerable uncertainties.

  9. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    International Nuclear Information System (INIS)

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3: ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.

  10. Impact of the Number of Cautionary and/or Unsuitable Risk Factors on Outcomes After Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Purpose: To examine clinical outcomes of accelerated partial-breast irradiation (APBI) stratified by the number of American Society for Radiation Oncology consensus statement cautionary/unsuitable risk factors (RFs) present. Methods and Materials: A total of 692 patients were treated with APBI at a single institution between April 1993 and January 2012 using interstitial (n=195), balloon (n=292), and 3-dimensional conformal radiation therapy (n=205) techniques. Clinical outcomes were evaluated by risk group and number of RFs. Results: Median follow-up was 5.2 years (range, 0-18.3 years). Most patients were classified as suitable (n=240, 34%) or cautionary (n=343, 50%) risk, whereas 16% (n=109) were unsuitable. In patients with increasing total RFs (1 RF, 2 RF, 3+ RF), higher rates of grade 3 histology (10% vs 18% vs 32%, P<.001), estrogen receptor negativity (0 vs 12% vs 29%, P<.001), close/positive margins (0 vs 6% vs 17%, P<.001), and use of adjuvant chemotherapy (3% vs 12% vs 33%, P<.001) were noted. When pooling cautionary and unsuitable patients, increased ipsilateral breast tumor recurrence/regional recurrence was most notable for patients with 3 or more combined RFs versus 2 or fewer combined RFs (P<.001). Conclusions: Patients with 3 or more cautionary or unsuitable RFs may be at risk for higher local, regional, and distant recurrence after breast-conserving therapy using APBI. Patients with 2 or fewer total RFs have 98% locoregional control at 5 years. Inclusion of total number of RFs in future risk stratification schemes for APBI may be warranted

  11. Impact of the Number of Cautionary and/or Unsuitable Risk Factors on Outcomes After Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wobb, Jessica; Wilkinson, J. Ben [Department of Radiation Oncology, Beaumont Cancer Institute, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan (United States); Shah, Chirag [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Mitchell, Christina; Wallace, Michelle; Ye, Hong; Stromberg, Jannifer; Grills, Inga [Department of Radiation Oncology, Beaumont Cancer Institute, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan (United States); Chen, Peter Y., E-mail: PChen@beaumont.edu [Department of Radiation Oncology, Beaumont Cancer Institute, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan (United States)

    2013-09-01

    Purpose: To examine clinical outcomes of accelerated partial-breast irradiation (APBI) stratified by the number of American Society for Radiation Oncology consensus statement cautionary/unsuitable risk factors (RFs) present. Methods and Materials: A total of 692 patients were treated with APBI at a single institution between April 1993 and January 2012 using interstitial (n=195), balloon (n=292), and 3-dimensional conformal radiation therapy (n=205) techniques. Clinical outcomes were evaluated by risk group and number of RFs. Results: Median follow-up was 5.2 years (range, 0-18.3 years). Most patients were classified as suitable (n=240, 34%) or cautionary (n=343, 50%) risk, whereas 16% (n=109) were unsuitable. In patients with increasing total RFs (1 RF, 2 RF, 3+ RF), higher rates of grade 3 histology (10% vs 18% vs 32%, P<.001), estrogen receptor negativity (0 vs 12% vs 29%, P<.001), close/positive margins (0 vs 6% vs 17%, P<.001), and use of adjuvant chemotherapy (3% vs 12% vs 33%, P<.001) were noted. When pooling cautionary and unsuitable patients, increased ipsilateral breast tumor recurrence/regional recurrence was most notable for patients with 3 or more combined RFs versus 2 or fewer combined RFs (P<.001). Conclusions: Patients with 3 or more cautionary or unsuitable RFs may be at risk for higher local, regional, and distant recurrence after breast-conserving therapy using APBI. Patients with 2 or fewer total RFs have 98% locoregional control at 5 years. Inclusion of total number of RFs in future risk stratification schemes for APBI may be warranted.

  12. Tumor necrosis factoraccelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages.

    Science.gov (United States)

    Redente, Elizabeth F; Keith, Rebecca C; Janssen, William; Henson, Peter M; Ortiz, Luis A; Downey, Gregory P; Bratton, Donna L; Riches, David W H

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve

  13. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure.

    OpenAIRE

    Humes, H D; Cieslinski, D A; T.M. Coimbra; Messana, J M; Galvao, C.

    1989-01-01

    To determine the timing and location of renal cell regeneration after ischemic injury to the kidney and to assess whether exogenous epidermal growth factor (EGF) enhances this regenerative repair process to accelerate recovery of renal function, experiments were undertaken in rats undergoing 30 min of bilateral renal artery clamp ischemia followed by reperfusion for varying time intervals. Renal cell regeneration, as reflected by incorporation of radiolabeled thymidine within the kidney, bega...

  14. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  15. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity.

    Science.gov (United States)

    Anthony Jalin, Angela M A; Lee, Jae-Chul; Cho, Geum-Sil; Kim, Chunsook; Ju, Chung; Pahk, Kisoo; Song, Hwa Young; Kim, Won-Ki

    2015-11-01

    Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-1β in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-κB, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of IκB. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions. PMID:26535078

  16. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity

    OpenAIRE

    Anthony Jalin, Angela M. A.; Lee, Jae-Chul; CHO, GEUM-SIL; Kim, Chunsook; Ju, Chung; Pahk, Kisoo; Song, Hwa Young; Kim, Won-Ki

    2015-01-01

    Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we in...

  17. Evaluation of hydrodynamic factors on flow accelerated corrosion in gas-liquid two phase flow and construction of equation for mass transfer coefficient. Part 4. Effect of hydrodynamic and water chemical factors on flow accelerated corrosion in two phase flow

    International Nuclear Information System (INIS)

    Flow accelerated corrosion (FAC) experiments under water-steam two phase flow are performed to understand the effects of liquid film thickness and temperature, pH on thinning rate. The effects of temperature and pH on the thinning rates are almost the same as that of the prediction model of thinning rate of FAC under two phase flow. However, the effect of film thickness is different from the prediction model, so that it is suggested that the prediction model should improve the effect of film thickness. And then, these experimental results are compared with prediction thinning rates. These prediction thinning rates are higher than that of experiment rates when the water is alkali by ammonia and liquid film thickness is thin. It is suggested that the prediction model is improved and the accuracy of pH in liquid film is improved. (author)

  18. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  19. Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma.

    Science.gov (United States)

    Vernon, D; Gutell, R R; Cannone, J J; Rumpf, R W; Birky, C W

    2001-09-01

    Polytoma obtusum and Polytoma uvella are members of a clade of nonphotosynthetic chlorophyte algae closely related to Chlamydomonas humicola and other photosynthetic members of the Chlamydomonadaceae. Descended from a nonphotosynthetic mutant, these obligate heterotrophs retain a plastid (leucoplast) with a functional protein synthetic system, and a plastid genome (lpDNA) with functional genes encoding proteins required for transcription and translation. Comparative studies of the evolution of genes in chloroplasts and leucoplasts can identify modes of selection acting on the plastid genome. Two plastid genes--rrn16, encoding the plastid small-subunit rRNA, and tufA, encoding elongation factor Tu--retain their functions in protein synthesis after the loss of photosynthesis in two nonphotosynthetic Polytoma clades but show a substantially accelerated rate of base substitution in the P. uvella clade. The accelerated evolution of tufA is due, at least partly, to relaxed codon bias favoring codons that can be read without wobble, mainly in three amino acids. Selection for these codons may be relaxed because leucoplasts are required to synthesize fewer protein molecules per unit time than are chloroplasts (reduced protein synthetic load) and thus require a lower rate of synthesis of elongation factor Tu. Relaxed selection due to a lower protein synthetic load is also a plausible explanation for the accelerated rate of evolution of rrn16, but the available data are insufficient to test the hypothesis for this gene. The tufA and rrn16 genes in Polytoma oviforme, the sole member of a second nonphotosynthetic clade, are also functional but show no sign of relaxed selection.

  20. 5. Accelerated Fracture Healing Targeting Periosteal Cells: Possibility of Combined Therapy of Low-Intensity Pulsed Ultrasound (LIPUS), Bone Graft, and Growth Factor (bFGF).

    Science.gov (United States)

    Uchida, Kentaro; Urabe, Ken; Naruse, Koji; Mikuni-Takagaki, Yuko; Inoue, Gen; Takaso, Masashi

    2016-08-01

    We have studied the mechanism of fracture healing, and the effect of LIPUS, bone graft and growth factor on accelerating fracture healing. We present here the results of our research. To examine callus formation cells in fracture healing, we made marrow GFP chimera mice and a fracture model of marrow mesenchymal stem cell GFP chimera mice. It was demonstrated that periosteal cells were essential for callus formation. We focused on periosteal cells and examined the effect of LIPUS. In an in vitro experiment using a cultured part of the femur, LIPUS promoted ossification of the periosteal tissue. Further, LIPUS accelerated VEGF expression in the experiment using the femoral fracture model of mice. From these results, it was suggested that activation of periosteal cells might play a role in the fracture healing mechanism of LIPUS. Next, we discussed the possibility of combined therapy of LIPUS, bone graft and growth factor. Therapy involving the topical administration of bFGF using a controlled release system and bone graft could promote callus formation. In addition, LIPUS was able to promote membranaceous ossification after the bone graft. It was suggested that combined therapy of LIPUS, bone graft and bFGF could be a new option for treating fractures. PMID:27441766

  1. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  2. Students' Perceptions of Factors That Contribute to Risk and Success in Accelerated High School Courses

    Science.gov (United States)

    Shaunessy-Dedrick, Elizabeth; Suldo, Shannon M.; Roth, Rachel A.; Fefer, Sarah A.

    2015-01-01

    In this qualitative study, we investigated 15 successful and 15 struggling high school students, perceived stressors, coping strategies, and intrapersonal and environmental factors that students perceive to influence their success in college-level courses. We found that students' primary sources of stress involved meeting numerous academic…

  3. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  4. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression

    International Nuclear Information System (INIS)

    The primary cause of death after radiation exposure is infection resulting from myelosuppression. Because granulocytes play a critical role in host defense against infection and because granulocyte proliferation and differentiation are enhanced by granulocyte colony-stimulating factor (G-CSF), this agent was evaluated for the ability to accelerate hemopoietic regeneration and to enhance survival in irradiated mice. C3H/HeN mice were irradiated and G-CSF (2.5 micrograms/day, s.c.) or saline was administered on days 3-12, 1-12 or 0-12 post-irradiation. Bone marrow, splenic and peripheral blood cellularity, and bone marrow and splenic granulocyte-macrophage progenitor cell recoveries were evaluated in mice exposed to 6.5 Gy. Mice exposed to 8 Gy were evaluated for multipotent hemopoietic stem cell recovery (using endogenous spleen colony-forming units) and enhanced survival. Results demonstrated that therapeutic G-CSF (1) accelerates hemopoietic regeneration after radiation-induced myelosuppression, (2) enhances survival after potentially lethal irradiation and (3) is most effective when initiated 1 h following exposure

  5. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modeling

    OpenAIRE

    Zavgorodni, Sergei; Alhakeem, Eyad; Townson, Reid

    2013-01-01

    Purpose/Objective: Backscattered radiation (BSR) into linac monitor chamber has to be accounted for in radiotherapy dose calculations. In Monte Carlo (MC) calculations, the BSR can be modeled explicitly, but only when treatment head geometry is available. In this study, monitor backscatter factors (MBSFs), defined as the ratio of the charge collected in the monitor chamber for a reference field to that of a given field, have been evaluated experimentally and incorporated into MC modelling of ...

  6. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors.

    Directory of Open Access Journals (Sweden)

    Tea Soon Park

    Full Text Available Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC occurs in only rare fractions (~0.001%-0.5% of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB myeloid progenitors with bulk efficiencies of ~50% in purified episome-expressing cells. Lineage-committed CD33(+CD45(+CD34(- myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG(+TRA-1-81(+ hiPSC was mediated by synergies between hematopoietic growth factor (GF, stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC. Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly

  7. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  8. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  9. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling

    International Nuclear Information System (INIS)

    Linac backscattered radiation (BSR) into the monitor chamber affects the chamber's signal and has to be accounted for in radiotherapy dose calculations. In Monte Carlo (MC) calculations, the BSR can be modelled explicitly and accounted for in absolute dose. However, explicit modelling of the BSR becomes impossible if treatment head geometry is not available. In this study, monitor backscatter factors (MBSFs), defined as the ratio of the charge collected in the monitor chamber for a reference field to that of a given field, have been evaluated experimentally and incorporated into MC modelling of linacs with either known or unknown treatment head geometry. A telescopic technique similar to that by Kubo (1989 Med. Phys. 16 295–98) was used. However, instead of lead slits, a 1.8 mm diameter collimator and a small (2 mm diameter) detector positioned at extended source to detector distance were used. This setup provided a field of view to the source of less than 3.1 mm and allowed for MBSF measurements of open fields from 1 × 1 to 40 × 40 cm2. For the fields with both X and Y dimensions exceeding 15 cm, a diode detector was used. A pinpoint ionization chamber was used for smaller fields. MBSFs were also explicitly modelled in MC calculations using BEAMnrc and DOSXYZnrc codes for 6 and 18 MV beams of a Varian 21EX linac. A method for deriving the Dchforward values that are used in MC absolute dose calculations was demonstrated. These values were derived from measured MBSFs for two 21EX and four TrueBeam energies. MBSFs were measured for 6 and 18 MV beams from Varian 21EX, and for 6 MV, 10 MV-FFF, 10 MV, and 15 MV beams from Varian TrueBeam linacs. For the open field sizes modelled in this study for the 21EX, the measured MBSFs agreed with MC calculated values within combined statistical (0.4%) and experimental (0.2%) uncertainties. Variation of MBSFs across field sizes was about a factor of two smaller for the TrueBeam compared to 21EX Varian linacs

  10. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling

    Science.gov (United States)

    Zavgorodni, Sergei; Alhakeem, Eyad; Townson, Reid

    2014-02-01

    Linac backscattered radiation (BSR) into the monitor chamber affects the chamber's signal and has to be accounted for in radiotherapy dose calculations. In Monte Carlo (MC) calculations, the BSR can be modelled explicitly and accounted for in absolute dose. However, explicit modelling of the BSR becomes impossible if treatment head geometry is not available. In this study, monitor backscatter factors (MBSFs), defined as the ratio of the charge collected in the monitor chamber for a reference field to that of a given field, have been evaluated experimentally and incorporated into MC modelling of linacs with either known or unknown treatment head geometry. A telescopic technique similar to that by Kubo (1989 Med. Phys. 16 295-98) was used. However, instead of lead slits, a 1.8 mm diameter collimator and a small (2 mm diameter) detector positioned at extended source to detector distance were used. This setup provided a field of view to the source of less than 3.1 mm and allowed for MBSF measurements of open fields from 1 × 1 to 40 × 40 cm2. For the fields with both X and Y dimensions exceeding 15 cm, a diode detector was used. A pinpoint ionization chamber was used for smaller fields. MBSFs were also explicitly modelled in MC calculations using BEAMnrc and DOSXYZnrc codes for 6 and 18 MV beams of a Varian 21EX linac. A method for deriving the D_ch^forward values that are used in MC absolute dose calculations was demonstrated. These values were derived from measured MBSFs for two 21EX and four TrueBeam energies. MBSFs were measured for 6 and 18 MV beams from Varian 21EX, and for 6 MV, 10 MV-FFF, 10 MV, and 15 MV beams from Varian TrueBeam linacs. For the open field sizes modelled in this study for the 21EX, the measured MBSFs agreed with MC calculated values within combined statistical (0.4%) and experimental (0.2%) uncertainties. Variation of MBSFs across field sizes was about a factor of two smaller for the TrueBeam compared to 21EX Varian linacs. Measured MBSFs

  11. Tranexamic acid combined with recombinant factor VIII increases clot resistance to accelerated fibrinolysis in severe hemophilia A

    DEFF Research Database (Denmark)

    Hvas, Anne-Mette; Sørensen, Hanne Thykjær; Norengaard, Lisbeth;

    2007-01-01

    BACKGROUND: Most patients with severe hemophilia A suffer from a profoundly compromised hemostatic response. In addition to both the delayed and slow development of a clot, previous studies have documented that severe hemophilia A is also associated with reduced clot stability. OBJECTIVES: We...... examined whether the clot stability in hemophiliacs could be improved by treatment with tranexamic acid (TXA) in combination with recombinant factor VIII (rFVIII). PATIENTS/METHODS: Baseline blood samples were obtained from eight males with severe hemophilia A. Thereafter, a bolus injection of r...... the elasticity curve increased 5-fold after rFVIII and 24-fold after addition of TXA. CONCLUSIONS: The study demonstrates that simultaneous treatment with TXA and rFVIII significantly improves the clot stability in patients with hemophilia A. Udgivelsesdato: December...

  12. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    Science.gov (United States)

    Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  13. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner.

    OpenAIRE

    Freistroffer, D V; Pavlov, M Y; MacDougall, J; Buckingham, R H; Ehrenberg, M

    1997-01-01

    Ribosomes complexed with synthetic mRNA and peptidyl-tRNA, ready for peptide release, were purified by gel filtration and used to study the function of release factor RF3 and guanine nucleotides in the termination of protein synthesis. The peptide-releasing activity of RF1 and RF2 in limiting concentrations was stimulated by the addition of RF3 and GTP, stimulated, though to a lesser extent, by RF3 and a non-hydrolysable GTP analogue, and inhibited by RF3 and GDP or RF3 without guanine nucleo...

  14. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modeling

    CERN Document Server

    Zavgorodni, Sergei; Townson, Reid

    2013-01-01

    Objectives: Linac backscattered radiation (BSR) into the monitor chamber affects the chamber signal and has to be accounted for in radiotherapy dose calculations. In Monte Carlo (MC) calculations BSR can be modeled explicitly and incorporated into absolute dose. However, explicit modeling of BSR becomes impossible if treatment head geometry is not available. In this study, monitor backscatter factors (MBSFs), defined as the ratio of the charge collected in the monitor chamber for a reference field to that of a given field, have been evaluated experimentally and incorporated into MC modeling. Materials and methods: A telescopic technique similar to that by Kubo (1989) was used. However, instead of lead slits, a 1.8 mm diameter collimator and a PTW pinpoint ionization chamber positioned at extended SDD were used. These provided a field of view to the source of less than 3.1 mm. MBSFs were also explicitly modeled in MC calculations using BEAMnrc and DOSXYZnrc codes for 6MV and 18MV beams of a Varian 21EX linac, ...

  15. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    Science.gov (United States)

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.

  16. Factors Associated With Optimal Long-Term Cosmetic Results in Patients Treated With Accelerated Partial Breast Irradiation Using Balloon-Based Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate factors associated with optimal cosmetic results at 72 months for early-stage breast cancer patients treated with Mammosite balloon-based accelerated partial breast irradiation (APBI). Methods and Materials: A total of 1,440 patients (1,449 cases) with early-stage breast cancer undergoing breast-conserving therapy were treated with balloon-based brachytherapy to deliver APBI (34 Gy in 3.4-Gy fractions). Cosmetic outcome was evaluated at each follow-up visit and dichotomized as excellent/good (E/G) or fair/poor (F/P). Follow-up was evaluated at 36 and 72 months to establish long-term cosmesis, stability of cosmesis, and factors associated with optimal results. Results: The percentage of evaluable patients with excellent/good (E/G) cosmetic results at 36 months and more than 72 months were 93.3% (n = 708/759) and 90.4% (n = 235/260). Factors associated with optimal cosmetic results at 72 months included: larger skin spacing (p = 0.04) and T1 tumors (p = 0.02). Using multiple regression analysis, the only factors predictive of worse cosmetic outcome at 72 months were smaller skin spacing (odds ratio [OR], 0.89; confidence interval [CI], 0.80–0.99) and tumors greater than 2 cm (OR, 4.96, CI, 1.53–16.07). In all, 227 patients had both a 36-month and a 72-month cosmetic evaluation. The number of patients with E/G cosmetic results decreased only slightly from 93.4% at 3 years to 90.8% (p = 0.13) at 6 years, respectively. Conclusions: APBI delivered with balloon-based brachytherapy produced E/G cosmetic results in 90.4% of cases at 6 years. Larger tumors (T2) and smaller skin spacing were found to be the two most important independent predictors of cosmesis.

  17. Monte Carlo-derived TLD cross-calibration factors for treatment verification and measurement of skin dose in accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, VIa del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-03-21

    Monte Carlo simulation was employed to calculate the response of TLD-100 chips under irradiation conditions such as those found during accelerated partial breast irradiation with the MammoSite radiation therapy system. The absorbed dose versus radius in the last 0.5 cm of the treated volume was also calculated, employing a resolution of 20 {mu}m, and a function that fits the observed data was determined. Several clinically relevant irradiation conditions were simulated for different combinations of balloon size, balloon-to-surface distance and contents of the contrast solution used to fill the balloon. The thermoluminescent dosemeter (TLD) cross-calibration factors were derived assuming that the calibration of the dosemeters was carried out using a Cobalt 60 beam, and in such a way that they provide a set of parameters that reproduce the function that describes the behavior of the absorbed dose versus radius curve. Such factors may also prove to be useful for those standardized laboratories that provide postal dosimetry services.

  18. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing

    Directory of Open Access Journals (Sweden)

    Sabrina Valente

    2016-01-01

    Full Text Available Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs. hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki–67 assay, migration (scratch and transwell assays, and angiogenesis (Matrigel were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR. The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.

  19. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing.

    Science.gov (United States)

    Valente, Sabrina; Ciavarella, Carmen; Pasanisi, Emanuela; Ricci, Francesca; Stella, Andrea; Pasquinelli, Gianandrea

    2016-01-01

    Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs). hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL) from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki-67 assay), migration (scratch and transwell assays), and angiogenesis (Matrigel) were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR). The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.

  20. A mutein of human basic fibroblast growth factor TGP-580 accelerates colonic ulcer healing by stimulating angiogenesis in the ulcer bed in rats.

    Science.gov (United States)

    Satoh, H; Szabo, S

    2015-10-01

    Previously, we reported that TGP-580, a mutein of human basic fibroblast growth factor (bFGF), accelerated the healing of gastric and duodenal ulcers in rats. In the present study, we examined the effect of TGP-580 on the healing of colonic ulcers. In male Sprague Dawley rats, ulcers were induced in the colon 6 cm from the anus by enema of 50 μl of 3% N-ethylmaleimide, a sulfhydryl alkylator. The lesions were examined under a dissecting microscope (x10). The concentration of bFGF in the ulcerated colon was measured by enzyme immunoassay, and both the distribution of bFGF and the density of microvessels in the ulcer bed were examined by immunohistochemical staining. The content of bFGF in the ulcerated colon was markedly increased associated with ulcer healing, and ulcer healing was significantly delayed by intravenous administration of a monoclonal antibody for bFGF (MAb 3H3) once daily for 10 days. In the ulcer bed, many cells such as fibroblasts, vascular endothelial cells and macrophages were positively stained with bFGF antiserum. TGP-580, human bFGF or dexamethasone was given intracolonally twice daily for 10 days, starting the day after ulcer induction. TGP-580 (0.2 - 20 μg/ml, 200 μl/rat) dose-dependently accelerated ulcer healing, and its effect was more than 10 times stronger than that of human bFGF. Density (μm/0.01 mm(2)) of microvessels in the ulcer bed was significantly increased by treatment with TGP-580, and there was a good correlation between the density of microvessels and the decrease of ulcerated area (R(2) = 0.633). On the other hand dexamethasone (20 μg/ml) inhibited angiogenesis in the ulcer bed and delayed ulcer healing. These results suggest that angiogenesis in the ulcer bed plays an important role in ulcer healing, and that bFGF mutein TGP-580 accelerated colonic ulcer healing, at least in part, by stimulating angiogenesis, whereas glucocorticoids may delay the healing by inhibiting angiogenesis.

  1. SU-E-T-370: Measurement of Conical Cone Output Factors for the Varian Edge Linear Accelerator

    International Nuclear Information System (INIS)

    Purpose: To quantify the impact of detector type, SSD/depth, and intermediate reference on conical cone output factor (OF) measurements for the Varian Edge linac. Methods: OF's for 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter cones relative to 10cmx10cm field were measured for the 6X FFF and 10X FFF energies, with jaws set to 5cmx5cm. Measurements were performed with an Edge diode (0.8mmx0.8mmx0.03mm WxLxT), stereotatic diode SFD, photon diode, CC01 and pinpoint chambers (2mm diameter for both). 95cm SSD/5cm depth were used in a water tank. For the measurement with diodes, OF's were cross-referred to CC13 ion chamber measurements with 3cmx3cm field, as recommended, to help mitigate the energy variation in diode response with field size. Results were compared to the representative data from Varian measured with Edge detector. With SFD, OF's at 98.5cm SSD/1.5cm depth and 90cm SSD/10cm depth were also measured. Results: OF's measured with the Edge detector matched within 1.3% (max diff) with the representative data from Varian. For the SFD, OF's matched within 1.3% for the 4, 5 and 17.5 mm cones and within 3.7% for the other cones. OF's with photon diode were within 1.3% except for the 4 and 5 mm cones where they were 8.1% and 3.7%, respectively. OF's for the CC01 and pinpoint chamber deviated up to 36% and 44%, respectively for the 4 mm cone. OF's after intermediate reference with 3cmx3cm field changed by 3.7% for SFD, 0.8% for photon diode, and 0.6% for Edge detector. OF's at 98.5cm SSD/1.5cm depth were 10.8% higher than that at 95cm SSD/5cm depth, and OF's at 90cm SSD/1.5cm depth were 7.5% lower. Conclusion: OF's measured with the Edge detector appear to be reliable. CC01 and pinpoint chambers do not appear suitable for measuring the small cone OF's. SSD/depth affects OF measurements significantly

  2. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife{sup Registered-Sign} and linear accelerators equipped with microMLC and circular cones

    Energy Technology Data Exchange (ETDEWEB)

    Bassinet, C.; Huet, C.; Derreumaux, S.; Baumann, M.; Trompier, F.; Roch, P.; Clairand, I. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP17, 92262 Fontenay-aux-Roses Cedex (France); Brunet, G.; Gaudaire-Josset, S. [Institut de Cancerologie de l' Ouest Rene Gauducheau, bd Jacques Monod, 44805 Saint Herblain Cedex (France); Chea, M.; Boisserie, G. [Groupe Hospitalier Pitie-Salpetriere, 47/83 bd de l' Hopital, 75651 Paris Cedex 13 (France); Lacornerie, T. [Centre Oscar Lambret, 3, rue Frederic Combemale, BP 307, 59020 Lille Cedex (France)

    2013-07-15

    Purpose: The use of small photon fields is now an established practice in stereotactic radiosurgery and radiotherapy. However, due to a lack of lateral electron equilibrium and high dose gradients, it is difficult to accurately measure the dosimetric quantities required for the commissioning of such systems. Moreover, there is still no metrological dosimetric reference for this kind of beam today. In this context, the first objective of this work was to determine and to compare small fields output factors (OF) measured with different types of active detectors and passive dosimeters for three types of facilities: a CyberKnife{sup Registered-Sign} system, a dedicated medical linear accelerator (Novalis) equipped with m3 microMLC and circular cones, and an adaptive medical linear accelerator (Clinac 2100) equipped with an additional m3 microMLC. The second one was to determine the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors introduced in a recently proposed small field dosimetry formalism for different active detectors.Methods: Small field sizes were defined either by microMLC down to 6 Multiplication-Sign 6 mm{sup 2} or by circular cones down to 4 mm in diameter. OF measurements were performed with several commercially available active detectors dedicated to measurements in small fields (high resolution diodes: IBA SFD, Sun Nuclear EDGE, PTW 60016, PTW 60017; ionizing chambers: PTW 31014 PinPoint chamber, PTW 31018 microLion liquid chamber, and PTW 60003 natural diamond). Two types of passive dosimeters were used: LiF microcubes and EBT2 radiochromic films.Results: Significant differences between the results obtained by several dosimetric systems were observed, particularly for the smallest field size for which the difference in the measured OF reaches more than 20%. For passive dosimeters, an excellent agreement was observed (better than 2%) between EBT2 and LiF microcubes

  3. Developments in laser-driven plasma accelerators

    CERN Document Server

    Hooker, Simon Martin

    2014-01-01

    Laser-driven plasma accelerators provide acceleration gradients three orders of magnitude greater than conventional machines, offering the potential to shrink the length of accelerators by the same factor. To date, laser-acceleration of electron beams to particle energies comparable to those offered by synchrotron light sources has been demonstrated with plasma acceleration stages only a few centimetres long. This article describes the principles of operation of laser-driven plasma accelerators, and reviews their development from their proposal in 1979 to recent demonstrations. The potential applications of plasma accelerators are described and the challenges which must be overcome before they can become a practical tool are discussed.

  4. Accelerator operations

    International Nuclear Information System (INIS)

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  5. Advanced accelerators

    International Nuclear Information System (INIS)

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  6. Superconducting traveling wave accelerators

    International Nuclear Information System (INIS)

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table

  7. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  8. Positive regulation by γ-aminobutyric acid B receptor subunit-1 of chondrogenesis through acceleration of nuclear translocation of activating transcription factor-4.

    Science.gov (United States)

    Takahata, Yoshifumi; Hinoi, Eiichi; Takarada, Takeshi; Nakamura, Yukari; Ogawa, Shinya; Yoneda, Yukio

    2012-09-28

    A view that signaling machineries for the neurotransmitter γ-aminobutyric acid (GABA) are functionally expressed by cells outside the central nervous system is now prevailing. In this study, we attempted to demonstrate functional expression of GABAergic signaling molecules by chondrocytes. In cultured murine costal chondrocytes, mRNA was constitutively expressed for metabotropic GABA(B) receptor subunit-1 (GABA(B)R1), but not for GABA(B)R2. Immunohistochemical analysis revealed the predominant expression of GABA(B)R1 by prehypertrophic to hypertrophic chondrocytes in tibial sections of newborn mice. The GABA(B)R agonist baclofen failed to significantly affect chondrocytic differentiation determined by Alcian blue staining and alkaline phosphatase activity in cultured chondrocytes, whereas newborn mice knocked out of GABA(B)R1 (KO) showed a decreased body size and delayed calcification in hyoid bone and forelimb and hindlimb digits. Delayed calcification was also seen in cultured metatarsals from KO mice with a marked reduction of Indian hedgehog gene (Ihh) expression. Introduction of GABA(B)R1 led to synergistic promotion of the transcriptional activity of activating transcription factor-4 (ATF4) essential for normal chondrogenesis, in addition to facilitating ATF4-dependent Ihh promoter activation. Although immunoreactive ATF4 was negligibly detected in the nucleus of chondrocytes from KO mice, ATF4 expression was again seen in the nucleus and cytoplasm after the retroviral introduction of GABA(B)R1 into cultured chondrocytes from KO mice. In nuclear extracts of KO chondrocytes, a marked decrease was seen in ATF4 DNA binding. These results suggest that GABA(B)R1 positively regulates chondrogenesis through a mechanism relevant to the acceleration of nuclear translocation of ATF4 for Ihh expression in chondrocytes. PMID:22879594

  9. KEKB accelerator

    International Nuclear Information System (INIS)

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  10. Accelerating networks

    International Nuclear Information System (INIS)

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  11. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  12. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  13. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  14. Velocity bunching in travelling wave accelerator with low acceleration gradient

    CERN Document Server

    Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka

    2013-01-01

    We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.

  15. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands

    NARCIS (Netherlands)

    Hoogeveen, A.J.M.; Hell, J.G. van; Verhoeven, L.T.W.

    2012-01-01

    Background. In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims. In this study, soci

  16. Social-Emotional Characteristics of Gifted Accelerated and Non-Accelerated Students in the Netherlands

    Science.gov (United States)

    Hoogeveen, Lianne; van Hell, Janet G.; Verhoeven, Ludo

    2012-01-01

    Background: In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims: In this study, social-emotional characteristics of accelerated…

  17. Factoring

    OpenAIRE

    Lenstra, Arjen K.

    1994-01-01

    Factoring, finding a non-trivial factorization of a composite positive integer, is believed to be a hard problem. How hard we think it is, however, changes almost on a daily basis. Predicting how hard factoring will be in the future, an important issue for cryptographic applications of composite numbers, is therefore a challenging task. The author presents a brief survey of general purpose integer factoring algorithms and their implementations

  18. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  19. Superconducting magnet technology for accelerators

    International Nuclear Information System (INIS)

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed

  20. Performance analysis of acceleration resolution for radar signal

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Hongzhong; (赵宏钟); FU; Qiang; (付; 强)

    2003-01-01

    The high acceleration of moving targets has brought severe problems in radar signal processing, such as the decrease in output signal-noise-ratio and the deterioration of Doppler resolution. This paper presents an acceleration ambiguity function (AAF) for characterizing the acceleration effects and the acceleration resolution property in radar signal processing. The definition of the acceleration resolution based on AAF is also presented. Using AAF as an analyzing tool, some factors are derived including the loss factor of output SNR, the broadening factor of Doppler resolution, and the optimal accumulative time (OPT) caused by acceleration in linear-phase matched filtering. The convergent property of quadratic-phase matched-filter for searching for and estimating the acceleration is discussed. The results and conclusions are helpful for the quantitative analysis of the acceleration effects on signal processing, and for evaluation of the performance of acceleration in radar signal waveform design.

  1. Study of yield acceleration of slope stabilized by multistage retaining earth structures and sensitivity analysis of influence factors%多级支护边坡屈服加速度及因素敏感性分析

    Institute of Scientific and Technical Information of China (English)

    文畅平

    2013-01-01

    基于拟静力法,结合塑性极限分析上限定理和强度折减技术,推导了桩板式挡墙与二级锚杆挡墙支护高边坡地震作用下的水平屈服加速度系数的上限解,分别计算了多级支护结构总高度、边坡平台宽度、土的抗剪强度折减系数、桩板墙桩侧土压力分布经验系数、锚杆挡墙倾角、锚杆轴力及倾角等因素下,多级支护边坡的水平屈服加速度系数的临界极限值。根据正交分析法,给出了地震条件下基覆边坡水平屈服加速度系数影响因素的敏感性顺序。研究表明,多级支挡结构高度和锚杆轴力敏感性较大,而锚杆倾角、桩侧土压力分布经验系数和边坡平台宽度的敏感性较小。锚杆倾角、锚杆挡墙倾角、边坡平台宽度、桩板墙抗力及桩侧土压力分布形式的选择等,对水平屈服加速度系数的影响较小。土的抗剪强度参数中,黏聚力对水平屈服加速度系数的影响较小,而内摩擦角的影响较大。%According to the fundamental theory of upper bound theorem of plastic limit analysis and strength reduction technique based on pseudo-static method, the upper bound solution of the horizontal yield acceleration coefficient of slope stabilized by sheet-pile retaining wall, and two-step anchored bolt retaining wall is deduced rigorously. The critical values of the horizontal yield acceleration of multistage retaining high slopes with different heights of multistage retaining structures, the width of slope plain stages, soil shear strength reduction coefficient, the empirical coefficient of earth pressure along pile, the angle of anchored bolt retaining wall, the pretension force and angle of anchor rod are calculated. The influence factors sensibility sequences of the horizontal yield acceleration coefficient of the bedrock and overburden layer slope under earthquake loading are listed using the orthogonal experiment method. The study indicates

  2. An investigation into a wavelet accelerated gauge fixing algorithm

    OpenAIRE

    Draper, Terrence; McNeile, Craig

    1993-01-01

    We introduce an acceleration algorithm for coulomb gauge fixing, using the compactly supported wavelets introduced by Daubechies. The algorithm is similar to Fourier acceleration. Our provisional numerical results for $SU(3)$ on $8^{4}$ lattices show that the acceleration based on the DAUB6 transform can reduce the number of iterations by a factor up to 3 over the unaccelerated algorithm. The reduction in iterations for Fourier acceleration is approximately a factor of 7.

  3. Application of acceleration factor in reliability assessment of product in varying stresses%加速系数在产品变应力可靠性评估中的应用

    Institute of Scientific and Technical Information of China (English)

    赵志草; 宋保维; 王新平; 梁庆卫

    2012-01-01

    针对产品可靠性评估中忽视使用应力变化的问题,基于加速寿命试验的思想,利用加速系数,在已知加速模型的基础上建立了处理变化使用应力的时间折合模型及变化的使用应力在某个时间段内的等效应力模型.最后将上述模型应用到了某型舰船电缆绝缘材料的等效使用环境温度计算中.通过与原方法对比,验证了文中方法的正确性及有效性.该方法对产品其他情况下变应力的处理有借鉴作用.%For the neglect of changes of operating stress in re-liability assessment of product, based on the thought of accelerated life tests and the known acceleration model, the equivalent time model to deal with the varying operating stress and the equivalent stress model of operating stress during a period of time were given by using the acceleration factor. Then, the equivalent stress model was applied to the calculation of equivalent operating environmental temperature for some ship cable insulation. Comparing with former method, the result shows the validity of method mentioned above. This method can also be the reference of equivalent stress process-ing in other cases.

  4. Factors associated with acute and late dysphagia in the DAHANCA 6 & 7 randomized trial with accelerated radiotherapy for head and neck cancer

    DEFF Research Database (Denmark)

    Mortensen, Hanna Rahbek; Overgaard, Jens; Jensen, Kenneth;

    2013-01-01

    Dysphagia is a common and debilitating side effect in head and neck radiotherapy (RT). Prognostic factors are numerous and their interrelationship not well understood. The aim of this study was to establish a multivariate prognostic model for acute and late dysphagia after RT, based on informatio...

  5. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  6. The direction of acceleration

    Science.gov (United States)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  7. Association between different risk factors and vascular accelerated ageing (EVA study): study protocol for a cross-sectional, descriptive observational study

    Science.gov (United States)

    Gomez-Marcos, Manuel A; Martinez-Salgado, Carlos; Gonzalez-Sarmiento, Rogelio; Hernandez-Rivas, Jesus Ma; Sanchez-Fernandez, Pedro L; Recio-Rodriguez, Jose I; Rodriguez-Sanchez, Emiliano; García-Ortiz, Luis

    2016-01-01

    Introduction The process of population ageing that is occurring in developed societies represents a major challenge for the health system. The aim of this study is to analyse factors that have an influence on early vascular ageing (EVA), estimated by carotid-femoral pulse wave velocity (cf-PWV) and Cardio Ankle Vascular Index (CAVI), and to determine differences by gender in a Spanish population. Methods and analysis An observational, descriptive, cross-sectional study. Study population From the population assigned to the participating healthcare centres, a cluster random sampling stratified by age and gender will be performed to obtain 500 participants aged between 35 and 75. Those who meet the inclusion criteria and give written informed consent will be included in the study. Measurements Main dependent variables: cf-PWV determined using the SphygmoCor System and CAVI estimated using VASERA. Secondary dependent variables: telomere length, carotid intima-media thickness, central and peripheral augmentation index, ankle-brachial pulse wave velocity, ankle-brachial index, retinal arteriovenous index, and renal and cardiac organ damage. Independent variables: lifestyles (physical activity, adherence to the Mediterranean diet, alcohol and tobacco consumption); psychological factors (depression, anxiety and chronic stress); inflammatory factors and oxidative stress. Ethics and dissemination The study has been approved by the clinical research ethics committee of the healthcare area of Salamanca. All study participants will sign an informed consent form agreeing to participate in the study in compliance with the Declaration of Helsinki and the WHO standards for observational studies. The results of this study will allow the understanding of the relationship of the different influencing factors and their relative weight in the development of EVA. At least 5 publications in first-quartile scientific journals are planned. Trial registration number NCT02623894; Pre

  8. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  9. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  10. Standing wave linear accelerator

    International Nuclear Information System (INIS)

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  11. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  12. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  13. Maximal Acceleration Is Nonrotating

    OpenAIRE

    Page, Don N.

    1997-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruenc...

  14. A Solid state accelerator

    International Nuclear Information System (INIS)

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  15. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  16. Accelerators at school

    International Nuclear Information System (INIS)

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  17. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  18. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  19. Accelerators and Dinosaurs

    CERN Document Server

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  20. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  1. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H;

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... activator MMP-3. Type I collagen degradation correlated with MMP-3 tissue levels (rs=0.68, pcollagen formation was down-regulated in cultured compared with native skin explants but was not reduced further by TNF-α. TNF-α had no significant...... effect on epidermal apoptosis. Our data indicate that TNF-α augments collagenolytic activity of MMP-1, possibly through up-regulation of MMP-3 leading to gradual loss of type I collagen in human skin....

  2. Direct Laser Acceleration in Laser Wakefield Accelerators

    OpenAIRE

    Shaw, Jessica

    2016-01-01

    In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are t...

  3. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  4. Induction linear accelerators

    Science.gov (United States)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typicallymarriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  5. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    Science.gov (United States)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus

  6. Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, M.

    2014-03-01

    Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

  7. An Accelerated Incremental Radiosity Algorithm

    Institute of Scientific and Technical Information of China (English)

    XING Changyu; SUN Jizhou; R. L. Grimsdale

    2000-01-01

    The incremental radiosity method has been shown to be an efficient technique for providing global illumination in dynamic environments as it exploits temporal coherence in object space. This paper presents an accelerated incremental radiosity algorithm, which is based on a dynamically followed partial matrix.This not only reduces the computation cost in determining incremental form-factors when the geometrical relationships between objects are constantly changing, but also simplifies the management of user interaction with comparatively little storage cost.

  8. Wave Detection in Acceleration Plethysmogram

    OpenAIRE

    Ahn, Jae Mok

    2015-01-01

    Objectives Acceleration plethysmogram (APG) obtained from the second derivative of photoplethysmography (PPG) is used to predict risk factors for atherosclerosis with age. This technique is promising for early screening of atherosclerotic pathologies. However, extraction of the wave indices of APG signals measured from the fingertip is challenging. In this paper, the development of a wave detection algorithm including a preamplifier based on a microcontroller that can detect the a, b, c, and ...

  9. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  10. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  11. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  12. Effect of an accelerated finishing program on performance, carcass characteristics, and circulating insulin-like growth factor I concentration of early-weaned bulls and steers.

    Science.gov (United States)

    Schoonmaker, J P; Loerch, S C; Fluharty, F L; Turner, T B; Moeller, S J; Rossi, J E; Dayton, W R; Hathaway, M R; Wulf, D M

    2002-04-01

    Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF

  13. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  14. Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Gaëlle Cane

    Full Text Available BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC. METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1 the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55 acting as a bacterial receptor, and (2 the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro

  15. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  16. Switched Matrix Accelerator

    International Nuclear Information System (INIS)

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  17. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  18. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  19. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  20. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  1. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  2. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low power microwave cold test and high power, high gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  3. Chotosan (Diaoteng San-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8 involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain

    Directory of Open Access Journals (Sweden)

    Tanaka Ken

    2011-09-01

    Full Text Available Abstract Background Chotosan (CTS, Diaoteng San, a Kampo medicine (ie Chinese medicine formula, is reportedly effective in the treatment of patients with cerebral ischemic insults. This study aims to evaluate the therapeutic potential of CTS in cognitive deficits and investigates the effects and molecular mechanism(s of CTS on learning and memory deficits and emotional abnormality in an animal aging model, namely 20-week-old senescence-accelerated prone mice (SAMP8, with and without a transient ischemic insult (T2VO. Methods Age-matched senescence-resistant inbred strain mice (SAMR1 were used as control. SAMP8 received T2VO (T2VO-SAMP8 or sham operation (sham-SAMP8 at day 0. These SAMP8 groups were administered CTS (750 mg/kg, p.o. or water daily for three weeks from day 3. Results Compared with the control group, both sham-SAMP8 and T2VO-SAMP8 groups exhibited cognitive deficits in the object discrimination and water maze tests and emotional abnormality in the elevated plus maze test. T2VO significantly exacerbated spatial cognitive deficits of SAMP8 elucidated by the water maze test. CTS administration ameliorated the cognitive deficits and emotional abnormality of sham- and T2VO-SAMP8 groups. Western blotting and immunohistochemical studies revealed a marked decrease in the levels of phosphorylated forms of neuroplasticity-related proteins, N-methyl-D-aspartate receptor 1 (NMDAR1, Ca2+/calmodulin-dependent protein kinase II (CaMKII, cyclic AMP responsive element binding protein (CREB and brain-derived neurotrophic factor (BDNF in the frontal cortices of sham-SAMP8 and T2VO-SAMP8. Moreover, these animal groups showed significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF, VEGF receptor type 2 (VEGFR2, platelet-derived growth factor-A (PDGF-A and PDGF receptor α (PDGFRα. CTS treatment reversed the expression levels of these factors down-regulated in the brains of sham- and T2VO-SAMP8

  4. Two theories of auroral electron acceleration

    International Nuclear Information System (INIS)

    Two theories of auroral electron acceleration are discussed. The first is the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. The second is a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  5. Accelerator Physics Branch annual technical report, 1989

    International Nuclear Information System (INIS)

    The report describes, in a series of separate articles, the achievements of the Accelerator Physics Branch for the calendar year 1989. Work in basic problems of accelerator physics including ion sources, high-duty-factor rf quadrupoles, coupling effects in standing wave linacs and laser acceleration is outlined. A proposal for a synchrotron light source for Canada is described. Other articles cover the principal design features of the IMPELA industrial electron linac prototype, the cavities developed for the HERA complex at DESY, Hamburg, West Germany, and further machine projects that have been completed

  6. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  7. Angular velocities, angular accelerations, and coriolis accelerations

    Science.gov (United States)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  8. 基于CFD前处理软件的潜艇加速度系数势流计算方法%A potential flow method for evaluation acceleration factor of submarine based on CFD pre-processor

    Institute of Scientific and Technical Information of China (English)

    林兆伟; 涂卫民; 郭传海; 李新汶

    2013-01-01

      A method of 3 D panel method combined CFD pre-processor was used to calculate the acceleration factor for submarine design in this paper, the improved method was presented instead of traditional panel method for enhancing work efficiency. To inspect calculation precision, a comparison between model test and calculations was investigated for three submarine models, the results show this method can effectively overcome the shortcomings of traditional method in the geometric description and helps enhance calculation precision obviously.%  采用CFD前处理软件和势流计算相结合的方法,解决潜艇设计中的加速度系数计算问题,对传统方法进行合理改进和优化,提高了工作效率。为检验该方法计算精度,文中计算了3种艇型模型,计算结果用模型试验验证。结果表明,此方法可以有效克服传统面元处理方法对潜艇复杂局部结构几何描述能力不足的缺陷,提高了计算精度。

  9. Accelerating DSMC data extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  10. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  11. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  12. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  13. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  14. Accelerators for energy production

    International Nuclear Information System (INIS)

    A tremendous progress of accelerators for these several decades, has been motivated mainly by the research on subnuclear physics. The culmination in high energy accelerators might be SSC, 20 TeV collider in USA, probably the ultimate accelerator being built with the conventional principle. The technology cultivated and integrated for the accelerator development, can now stably offer the high power beam which could be used for the energy problems. The Inertial Confinement Fusion (ICF) with high current, 10 kA and short pulse, 20 ns heavy ion beam (HIB) of mass number ∼200, would be the most promising application of accelerators for energy production. In this scenario, the fuel containing D-T mixture, will be compressed to the high temperature, ∼10 keV and to the high density state, ∼1000 times the solid density with the pressure of ablative plasma or thermal X ray produced by bombarding of high power HIB. The efficiency, beam power/electric power for accelerator, and the repetition rate of HIB accelerators could be most suitable for the energy production. In the present paper, the outline of HIB ICF (HIF) is presented emphasizing the key issues of high current heavy ion accelerator system. (author)

  15. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  16. Maximal Acceleration Is Nonrotating

    CERN Document Server

    Page, D N

    1998-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry...

  17. Linear induction accelerator

    International Nuclear Information System (INIS)

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  18. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  19. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  20. Impact of Secondary Acceleration in Gamma-Ray Bursts

    CERN Document Server

    Winter, Walter; Klein, Spencer R

    2014-01-01

    We discuss the acceleration of secondary muons, pions, and kaons in gamma-ray bursts within the internal shock scenario, and their impact on the neutrino fluxes. We introduce a two-zone model consisting of an acceleration zone (the shocks) and a radiation zone (the plasma downstream the shocks). The acceleration in the shocks, which is an unavoidable consequence of the efficient proton acceleration, requires efficient transport from the radiation back to the acceleration zone. On the other hand, stochastic acceleration in the radiation zone can enhance the secondary spectra of muons and kaons significantly if there is a sufficiently large turbulent region. Overall, it is plausible that neutrino spectra can be enhanced by up to a factor of two at the peak by stochastic acceleration, that an additional spectral peaks appears from shock acceleration of the secondary muons and pions, and that the neutrino production from kaon decays is enhanced. Depending on the GRB parameters, the general conclusions concerning ...

  1. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  2. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  3. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  4. Collective ion acceleration

    International Nuclear Information System (INIS)

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  5. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  6. Hadron accelerators in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). Accelerator School; Silari, M. [Consiglio Nazionale delle Ricerche, Milan (Italy)

    1996-12-31

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author) 28 refs.

  7. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  8. Entropic accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)

    2011-01-31

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  9. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  10. The particle accelerator

    International Nuclear Information System (INIS)

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  11. Transforming Growth Factor β-1 (TGF-β1) Is a Serum Biomarker of Radiation Induced Fibrosis in Patients Treated With Intracavitary Accelerated Partial Breast Irradiation: Preliminary Results of a Prospective Study

    International Nuclear Information System (INIS)

    Purpose: To examine a relationship between serum transforming growth factor β -1 (TGF-β1) values and radiation-induced fibrosis (RIF). Methods and Materials: We conducted a prospective analysis of the development of RIF in 39 women with American Joint Committee on Cancer stage 0-I breast cancer treated with lumpectomy and accelerated partial breast irradiation via intracavitary brachytherapy (IBAPBI). An enzyme-linked immunoassay (Quantikine, R and D, Minneapolis, MN) was used to measure serum TGF-β1 before surgery, before IBAPBI, and during IBAPBI. Blood samples for TGF-β1 were also collected from 15 healthy, nontreated women (controls). The previously validated tissue compliance meter (TCM) was used to objectively assess RIF. Results: The median time to follow-up for 39 patients was 44 months (range, 5-59 months). RIF was graded by the TCM scale as 0, 1, 2, and 3 in 5 of 20 patients (25%), 6 of 20 patients (30%), 5 of 20 patients (25%), and 4 of 20 patients (20%), respectively. The mean serum TGF-β1 values were significantly higher in patients before surgery than in disease-free controls, as follows: all cancer patients (30,201 ± 5889 pg/mL, P=.02); patients with any type of RIF (32,273 ± 5016 pg/mL, PROC of 0.867 (95% confidence interval 0.700-1.000). The TGF-β1 threshold cutoff was determined to be 31,000 pg/mL, with associated sensitivity and specificity of 77.8% and 90.0%, respectively. Conclusions: TGF-β1 levels correlate with the development of moderate to severe RIF. The pre-IBAPBI mean TGF-β1 levels can serve as an early biomarker for the development of moderate to severe RIF after IBAPBI

  12. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  13. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  14. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  15. Dimension Driven Accelerating Universe

    CERN Document Server

    Chatterjee, S

    2009-01-01

    The current acceleration of the universe leads us to investigate higher dimensional gravity theory, which is able to explain acceleration from a theoretical view point without the need of introducing dark energy by hand. We argue that the terms containing higher dimensional metric coefficients produce an extra negative pressure that apparently drives an acceleration of the 3D space, tempting us to suggest that the accelerating universe seems to act as a window to the existence of extra spatial dimensions. Interesting to point out that in this case our cosmology apparently mimics the well known quintessence scenario fuelled by a generalised Chaplygin-type of fluid where a smooth transition from a dust dominated model to a de Sitter like one takes place. Correspondence to models generated by a tachyonic form of matter is also briefly discussed.

  16. Revisiting Caianiello's Maximal Acceleration

    OpenAIRE

    Papini, G.

    2003-01-01

    A quantum mechanical limit on the speed of orthogonality evolution justifies the last remaining assumption in Caianiello's derivation of the maximal acceleration. The limit is perfectly compatible with the behaviour of superconductors of the first type.

  17. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  18. Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla

    OpenAIRE

    Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Stephen M Smith; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil

    2013-01-01

    We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight...

  19. A symmetrical rail accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  20. Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  1. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  2. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  3. Designing reliability into accelerators

    International Nuclear Information System (INIS)

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed

  4. Accelerated cyclic corrosion tests

    OpenAIRE

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  5. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  6. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  7. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  8. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  9. Effect of basic fibroblast growth factor and danshen on bcl-2 and p53 mRNA expression in the brain of rats exposed to repeated,high,positive acceleration(+Gz)

    Institute of Scientific and Technical Information of China (English)

    Hongjin Liu; Qing Cai

    2008-01-01

    BACKGROUND:Both animal experiments and clinical studies have shown that basic fibroblast growth factor(bFGF)and danshen(Salvia miltiorrhiza)can exhibit protective effects on ischemia-reperfusion cerebral injury.OBJECTIVE:To test whether bFGF and danshen can protect cerebral injury induced by exposure to repeated,high,positive acceleration(+Gz)in an animal model and to analyze the possible mechanisms.DESIGN,TIME AND SETTING:Randomized controlled animal study.The experiment was performed at the Research Center for Molecular Biology,Air-force General Hospital of Chinese PLA from April to August 2000.MATERIALS:A total of 20 clean grade,healthy,Sprague Dawley rats of both genders,weighing(200±15)g,were provided by our experimental animal center.Rats were randomly divided into 5 groups:the control group,+Gz exposure group,bFGF group,danshen group,and saline group,with 4 animals per group.bFGF(Beijing Bailuyuan Biotechnology Co.Ltd.)and danshen solution(Shanghai Zhongxi Pharmaceutical Co.Ltd.)were used.METHODS:All rats were fixed on a rotary arm of a centrifugal apparams(2 m in radius)with their heads oriented towards the center of the apparatus.Except for rats in the control group.the value of+Gz exposure was+14 Gz with an acceleration rate of 1.5 G/s.The peak force lasted for 45 seconds.+Gz exposure was performed three times with intervals of 30 minutes.Rats in the control group received the same+Gz procedure,but the G value was+1 Gz.Rats in bFGF group and danshen group were intraperitoneally injected with 100 μg/kg bFGF or 15 g/kg danshen solution,respectively,at 30 minutes prior to centrifugation and immediately after tentrifugation.Rats in saline group were injected with the same volume of saline.Six hours after exposure,rats were decapitated.One hemisphere was preserved in liquid nitrogen for RNA extraction and the other was processed for apoptosis detection.MAIN OUTCOME MEASURES:mRNA levels of bcl-2 and p53 were measured by semi-quantitative reverse

  10. Small type accelerator. Try for accelerator driven system

    CERN Document Server

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  11. Accelerating nondiffracting beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  12. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  13. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  14. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  15. GPU Accelerated Surgical Simulators for Complex Morhpology

    DEFF Research Database (Denmark)

    Mosegaard, Jesper; Sørensen, Thomas Sangild

    2005-01-01

    a springmass system in order to simulate a complex organ such as the heart. Computations are accelerated by taking advantage of modern graphics processing units (GPUs). Two GPU implementations are presented. They vary in their generality of spring connections and in the speedup factor they achieve...

  16. Social emotional consequences of accelerating gifted students

    NARCIS (Netherlands)

    Hoogeveen, A.J.M.

    2008-01-01

    This dissertations reports four studies on the social-emotional effects of accelerating gifted students. The research concentrated on how and to what extent educational programs, in interaction with environmental and personal factors, influence the functioning of gifted students, in the short and th

  17. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse;

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19......) by a membrane. Differential gene expression in the RPE cells of complement factor genes was identified using gene arrays, and selected gene transcripts were validated by q-RT-PCR. Protein expression was determined by ELISA and immunoblotting. Co-culture with activated T cells increased RPE mRNA and/or protein...... expression of complement components C3, factors B, H, H-like 1, CD46, CD55, CD59, and clusterin, in a dose-dependent manner. Soluble factors derived from activated T cells are capable of increasing expression of complement components in RPE cells. This is important for the further understanding...

  18. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  19. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  20. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  1. Uniform Acceleration in General Relativity

    CERN Document Server

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  2. Transforming Growth Factor β-1 (TGF-β1) Is a Serum Biomarker of Radiation Induced Fibrosis in Patients Treated With Intracavitary Accelerated Partial Breast Irradiation: Preliminary Results of a Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Boothe, Dustin L. [Weill Cornell Medical College of Cornell University, New York, New York (United States); Coplowitz, Shana [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Greenwood, Eleni [Weill Cornell Medical College of Cornell University, New York, New York (United States); Barney, Christian L. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Christos, Paul J. [Division of Biostatistics and Epidemiology, Department of Public Health, Weill Cornell Medical College of Cornell University, New York, New York (United States); Parashar, Bhupesh; Nori, Dattatreyudu; Chao, K. S. Clifford [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Wernicke, A. Gabriella, E-mail: gaw9008@med.cornell.edu [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States)

    2013-12-01

    Purpose: To examine a relationship between serum transforming growth factor β -1 (TGF-β1) values and radiation-induced fibrosis (RIF). Methods and Materials: We conducted a prospective analysis of the development of RIF in 39 women with American Joint Committee on Cancer stage 0-I breast cancer treated with lumpectomy and accelerated partial breast irradiation via intracavitary brachytherapy (IBAPBI). An enzyme-linked immunoassay (Quantikine, R and D, Minneapolis, MN) was used to measure serum TGF-β1 before surgery, before IBAPBI, and during IBAPBI. Blood samples for TGF-β1 were also collected from 15 healthy, nontreated women (controls). The previously validated tissue compliance meter (TCM) was used to objectively assess RIF. Results: The median time to follow-up for 39 patients was 44 months (range, 5-59 months). RIF was graded by the TCM scale as 0, 1, 2, and 3 in 5 of 20 patients (25%), 6 of 20 patients (30%), 5 of 20 patients (25%), and 4 of 20 patients (20%), respectively. The mean serum TGF-β1 values were significantly higher in patients before surgery than in disease-free controls, as follows: all cancer patients (30,201 ± 5889 pg/mL, P=.02); patients with any type of RIF (32,273 ± 5016 pg/mL, P<.0001); and women with moderate to severe RIF (34,462 ± 4713 pg/mL, P<0.0001). Patients with moderate to severe RIF had significantly elevated TGF-β1 levels when compared with those with none to mild RIF before surgery (P=.0014) during IBAPBI (P≤0001), and the elevation persisted at 6 months (P≤.001), 12 months (P≤.001), 18 months (P≤.001), and 24 months (P=.12). A receiver operating characteristic (ROC) curve of TGF-β1 values predicting moderate to severe RIF was generated with an area under the curve (AUC){sub ROC} of 0.867 (95% confidence interval 0.700-1.000). The TGF-β1 threshold cutoff was determined to be 31,000 pg/mL, with associated sensitivity and specificity of 77.8% and 90.0%, respectively. Conclusions: TGF-β1 levels correlate with

  3. A nanosecond pulsed accelerator facility

    International Nuclear Information System (INIS)

    The operation and performance of a 3-MeV pulsed electrostatic generator producing 1-ns (10-9 s) pulses is described. The system employs terminal pulsing and post-acceleration time-compression to achieve short pulses and high average current. The specifications for this system were based on the following considerations. A 10-μA average beam current represents a reasonable limit based on the ability of a target to dissipate beam power, the 1-ns pulse-length was consistent with other factors such as detector response, energy homogeneity, etc. which determine over-all time resolution, and a repetition rate of 1 MHz/s gives a duty factor consistent with the current capabilities of existing accelerator ion sources. The system consists of a terminal pulsing component which produces pulses of 10 ns in duration by sweeping a beam over an aperture located at the entrance to an accelerator tube. An average output of a current of 10 μA requires a source capable of producing 1 mA of atomic ions. After acceleration this pulse is compressed to 1 ns by the scheme suggested by Mobley. This involves sweeping the beam with proper synchronization across the aperture of a 90o doubly-focusing deflection magnet so that the early portion of the pulse travels through a longer trajectory thani the later portions, thus achieving time compression when the beam is brought to a focus on a suitable target. The radius of beam curvature in the compression magnet is 30 in and the over-all beam divergence at the target is 5o. The choice of these parameters and the effect of the deflection scheme in the beam-energy homogeneity will be discussed. Using existing nanosecond detector techniques, this system has produced over-all system resolutions of 1 ns full-width at half-maximum for both gamma rays and neutrons. It is not yet known what component or components of the system determine the limits on the time resolution of the system. As a facility for investigating neutron inelastic scattering and

  4. Nuclear Physics accelerator facilities

    International Nuclear Information System (INIS)

    The Nuclear Physics program requires the existence and effective operation of large and complex accelerator facilities. These facilities provide the variety of projectile beams upon which virtually all experimental nuclear research depends. Their capability determine which experiments can be performed and which cannot. Seven existing accelerator facilities are operated by the Nuclear Physics program as national facilities. These are made available to all the Nation's scientists on the basis of scientific merit and technical feasibility of proposals. The national facilities are the Clinton P. Anderson Meson Physics Facility (LAMPF) at Los Alamos National Laboratory; the Bates Linear Accelerator Center at Massachusetts Institute of Technology; the Bevalac at Lawrence Berkeley Laboratory; the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory; the ATLAS facility at Argonne National Laboratory; the 88-Inch Cyclotron at Lawrence Berkeley Laboratory; the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory. The Nuclear Physics Injector at the Stanford Linear Accelerator Center (SLAC) enables the SLAC facility to provide a limited amount of beam time for nuclear physics research on the same basis as the other national facilities. To complement the national facilities, the Nuclear Physics program supports on-campus accelerators at Duke University, Texas A and M University, the University of Washington, and Yale University. The facility at Duke University, called the Triangle Universities Nuclear Laboratory (TUNL), is jointly staffed by Duke University, North Carolina State University, and the University of North Carolina. These accelerators are operated primarily for the research use of the local university faculty, junior scientists, and graduate students

  5. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  6. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa -2, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  7. Intermittent Sea Level Acceleration

    OpenAIRE

    Olivieri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Spada, G.; Dipartimento di Scienze di Base e Fondamenti, Università di Urbino Carlo Bo, Urbino

    2013-01-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea{level acceleration for the last 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, con firm the existence of a global sea level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0:01 mm/yr2. However, di fferently from previous studies, we discuss how change points or ...

  8. Seismic surveying and accelerators

    International Nuclear Information System (INIS)

    The paper deals with an investigation into the impact of earth vibrations on charged particle beams in modern colliders. It is ascertained that the displacement of accelerator magnetic elements from the perfect position results in the excitation of betatron oscillations and distortion of particle orbit position. The results of experimental investigations into seismic noises are presented for ASR, SSC, DESY and KEK. The rms orbit displacement in accelerators is estimated relying on the law of earth diffusion motion, according to which the variance of relative displacements is proportional to the distance between these points and time of observation. 6 refs., 3 figs., 2 tabs

  9. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  10. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  11. Safe industrial electron accelerators operation in extended period of exploitation

    International Nuclear Information System (INIS)

    Full text: Accelerators in general are electrical machines capable to accelerate charged particles of matter. The first charged particles accelerators have been developed at the beginning of thirties, when several different apparatus were constructed in a short period of time. The principal rule of any accelerator is connected to electric field influence on charged particles. The electric field can be obtained directly when two electrodes with different potential are applied or indirectly when the change of magnetic field induces the electric field. The principal difference between accelerators are based on differences in electric field generation and related to this accelerating section construction and the accelerated particles trajectory shape. The fast grow of accelerator developments were primary connected with rapid grow of nuclear experimental studies and in secondary terms in relation to wide range of application in medicine, chemistry and industry. Totally over 15,000 accelerators have been built according to some estimation. Nearly 1,500 accelerators have been implemented for industrial application in the field of radiation processing. New ideas for accelerator construction and progress in technical development of electrical components, HF and UHF technology were the most importance factors in perfection process of accelerator technology. Characteristic steps can be recognized in past of accelerators development: - Adaptation of the accelerators primary built for scientific experiments, - Electron energy and beam power upgrading of certain accelerator construction for R and D, pilot plants and industrial facilities; - Introduction of computer control system for accelerator start up, full operation and technological process management; - Reliability improvement according to industrial standards; - Accelerator technology perfection (electrical efficiency, cost); - Accelerators for MW power beam level; - More compact and more efficient accelerator

  12. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8302397: View from the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138. Giacomo Primadei stands on the left.

  13. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  14. Hamburg Accelerator Conference

    International Nuclear Information System (INIS)

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  15. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  16. The CERN accelerator complex

    CERN Multimedia

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  17. The Bevalac accelerator

    International Nuclear Information System (INIS)

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  18. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  19. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  20. Accelerators in the sky

    International Nuclear Information System (INIS)

    The author surveys the large body of evidence showing that there are very efficient mechanisms capable of accelerating particles to high energies under very different astrophysical conditions. The circumstances whereby huge amounts of relativistic and ultrarelativistic particles such as one finds in a) cosmic rays, b) supernova remnants and c) radio galaxies and quasars are produced are considered. (Auth.)

  1. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  2. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream

  3. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  4. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  5. Menopause accelerates biological aging.

    Science.gov (United States)

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  6. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  7. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  8. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 1018 cm-3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  9. Accelerator mass spectrometry programme at Mumbai pelletron accelerator facility

    International Nuclear Information System (INIS)

    The Accelerator Mass Spectrometry (AMS) programme and the related developments based on the Mumbai Pelletron accelerator are described. The initial results of the measurement of the ratio, 36Cl / Cl in water samples are presented. (author)

  10. Selective Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2001-01-01

    A plasma acceleration mechanism is proposed to explain the dramatic enhancement in the ratio of 3 He/4He, (enhancement factor 102 - 103) observed in solar 3He-rich flares. Considering that coronal plasma is mainly composed of hydrogen and helium ions, the hydrogen ion-helium ion hybrid waves and quasi-perpendicular waves can be excited by energetic electron beam during the impulsive solarflares. The frequencies of these waves are close to the 3He++ ion gyrofrequency, but far from the 4He++ ion gyrofrequency. Most of these waves are selectively absorbed by 3He ions. These preheated 3He ions can be successively stochastic accelerated by Alfvén turbulence, when their velocities are larger than the local Alfvén velocity. It makes the ratio of 3He/4He dramatically enhanced and the acceleration energy spectrum of 3He ions forms a power-law distribution during the impulsive solar flares.

  11. Born Reciprocity and Cosmic Accelerations

    CERN Document Server

    Bolognesi, S

    2015-01-01

    The trans-Planckian theory is a model that realizes concretely the Born reciprocity idea, which is the postulate of absolute equivalence between coordinate $x$ and momenta $p$. This model is intrinsically global, and thus it is naturally implemented in a cosmological setting. Cosmology and Born reciprocity are made for each other. Inflation provides the essential mechanism to suppress the terms coming from the dual part of the action. The trans-Planckian theory, on the other hand, provides an explanation for the accelerated periods of the universe scale factor, both the inflationary period and the present period dominated by dark energy. All of this is possible just considering a simple model that contains gravity, one gauge field plus one matter field (to be identified with dark matter) together with the reciprocity principle.

  12. Exploring Particle Acceleration in Gamma-Ray Binaries

    CERN Document Server

    Bosch-Ramon, V

    2011-01-01

    Binary systems can be powerful sources of non-thermal emission from radio to gamma rays. When the latter are detected, then these objects are known as gamma-ray binaries. In this work, we explore, in the context of gamma-ray binaries, different acceleration processes to estimate their efficiency: Fermi I, Fermi II, shear acceleration, the converter mechanism, and magnetic reconnection. We find that Fermi I acceleration in a mildly relativistic shock can provide, although marginally, the multi-10 TeV particles required to explain observations. Shear acceleration may be a complementary mechanism, giving particles the final boost to reach such a high energies. Fermi II acceleration may be too slow to account for the observed very high energy photons, but may be suitable to explain extended low-energy emission. The converter mechanism seems to require rather high Lorentz factors but cannot be discarded a priori. Standard relativistic shock acceleration requires a highly turbulent, weakly magnetized downstream med...

  13. Accelerator research studies

    International Nuclear Information System (INIS)

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under contract number AC05-85ER40216-8, is currently in the third year of its three-year funding cycle. This Renewal Proposal requests DOE support for the next three-year period from June 1, 1991 to May 31, 1994. It documents the progress made during the past year and outlines the proposed research program for the next three years. The program consisted of the following three tasks: Task A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' Task B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' Task C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders.'' These tasks will be discussed in this paper

  14. Accelerator research studies

    International Nuclear Information System (INIS)

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks

  15. Accelerated Parallel Texture Optimization

    Institute of Scientific and Technical Information of China (English)

    Hao-Da Huang; Xin Tong; Wen-Cheng Wang

    2007-01-01

    Texture optimization is a texture synthesis method that can efficiently reproduce various features of exemplar textures. However, its slow synthesis speed limits its usage in many interactive or real time applications. In this paper, we propose a parallel texture optimization algorithm to run on GPUs. In our algorithm, k-coherence search and principle component analysis (PCA) are used for hardware acceleration, and two acceleration techniques are further developed to speed up our GPU-based texture optimization. With a reasonable precomputation cost, the online synthesis speed of our algorithm is 4000+ times faster than that of the original texture optimization algorithm and thus our algorithm is capable of interactive applications. The advantages of the new scheme are demonstrated by applying it to interactive editing of flow-guided synthesis.

  16. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  17. Accelerating QDP++ using GPUs

    CERN Document Server

    Winter, Frank

    2011-01-01

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an ...

  18. Accelerator research studies

    International Nuclear Information System (INIS)

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  19. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  20. Accelerator research studies

    International Nuclear Information System (INIS)

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  1. NEW ACCELERATION METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1984-07-01

    But a glance at the Livingston chart, Fig. 1, of accelerator particle energy as a function of time shows that the energy has steadily, exponentially, increased. Equally significant is the fact that this increase is the envelope of diverse technologies. If one is to stay on, or even near, the Livingston curve in future years then new acceleration techniques need to be developed. What are the new acceleration methods? In these two lectures I would like to sketch some of these new ideas. I am well aware that they will probably not result in high energy accelerators within this or the next decade, but conversely, it is likely that these ideas will form the basis for the accelerators of the next century. Anyway, the ideas are stimulating and suffice to show that accelerator physicists are not just 'engineers', but genuine scientists deserving to be welcomed into the company of high energy physicists. I believe that outsiders will find this field surprisingly fertile and, certainly fun. To put it more personally, I very much enjoy working in this field and lecturing on it. There are a number of review articles which should be consulted for references to the original literature. In addition there are three books on the subject. Given this material, I feel free to not completely reference the material in the remainder of this article; consultation of the review articles and books will be adequate as an introduction to the literature for references abound (hundreds are given). At last, by way of introduction, I should like to quote from the end of Ref. 2 for I think the remarks made there are most germane. Remember that the talk was addressed to accelerator physicists: 'Finally, it is often said, I think by physicists who are not well-informed, that accelerator builders have used up their capital and now are bereft of ideas, and as a result, high energy physics will eventually--rather soon, in fact--come to a halt. After all, one can't build too many

  2. RFQ accelerator development

    International Nuclear Information System (INIS)

    Radio frequency quadrupole (RFQ) accelerators have established themselves as highly efficient and potential tools for delivering intense beams of the order of 100 mA or more. They are being employed as injectors to high energy machines used for basic sciences, spallation neutron sources, fusion devices and accelerator breeders. They have also made their mark as neutron generators, ion implanters, x-ray generators, etc. Realising the importance of this programme, Bhabha Atomic Research Centre initiated a totally indigenous effort to develop RFQs for the light as well as heavy ion beams. A low power RFQ for the proton and deuteron beams is already in the final phase of commissioning. (author). 30 refs., 14 figs., 2 tabs

  3. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  4. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  5. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  6. GPU accelerated face detection

    OpenAIRE

    Mäkelä, J.

    2013-01-01

    Graphics processing units have massive parallel processing capabilities, and there is a growing interest in utilizing them for generic computing. One area of interest is computationally heavy computer vision algorithms, such as face detection and recognition. Face detection is used in a variety of applications, for example the autofocus on cameras, face and emotion recognition, and access control. In this thesis, the face detection algorithm was accelerated with GPU using OpenCL. The goal was...

  7. Accelerator Experiments for Astrophysics

    OpenAIRE

    Ng, Johnny S. T.

    2003-01-01

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the S...

  8. Compact pulsed accelerator

    International Nuclear Information System (INIS)

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab

  9. Laser plasma accelerators

    OpenAIRE

    Malka, V.

    2012-01-01

    Research activities on laser plasma accelerators are paved by many significant breakthroughs. This review article provides an opportunity to show the incredible evolution of this field of research which has, in record time, allowed physicists to produce high quality electron beams at the GeV level using compact laser systems. I will show the scientific path that led us to explore different injection schemes and to produce stable, high peak current and high quality electron beams with control ...

  10. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  11. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  12. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  13. Periodic Relativity: Deflection of Light, Acceleration, Rotation Curves

    Directory of Open Access Journals (Sweden)

    Zaveri V. H.

    2015-01-01

    Full Text Available Vectorial analysis relating to derivation of deflection of light is presented. Curvilinear acceleration is distinguished from the Newtonian polar conic acceleration. The dif- ference between the two is due to the curvature term. Lorentz invariant expression for acceleration is derived. A physical theory of rotation curves of galaxies based on second solution to Einstein’s field equation is presented. Theory is applied to Milky Way, M31, NGC3198 and Solar system. Modified Kepler’s third law yields correct orbital periods of stars in a galaxy. Deviation factor in the line element of t he theory happens to be the ratio of the Newtonian gravitational acceleration to th e measured acceleration of the star in the galaxy. Therefore this deviation factor can replace the MOND function.

  14. On lambda and omega measurements and acceleration of universe expansion

    CERN Document Server

    Semyonov, O G

    2004-01-01

    The data for luminisity distances to the high-redshift Ia supernovas measured by the Supernova Cosmology Project team with the relativistic correction factors for redshift and time dilation led to the sensational conclusion about acceleration of universe expansion. The effect of relativistic aberration of high-redshift sources requires an additional correcting factor for the magnitudes of SN Ia supernovas which can reduce the data to fit the universe with lambda = 0, i.e. without acceleration.

  15. Shock accelerated vortex ring

    CERN Document Server

    Haehn, N; Oakley, J; Anderson, M; Rothamer, D; Bonazza, R

    2009-01-01

    The interaction of a shock wave with a spherical density inhomogeneity leads to the development of a vortex ring through the impulsive deposition of baroclinic vorticity. The present fluid dynamics videos display this phenomenon and were experimentally investigated at the Wisconsin Shock Tube Laboratory's (WiSTL) 9.2 m, downward firing shock tube. The tube has a square internal cross-section (0.25 m x 0.25 m) with multiple fused silica windows for optical access. The spherical soap bubble is generated by means of a pneumatically retracted injector and released into free-fall 200 ms prior to initial shock acceleration. The downward moving, M = 2.07 shock wave impulsively accelerates the bubble and reflects off the tube end wall. The reflected shock wave re-accelerates the bubble (reshock), which has now developed into a vortex ring, depositing additional vorticity. In the absence of any flow disturbances, the flow behind the reflected shock wave is stationary. As a result, any observed motion of the vortex rin...

  16. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  17. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  18. Accelerated GLAS exposure station

    International Nuclear Information System (INIS)

    The Geoscience Laser Altimeter System (GLAS) is being developed by NASA/GSFC to measure the dynamics of the ice sheet mass balance, land, and cloud and atmospheric properties. An instrument altimetric resolution of 10 cm per shot is required. The laser transmitter will be a diode pumped, Q-switched, Nd:YAG laser producing 1064 nm, 100 mJ, 4 ns pulses at 40 Hz repetition rate in a TEM∞ mode. A minimum lifetime goal of 2 billion shots is required per laser transmitter. The performance of the GLAS laser can be limited by physical damage to the optical components caused by the interaction of intense laser energy with the optical coatings and substrates. Very little data exists describing the effects of long duration laser exposure, of 4 ns pulses, on an optical component. An Accelerated GLAS Exposure Station (AGES) is being developed which will autonomously operate and monitor the GLAS laser at an accelerated rate of 500 Hz. The effects of a large number of laser shots will be recorded. Parameters to be monitored include: laser power, pulsewidth, beam size, laser diode drive current and power, Q-switch drive voltage, temperature, and humidity. For comparison, one set of AGES-sister optical components will be used in the non-accelerated GLAS laser and another will be evaluated by a commercial optical damage test facility

  19. Linac transport and acceleration

    International Nuclear Information System (INIS)

    The acceleration of intense bunches maintaining high brightness is limited both by single-particle effects, e.g., misalignments, injection errors, and rf-steering, and collective phenomena, where the effects of the longitudinal and transverse wakefield on particles within a single bunch are the most severe. The working group has considered both problems and potentials of linac acceleration from ∼50 MeV to 1 GeV for free electron laser (FEL) applications, as well as from a few Gev to 1 TeV for linear colliders. The outlook for free electron lasers is bright: no fundamental problems seem to arise in the acceleration of peak currents in excess of 100 A with small emittance and low momentum spread. The situation of linear colliders is more complex and more difficult. Two examples, one operating at 11.4 GHz, the other at 30 GHz, are used to illustrate some of the difficulties and the exceedingly tight tolerances required. Both examples are based on round beams, and thus neither benefit from the advantages of flat beams nor address the increased care required in transporting beams of very small emittance in one plane. The working group acknowledges, but did not explore, promising concepts for colliders based on RF superconductivity

  20. Acceleration during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Beresnyak, Andrey [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  1. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  2. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  3. CESR Test Accelerator

    CERN Document Server

    Rubin, David L

    2013-01-01

    The Cornell Electron Storage Ring (CESR) was reconfigured in 2008 as a test accelerator to investigate the physics of ultra-low emittance damping rings. During the approximately 40 days/year available for dedicated operation as a test accelerator, specialized instrumentation is used to measure growth and mitigation of the electron cloud, emittance growth due to electron cloud, intra-beam scattering, and ions, and single and multi-bunch instabilities generated by collective effects. The flexibility of the CESR guide field optics and the integration of accelerator modeling codes with the control system have made possible an extraordinary range of experiments. Findings at CesrTA with respect to electron cloud effects, emittance tuning techniques, and beam instrumentation for measuring electron cloud, beam sizes, and beam positions are the basis for much of the design of the ILC damping rings as documented in the ILC-Technical Design Report. The program has allowed the Cornell group to cultivate the kind of talen...

  4. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  5. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO2 and NOx removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where direct

  6. Accelerating in de Sitter spacetimes

    CERN Document Server

    Cotaescu, Ion I

    2014-01-01

    We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a result with a reasonable physical meaning.

  7. A Statistical Perspective on Highly Accelerated Testing.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  8. APT accelerator. Topical report

    International Nuclear Information System (INIS)

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation's stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century

  9. VLHC accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  10. APT accelerator. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  11. 2014 CERN Accelerator Schools

    CERN Multimedia

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  12. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  13. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  14. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  15. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  16. Scientific computing with multicore and accelerators

    CERN Document Server

    Kurzak, Jakub; Dongarra, Jack

    2010-01-01

    Dense Linear Algebra Implementing Matrix Multiplication on the Cell B.E, Wesley Alvaro, Jakub Kurzak, and Jack DongarraImplementing Matrix Factorizations on the Cell BE, Jakub Kurzak and Jack DongarraDense Linear Algebra for Hybrid GPU-Based Systems, Stanimire Tomov and Jack DongarraBLAS for GPUs, Rajib Nath, Stanimire Tomov, and Jack DongarraSparse Linear Algebra Sparse Matrix-Vector Multiplication on Multicore and Accelerators, Samuel Williams, Nathan B

  17. Acceleration without Temperature

    CERN Document Server

    Doria, Alaric

    2015-01-01

    We show that while some non-uniformly accelerating observers (NUAOs) do indeed see a Bose-Einstein distribution of particles for the expectation value of the number operator in the Minkowski vacuum state, the density matrix is non-thermal and therefore a definition of temperature is not warranted. This is due to the fact that our NUAOs do not see event horizons in the spacetime. More specifically, the Minkowski vacuum state is perceived by our NUAOs as a single-mode squeezed state as opposed to the two-mode squeezed state characteristic of uniformly accelerating observers. Both single and two-mode squeezed states are pure quantum states; however, tracing over degrees of freedom in one of the modes of the two-mode squeezed state reduces the pure density matrix to a thermal density matrix. It is this property in the two-mode squeezed state that allows one to consistently define a temperature. In the single-mode case, an equivalent tracing is neither required nor available.

  18. Accelerator School Success

    CERN Document Server

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  19. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  20. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  1. Acceleration in Linear and Circular Motion

    Science.gov (United States)

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  2. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; GU Qiang

    2011-01-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility.It is also attractive in beam dynamics in maintaining a high quality electron beam,which is an important factor in the performance of a free electron laser.In this paper,a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility.Throughout the comprehensive simulation,we conclude that the C-band structure is much more competitive.

  3. Investigation on laser accelerators. Plasma beat wave accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-04-01

    Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)

  4. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  5. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  6. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  7. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  8. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets.

    Science.gov (United States)

    Bain, Ryan M; Pulliam, Christopher J; Thery, Fabien; Cooks, R Graham

    2016-08-22

    Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base-catalyzed Claisen-Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2-50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated.

  9. Accelerated Life Test Design for Tractor Powertrain Front Axle

    Directory of Open Access Journals (Sweden)

    Ismail Azianti

    2016-01-01

    Full Text Available Accelerated Life Test (ALT has been applied in the manufacturing for many years due to rapid changing technologies, more complex products, speedier product development, and more demanding customer requirements. These reasons have pushed the manufacturers to acquire reliability information faster. ALT allows reducing the time needed to show the reliability of the product. The purpose of this study is to design accelerated life testing which involved determination of normal test time, acceleration factor, acceleration test time, and finally experimental setup. This case study provides the basis for ALT designs for the tractor front axle based on customer usage and field failure analysis, which were conducted to estimate the current reliability, especially on the B10 life during the operational stage of the product. The accelerated life test conducted has guaranteed the B10 life of 4,000 hours with 90% confidence level for lesser time needed for testing to show the reliability of the front axle assembly.

  10. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  11. Lectures in accelerator theory

    International Nuclear Information System (INIS)

    Lecture I deals with the behavior of particles in the nonlinear field arising from the electromagnetic interaction of colliding beams. The case treated, that of counter-rotating proton beams crossing each other at a non-zero angle, has the simple feature that the force between the beam is one dimensional. In lecture II, an analysis of the development of traveling waves on particle beams is presented. The situation studied is that of a uniform beam current in a circular accelerator and the excitation for the coherent motion is induced by the resistivity of the vacuum chamber wall. Finally, in lecture III, a description of the current accumulation process used at the proton storage rings at CERN (The ISR) is given. Particle pulses of rather low average current are injected and stored along the length and width of the vacuum chamber. The efficiency is very high and large currents (over 40 amperes) have been achieved

  12. Accelerator vacuum system elements

    International Nuclear Information System (INIS)

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  13. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...... for the different elements of the TIS to evolve. This could involve nano-visioning including scenarios of future technological applications and industrial dynamics....

  14. Testing Gravity on Accelerators

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  15. Self-accelerated Universe

    CERN Document Server

    Kosyakov, B P

    2005-01-01

    It is widely believed that the large redshifts for distant supernovae are explained by the vacuum energy dominance, or, in other words, by the cosmological constant in Einstein's equations, which is responsible for the anti-gravitation effect. A tacit assumption is that particles move along a geodesic for the background metric. This is in the same spirit as the consensus regarding the uniform Galilean motion of a free electron. However, there is a runaway solution to the Lorentz--Dirac equation governing the behavior of a radiating electron, in addition to the Galilean solution. Likewise, a runaway solution to the entire system of equations, both gravitation and matter equations of motion including, may provide an alternative explanation for the accelerated expansion of the Universe, without recourse to the hypothetic cosmological constant.

  16. The entangled accelerating universe

    CERN Document Server

    González-Díaz, Pedro F

    2009-01-01

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum the...

  17. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  18. Accelerator Technology for the Mankind

    CERN Document Server

    Sultansoy, S

    2006-01-01

    Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U.S. Department of Energy: "Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves." Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Acceler...

  19. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  20. The influence of epidermal growth factor receptor and tumor differentiation on the response to accelerated radiotherapy of squamous cell carcinomas of the head and neck in the randomized DAHANCA 6 and 7 study

    DEFF Research Database (Denmark)

    Eriksen, Jesper Grau; Steiniche, Torben; Overgaard, Jens

    2005-01-01

    to the repopulation taking place during radiotherapy. The aim of the current study was to address the influence of EGFr and histopathological differentiation when the overall treatment time of radiotherapy was moderately reduced. PATIENTS AND METHODS: Eight hundred and three patients with representative pretreatment...... tissue samples from the randomized DAHANCA 6 and 7 study of 5 vs. 6 fx/wk of radiotherapy. EGFr was visualized using immunohistochemistry and separated into high and low expression before correlation with clinical data. RESULTS: Tumors with high EGFr (84%) responded better to moderately accelerated...... radiotherapy, than carcinomas with low EGFr, using locoregional control as endpoint and a similar pattern was seen, stratifying by well/moderate vs. poor tumor differentiation. Therefore, a combined parameter was constructed showing a more prominent separation of response: tumors with high EGFr and well/moderate...

  1. Accelerating Universe and Event Horizon

    OpenAIRE

    He, Xiao-Gang(INPAC, SKLPPC and Department of Physics, Shanghai Jiao Tong University, Shanghai, China)

    2001-01-01

    It has been argued in the literature that if a universe is expanding with an accelerating rate indefinitely, it presents a challenge to string theories due to the existence of event horizons. We study the fate of a currently accelerating universe. We show that the universe will continue to accelerate indefinitely if the parameter $\\omega = p/\\rho$ of the equation of state is a constant, no matter how many different types of energy (matter, radiation, quintessence, cosmological constant and et...

  2. Project X: Accelerator Reference Design

    CERN Document Server

    Holmes, S D; Chase, B; Gollwitzer, K; Johnson, D; Kaducak, M; Klebaner, A; Kourbanis, I; Lebedev, V; Leveling, A; Li, D; Nagaitsev, S; Ostroumov, P; Pasquinelli, R; Patrick, J; Prost, L; Scarpine, V; Shemyakin, A; Solyak, N; Steimel, J; Yakovlev, V; Zwaska, R

    2013-01-01

    Part 1 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". Part 1 contains the volume Preface and a description of the conceptual design for a high-intensity proton accelerator facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Subjects covered include performance goals, the accelerator physics design, and the technological basis for such a facility.

  3. Stationary plasma accelerator - ATON engine

    International Nuclear Information System (INIS)

    The principles of a stationary plasma accelerator (engine) with closed electron drift are described. The accelerator has record integral characteristics. A method for analysis of operating process features in the integral characteristics is proposed. Results are presented of local measurements of the plasma parameters in the accelerator channel and in the leaving plasma jet Main attention is paid to determination of the part of twice ionized ions in the plasma flow

  4. Accelerator control systems in China

    International Nuclear Information System (INIS)

    Three accelerator facilities were built in the past few years, the 2.8 GeV electron positron collider BEPC, the heavy ion SSC cyclotron accelerator HIRFL and the 800 MeV synchrotron radiation storage ring HESYRL. Aimed at different research areas, they represent a new generation of accelerator in China. This report describes the design philosophy, the structure, performance as well as future improvements of the control systems of the these facilities. (author)

  5. Accelerator science in medical physics

    OpenAIRE

    Peach, K.; Wilson, P.; Jones, B

    2011-01-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered sin...

  6. Superposed-laser electron acceleration

    International Nuclear Information System (INIS)

    A new mechanism is proposed for electron acceleration by using two superposed laser beams in vacuum. In this mechanism, an electron is accelerated by the longitudinal component of the wave electric field in the overlapped region of two laser beams. Single-particle computations and analytical works are performed in order to demonstrate the viability. These results show that the electron can be accelerated well in this proposed mechanism. (author)

  7. Accelerators for research and applications

    International Nuclear Information System (INIS)

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  8. Maximal acceleration and radiative processes

    OpenAIRE

    Papini, Giorgio

    2015-01-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass $m$ has the upper limit $\\mathcal{A}_m=2mc^3/\\hbar$. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to $\\mathcal{A}_m$ and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws du...

  9. Thomas Precession by Uniform Acceleration

    CERN Document Server

    Pardy, Miroslav

    2015-01-01

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  10. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  11. Concentrated Light for Accelerated Photo Degradation of Polymer Materials

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager; Tromholt, Thomas; Norrman, Kion;

    2013-01-01

    Concentrated light is used to perform photochemical degradation of polymer solar cell materials with acceleration factors up to 1200. At constant temperature the photon efficiency in regards to photo degradation is constant for 1–150 suns and oxygen diffusion rates are not a limiting factor...

  12. CAS CERN Accelerator School: Second general accelerator physics course

    International Nuclear Information System (INIS)

    The course on general accelerator physics given at Aarhus is basically a repeat of that organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in September 1984 and whose proceedings were published as CERN Yellow Report 85-19 (1985). However, the opportunity was taken to improve or extend certain subjects while introducing new ones and it is these which are included in the present proceedings. The lectures treated here include accelerator optics, insertions, image and space charge forces, neutralisation, diagnostics and intra-beam scattering while the seminar programme includes a number of specialised accelerator topics. Reports on a separate series of seminars organised by the University of Aarhus, Denmark, and devoted to advanced technology arising from general accelerator physics are also included, as well as errata to CERN 85-19. (orig.)

  13. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  14. Accelerated tests of coil coatings

    Directory of Open Access Journals (Sweden)

    Rosales, B. M.

    2003-12-01

    Full Text Available Accelerated laboratory tests on 12 materials in study in the Subgroup 6 of the PATINA Network (CYTED, are discussed for different exposition periods in salt spray, SO2 and Prohesion chambers. International standards used to evaluate failures caused by the different aggressive agents of these laboratory tests are the same as those applied for outdoor expositions. The results exposed contribute to a better understanding of the mechanisms occurred in the diverse natural environments, being mentioned the main analogies and differences respect to factors affecting natural tests. They also allowed to evidence the advantages and limitations in the application of these tests during several days, as compared to the years required to attain similar failure magnitudes through outdoor tests.

    En este trabajo se discuten los ensayos de laboratorio acelerados, realizados sobre 12 materiales de estudio en el Subgrupo 6 de la Red PATINA (CYTED, a diferentes periodos de exposición en cámaras de niebla salina, SO2 y Prohesion. Se utilizaron las normas internacionales para evaluar los fallos causados por los diferentes agentes agresivos de estos ensayos de laboratorio, las cuales se aplican también para los ensayos de exposición a la intemperie. Los resultados expuestos contribuyen a una mejor comprensión de los mecanismos ocurridos en los diversos ambientes naturales, mencionándose las principales analogías y diferencias respecto de los factores que afectan los ensayos naturales. También permitieron evidenciar las ventajas y limitaciones en la aplicación de estos ensayos durante varios días, en comparación con los años requeridos para alcanzar magnitudes de fallos similares por medio de ensayos a intemperie.

  15. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  16. Hybrid photonic-bandgap accelerating cavities

    CERN Document Server

    Di Gennaro, E; Savo, S; Andreone, A; Masullo, M R; Castaldi, G; Gallina, I; Galdi, V

    2009-01-01

    In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental...

  17. COMPASS Accelerator Design Technical Overview

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff; /SLAC

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  18. Correct and efficient accelerator programming

    OpenAIRE

    Cohen, Albert; Donaldson, Alistair F.; Huisman, Marieke; Katoen, Joost-Pieter

    2013-01-01

    This report documents the program and the outcomes of Dagstuhl Seminar 13142 “Correct and Efficient Accelerator Programming”. The aim of this Dagstuhl seminar was to bring together researchers from various sub-disciplines of computer science to brainstorm and discuss the theoretical foundations, design and implementation of techniques and tools for correct and efficient accelerator programming.

  19. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  20. Shadows of a maximal acceleration

    OpenAIRE

    Papini, G.

    2002-01-01

    A quantum mechanical upper limit on the value of particle accelerations, or maximal acceleration (MA), is applied to compact stars. A few MA fermions are at most present in canonical white dwarfs and neutron stars. They drastically alter a star's stability conditions.

  1. Shadows of a maximal acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Papini, G

    2002-12-16

    A quantum mechanical upper limit on the value of particle accelerations, or maximal acceleration (MA), is applied to compact stars. A few MA fermions are at most present in canonical white dwarfs and neutron stars. They drastically alter a star's stability conditions.

  2. Lorentz contraction and accelerated systems

    OpenAIRE

    Tartaglia, Angelo; Ruggiero, Matteo Luca

    2003-01-01

    The paper discusses the problem of the Lorentz contraction in accelerated systems, in the context of the special theory of relativity. Equal proper accelerations along different world lines are considered, showing the differences arising when the world lines correspond to physically connected or disconnected objects. In all cases the special theory of relativity proves to be completely self-consistent

  3. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  4. New directions in linear accelerators

    International Nuclear Information System (INIS)

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures

  5. Accelerator technology for the mankind

    International Nuclear Information System (INIS)

    Full text: Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U. S. Department of Energy: Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves. Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Accelerator Complex (TAC) project is more comprehensive and ambitious project, from the point of view of it includes light sources, particle physics experiments and proton and secondary beam applications. At this stage, TAC project includes: Linac-ring type charm factory; Synchrotron light source based on positron ring; Free electron laser based on electron linac; GeV scale proton accelerator; TAC-Test Facility

  6. Analysis of Accelerated Gossip Algorithms

    NARCIS (Netherlands)

    Liu, J.; Anderson, B.D.O.; Cao, M.; Morse, A.S.

    2009-01-01

    This paper investigates accelerated gossip algorithms for distributed computations in networks where shift-registers are utilized at each node. By using tools from matrix analysis, we prove the existence of the desired acceleration and establish the fastest rate of convergence in expectation for two

  7. The entangled accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Robles-Perez, Salvador [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)

    2009-08-31

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  8. Actinides, accelerators and erosion

    Science.gov (United States)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  9. EXOTIC MAGNETS FOR ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  10. Is Global Warming Accelerating?

    Science.gov (United States)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  11. Accelerating quantum universe

    CERN Document Server

    Kuzmichev, V E

    2007-01-01

    The exactly solvable quantum model of the homogeneous, isotropic and closed universe filled with a uniform scalar field and a perfect fluid which defines a reference frame is considered. The equations of the model are reduced to the form which allows a direct comparison between them and the equations of the Einstein classical theory of gravity. It is shown that matter in the universe has a component in a form of a condensate of massive zero-momentum excitation quanta of oscillations of a primordial scalar field which behaves as an antigravitating medium. The theory predicts an accelerating expansion of the universe even if the vacuum energy density vanishes. An antigravitating effect of a condensate has a purely quantum nature. It is ensured by quantum transitions between close states of the universe with different masses of a condensate. It is shown that in a state with large quantum numbers (in semi-classical approximation) the universe has to look effectively like spatially flat with a deceleration paramet...

  12. EXHIBITION: Accelerated Particles

    CERN Document Server

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  13. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  14. The entangled accelerating universe

    International Nuclear Information System (INIS)

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  15. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  16. Pulsed Superconductivity Acceleration

    CERN Document Server

    Liepe, M

    2000-01-01

    The design of the proposed linear collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities, operated in pulsed mode. Within the framework of an international collaboration the TESLA Test Facility (TTF) has been set up at DESY, providing the infrastructure for cavity R&D towards higher gradients. More than 60 nine-cell cavities were tested, accelerating gradients as high as 30 MV/m were measured. In the second production of TTF-cavities the average gradient was measured to be 24.7 MV/m. Two modules, each containing eight resonators, are presently used in the TTF-linac. These cavities are operated in pulsed mode: 0.8 ms constant gradient with up to 10 Hz repetitions rate. We will focus on two aspects: Firstly, the cavity fabrication and treatment is discussed, allowing to reach high gradients. Latest results of single cell cavities will be shown, going beyond 40 MV/m. Secondly, the pulsed mode operation of superconducting cavities is reviewed. This includes Lorentz force detuning, mechanic...

  17. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  18. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  19. Heavy ion accelerators at GSI

    International Nuclear Information System (INIS)

    The status of the Unilac heavy ion linear accelerator at GSI, Darmstadt is given. A schematic overall plan view of the Unilac is shown and its systems are described. List of isotopes and intensities accelerated at the Unilac is presented. The experimental possibilities at GSI should be considerably extended by a heavy ion synchrotron (SIS 18) in combination with an experimental storage ring (ESR). A prototype of the rf-accelerating system of the synchrotron has been built and tested. Prototypes for the quadrupole and dipole magnets for the ring are being constructed. The SIS 18 is desigmed for a maximum magnetic rigidity of 18Tm so that neon can be accelerated to 2 GeV/W and uranium to 1 GeV/u. The design allows also the acceleration of protons up to 4.5 GeV. The ESR permits to storage fully stripped uranium ions up to an energy of approximately R50 MeV/u

  20. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  1. Maximal acceleration and radiative processes

    CERN Document Server

    Papini, Giorgio

    2015-01-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass $m$ has the upper limit $\\mathcal{A}_m=2mc^3/\\hbar$. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to $\\mathcal{A}_m$ and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws due to the maximal acceleration with that for particles in gravitational fields, we find that the model of Caianiello allows, in principle, the use of charged particles as tools to distinguish inertial from gravitational fields locally.

  2. Maximal acceleration and radiative processes

    Science.gov (United States)

    Papini, Giorgio

    2015-08-01

    We derive the radiation characteristics of an accelerated, charged particle in a model due to Caianiello in which the proper acceleration of a particle of mass m has the upper limit 𝒜m = 2mc3/ℏ. We find two power laws, one applicable to lower accelerations, the other more suitable for accelerations closer to 𝒜m and to the related physical singularity in the Ricci scalar. Geometrical constraints and power spectra are also discussed. By comparing the power laws due to the maximal acceleration (MA) with that for particles in gravitational fields, we find that the model of Caianiello allows, in principle, the use of charged particles as tools to distinguish inertial from gravitational fields locally.

  3. The ISAC post-accelerator

    Science.gov (United States)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  4. Particle Acceleration in Astrophysical Sources

    CERN Document Server

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  5. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  6. Accelerated coffee pulp composting.

    Science.gov (United States)

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  7. Operation of the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Batzka, B.; Billquist, P.J. [and others

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  8. "small ACCELERATORS" 24 May - 2 June 2005

    CERN Multimedia

    2005-01-01

    CERN Accelerator School and Kernfysisch Versneller Instituut (KVI) Groningen, the Netherlands announce a course on "Small Accelerators", Hotel Golden Tulip Drenthe, Zeegse, the Netherlands, 24 May - 2 June 2005. This specialised course is dedicated to the physics and the main applications of small accelerators. The course will review the different accelerator types as well as their specificities in terms of accelerator physics.

  9. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  10. Application of electron accelerator worldwide

    International Nuclear Information System (INIS)

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  11. PROTON ACCELERATION AT OBLIQUE SHOCKS

    International Nuclear Information System (INIS)

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  12. Proton Acceleration at Oblique Shocks

    Science.gov (United States)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  13. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  14. CAS CERN Accelerator School second advanced accelerator physics course

    International Nuclear Information System (INIS)

    The advanced course on general accelerator physics given in West Berlin closely followed that organised by the CERN Accelerator School at Oxford in September 1985 and whose proceedings were published as CERN Yellow Report 87-03 (1987). However, certain subjects were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include particle-photon interactions, high-brilliance lattices and single/multiple Touschek effect, while the seminars are on the major accelerators presently under construction or proposed for the near future, applications of synchrotron radiation, free-electron lasers, cosmic accelerators and crystal beams. Also included are errata, and addenda to some of the lectures, of CERN 87-03. (orig.)

  15. Study on focusing characteristic of acceleration tube in high current implanter

    International Nuclear Information System (INIS)

    The accelerating tube is one of the most important parts in high current implanter which provides the desired energy and focusing for ion beam. The factors affecting focus characteristic in high current implanter with three gap acceleration tube are discussed. Focusing degrees of different energy ion beam are computed, and the electric field required to prevent beam expansion due to space charge effect are analyzed. The beam envelope inside the three acceleration gap shows a decrease of the beam radius with the increase of the accelerating voltage ratio up to the optimal value. Beyond this optimal value the beam lines make a crossover with the axis of the accelerating tube

  16. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  17. Stochastic modeling of Lagrangian accelerations

    Science.gov (United States)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  18. Particle acceleration in modified shocks

    International Nuclear Information System (INIS)

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  19. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  20. The wake field acceleration mechanism

    International Nuclear Information System (INIS)

    The wake fields of dense bunches of relativistic electrons are used to accelerate secondary beams of positrons and electrons. The basic principle is the transformation of wake forces by means of geometric structures with different impedances at different locations. In such wake field transformers beams of a few GeV energy can accelerate secondary beams to ten times the energy of the driving particles. Two 50 GeV colliding beam linear accelerators based on this mechanism occupy less than 1300 meters total length. (orig.)

  1. New type of collective accelerator

    International Nuclear Information System (INIS)

    A collective accelerator based on magnetically confined plasma rings is described. Typical rings which have been produced and which have 10 kJ magnetic energy and 0.1 to 10 coulombs of nuclei are predicted to be accelerated magnetically to 10 MJ or higher in acceleration lengths of 100 m if the final power delivered to the ring is 1012 W. Applications are discussed of current drive in Tokamak fusion reactions, fueling and heating magnetic fusion reactors, transuranic element synthesis, and, for focused rings, a high energy density driver for inertial confinement fusion

  2. Accelerated GPU based SPECT Monte Carlo simulations

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  3. Exploring Particle Acceleration in Gamma-Ray Binaries

    Science.gov (United States)

    Bosch-Ramon, V.; Rieger, F. M.

    2012-08-01

    Binary systems can be powerful sources of non-thermal emission from radio to gamma rays. When the latter are detected, then these objects are known as gamma ray binaries. In this work, we explore, in the context of gamma ray binaries, different acceleration processes to estimate their efficiency: Fermi I, Fermi II, shear acceleration, the converter mechanism, and magnetic reconnection. We find that Fermi I acceleration in a mildly relativistic shock can provide, although marginally, the multi-10 TeV particles required to explain observations. Shear acceleration may be a complementary mechanism, giving particles the final boost to reach such a high energies. Fermi II acceleration may be too slow to account for the observed very high energy photons, but may be suitable to explain extended low-energy emission. The converter mechanism seems to require rather high Lorentz factors but cannot be discarded a priori. Standard relativistic shock acceleration requires a highly turbulent, weakly magnetized downstream medium; magnetic reconnection, by itself possibly insufficient to reach very high energies, could perhaps facilitate such a conditions. Further theoretical developments, and a better source characterization, are needed to pinpoint the dominant acceleration mechanism, which need not be one and the same in all sources.

  4. Observed Cosmological Redshifts Support Contracting Accelerating Universe

    CERN Document Server

    Vlahovic, Branislav

    2012-01-01

    The main argument that Universe is currently expanding is observed redshift increase by distance. However, this conclusion may not be correct, because cosmological redshift depends only on the scaling factors, the change in the size of the universe during the time of light propagation and is not related to the speed of observer or speed of the object emitting the light. An observer in expanding universe will measure the same redshift as observer in contracting universe with the same scaling. This was not taken into account in analysing the SN Ia data related to the universe acceleration. Possibility that universe may contract, but that the observed light is cosmologically redshifted allows for completely different set of cosmological parameters $\\Omega_M, \\Omega_{\\Lambda}$, including the solution $\\Omega_M=1, \\Omega_{\\Lambda}=0$. The contracting and in the same time accelerating universe explains observed deceleration and acceleration in SN Ia data, but also gives significantly larger value for the age of the...

  5. Accelerated Solutions for Transcendental Stiffness Matrix Eigenproblems

    Directory of Open Access Journals (Sweden)

    F.W. Williams

    1996-01-01

    Full Text Available This article outlines many existing and forthcoming methods that can be used alone, or in various combinations, to accelerate the solutions of the transcendental stiffness matrix eigenproblems that arise when the stiffness matrix is assembled from exact member stiffnesses, which are obtained by solving the member differential equations exactly. Thus distributed member mass and/or the flexural effect of axial loading are incorporated exactly, and the solutions are the natural frequencies for vibration problems or the critical load factors for buckling problems.

  6. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  7. SNEAP 80: symposium of Northeastern Accelerator personnel

    International Nuclear Information System (INIS)

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems

  8. SNEAP 80: symposium of Northeastern Accelerator personnel

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J.H. (ed.)

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  9. Electron accelerator applications for radiation processing

    International Nuclear Information System (INIS)

    irradiators was proposed by different authors, were applied in the industrial scale for flue gas and wastewater irradiation. Another application is sludge hygenization. However, low energy accelerators were applied for on-line surface sterilization as well. The flow mixed reactor has been applied for natural latex vulcanization as well. This is a new approach from the point of view of radiation process engineering. It is well known that chemical or material engineering mostly apply high temperature and/or high pressure processes for material synthesis/modification and quite often a catalyst is required to speed up the reaction. Radiation is the unique source of energy, which can initiate chemical reactions at any temperature, including ambient, under any pressure, in any phase (gas, liquid or solid), without the use of catalysts. However, the temperature rise factor should be considered when material is processed with the high dose. The new application of radiation is homeland security. This subject was reviewed during the NATO workshop held in Budapest, Hungary in March 2004. Environmental application possible reduction of Persistent Organic Pollutants (POPs) by electron beam or combined processes is being studied. Final success depends on clear demonstration of toxicity reduction and economical feasibility e.g. by the hybrid processes applications. However, if process developed, it can be implemented to destruct dioxins in off-gases emitted from municipal waste incinerator. The natural polymer radiation treated products and nanotechnology are other emerging applications. (author)

  10. Self-consistent radiative effect on relativistic electromagnetic particle acceleration

    CERN Document Server

    Noguchi, K; Nishimura, K

    2005-01-01

    We study the radiation damping effect on the relativistic acceleration of electron-positron plasmas with two-and-half-dimensional particle-in-cell (PIC) simulation. Particles are accelerated by Poynting flux via the diamagnetic relativistic pulse accelerator (DRPA), and decelerated by the self-consistently solved radiation damping force. With $\\Omega_{ce}/\\omega_{pe}\\geq 10$, the Lorentz factor of the highest energy particles reaches gamma>100, and the acceleration still continues. The emitted radiation is peaked within few degrees from the direction of Poynting flux and strongly linearly polarized, which may be detectable in gamma-ray burst(GRB) observations. We also show that the DRPA is insensitive to the initial supporting currents.

  11. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Science.gov (United States)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  12. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    CERN Document Server

    Zharkova, Valentina V; Benz, Arnold O; Browning, Phillippa; Dauphin, Cyril; Emslie, A Gordon; Fletcher, Lyndsay; Kontar, Eduard P; Mann, Gottfried; Onofri, Marco; Petrosian, Vahe; Turkmani, Rim; Vilmer, Nicole; Vlahos, Loukas

    2011-01-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  13. Materials considerations for a high power-density accelerator

    International Nuclear Information System (INIS)

    A 100-mA 50-MeV H- accelerator is being designed at Los Alamos. The accelerating structures will operate at 425-MHz and will consist of a radio-frequency quadrupole (RFQ) to 2-MeV and a drift-tube linac (DTL) from 2 to 50-MeV. Design parameters have been specified to match the maximum operating capabilities of the rf system: 2-ms pulse length and 6% duty factor. The accelerating gradient in the DTL will be 4-MV/m; the maximum electric field will be approximately 1.2 times the Kilpatrick limit. These design parameters are substantially more ambitious than those of the accelerating test stand (ATS). That copper will be used on the rf-structure surfaces is not in question. Concern with residual activation and thermal management forces the investigation of materials other than the traditional carbon- and stainless-steel base materials used at Los Alamos

  14. Accelerator technology working group summary

    International Nuclear Information System (INIS)

    A summary is presented of workshop deliberations on basic scaling, the economic viability of laser drive power for HEP accelerators, the availability of electron beam injectors for near-term experiments, and a few very general remarks on technology issues

  15. 1988 linear accelerator conference proceedings

    International Nuclear Information System (INIS)

    This report contains papers presented at the 1988 Linear Accelerator Conference. A few topics covered are beam dynamics; beam transport; superconducting components; free electron lasers; ion sources; and klystron research

  16. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  17. Accelerator structure work for NLC

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gluckstern, R. [Maryland Univ., College Park, MD (United States); Ko, K.; Kroll, N. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  18. Quantum aspects of accelerator optics

    OpenAIRE

    Khan, Sameen Ahmed

    1999-01-01

    Present understanding of accelerator optics is based mainly on classical mechanics and electrodynamics. In recent years quantum theory of charged-particle beam optics has been under development. In this paper the newly developed formalism is outlined.

  19. Electrodynamics acceleration of electrical dipoles

    CERN Document Server

    Dolya, S N

    2013-01-01

    This article considers the acceleration of electric dipoles consisting of thin metal plates and dielectric (barium titanate). The dipoles are of a cylindrical shape with a diameter of the cylinder two centimeters and length one centimeter. Capacity of the parallel-plate capacitor is three hundred picofarads and it is charged up to the voltage of two hundred eighty kilovolts. Pre-acceleration of the electric dipoles till velocity one kilometer per second is reached by the gas-dynamic method. The finite acceleration is produced in a spiral waveguide, where the pulse is travelling with voltage amplitude seven hundreds kilovolts and power one hundred twenty-five megawatts. This pulse travels via the spiral waveguide and accelerates the injected electric dipoles in the longitudinal direction till the finite velocity eight and a half kilometers per second over length seven hundred and seventy meters.

  20. drift tube for linear accelerator

    CERN Multimedia

    A drift tube from the Linac 1. This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  1. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  2. Prototype of industrial electrons accelerator

    International Nuclear Information System (INIS)

    The interest and the necessity of Mexico's industry in the use of irradiation process has been increased in the last years. As examples are the irradiation of combustion gases (elimination of NOx and SO2) and the polymer cross-linking between others. At present time at least twelve enterprises require immediately of them which have been contacted by electron accelerators suppliers of foreign countries. The first project step consisted in to identify the electrons accelerator type that in can be constructed in Mexico with the major number of possible equipment, instruments, components and acquisition materials local and useful for the major number of users. the characteristics of the accelerator prototype are: accelerator type transformer with multiple secondary insulated and rectifier circuits with a potential of 0.8 MV of voltage, the second step it consisted in an economic study that permitted to demonstrate the economic feasibility of its construction. (Author)

  3. Accelerating advanced-materials commercialization

    Science.gov (United States)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  4. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  5. IGBT accelerated aging data set.

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary data from thermal overstress accelerated aging using the aging and characterization system. The data set contains aging data from 6 devices, one device...

  6. Estimation in Step-Stress Accelerated Life Tests for Power Generalized Weibull Distribution with Progressive Censoring

    Directory of Open Access Journals (Sweden)

    M. M. Mohie EL-Din

    2015-01-01

    Full Text Available Based on progressive censoring, step-stress partially accelerated life tests are considered when the lifetime of a product follows power generalized Weibull distribution. The maximum likelihood estimates (MLEs and Bayes estimates (BEs are obtained for the distribution parameters and the acceleration factor. In addition, the approximate and bootstrap confidence intervals (CIs of the estimators are presented. Furthermore, the optimal stress change time for the step-stress partially accelerated life test is determined by minimizing the asymptotic variance of MLEs of the model parameters and the acceleration factor. Simulation results are carried out to study the precision of the MLEs and BEs for the parameters involved.

  7. Accelerated Development of Organizational Talent

    OpenAIRE

    Korotov, Konstantin

    2007-01-01

    This working paper explores the challenges of accelerated development of organizational talent. The meaning of the word "accelerated" is that such development takes place at a pace that is significantly higher than that of "traditional" development that allows an individual to learn the intricacies of the current job, observe incumbents in a higher level position (usually, one level up), practice elements of the boss' job when being delegated tasks, undergoing formal training, or benefiting f...

  8. Electron Cloud Effects in Accelerators

    OpenAIRE

    Furman, M.A.

    2014-01-01

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics...

  9. Caianiello's maximal acceleration. Recent developments

    OpenAIRE

    Papini, G.

    2004-01-01

    A quantum mechanical upper limit on the value of particle accelerations is consistent with the behavior of a class of superconductors and well known particle decay rates. It also sets limits on the mass of the Higgs boson and affects the stability of compact stars. In particular, type-I superconductors in static conditions offer an example of a dynamics in which acceleration has an upper limit.

  10. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  11. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how our description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  12. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how the description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  13. The Beta Tech electron accelerator

    International Nuclear Information System (INIS)

    After describing the background of the Swedish Electron Sterilization Centre, the proposed linear accelerator sterilization plant is outlined. The accelerator will produce electrons of energy 10 MeV and a beam power of 30 KW. The handling system, control and identification systems are also described. Documentation will be designed around a bar code system on line to a computer. The various uses of dosimetry in plant performance and process control are described. (U.K.)

  14. Dark Energy or local acceleration?

    CERN Document Server

    Feoli, Antonio

    2016-01-01

    We find that an observer with a suitable acceleration relative to the frame comoving whit the cosmic fluid, in the context of the FRW decelerating universe, measures the same cosmological redshift as the LambdaCDM model. The estimated value of this acceleration is beta = 1.4x10^-9m/s^2. The problem of a too high peculiar velocity can be solved assuming, for the observer, a sort of helical motion.

  15. The acceleration of galactic cosmic rays

    International Nuclear Information System (INIS)

    A number of acceleration mechanisms are discussed including stochastic acceleration, shock acceleration, laminar shock acceleration and acceleration by shocks in scattering media. The self-consistent problem is analysed and it is concluded that provided the cosmic rays are scattered effectively and provided energy losses are not too severe, they can be very efficiently accelerated by shock waves in the interstellar medium. (C.F.)

  16. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  17. Ponderomotive Acceleration by Relativistic Waves

    CERN Document Server

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  18. High-Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  19. Vacuum Brazing of Accelerator Components

    International Nuclear Information System (INIS)

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  20. Superconducting Accelerating Structure with Gradient as 2 Times Higher as TESLA Structure

    CERN Document Server

    Avrakhov, P V

    2004-01-01

    A proposed new accelerating structure for TESLA is assumed to have an effective gradient 2 times more than existing 9-cell cavity. This structure is an interlaced combination of two side-cavity-coupled standing wave substructures with λ/4 cells length. Intercell coupling provides side-coupled cavities made from a special shape waveguide section. The high accelerating gradient is accomplished by 4 factors: The shortened accelerating cells have transit time factor 0.9 instead of 0.64 for conventional standing wave cells with λ/2 length. The side magnetic coupling has made it possible to reduce the cells beam aperture that reduce relation between the maximum surface field and the acceleration gradient. Stronger intercell coupling allows extending the accelerating cavity and improving a duty factor of linac. Availability of the side coupling elements enables to use them for power input and HOM-couplers. It reduces intercavity distance and enhances duty factor too.

  1. Development of an automatic frequency measurement system for RF linear accelerator magnetrons

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki; Lee, Seung Hyun; Park, Hyung Dal; Song, Ki Beak

    2015-06-01

    An X-band [9300 MHz] magnetron frequency measurement system was developed for the electron linear accelerators at the Korean Atomic Energy Research Institute (KAERI). The measurement and the display of the RF frequency during the accelerator operation time is a crucial factor for continuous operation for two key reasons. Firstly, if the RF frequency of the magnetron is not known, then the amount of frequency tuning cannot be known, and the appropriate RF power cannot be supplied to the accelerating-structure. Second, values including the accelerating-structure's coolingwater temperature setting, the solenoid-magnet's cooling-water temperature setting, and the tuning of the source's (magnetron's) frequency can be undertaken because the RF frequency is used as the reference. A key component of the accelerator is the accelerating-structure. The volume of the accelerating-structure changes according to the environment's temperature; there, the resonance frequency of the accelerating-structure varies. When the resonance frequency of the accelerator is changed, the output becomes unstable, and a low beam energy is obtained. Accordingly, was developed a magnetron frequency-measuring device in order to stabilize the accelerator's operation. The results of the test demonstrate that the measurement's accurate up to 100 kHz, which enables the provision of an accurate RF power to the accelerating -structure. In this paper, we discuss the RF frequency measurement system for the magnetron to enable a more stable accelerator operation in a linac.

  2. Using the factors that have a positive impact on the retention of low socioeconomic students to prepare accelerated enrolled nurses for the science units of a nursing degree. A Practice Report

    Directory of Open Access Journals (Sweden)

    Sheila Doggrell

    2015-03-01

    Full Text Available At a campus in a low socioeconomic (SES area, our University allows enrolled nurses entry into the second year of a Bachelor of Nursing, but attrition is high.  Using the factors, described by Yorke and Thomas (2003 to have a positive impact on the attrition of low SES students, we developed strategies to prepare the enrolled nurses for the pharmacology and bioscience units of a nursing degree with the aim of reducing their attrition.  As a strategy, the introduction of review lectures of anatomy, physiology and microbiology, was associated with significantly reduced attrition rates. The subsequent introduction of a formative website activity of some basic concepts in bioscience and pharmacology, and a workshop addressing study skills and online resources, were associated with a further reduction in attrition rates of enrolled nursing students in a Bachelor of Nursing

  3. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  4. Plasma Beat-Wave Acceleration

    Science.gov (United States)

    Clayton, Christopher E.

    2002-04-01

    Among all the advanced accelerator concepts that use lasers as the power source, most of the effort to date has been with the idea of using a laser pulse to excite a accelerating mode in a plasma. Within this area, there are a variety of approaches for creating the accelerating mode, as indicated by the other talks in this session. What is common to these approaches is the physics of how a laser pulse pushes on plasma electrons to organize electron-density perturbations, the sources of the ultra-high (> GeV/M) accelerating gradients. It is the "ponderomotive force", proportional to the local gradient of the of the laser intensity, that pushes plasma electrons forward (on the leading edge of the pulse) and backwards (on the trailing edge) which leads to harmonic motion of the electrons. As the laser pulse moves through the plasma at group velocity Vg c, the oscillating electrons show up macroscopically as a plasma mode or wave with frequency w equal to the plasma frequency and k = w/Vg. For short laser pulses, this is the Laser Wakefield Accelerator (LWFA) concept. Closely related is the Plasma Beat-Wave Acceleration (PBWA) concept. Here, the laser pulse that perturbs the plasma is composed of two closely-spaced frequencies that "beat", i.e., periodically constructively and destructively interfere, forming an electromagnetic beat wave. One can visualize this as a train of short pulses. If this beating frequency is set to the plasma frequency, then each pulse in the train will reinforce the density perturbation caused by the previous pulse. The principal advantage of multiple pulses driving up the plasma wave as opposed to a single pulse is in efficiency, allowing for the production of relatively large diameter (more 1-D like) accelerating modes. In this talk I will discuss past, current and planned PBWA experiments which are taking place at UCLA, RAL in England, and LULI in France.

  5. CAS Accelerator Physics (RF for Accelerators) in Denmark

    CERN Multimedia

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  6. The Accelerator Markup Language and the Universal Accelerator Parser

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, D.; Forster, M.; /Cornell U., LNS; Bates, D.A.; /LBL, Berkeley; Wolski, A.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; /CERN; Walker, N.J.; /DESY; Larrieu, T.; Roblin, Y.; /Jefferson Lab; Pelaia, T.; /Oak Ridge; Tenenbaum, P.; Woodley, M.; /SLAC; Reiche, S.; /UCLA

    2006-10-06

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.

  7. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator

    International Nuclear Information System (INIS)

    Accelerator based mass spectrometry (ABMs) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 U D Pelletron Accelerator is an ideal machine to carry out ABMs studies with heavy isotopes like 36Cl and 129I. Cosmogenic radio isotope 36Cl is widely being detected using ABMs as it has got applications in ground water research, radioactive waste management, atmospheric 36Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing ABMs programme at 14UD Pelletron Accelerator Facility at Mumbai, a segmented gas detector developed for identification of 36Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. Further progress made in this programme is discussed in this paper. (author)

  8. CAS CERN Accelerator School third general accelerator physics course

    International Nuclear Information System (INIS)

    The general course on accelerator physics given in Salamanca, Spain, closely followed those organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in 1984, and at Aarhus, Denmark in 1986 and whose proceedings were published as CERN Yellow Reports 85-19 (1985) and 87-10 (1987) respectively. However, certain topics were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include beam-cooling concepts, Liouville's theorem and emittance, emittance dilution in transfer lines, weak-betatron coupling, diagnostics, while the seminars are on positron and electron sources, linac structures and the LEP L3 experiment, together with industrial aspects of particle accelerators. Also included are errata and addenda to the Yellow Reports mentioned above. (orig.)

  9. CAS CERN Accelerator School: Fourth general accelerator physics course

    International Nuclear Information System (INIS)

    The fourth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at KFA, Juelich, from 17 to 28 September 1990. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, and Salamanca 1988, and whose proceedings were published as CERN Reports 85-19, 87-10, and 89-05, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. All of these appear in the present proceedings, which include lectures or seminars on the history and applications of accelerators, phase space and emittance, chromaticity, beam-beam effects, synchrotron radiation, radiation damping, tune measurement, transition, electron cooling, the designs of superconducting magnets, ring lattices, conventional RF cavities and ring RF systems, and an introduction to cyclotrons. (orig.)

  10. CAS CERN Accelerator School. Third advanced accelerator physics course

    International Nuclear Information System (INIS)

    The third version of the CERN Accelerator School's (CAS) advanced course on General Accelerator Physics was given at Uppsala University from 18-29 September, 1989. Its syllabus was based on the previous courses held in Oxford, 1985 and Berlin, 1987 whose proceedings were published as CERN Yellow Reports 87-03 and 89-01 respectively. However, the opportunity was taken to emphasize the physics of small accelerators and storage rings, to present some topics in new ways, and to introduce new seminars. Thus the lectures contained in the present volume include chromaticity, dynamic aperture, kinetic theory, Landau damping, ion-trapping, Schottky noise, laser cooling and small ring lattice problems while the seminars include interpretation of numerical tracking, internal targets and living with radiation. (orig.)

  11. Hybrid photonic-bandgap accelerating cavities

    Science.gov (United States)

    Di Gennaro, E.; Zannini, C.; Savo, S.; Andreone, A.; Masullo, M. R.; Castaldi, G.; Gallina, I.; Galdi, V.

    2009-11-01

    In a recent investigation, we studied two-dimensional (2D) point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.

  12. Hybrid photonic-bandgap accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Di Gennaro, E [CNISM and Department of Physics, University of Naples ' Federico II' , Naples (Italy); Zannini, C; Savo, S; Andreone, A [CNR-INFM ' Coherentia' and Department of Physics, University of Naples ' Federico II' , Naples (Italy); Masullo, M R [INFN-Naples Unit, Naples (Italy); Castaldi, G; Gallina, I; Galdi, V [Waves Group, Department of Engineering, University of Sannio, Benevento (Italy)], E-mail: masullo@na.infn.it

    2009-11-15

    In a recent investigation, we studied two-dimensional (2D) point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.

  13. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Accelerates the Progression of Renal Fibrosis in Lupus Nephritis by Activating SMAD and p38 MAPK in TGF-β1 Signaling Pathway.

    Science.gov (United States)

    Liu, Zhiqin; Xue, Leixi; Liu, Zhichun; Huang, Jun; Wen, Jian; Hu, Ji; Bo, Lin; Yang, Ru

    2016-01-01

    This study aim was to explore the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in lupus nephritis and its potential underlying mechanisms. MRL/lpr mice were used for in vivo experiments and human proximal tubular cells (HK2 cells) were used for in vitro experiments. Results showed that MRL/lpr mice treated with vehicle solution or LV-Control shRNA displayed significant proteinuria and severe renal histopathological changes. LV-TWEAK-shRNA treatment reversed these changes and decreased renal expressions of TWEAK, TGF-β1, p-p38 MAPK, p-Smad2, COL-1, and α-SMA proteins. In vitro, hTWEAK treatment upregulated the expressions of TGF-β1, p-p38 MAPK, p-SMAD2, α-SMA, and COL-1 proteins in HK2 cells and downregulated the expressions of E-cadherin protein, which were reversed by cotreatment with anti-TWEAK mAb or SB431542 treatment. These findings suggest that TWEAK may contribute to chronic renal changes and renal fibrosis by activating TGF-β1 signaling pathway, and phosphorylation of Smad2 and p38 MAPK proteins was also involved in this signaling pathway. PMID:27365897

  14. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Accelerates the Progression of Renal Fibrosis in Lupus Nephritis by Activating SMAD and p38 MAPK in TGF-β1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Zhiqin Liu

    2016-01-01

    Full Text Available This study aim was to explore the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK in lupus nephritis and its potential underlying mechanisms. MRL/lpr mice were used for in vivo experiments and human proximal tubular cells (HK2 cells were used for in vitro experiments. Results showed that MRL/lpr mice treated with vehicle solution or LV-Control shRNA displayed significant proteinuria and severe renal histopathological changes. LV-TWEAK-shRNA treatment reversed these changes and decreased renal expressions of TWEAK, TGF-β1, p-p38 MAPK, p-Smad2, COL-1, and α-SMA proteins. In vitro, hTWEAK treatment upregulated the expressions of TGF-β1, p-p38 MAPK, p-SMAD2, α-SMA, and COL-1 proteins in HK2 cells and downregulated the expressions of E-cadherin protein, which were reversed by cotreatment with anti-TWEAK mAb or SB431542 treatment. These findings suggest that TWEAK may contribute to chronic renal changes and renal fibrosis by activating TGF-β1 signaling pathway, and phosphorylation of Smad2 and p38 MAPK proteins was also involved in this signaling pathway.

  15. Industrial Electron Accelerators Type ILU

    CERN Document Server

    Auslender, Vadim; Cheskidov, Vladimir; Faktorovich, Boris; Gorbunov, Vladimir; Gornakov, Igor; Nekhaev, V E; Panfilov, Alexander; Sidorov, Alexander; Tkachenko, Vadim; Tuvik, Alfred; Voronin, Leonid

    2005-01-01

    The report describes the electron accelerators of ILU series covering the energy range from 0.5 to 5 MeV with beam power up to 50 kW. The pulse linear accelerators type ILU are developed since 1970 in Budker institute of Nuclear Physics and are supplied to the industry. The ILU machines are purposed for wide application in various technological processes and designed for long continuous and round-the-clock work in industrial conditions. A principle of acceleration of electrons in the gap of HF resonator is used in the ILU machines. The HF resonator has toroidal form. The electron gun is placed in one of the protruding electrodes forming the accelerating gap of the resonator. The resonator is fed from HF autogenerator realized on the industrial triode, the feedback signal is given from the resonator. The absence of outer beam injection and usage of self-excited HF generator simplify the design of accelerator and ensure its reliable operation.

  16. A variable acceleration calibration system

    Science.gov (United States)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  17. Beam dynamics for induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P., E-mail: eplee@lbl.gov

    2014-01-01

    An induction linac uses pulsed power that is applied directly, without any intervening resonant cavities, to accelerate a charged particle pulse. This approach can accommodate a large multiple-beam focusing lattice capable of transporting a large total beam current with a long pulse duration, which may be compressed while accelerating as well as afterward. The mean accelerating gradient is relatively low (less than about 1.5 MV/m), but the potential efficiency of energy transfer can be large up to about 50%. A multiple-beam induction linac is therefore a natural candidate accelerator for a heavy ion fusion (HIF) driver. However, the accelerated beams must meet stringent requirements on occupied phase space volume in order to be focused accurately and with small radius onto the fusion target. Dynamical considerations in the beam injector and linac, as well as in the final compression, final focus, and the fusion chamber, determine the quality of the driver beams as they approach the target. Requirements and tolerances derived from beam dynamics strongly influence the linac configuration and component design. After a summary of dynamical considerations, two major topics are addressed here: transportable current limits, which determine the choice of focal system for the linac, and longitudinal control of the beams, which are potentially destabilized by their interaction with the pulsed power system.

  18. Cosmic-ray acceleration by stellar winds. 2. The spectrum of accelerated particles

    International Nuclear Information System (INIS)

    The transport equation for the acceleration and modulation of particles of momentum p in a steady spherically symmetric stellar wind with a shock transition at R from speed V1 to speed V2R2/r2 at r>R, and in which energetic particles have spatial diffusion coefficient K1=V1r/eta1 and K2=V2r/eta2 outside the shock, has been solved as closed functions of p, r and the model parameters V1/V2, eta1 and eta2. The source of particles is a function of momentum at r >> R. Specific cases of monoenergetic and truncated power laws are computed. Energy losses and convective modulation compete with acceleration at the shock so effectively in this model that enhancement of the background cosmic-ray flux by more than a factor of 2 is extremely unlikely

  19. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    Science.gov (United States)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  20. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kourbanis, Ioanis [Fermilab

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  1. Accelerator Technology Division annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  2. 38 CFR 9.14 - Accelerated Benefits.

    Science.gov (United States)

    2010-07-01

    ...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...? ____ Yes__ No__ The patient applied for an accelerated benefit under his/her government life...

  3. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  4. Calibration of an Electron Linear Accelerator using an acrylic puppet

    International Nuclear Information System (INIS)

    The finality of this work is to find the dose for electron beams using acrylic puppets and inter comparing with the measurements in water, found also its respective conversion factor. With base in this, its may be realize interesting measurements for the good performance of a linear accelerator and special clinical treatments in less time. (Author)

  5. Accelerated Leach Test(s) Program: Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1986-09-01

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms.

  6. Future evolution of bound superclusters in an accelerating Universe

    NARCIS (Netherlands)

    Araya-Melo, Pablo A.; Reisenegger, Andreas; Meza, Andres; van de Weygaert, Rien; Duenner, Rolando; Quintana, Hernan

    2009-01-01

    The evolution of marginally bound supercluster-like objects in all accelerating Lambda cold dark matter (Lambda CDM) Universe is followed, by means of cosmological simulations, from the present time to all expansion factor a = 100. The objects are identified on the basis of the binding density crite

  7. Heavy ion toroidal collective accelerator

    International Nuclear Information System (INIS)

    Experiments on HIPAC at Maxwell Laboratories have shown that almost all of the confined electrons are trapped and do not go around the torus. A toroidal electric field produces a negligible toroidal electron current. An ion accelerator where electrons are magnetically contained and their space charge contains ions is considered. A toroidal electric field of suitable magnitude can be applied so that it accelerates all of the ions but does not accelerate most of the electrons. This is possible if the magnetic moment of electrons μsub(e) > μsub(i)/Z, where μsub(i) is the ion magnetic moment and Z is the charge of the ion. Ions would be contained by the electron space-charge electric field E, for energies up to ZeER/2 approximately 100 GeV where Z = 60, E = 107 V/cm and the major radius of the torus is R = 3.3 metres. (author)

  8. Virtual gap dielectric wall accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  9. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  10. Accelerator science in medical physics.

    Science.gov (United States)

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future. PMID:22374548

  11. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  12. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  13. Symposium on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base

  14. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  15. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  16. The Diffusive Shock Acceleration Myth

    Science.gov (United States)

    Gloeckler, G.; Fisk, L. A.

    2012-12-01

    It is generally accepted that diffusive shock acceleration (DSA) is the dominant mechanism for particle acceleration at shocks. This is despite the overwhelming observational evidence that is contrary to predictions of DSA models. For example, our most recent survey of hourly-averaged, spin-averaged proton distribution functions around 61 locally observed shocks in 2001 at 1 AU found that in 21 cases no particles were accelerated. Spectral indices (γ ) of suprathermal tails on the velocity distributions around the 40 shocks that did accelerate particles, showed none of the DSA-predicted correlations of γ with the shock compression ratio and the shock normal to magnetic field angle. Here we will present ACE/SWICS observations of three sets of 72 consecutive one-hour averaged velocity distributions (in each of 8 SWICS spin sectors). Each set includes passage of one or more shocks or strong compression regions. All spectra were properly transformed to the solar wind frame using the detailed, updated SWICS forward model, taking into account the hourly-averaged directions of the solar wind flow, the magnetic field and the ACE spin axis (http://www.srl.caltech.edu/ACE/ASC/). The suprathermal tails are observed to be a combination of locally accelerated and remote tails. The local tails are power laws. The remote tails are also power laws with rollovers at higher energies. When local tails are weak (as is the case especially upstream of strong shocks or compression regions) the remote tails also have a rollover at low energies due to modulation (transport effects). Among our main findings are that (1) the spectral indices of both the local and remote tails are -5 within the uncertainties of the measurements, as predicted by our pump acceleration mechanism, and (2) the velocity distributions are anisotropic with the perpendicular (to the magnetic field) pressure greater than the parallel pressure.

  17. Electron accelerators for radiation sterilization

    International Nuclear Information System (INIS)

    Industrial radiation processes using high power electron accelerators are attractive because the throughput rates are very high and the treatment costs per unit of product are often competitive with more conventional chemical processes. The utilization of energy in e-beam processing is more efficient than typical thermal processing. The use of volatiles or toxic chemicals can be avoided. Strict temperature or moisture controls may not be needed. Irradiated materials are usable immediately after processing. These capabilities are unique in that beneficial changes can be induced rapidly in solid materials and preformed products. In recent years, e-beam accelerators have emerged as the preferred alternative for industrial processing as they offer advantages over isotope radiation sources, such as (a) increased public acceptance since the storage, transport and disposal of radioactive material is not an issue; (b) the ability to hook up with the manufacturing process for in-line processing; (c) higher dose rates resulting in high throughputs. During the 1980s and 1990s, accelerator manufacturers dramatically increased the beam power available for high energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed, since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain low unit costs for the treatment. During the late 1980s and early 1990s, advances in e-beam technology produced new high energy, high power e-beam accelerators suitable for use in sterilization on an industrial scale. These newer designs achieved high levels of reliability and proved to be competitive with gamma sterilization by 60Co and fumigation with EtO. In parallel, technological advances towards 'miniaturization' of accelerators also made it possible to

  18. Plasma-based and novel accelerators

    International Nuclear Information System (INIS)

    This publication is a collection of papers presented at Workshop on Plasma-Based and Novel Accelerators held at National Institute for Fusion Science, Nagoya, on December 19-20, 1991. Plasma-based accelerators are attracting considerable attention in these days a new, exciting field of plasma applications. The study gives rise to and spurs study of other unique accelerators like laser-based accelerators. The talks in the Workshop encompassed beat-wave accelerator (BWA), plasma wake field accelerator (PWFA), Vp x B accelerator, laser-based accelerators and some novel methods of acceleration. They also covered the topics such as FEL, cluster acceleration and plasma lens. Small scale experiments as those in universities have exhibited brilliant results while larger scale experiments like BWA in Institute of Laser Engineering, Osaka University, and PWFA in KEK start showing significant results as well. (J.P.N.)

  19. Gradient limitations in room temperature and superconducting acceleration structures

    Energy Technology Data Exchange (ETDEWEB)

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  20. State of accelerator for therapy

    CERN Document Server

    Maruhashi, A

    2002-01-01

    21 facilities carry out particle radiotherapy in the world and 6 facilities will start in the next year. They are shown in the table. 6 facilities of them exist in Japan. Small accelerator for proton therapy is developed. The area of them becomes smaller than 100 m sup 2. 5 makers, form, kinds of accelerator, length of track, beam energy of them are shown. States of particle radiotherapy in 4 facilities in Japan are explained by the kinds of particle, energy, beam intensity, time structure and radiation room. The important problems are reconsideration of building and compact rotating gantry. The problems of radiotherapy are explained. (S.Y.)

  1. Centralized digital control of accelerators

    International Nuclear Information System (INIS)

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  2. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  3. Seismic response of linear accelerators

    OpenAIRE

    Collette, Christophe; Artoos, Kurt; Guinchard, Michael; Hauviller, Claude

    2010-01-01

    This paper is divided into two parts. The first part presents recent measurements of ground motion in the LHC tunnel at CERN. From these measurements, an update of the ground motion model currently used in accelerator simulations is presented. It contains new features like a model of the lateral motion and the technical noise. In the second part, it is shown how this model can be used to evaluate the seismic response of a linear accelerator in the frequency domain. Then, the approach is valid...

  4. Geometric integration for particle accelerators

    International Nuclear Information System (INIS)

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction

  5. Channel guiding for advanced accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, H.M. [Institute for Physical Science and Technology (United States); Durfee, C.G. III [Institute for Physical Science and Technology (United States); Antonsen, T.M. [Institute for Plasma Research, University of Maryland, College Park, Maryland, (United States) 20742; Mora, P. [Centre de Physique Theorique, Ecole Polytechnique, 91128 Palaiseau (France)

    1996-02-01

    The recent demonstration of optical guiding of high intensity laser pulses in plasma waveguides [C. G. Durfee III and H. M. Milchberg, Phys. Rev. Lett 71, 2409 (1993)] has opened the way to new advances in the development of compact laser-driven electron particle accelerators. We review plasma waveguide properties relevant to intense pulse guiding and electron acceleration and show that the shock driven channels described here are well suited for stabilization of a large class of laser-plasma instabilities deleterious to high intensity guiding over long distances. {copyright} {ital 1996 American Institute of Physics.}

  6. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  7. Electron Cloud Effects in Accelerators

    CERN Document Server

    Furman, M A

    2013-01-01

    We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire "ECLOUD" series [122]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  8. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  9. Electron Cloud Effects in Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  10. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  11. Essay: Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    International Nuclear Information System (INIS)

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  12. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  13. A portable accelerator control toolkit

    International Nuclear Information System (INIS)

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development

  14. Geometrically focused neutral beam accelerators

    International Nuclear Information System (INIS)

    A more reliable 40 kV, 65 A power supply drain at 0.4 A/cm2, neutral-beam accelerator was developed for the Tandem Mirror Experiment (TMX). Multiple slotted aperture grids of 60% transparency are fabricated from refractory metal wires mounted to form a spherical surface. This geometrically focuses the beam by aiming individual beamlets at the center of curvature of the spherical grid (r = 3.2 m). We attain greater reliability and faster conditioning with geometrical focusing than with the previous technique of electrostatically steering beamlets to a common point. Electrostatic steering, accomplished by offsetting grid wires, is satisfactory if the offset of a beamlet is much less than the distance from the beamlet to the grids. It was found that Pierce Angle entrance grids performed better if sharper edged. A redesigned accelerator grid support structure reduced the number of ceramic-to-metal vacuum joints, and eliminated O rings between precisely aligned parts. The suppressor grid feedthrough is required to withstand a maximum voltage of 15 kV occurring during breakdown, greatly exceeding the operating voltage of 1.5 kV. Convenient fabrication and assembly techniques have been developed. Assembly of accelerators and plasma sources in a clean room appears to reduce the conditioning time. Following the successful testing of the prototype, eight 40 kV accelerators were built for TMX. Furthermore, ten 20 kV versions were built that are modifiable to 40 kV by exchanging the entrance grid

  15. Post-LHC accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  16. Repair of overheating linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

    2004-01-01

    Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

  17. Petawatt pulsed-power accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  18. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as...

  19. Advanced Accelerator Applications in Medicine

    International Nuclear Information System (INIS)

    besides the original purpose on development of particle acceleratora as research tools in nuclear and high-energy physics, there are large variety of accelerators used in various fileds from fundamental research to industrial usesand applications chemistry, biology and medicine. Pratical accelators used in various field of medical applications since serveral decades. Even through, a large fraction of applications is emphasized on cancer therappy, the number of accelerators used in midicine for other diagnostics and treatments has increased steady over the years. Several types of accelerated particles are used including electron, proton, neutron and ions. Presently, relativistic electron beams and radiation from linear accelerators (linas) are widely used. A combination of positron emission tomography (PRT) and radiotherapy is an example of excellent invention early detection and treat of cancer tumors. The most developments for proton and heavy ion therapy as well as a modern boron neutron capture therapy (BNCT) are also great incoming effective systems. This talk will focus on developments of the accelrator systems as well as overview on biophysical properties and medical aspects of the diacnostics and treatments.

  20. Accelerating cosmology in Rastall's theory

    CERN Document Server

    Capone, Monica; Ruggiero, Matteo Luca

    2009-01-01

    In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non - conservativity of the stress - energy tensor, i.e. $T^{\\mu}_{\

  1. Physics Needs for Future Accelerators

    CERN Document Server

    Lykken, J D

    2000-01-01

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  2. Cosmological Acceleration from Gravitational Waves

    CERN Document Server

    Marochnik, Leonid

    2015-01-01

    It is shown that the classical gravitational waves of super-horizon wavelengths are able to form the de Sitter accelerated expansion of the empty (with no matter fields) Universe. The contemporary Universe is about 70% empty and asymptotically is going to become completely empty, so the effect caused by emptiness should be already very noticeable. It could manifest itself as the dark energy.

  3. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    Energy Technology Data Exchange (ETDEWEB)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  4. CERNois wins prestigious accelerator award

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    During the 2nd International Particle Accelerator Conference, CERN’s Rogelio Tomás García became the first Spaniard to receive the Frank Sacherer Prize for his work in particle beam optics.   Rogelio Tomás García at the 2nd International Particle Accelerator Conference. The Frank Sacherer Prize is awarded to physicists who have made a “significant, original contribution to the accelerator field" early on in their career. This year the prize was given to Rogelio Tomás García who, at only 35 years of age, has made important contributions to the optics design, optics measurement, and correction techniques applied at both the LHC and Brookhaven’s RHIC. “Tomás has had a vital impact on CERN’s beam optics studies and has made very impressive achievements in the field of beam optics,” says Oliver Brüning, Head of the Accelerators and Beam Physics...

  5. Experience with magnetic shielding of a large scale accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Nagaitsev et al.

    2001-08-14

    It is not unusual to place multiple accelerators in a common enclosure to save on civil construction costs. This often complicates operations, especially if accelerators are affecting each other. At Fermilab, the influence of a rapidly cycling Main Injector (MI) synchrotron on an antiproton storage ring (Recycler), placed in a common tunnel, was initially found to be unacceptable for a reliable operation of the Recycler. Initial closed orbit excursions in the Recycler ring during the MI ramp were in excess of 5 mm (rms). This paper describes a shielding technique, used to reduce these orbit excursions by a factor of five.

  6. Limitations on plasma acceleration due to synchrotron losses

    CERN Document Server

    Barletta, W A; Bonifacio, R; De Salvo, L

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density.

  7. Progress in high field accelerator magnet development by the US LHC Accelerator Research Program

    CERN Document Server

    Sabbi, Gian Luca

    2011-01-01

    The maximum magnetic field available to guide and focus the proton beams will be the most important factor driving the design of the High Energy LHC. The US LHC Accelerator Research Program (LARP) is a collaboration of US National Laboratories aiming at demonstrating the feasibility of Nb3Sn magnet technology for application to future colliders. While LARP is primarily focused on the requirements of the High-Luminosity LHC (HL-LHC), it is also directly relevant to the High-Energy LHC (HE-LHC). Program results and future directions will be discussed.

  8. Silymarin Accelerates Liver Regeneration after Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Jia-Ping Wu

    2015-01-01

    Full Text Available Partial hepatectomy (PHx is a liver regeneration physiological response induced to maintain homeostasis. Liver regeneration evolved presumably to protect wild animals from catastrophic liver loss caused by toxins or tissue injury. Silymarin (Sm ability to stimulate liver regeneration has been an object of curiosity for many years. Silymarin has been investigated for use as an antioxidant and anticarcinogen. However, its use as a supportive treatment for liver damage is elusive. In this study, we fed silymarin (Sm, 25 mg/kg to male Sprague-Dawley rats for 7 weeks. Surgical 2/3 PHx was then conducted on the rats at 6 hrs, 24 hrs, and 72 hrs. Western blot and RT-PCR were conducted to detect the cell cycle activities and silymarin effects on hepatic regeneration. The results showed that silymarin enhanced liver regeneration by accelerating the cell cycle in PHx liver. Silymarin led to increased G1 phase (cyclin D1/pRb, S phase (cyclin E/E2F, G2 phase (cyclin B, and M phase (cyclin A protein and mRNA at 6 hrs, 24 hrs, and 72 hrs PHx. HGF, TGFα, and TGFβ1 growth factor expressions were also enhanced. We suggest that silymarin plays a crucial role in accelerated liver regeneration after PHx.

  9. GPU accelerated particle visualization with Splotch

    Science.gov (United States)

    Rivi, M.; Gheller, C.; Dykes, T.; Krokos, M.; Dolag, K.

    2014-07-01

    Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organization and classification of particles. We deploy a reference cosmological simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimizations and exploitation of hybrid systems and emerging accelerators.

  10. ACCELERATING POLARIZED PROTONS TO 250 GEV

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  11. The Effect of Novel Binary Accelerator System on Properties of Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Moez Kamoun

    2009-01-01

    Full Text Available The mechanical properties, curing characteristics, and swelling behaviour of vulcanized natural rubber with a novel binary accelerator system are investigated. Results indicate that the mechanical properties were improved. Crosslinking density of vulcanized natural rubber was measured by equilibrium swelling method. As a result, the new binary accelerator was found to be able to improve both cure rate and crosslinking density. Using the numerical analysis of test interaction between binary accelerator and operational modelling of vulcanization-factors experiments, it can be concluded that the interaction (Cystine, N-cyclohexyl-2-benzothiazyl sulfenamide was significant and the optimum value of binary accelerator was suggested, respectively, at levels 0 and +1.

  12. CAS - CERN Accelerator School: Advanced Accelerator Physics Course

    CERN Document Server

    Herr, W

    2014-01-01

    This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN- 2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course.

  13. Traveling Wave Accelerating Structure for a Superconducting Accelerator

    CERN Document Server

    Kanareykin, Alex; Solyak, Nikolay

    2005-01-01

    We are presenting a superconducting traveling wave accelerating structure (STWA) concept, which may prove to be of crucial importance to the International Linear Collider. Compared to the existing design of a TESLA cavity, the traveling wave structure can provide ~20-40% higher accelerating gradient for the same aperture and the same peak surface magnetic RF field. The recently achieved SC structure gradient of 35 MV/m can be increased up to ~50 MV/m with the new STWA structure design. The STWA structure is supposed to be installed into the superconducting resonance ring and is fed by the two couplers with appropriate phase advance to excite a traveling wave inside the structure. The system requires two independent tuners to be able to adjust the cavity and feedback waveguide frequencies and hence to reduce the unwanted backward wave. In this presentation we discuss the structure design, optimization of the parameters, tuning requirements and plans for further development.

  14. CAS CERN Accelerator School: Power converters for particle accelerators

    International Nuclear Information System (INIS)

    This volume presents the proceedings of the fifth specialized course organized by the CERN Accelerator School, the subject on this occasion being power converters for particle accelerators. The course started with lectures on the classification and topologies of converters and on the guidelines for achieving high performance. It then went on to cover the more detailed aspects of feedback theory, simulation, measurements, components, remote control, fault diagnosis and equipment protection as well as systems and grid-related problems. The important topics of converter specification, procurement contract management and the likely future developments in semiconductor components were also covered. Although the course was principally directed towards DC and slow-pulsed supplies, lectures were added on fast converters and resonant excitation. Finally the programme was rounded off with three seminars on the related fields of Tokamak converters, battery energy storage for electric vehicles, and the control of shaft generators in ships. (orig.)

  15. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  16. Fresnel diffraction patterns as accelerating beams

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  17. Particle acceleration in space and laboratory plasmas

    International Nuclear Information System (INIS)

    The general principle of charged particle acceleration in space and laboratory plasmas is illustrated by a discussion of particular types of acceleration mechanisms which can be classified as either deterministic processes or stochastic processes. Acceleration by parallel electric fields, produced in double layers is an example of a deterministic process. Fermi acceleration and acceleration by turbulent wave fields are examples of stochastic processes. The physical acceleration mechanism involved in each type of process is discussed and examples given for space and laboratory plasmas. (author)

  18. Numeric Spectrum of Relic Gravitational Waves in Accelerating Universe

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; ZHAO Wen; YUAN Ye-Fei; XIA Tian-Yang

    2005-01-01

    @@ The accelerating expansion of the Universe in the present stage is a process that will change the spectrum of relic gravitational waves. Here we present a numerical calculation for the power spectrum of relic gravitational waves in the accelerating Universe. The results show that although the overall features of the power spectrum are similar to those in the non-accelerating models, the amplitude is smaller in order of 10-1. We also find that the spectrum is very sensitive to the index β of the inflationary expansion with the scale factor a(τ) ∝ |τ|1+β. With increase of β, the resulting spectrum tends to be flatter with more power on high frequencies, and the sensitivity of the second science run of the LIGO detectors puts a restriction on the parameterβ< -1.8. The influence of reheating followed by the inflation has been examined.

  19. A preliminary design of the collinear dielectric wakefield accelerator

    Science.gov (United States)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  20. On Memory Accelerated Signal Processing within Software Defined Radios

    CERN Document Server

    Pellegrini, Vincenzo; Di Dio, Mario

    2010-01-01

    Since J. Mitola's work in 1992, Software Defined Radios (SDRs) have been quite a hot topic in wireless systems research. Though many notable achievements were reported in the field, the scarcity of computational power on general purpose CPUs has always constrained their wide adoption in production environments. If conveniently applied within an SDR context, classical concepts known in computer science as space/time tradeoffs can be extremely helpful when trying to mitigate this problem. Inspired by and building on those concepts, this paper presents a novel SDR implementation technique which we call Memory Acceleration (MA) that makes extensive use of the memory resources available on a general purpose computing system, in order to accelerate signal computation. MA can provide substantial acceleration factors when applied to conventional SDRs without reducing their peculiar flexibility. As a practical proof of this, an example of MA applied in the real world to the ETSI DVB-T Viterbi decoder is provided. Actu...