WorldWideScience

Sample records for accelerates neurodegenerative disease

  1. Meditation and neurodegenerative diseases.

    Newberg, Andrew B; Serruya, Mijail; Wintering, Nancy; Moss, Aleezé Sattar; Reibel, Diane; Monti, Daniel A

    2014-01-01

    Neurodegenerative diseases pose a significant problem for the healthcare system, doctors, and patients. With an aging population, more and more individuals are developing neurodegenerative diseases and there are few treatment options at the present time. Meditation techniques present an interesting potential adjuvant treatment for patients with neurodegenerative diseases and have the advantage of being inexpensive, and easy to teach and perform. There is increasing research evidence to support the application of meditation techniques to help improve cognition and memory in patients with neurodegenerative diseases. This review discusses the current data on meditation, memory, and attention, and the potential applications of meditation techniques in patients with neurodegenerative diseases.

  2. Glutamate and Neurodegenerative Disease

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  3. Ceruloplasmin in neurodegenerative diseases.

    Vassiliev, Vadim; Harris, Zena Leah; Zatta, Paolo

    2005-11-01

    For decades, abnormalities in ceruloplasmin (Cp) synthesis have been associated with neurodegenerative disease. From the early observation that low circulating serum ceruloplasmin levels served as a marker for Wilson's disease to the recent characterization of a neurodegenerative disorder associated with a complete lack of serum ceruloplasmin, the link between Cp and neuropathology has strengthened. The mechanisms associated with these different central nervous system abnormalities are very distinct. In Wilson's disease, a defect in the P-type ATPase results in abnormal hepatic copper accumulation that eventually leaks into the circulation and is abnormally deposited in the brain. In this case, copper deposition results in the neurodegenerative phenotype observed. Patients with autosomal recessive condition, aceruloplasminemia, lack the ferroxidase activity inherent to the multi-copper oxidase ceruloplasmin and develop abnormal iron accumulation within the central nervous system. In the following review ceruloplasmin gene expression, structure and function will be presented and the role of ceruloplasmin in iron metabolism will be discussed. The molecular events underlying the different forms of neurodegeneration observed will be presented. Understanding the role of ceruloplasmin within the central nervous system is fundamental to further our understanding of the pathology observed. Is the ferroxidase function more essential than the antioxidant role? Does Cp help maintain nitrosothiol stores or does it oxidize critical brain substrates? The answers to these questions hold the promise for the treatment of devastating neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. It is essential to further elucidate the mechanism of the neuronal injury associated with these disorders.

  4. Stem cells and neurodegenerative diseases

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the de-velopment of old-aging society, the incidence of neurodegenerative diseases is on the increase. How-ever, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegen-erative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Hunt-ington’s disease and Amyotrophic lateral sclerosis/Lou Gehrig’s disease.

  5. Ageing and neurodegenerative diseases.

    Hung, Chia-Wei; Chen, Yu-Chih; Hsieh, Wan-Ling; Chiou, Shih-Hwa; Kao, Chung-Lan

    2010-11-01

    Ageing, which all creatures must encounter, is a challenge to every living organism. In the human body, it is estimated that cell division and metabolism occurs exuberantly until about 25 years of age. Beyond this age, subsidiary products of metabolism and cell damage accumulate, and the phenotypes of ageing appear, causing disease formation. Among these age-related diseases, neurodegenerative diseases have drawn a lot of attention due to their irreversibility, lack of effective treatment, and accompanied social and economical burdens. In seeking to ameliorate ageing and age-related diseases, the search for anti-ageing drugs has been of much interest. Numerous studies have shown that the plant polyphenol, resveratrol (3,5,4'-trihydroxystilbene), extends the lifespan of several species, prevents age-related diseases, and possesses anti-inflammatory, and anti-cancer properties. The beneficial effects of resveratrol are believed to be associated with the activation of a longevity gene, SirT1. In this review, we discuss the pathogenesis of age-related neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and cerebrovascular disease. The therapeutic potential of resveratrol, diet and the roles of stem cell therapy are discussed to provide a better understanding of the ageing mystery.

  6. Stem cells and neurodegenerative diseases.

    Hou, LingLing; Hong, Tao

    2008-04-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington' disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  7. Stem cells and neurodegenerative diseases

    HOU LingLing; HONG Tao

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells,including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington's disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  8. Molecular chaperones and neurodegenerative diseases

    2006-01-01

    Neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates that result from conformational changes in proteins. These diseases may result from an imbalance between the production of misfolded proteins and normal chaperone capacity. Molecular chaperones provide a first line of defence against misfolded, aggregation-prone proteins and are, therefore, promising therapeutic targets for neurodegenerative diseases.

  9. Targeting autophagy in neurodegenerative diseases.

    Vidal, René L; Matus, Soledad; Bargsted, Leslie; Hetz, Claudio

    2014-11-01

    The most prevalent neurodegenerative disorders involve protein misfolding and the aggregation of specific proteins. Autophagy is becoming an attractive target to treat neurodegenerative disorders through the selective degradation of abnormally folded proteins by the lysosomal pathway. However, accumulating evidence indicates that autophagy impairment at different regulatory steps may contribute to the neurodegenerative process. Thus, a complex scenario is emerging where autophagy may play a dual role in neurodegenerative diseases by causing the downstream effect of promoting the degradation of misfolded proteins and an upstream effect where its deregulation perturbs global proteostasis, contributing to disease progression. Challenges in the future development of therapeutic strategies to target the autophagy pathway are discussed.

  10. The lysosome and neurodegenerative diseases

    Lisha Zhang; Rui Sheng; Zhenghong Qin

    2009-01-01

    It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosoreal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.

  11. DNA damage in neurodegenerative diseases.

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans.

  12. Autonomic Function in Neurodegenerative Diseases

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    , which includes the cardiac centre and controls autonomic functions, and therefore autonomic dysfunction may be experienced early in the disease course. Sleep disturbances are also common non-motor complications of PD, and therefore PD patients undergo polysomnography at the Danish Center for Sleep......Neurodegenerative diseases are highly debilitating and often lead to severe morbidity and even death. Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease. According to the Braak staging study, the progressionof PD starts in the medulla oblongata...... Medicine to assess the sleep disturbances. The aim of this PhD dissertation was to: 1) Develop a method to investigate autonomic changes during sleep in neurodegenerative diseases, and apply this method on PD, iRBD and narcolepsy patients to evaluate the autonomic function in these diseases. 2) Validate...

  13. DNA damage in neurodegenerative diseases

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  14. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases.

    Sharma, Meenakshi; Tiwari, Manisha; Tiwari, Rakesh Kumar

    2015-11-01

    Neurodegenerative diseases are the diseases of the central nervous system with various aetiology and symptoms. Dementia, Alzheimer's disease (AD), Parkinson's disease (PD) and autism are some examples of neurodegenerative diseases. Hyperhomocysteinemia (Hhcy) is considered to be an independent risk factor for numerous pathological conditions under neurodegenerative diseases. Along with genetic factors that are the prime cause of homocysteine (Hcy) imbalance, the nutritional and hormonal factors are also contributing to high Hcy levels in the body. Numerous clinical and epidemiological data confirm the direct correlation of Hcy levels in the body and generation of different types of central nervous system disorders, cardiovascular diseases, cancer and others. Till now, it is difficult to say whether homocysteine is the cause of the disease or whether it is one of the impacts of the diseases. However, Hhcy is a surrogate marker of vitamin B deficiency and is a neurotoxic agent. This Mini Review will give an overview of how far research has gone into understanding the homocysteine imbalance with prognostic, causative and preventive measures in treating neurodegenerative diseases.

  15. Phenotypic screens targeting neurodegenerative diseases.

    Zhang, Minhua; Luo, Guangrui; Zhou, Yanjiao; Wang, Shaohui; Zhong, Zhong

    2014-01-01

    Neurodegenerative diseases affect millions of people worldwide, and the incidences increase as the population ages. Disease-modifying therapy that prevents or slows disease progression is still lacking, making neurodegenerative diseases an area of high unmet medical need. Target-based drug discovery for disease-modifying agents has been ongoing for many years, without much success due to incomplete understanding of the molecular mechanisms underlying neurodegeneration. Phenotypic screening, starting with a disease-relevant phenotype to screen for compounds that change the outcome of biological pathways rather than activities at certain specific targets, offers an alternative approach to find small molecules or targets that modulate the key characteristics of neurodegeneration. Phenotypic screens that focus on amelioration of disease-specific toxins, protection of neurons from degeneration, or promotion of neuroregeneration could be potential fertile grounds for discovering therapeutic agents for neurodegenerative diseases. In this review, we will summarize the progress of compound screening using these phenotypic-based strategies for this area, with a highlight on unique considerations for disease models, assays, and screening methodologies. We will further provide our perspectives on how best to use phenotypic screening to develop drug leads for neurodegenerative diseases.

  16. Depressive symptoms in neurodegenerative diseases.

    Baquero, Miquel; Martín, Nuria

    2015-08-16

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer's disease and related conditions like Parkinson's disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment.

  17. Animal models of neurodegenerative diseases

    Fabiola Mara Ribeiro

    2013-01-01

    Full Text Available The prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD and Parkinson's disease (PD, increases with age, and the number of affected patients is expected to increase worldwide in the next decades. Accurately understanding the etiopathogenic mechanisms of these diseases is a crucial step for developing disease-modifying drugs able to preclude their emergence or at least slow their progression. Animal models contribute to increase the knowledge on the pathophysiology of neurodegenerative diseases. These models reproduce different aspects of a given disease, as well as the histopathological lesions and its main symptoms. The purpose of this review is to present the main animal models for AD, PD, and Huntington's disease.

  18. Glutathione transferases and neurodegenerative diseases.

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  19. Tau imaging in neurodegenerative diseases

    Dani, M.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Brooks, D.J. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark)

    2016-06-15

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [{sup 18}F]THK523, [{sup 18}F]THK5117, [{sup 18}F]THK5105 and [{sup 18}F]THK5351, [{sup 18}F]AV1451(T807) and [{sup 11}C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. (orig.)

  20. Oxidative stress in neurodegenerative diseases

    Xueping Chen; Chunyan Guo; Jiming Kong

    2012-01-01

    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2-) and hydroxyl radical (OH-), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.

  1. Neurodegenerative disorders and metabolic disease.

    Pierre, Germaine

    2013-08-01

    Most genetic causes of neurodegenerative disorders in childhood are due to neurometabolic disease. There are over 200 disorders, including aminoacidopathies, creatine disorders, mitochondrial cytopathies, peroxisomal disorders and lysosomal storage disorders. However, diagnosis can pose a challenge to the clinician when patients present with non-specific problems like epilepsy, developmental delay, autism, dystonia and ataxia. The variety of specialist tests involved can also be daunting. This review aims to give a practical approach to the investigation and diagnosis of neurometabolic disease from the neonatal period to late childhood while prioritising disorders where there are therapeutic options. In particular, patients who have a complex clinical picture of several neurological and non-neurological features should be investigated.

  2. Stem cell technology for neurodegenerative diseases.

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  3. 4 Tesla MRI for Neurodegenerative Diseases

    2005-10-01

    gyrus. Histological studies have shown that these subfields are differently affected by different diseases , e.g. Alzheimer Disease (AD) affects...Increased brain iron deposits are found in a number of neurodegenerative diseases , in particular Alzheimer’s disease (AD) and Parkinson’s disease (PD... Diseases PRINCIPAL INVESTIGATOR: Michael W. Weiner, M.D. CONTRACTING ORGANIZATION: Northern California Institute for Research

  4. Sirtuin deacetylases in neurodegenerative diseases of aging

    Adrianna Z Herskovits; Leonard Guarente

    2013-01-01

    Sirtuin enzymes are a family of highly conserved protein deacetylases that depend on nicotinamide adenine dinucleotide (NAD+) for their activity.There are seven sirtuins in mammals and these proteins have been linked with caloric restriction and aging by modulating energy metabolism,genomic stability and stress resistance.Sirtuin enzymes are potential therapeutic targets in a variety of human diseases including cancer,diabetes,inflammatory disorders and neurodegenerative disease.Modulation of sirtuin activity has been shown to impact the course of several aggregate-forming neurodegenerative disorders including Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis and spinal and bulbar muscular atrophy.Sirtuins can influence the progression of neurodegenerative disorders by modulating transcription factor activity and directly deacetylating proteotoxic species.Here,we describe sirtuin protein targets in several aggregate-forming neurodegenerative diseases and discuss the therapeutic potential of compounds that modulate sirtuin activity in these disorders.

  5. Coenzyme Q10 effects in neurodegenerative disease

    Meredith Spindler

    2009-11-01

    Full Text Available Meredith Spindler1, M Flint Beal1,2, Claire Henchcliffe1,21Department of Neurology, 2Department of Neuroscience, Weill Medical College of Cornell University, New York, NY, USAAbstract: Coenzyme Q10 (CoQ10 is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson’s disease and atypical Parkinson’s syndromes, Huntington’s disease, Alzheimer disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.Keywords: coenzyme Q10, neurodegenerative disease, Parkinson’s disease, Huntington’s disease, mitochondrial dysfunction

  6. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  7. Apoptosis and oxidative stress in neurodegenerative diseases.

    Radi, Elena; Formichi, Patrizia; Battisti, Carla; Federico, Antonio

    2014-01-01

    Neurodegenerative disorders affect almost 30 million individuals leading to disability and death. These disorders are characterized by pathological changes in disease-specific areas of the brain and degeneration of distinct neuron subsets. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear similar, suggesting common neurodegenerative pathways. Apoptosis seems to play a key role in the progression of several neurologic disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis as demonstrated by studies on animal models and cell lines. On the other hand, research on human brains reported contradictory results. However, many dying neurons have been detected in brains of patients with neurodegenerative diseases, and these conditions are often associated with significant cell loss accompanied by typical morphological features of apoptosis such as chromatin condensation, DNA fragmentation, and activation of cysteine-proteases, caspases. Cell death and neurodegenerative conditions have been linked to oxidative stress and imbalance between generation of free radicals and antioxidant defenses. Multiple sclerosis, stroke, and neurodegenerative diseases have been associated with reactive oxygen species and nitric oxide. Here we present an overview of the involvement of neuronal apoptosis and oxidative stress in the most important neurodegenerative diseases, mainly focusing the attention on several genetic disorders, discussing the interaction between primary genetic abnormalities and the apoptotic pathways.

  8. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    Bhullar, Khushwant S.; Vasantha Rupasinghe, H.P.

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), Parkins...

  9. Role of iron in neurodegenerative diseases.

    Li, Kai; Reichmann, Heinz

    2016-04-01

    Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease.

  10. Metal attenuating therapies in neurodegenerative disease.

    Mot, Alexandra I; Wedd, Anthony G; Sinclair, Layla; Brown, David R; Collins, Steven J; Brazier, Marcus W

    2011-12-01

    The clinical and pathological spectrum of neurodegenerative diseases is diverse, although common to many of these disorders is the accumulation of misfolded proteins, with oxidative stress thought to be an important contributing mechanism to neuronal damage. As a corollary, transition metal ion dyshomeostasis appears to play a key pathogenic role in a number of these maladies, including the most common of neurodegenerative diseases. In this review, studies spanning a wide variety of neurodegenerative disorders are presented with their involvement of transition metals compared and contrasted, including more detailed treatise in relation to Alzheimer's disease, Parkinson's disease and prion diseases. For each of these diseases, a discussion of the evolving scientific rationale for the development of therapies aimed at ameliorating the detrimental effects of transition metal dysregulation, including results from various human trials, is then provided.

  11. Autophagy and its neuroprotection in neurodegenerative diseases

    Ping Gu; Avaneesh Jakkoju; Mingwei Wang; Weidong Le

    2011-01-01

    It has been suggested that protein misfolding and aggregation contribute significantly to the development of neurodegenerative diseases. Misfolded and aggregated proteins are cleared by ubiquitin proteasomal system (UPS) and by both Micro and Macro autophagy lysosomal pathway (ALP). Autophagosomal dysfunction has been implicated in an increasing number of diseases including neurodegenerative diseases. Autophagy is a cellular self-eating process that plays an important role in neuroprotection as well as neuronal injury and death. While a decrease in autophagic activity interferes with protein degradation and possibly organelle turnover, increased autophagy has been shown to facilitate the clearance of aggregation-prone proteins and promote neuronal survival in a number of disease models. On the other hand, too much autophagic activity can be detrimental, suggesting the regulation of autophagy is critical in dictating cell fate. In this review paper, we will discuss various aspects of ALP biology and its dual functions in neuronal cell death and survival. We will also evaluate the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis. Finally, we will explore the therapeutic potential of autophagy modifiers in several neurodegenerative diseases.

  12. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  13. Induced pluripotent stem cells and neurodegenerative diseases.

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  14. Mitochondrial drug targets in neurodegenerative diseases.

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  15. Circulating microRNAs in Neurodegenerative Diseases.

    Grasso, Margherita; Piscopo, Paola; Crestini, Alessio; Confaloni, Annamaria; Denti, Michela A

    2015-01-01

    Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient's cognitive function analysis, and the development of diagnostic methods is complicated by the brain's capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.

  16. What can pluripotent stem cells teach us about neurodegenerative diseases?

    Wichterle, Hynek; Przedborski, Serge

    2010-07-01

    Neurodegenerative diseases represent a growing public health challenge. Current medications treat symptoms, but none halt or retard neurodegeneration. The recent advent of pluripotent cell biology has opened new avenues for neurodegenerative disease research. The greatest potential for induced pluripotent cells derived from affected individuals is likely to be their utility for modeling and understanding the mechanisms underlying neurodegenerative processes, and for searching for new treatments, including cell replacement therapies. However, much work remains to be done before pluripotent cells can be used for preclinical and clinical applications. Here we discuss the challenges of generating specific neural cell subtypes from pluripotent stem cells, the use of pluripotent stem cells to model both cell-autonomous and non-cell-autonomous mechanisms of neurodegeneration, whether adult-onset neurodegeneration can be emulated in short-term cultures and the hurdles of cell replacement therapy. Progress in these four areas will substantially accelerate effective application of pluripotent stem cells.

  17. Dysregulation of glutathione homeostasis in neurodegenerative diseases.

    Johnson, William M; Wilson-Delfosse, Amy L; Mieyal, John J

    2012-10-09

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, and Friedreich's ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.

  18. Role of neuroinflammation in neurodegenerative diseases (Review).

    Chen, Wei-Wei; Zhang, Xia; Huang, Wen-Juan

    2016-04-01

    Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro‑inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro‑inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases.

  19. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.

  20. Apocynin, a Low Molecular Oral Treatment for Neurodegenerative Disease

    't Hart, Bert A.; Copray, Sjef; Philippens, Ingrid

    2014-01-01

    Accumulating evidence suggests that inflammatory mediators secreted by activated resident or infiltrated innate immune cells have a significant impact on the pathogenesis of neurodegenerative diseases. This may imply that patients affected by a neurodegenerative disease may benefit from treatment wi

  1. Transgenic nonhuman primates for neurodegenerative diseases

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  2. Biomarker-based dissection of neurodegenerative diseases.

    Olsson, Bob; Zetterberg, Henrik; Hampel, Harald; Blennow, Kaj

    2011-12-01

    The diagnosis of neurodegenerative diseases within neurology and psychiatry are hampered by the difficulty in getting biopsies and thereby validating the diagnosis by pathological findings. Biomarkers for other types of disease have been readily adopted into the clinical practice where for instance troponins are standard tests when myocardial infarction is suspected. However, the use of biomarkers for neurodegeneration has not been fully incorporated into the clinical routine. With the development of cerebrospinal fluid (CSF) biomarkers that reflect pathological events within the central nervous system (CNS), important clinical diagnostic tools are becoming available. This review summarizes the most promising biomarker candidates that may be used to monitor different types of neurodegeneration and protein inclusions, as well as different types of metabolic changes, in living patients in relation to the clinical phenotype and disease progression over time. Our aim is to provide the reader with an updated lexicon on currently available biomarker candidates, how far they have come in development and how well they reflect pathogenic processes in different neurodegenerative diseases. Biomarkers for specific pathogenetic processes would also be valuable tools both to study disease pathogenesis directly in patients and to identify and monitor the effect of novel treatment strategies.

  3. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Antonio Paoli

    2014-01-01

    Full Text Available An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson’s disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review.

  4. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    Hall, Vanessa J.

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  5. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease.

    Hroudová, Jana; Singh, Namrata; Fišar, Zdeněk

    2014-01-01

    Mitochondrial dysfunctions are supposed to be responsible for many neurodegenerative diseases dominating in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). A growing body of evidence suggests that defects in mitochondrial metabolism and particularly of electron transport chain may play a role in pathogenesis of AD. Structurally and functionally damaged mitochondria do not produce sufficient ATP and are more prominent in producing proapoptotic factors and reactive oxygen species (ROS), and this can be an early stage of several mitochondrial disorders, including neurodegenerative diseases. Mitochondrial dysfunctions may be caused by both mutations in mitochondrial or nuclear DNA that code mitochondrial components and by environmental causes. In the following review, common aspects of mitochondrial impairment concerned about neurodegenerative diseases are summarized including ROS production, impaired mitochondrial dynamics, and apoptosis. Also, damaged function of electron transport chain complexes and interactions between pathological proteins and mitochondria are described for AD particularly and marginally for PD and HD.

  6. Neurodegenerative diseases: exercising towards neurogenesis and neuroregeneration

    Eng-Tat Ang

    2010-07-01

    Full Text Available Currently, there is still no effective therapy for neurodegenerative diseases (NDD such as Alzheimer’s disease (AD and Parkinson’s disease (PD despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician’s and the scientist’s needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

  7. The role of viruses in neurodegenerative and neurobehavioral diseases.

    Karim, Sajjad; Mirza, Zeenat; Kamal, Mohammad A; Abuzenadah, Adel M; Azhar, Esam I; Al-Qahtani, Mohammed H; Damanhouri, Ghazi A; Ahmad, Fahim; Gan, Siew H; Sohrab, Sayed S

    2014-01-01

    Neurodegenerative and neurobehavioral diseases may be caused by chronic and neuropathic viral infections and may result in a loss of neurons and axons in the central nervous system that increases with age. To date, there is evidence of systemic viral infections that occur with some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, autism spectrum disorders, and HIV-associated neurocognitive disorders. With increasing lifespan, the incidence of neurodegenerative diseases increases consistently. Neurodegenerative diseases affect approximately 37 million people worldwide and are an important cause of mortality. In addition to established non-viral-induced reasons for neurodegenerative diseases, neuropathic infections and viruses associated with neurodegenerative diseases have been proposed. Neuronal degeneration can be either directly or indirectly affected by viral infection. Viruses that attack the human immune system can also affect the nervous system and interfere with classical pathways of neurodegenerative diseases. Viruses can enter the central nervous system, but the exact mechanism cannot be understood well. Various studies have supported viral- and non-viral-mediated neurodegeneration at the cellular, molecular, genomic and proteomic levels. The main focus of this review is to illustrate the association between viral infections and both neurodegenerative and neurobehavioral diseases, so that the possible mechanism and pathway of neurodegenerative diseases can be better explained. This information will strengthen new concepts and ideas for neurodegenerative and neurobehavioral disease treatment.

  8. THE MITOCHONDRIAL DERANGEMENTS IN NEURONAL DEGENER ATION AND NEURODEGENERATIVE DISEASES

    Xue, Qi-ming; Gao, Feng; Chen, Qin-tang

    2000-01-01

    @@There are diverse concepts on the pathogenesis of neuronal degeneration and the neurodegenerative diseases. Among them there are different factors which might influence the initiation of neuronal degeneration as well as the pathogenesis of neurodegenerative diseases, such as Alzheimer′s disease, Parkinson′s disease, motor neuron disease, and so on.

  9. Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions

    Saba Sheikh

    2013-01-01

    Full Text Available Neurodegenerative diseases are multifactorial debilitating disorders of the nervous system that affect approximately 30 millionindividuals worldwide. Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis diseases are the consequence of misfolding and dysfunctional trafficking of proteins. Beside that, mitochondrial dysfunction, oxidative stress, and/or environmental factors strongly associated with age have also been implicated in causing neurodegeneration. After years of intensive research, considerable evidence has accumulated that demonstrates an important role of these factors in the etiology of common neurodegenerative diseases. Despite the extensive efforts that have attempted to define the molecular mechanisms underlying neurodegeneration, many aspects of these pathologies remain elusive. However, in order to explore the therapeutic interventions directed towards treatment of neurodegenerative diseases, neuroscientists are now fully exploiting the data obtained from studies of these basic mechanisms that have gone awry. The novelty of these mechanisms represents a challenge to the identification of viable drug targets and biomarkers for early diagnosis of the diseases. In this paper, we are reviewing various aspects associated with the disease and the recent trends that may have an application for the treatment of the neurodegenerative disorders.

  10. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases.

    Kuboyama, Tomoharu; Tohda, Chihiro; Komatsu, Katsuko

    2014-01-01

    Neurodegenerative diseases commonly induce irreversible destruction of central nervous system (CNS) neuronal networks, resulting in permanent functional impairments. Effective medications against neurodegenerative diseases are currently lacking. Ashwagandha (roots of Withania somnifera Dunal) is used in traditional Indian medicine (Ayurveda) for general debility, consumption, nervous exhaustion, insomnia, and loss of memory. In this review, we summarize various effects and mechanisms of Ashwagandha extracts and related compounds on in vitro and in vivo models of neurodegenerative diseases such as Alzheimer's disease and spinal cord injury.

  11. microRNAs and Neurodegenerative Diseases.

    Qiu, Lifeng; Tan, Eng King; Zeng, Li

    2015-01-01

    microRNAs (miRNAs) are small, noncoding RNA molecules that through imperfect base-pairing with complementary sequences of target mRNA molecules, typically cleave target mRNA, causing subsequent degradation or translation inhibition. Although an increasing number of studies have identified misregulated miRNAs in the neurodegenerative diseases (NDDs) Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, which suggests that alterations in the miRNA regulatory pathway could contribute to disease pathogenesis, the molecular mechanisms underlying the pathological implications of misregulated miRNA expression and the regulation of the key genes involved in NDDs remain largely unknown. In this chapter, we provide evidence of the function and regulation of miRNAs and their association with the neurological events in NDDs. This will help improve our understanding of how miRNAs govern the biological functions of key pathogenic genes in these diseases, which potentially regulate several pathways involved in the progression of neurodegeneration. Additionally, given the growing interest in the therapeutic potential of miRNAs, we discuss current clinical challenges to developing miRNA-based therapeutics for NDDs.

  12. The Role of Copper in Neurodegenerative Disease

    Rose, Francis M.

    My research concerns the fundamental atomistic mechanisms of neurodegenerative diseases and the methodologies by which they may be discerned. This thesis consists of three primary parts. The introductory material is the raison d'etre for this work and a critical overview of the specific physics, mathematics and algorithms used in this research. The methods are presented along with specific details in order to facilitate future replication and enhancement. With the groundwork of mechanisms and methods out of the way, we then explore a nouveau atomistic mechanism describing the onset of Parkinson's disease, a disease that has been closely linked to misfolded metalloproteins. Further exploration of neurodegeneration takes place in the following chapter, where a remedial approach to Alzheimer's disease via a simulated chelation of a metalloprotein is undertaken. Altogether, the methods and techniques applied here allow for simulated exploration of both the atomistic mechanisms of neurodegeneration and their potential remediation strategies. The beginning portion of the research efforts explore protein misfolding dynamics in the presence a copper ion. Misfolding of the human alpha-synuclein (aS) protein has been implicated as a central constituent in neurodegenerative disease. In Parkinson's disease (PD) in particular, aS is thought to be the causative participant when found concentrated into neuritic plaques. Here we propose a scenario involving the metal ion Cu2+ as the protein misfolding initiator of fibrillized aS, the chief component of neuritic plaques. From experimental results we know these misfolded proteins have a rich beta--sheet signature, a marker that we reproduce with our simulated model. This model identifies a process of structural modifications to a natively unfolded alpha-synuclein resulting in a partially folded intermediate with a well defined nucleation site. It serves as a precursor to the fully misfolded protein. Understanding the nucleation

  13. Brainstem: neglected locus in neurodegenerative diseases

    Lea T Grinberg

    2011-07-01

    Full Text Available The most frequent neurodegenerative diseases (NDs are Alzheimer’s disease (AD, Parkinson’s disease (PD, and frontotemporal lobar degeneration associated with protein TDP-43 (FTLD-TDP. Neuropathologically, NDs are characterized by abnormal intracellular and extracellular protein deposits and by disease-specific neuronal death. Practically all terminal stages of NDs are clinically associated with dementia. Therefore, major attention was directed to protein deposits and neuron loss in supratentorial (telencephalic brain regions in the course of NDs. This was also true for PD, although the pathological hallmark of PD is degeneration of pigmented neurons of the brainstem’s substantia nigra. However, PD pathophysiology was explained by dopamine depletion in the telencephalic basal ganglia due to insufficiency and degeneration of the projection neurons located in substantia nigra. In a similar line of argumentation AD- and FTLD-related clinical deficits were exclusively explained by supratentorial allo- and neocortical laminar neuronal necrosis. Recent comprehensive studies in AD and PD early stages found considerable and unexpected involvement of brainstem nuclei, which could have the potential to profoundly change our present concepts on origin, spread, and early clinical diagnosis of these diseases. In contrast with PD and AD, few studies addressed brainstem involvement in the course of the different types of FTLD-TDP. Some of the results, including ours, disclosed a higher and more widespread pathology than anticipated. The present review will focus mainly on the impact of brainstem changes during the course of the most frequent NDs including PD, AD, and FTLD-TDP, with special emphasis on the need for more comprehensive research on FTLDs.

  14. The Role of Oxidative Stress in Neurodegenerative Diseases.

    Kim, Geon Ha; Kim, Jieun E; Rhie, Sandy Jeong; Yoon, Sujung

    2015-12-01

    Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined.

  15. Promising Targets for the Treatment of Neurodegenerative Diseases.

    Budd Haeberlein, S L; Harris, T J R

    2015-11-01

    Genetics and pathology have proven to be an effective combination to identify an evolving and deepening landscape of pathways and potential therapeutic targets in neurodegenerative diseases. Initially this landscape appeared to be populated with distinct therapeutic targets but with potentially overlapping mechanisms in each neurodegenerative disease. Our understanding has expanded to recognize that multiple pathologies are common in neurodegenerative disease, and that there is considerable overlap in pathways and targets driving neurodegenerative diseases. This potentially opens the way for future treatments to be indicated by tissue pathology and genetic basis rather than clinical phenotype. The potential to treat neurodegenerative disease by addressing underlying pathophysiology is still in the early days and challenges remain, especially the likely need to address pathologies early in disease. This will require redefinition of diagnosis and the tools to enable earlier diagnosis.

  16. Neurodegenerative diseases: From available treatments to prospective herbal therapy.

    Solanki, Isha; Parihar, Priyanka; Parihar, Mordhwaj Singh

    2016-05-01

    Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and many others represent a relevant health problem with age worldwide. Efforts have been made in recent years to discover the mechanism of neurodegenerative diseases and prospective therapy that can help to slow down the effects of the aging and prevent these diseases. Since pathogenesis of these diseases involves multiple factors therefore the important task for neuroscientists is to identify such multiple factors and prevent age-associated neurodegenerative diseases. For these neurodegenerative diseases yet we have only palliative therapies and none of them significantly capable to slow down or halt the underlying pathology. Polyphenolic compounds such as flavonoids present in vegetables and fruits are believed to have anti-aging properties and reduce the risk of neurodegenerative diseases. Despite their abundance, investigations into the benefits of these polyphenolic compounds in human health have only recently begun. Preclinical and clinical studies have demonstrated the potential beneficial effects of flavonoids in neurons. Although clinical trials on the effectiveness of dietary flavonoids to treat human diseases are limited but various animal models and cell culture studies have shown a great promise in developing these compounds as suitable therapeutic targets. In this review, we elaborate the neuroprotective properties of flavonoids especially their applications in prevention and intervention of different neurodegenerative diseases. Their multi-target properties may allow them to be potential dietary supplement in prevention and treatment of the age-associated neurodegenerative diseases.

  17. Folic acid, neurodegenerative and neuropsychiatric disease.

    Kronenberg, Golo; Colla, Michael; Endres, Matthias

    2009-04-01

    Folic acid plays an important role in neuroplasticity and in the maintenance of neuronal integrity. Folate is a co-factor in one-carbon metabolism during which it promotes the regeneration of methionine from homocysteine, a highly reactive sulfur-containing amino acid. Methionine may then be converted to S-adenosylmethionine (SAM), the principal methyl donor in most biosynthetic methylation reactions. On the cellular level, folate deficiency and hyperhomocysteinemia exert multiple detrimental effects. These include induction of DNA damage, uracil misincorporation into DNA and altered patterns of DNA methylation. Low folate status and elevated homocysteine increase the generation of reactive oxygen species and contribute to excitotoxicity and mitochondrial dysfunction which may lead to apoptosis. Strong epidemiological and experimental evidence links derangements of one-carbon metabolism to vascular, neurodegenerative and neuropsychiatric disease, including most prominently cerebral ischemia, Alzheimer's dementia and depression. Although firm evidence from controlled clinical trials is largely lacking, B-vitamin supplementation and homocysteine reduction may have a role especially in the primary prevention of stroke and dementia as well as as an adjunct to antidepressant pharmacotherapy.

  18. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns

    Sanchez-Mut, J V; Heyn, H; Vidal, E; Moran, S; Sayols, S; Delgado-Morales, R; Schultz, M D; Ansoleaga, B; Garcia-Esparcia, P; Pons-Espinal, M; de Lagran, M M; Dopazo, J; Rabano, A; Avila, J; Dierssen, M; Lott, I; Ferrer, I; Ecker, J R; Esteller, M

    2016-01-01

    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies. PMID:26784972

  19. A network approach to clinical intervention in neurodegenerative diseases.

    Santiago, Jose A; Potashkin, Judith A

    2014-12-01

    Network biology has become a powerful tool to dissect the molecular mechanisms triggering neurodegeneration. Recent developments in network biology have led to the discovery of disease-causing genes, diagnostic biomarkers, and therapeutic targets for several neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases. Network-based approaches have provided the molecular rationale for the relationship among cancer, diabetes, and neurodegenerative diseases, and have uncovered unexpected links between apparently unrelated diseases. Here, we summarize the recent advances in network biology to untangle the molecular underpinnings giving rise to the most prevalent neurodegenerative diseases. We propose that network analysis provides a feasible and practical tool for identifying biologically meaningful biomarkers and potential therapeutic targets for clinical intervention in neurodegenerative diseases.

  20. Circadian clock disruption in neurodegenerative diseases: Cause and effect?

    Erik Steven Musiek

    2015-02-01

    Full Text Available Disturbance of the circadian system, manifested as disrupted daily rhythms of physiologic parameters such as sleep, activity, and hormone secretion, has long been observed as a symptom of several neurodegenerative diseases, including Alzheimer Disease. Circadian abnormalities have generally been considered consequences of the neurodegeneration. Recent evidence suggests, however, that circadian disruption might actually contribute to the neurodegenerative process, and thus might be a modifiable cause of neural injury. Herein we will review the evidence implicating circadian rhythms disturbances and clock gene dysfunction in neurodegeneration, with an emphasis on future research directions and potential therapeutic implications for neurodegenerative diseases.

  1. The relationship between parkin and protein aggregation in neurodegenerative diseases

    Preeti J Khandelwal

    2010-06-01

    Full Text Available The most prominent changes in neurodegenerative diseases are protein accumulation and inclusion formation. Several neurodegenerative diseases, including Alzheimer’s, the Synucleinopathies and Tauopathies share several overlapping clinical symptoms manifest in Parkinsonism, cognitive decline and dementia. As degeneration progresses in the disease process, clinical symptoms suggest convergent pathological pathways. Biochemically, protein cleavage, ubiquitination and phosphorylation seem to play fundamental roles in protein aggregation, inclusion formation and inflammatory responses. In the following we provide a synopsis of the current knowledge about protein accumulation and astrogliosis as a common denominator in neurodegenerative diseases, and we propose insights into protein degradation and anti-inflammation. We review the E3-ubiquitin ligase and other possible functions of parkin as a suppressant of inflammatory signs and a strategy to clear amyloid proteins in neurodegenerative diseases.

  2. Therapeutic induction of autophagy to modulate neurodegenerative disease progression

    Warren E HOCHFELD; Shirley LEE; David C RUBINSZTEIN

    2013-01-01

    There is accumulating evidence that aggregating,misfolded proteins may have an impact on autophagic function,suggesting that this could be a secondary pathological mechanism in many diseases.In this review,we focus on the role of autophagy in four major neurodegenerative diseases:Alzheimer disease (AD),Huntington's disease (HD),Parkinson's disease (PD) and amyotropic lateral sclerosis.

  3. Neuroprotective effects of berry fruits on neurodegenerative diseases

    Selvaraju Subash; Musthafa Mohamed Essa; Samir Al-Adawi; Mushtaq A.Memon; hTamilarasan Manivasagam; Mohammed Akbar

    2014-01-01

    Recent clinical research has demonstrated that berry fruits can prevent age-related neurodegen-erative diseases and improve motor and cognitive functions. The berry fruits are also capable of modulating signaling pathways involved in inflammation, cell survival, neurotransmission and enhancing neuroplasticity. The neuroprotective effects of berry fruits on neurodegenerative diseases are related to phytochemicals such as anthocyanin, caffeic acid, catechin, quercetin, kae-mpferol and tannin. In this review, we made an attempt to clearly describe the beneifcial effects of various types of berries as promising neuroprotective agents.

  4. Molecular imaging of stem cell transplantation for neurodegenerative diseases.

    Wang, Ping; Moore, Anna

    2012-01-01

    Cell replacement therapy with stem cells holds tremendous therapeutic potential for treating neurodegenerative diseases. Over the last decade, molecular imaging techniques have proven to be of great value in tracking transplanted cells and assessing the therapeutic efficacy. This current review summarizes the role and capabilities of different molecular imaging modalities including optical imaging, nuclear imaging and magnetic resonance imaging in the field of stem cell therapy for neurodegenerative disorders. We discuss current challenges and perspectives of these techniques and encompass updated information such as theranostic imaging and optogenetics in stem cell-based treatment of neurodegenerative diseases.

  5. Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease.

    Brunden, Kurt R; Trojanowski, John Q; Smith, Amos B; Lee, Virginia M-Y; Ballatore, Carlo

    2014-09-15

    Microtubules (MTs), cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobar degeneration, and Parkinson's disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders.

  6. Personalized medicine in neurodegenerative diseases: how far away?

    Gotovac, Kristina; Hajnšek, Sanja; Pašić, Marija Bošnjak; Pivac, Nela; Borovečki, Fran

    2014-02-01

    Neurodegenerative diseases are characterized by progressive dysfunction of the nervous system as a result of neuronal loss in the brain and spinal cord. Despite extensive research efforts aimed at development of new disease-modifying therapeutics, there is still no effective treatment to halt neurodegenerative processes. Thus, modification of current therapeutic and diagnostic research strategies is a goal of increasing urgency. The biggest limitation in neurodegenerative disease research is the lack of appropriate biomarkers. Discovery of universal biomarkers capable of diagnosing patients with neurodegenerative diseases, monitoring their response to therapy, and predicting disease progression seems to be a tall order. Instead, a combination of different methodologies in the discovery of biomarkers specific for each described aspect of the disease seems to be a more viable approach. Although application of personalized medicine in diagnosis and treatment of neurodegenerative diseases may seem far off, some recent developments, such as utilizing specific biological therapies in multiple sclerosis, microRNA profiling as a source of novel biomarkers in Parkinson’s disease, or combination of neuroimaging and proteomic analyses in diagnosis of Alzheimer’s disease patients, already point to the way clinical neurology may integrate new achievements in everyday practice. Combination of genomic, proteomic, glycomic, and metabolomic approaches may yield novel insights into molecular mechanisms of disease pathophysiology, which could then be integrated and translated into clinical neurology. Based on the developments during the past decade, it is feasible to predict that a personalized approach to treating neurological disorders will become more widely applicable in the coming years.

  7. Pharmacological intervention of early neuropathy in neurodegenerative diseases.

    Kwon, Min Jee; Kim, Jeong-Hoon; Kim, TaeSoo; Lee, Sung Bae

    2017-02-04

    Extensive studies have reported the significant roles of numerous cellular features and processes in properly maintaining neuronal morphology and function throughout the lifespan of an animal. Any alterations in their homeostasis appear to be strongly associated with neuronal aging and the pathogenesis of various neurodegenerative diseases, even before the occurrence of prominent neuronal death. However, until recently, the primary focus of studies regarding many neurodegenerative diseases has been on the massive cell death occurring at the late stages of disease progression. Thus, our understanding on early neuropathy in these diseases remains relatively limited. The complicated nature of various neuropathic features manifested early in neurodegenerative diseases suggests the involvement of a system-wide transcriptional regulation and epigenetic control. Epigenetic alterations and consequent changes in the neuronal transcriptome are now begun to be extensively studied in various neurodegenerative diseases. Upon the catastrophic incident of neuronal death in disease progression, it is utterly difficult to reverse the deleterious defects by pharmacological treatments, and therefore, therapeutics targeting the system-wide transcriptional dysregulation associated with specific early neuropathy is considered a better option. Here, we review our current understanding on the system-wide transcriptional dysregulation that is likely associated with early neuropathy shown in various neurodegenerative diseases and discuss the possible future developments of pharmaceutical therapeutics.

  8. Copper handling by astrocytes: insights into neurodegenerative diseases.

    Tiffany-Castiglioni, Evelyn; Hong, Sandra; Qian, Yongchang

    2011-12-01

    Copper (Cu) is an essential trace element in the brain that can be toxic at elevated levels. Cu accumulation is a suspected etiology in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and prion-induced disorders. Astrocytes are a proposed depot in the brain for Cu and other metals, including lead (Pb). This article describes the physiological roles of Cu in the central nervous system and in selected neurodegenerative diseases, and reviews evidence that astrocytes accumulate Cu and protect neurons from Cu toxicity. Findings from murine genetic models of Menkes disease and from cell culture models concerning the molecular mechanisms by which astrocytes take up, store, and buffer Cu intracellularly are discussed, as well as potential mechanistic linkages between astrocyte functions in Cu handling and neurodegenerative diseases.

  9. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data.

    Lauterbach, Edward C; Victoroff, Jeff; Coburn, Kerry L; Shillcutt, Samuel D; Doonan, Suzanne M; Mendez, Mario F

    2010-01-01

    This manuscript reviews the preclinical in vitro, ex vivo, and nonhuman in vivo effects of psychopharmacological agents in clinical use on cell physiology with a view toward identifying agents with neuroprotective properties in neurodegenerative disease. These agents are routinely used in the symptomatic treatment of neurodegenerative disease. Each agent is reviewed in terms of its effects on pathogenic proteins, proteasomal function, mitochondrial viability, mitochondrial function and metabolism, mitochondrial permeability transition pore development, cellular viability, and apoptosis. Effects on the metabolism of the neurodegenerative disease pathogenic proteins alpha-synuclein, beta-amyloid, and tau, including tau phosphorylation, are particularly addressed, with application to Alzheimer's and Parkinson's diseases. Limitations of the current data are detailed and predictive criteria for translational clinical neuroprotection are proposed and discussed. Drugs that warrant further study for neuroprotection in neurodegenerative disease include pramipexole, thioridazine, risperidone, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, fluoxetine, buspirone, clonazepam, diphenhydramine, and melatonin. Those with multiple neuroprotective mechanisms include pramipexole, thioridazine, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, clonazepam, and melatonin. Those best viewed circumspectly in neurodegenerative disease until clinical disease course outcomes data become available, include several antipsychotics, lithium, oxcarbazepine, valproate, several tricyclic antidepressants, certain SSRIs, diazepam, and possibly diphenhydramine. A search for clinical studies of neuroprotection revealed only a single study demonstrating putatively positive results for ropinirole. An agenda for research on potentially neuroprotective agent is provided.

  10. NSAIDs and cardiovascular drugs in neurodegenerative and cerebrovascular diseases

    M.D.M. Haag (Mendel)

    2009-01-01

    textabstractNeurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer disease (AD)), Parkinson disease (PD) and stroke. The prevalence of these neurological disorders rises with older age. From 55 years to 90 years and abo

  11. Changes in adult neurogenesis in neurodegenerative diseases: Cause or consequence?

    Thompson, A.; Boekhoorn, K.; van Dam, A.-M.; Lucassen, P.J.

    2008-01-01

    This review addresses the role of adult hippocampal neurogenesis and stem cells in some of the most common neurodegenerative disorders and their related animal models. We discuss recent literature in relation to Alzheimer's disease and dementia, Parkinson's disease, Huntington's disease, amyotrophic

  12. Prediction of neurodegenerative diseases from functional brain imaging data

    Mudali, Deborah

    2016-01-01

    Neurodegenerative diseases are a challenge, especially in the developed society where life expectancy is high. Since these diseases progress slowly, they are not easy to diagnose at an early stage. Moreover, they portray similar disease features, which makes them hard to differentiate. In this thesi

  13. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-02-26

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.

  14. On The Role of Natural Killer Cells in Neurodegenerative Diseases

    Azzam A. Maghazachi

    2013-02-01

    Full Text Available Natural killer (NK cells exert important immunoregulatory functions by releasing several inflammatory molecules, such as IFN-γ and members of chemokines, which include CCL3/MIP-1α and CCL4/MIP-1β. These cells also express heptahelical receptors, which are coupled to heterotrimeric G proteins that guide them into inflamed and injured tissues. NK cells have been shown to recognize and destroy transformed cells and virally-infected cells, but their roles in neurodegenerative diseases have not been examined in detail. In this review, I will summarize the effects of NK cells in two neurodegenerative diseases, namely multiple sclerosis and globoid cell leukodystrophy. It is hoped that the knowledge obtained from these diseases may facilitate building rational protocols for treating these and other neurodegenerative or autoimmune diseases using NK cells and drugs that activate them as therapeutic tools.

  15. The transition metals copper and iron in neurodegenerative diseases.

    Rivera-Mancía, Susana; Pérez-Neri, Iván; Ríos, Camilo; Tristán-López, Luis; Rivera-Espinosa, Liliana; Montes, Sergio

    2010-07-30

    Neurodegenerative diseases constitute a worldwide health problem. Metals like iron and copper are essential for life, but they are also involved in several neurodegenerative mechanisms such as protein aggregation, free radical generation and oxidative stress. The role of Fe and Cu, their pathogenic mechanisms and possible therapeutic relevance are discussed regarding four of the most common neurodegenerative diseases, Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. Metal-mediated oxidation by Fenton chemistry is a common feature for all those disorders and takes part of a self-amplifying damaging mechanism, leading to neurodegeneration. The interaction between metals and proteins in the nervous system seems to be a crucial factor for the development or absence of neurodegeneration. The present review also deals with the therapeutic strategies tested, mainly using metal chelating drugs. Metal accumulation within the nervous system observed in those diseases could be the result of compensatory mechanisms to improve metal availability for physiological processes.

  16. Stem Cells for the Treatment of Neurodegenerative Diseases

    Ning Zhang

    2010-09-01

    Full Text Available Neurodegenerative diseases are characterized by neurodegenerative changes or apoptosis of neurons involved in networks, leading to permanent paralysis and loss of sensation below the site of the injury. Cell replacement therapy has provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. In recent years, neurons and glial cells have successfully been generated from stem cells, and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. We review here notable previously published experimental and preclinical studies involving stem cell-based cell for neurodegenerative diseases and discuss the future prospects for stem cell therapy of neurological disorders in the clinical setting. Steady and solid progress in stem cell research in both basic and preclinical settings should support the hope for development of stem cell-based cell therapies for neurological diseases.

  17. Brain connectivity in neurodegenerative diseases--from phenotype to proteinopathy.

    Pievani, Michela; Filippini, Nicola; van den Heuvel, Martijn P; Cappa, Stefano F; Frisoni, Giovanni B

    2014-11-01

    Functional and structural connectivity measures, as assessed by means of functional and diffusion MRI, are emerging as potential intermediate biomarkers for Alzheimer disease (AD) and other disorders. This Review aims to summarize current evidence that connectivity biomarkers are associated with upstream and downstream disease processes (molecular pathology and clinical symptoms, respectively) in the major neurodegenerative diseases. The vast majority of studies have addressed functional and structural connectivity correlates of clinical phenotypes, confirming the predictable correlation with topography and disease severity in AD and frontotemporal dementia. In neurodegenerative diseases with motor symptoms, structural--but, to date, not functional--connectivity has been consistently found to be associated with clinical phenotype and disease severity. In the latest studies, the focus has moved towards the investigation of connectivity correlates of molecular pathology. Studies in cognitively healthy individuals with brain amyloidosis or genetic risk factors for AD have shown functional connectivity abnormalities in preclinical disease stages that are reminiscent of abnormalities observed in symptomatic AD. This shift in approach is promising, and may aid identification of early disease markers, establish a paradigm for other neurodegenerative disorders, shed light on the molecular neurobiology of connectivity disruption and, ultimately, clarify the pathophysiology of neurodegenerative diseases.

  18. Common mechanisms of onset of cancer and neurodegenerative diseases.

    Ariga, Hiroyoshi

    2015-01-01

    Onset of cancer and neurodegenerative disease occurs by abnormal cell growth and neuronal cell death, respectively, and the number of patients with both diseases has been increasing in parallel with an increase in mean lifetime, especially in developed countries. Although both diseases are sporadic, about 10% of the diseases are genetically inherited, and analyses of such familial forms of gene products have contributed to an understanding of the molecular mechanisms underlying the onset and pathogenesis of these diseases. I have been working on c-myc, a protooncogene, for a long time and identified various c-Myc-binding proteins that play roles in c-Myc-derived tumorigenesis. Among these proteins, some proteins have been found to be also responsible for the onset of neurodegenerative diseases, including Parkinson's disease, retinitis pigmentosa and cerebellar atrophy. In this review, I summarize our findings indicating the common mechanisms of onset between cancer and neurodegenerative diseases, with a focus on genes such as DJ-1 and Myc-Modulator 1 (MM-1) and signaling pathways that contribute to the onset and pathogenesis of cancer and neurodegenerative diseases.

  19. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  20. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    Panchanan Maiti

    2014-01-01

    Full Text Available The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer’s disease, tauopathies, and Huntington’s diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.

  1. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases.

    Byrne, Susan

    2012-04-01

    A small proportion of cases seen in neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS), Parkinson\\'s disease and Alzheimer disease are familial. These familial cases are usually clinically indistinguishable from sporadic cases. Identifying familial cases is important both in terms of clinical guidance for family members and for gene discovery.

  2. Typical Cerebral Metabolic Patterns in Neurodegenerative Brain Diseases

    Teune, Laura K.; Bartels, Anna L.; de Jong, Bauke M.; Willemsen, Antoon T. M.; Eshuis, Silvia A.; de Vries, Jeroen J.; van Oostrom, Joost C. H.; Leenders, Klaus L.

    2010-01-01

    The differential diagnosis of neurodegenerative brain diseases on clinical grounds is difficult, especially at an early disease stage. Several studies have found specific regional differences of brain metabolism applying [F-18]-fluoro-deoxyglucose positron emission tomography (FDG-PET), suggesting t

  3. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin.

    Maiti, Panchanan; Manna, Jayeeta; Veleri, Shobi; Frautschy, Sally

    2014-01-01

    The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer's disease, tauopathies, and Huntington's diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.

  4. RNA processing-associated molecular mechanisms of neurodegenerative diseases.

    Tang, Anna Y

    2016-08-01

    Dysfunctions of RNA processing and mutations of RNA binding proteins (RBPs) play a fundamental role in the pathogenesis of many neurodegenerative diseases. To elucidate the function of RNA processing and RBPs mutations in neuronal cells and to increase our understanding on the pathogenic mechanisms of neurodegeneration, I have reviewed recent advances on RNA processing-associated molecular mechanisms of neurodegenerative diseases, including RBPs-mediated dysfunction of RNA processing, dysfunctional microRNA (miRNA)-based regulation of gene expression, and oxidative RNA modification. I have focused on neurodegeneration induced by RBPs mutations, by dysfunction of miRNA regulation, and by the oxidized RNAs within neurons, and discuss how these dysfunctions have pathologically contributed to neurodegenerative diseases. The advances overviewed above will be valuable to basic investigation and clinical application of target diagnostic tests and therapies.

  5. Chronic sleep disturbance and neural injury: links to neurodegenerative disease

    Abbott SM

    2016-01-01

    Full Text Available Sabra M Abbott,1 Aleksandar Videnovic21Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA; 2Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Abstract: Sleep–wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep–wake abnormalities are often accompanied by neurodegenerative or neurotransmitter changes. However, in addition to being a symptom of the underlying neurodegenerative condition, there is also emerging evidence that sleep disturbance itself may contribute to the development and facilitate the progression of several of these disorders. Due to its impact both as an early symptom and as a potential factor contributing to ongoing neurodegeneration, the sleep–wake cycle is an ideal target for further study for potential interventions not only to lessen the burden of these diseases but also to slow their progression. In this review, we will highlight the sleep phenotypes associated with some of the major neurodegenerative disorders, focusing on the circadian disruption associated with Alzheimer’s disease, the rapid eye movement behavior disorder and sleep fragmentation associated with Parkinson’s disease, and the insomnia and circadian dysregulation associated with Huntington’s disease. Keywords: sleep, neurodegeneration, Alzheimer's disease, Parkinson's disease, Huntington's disease

  6. Neural stem cell-based treatment for neurodegenerative diseases.

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury.

  7. Apocynin, a Low Molecular Oral Treatment for Neurodegenerative Disease

    Bert A. ‘t Hart

    2014-01-01

    Full Text Available Accumulating evidence suggests that inflammatory mediators secreted by activated resident or infiltrated innate immune cells have a significant impact on the pathogenesis of neurodegenerative diseases. This may imply that patients affected by a neurodegenerative disease may benefit from treatment with selective inhibitors of innate immune activity. Here we review the therapeutic potential of apocynin, an essentially nontoxic phenolic compound isolated from the medicinal plant Jatropha multifida. Apocynin is a selective inhibitor of the phagocyte NADPH oxidase Nox2 that can be applied orally and is remarkably effective at low dose.

  8. Role of autophagy in prion protein-induced neurodegenerative diseases

    Hao Yao; Deming Zhao; Sher Hayat Khan; Lifeng Yang

    2013-01-01

    Prion diseases,characterized by spongiform degeneration and the accumulation of misfolded and aggregated PrPSc in the central nervous system,are one of fatal neurodegenerative and infectious disorders of humans and animals.In earlier studies,autophagy vacuoles in neurons were frequently observed in neurodegenerative diseases such as Alzheimer's,Parkinson's,and Huntington's diseases as well as prion diseases.Autophagy is a highly conserved homeostatic process by which several cytoplasmic components (proteins or organelles) are sequestered in a doublemembrane-bound vesicle termed 'autophagosome' and degraded upon their fusion with lysosome.The pathway of intercellular self-digestion at basal physiological levels is indispensable for maintaining the healthy status of tissues and organs.In case of prion infection,increasing evidence indicates that autophagy has a crucial ability of eliminating pathological PrPSc accumulated within neurons.In contrast,autophagy dysfunction in affected neurons may contribute to the formation of spongiform changes.In this review,we summarized recent findings about the effect of mammalian autophagy in neurodegenerative disorders,particularly in prion diseases.We also summarized the therapeutic potential of some small molecules (such as lithium,rapamycin,Sirtuin 1 and resveratrol) targets to mitigate such diseases on brain function.Furthermore,we discussed the controversial role of autophagy,whether it mediates neuronal toxicity or serves a protective function in neurodegenerative disorders.

  9. Adult neurogenesis in the olfactory system and neurodegenerative disease.

    Gallarda, B W; Lledo, P-M

    2012-12-01

    The olfactory system is unique in many respects-two of which include the process of adult neurogenesis which continually supplies it with newborn neurons, and the fact that neurodegenerative diseases are often accompanied by a loss of smell. A link between these two phenomena has been hypothesized, but recent evidence for the lack of robust adult neurogenesis in the human olfactory system calls into question this hypothesis. Nevertheless, model organisms continue to play a critical role in the exploration of neurodegenerative disease. In part one of this review we discuss the most promising recent technological advancements for studying adult neurogenesis in the murine olfactory system. Part two continues by looking at emerging evidence related to adult neurogenesis in neurodegenerative disease studied in model organisms and the differences between animal and human olfactory system adult neurogenesis. Hopefully, the careful application of advanced research methods to the study of neurodegenerative disease in model organisms, while taking into account the recently reported differences between the human and model organism olfactory system, will lead to a better understanding of the reasons for the susceptibility of olfaction to disease.

  10. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    2015-01-01

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s d...

  11. Melatonin in Alzheimer's disease and other neurodegenerative disorders

    Poeggeler B; Cardinali DP; Pandi-Perumal SR; Srinivasan V; Hardeland R

    2006-01-01

    Abstract Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as...

  12. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  13. Rescue strategies in Drosophila models of neurodegenerative diseases

    Baratashvili, Madina Baratovna

    2016-01-01

    In the past decades advances in medicine have led to an extended life span of the general population, which, as a negative consequence, increased the occurrence of age-related neurodegenerative diseases. The necessity to improve the quality of life together with the urge to decrease the economic bur

  14. Gaucher disease: a lysosomal neurodegenerative disorder.

    Huang, W J; Zhang, X; Chen, W W

    2015-04-01

    Gaucher disease is a multisystemic disorder that affects men and woman in equal numbers and occurs in all ethnic groups at any age with racial variations and an estimated worldwide incidence of 1/75,000. It is caused by a genetic deficient activity of the lysosomal enzyme glucocerebrosidase due to mutations in the β-glucocerebrosidase gene, and resulting in lack of glucocerebroside degradation. The subsequent accumulation of glucocerebroside in lysosomes of tissue macrophages primarily in the liver, bone marrow and spleen, causes damage in haematological, skeletal and nervous systems. The clinical manifestations show a high degree of variability with symptoms that varies according to organs involved. In many cases, these disorders do not correlate with mutations in the β-glucocerebrosidase gene. Although several mutations have been identified as responsible for the deficient activity of glucocerebrosidase, mechanisms by which this enzymatic defect leads to Gaucher disease remain poorly understood. Recent reports indicate the implication of complex mechanisms, including enzyme deficiency, substrate accumulation, unfolded protein response, and macrophage activation. Further elucidating these mechanisms will advance understanding of Gaucher disease and related disorders.

  15. Sign language aphasia from a neurodegenerative disease.

    Falchook, Adam D; Mayberry, Rachel I; Poizner, Howard; Burtis, David Brandon; Doty, Leilani; Heilman, Kenneth M

    2013-01-01

    While Alois Alzheimer recognized the effects of the disease he described on speech and language in his original description of the disease in 1907, the effects of Alzheimer's disease (AD) on language in deaf signers has not previously been reported. We evaluated a 55-year-old right-handed congenitally deaf woman with a 2-year history of progressive memory loss and a deterioration of her ability to communicate in American Sign Language, which she learned at the age of eight. Examination revealed that she had impaired episodic memory as well as marked impairments in the production and comprehension of fingerspelling and grammatically complex sentences. She also had signs of anomia as well as an ideomotor apraxia and visual-spatial dysfunction. This report illustrates the challenges in evaluation of a patient for the presence of degenerative dementia when the person is deaf from birth, uses sign language, and has a late age of primary language acquisition. Although our patient could neither speak nor hear, in many respects her cognitive disorders mirror those of patients with AD who had normally learned to speak.

  16. Neurodegenerative diseases and therapeutic strategies using iron chelators.

    Ward, Roberta J; Dexter, David T; Crichton, Robert R

    2015-01-01

    This review will summarise the current state of our knowledge concerning the involvement of iron in various neurological diseases and the potential of therapy with iron chelators to retard the progression of the disease. We first discuss briefly the role of metal ions in brain function before outlining the way by which transition metal ions, such as iron and copper, can initiate neurodegeneration through the generation of reactive oxygen and nitrogen species. This results in protein misfolding, amyloid production and formation of insoluble protein aggregates which are contained within inclusion bodies. This will activate microglia leading to neuroinflammation. Neuroinflammation plays an important role in the progression of the neurodegenerative diseases, with activated microglia releasing pro-inflammatory cytokines leading to cellular cell loss. The evidence for metal involvement in Parkinson's and Alzheimer's disease as well as Friedreich's ataxia and multiple sclerosis will be presented. Preliminary results from trials of iron chelation therapy in these neurodegenerative diseases will be reviewed.

  17. Quality control of the proteins associated with neurodegenerative diseases

    Xuechao Gao; Hongyu Hu

    2008-01-01

    Most neurodegenerative diseases including Alzheimer'sdisease,Parkinson's disease,Huntington's disease and other polyglutamine diseases are associated with degeneration and death of specific neuronal populations due to misfolding or aggregation of certain proteins.These aggregates often contain ubiquitin that is the signal for proteolysis by the ubiquitin-proteasome system,and chaperone proteins that are involved in the assistance of protein folding.Here we review the role of protein quality control systems in the pathogenesis of neurodegenerative diseases,and aim to learn more from the cooperation between molecular chaperones and ubiquitin-proteasome system responding to cellular protein aggregates,in order to find molecular targets for therapeutic intervention.

  18. Epigenetic mechanisms in neurological and neurodegenerative diseases.

    Jorge eLandgrave-Gómez

    2015-02-01

    Full Text Available The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS´s regulation and neurological disorders are mediated via modulation of chromatin structure.Epigenetics, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA, nicotinamide adenine dinucleotide (NAD+ and beta hydroxybutyrate (β-HB, regulates some of these epigenetic modifications, linking in a precise way environment with gene expression.This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of

  19. Summary of cerebrospinal fluid routine parameters in neurodegenerative diseases.

    Jesse, Sarah; Brettschneider, Johannes; Süssmuth, Sigurd D; Landwehrmeyer, Bernhard G; von Arnim, Christine A F; Ludolph, Albert C; Tumani, Hayrettin; Otto, Markus

    2011-06-01

    In neurodegenerative diseases, cerebrospinal fluid analysis (CSF) is predominantly performed to exclude inflammatory diseases and to perform a risk assessment in dementive disorders by measurement of tau proteins and amyloid beta peptides. However, large scale data on basic findings of CSF routine parameters are generally lacking. The objective of the study was to define a normal reference spectrum of routine CSF parameters in neurodegenerative diseases. Routine CSF parameters (white cell count, lactate and albumin concentrations, CSF/serum quotients of albumin (Q (alb)), IgG, IgA, IgM, and oligoclonal IgG bands (OCB)) were retrospectively analyzed in an academic research setting. A total of 765 patients (Alzheimer's disease (AD), Parkinson's disease (PD), Parkinson's disease dementia (PDD), vascular dementia (VD), frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multisystem atrophy (MSA), motor neuron diseases (MND), spinocerebellar ataxia (SCA), Huntington's disease (HD)) and non-demented control groups including a group of patients with muscular disorders (MD). The main outcome measures included statistical analyses of routine CSF parameters. Mildly elevated Q (alb) were found in a small percentage of nearly all subgroups and in a higher proportion of patients with PSP, MSA, VD, PDD, and MND. With the exception of 1 MND patient, no intrathecal Ig synthesis was observed. Isolated OCBs in CSF were sometimes found in patients with neurodegenerative diseases without elevated cell counts; lactate levels were always normal. A slightly elevated Q (alb) was observed in a subgroup of patients with neurodegenerative diseases and does not exclude the diagnosis. Extensive elevation of routine parameters is not characteristic and should encourage a re-evaluation of the clinical diagnosis.

  20. ETHICAL AND GENETIC ASPECTS REGARDING PRESYMPTOMATIC TESTING FOR NEURODEGENERATIVE DISEASES.

    Cozaru, Georgeta Camelial; Aşchie, Mariana; Mitroi, Anca Florentina; Poinăreanu, I; Gorduza, E V

    2016-01-01

    Neurodegenerative diseases, such as Alzheimer's dementia, Huntington's chorea, Parkinson's disease or spinocerebellar ataxia, manifests into adulthood with an insidious onset, slowly of progressive symptoms. All of these diseases are characterized by presimptomatic stages that preceded with many years of clinical debut. In Parkinson's disease, more than half of the dopaminergic neurons of the black substance are lost before the advent of motor characteristic manifestations. In Huntington's chorea, the progressive neurodegenerative disease could be diagnose prenatal and presymptomatic by analyse of the number of CAG repeats in exon 1 of the huntingtin gene. A similar mechanism represented by expansion of trinucleotide repeats during hereditary transmission from parents to children was identified in fragile X syndrome, spinocerebellar ataxia, spinal muscular and bulbar atrophy, or myotonic dystrophy. Presymptomatic diagnosis in all these progressive diseases raise many ethical issues, due to the psychological impact that can cause the prediction of a disease for which there is currently no curative treatment. Therefore, a positive result can produce serious psychological trauma and major changes in the lifestyle of the individual, instead, a negative result can bring joy and tranquillity. But the problem arises if presymptomatic testing in these neurodegenerative diseases brings greater benefits compared to the possible psychological damage, which can add the risk of stigmatization or discrimination.

  1. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  2. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases.

    Tanna, Tanmay; Sachan, Vatsal

    2014-01-01

    Mesenchymal Stem Cells or Marrow Stromal Cells (MSCs) have long been viewed as a potent tool for regenerative cell therapy. MSCs are easily accessible from both healthy donor and patient tissue and expandable in vitro on a therapeutic scale without posing significant ethical or procedural problems. MSC based therapies have proven to be effective in preclinical studies for graft versus host disease, stroke, myocardial infarction, pulmonary fibrosis, autoimmune disorders and many other conditions and are currently undergoing clinical trials at a number of centers all over the world. MSCs are also being extensively researched as a therapeutic tool against neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Multiple Sclerosis (MS). MSCs have been discussed with regard to two aspects in the context of neurodegenerative diseases: their ability to transdifferentiate into neural cells under specific conditions and their neuroprotective and immunomodulatory effects. When transplanted into the brain, MSCs produce neurotrophic and growth factors that protect and induce regeneration of damaged tissue. Additionally, MSCs have also been explored as gene delivery vehicles, for example being genetically engineered to over express glial-derived or brain-derived neurotrophic factor in the brain. Clinical trials involving MSCs are currently underway for MS, ALS, traumatic brain injuries, spinal cord injuries and stroke. In the present review, we explore the potential that MSCs hold with regard to the aforementioned neurodegenerative diseases and the current scenario with reference to the same.

  3. [Are we underestimating occupational risks for neurodegenerative diseases?].

    Oddone, Enrico; Imbriani, Marcello

    2015-01-01

    In recent years a great number of studies suggests that occupational exposures could play a role in the onset of some neurodegenerative diseases. The literature data are more numerous for Parkinson's disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis, although to date no specific occupational exposure was proved to be a definite causal factor. This lack of information is attributable both to the complex patogenesis of these diseases and to a delay regarding this field of research with respect to others pathologies. Nevertheless, available evidence oblige researchers to deepen the studies of occupational exposures as risk factors of neurodegenerative diseases, in order to provide a solid basis possible preventive measures for a class of pathologies with high social impact, both in terms of therapies and in terms of disability.

  4. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    Godoy, Maria Dantas Costa Lima

    2015-01-01

    Full Text Available Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia.

  5. Role of Prostaglandins in Neuroinflammatory and Neurodegenerative Diseases

    Lima, Isabel Vieira de Assis; Bastos, Leandro Francisco Silva; Limborço-Filho, Marcelo; Fiebich, Bernd L.; de Oliveira, Antonio Carlos Pinheiro

    2012-01-01

    Increasing data demonstrates that inflammation participates in the pathophysiology of neurodegenerative diseases. Among the different inflammatory mediators involved, prostaglandins play an important role. The effects induced by prostaglandins might be mediated by activation of their known receptors or by nonclassical mechanisms. In the present paper, we discuss the evidences that link prostaglandins, as well as the enzymes that produce them, to some neurological diseases. PMID:22778499

  6. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases.

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Cheng, Shin-Nan; Lee, Hsiu-Fen; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2015-12-25

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  7. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives

    Marina de Tommaso

    2016-01-01

    Full Text Available Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer’s disease (AD and other dementias, Parkinson’s disease (PD and PD related disorders, motor neuron diseases (MND, Huntington’s disease (HD, spinocerebellar ataxia (SCA, and spinal muscular atrophy (SMA, is mainly addressed to motor and cognitive impairment, with special care to vital functions as breathing and feeding. Many of these patients complain of painful symptoms though their origin is variable, and their presence is frequently not considered in the treatment guidelines, leaving their management to the decision of the clinicians alone. However, studies focusing on pain frequency in such disorders suggest a high prevalence of pain in selected populations from 38 to 75% in AD, 40% to 86% in PD, and 19 to 85% in MND. The methods of pain assessment vary between studies so the type of pain has been rarely reported. However, a prevalent nonneuropathic origin of pain emerged for MND and PD. In AD, no data on pain features are available. No controlled therapeutic trials and guidelines are currently available. Given the relevance of pain in neurodegenerative disorders, the comprehensive understanding of mechanisms and predisposing factors, the application and validation of specific scales, and new specific therapeutic trials are needed.

  8. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders.

    Cai, Huan; Cong, Wei-na; Ji, Sunggoan; Rothman, Sarah; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.

  9. PREFACE: Physics and biology of neurodegenerative diseases Physics and biology of neurodegenerative diseases

    Pastore, Annalisa

    2012-06-01

    , about 15 years after the original reports, it is clear that amyloids are special structures that occur in nature under several different guises, some good, some evil [3]. The number of diseases associated with misfolding and fibrillogenesis has steadily increased. Examples of fairly common pathologies associated with fibre formation include Alzheimer's disease (currently one of the major threats for human health in our increasingly aging world), Parkinson's disease and several rare, but not less severe, pathologies. On the other hand, it is also clear that amyloid formation is a convenient mechanism for storing peptides and/or proteins in a compact and resistant way. The number of organisms/tissues in which amyloid deposits are found is thus increasing. It is also not too far-fetched to expect that the mechanical properties of amyloids could be used in biotechnology to design new materials. Because of the importance of this topic in so many scientific fields, we have dedicated this special issue of Journal of Physics: Condensed Matter to the topic of protein aggregation and disease. In the following pages we have collected two reviews and five articles that explore new and interesting developments in the field. References [1] Olby R 1994 The Path of the Double Helix: The Discovery of DNA (New York: Dover) [2] Dobson C M 2004 Principles of protein folding, misfolding and aggregation Semin. Cell Dev. Biol. 15 3-16 [3] Hammer N D, Wang X, McGuffie B A, Chapman M R 2008 Amyloids: friend or foe? J. Alzheimers Dis. 13 407-19 Physics and biology of neurodegenerative diseases contents Protein aggregation and misfolding: good or evil?Annalisa Pastore and Pierandrea Temussi Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic toolsM Di Carlo, D Giacomazza and P L San Biagio Entrapment of Aβ1-40 peptide in unstructured aggregatesC Corsale, R Carrotta, M R Mangione, S Vilasi, A Provenzano, G Cavallaro, D Bulone and P L San Biagio Elemental micro

  10. Stem cell challenges in the treatment of neurodegenerative disease.

    Feng, Zhongling; Gao, Feng

    2012-02-01

    Neurodegenerative diseases result from the gradual and progressive loss of neural cells and lead to nervous system dysfunction. The rapidly advancing stem cell field is providing attractive alternative options for fighting these diseases. Results have provided proof of principle that cell replacement can work in humans with Parkinson's disease (PD). However, three clinical studies of cell transplantation were published that found no net benefit, while patients in two of the studies developed dyskinesias that persisted despite reductions in treatment. Induced pluripotent stem cells (iPSC) have major potential advantages because patient-specific neuroblasts are suitable for transplantation, avoid immune reactions, and can be produced without the use of human ES cells (hESC). Although iPSCs have not been successfully used in clinical trials for PD, patients with amyotrophic lateral sclerosis (ALS) were treated with autologous stem cells and, though they had some degree of decline one year after treatment, they were still improved compared with the preoperative period or without any drug therapy. In addition, neural stem cells (NSCs), via brain-derived neurotrophic factor (BDNF), have been shown to ameliorate complex behavioral deficits associated with widespread Alzheimer's disease (AD) pathology in a transgenic mouse model of AD. So far, the FDA lists 18 clinical trials treating multiple sclerosis (MS), but most are in preliminary stages. This article serves as an overview of recent studies in stem cell and regenerative approaches to the above chronic neurodegenerative disorders. There are still many obstacles to the use of stem cells as a cure for neurodegenerative disease, especially because we still don't fully understand the true mechanisms of these diseases. However, there is hope in the potential of stem cells to help us learn and understand a great deal more about the mechanisms underlying these devastating neurodegenerative diseases.

  11. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease

    Carlos Spuch

    2011-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB. Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease.

  12. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  13. Searching for MIND: MicroRNAs in Neurodegenerative Diseases

    Christian Barbato

    2009-01-01

    Full Text Available In few years our understanding of microRNA (miRNA biogenesis, molecular mechanisms by which miRNAs regulate gene expression, and the functional roles of miRNAs has been expanded. Interestingly, numerous miRNAs are expressed in a spatially and temporally controlled manner in the nervous system, suggesting that their posttrascriptional regulation may be particularly relevant in neural development and function. MiRNA studies in neurobiology showed their involvement in synaptic plasticity and brain diseases. In this review ,correlations between miRNA-mediated gene silencing and Alzheimer's, Parkinson's, and other neurodegenerative diseases will be discussed. Molecular and cellular neurobiological studies of the miRNAs in neurodegeneration represent the exploration of a new Frontier of miRNAs biology and the potential development of new diagnostic tests and genetic therapies for neurodegenerative diseases.

  14. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  15. Searching for MIND: microRNAs in neurodegenerative diseases.

    Barbato, Christian; Ruberti, Francesca; Cogoni, Carlo

    2009-01-01

    In few years our understanding of microRNA (miRNA) biogenesis, molecular mechanisms by which miRNAs regulate gene expression, and the functional roles of miRNAs has been expanded. Interestingly, numerous miRNAs are expressed in a spatially and temporally controlled manner in the nervous system, suggesting that their posttrascriptional regulation may be particularly relevant in neural development and function. MiRNA studies in neurobiology showed their involvement in synaptic plasticity and brain diseases. In this review ,correlations between miRNA-mediated gene silencing and Alzheimer's, Parkinson's, and other neurodegenerative diseases will be discussed. Molecular and cellular neurobiological studies of the miRNAs in neurodegeneration represent the exploration of a new Frontier of miRNAs biology and the potential development of new diagnostic tests and genetic therapies for neurodegenerative diseases.

  16. Dysphagia in stroke, neurodegenerative disease, and advanced dementia.

    Altman, Kenneth W; Richards, Amanda; Goldberg, Leanne; Frucht, Steven; McCabe, Daniel J

    2013-12-01

    Aspiration risk from dysphagia increases with central and peripheral neurologic disease. Stroke, microvascular ischemic disease, a spectrum of neurodegenerative diseases, and advancing dementia all have unique aspects. However, there are distinct commonalities in this population. Increasing nutritional requirements to stave off oropharyngeal muscular atrophy and a sedentary lifestyle further tax the patient's abilities to safely swallow. This article reviews stroke, muscular dystrophy, myasthenia gravis, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and advanced dementia. Approaches to screening and evaluation, recognizing sentinel indicators of decline that increase aspiration risk, and options for managing global laryngeal dysfunction are also presented.

  17. Role of Redox Signaling in Neuroinflammation and Neurodegenerative Diseases

    Hsi-Lung Hsieh

    2013-01-01

    Full Text Available Reactive oxygen species (ROS, a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS have been detected in patients with neurodegenerative diseases such as Alzheimer’s disease (AD. These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs, cytosolic phospholipase A2 (cPLA2, cyclooxygenase-2 (COX-2, and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases.

  18. Neuronal network disintegration: common pathways linking neurodegenerative diseases

    Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C

    2016-01-01

    Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. PMID:27172939

  19. Sleep-wake changes and cognition in neurodegenerative disease.

    Naismith, Sharon L; Lewis, Simon J G; Rogers, Naomi L

    2011-01-01

    With the increasing aging population, neurodegenerative disorders will become more common in clinical practice. These disorders involve multiple pathophysiological mechanisms that differentially affect cognition, mood, and physical functions. Possibly due to the involvement of common underlying neurobiological circuits, sleep and/or circadian (sleep-wake) changes are also common in this disease group. Of significance, sleep-wake changes are often a prodromal feature and are predictive of cognitive decline, psychiatric symptoms, quality of life, need for institutional care, and caregiver burden. Unfortunately, in neurodegenerative disease, few studies have included detailed polysomnography or neuropsychological assessments although some data indicate that sleep and neurocognitive features are related. Further studies are also required to address the effects of pharmacological and nonpharmacological treatments on cognitive functioning. Such research will hopefully lead to targeted early intervention approaches for cognitive decline in older people.

  20. Neural Basis of Interpersonal Traits in Neurodegenerative Diseases

    Sollberger, Marc; Stanley, Christine M.; Wilson, Stephen M.; Gyurak, Anett; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Weiner, Michael W.; Miller, Bruce L.; Katherine P. Rankin

    2009-01-01

    Several functional and structural imaging studies have investigated the neural basis of personality in healthy adults, but human lesions studies are scarce. Personality changes are a common symptom in patients with neurodegenerative diseases like frontotemporal dementia (FTD) and semantic dementia (SD), allowing a unique window into the neural basis of personality. In this study, we used the Interpersonal Adjective Scales to investigate the structural basis of eight interpersonal traits (domi...

  1. Reliability of measuring regional callosal atrophy in neurodegenerative diseases

    Jeroen Van Schependom, MSc Eng, PhD

    2016-01-01

    In summary, we have constructed an algorithm that reliably detects the CC in 3D T1 images in a fully automated way in healthy controls and different neurodegenerative diseases. Although the CC area and the circularity are the most reliable features (ICC > 0.97; the reliability of the thickness profile (ICC > 0.90; excluding the tip is sufficient to warrant its inclusion in future clinical studies.

  2. Stem cells for the treatment of neurodegenerative diseases.

    Dantuma, Elise; Merchant, Stephanie; Sugaya, Kiminobu

    2010-12-10

    Stem cells offer an enormous pool of resources for the understanding of the human body. One proposed use of stem cells has been as an autologous therapy. The use of stem cells for neurodegenerative diseases has become of interest. Clinical applications of stem cells for Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis will increase in the coming years, and although great care will need to be taken when moving forward with prospective treatments, the application of stem cells is highly promising.

  3. Mammalian prions and their wider relevance in neurodegenerative diseases.

    Collinge, John

    2016-11-10

    Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.

  4. Neural substrates of spontaneous narrative production in focal neurodegenerative disease.

    Gola, Kelly A; Thorne, Avril; Veldhuisen, Lisa D; Felix, Cordula M; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P; Stanley, Christine M; Glenn, Shenly; Miller, Bruce L; Rankin, Katherine P

    2015-12-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups. Storytelling patterns may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls (NC)) were analyzed for storytelling frequency and characteristics, and videos of the interactions were rated for patients' level of social attentiveness. Compared to controls, svPPAs told more stories and autobiographical stories, and perseverated on aspects of self during the interaction, whereas ADs told fewer autobiographical stories than NCs. svPPAs and bvFTDs were rated as less attentive to social cues. Aspects of storytelling were related to diverse cognitive and socio-emotional functions, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, narrative evaluations patterns, and social attentiveness correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention.

  5. Myeloid dendritic cells are potential players in human neurodegenerative diseases

    Paola eBossù

    2015-12-01

    Full Text Available Alzheimer’s (AD and Parkinson’s (PD diseases are devastating neurodegenerative disturbances wherein neuroinflammation is a chronic pathogenic process with high therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident immune cells, but immune cells derived from periphery may also participate and to some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge as crucial components of AD/PD progression and susceptibility. Among these, dendritic cells (DCs are key immune orchestrators and players of brain immune surveillance: we candidate them as potential mediators of both AD and PD and as relevant cell model for unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss emerging data suggesting that blood-derived DCs play a role in experimental and human neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly as an index of their recruitment to the brain. Overall, we emphasize the need to explore the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms of pathogenic importance, recognize potential biomarkers and improve therapeutic approaches for neurodegenerative diseases.

  6. The role of intrinsically unstructured proteins in neurodegenerative diseases.

    Swasti Raychaudhuri

    Full Text Available The number and importance of intrinsically disordered proteins (IUP, known to be involved in various human disorders, are growing rapidly. To test for the generalized implications of intrinsic disorders in proteins involved in Neurodegenerative diseases, disorder prediction tools have been applied to three datasets comprising of proteins involved in Huntington Disease (HD, Parkinson's disease (PD, Alzheimer's disease (AD. Results show, in general, proteins in disease datasets possess significantly enhanced intrinsic unstructuredness. Most of these disordered proteins in the disease datasets are found to be involved in neuronal activities, signal transduction, apoptosis, intracellular traffic, cell differentiation etc. Also these proteins are found to have more number of interactors and hence as the proportion of disorderedness (i.e., the length of the unfolded stretch increased, the size of the interaction network simultaneously increased. All these observations reflect that, "Moonlighting" i.e. the contextual acquisition of different structural conformations (transient, eventually may allow these disordered proteins to act as network "hubs" and thus they may have crucial influences in the pathogenecity of neurodegenerative diseases.

  7. Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases.

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; Hoffmann, Georg F; Kölker, Stefan

    2014-01-01

    Pediatric neurodegenerative diseases are a heterogeneous group of diseases that result from specific genetic and biochemical defects. In recent years, studies have revealed a wide spectrum of abnormal cellular functions that include impaired proteolysis, abnormal lipid trafficking, accumulation of lysosomal content, and mitochondrial dysfunction. Within neurons, elaborated degradation pathways such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway are critical for maintaining homeostasis and normal cell function. Recent evidence suggests a pivotal role for autophagy in major adult and pediatric neurodegenerative diseases. We herein review genetic, pathological, and molecular evidence for the emerging link between autophagy dysfunction and lysosomal storage disorders such as Niemann-Pick type C, progressive myoclonic epilepsies such as Lafora disease, and leukodystrophies such as Alexander disease. We also discuss the recent discovery of genetically deranged autophagy in Vici syndrome, a multisystem disorder, and the implications for the role of autophagy in development and disease. Deciphering the exact mechanism by which autophagy contributes to disease pathology may open novel therapeutic avenues to treat neurodegeneration. To this end, an outlook on novel therapeutic approaches targeting autophagy concludes this review.

  8. Insulin resistance and gray matter volume in neurodegenerative disease.

    Morris, J K; Vidoni, E D; Perea, R D; Rada, R; Johnson, D K; Lyons, K; Pahwa, R; Burns, J M; Honea, R A

    2014-06-13

    The goal of this study was to compare insulin resistance in aging and aging-related neurodegenerative diseases, and to determine the relationship between insulin resistance and gray matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance was estimated in apparently healthy elderly control (HC, n=21) and neurodegenerative disease (Alzheimer's disease (AD), n=20; Parkinson's disease (PD), n=22) groups using Homeostasis Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test (IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model multiple regression. We found that HOMA2 was increased in both AD and PD compared to the HC group (HC vs. AD, p=0.002, HC vs. PD, p=0.003), although only AD subjects exhibited increased fasting glucose (p=0.005). Furthermore, our voxel-based morphometry analysis revealed that HOMA2 was related to GMV in all cohorts in a region-specific manner (p<0.001, uncorrected). Significant relationships were observed in the medial prefrontal cortex (HC), medial temporal regions (AD), and parietal regions (PD). Finally, the directionality of the relationship between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased brain volume), while a positive relationship was observed in PD. This cross-sectional study suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia.

  9. Noncoding RNAs in protein clearance pathways: implications in neurodegenerative diseases

    SONALI SENGUPTA

    2017-03-01

    The importance of noncoding genome has become more evident in recent years. Before genome sequencing, the most well studied portion of our genome was protein coding genes. Interestingly, this coding portion accounted only for 1.5% of the genome, the rest being the noncoding sequences. Noncoding RNAs (ncRNAs) are involved in normal cell physiology, stress, and disease states. A class of small ncRNAs and miRNAs has gained much importance because of its involvement in human diseases such as cancer. Involvement of long ncRNAs have also been acknowledged in other human diseases, especially inneurodegenerative diseases. Neurodegenerative diseases are characterized by the presence of abnormally folded proteins that are toxic to the cell. Several studies from model organisms suggest upregulation of pathways that clear this toxic protein may provide protection against neurodegeneration. In this review, I summarize the importance of ncRNAs in protein quality control system of cell that is implicated in this fatal group of neurodegenerative diseases.

  10. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders

    Martin Hofmann-Apitius

    2015-12-01

    Full Text Available Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies—data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI; which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations

  11. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders.

    Hofmann-Apitius, Martin; Ball, Gordon; Gebel, Stephan; Bagewadi, Shweta; de Bono, Bernard; Schneider, Reinhard; Page, Matt; Kodamullil, Alpha Tom; Younesi, Erfan; Ebeling, Christian; Tegnér, Jesper; Canard, Luc

    2015-12-07

    Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European

  12. Evidence-based therapy for sleep disorders in neurodegenerative diseases

    LIU Ling

    2013-08-01

    Full Text Available Objective To evaluate the effectiveness of the treatments for sleep disorders in neurodegenerative diseases so as to provide the best therapeutic regimens for the evidence-based treatment. Methods Search PubMed, MEDLINE, Cochrane Library, Wanfang Data and China National Knowledge Infrastructure (CNKI databases with "sleep disorder or sleep disturbance", "neurodegenerative diseases", "Parkinson's disease or PD", "Alzheimer's disease or AD", "multiple system atrophy or MSA" as retrieval words. The quality of the articles were evaluated with Jadad Scale. Results A total of 35 articles, including 2 systematic reviews, 5 randomized controlled trials, 13 clinical controlled trials, 13 case series and 2 epidemiological investigation studies were included for evaluation, 13 of which were high grade and 22 were low grade articles. Clinical evidences showed that: 1 advice on sleep hygiene, careful use of dopaminergic drugs and hypnotic sedative agents should be considered for PD. Bright light therapy (BLT may improve circadian rhythm sleep disorders and clonazepam may be effective for rapid eye movement sleep behavior disorder (RBD. However, to date, very few controlled studies are available to make a recommendation for the management of sleep disorders in PD; 2 treatments for sleep disorders in AD include drug therapy (e.g. melatonin, acetylcholinesterase inhibitors, antipsychotic drugs, antidepressants and non-drug therapy (e.g. BLT, behavior therapy, but very limited evidence shows the effectiveness of these treatments; 3 the first line treatment for sleep-related breathing disorder in MSA is nasal continuous positive airway pressure (nCPAP, and clonazepam is effective for RBD in MSA; 4 there is rare evidence related to the treatment of sleep disorders in dementia with Lewy body (DLB and amyotrophic lateral sclerosis (ALS. Conclusion Evidence-based medicine can provide the best clinical evidence on sleep disorders' treatment in neurodegenerative

  13. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders.

    Jucker, Mathias; Walker, Lary C

    2011-10-01

    The misfolding and aggregation of specific proteins is a seminal occurrence in a remarkable variety of neurodegenerative disorders. In Alzheimer disease (the most prevalent cerebral proteopathy), the two principal aggregating proteins are β-amyloid (Aβ) and tau. The abnormal assemblies formed by conformational variants of these proteins range in size from small oligomers to the characteristic lesions that are visible by optical microscopy, such as senile plaques and neurofibrillary tangles. Pathologic similarities with prion disease suggest that the formation and spread of these proteinaceous lesions might involve a common molecular mechanism-corruptive protein templating. Experimentally, cerebral β-amyloidosis can be exogenously induced by exposure to dilute brain extracts containing aggregated Aβ seeds. The amyloid-inducing agent probably is Aβ itself, in a conformation generated most effectively in the living brain. Once initiated, Aβ lesions proliferate within and among brain regions. The induction process is governed by the structural and biochemical nature of the Aβ seed, as well as the attributes of the host, reminiscent of pathogenically variant prion strains. The concept of prionlike induction and spreading of pathogenic proteins recently has been expanded to include aggregates of tau, α-synuclein, huntingtin, superoxide dismutase-1, and TDP-43, which characterize such human neurodegenerative disorders as frontotemporal lobar degeneration, Parkinson/Lewy body disease, Huntington disease, and amyotrophic lateral sclerosis. Our recent finding that the most effective Aβ seeds are small and soluble intensifies the search in bodily fluids for misfolded protein seeds that are upstream in the proteopathic cascade, and thus could serve as predictive diagnostics and the targets of early, mechanism-based interventions. Establishing the clinical implications of corruptive protein templating will require further mechanistic and epidemiologic investigations

  14. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  15. The role of the Wnt canonical signaling in neurodegenerative diseases.

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.

  16. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    Hueng-Chuen Fan

    2015-12-01

    Full Text Available Neurodegenerative diseases (NDs are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM, and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  17. Developing neural stem cell-based treatments for neurodegenerative diseases.

    Byrne, James A

    2014-05-30

    Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer's disease. Currently, no effective therapies for Alzheimer's disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer's disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer's disease.

  18. Mesenchymal stem cells for the treatment of neurodegenerative disease.

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-11-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

  19. Human embryonic stem cell therapies for neurodegenerative diseases.

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  20. Creatine for neuroprotection in neurodegenerative disease: end of story?

    Bender, Andreas; Klopstock, Thomas

    2016-08-01

    Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases.

  1. Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance.

    Rossi, Luisa; Lombardo, Marco F; Ciriolo, Maria R; Rotilio, Giuseppe

    2004-03-01

    Copper is an essential transition metal ion for the function of key metabolic enzymes, but its uncontrolled redox reactivity is source of reactive oxygen species. Therefore a network of transporters strictly controls the trafficking of copper in living systems. Deficit, excess, or aberrant coordination of copper are conditions that may be detrimental, especially for neuronal cells, which are particularly sensitive to oxidative stress. Indeed, the genetic disturbances of copper homeostasis, Menkes' and Wilson's diseases, are associated with neurodegeneration. Furthermore, copper interacts with the proteins that are the hallmarks of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, prion diseases, and familial amyotrophic lateral sclerosis. In all cases, copper-mediated oxidative stress is linked to mitochondrial dysfunction, which is a common feature of neurodegeneration. In particular we recently demonstrated that in copper deficiency, mitochondrial function is impaired due to decreased activity of cytochrome c oxidase, leading to production of reactive oxygen species, which in turn triggers mitochondria-mediated apoptotic neurodegeneration.

  2. Corruption and Spread of Pathogenic Proteins in Neurodegenerative Diseases*

    Walker, Lary C.; LeVine, Harry

    2012-01-01

    With advancing age, the brain becomes increasingly susceptible to neurodegenerative diseases, most of which are characterized by the misfolding and errant aggregation of certain proteins. The induction of aggregation involves a crystallization-like seeding mechanism by which a specific protein is structurally corrupted by its misfolded conformer. The latest research indicates that, once formed, proteopathic seeds can spread from one locale to another via cellular uptake, transport, and release. Impeding this process could represent a unified therapeutic strategy for slowing the progression of a wide range of currently intractable disorders. PMID:22879600

  3. Neural basis of interpersonal traits in neurodegenerative diseases.

    Sollberger, Marc; Stanley, Christine M; Wilson, Stephen M; Gyurak, Anett; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Weiner, Michael W; Miller, Bruce L; Rankin, Katherine P

    2009-11-01

    Several functional and structural imaging studies have investigated the neural basis of personality in healthy adults, but human lesions studies are scarce. Personality changes are a common symptom in patients with neurodegenerative diseases like frontotemporal dementia (FTD) and semantic dementia (SD), allowing a unique window into the neural basis of personality. In this study, we used the Interpersonal Adjective Scales to investigate the structural basis of eight interpersonal traits (dominance, arrogance, coldness, introversion, submissiveness, ingenuousness, warmth, and extraversion) in 257 subjects: 214 patients with neurodegenerative diseases such as FTD, SD, progressive nonfluent aphasia, Alzheimer's disease, amnestic mild cognitive impairment, corticobasal degeneration, and progressive supranuclear palsy and 43 healthy elderly people. Measures of interpersonal traits were correlated with regional atrophy pattern using voxel-based morphometry (VBM) analysis of structural MR images. Interpersonal traits mapped onto distinct brain regions depending on the degree to which they involved agency and affiliation. Interpersonal traits high in agency related to left dorsolateral prefrontal and left lateral frontopolar regions, whereas interpersonal traits high in affiliation related to right ventromedial prefrontal and right anteromedial temporal regions. Consistent with the existing literature on neural networks underlying social cognition, these results indicate that brain regions related to externally focused, executive control-related processes underlie agentic interpersonal traits such as dominance, whereas brain regions related to internally focused, emotion- and reward-related processes underlie affiliative interpersonal traits such as warmth. In addition, these findings indicate that interpersonal traits are subserved by complex neural networks rather than discrete anatomic areas.

  4. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  5. Multifaceted effects of aluminium in neurodegenerative diseases: A review.

    Maya, S; Prakash, T; Madhu, Krishna Das; Goli, Divakar

    2016-10-01

    Aluminium (Al) is the most common metal and widely distributed in our environment. Al was first isolated as an element in 1827, and its use began only after 1886. Al is widely used for industrial applications and consumer products. Apart from these it is also used in cooking utensils and in pharmacological agents, including antacids and antiperspirants from which the element usually enters into the human body. Evidence for the neurotoxicity of Al is described in various studies, but still the exact mechanism of Al toxicity is not known. However, the evidence suggests that the Al can potentiate oxidative stress and inflammatory events and finally leads to cell death. Al is considered as a well-established neurotoxin and have a link between the exposure and development of neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), dementia, Gulf war syndrome and Parkinsonism. Here, we review the detailed possible pathogenesis of Al neurotoxicity. This review summarizes Al induced events likewise oxidative stress, cell mediated toxicity, apoptosis, inflammatory events in the brain, glutamate toxicity, effects on calcium homeostasis, gene expression and Al induced Neurofibrillary tangle (NFT) formation. Apart from these we also discussed animal models that are commonly used for Al induced neurotoxicity and neurodegeneration studies. These models help to find out a better way to treat and prevent the progression in Al induced neurodegenerative diseases.

  6. MicroRNAs in neurodegenerative diseases and their therapeutic potential.

    Junn, Eunsung; Mouradian, M Maral

    2012-02-01

    MicroRNAs (miRNAs) are abundant, endogenous, short, noncoding RNAs that act as important post-transcriptional regulators of gene expression by base-pairing with their target mRNA. During the last decade, substantial knowledge has accumulated regarding the biogenesis of miRNAs, their molecular mechanisms and functional roles in a variety of cellular contexts. Altered expression of certain miRNA molecules in the brains of patients with neurodegenerative diseases such as Alzheimer and Parkinson suggests that miRNAs could have a crucial regulatory role in these disorders. Polymorphisms in miRNA target sites may also constitute an important determinant of disease risk. Additionally, emerging evidence points to specific miRNAs targeting and regulating the expression of particular proteins that are key to disease pathogenesis. Considering that the amount of these proteins in susceptible neuronal populations appears to be critical to neurodegeneration, miRNA-mediated regulation represents a new target of significant therapeutic prospects. In this review, the implications of miRNAs in several neurodegenerative disorders and their potential as therapeutic interventions are discussed.

  7. MicroRNAs: novel therapeutic targets in neurodegenerative diseases.

    Roshan, Reema; Ghosh, Tanay; Scaria, Vinod; Pillai, Beena

    2009-12-01

    The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increases. However, limited knowledge of the molecular basis of disease pathogenesis is a major hurdle in the identification of drug targets and development of therapeutic strategies for these largely incurable disorders. Recently, differential expression of endogenous regulatory small RNAs, known as 'microRNAs' (miRNAs), in patients of Alzheimer's disease, Parkinson's disease and models of ataxia suggest that they might have key regulatory roles in neurodegeneration. miRNAs that can target known mediators of neurodegeneration offer potential therapeutic targets. Our bioinformatic analysis suggests novel miRNA-target interactions that could potentially influence neurodegeneration. The recent development of molecules that alter miRNA expression promises valuable tools that will enhance the therapeutic potential of miRNAs.

  8. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention.

    Spencer, Peter S; Palmer, Valerie S; Kisby, Glen E

    2016-09-01

    Pathological changes of the aging brain are expressed in a range of neurodegenerative disorders that will impact increasing numbers of people across the globe. Research on the causes of these disorders has focused heavily on genetics, and strategies for prevention envision drug-induced slowing or arresting disease advance before its clinical appearance. We discuss a strategic shift that seeks to identify the environmental causes or contributions to neurodegeneration, and the vision of primary disease prevention by removing or controlling exposure to culpable agents. The plausibility of this approach is illustrated by the prototypical neurodegenerative disease amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC). This often-familial long-latency disease, once thought to be an inherited genetic disorder but now known to have a predominant or exclusive environmental origin, is in the process of disappearing from the three heavily affected populations, namely Chamorros of Guam and Rota, Japanese residents of Kii Peninsula, Honshu, and Auyu and Jaqai linguistic groups on the island of New Guinea in West Papua, Indonesia. Exposure via traditional food and/or medicine (the only common exposure in all three geographic isolates) to one or more neurotoxins in seed of cycad plants is the most plausible if yet unproven etiology. Neurotoxin dosage and/or subject age at exposure might explain the stratified epidemic of neurodegenerative disease on Guam in which high-incidence ALS peaked and declined before that of PD, only to be replaced today by a dementing disorder comparable to Alzheimer's disease. Exposure to the Guam environment is also linked to the delayed development of ALS among a subset of Chamorro and non-Chamorro Gulf War/Era veterans, a summary of which is reported here for the first time. Lessons learned from this study and from 65 years of research on ALS-PDC include the exceptional value of initial, field-based informal investigation of

  9. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    Antonio Martin

    2011-01-01

    Full Text Available Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

  10. Role of the Retromer Complex in Neurodegenerative Diseases.

    Li, Chaosi; Shah, Syed Zahid Ali; Zhao, Deming; Yang, Lifeng

    2016-01-01

    The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases.

  11. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease

    Samantha Giordano

    2014-01-01

    Full Text Available Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1 radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2 radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3 since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles.

  12. Analysis of neurodegenerative disease indications using risk adjusted net present value

    Chiu, Terry Zhen Hui

    2007-01-01

    Pharmaceutical drug development is a costly and risky venture characterized by low clinical success rates. The neurodegenerative disease market segment has the highest drug development costs and the lowest clinical success rate of any therapeutic disease area. Small biotechnology companies that specialize in the neurodegenerative disease market must carefully select the appropriate disease indications to pursue. This study examines the neurodegenerative disease market and analyzes the attract...

  13. Melatonin in Alzheimer's disease and other neurodegenerative disorders

    Poeggeler B

    2006-05-01

    Full Text Available Abstract Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's disease (PD and Huntington's disease (HD. As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin

  14. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction.

  15. Does neuroinflammation fan the flame in neurodegenerative diseases?

    McAlpine Fiona E

    2009-11-01

    Full Text Available Abstract While peripheral immune access to the central nervous system (CNS is restricted and tightly controlled, the CNS is capable of dynamic immune and inflammatory responses to a variety of insults. Infections, trauma, stroke, toxins and other stimuli are capable of producing an immediate and short lived activation of the innate immune system within the CNS. This acute neuroinflammatory response includes activation of the resident immune cells (microglia resulting in a phagocytic phenotype and the release of inflammatory mediators such as cytokines and chemokines. While an acute insult may trigger oxidative and nitrosative stress, it is typically short-lived and unlikely to be detrimental to long-term neuronal survival. In contrast, chronic neuroinflammation is a long-standing and often self-perpetuating neuroinflammatory response that persists long after an initial injury or insult. Chronic neuroinflammation includes not only long-standing activation of microglia and subsequent sustained release of inflammatory mediators, but also the resulting increased oxidative and nitrosative stress. The sustained release of inflammatory mediators works to perpetuate the inflammatory cycle, activating additional microglia, promoting their proliferation, and resulting in further release of inflammatory factors. Neurodegenerative CNS disorders, including multiple sclerosis (MS, Alzheimer's disease (AD, Parkinson's disease (PD, Huntington's disease (HD, amyotrophic lateral sclerosis (ALS, tauopathies, and age-related macular degeneration (ARMD, are associated with chronic neuroinflammation and elevated levels of several cytokines. Here we review the hallmarks of acute and chronic inflammatory responses in the CNS, the reasons why microglial activation represents a convergence point for diverse stimuli that may promote or compromise neuronal survival, and the epidemiologic, pharmacologic and genetic evidence implicating neuroinflammation in the

  16. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases.

    Irwin, Michael H; Moos, Walter H; Faller, Douglas V; Steliou, Kosta; Pinkert, Carl A

    2016-05-01

    Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.

  17. p53 and mitochondrial dysfunction: novel insight of neurodegenerative diseases.

    Dai, Chun-Qiu; Luo, Ting-Ting; Luo, Shi-Cheng; Wang, Jia-Qi; Wang, Sheng-Ming; Bai, Yun-Hu; Yang, Yan-Ling; Wang, Ya-Yun

    2016-08-01

    Mitochondria are organelles responsible for vital cell functions. p53 is a transcription factor that regulates the DNA stability and cell growth normality. Recent studies revealed that p53 can influence mitochondrial function changing from normal condition to abnormal condition under different stress levels. In normal state, p53 can maintain mitochondrial respiration through transactivation of SCO2. When stress stimuli presents, SCO2 overexpresses and leads to ROS generation. ROS promotes p53 inducing MALM (Mieap-induced accumulation of lysosome-like organelles within mitochondria) to repair dysfunctional mitochondria and MIV (Mieap-induced vacuole) to accomplish damaged mitochondria degradation. If stress or damage is irreversible, p53 will translocate to mitochondria, leading into apoptosis or necrosis. Neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease are still lack of clear explanations of mechanisms, but more studies have revealed the functional relationship between mitochondria and p53 towards the pathological development of these diseases. In this review, we discuss that p53 plays the vital role in the function of mitochondria in the aspect of pathological change metabolism. We also analyze these diseases with novel targeted treating molecules which are related to p53 and mitochondria, hoping to present novel therapies in future clinic.

  18. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-04

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.

  19. REM behaviour disorder detection associated with neurodegenerative diseases

    Kempfner, Jacob; Sorensen, Gertrud; Zoetmulder, Marielle

    2010-01-01

    Abnormal skeleton muscle activity during REM sleep is characterized as REM Behaviour Disorder (RBD), and may be an early marker for different neurodegenerative diseases. Early detection of RBD is therefore highly important, and in this ongoing study a semi-automatic method for RBD detection......, a computerized algorithm has been attempted implemented. By analysing the REM and non-REM EMG activity, using advanced signal processing tools combined with a statistical classifier, it is possible to discriminate normal and abnormal EMG activity. Due to the small number of patients, the overall performance...... is an improvement compared to previous published studies. Conclusion: The overall result indicates the usefulness of a computerized scoring algorithm and may be a feasible way of reducing scoring time. Further enhancement on additional data, i.e. subjects with idiopathic RBD (iRBD) and PD without RBD, is needed...

  20. Differential diagnosis of neurodegenerative diseases using structural MRI data.

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti; Barkhof, Frederik; Tijms, Betty; Lemstra, Afina W; Tong, Tong; Guerrero, Ricardo; Schuh, Andreas; Ledig, Christian; Rueckert, Daniel; Soininen, Hilkka; Remes, Anne M; Waldemar, Gunhild; Hasselbalch, Steen; Mecocci, Patrizia; van der Flier, Wiesje; Lötjönen, Jyrki

    2016-01-01

    Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by

  1. The Role of Gene Editing in Neurodegenerative Diseases.

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Lee, Yih-Jing; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2017-03-03

    Neurodegenerative diseases (NDs), at least including Alzheimer's, Huntington's, and Parkinson's diseases, have become the most dreaded maladies because of no precise diagnostic tools or definite treatments for these debilitating diseases. The increased prevalence and a substantial impact on the social-economic and medical care of NDs propel governments to develop policies to counteract the impact. Although the etiologies of NDs are still unknown, growing evidence suggests that genetic, cellular and circuit alternations may cause the generation of abnormal misfolded proteins, which uncontrolledly accumulate to damage eventually overwhelms the protein-disposal mechanisms of these neurons, leading to a common pathological feature of NDs. If the functions and the connectivity can be restored, alterations and accumulated damages may improve. The gene-editing tools, including Zincfinger nucleases, Transcription activator-like effector nucleases, and Clustered regularly interspaced short palindromic repeats associated nucleases have emerged as a novel tool not only for generating specific ND animal models for interrogating the mechanisms and screening potential drugs against NDs, but also for the editing sequence-specific genes to help patients with NDs to regain the functions and connectivity. This review introduces the clinical manifestations of three distinct NDs and the applications of the gene-editing technology on these debilitating diseases.

  2. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases

    Sahar eAl-Mahdawi

    2014-12-01

    Full Text Available DNA methylation primarily occurs within human cells as a 5-methylcytosine (5mC modification of the cytosine bases in CpG dinucleotides. 5mC has proven to be an important epigenetic mark that is involved in the control of gene transcription for processes such as development and differentiation. However, recent studies have identified an alternative modification, 5-hydroxymethylcytosine (5hmC, which is formed by oxidation of 5mC by ten-eleven translocation (TET enzymes. The overall levels of 5hmC in the mammalian genome are approximately 10% of 5mC levels, although higher levels have been detected in tissues of the central nervous system (CNS. The functions of 5hmC are not yet fully known, but evidence suggests that 5hmC may be both an intermediate product during the removal of 5mC by passive or active demethylation processes and also an epigenetic modification in its own right, regulating chromatin or transcriptional factors involved in processes such as neurodevelopment or environmental stress response. This review highlights our current understanding of the role that 5hmC plays in neurodegenerative diseases, including Alzheimer’s disease (AD, amyotrophic lateral sclerosis (ALS, fragile X-associated tremor/ataxia syndrome (FXTAS, Friedreich ataxia (FRDA, Huntington’s disease (HD, and Parkinson’s disease (PD.

  3. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    Ian James Martins

    2015-12-01

    Full Text Available Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  4. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases.

    Martins, Ian James

    2015-12-10

    Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  5. Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases.

    Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai

    2015-08-01

    Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.

  6. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer's disease.

    Akagi, Masaaki; Matsui, Nobuaki; Akae, Haruka; Hirashima, Nana; Fukuishi, Nobuyuki; Fukuyama, Yoshiyasu; Akagi, Reiko

    2015-02-01

    Developed regions, including Japan, have become "aged societies," and the number of adults with senile dementias, such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease, has also increased in such regions. Neurotrophins (NTs) may play a role in the treatment of AD because endogenous neurotrophic factors (NFs) prevent neuronal death. However, peptidyl compounds have been unable to cross the blood-brain barrier in clinical studies. Thus, small molecules, which can mimic the functions of NFs, might be promising alternatives for the treatment of neurodegenerative diseases. Natural products, such as or nutraceuticals or those used in traditional medicine, can potentially be used to develop new therapeutic agents against neurodegenerative diseases. In this review, we introduced the neurotrophic activities of polyphenols honokiol and magnolol, which are the main constituents of Magnolia obovata Thunb, and methanol extracts from Zingiber purpureum (BANGLE), which may have potential therapeutic applications in various neurodegenerative disorders.

  7. Neurodegenerative diseases: a common etiology and a common therapy.

    Pierpaoli, Walter

    2005-12-01

    The variety of names of neurodegenerative diseases (NDDs) does not indicate that there is a wide variety of causes and a multiple number of cures. In fact NDDs derive from a common and repetitive, almost monotonous multicausal origin. NDDs are initiated invariably by a sudden or silent insidious decrease in immunologic resistance of the T cell-dependent or delayed type, produced by a large variety of psychological-emotional and/or environmental "stressors" (e.g., social, family-domestic, economic, alimentary, traumatic, and professional). These stressors increase the vulnerability of tissues (in this case, a section of the central or peripheral nervous system) to attack by a common virus (e.g., adenoviruses and herpesviruses). This attack creates a vicious circle leading to emergence of virus-generated tissue autoantigens and then to formation of autoantibodies. Use of corticosteroids and immunosuppressive drugs dramatically worsen and "eternalize" the diseases with further immunosuppression. Invariably, onset of NDDs is anticipated by a clear-cut alteration of the hormonal cyclicity, which closely controls immunity. My experience with patients in the last five years indicates a new approach to prevent and cure NDDs, based on a system totally divergent from present therapies. In fact "resetting the hormonal cyclicity clock" results in restoration of hormone-dependent antiviral immunity, arrest of disease progression, and at least partial recovery of neural functions, whatever the origin, anatomic location, and course of pathology.

  8. The involvement of microRNAs in neurodegenerative diseases.

    Maciotta, Simona; Meregalli, Mirella; Torrente, Yvan

    2013-12-19

    Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed.

  9. MicroRNAs (miRNAs) in neurodegenerative diseases.

    Nelson, Peter T; Wang, Wang-Xia; Rajeev, Bernard W

    2008-01-01

    Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small ( approximately 22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of this review is to provide perspective for these new data that may be helpful to specialists in either field. An overview is provided about the normal functions for miRNAs, including some of the newer concepts related to the human brain. Recently published studies pertaining to the roles of miRNAs in NDs--including Alzheimer's disease, Parkinson's disease and triplet repeat disorders-are described. Finally, a discussion is included with theoretical syntheses and possible future directions in exploring the nexus between miRNA and ND research.

  10. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre.

    Toledo, Jon B; Arnold, Steven E; Raible, Kevin; Brettschneider, Johannes; Xie, Sharon X; Grossman, Murray; Monsell, Sarah E; Kukull, Walter A; Trojanowski, John Q

    2013-09-01

    Cerebrovascular disease and vascular risk factors are associated with Alzheimer's disease, but the evidence for their association with other neurodegenerative disorders is limited. Therefore, we compared the prevalence of cerebrovascular disease, vascular pathology and vascular risk factors in a wide range of neurodegenerative diseases and correlate them with dementia severity. Presence of cerebrovascular disease, vascular pathology and vascular risk factors was studied in 5715 cases of the National Alzheimer's Coordinating Centre database with a single neurodegenerative disease diagnosis (Alzheimer's disease, frontotemporal lobar degeneration due to tau, and TAR DNA-binding protein 43 immunoreactive deposits, α-synucleinopathies, hippocampal sclerosis and prion disease) based on a neuropathological examination with or without cerebrovascular disease, defined neuropathologically. In addition, 210 'unremarkable brain' cases without cognitive impairment, and 280 cases with pure cerebrovascular disease were included for comparison. Cases with cerebrovascular disease were older than those without cerebrovascular disease in all the groups except for those with hippocampal sclerosis. After controlling for age and gender as fixed effects and centre as a random effect, we observed that α-synucleinopathies, frontotemporal lobar degeneration due to tau and TAR DNA-binding protein 43, and prion disease showed a lower prevalence of coincident cerebrovascular disease than patients with Alzheimer's disease, and this was more significant in younger subjects. When cerebrovascular disease was also present, patients with Alzheimer's disease and patients with α-synucleinopathy showed relatively lower burdens of their respective lesions than those without cerebrovascular disease in the context of comparable severity of dementia at time of death. Concurrent cerebrovascular disease is a common neuropathological finding in aged subjects with dementia, is more common in Alzheimer

  11. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a mechanistic approach.

    Baltazar, Maria Teresa; Dinis-Oliveira, Ricardo Jorge; de Lourdes Bastos, Maria; Tsatsakis, Aristidis M; Duarte, José Alberto; Carvalho, Félix

    2014-10-15

    The etiology of most neurodegenerative disorders is multifactorial and consists of an interaction between environmental factors and genetic predisposition. The role of pesticide exposure in neurodegenerative disease has long been suspected, but the specific causative agents and the mechanisms underlying are not fully understood. For the main neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis there are evidences linking their etiology with long-term/low-dose exposure to pesticides such as paraquat, maneb, dieldrin, pyrethroids and organophosphates. Most of these pesticides share common features, namely the ability to induce oxidative stress, mitochondrial dysfunction, α-synuclein fibrillization and neuronal cell loss. This review aims to clarify the role of pesticides as environmental risk factors in genesis of idiopathic PD and other neurological syndromes. For this purpose, the most relevant epidemiological and experimental data is highlighted in order to discuss the molecular mechanisms involved in neurodegeneration.

  12. Cell ageing: a flourishing field for neurodegenerative diseases

    Dora Brites

    2015-06-01

    Full Text Available Cellular senescence is viewed as an irreversible cell-cycle arrest mechanism involving a complexity of biological progressive processes and the acquisition of diverse cellular phenotypes. Several cell-intrinsic and extrinsic causes (stresses may lead to diverse cellular signaling cascades that include oxidative stress, mitochondrial dysfunction, DNA damage, excessive accumulation of misfolded proteins, impaired microRNA processing and inflammation. Here we review recent advances in the causes and consequences of brain cell ageing, including the senescence of endothelial cells at the central nervous system barriers, as well as of neurons and glial cells. We address what makes ageing an important risk factor for neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and cerebrovascular disease. In particular, we highlight the importance of defects in mitochondrial dynamics, in the cathepsin activity imbalance, in cell-cell communication, in the accumulation of misfolded and unfolded proteins and in the microRNA profiling as having potential impact on cellular ageing processes. Another important aspect is that the absence of specific senescence biomarkers has hampered the characterization of senescent cells in ageing and age-associated diseases. In accordance, the senescence-associated secretory phenotype (SASP or secretome was shown to vary in distinct cell types and upon different stressors, and SASP heterogeneity is believed to create subsets of senenescent cells. In addition to secreted proteins, we then place extracellular vesicles (exosomes and ectosomes as important mediators of intercellular communication with pathophysiological roles in disease spreading, and as emerging targets for therapeutic intervention. We also discuss the application of engineered extracellular vesicles as vehicles for drug delivery. Finally, we summarize current knowledge on methods to rejuvenate senescent cells

  13. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease

    Sarko, Diana K.; McKinney, Cindy E.

    2017-01-01

    Exosomes, small lipid bilayer vesicles, are part of the transportable cell secretome that can be taken up by nearby recipient cells or can travel through the bloodstream to cells in distant organs. Selected cellular cytoplasm containing proteins, RNAs, and other macromolecules is packaged into secreted exosomes. This cargo has the potential to affect cellular function in either healthy or pathological ways. Exosomal content has been increasingly shown to assist in promoting pathways of neurodegeneration such as β-amyloid peptide (Aβ) accumulation forming amyloid plaques in the brains of patients with Alzheimer's disease, and pathological aggregates of proteins containing α-synuclein in Parkinson's disease transferred to the central nervous system via exosomes. In attempting to address such debilitating neuropathologies, one promising utility of exosomes lies in the development of methodology to use exosomes as natural delivery vehicles for therapeutics. Because exosomes are capable of penetrating the blood-brain barrier, they can be strategically engineered to carry drugs or other treatments, and possess a suitable half-life and stability for this purpose. Overall, analyses of the roles that exosomes play between diverse cellular sites will refine our understanding of how cells communicate. This mini-review introduces the origin and biogenesis of exosomes, their roles in neurodegenerative processes in the central nervous system, and their potential utility to deliver therapeutic drugs to cellular sites. PMID:28289371

  14. The involvement of microRNAs in neurodegenerative diseases

    Simona eMaciotta Rolandin

    2013-12-01

    Full Text Available Neurodegenerative diseases (NDDs originate from loss of neurons in the central nervous system and are severely debilitating. They are worldwide spread and their incidence increases with age so that they are supposed to become more common due to extended life expectancy. Since no cure is available they have become a major challenge to neurobiology. The increasing relevance of microRNAs (miRNAs in biology has prompt the scientific society to investigate on their possible involvement in neurodegeneration with the aim to find new therapeutic targets. Indeed the idea of using miRNAs as therapeutic targets is nowadays not far from realization but important issues need to be addressed before moving towards the clinics. With the present review we aim to resume what have been so far disclose on the involvement of miRNAs in NDDs pathogenesis. Furthermore, their expression levels in peripheral tissues of patients affected by NDDs will be here reported in order to evaluate their application as biomarker of disease. Finally the discrepancy, innovation and effectiveness of data collected will be elucidated and discussed.

  15. The pathogenic role of the inflammasome in neurodegenerative diseases.

    Freeman, Leslie C; Ting, Jenny P-Y

    2016-01-01

    The inflammasome is a large macromolecular complex that contains multiple copies of a receptor or sensor of pathogen-derived or damage-derived molecular patterns, pro-caspase-1, and an adaptor called ASC (apoptotic speck containing protein with a CARD), which results in caspase-1 maturation. Caspase-1 then mediates the release of pro-inflammatory cytokines such as IL-1β and IL-18. These cytokines play critical roles in mediating immune responses during inflammation and innate immunity. Broader studies of the inflammasome over the years have implicated their roles in the pathogenesis of a variety of inflammatory diseases. Recently, studies have shown that the inflammasome modulates neuroinflammatory cells and the initial stages of neuroinflammation. A secondary cascade of events associated with neuroinflammation (such as oxidative stress) has been shown to activate the inflammasome, making the inflammasome a promising therapeutic target in the modulation of neurodegenerative diseases. This review will focus on the pathogenic role that inflammasomes play in neurologic diseases such as Alzheimer's disease, traumatic brain injury, and multiple sclerosis. We here review the role of the inflammasome in the pathogenesis of traumatic brain injury (TBI). TBI is initiated by physical force exerted to head, resulting in neuronal injury and death. Primary insult is followed by a secondary cascade of events following neuroinflammation such as mitochondrial dysfunction, production of reactive oxygen species, potassium effluxes, and release of circulating DNA. These events can potentially trigger the activation of NLRP3, NLRP1, and AIM2 during TBI but have yet to be confirmed (dashed lines). NLRP3, NLRP1, and AIM2 associate with the adaptor protein ASC, which initiates the cleavage of pro-caspase-1 to the mature form of caspase-1 which cleaves pro-IL-1β and pro-IL-18 into their mature forms of IL-1β and IL-18.

  16. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    Hall, Vanessa Jane

    2016-01-01

    , frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...... these diseases, but will lead to even more findings in the future as gene and cell culture technology continues to develop....

  17. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    Lila Carniglia

    2017-01-01

    Full Text Available Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  18. Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role?

    Santa Cirmi

    2016-09-01

    Full Text Available Neurodegenerative diseases (ND result from the gradual and progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system or both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of sensory information transmission and loss of movement control. There is no effective treatment for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects. Within the past decades, several natural remedies have gained attention as potential neuroprotective drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables, cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for the development of nutraceuticals, food supplements or complementary and alternative drugs to maintain and improve the neurophysiological status.

  19. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    Ailton Melo

    2011-01-01

    Full Text Available The incidence and prevalence of neurodegenerative diseases (ND increase with life expectancy. This paper reviews the role of oxidative stress (OS in ND and pharmacological attempts to fight against reactive oxygen species (ROS-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.

  20. Association between environmental exposure to pesticides and neurodegenerative diseases

    Parron, Tesifon [University of Almeria, Department of Neurosciences and Health Sciences, Almeria (Spain); Andalusian Council of Health at Almeria province, Almeria (Spain); Requena, Mar [Andalusian Council of Health at Almeria province, Almeria (Spain); Hernandez, Antonio F., E-mail: ajerez@ugr.es [University of Granada School of Medicine, Granada (Spain); Alarcon, Raquel [Andalusian Council of Health at Almeria province, Almeria (Spain)

    2011-11-15

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: Black-Right-Pointing-Pointer Environmental exposure to pesticides and neurodegenerative-psychiatric disorders. Black-Right-Pointing-Pointer Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. Black

  1. Flavonoid-based therapies in the early management of neurodegenerative diseases.

    Solanki, Isha; Parihar, Priyanka; Mansuri, Mohammad Lukman; Parihar, Mordhwaj S

    2015-01-01

    During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases.

  2. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases.

    Johanna Gaiottino

    Full Text Available Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf are cytoskeletal proteins of neurons and their release into cerebrospinal fluid has shown encouraging results as a biomarker for neurodegeneration. This study aimed to validate the quantification of the Nf light chain (NfL in blood samples, as a biofluid source easily accessible for longitudinal studies.We developed and applied a highly sensitive electrochemiluminescence (ECL based immunoassay for quantification of NfL in blood and CSF.Patients with Alzheimer's disease (AD (30.8 pg/ml, n=20, Guillain-Barré-syndrome (GBS (79.4 pg/ml, n=19 or amyotrophic lateral sclerosis (ALS (95.4 pg/ml, n=46 had higher serum NfL values than a control group of neurological patients without evidence of structural CNS damage (control patients, CP (4.4 pg/ml, n=68, p<0.0001 for each comparison, p=0.002 for AD patients and healthy controls (HC (3.3 pg/ml, n=67, p<0.0001. Similar differences were seen in corresponding CSF samples. CSF and serum levels correlated in AD (r=0.48, p=0.033, GBS (r=0.79, p<0.0001 and ALS (r=0.70, p<0.0001, but not in CP (r=0.11, p=0.3739. The sensitivity and specificity of serum NfL for separating ALS from healthy controls was 91.3% and 91.0%.We developed and validated a novel ECL based sandwich immunoassay for the NfL protein in serum (NfL(Umea47:3; levels in ALS were more than 20-fold higher than in controls. Our data supports further longitudinal studies of serum NfL in neurodegenerative diseases as a potential biomarker of on-going disease progression, and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials.

  3. Sleep disturbance in mental health problems and neurodegenerative disease

    Anderson KN

    2013-05-01

    Full Text Available Kirstie N Anderson1 Andrew J Bradley2,3 1Department of Neurology, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK; 2Eli Lilly and Company Limited, Lilly House, Basingstoke, UK; 3Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK Abstract: Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour processes and is vital for normal brain function. This review will outline the normal sleep–wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed. Keywords: sleep, mental health, neurodegenerative disorders, cognition

  4. Clinical value of nutritional status in neurodegenerative diseases: What is its impact and how it affects disease progression and management?

    Tsagalioti, Eftyhia; Trifonos, Christina; Morari, Aggeliki; Vadikolias, Konstantinos; Giaginis, Constantinos

    2016-11-30

    Neurodegenerative diseases constitute a major problem of public health that is associated with an increased risk of mortality and poor quality of life. Malnutrition is considered as a major problem that worsens the prognosis of patients suffering from neurodegenerative diseases. In this aspect, the present review is aimed to critically collect and summarize all the available existing clinical data regarding the clinical impact of nutritional assessment in neurodegenerative diseases, highlighting on the crucial role of nutritional status in disease progression and management. According to the currently available clinical data, the nutritional status of patients seems to play a very important role in the development and progression of neurodegenerative diseases. A correct nutritional evaluation of neurodegenerative disease patients and a right nutrition intervention is essential in monitoring their disease.

  5. Targeting microRNAs involved in the BDNF signaling impairment in neurodegenerative diseases

    You, Hwa Jeong; Park, Jae Hyon; Pareja Galeano, Helios; Lucía Mulas, Alejandro; Shin, Jae Il

    2016-01-01

    Neurodegenerative diseases are becoming an ever-increasing problem in aging populations. Low levels of brain-derived neurotrophic factor (BDNF) have previously been associated with the pathogenesis of numerous neurodegenerative diseases. Recently, microRNAs (miRNAs) have been proposed as potential novel therapeutic targets for treating various diseases of the central nervous system (CNS), and interestingly, few studies have reported several miRNAs that downregulate the expression levels of BD...

  6. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases.

    Jansen, Anne H P; Reits, Eric A J; Hol, Elly M

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal function and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS function in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell function might provide essential information in unraveling mechanisms of neurodegenerative diseases.

  7. The ubiquitin proteasome system in glia and its role in neurodegenerative disease

    Anne H.P. Jansen

    2014-08-01

    Full Text Available The ubiquitin proteasome system (UPS is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal functioning and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS functioning in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell functioning might provide essential information in unraveling mechanisms of neurodegenerative diseases.

  8. MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases.

    Ha, Tai-You

    2011-10-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

  9. Is the Modulation of Autophagy the Future in the Treatment of Neurodegenerative Diseases?

    Ana Gonzalez-Polo, Rosa; Pizarro-Estrella, Elisa; Yakhine-Diop, Sokhna M. S.; Rodriguez-Arribas, Mario; Gomez-Sanchez, Ruben; Bravo-San Pedro, Jose M.; Fuentes, Jose M.

    2015-01-01

    The pathogenesis of neurodegenerative diseases involves altered activity of proteolytic systems and accumulation of protein aggregates. Autophagy is an intracellular process in which damaged organelles and long-lived proteins are degraded and recycled for maintaining normal cellular homeostasis. Dis

  10. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    Jansen, A.H.P.; Reits, E.A.J.; Hol, E.M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's,

  11. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases.

    Tan, Lin; Yu, Jin-Tai; Tan, Lan

    2015-01-01

    Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), originate from a loss of neurons in the central nervous system (CNS) and are severely debilitating. The incidence of neurodegenerative diseases increases with age, and they are expected to become more common due to extended life expectancy. Because of no clear mechanisms, these diseases have become a major challenge in neurobiology. It is well recognized that these disorders become the culmination of many different genetic and environmental influences. Prior studies have shown that microRNAs (miRNAs) are pathologically altered during the inexorable course of some neurodegenerative diseases, suggesting that miRNAs may be the contributing factor in neurodegeneration. Here, we review what is known about the involvement of miRNAs in the pathogenesis of neurodegenerative diseases. The biogenesis of miRNAs and various functions of miRNAs that act as the chief regulators will be discussed. We focus in particular on dysregulation of miRNAs which leads to several neurodegenerative diseases from three aspects: miRNA-generating disorders, miRNA-targeting genes and epigenetic alterations. Furthermore, recent evidences have shown that circulating miRNA expression levels are changed in patients with neurodegenerative diseases. Circulating miRNA expression levels are reported in patients in order to evaluate their application as biomarkers of these diseases. A discussion is included with a potential diagnostic biomarker and the possible future direction in exploring the nexus between miRNAs and various neurodegenerative diseases.

  12. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases

    Zeliger, Harold I.

    2013-01-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer′s disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutan...

  13. Therapeutic approach to pain in neurodegenerative diseases : current evidence and perspectives

    De Tommaso, Marina; Kunz, Miriam; Valeriani, Massimiliano

    2016-01-01

    INTRODUCTION Neurodegenerative diseases are increasing in parallel to the lengthening of survival. The management of Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD-related disorders, and motor neuron diseases (MND), is mainly targeted to motor and cognitive impairment,

  14. A Neurodegenerative Disease Sleep Questionnaire: principal component analysis in Parkinson's disease.

    Scullin, Michael K; Harrison, Tyler L; Factor, Stewart A; Bliwise, Donald L

    2014-01-15

    Sleep disturbances are common in many neurodegenerative diseases and may include altered sleep duration, fragmented sleep, nocturia, excessive daytime sleepiness, and vivid dreaming experiences, with occasional parasomnias. Although representing the "gold standard," polysomnography is not always cost-effective or available for measuring sleep disturbance, particularly for screening. Although numerous sleep-related questionnaires exist, many focus on a specific sleep disturbance (e.g., restless legs, REM Behavior Disorder) and do not capture efficiently the variety of sleep issues experienced by such patients. We administered the 12-item Neurodegenerative Disease Sleep Questionnaire (NDSQ) and the Epworth Sleepiness Scale to 145 idiopathic Parkinson's disease patients. Principal component analysis using eigenvalues greater than 1 suggested five separate components: sleep quality (e.g., sleep fragmentation), nocturia, vivid dreams/nightmares, restless legs symptoms, and sleep-disordered breathing. These results demonstrate construct validity of our sleep questionnaire and suggest that the NDSQ may be a useful screening tool for sleep disturbances in at least some types of neurodegenerative disorders.

  15. Structural studies of parkin and sacsin: Mitochondrial dynamics in neurodegenerative diseases.

    Li, Xinlu; Gehring, Kalle

    2015-10-01

    Neurodegenerative diseases are prevalent, chronic diseases emanating from the dysfunction or death of neurons. The disrupted mitochondrial dynamics observed in a large number of neurodegenerative diseases suggests a common etiology with the possibility of therapies targeting multiple diseases. This review highlights the contributions of structural studies of disease-related proteins to the understanding of neurodegenerative disease pathogenesis and especially the cellular events leading to disruptions in mitochondrial dynamics and function. The examples used are parkin and sacsin, two proteins linked respectively to autosomal-recessive early-onset PD and autosomal-recessive spastic ataxia of Charlevoix-Saguenay. Structural studies of parkin and sacsin explain the pathogenicity of a large number of disease-associated mutations and reveal insights into their cellular functions related to mitochondrial dynamics.

  16. The progress of cerebrospinal fluid biomarkers in patients with neurodegenerative diseases

    WANG Wei-zhi

    2013-02-01

    Full Text Available Neurodegenerative diseases include a heterogeneous group of diseases with complicated and overlapped clinical phenotypes. It is difficult to diagnose or identify this kind of disease due to insidious onset and chronic and progressive development. Since processes in the brain can be monitored by analysis of cerebrospinal fluid (CSF, abundant research efforts focus on the efficacy of biomarkers in CSF to indicate specific neurodegenerative lesions and to assist the diagnosis process, assessing whether one biomarker or several biomarkers together could be the reliable tools for diagnosis of specific neurodegenerative diseases. This article mainly reviews the research status and supplementary value in diagnosis and differentiation of CSF biomarkers in common degenerative diseases [e.g. multiple sclerosis (MS, Alzheimer's disease (AD, Parkinson's disease (PD, amyotrophic lateral sclerosis (ALS].

  17. A Review of Quality of Life after Predictive Testing for and Earlier Identification of Neurodegenerative Diseases

    Paulsen, Jane S.; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E.; Panegyres, Peter K.; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K.

    2013-01-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these “patient reported outcomes” for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance towards predictive genetic testing. Forty-one studies examining health related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  18. A review of quality of life after predictive testing for and earlier identification of neurodegenerative diseases.

    Paulsen, Jane S; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E; Panegyres, Peter K; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K

    2013-11-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these "patient reported outcomes" for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance toward predictive genetic testing. Forty-one studies examining health-related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care.

  19. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses.

    Wilkaniec, Anna; Czapski, Grzegorz A; Adamczyk, Agata

    2016-01-01

    Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.

  20. Role of Immunity and Inflammation in the Pathophysiology of Neurodegenerative Diseases.

    Fakhoury, Marc

    2015-01-01

    Neurodegenerative diseases are the result of progressive loss of neurons and axons in the central nervous system (CNS), which can lead to cognition and motor dysfunction. It is well known that CNS inflammation and immune activation play a major role in the pathophysiology of neurodegenerative diseases. Although the blood-brain barrier (BBB) is able to protect the CNS from immune activation, it becomes more permeable during inflammation, which renders the brain vulnerable to infections. A better understanding of the interaction between inflammatory mediators, such as cytokines, and the activated immune response, including astrocytes and microglia, is critical for the development of new therapeutic strategies for neurodegenerative diseases. This review first describes the role of innate immune activation in neurodegenerative diseases and illustrates the factors that contribute to the communication between the CNS and the immune system. A closer look is given at the role of the BBB in inflammation and immunity, as well as at the animal models used to study inflammation in neurodegenerative diseases. Finally, this review outlines the key pathways and biological mechanisms involved in CNS diseases, with a particular focus on multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD).

  1. The potential of microRNAs as biofluid markers of neurodegenerative diseases

    Danborg, P. B.; Simonsen, A. H.; Waldemar, G.;

    2014-01-01

    MicroRNAs (miRNA) are biological molecules transcribed from non-protein coding regions of the genome, participating in regulating cellular processes. MiRNAs in biofluids may possess neurodegenerative disease biomarker potential for screening tests, differential diagnosis and disease progression...... monitoring. This systematic review clarifies biomarker potential of miRNAs detected in biofluids of neurodegenerative disease patients. Thirty-three and ten miRNAs displayed significant expression between patients with multiple sclerosis and Alzheimer's disease, respectively, compared to healthy controls...... in minimum two studies. Thirty-eight miRNAs showed biomarker potential by distinguishing significantly between minimum two diseases. Summarized data directs future research towards discovering new biomarkers for neurodegenerative diseases....

  2. There's Something Wrong with my MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases.

    Paillusson, Sebastien; Stoica, Radu; Gomez-Suaga, Patricia; Lau, Dawn H W; Mueller, Sarah; Miller, Tanya; Miller, Christopher C J

    2016-03-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings.

  3. The potential of microRNAs as biofluid markers of neurodegenerative diseases--a systematic review.

    Danborg, Pia B; Simonsen, Anja H; Waldemar, Gunhild; Heegaard, Niels H H

    2014-06-01

    MicroRNAs (miRNA) are biological molecules transcribed from non-protein coding regions of the genome, participating in regulating cellular processes. MiRNAs in biofluids may possess neurodegenerative disease biomarker potential for screening tests, differential diagnosis and disease progression monitoring. This systematic review clarifies biomarker potential of miRNAs detected in biofluids of neurodegenerative disease patients. Thirty-three and ten miRNAs displayed significant expression between patients with multiple sclerosis and Alzheimer's disease, respectively, compared to healthy controls in minimum two studies. Thirty-eight miRNAs showed biomarker potential by distinguishing significantly between minimum two diseases. Summarized data directs future research towards discovering new biomarkers for neurodegenerative diseases.

  4. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases.

    Carletti, Barbara; Piemonte, Fiorella; Rossi, Ferdinando

    2011-06-01

    During the past decades Neural Stem Cells have been considered as an alternative source of cells to replace lost neurons and NSC transplantation has been indicated as a promising treatment for neurodegenerative disorders. Nevertheless, the current understanding of NSC biology suggests that, far from being mere spare parts for cell replacement therapies, NSCs could play a key role in the pharmacology of neuroprotection and become protagonists of innovative treatments for neurodegenerative diseases. Here, we review this new emerging concept of NSC biology.

  5. PET Imaging of the Peripheral Benzodiazepine Receptor : Monitoring Disease Progression and Therapy Response in Neurodegenerative Disorders

    Doorduin, Janine; de Vries, Erik F. J.; Dierckx, Rudi A.; Klein, Hans C.

    2008-01-01

    It is important to gain more insight into neurodegenerative diseases, because these debilitating diseases can not be cured. A common characteristic of many neurological diseases is neuroinflammation, which is accompanied by the presence of activated microglia cells. In activated microglia cells, an

  6. The role of DNA methylation and histone modifications in neurodegenerative diseases: A systematic review

    K.-X. Wen (Ke-Xin); Milic, J. (Jelena); El-Khodor, B. (Bassem); K. Dhana (Klodian); J. Nano; Pulido, T. (Tammy); B. Kraja (Bledar); A. Zaciragic (Asija); W.M. Bramer (Wichor); J. Troup; R. Chowdhury (Rajiv); Arfam Ikram, M.; A. Dehghan (Abbas); T. Muka (Taulant); O.H. Franco (Oscar)

    2016-01-01

    textabstractImportance Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Objective To systematically review studies investigati

  7. Proline-rich polypeptides in Alzheimer's disease and neurodegenerative disorders - Therapeutic potential or a mirage?

    Gladkevich, A.; Bosker, F.; Korf, J.; Yenkoyan, K.; Vahradyan, H.; Aghajanov, M.

    2007-01-01

    The development of effective and safe drugs for a growing Alzheimer disease population is an increasing need at present. Both experimental and clinical evidence support a beneficial effect of proline-rich polypeptides in a number of neurodegenerative diseases, including Alzheimer disease. Experiment

  8. New molecular targets for PET and SPECT imaging in neurodegenerative diseases

    Benadiba, Marcel; Luurtsema, Gert; Wichert-Ana, Lauro; Buchpigel, Carlos Alberto; Busatto Filho, Geraldo

    2012-01-01

    The pathophysiology of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) has not yet been completely elucidated. However, in the past few years, there have been great knowledge advances about intra-and extracellular proteins that may display impaired funct

  9. Computer-based magnetic resonance imaging as a tool in clinical diagnosis in neurodegenerative diseases.

    Kassubek, Jan; Müller, Hans-Peter

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the core elements within the differential diagnostic work-up of patients with neurodegenerative diseases such as dementia syndromes, Parkinsonian syndromes, and motor neuron diseases. Currently, computerized MRI analyses are not routinely used for individual diagnosis; however, they have improved the anatomical understanding of pathomorphological alterations in various neurodegenerative diseases by quantitative comparisons between patients and controls at the group level. For multiparametric MRI protocols, including T1-weighted MRI, diffusion-weighted imaging, and intrinsic functional connectivity MRI, the potential as a surrogate marker is a subject of investigation. The additional value of MRI with respect to diagnosis at the individual level and for future disease-modifying multicentre trials remains to be defined. Here, we give an overview of recent applications of multiparametric MRI to patients with various neurodegenerative diseases. Starting from applications at the group level, continuous progress of a transfer to individual diagnostic classification is ongoing.

  10. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases.

    Ahn, Misol; Kalume, Franck; Pitstick, Rose; Oehler, Abby; Carlson, George; DeArmond, Stephen J

    2016-03-01

    Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases.

  11. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases

    Xiao-xia DONG; Yan WANG; Zheng-hong QIN

    2009-01-01

    A pivotal role for excitotoxicity in neurodegenerative diseases is gaining increasingly more acceptance, but the underlying mechanisms through which it participates in neurodegeneration still need further investigation. Excessive activation of glutamate receptors by excitatory amino acids leads to a number of deleterious consequences, including impairment of calcium buffering, generation of free radicals, activation of the mitochondrial permeability transition and secondary excitotoxicity. Recent studies implicate excitotoxicity in a variety of neuropathological conditions, suggesting that neurodegenerative diseases with distinct genetic etiologies may share excitotoxicity as a common pathogenic pathway. Thus, understanding the pathways involved in excitotoxicity is of critical importance for the future clinical treatment of many neurodegenerafive diseases. This review discusses the current understanding of excitotoxic mechanisms and how they are involved in the pathogenesis of neurodegenerative diseases.

  12. Is Neurodegenerative Disease a Long-Latency Response to Early-Life Genotoxin Exposure?

    Glen E. Kisby

    2011-09-01

    Full Text Available Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, a disappearing neurodegenerative disease linked to use of the neurotoxic cycad plant for food and/or medicine, is intensively studied because the neuropathology (tauopathy is similar to that of Alzheimer’s disease. Cycads contain neurotoxic and genotoxic principles, notably cycasin and methylazoxymethanol, the latter sharing chemical relations with nitrosamines, which are derived from nitrates and nitrites in preserved meats and fertilizers, and also used in the rubber and leather industries. This review includes new data that influence understanding of the neurobiological actions of cycad and related genotoxins and the putative mechanisms by which they might trigger neurodegenerative disease.

  13. Possible protective action of neurotrophic factors and natural compounds against common neurodegenerative diseases

    Tadahiro Numakawa

    2014-01-01

    It has been suggested that altered levels/function of brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of neurodegenerative diseases including Alzheimer’s disease. BDNF positively contributes to neural survival and synapse maintenance via stimulating its high afifnity receptor TrkB, making upregulation of BDNF and/or activation of BDNF-related intracellular signaling an attractive approach to treating neurodegenerative diseases. In this short review, I brielfy introduce small natural compounds such as lfavonoids that successfully increase activation of the BDNF system and discuss their beneifcial effects against neurodegeneration.

  14. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein.

    Jackson, Walker S

    2014-01-01

    The mechanisms underlying the selective targeting of specific brain regions by different neurodegenerative diseases is one of the most intriguing mysteries in medicine. For example, it is known that Alzheimer's disease primarily affects parts of the brain that play a role in memory, whereas Parkinson's disease predominantly affects parts of the brain that are involved in body movement. However, the reasons that other brain regions remain unaffected in these diseases are unknown. A better understanding of the phenomenon of selective vulnerability is required for the development of targeted therapeutic approaches that specifically protect affected neurons, thereby altering the disease course and preventing its progression. Prion diseases are a fascinating group of neurodegenerative diseases because they exhibit a wide phenotypic spectrum caused by different sequence perturbations in a single protein. The possible ways that mutations affecting this protein can cause several distinct neurodegenerative diseases are explored in this Review to highlight the complexity underlying selective vulnerability. The premise of this article is that selective vulnerability is determined by the interaction of specific protein conformers and region-specific microenvironments harboring unique combinations of subcellular components such as metals, chaperones and protein translation machinery. Given the abundance of potential contributory factors in the neurodegenerative process, a better understanding of how these factors interact will provide invaluable insight into disease mechanisms to guide therapeutic discovery.

  15. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    Swerdlow, Russell H.

    2011-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed.

  16. The Role of TNF Related Apoptosis-Inducing Ligand in Neurodegenerative Diseases

    Y.Huang; N.Erdmann; H.Peng; Y.Zhao

    2005-01-01

    A hallmark of all forms of neurodegenerative diseases is impairment of neuronal functions, and in many cases neuronal cell death. Although the etiology of neurodegenerative diseases may be distinct, different diseases display a similar pathogenesis, for example abnormal immunity within the central nervous system (CNS), activation of macrophage/microglia and the involvement of proinflammatory cytokines. Recent studies show that neurons in a neurodegenerative state undergo a highly regulated programmed cell death, also called apoptosis. TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, has been shown to be involved in apoptosis during many diseases. As one member of a death ligand family, TRAIL was originally thought to target only tumor cells and was not present in CNS. However, recent data showed that TRAIL was unregulated in HIV-l-infected and immune-activated macrophages, a major disease inducing cell during HIV-l-associated dementia (HAD). TRAIL is also induced on neuron by [$-amyloid protein, an important pathogen for Alzheimer's disease. In this review, we summarize the possible common aspects that TRAIL involved those neurodegenerative diseases, TRAIL induced apoptosis signaling in the CNS cells, and specific role of TRAIL in individual diseases. Cellular & MolecularImmunology. 2005;2(2):113-122.

  17. The Role of TNF Related Apoptosis-Inducing Ligand in Neurodegenerative Diseases

    Y.Huang; N.Erdmann; H.Peng; Y.Zhao; Jialin Zheng

    2005-01-01

    A hallmark of all forms of neurodegenerative diseases is impairment of neuronal functions, and in many cases neuronal cell death. Although the etiology of neurodegenerative diseases may be distinct, different diseases display a similar pathogenesis, for example abnormal immunity within the central nervous system (CNS), activation of macrophage/microglia and the involvement of proinflammatory cytokines. Recent studies show that neurons in a neurodegenerative state undergo a highly regulated programmed cell death, also called apoptosis. TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, has been shown to be involved in apoptosis during many diseases. As one member of a death ligand family, TRAIL was originally thought to target only tumor cells and was not present in CNS. However, recent data showed that TRAIL was unregulated in HIV-1-infected and immune-activated macrophages, a major disease inducing cell during HIV-1-associated dementia (HAD). TRAIL is also induced on neuron by β-amyloid protein, an important pathogen for Alzheimer's disease. In this review, we summarize the possible common aspects that TRAIL involved those neurodegenerative diseases, TRAIL induced apoptosis signaling in the CNS cells, and specific role of TRAIL in individual diseases. Cellular & Molecular Immunology. 2005;2(2):113-122.

  18. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  19. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases.

    Yamazaki, Hiromi; Tanji, Kunikazu; Wakabayashi, Koichi; Matsuura, Shin; Itoh, Ken

    2015-05-01

    As the elderly population increases, a growing number of individuals suffer from age-associated neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Oxidative stress is considered to play a crucial role in the pathogenesis of age-related diseases. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is activated by oxidative stress and regulates the expression of a variety of antioxidant enzymes and proteins that exert cytoprotective effects against oxidative stress. Numerous studies have addressed the role of Nrf2 in age-related diseases, including neurodegenerative diseases, using animal or in vitro cell culture models. Here, we introduce the role of oxidative stress in the pathogenesis of neurodegenerative diseases and critically examine the recent findings concerning the role for Nrf2 in the amelioration of AD and PD. Nrf2 not only regulates antioxidant proteins but also regulates the genes associated with autophagy and nerve growth factor signaling. Current research unequivocally demonstrates that the activation of the Nrf2 pathway is a promising novel strategy for the prevention and modification of neurodegenerative diseases.

  20. Brain-specific proteins in cerebrospinal fluid for the diagnosis of neurodegenerative diseases.

    Verbeek, M.M.; Jong, D.J. de; Kremer, H.P.H.

    2003-01-01

    Neurodegenerative disorders have traditionally been classified according to clinical criteria, e.g. as dementia syndromes (the best known is Alzheimer's disease) or as movement disorders (e.g. Parkinson's disease). Another subdivision is based on recent insights into the respective pathogenetic mech

  1. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    Reijs, B.L.; Teunissen, C.E.; Goncharenko, N.; Betsou, F.; Blennow, K.; Baldeiras, I.; Brosseron, F.; Cavedo, E.; Fladby, T.; Froelich, L.; Gabryelewicz, T.; Gurvit, H.; Kapaki, E.; Koson, P.; Kulic, L.; Lehmann, S.; Lewczuk, P.; Lleo, A.; Maetzler, W.; Mendonca, A. de; Miller, A.M.; Molinuevo, J.L.; Mollenhauer, B.; Parnetti, L.; Rot, U.; Schneider, A.; Simonsen, A.H.; Tagliavini, F.; Tsolaki, M.; Verbeek, M.M.; Verhey, F.R.J.; Zboch, M.; Winblad, B.; Scheltens, P.; Zetterberg, H.; Visser, P.J.

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid m

  2. Endoplasmic Reticulum Protein Quality Control in Neurodegenerative Disease: The Good, the Bad and the Therapy

    W. Scheper; J.J.M. Hoozemans

    2009-01-01

    Neurodegenerative disorders are often characterized by the aggregation and accumulation of misfolded proteins (e. g. Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis). Aggregated proteins are very toxic to cells in culture and both in vitro and in vivo there is overwhelming ev

  3. Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease

    Kulkarni, Apurva; Ganesan, Priya; O’Donnell, Lauren A.

    2016-01-01

    Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent cells in the developing and adult brain, are often altered during CNS insults. Recent studies highlight the complex effects of IFNγ on NSPC activity in neurodegenerative diseases. However, the mechanisms that mediate these effects, and the eventual outcomes for the host, are still being explored. Here, we review the effects of IFNγ on NSPC activity during different pathological insults. An improved understanding of the role of IFNγ would provide insight into the impact of immune responses on the progression and resolution of neurodegenerative diseases.

  4. Lack of miRNA misregulation at early pathological stages in Drosophila neurodegenerative disease models

    Anita eReinhardt

    2012-10-01

    Full Text Available Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year old Europeans or Parkinson disease (PD, 1.4% prevalence for > 55 years old share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence and frontotemporal lobar degeneration (FTLD, 0.02% prevalence, a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs, a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for 7 diseases (PD, 3 FTLD, 3 dominant ataxias that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non coding CAG repeat RNAs (sCAG in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.

  5. [Progress in induced pluripotent stem cell research for age-related neurodegenerative diseases].

    Ito, Daisuke; Yagi, Takuya; Suzuki, Norihiro

    2013-03-01

    In 2006, Takahashi et al. established a method for reprogramming somatic cells by introducing definite transcription factors, which enabled the generation of induced pluripotent stem cells (iPSCs) with pluripotency comparable to that of embryonic stem cells. In turn, it has become possible to use these iPSCs for producing various tissues needed for the treatment of neurodegenerative disorders, which have been difficult to obtain from living bodies. This advancement is expected to bring forth rapid progress in the clarification of mechanisms underlying the diseases and discovery of new innovative drugs and lead to rapid progress in regenerative medicine. In recent years, recapitulation and analysis of disease conditions using iPSCs derived from the patients themselves have been reported, and remarkable advances have been made, even for late-onset neurodegenerative disorders. These findings show that the phenotypes of late-onset neurodegenerative disorders can be recapitulated in iPSC-derived neuronal cells, which are reflected the early developmental stages, indicating cellular abnormalities exist from the prenatal period, despite the late onset diseases. In this review, we summarize the state of iPSCs research in the context of neurodegenerative disorders, discuss the possible ways for understanding the mechanisms underlying neurodegenerative disorders and discovering new drugs, and describe some other aspects of regenerative medicine.

  6. Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in Neurodegenerative Disease.

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Dubois, Evelyn; Hobert, Markus A; Müller vom Hagen, Jennifer; Krüger, Stefanie; Biskup, Saskia; Blauwendraat, Cornelis; Hruscha, Michael; Kaeser, Stephan A; Heutink, Peter; Maetzler, Walter; Synofzik, Matthis

    2016-01-01

    Altered progranulin levels play a major role in neurodegenerative diseases, like Alzheimer's dementia (AD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), even in the absence of GRN mutations. Increasing progranulin levels could hereby provide a novel treatment strategy. However, knowledge on progranulin regulation in neurodegenerative diseases remains limited. We here demonstrate that cerebrospinal fluid progranulin levels do not correlate with its serum levels in AD, FTD and ALS, indicating a differential regulation of its central and peripheral levels in neurodegeneration. Blood progranulin levels thus do not reliably predict central nervous progranulin levels and their response to future progranulin-increasing therapeutics.

  7. Residential Distance to High-voltage Power Lines and Risk of Neurodegenerative Diseases

    Frei, Patrizia; Poulsen, Aslak Harbo; Mezei, Gabor;

    2013-01-01

    period 5-20 years before diagnosis were computed. The risks for developing dementia, Parkinson's disease, multiple sclerosis, and motor neuron disease were not increased in persons living within close vicinity of a power line. The risk of Alzheimer's disease was not increased for ever living within 50 m......The aim of this study was to investigate the possible association between residential distance to high-voltage power lines and neurodegenerative diseases, especially Alzheimer's disease. A Swiss study previously found increased risk of Alzheimer's disease for people living within 50 m of a power...... line. A register-based case-control study including all patients diagnosed with neurodegenerative diseases during the years 1994-2010 was conducted among the entire adult population of Denmark. Using conditional logistic regression models, hazard ratios for ever living close to a power line in the time...

  8. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others.

    Fernández-Ruiz, Javier; Romero, Julián; Ramos, José A

    2015-01-01

    This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.

  9. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs.

    Ke, Zhipeng; Zhang, Xinzhuang; Cao, Zeyu; Ding, Yue; Li, Na; Cao, Liang; Wang, Tuanjie; Zhang, Chenfeng; Ding, Gang; Wang, Zhenzhong; Xu, Xiaojie; Xiao, Wei

    2016-03-01

    Neurodegenerative diseases, referring to as the progressive loss of structure and function of neurons, constitute one of the major challenges of modern medicine. Traditional Chinese herbs have been used as a major preventive and therapeutic strategy against disease for thousands years. The numerous species of medicinal herbs and Traditional Chinese Medicine (TCM) compound formulas in nervous system disease therapy make it a large chemical resource library for drug discovery. In this work, we collected 7362 kinds of herbs and 58,147 Traditional Chinese medicinal compounds (Tcmcs). The predicted active compounds in herbs have good oral bioavailability and central nervous system (CNS) permeability. The molecular docking and network analysis were employed to analyze the effects of herbs on neurodegenerative diseases. In order to evaluate the predicted efficacy of herbs, automated text mining was utilized to exhaustively search in PubMed by some related keywords. After that, receiver operator characteristic (ROC) curves was used to estimate the accuracy of predictions. Our study suggested that most herbs were distributed in family of Asteraceae, Fabaceae, Lamiaceae and Apocynaceae. The predictive model yielded good sensitivity and specificity with the AUC values above 0.800. At last, 504 kinds of herbs were obtained by using the optimal cutoff values in ROC curves. These 504 herbs would be the most potential herb resources for neurodegenerative diseases treatment. This study would give us an opportunity to use these herbs as a chemical resource library for drug discovery of anti-neurodegenerative disease.

  10. Differential diagnosis of neurodegenerative diseases using structural MRI data

    Koikkalainen, Juha; Rhodius-Meester, Hanneke; Tolonen, Antti;

    2016-01-01

    characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504...... of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features...... individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images...

  11. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases.

    Ni, Zhen; Chen, Robert

    2015-01-01

    Common neurodegenerative diseases include Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). Transcranial magnetic stimulation (TMS) is a noninvasive and painless method to stimulate the human brain. Single- and paired-pulse TMS paradigms are powerful ways to study the pathophysiological mechanisms of neurodegenerative diseases. Motor evoked potential studied with single-pulse TMS is increased in PD, AD and ALS, but is decreased in HD. Changes in motor cortical excitability in neurodegenerative diseases may be related to functional deficits in cortical circuits or to compensatory mechanisms. Reduction or even absence of short interval intracortical inhibition induced by paired-pulse TMS is common in neurodegenerative diseases, suggesting that there are functional impairments of inhibitory cortical circuits. Decreased short latency afferent inhibition in AD, PD and HD may be related to the cortical cholinergic deficits in these conditions. Cortical plasticity tested by paired associative stimulation or theta burst stimulation is impaired in PD, AD and HD. Repetitive TMS (rTMS) refers to the application of trains of regularly repeating TMS pulses. High-frequency facilitatory rTMS may improve motor symptoms in PD patients whereas low-frequency inhibitory stimulation is a potential treatment for levodopa induced dyskinesia. rTMS delivered both to the left and right dorsolateral prefrontal cortex improves memory in AD patients. Supplementary motor cortical stimulation in low frequency may be useful for HD patients. However, the effects of treatment with multiple sessions of rTMS for neurodegenerative diseases need to be tested in large, sham-controlled studies in the future before they can be adopted for routine clinical practice.

  12. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease.

    Wang, Yan; Xiong, Lilin; Tang, Meng

    2017-03-16

    Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Non-coding RNA and pseudogenes in neurodegenerative diseases: "The (unUsual Suspects"

    Valerio eCosta

    2012-10-01

    Full Text Available Neurodegenerative disorders and cancer are severe diseases threatening human health. The glaring differences between neurons and cancer cells mask the processes involved in their pathogenesis. Defects in cell cycle, DNA repair and cell differentiation can determine unlimited proliferation in cancer, or conversely, compromise neuronal plasticity, leading to cell death and neurodegeneration.Alteration in regulatory networks affecting gene expression contribute to human diseases' onset, including neurodegenerative disorders, and deregulation of non-coding RNAs - particularly microRNAs - is supposed to have a significant impact.Recently, competitive endogenous RNAs - acting as sponges - have been identified in cancer, indicating a new and intricate regulatory network. Given that neurodegenerative disorders and cancer share altered genes and pathways, and considering the emerging role of microRNAs in neurogenesis, we hypothesize competitive endogenous RNAs may be implicated in neurodegenerative diseases. Here we propose, and computationally predict, such regulatory mechanism may be shared between the diseases. It is predictable that similar regulation occurs in other complex diseases, and further investigation is needed.

  14. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration.

    Saxena, Smita; Caroni, Pico

    2011-07-14

    Neurodegenerative diseases selectively target subpopulations of neurons, leading to the progressive failure of defined brain systems, but the basis of such selective neuronal vulnerability has remained elusive. Here, we discuss how a stressor-threshold model of how particular neurons and circuits are selectively vulnerable to disease may underly the etiology of familial and sporadic forms of diseases such as Alzheimer's, Parkinson's, Huntington's, and ALS. According to this model, the intrinsic vulnerabilities of neuronal subpopulations to stressors and specific disease-related misfolding proteins determine neuronal morbidity. Neurodegenerative diseases then involve specific combinations of genetic predispositions and environmental stressors, triggering increasing age-related stress and proteostasis dysfunction in affected vulnerable neurons. Damage to vasculature, immune system, and local glial cells mediates environmental stress, which could drive disease at all stages.

  15. Content analysis of neurodegenerative and mental diseases social groups.

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; Bargiela-Flórez, Beatriz; López-Coronado, Miguel; Rodrigues, Joel J P C

    2015-12-01

    This article aims to characterize the different types of Facebook and Twitter groups for different mental diseases, their purposes, and their functions. We focused the search on depressive disorders, dementia, and Alzheimer's and Parkinson's diseases and examined the Facebook (www.facebook.com) and Twitter (www.twitter.com) groups. We used four assessment criteria: (1) purpose, (2) type of creator, (3) telehealth content, and (4) free-text responses in surveys and interviews. We observed a total of 357 Parkinson groups, 325 dementia groups, 853 Alzheimer groups, and 1127 depression groups on Facebook and Twitter. Moreover, we analyze the responses provided by different users. The survey and interview responses showed that many people were interested in using social networks to support and help in the fight against these diseases. The results indicate that social networks are acceptable by users in terms of simplicity and utility. People use them for finding support, information, self-help, advocacy and awareness, and for collecting funds.

  16. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  17. Redox chemistry of green tea polyphenols: therapeutic benefits in neurodegenerative diseases.

    Hügel, H M; Jackson, N

    2012-05-01

    Evidence for the medicinal and health benefits of polyphenols in green tea for the prevention of chronic diseases such as heart disease, various types of cancer and neurodegenerative diseases is advancing. Their in vivo effectiveness and molecular mechanisms are difficult to elucidate and remain a challenging task. We review the redox responsiveness and amyloid protein perturbation biophysical properties of the major green tea polyphenol constituent (-)- epigallocatechin-3-gallate [EGCG].

  18. Visual Hallucinations in the Psychosis Spectrum and Comparative Information From Neurodegenerative Disorders and Eye Disease

    Waters, Flavie; Collerton, Daniel; Ffytche, Dominic H.; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Laroi, Frank

    2014-01-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VH

  19. Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials.

    Zhang, Wei; Chen, Xue-yan; Su, Su-wen; Jia, Qing-zhong; Ding, Tao; Zhu, Zhong-ning; Zhang, Tong

    2016-01-01

    The purpose of this work is to investigate the efficacy of exogenous melatonin in the treatment of sleep disorders in patients with neurodegenerative disease. We searched Pubmed, the Cochrane Library, and ClinicalTrials.gov, from inception to July 2015. We included randomized clinical trials (RCTs) that compared melatonin with placebo and that had the primary aim of improving sleep in people with neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). We pooled data with the weighted mean difference in sleep outcomes. To assess heterogeneity in results of individual studies, we used Cochran's Q statistic and the I (2) statistic. 9 RCTs were included in this research. We found that the treatment with exogenous melatonin has positive effects on sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI) in PD patients (MD: 4.20, 95 % CI: 0.92-7.48; P = 0.01), and by changes in PSQI component 4 in AD patients (MD: 0.67, 95 % CI: 0.04-1.30; P = 0.04), but not on objective sleep outcomes in both AD and PD patients. Treatment with melatonin effectively improved the clinical and neurophysiological aspects of rapid eye movement (REM) sleep behavior disorder (RBD), especially elderly individuals with underlying neurodegenerative disorders. This meta-analysis provided some evidence that melatonin improves sleep quality in patients with AD and PD, and melatonin can be considered as a possible sole or add-on therapy in neurodegenerative disorders patients with RBD.

  20. Proactive Strategies for Managing the Behavior of Children with Neurodegenerative Diseases and Visual Impairment.

    Loftin, M. M.; Koehler, W. S.

    1998-01-01

    Presents proactive strategies to help educators deal with challenging behaviors of children with visual impairments and neurodegenerative diseases. Strategies are provided for general noncompliance, difficulty with changed or novel routines, difficulty maintaining physical movement, significant variations in affect, and intense tantrums and other…

  1. Telemedicine multimedia system to support neurodegenerative diseases participatory management.

    Menezes Borges, Diogo; Cunha, João Paulo

    2015-01-01

    Parkinson's disease (PD) is a highly prevalent and disabling condition that requires a constant monitoring of patient's condition. Nevertheless, in Portugal appointments with specialist only occur every 6 months and the patient's capability to recall important past events is not always accurate besides often being a misinterpretation of their symptoms. In this paper we present a user-centred process for the design of a multimedia platform for the self-management of PD.

  2. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases

    Paulo Victor Sgobbi de Souza

    2015-03-01

    Full Text Available Neurodegenerative diseases represent a heterogeneous group of neurological conditions primarily involving dementia, motor neuron disease and movement disorders. They are mostly related to different pathophysiological processes, notably in family forms in which the clinical and genetic heterogeneity are lush. In the last decade, much knowledge has been acumulated about the genetics of neurodegenerative diseases, making it essential in cases of motor neuron disease and frontotemporal dementia the repeat expansions of C9orf72 gene. This review analyzes the main clinical, radiological and genetic aspects of the phenotypes related to the hexanucleotide repeat expansions (GGGGCC of C9orf72 gene. Future studies will aim to further characterize the neuropsychological, imaging and pathological aspects of the extra-motor features of motor neuron disease, and will help to provide a new classification system that is both clinically and biologically relevant.

  3. Molecular Modeling Studies of Piperidine Derivatives as New Acetylcholinesterase Inhibitors against Neurodegenerative Diseases

    Elaine F. F. da Cunha

    2013-01-01

    Full Text Available Neurodegenerative disorders are related to the progressive loss of structure or function and, eventually, death of neurons. These processes are responsible for diseases like Parkinson’s, Alzheimer’s, and Huntington’s, and the main molecular target for the drug design against these illnesses today is the enzyme acetylcholinesterase (AChE. Following this line, in the present work, we applied docking techniques to study some piperidine derivative inhibitors of AChE and further propose structures of six new AChE inhibitors as potential new drugs against neurodegenerative disorders. The best inhibitor proposed was submitted to additional molecular dynamics simulations steps.

  4. AUTOMATIC CLASSIFICATION OF STRUCTURAL MRI FOR DIAGNOSIS OF NEURODEGENERATIVE DISEASES

    Hernández-Tamames Juan Antonio

    2010-12-01

    Full Text Available This paper presents an automatic approach which classifies structural Magnetic Resonance images into pathological or healthy controls. A classification model was trained to find the boundaries that allow to separate the study groups. The method uses the deformation values from a set of regions, automatically identified as relevant, in a process that selects the statistically significant regions of a t-test under the restriction that this significance must be spatially coherent within a neighborhood of 5 voxels. The proposed method was assessed to distinguish healthy controls from schizophrenia patients. Classification results showed accuracy between 74% and 89%, depending on the stage of the disease and number of training samples.

  5. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases.

    Suksuphew, Sarawut; Noisa, Parinya

    2015-03-26

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer's disease, Parkinson's disease, and Huntington's disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.

  6. [The blood-brain barrier and neurodegenerative lysosomal storage diseases].

    Urayama, Akihiko

    2013-02-01

    Enzyme replacement therapy has been a very effective treatment for several lysosomal storage diseases. However, correcting central nervous system (CNS) storage has been challenging due to the presence of the blood-brain barrier (BBB), which hampers the entry of circulating lysosomal enzymes into the brain. In our previous studies, we discovered that luminally expressed cation-independent mannose 6-phosphate (M6P) receptor is a universal transporter for lysosomal enzymes that contain M6P moieties on the enzyme molecule. This receptor-mediated transport of lysosomal enzymes showed developmental down-regulation that resulted in a failure of delivery of lysosomal enzymes across the BBB in the adult brain. Conceptually, if one can re-induce M6P receptor-mediated transport of lysosomal enzymes in adult BBB, this could provide a novel brain targeting approach for treating abnormal storage in the CNS, regardless of the age of subjects. We found that systemic adrenergic stimuli restored functional transport of β-glucuronidase across the adult BBB. The concept of manipulating BBB transport activity by endogenous characteristics has also been demonstrated by another group who showed effective treatment in a Pompe disease model animal in vivo. It is intriguing that lysosomal enzymes utilize multiple mechanisms for their transport across the BBB. This review explores pharmacological manipulations for the delivery of lysosomal enzymes into the CNS, and the mechanisms of their transport across the BBB, based on existing evidence from studies of β-glucuronidase, sulfamidase, acid α-glucosidase, and arylsulfatase A.

  7. Enhancing attention in neurodegenerative diseases: current therapies and future directions

    Sharma Kanchan

    2016-01-01

    Full Text Available We all experience at least occasional lapses in attention but in some neurological conditions, loss of attention is pervasive and debilitating. Treating deficits in attention first requires an understanding of the neurobiology of attention, which we now understand to be a set of different cognitive processes. Cholinesterase inhibitors are already established as effective attentional enhancers used in the treatment of certain dementias. Other stimulant agents such as modafanil, amphetamine and methylphenidate have demonstrated limited success in healthy individuals where attention is already optimal and clinical trials in patients with neurological disease are sparse. Dietary and lifestyle changes are gaining increasing prominence, as are experimental treatments such as deep brain stimulation and transcranial magnetic stimulation. As the therapeutic arsenal widens, clinicians will be able to match specific treatments to selective deficits in attention, giving patients a tailored management plan. Here we review common diseases that impair attention and emphasise how an understanding of attentional processing within the brain might lead to improved therapeutic strategies.

  8. Age at Onset in Two Common Neurodegenerative Diseases Is Genetically Controlled

    Li, Yi-Ju; Scott, William K.; Hedges, Dale J.; Zhang, Fengyu; Gaskell, P. Craig; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Pahwa, Rajesh; Stern, Matthew B.; Hiner, Bradley C.; Jankovic, Joseph; Allen, Jr., Fred H.; Goetz, Christopher G.; Mastaglia, Frank; Stajich, Jeffrey M.; Gibson, Rachel A.; Middleton, Lefkos T.; Saunders, Ann M.; Scott, Burton L.; Small, Gary W.; Nicodemus, Kristin K.; Reed, Allison D.; Schmechel, Donald E.; Welsh-Bohmer, Kathleen A.; Conneally, P. Michael; Roses, Allen D.; Gilbert, John R.; Vance, Jeffery M.; Haines, Jonathan L.; Pericak-Vance, Margaret A.

    2002-01-01

    To identify genes influencing age at onset (AAO) in two common neurodegenerative diseases, a genomic screen was performed for AAO in families with Alzheimer disease (AD; n=449) and Parkinson disease (PD; n=174). Heritabilities between 40%–60% were found in both the AD and PD data sets. For PD, significant evidence for linkage to AAO was found on chromosome 1p (LOD = 3.41). For AD, the AAO effect of APOE (LOD = 3.28) was confirmed. In addition, evidence for AAO linkage on chromosomes 6 and 10 was identified independently in both the AD and PD data sets. Subsequent unified analyses of these regions identified a single peak on chromosome 10q between D10S1239 and D10S1237, with a maximum LOD score of 2.62. These data suggest that a common gene affects AAO in these two common complex neurodegenerative diseases. PMID:11875758

  9. Serine 403-phosphorylated p62/SQSTM1 immunoreactivity in inclusions of neurodegenerative diseases.

    Kurosawa, Masaru; Matsumoto, Gen; Sumikura, Hiroyuki; Hatsuta, Hiroyuki; Murayama, Shigeo; Sakurai, Takashi; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2016-02-01

    Protein inclusions in neurodegenerative diseases are associated with p62, which has an important role in autophagic clearance of polyubiquitinated proteins. Selective autophagy is regulated by S403-phosphorylation of p62, and S403-phosphorylated p62 (S403-phos-p62) accumulates in Atg5 conditional knockout (Atg5CKO) mice in which autophagosome formation is impaired. We performed immunohistochemical tests for the presence of S403-phos-p62 in postmortem brain of neurodegenerative disease cases, and found accumulations in amyotrophic lateral sclerosis and Alzheimer's disease tissues. In Atg5CKO and HD190QG (Huntington's disease model) mice, however, we found a postmortem decrease in S403-phos-p62 immunoreactivity, suggesting that post-mortem changes should be considered when interpreting human data.

  10. Blood-brain barrier P-glycoprotein function in neurodegenerative disease.

    Bartels, A L

    2011-01-01

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protection against toxic compounds. Importantly, dysfunctional BBB P-gp transport is postulated as an important factor contributing to accumulation of aggregated protein in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, P-gp is a major factor in mediating resistance to brain entry of numerous exogenous compounds, including toxins that can be involved in PD pathogenesis. This review highlights the role of altered P-gp function in the pathogenesis and progression of neurodegenerative disease. Also the implications of alterations in P-gp function for the treatment of these diseases are discussed.

  11. Phenolic compounds: the role of redox regulation in neurodegenerative disease and cancer.

    Aboul-Enein, Hassan Y; Berczyńsk, Paweł; Kruk, Irena

    2013-03-01

    Much work has been carried out in the last two decades on the role of oxidative stress and antioxidants deficiency in the pathophysiology of civilization diseases. A considerable amount of chemical, biochemical, epidemiological and clinical evidence indicates that (poly)phenolic compounds widely distributed in the plant kingdom, exhibit a wide range effects on biomolecules. The beneficial effects on human health, many of phenolics have been described to their reactive oxygen (ROS) and nitrogen species (RNS) scavenging and antioxidant capacity. The consumption of vegetables, fruits and flavonoid-rich beverages has been reported to prevent against neurodegenerative diseases, cancer, and ageing. This paper reviews the recent data on (1) the role oxidative stress in the pathology of civilization diseases; (2) the protection against oxidative damage due to the toxicity of ROS/RNS; (3) the cellular and molecular interactions of the (poly)phenolic compounds relevant to the prevention of neurodegenerative diseases and cancer, and (4) the methods for assessing antioxidant capacity.

  12. Thymosin β4 as a restorative/regenerative therapy for neurological injury and neurodegenerative diseases.

    Chopp, Michael; Zhang, Zheng Gang

    2015-01-01

    Thymosin β4 (Tβ4) promotes CNS and peripheral nervous system (PNS) plasticity and neurovascular remodeling leading to neurological recovery in a range of neurological diseases. Treatment of neural injury and neurodegenerative disease 24 h or more post-injury and disease onset with Tβ4 enhances angiogenesis, neurogenesis, neurite and axonal outgrowth, and oligodendrogenesis, and thereby, significantly improves functional and behavioral outcomes. We propose that oligodendrogenesis is a common link by which Tβ4 promotes recovery after neural injury and neurodegenerative disease. The ability to target many diverse restorative processes via multiple molecular pathways that drive oligodendrogenesis and neurovascular remodeling may be mediated by the ability of Tβ4 to alter cellular expression of microRNAs (miRNAs). However, further investigations on the essential role of miRNAs in regulating protein expression and the remarkable exosomal intercellular communication network via exosomes will likely provide insight into mechanisms of action and means to amplify the therapeutic effects of Tβ4.

  13. The basics of preclinical drug development for neurodegenerative disease indications

    Spack Edward G

    2009-06-01

    Full Text Available Abstract Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s. Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot

  14. Abstract and concrete categories? Evidences from neurodegenerative diseases.

    Catricalà, Eleonora; Della Rosa, Pasquale A; Plebani, Valentina; Vigliocco, Gabriella; Cappa, Stefano F

    2014-11-01

    We assessed the performance of patients with a diagnosis of Alzheimer׳s disease (AD) and of the semantic variant of primary progressive aphasia (sv-PPA) in a series of tasks involving both abstract and concrete stimuli, which were controlled for most of the variables that have been shown to affect performance on lexical-semantic tasks. Our aims were to compare the patients׳ performance on abstract and concrete stimuli and to assess category-effects within the abstract and concrete domains. The results showed: (i) a better performance on abstract than concrete concepts in sv-PPA patients. (ii) Category-related effects in the abstract domain, with emotion concepts being preserved in AD and social relations being selectively impaired in sv-PPA. In addition, a living-non living dissociation may be (infrequently) observed in individual AD patients after controlling for an extensive set of potential confounds. Thus, differences between and within the concrete or abstract domain may be present in patients with semantic memory disorders, mirroring the different brain regions involved by the different pathologies.

  15. Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases

    van der Stelt, M.; Veldink, G.A.; Vliegenthart, J.F.G.

    2003-01-01

    Endocannabinoids are thought to function as retrograde messengers, which modulate neurotransmitter release by activating presynaptic cannabinoid receptors. Anandamide and 2-arachidonoylglycerol (2-AG) are the two best studied endogenous lipids which can act as endocannabinoids. Together...... with the proteins responsible for their biosynthesis, inactivation and the cannabinoid receptors, these lipids constitute the endocannabinoid system. This system is proposed to be involved in various neurodegenerative diseases such as Parkinson's and Huntington's diseases as well as Multiple Sclerosis. It has been...

  16. Axonal transport and neurodegenerative disease: vesicle-motor complex formation and their regulation

    Anderson EN

    2014-03-01

    Full Text Available Eric N Anderson,* Joseph A White II,* Shermali GunawardenaDepartment of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA *These authors contributed equally to this work Abstract: The process of axonal transport serves to move components over very long distances on microtubule tracks in order to maintain neuronal viability. Molecular motors – kinesin and dynein – are essential for the movement of neuronal cargoes along these tracks; defects in this pathway have been implicated in the initiation or progression of some neurodegenerative diseases, suggesting that this process may be a key contributor in neuronal dysfunction. Recent work has led to the identification of some of the motor-cargo complexes, adaptor proteins, and their regulatory elements in the context of disease proteins. In this review, we focus on the assembly of the amyloid precursor protein, huntingtin, mitochondria, and the RNA-motor complexes and discuss how these may be regulated during long-distance transport in the context of neurodegenerative disease. As knowledge of these motor-cargo complexes and their involvement in axonal transport expands, insight into how defects in this pathway contribute to the development of neurodegenerative diseases becomes evident. Therefore, a better understanding of how this pathway normally functions has important implications for early diagnosis and treatment of diseases before the onset of disease pathology or behavior. Keywords: kinesin, dynein, amyloid precursor protein, huntingtin, microtubules

  17. Alkaloids Pharmacological Activities - Prospects for the Development of Phytopharmaceuticals for Neurodegenerative Diseases.

    Chaves, Soane K M; Feitosa, Chistiane M; da S Araújo, Lidiane

    The study of natural substances has increased in recent years in the search for compounds with pharmacological properties that can be used for the development of new drugs. The alkaloids, substances extracted natural sources, show promising pharmacological activities, including pharmacological activities for the treatment of neurodegenerative diseases such as Alzheimer's disease, whose treatment is based on the use of various drugs. Thus, the article aims to a technological prospecting of alkaloids that presented important properties in the treatment of neurodegenerative diseases, namely, antioxidant, anxiolytic, anti-inflammatory and antidepressant properties. A literature review was conducted in the databases PubMed, Science Direct, Scopus, Scielo and Google Academics using the following key words: alkaloids, pharmacology, neurodegenerative diseases, cholinesterase inhibitors, antidepressants, anti-inflammatories, antioxidant and anxiolytic. Articles, dissertations and theses published between 2003 and 2015 were selected. Several studies showed through in vitro of in vitro and/or in vivo methods that many alkaloids extracted from plants showed anticholinesterase, antioxidant, anxiolytic, anti-inflammatory and antidepressant properties in the treatment of symptoms and progression of certain diseases such as Alzheimer's disease.

  18. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases

    Androutsopoulos, Vasilis P. [Center of Toxicology Science and Research, University of Crete, Heraklion, Crete (Greece); Kanavouras, Konstantinos [Laboratory of Neurological Sciences, University of Crete, Heraklion, Crete (Greece); Tsatsakis, Aristidis M., E-mail: aris@med.uoc.gr [Center of Toxicology Science and Research, University of Crete, Heraklion, Crete (Greece)

    2011-11-15

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  19. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.

    Wu, Ping; Zuo, Xialin; Deng, Houliang; Liu, Xiaoxia; Liu, Li; Ji, Aimin

    2013-08-01

    Long noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated. Here, we give a systematic and comprehensive summary of the existing knowledge of lncRNAs in order to provide a better understanding of this new studying field. lncRNAs play important roles in brain development, neuron function and maintenance, and neurodegenerative diseases are becoming increasingly evident. In this review, we also highlighted recent studies related lncRNAs in central nervous system (CNS) development and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), and elucidated some specific lncRNAs which may be important for understanding the pathophysiology of neurodegenerative diseases, also have the potential as therapeutic targets.

  20. Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases

    Jean-Michel eVERDIER

    2015-03-01

    Full Text Available Animal models are necessary tools for solving the most serious challenges facing medical research. In aging and neurodegenerative disease studies, rodents occupy a place of choice. However, the most challenging questions about longevity, the complexity and functioning of brain networks or social intelligence can almost only be investigated in nonhuman primates. Beside the fact that their brain structure is much closer to that of humans, they develop highly complex cognitive strategies and they are visually-oriented like humans. For these reasons, they deserve consideration, although their management and care are more complicated and the related costs much higher. Despite these caveats, considerable scientific advances have been possible using nonhuman primates. This review concisely summarizes their role in the study of aging and of the mechanisms involved in neurodegenerative disorders associated mainly with cognitive dysfunctions (Alzheimer’s and prion diseases or motor deficits (Parkinson’s and related diseases.

  1. Immunopathogenesis of neurodegenerative diseases: current therapeutic models of neuroprotection with special reference to natural products.

    Magrone, T; Marzulli, G; Jirillo, E

    2012-01-01

    Parkinson disease (PD) and Alzheimer disease (AD) are neurodegenerative processes whose frequency is dramatically increasing in the western world. Both diseases share a common pathogenic denominator characterized by an exaggerated activation of the systemic and cerebral immune system, respectively. For instance, lipopolysaccharides in PD and amyloid beta in AD trigger microglia and astrocytes to release reactive oxygen species (ROS) and proinflammatory cytokines. Infiltrating peripheral T cells once activated in the central nervous system also contribute to the neurodegenerative process. Besides innovative biotherapy, nutraceuticals or functional foods are currently investigated for their neuroprotective activities. Especially, vitamin D and polyphenols, seem to be promising therapeutic tools for inhibiting ROS formation and arresting cytokine-mediated neuroinflammation in PD and AD.

  2. Targeting MicroRNAs Involved in the BDNF Signaling Impairment in Neurodegenerative Diseases.

    You, Hwa Jeong; Park, Jae Hyon; Pareja-Galeano, Helios; Lucia, Alejandro; Shin, Jae Il

    2016-12-01

    Neurodegenerative diseases are becoming an ever-increasing problem in aging populations. Low levels of brain-derived neurotrophic factor (BDNF) have previously been associated with the pathogenesis of numerous neurodegenerative diseases. Recently, microRNAs (miRNAs) have been proposed as potential novel therapeutic targets for treating various diseases of the central nervous system (CNS), and interestingly, few studies have reported several miRNAs that downregulate the expression levels of BDNF. However, substantial challenges exist when attempting to translate these findings into practical anti-miRNA therapeutics, especially when the targets remain inside the CNS. Thus, in this review, we summarize the specific molecular mechanisms by which several miRNAs negatively modulate the expressions of BDNF, address the potential clinical difficulties that can be faced during the development of anti-miRNA-based therapeutics and propose strategies to overcome these challenges.

  3. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases

    Zhuang Jian-Jun; Ning Xin-Bao; Yang Xiao-Dong; Hou Feng-Zhen; Huo Cheng-Yu

    2008-01-01

    In this paper the decrease in the Hurst exponent of human gait with aging and neurodegenerative diseases was observed by using an improved rescaled range (R/S) analysis method. It indicates that the long-range correlations of gait rhythm from young healthy people are stronger than those from the healthy elderly and the diseased.The result further implies that fractal dynamics in human gait will be altered due to weakening or impairment of neural control on locomotion resulting from aging and neurodegenerative diseases. Due to analysing short-term data sequences rather than long datasets required by most nonlinear methods, the algorithm has the characteristics of simplicity and sensitivity, most importantly, fast calculation as well as powerful anti-noise capacities. These findings have implications for modelling locomotor control and also for quantifying gait dynamics in varying physiologic and pathologic states.

  4. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases

    Zhuang, Jian-Jun; Ning, Xin-Bao; Yang, Xiao-Dong; Hou, Feng-Zhen; Huo, Cheng-Yu

    2008-03-01

    In this paper the decrease in the Hurst exponent of human gait with aging and neurodegenerative diseases was observed by using an improved rescaled range (R/S) analysis method. It indicates that the long-range correlations of gait rhythm from young healthy people are stronger than those from the healthy elderly and the diseased. The result further implies that fractal dynamics in human gait will be altered due to weakening or impairment of neural control on locomotion resulting from aging and neurodegenerative diseases. Due to analysing short-term data sequences rather than long datasets required by most nonlinear methods, the algorithm has the characteristics of simplicity and sensitivity, most importantly, fast calculation as well as powerful anti-noise capacities. These findings have implications for modelling locomotor control and also for quantifying gait dynamics in varying physiologic and pathologic states.

  5. Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: Potential utility and limitations.

    Kudrna, Jeremy J; Ugen, Kenneth E

    2015-01-01

    There has been a recent expansion of vaccination and immunotherapeutic strategies from controlling infectious diseases to the targeting of non-infectious conditions including neurodegenerative disorders. In addition to conventional vaccine and immunotherapeutic modalities, gene-based methods that express antigens for presentation to the immune system by either live viral vectors or non-viral naked DNA plasmids have been developed and evaluated. This mini-review/commentary summarizes the advantages and disadvantages, as well as the research findings to date, of both of these gene-based vaccination approaches in terms of how they can be targeted against appropriate antigens within the Alzheimer and Parkinson disease pathogenesis processes as well as potentially against targets in other neurodegenerative diseases. Most recently, the novel utilization of these viral vector and naked DNA gene-based technologies includes the delivery of immunoglobulin genes from established biologically active monoclonal antibodies. This modified passive immunotherapeutic strategy has recently been applied to deliver passive antibody immunotherapy against the pathologically relevant amyloid β protein in Alzheimer disease. The advantages and disadvantages of this technological application of gene-based immune interventions, as well as research findings to date are also summarized. In sum, it is suggested that further evaluation of gene based vaccines and immunotherapies against neurodegenerative diseases are warranted to determine their potential clinical utility.

  6. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    Natale, G.; Pompili, E.; Biagioni, F.; Paparelli, S.; Lenzi, P.; Fornai, F.

    2013-01-01

    Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-tocell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs); mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs). The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step. PMID:23549464

  7. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products

    Giuseppina Barrera

    2016-02-01

    Full Text Available In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS, produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE and malondialdehyde (MDA, which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations.

  8. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products

    Barrera, Giuseppina; Gentile, Fabrizio; Pizzimenti, Stefania; Canuto, Rosa Angela; Daga, Martina; Arcaro, Alessia; Cetrangolo, Giovanni Paolo; Lepore, Alessio; Ferretti, Carlo; Dianzani, Chiara; Muzio, Giuliana

    2016-01-01

    In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations. PMID:26907355

  9. Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases.

    Nagpure, B V; Bian, Jin-Song

    2015-01-01

    For more than 300 years, the toxicity of hydrogen sulfide (H2S) has been known to mankind. However, this point of view is changing as an increased interest was observed in H2S biology in the last two decades. The scientific community has succeeded to unravel many important physiological and pathological effects of H2S on mammalian body systems. Thus, H2S is now referred to as a third endogenous gaseous mediator along with nitric oxide and carbon monoxide. Acting as a neuromodulator, H2S facilitates long-term potentiation and regulates intracellular calcium levels, which are important processes in learning and memory. Aberrant endogenous production and metabolism of H2S are implicated in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). Various H2S donors have shown beneficial therapeutic effects in neurodegenerative disease models by targeting hallmark pathological events (e.g., amyloid-β production in AD and neuroinflammation in PD). The results obtained from many in vivo studies clearly show that H2S not only prevents neuronal and synaptic deterioration but also improves deficits in memory, cognition, and learning. The anti-inflammatory, antioxidant, and anti-apoptotic effects of H2S underlie its neuroprotective properties. In this chapter, we will overview the current understanding of H2S in context of neurodegenerative diseases, with special emphasis on its corrective effects on impaired learning, memory, and cognition.

  10. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    G. Natale

    2013-03-01

    Full Text Available Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-to-cell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs; mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs. The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step.

  11. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases.

    Basak, Indranil; Patil, Ketan S; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2016-02-01

    The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.

  12. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases

    Hideyuki eTakeuchi

    2014-09-01

    Full Text Available Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS. Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g. minocycline have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.

  13. From intrinsic firing properties to selective neuronal vulnerability in neurodegenerative diseases.

    Roselli, Francesco; Caroni, Pico

    2015-03-01

    Neurodegenerative diseases (NDDs) involve years of gradual preclinical progression. It is widely anticipated that in order to be effective, treatments should target early stages of disease, but we lack conceptual frameworks to identify and treat early manifestations relevant to disease progression. Here we discuss evidence that a focus on physiological features of neuronal subpopulations most vulnerable to NDDs, and how those features are affected in disease, points to signaling pathways controlling excitation in selectively vulnerable neurons, and to mechanisms regulating calcium and energy homeostasis. These hypotheses could be tested in neuronal stress tests involving animal models or patient-derived iPS cells.

  14. [Animal models of neurodegenerative diseases on the road to disease-modifying therapy: spinal and bulbar muscular atrophy].

    Sobue, Gen

    2007-11-01

    SBMA is a hereditary neurodegenerative disease caused by expansion of a trinucleotide CAG repeat, which encodes the polyglutamine tract, in the first exon of the androgen receptor (AR) gene. The phenotypic difference with gender, which is a specific feature of SBMA, has been recapitulated in a transgenic mouse model of SBMA expressing the full-length human AR containing 97 CAGs under the control of a cytomegalovirus enhancer and a chicken beta-actin promoter (AR-97Q). Affected SBMA mice demonstrate small body size, short life span, progressive muscle atrophy and weakness as well as reduced cage activity, all of which are markedly pronounced and accelerated in the male SBMA mice, but either not observed or far less severe in the female SBMA mice. There is increasing evidence that testosterone, the ligand of AR, plays a pivotal role in the neurodegeneration in SBMA. The striking success of androgen deprivation therapy in SBMA mouse models has been translated into phase 2, and then phase 3, clinical trials. Moreover, animal studies have also been revealing key molecules in the pathogenesis of SBMA such as heat shock proteins, transcriptional co-activators, and axon motors, suggesting additional therapeutic targets.

  15. Phosphodiesterase: an interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases.

    Wang, Zhen-Zhen; Zhang, Yi; Zhang, Han-Ting; Li, Yun-Feng

    2015-01-01

    Phosphodiesterases (PDEs) are the only known enzymes to degrade intracellular cyclic AMP and/or cyclic GMP. The PDE superfamily consists of 11 families (PDE1- PDE11), each of which has 1 to 4 subtypes. Some of the subtypes may have multiple splice variants (e.g. PDE4D1-PDE4D11), leading to a total of more than 100 known proteins to date. Growing attention has been paid to the potential of PDEs as therapeutic targets for mood disorders and/or diseases affecting cognitive activity by controlling the rate of hydrolysis of the two aforementioned second messengers in recent years. The loss of cognitive functions is one of the major complaints most patients with CNS diseases face; it has an even more prominent negative impact on the quality of daily life. Cognitive dysfunction is usually a prognosis in patients suffering from neuropsychiatric and neurodegenerative diseases, including depression, schizophrenia, and Alzheimer's disease. This review will focus on the contributions of PDEs to the interface between cognitive deficits and neuropsychiatric and neurodegenerative disorders. It is expected to make for the understanding and discovery that selective PDE inhibitors have the therapeutic potential for cognitive dysfunctions associated with neuropsychiatric and neurodegenerative disorders.

  16. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  17. Insight into the Dissociation of Behavior from Histology in Synucleinopathies and in Related Neurodegenerative Diseases.

    Sekiyama, Kazunari; Takamatsu, Yoshiki; Koike, Wakako; Waragai, Masaaki; Takenouchi, Takato; Sugama, Shuei; Hashimoto, Makoto

    2016-03-31

    Recent clinical trials using immunization approaches against Alzheimer's disease (AD) have failed to demonstrate improved cognitive functions in patients, despite potent suppression in the formation of both senile plaques and other amyloid-β deposits in postmortem brains. Similarly, we observed that treatment with ibuprofen, a non-steroidal anti-inflammatory drug, was effective in improving the histopathology, such as reducing both protein aggregation and glial activation, in the brains of transgenic mice expressing dementia with Lewy bodies-linked P123H β-synuclein. In contrast, only a small improvement in cognitive functions was observed in these mice. Collectively, it is predicted that histology does not correlate with behavior that is resilient and resistant to therapeutic stimuli. Notably, such a 'discrepancy between histology and behavior' is reminiscent of AD-like pathologies and incidental Lewy bodies, which are frequently encountered in postmortem brains of the elderly who had been asymptomatic for memory loss and Parkinsonism during their lives. We suggest that 'the discrepancy between histology and behavior' may be a universal feature that is associated with various aspects of neurodegenerative diseases. Furthermore, given that the cognitive reserve is specifically observed in human brains, human behavior may be evolutionally distinct from that in other animals, thus, contributing to the differential efficiency of therapy between human and lower animals, an important issue in the therapy of neurodegenerative diseases. Overall, it is important to better understand 'the discrepancy between histology and behavior' in the mechanism of neurodegeneration for the development of effective therapies against neurodegenerative diseases.

  18. Schisandrin B as a Hormetic Agent for Preventing Age-Related Neurodegenerative Diseases

    Philip Y. Lam

    2012-01-01

    Full Text Available Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of neurodegenerative diseases, with the latter preceding the appearance of clinical symptoms. The energy failure resulting from mitochondrial dysfunction further impedes brain function, which demands large amounts of energy. Schisandrin B (Sch B, an active ingredient isolated from Fructus Schisandrae, has been shown to afford generalized tissue protection against oxidative damage in various organs, including the brain, of experimental animals. Recent experimental findings have further demonstrated that Sch B can protect neuronal cells against oxidative challenge, presumably by functioning as a hormetic agent to sustain cellular redox homeostasis and mitoenergetic capacity in neuronal cells. The combined actions of Sch B offer a promising prospect for preventing or possibly delaying the onset of neurodegenerative diseases, as well as enhancing brain health.

  19. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?

    Suk-yu Yau

    2014-01-01

    Full Text Available Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain.

  20. Potential Role of Olive Oil Phenolic Compounds in the Prevention of Neurodegenerative Diseases

    Jose Rodríguez-Morató

    2015-03-01

    Full Text Available Adherence to the Mediterranean Diet (MD has been associated with a reduced incidence of neurodegenerative diseases and better cognitive performance. Virgin olive oil, the main source of lipids in the MD, is rich in minor phenolic components, particularly hydroxytyrosol (HT. HT potent antioxidant and anti-inflammatory actions have attracted researchers’ attention and may contribute to neuroprotective effects credited to MD. In this review HT bioavailability and pharmacokinetics are presented prior to discussing health beneficial effects. In vitro and in vivo neuroprotective effects together with its multiple mechanisms of action are reviewed. Other microconstituents of olive oil are also considered due to their potential neuroprotective effects (oleocanthal, triterpenic acids. Finally, we discuss the potential role of HT as a therapeutic tool in the prevention of neurodegenerative diseases.

  1. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases

    Fantini, Jacques; Yahi, Nouara

    2010-01-01

    Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain proteins, referred to as ‘amyloidogenic proteins’, with exceptional conformational plasticity and a high propensity for self-aggregation. Although the mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a common feature is the concentration of unstructured amyloidogenic monomers on bidimensional membrane lattices. Membrane-bound monomers undergo a series of lipid-dependent co...

  2. Schisandrin B as a Hormetic Agent for Preventing Age-Related Neurodegenerative Diseases

    Lam, Philip Y.; Kam Ming Ko

    2012-01-01

    Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of neurodegenerative diseases, with the latter preceding the appearance of clinical symptoms. The energy failure resulting from mitochondrial dysfunction further impedes brain function, which demands large amounts of energy. Schisandrin B (Sch B), an active ingredient isolated from Fructus Schisandrae, has been shown to afford generalized tissue protection against oxidative damage in various organs, includ...

  3. Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease

    2016-01-01

    Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent c...

  4. Role of the nucleolus in neurodegenerative diseases with particular reference to the retina: a review.

    Sia, Paul I; Wood, John Pm; Chidlow, Glyn; Sharma, Shiwani; Craig, Jamie; Casson, Robert J

    2016-04-01

    The nucleolus has emerged as a key regulator of cellular growth and the response to stress, in addition to its traditionally understood function in ribosome biogenesis. The association between nucleolar function and neurodegenerative disease is increasingly being explored. There is also recent evidence indicating that the nucleolus may well be crucial in the development of the eye. In this present review, the role of the nucleolus in retinal development as well as in neurodegeneration with an emphasis on the retina is discussed.

  5. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases

    Shin, Samuel S.; Pelled, Galit

    2017-01-01

    Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population. PMID:28337129

  6. The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease.

    Rogers, Danny; Schor, Nina F

    2010-02-01

    Although Alzheimer's and Parkinson's diseases predominately affect elderly adults, the proteins that play a role in the pathogenesis of these diseases are expressed throughout life. In fact, many of the proteins hypothesized to be important in the progression of neurodegeneration play direct or indirect roles in the development of the central nervous system. The systems affected by these proteins include neural stem cell fate decisions, neuronal differentiation, cellular migration, protection from oxidative stress, and programmed cell death. Insights into the developmental roles of these proteins may ultimately impact the understanding of neurodegenerative diseases and lead to the discovery of novel treatments.

  7. The Emerging Use of In Vivo Optical Imaging in the Study of Neurodegenerative Diseases

    Aileen P. Patterson

    2014-01-01

    Full Text Available The detection and subsequent quantification of photons emitted from living tissues, using highly sensitive charged-couple device (CCD cameras, have enabled investigators to noninvasively examine the intricate dynamics of molecular reactions in wide assortment of experimental animals under basal and pathophysiological conditions. Nevertheless, extrapolation of this in vivo optical imaging technology to the study of the mammalian brain and related neurodegenerative conditions is still in its infancy. In this review, we introduce the reader to the emerging use of in vivo optical imaging in the study of neurodegenerative diseases. We highlight the current instrumentation that is available and reporter molecules (fluorescent and bioluminescent that are commonly used. Moreover, we examine how in vivo optical imaging using transgenic reporter mice has provided new insights into Alzheimer’s disease, amyotrophic lateral sclerosis (ALS, Prion disease, and neuronal damage arising from excitotoxicity and inflammation. Furthermore, we also touch upon studies that have utilized these technologies for the development of therapeutic strategies for neurodegenerative conditions that afflict humans.

  8. The emerging use of in vivo optical imaging in the study of neurodegenerative diseases.

    Patterson, Aileen P; Booth, Stephanie A; Saba, Reuben

    2014-01-01

    The detection and subsequent quantification of photons emitted from living tissues, using highly sensitive charged-couple device (CCD) cameras, have enabled investigators to noninvasively examine the intricate dynamics of molecular reactions in wide assortment of experimental animals under basal and pathophysiological conditions. Nevertheless, extrapolation of this in vivo optical imaging technology to the study of the mammalian brain and related neurodegenerative conditions is still in its infancy. In this review, we introduce the reader to the emerging use of in vivo optical imaging in the study of neurodegenerative diseases. We highlight the current instrumentation that is available and reporter molecules (fluorescent and bioluminescent) that are commonly used. Moreover, we examine how in vivo optical imaging using transgenic reporter mice has provided new insights into Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Prion disease, and neuronal damage arising from excitotoxicity and inflammation. Furthermore, we also touch upon studies that have utilized these technologies for the development of therapeutic strategies for neurodegenerative conditions that afflict humans.

  9. ACAID as a potential therapeutic approach to modulate inflammation in neurodegenerative diseases.

    Toscano-Tejeida, D; Ibarra, A; Phillips-Farfán, B V; Fuentes-Farías, A L; Meléndez-Herrera, E

    2016-03-01

    The progressive loss of neurons and inflammation characterizes neurodegenerative diseases. Although the etiology, progression and outcome of different neurodegenerative diseases are varied, they share chronic inflammation maintained largely by central nervous system (CNS)-derived antigens recognized by T cells. Inflammation can be beneficial by recruiting immune cells to kill pathogens or to clear cell debris resulting from the primary insult. However, chronic inflammation exacerbates and perpetuates tissue damage. An increasing number of therapies that attempt to modulate neuroinflammation have been developed. However, so far none has succeeded in decreasing the secondary damage associated with chronic inflammation. A potential strategy to modulate the immune system is related to the induction of tolerance to CNS antigens. In this line, it is our hypothesis that this could be accomplished by using anterior chamber associated immune deviation (ACAID) as a strategy. Thus, we review current knowledge regarding some neurodegenerative diseases and the associated immune response that causes inflammation. In addition, we discuss further our hypothesis of the possible usefulness of ACAID as a therapeutic strategy to ameliorate damage to the CNS.

  10. Use of Genetically Modified Mesenchymal Stem Cells to Treat Neurodegenerative Diseases

    Robert D. Wyse

    2014-01-01

    Full Text Available The transplantation of mesenchymal stem cells (MSCs for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF, nerve growth factor (NGF, and brain derived neurotrophic factor (BDNF have been recognized as therapeutic trophic factors for Parkinson’s, Alzheimer’s and Huntington’s diseases, respectively. The aim of this literature review is to provide insights into: (1 the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2 the molecular tools available for genetic manipulation of MSCs; (3 the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4 the clinical challenges of utilizing genetically modified MSCs.

  11. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases.

    Wyse, Robert D; Dunbar, Gary L; Rossignol, Julien

    2014-01-23

    The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.

  12. Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease.

    Waters, Flavie; Collerton, Daniel; Ffytche, Dominic H; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Larøi, Frank

    2014-07-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications.

  13. Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre.

    Li, Jiayuan; Jiang, Zhe; Li, Xuezheng; Hou, Yue; Liu, Fen; Li, Ning; Liu, Xia; Yang, Lihua

    2015-01-01

    Neurodegenerative diseases are associated with neuroinflammation, manifested by over-production of nitric oxide (NO) by microglial cells. Now there still lack effective treatment and prevention for the neurodegenerative diseases. Concerning neuroinflammation mediated by microglia cell, bioactivity-guided phytochemical research of Pongamia pinnata (L.) Pierre was performed in this study. A new chlorinated flavonoid, 2′,6′-dichlore-3′, 5′-dimethoxy-[2′′,3′′:7,8]-furanoflavone (1) was identified together with 29 known compounds, including flavonoids (compounds 2-17), isoflavonoids (compounds 18-23), chalcones (compounds 24-25), flavonones (compounds 26-27), triterpenes (28-29) and alkaloid (30) from the effective dichloride methane extract of dry stem of P. pinnata (L.) Pierre. Their structures were elucidated by physicochemical and spectral methods. The anti-neuroinflammatory activities were assayed in BV-2 cells by assessing LPS-induced NO production. Then pongaglabol methyl ether (2), lonchocarpin (24) and glabrachromene II (25) were selected as potential therapeutic agents for neurodegenerative diseases because of their significant anti-neuroinflammatory activities. Furthermore, the characteristics of structure type existing in P. pinnata (L.) Pierre and brief SAR were summarized, respectively.

  14. Potentiated Hsp104 variants suppress toxicity of diverse neurodegenerative disease-linked proteins

    Meredith E. Jackrel

    2014-10-01

    Full Text Available Protein misfolding is implicated in numerous lethal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS and Parkinson disease (PD. There are no therapies that reverse these protein-misfolding events. We aim to apply Hsp104, a hexameric AAA+ protein from yeast, to target misfolded conformers for reactivation. Hsp104 solubilizes disordered aggregates and amyloid, but has limited activity against human neurodegenerative disease proteins. Thus, we have previously engineered potentiated Hsp104 variants that suppress aggregation, proteotoxicity and restore proper protein localization of ALS and PD proteins in Saccharomyces cerevisiae, and mitigate neurodegeneration in an animal PD model. Here, we establish that potentiated Hsp104 variants possess broad substrate specificity and, in yeast, suppress toxicity and aggregation induced by wild-type TDP-43, FUS and α-synuclein, as well as missense mutant versions of these proteins that cause neurodegenerative disease. Potentiated Hsp104 variants also rescue toxicity and aggregation of TAF15 but not EWSR1, two RNA-binding proteins with a prion-like domain that are connected with the development of ALS and frontotemporal dementia. Thus, potentiated Hsp104 variants are not entirely non-specific. Indeed, they do not unfold just any natively folded protein. Rather, potentiated Hsp104 variants are finely tuned to unfold proteins bearing short unstructured tracts that are not recognized by wild-type Hsp104. Our studies establish the broad utility of potentiated Hsp104 variants.

  15. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases.

    Giacoppo, Sabrina; Galuppo, Maria; Montaut, Sabine; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2015-10-01

    The discovery of new natural compounds with pharmacological properties is a field of interest widely growing, especially for the management of neurodegenerative diseases. As no pharmacological treatment is available to prevent the development of these disorders, dietary intake of foods or plant-based extracts with antioxidant properties might have beneficial effects on human health and improve brain functions. Isothiocyanates (ITCs), derived from the hydrolysis of the corresponding glucosinolates (GLs), mainly found in Brassica vegetables (Brassicaceae) and, to a lesser extent, in Moringaceae plants, have demonstrated to exert neuroprotective properties. Specifically, strong evidences suggest that antioxidant effects may be ascribed mainly to their peculiar ability to activate the Nrf2/ARE pathway, but alternative mechanisms of action have also been suggested. This review summarizes the current knowledge about the neuroprotective effects of ITCs in counteracting oxidative stress as well as inflammatory and apoptotic mechanisms, using in vitro and in vivo models of acute and chronic neurodegenerative disease. Therefore, ITCs could be regarded as a promising source of alternative medicine for the prevention and/or treatment of neurodegenerative diseases.

  16. Small-Molecule Theranostic Probes: A Promising Future in Neurodegenerative Diseases

    Suzana Aulić

    2013-01-01

    Full Text Available Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated, β-sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrPC. Many lines of evidence suggest that prions (PrPSc act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such, PrPSc may be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer’s disease, Parkinson’s disease, and prion disease. Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.

  17. The Enemy Within: Innate Surveillance-mediated Cell Death, the common mechanism of neurodegenerative disease

    Robert Ian Richards

    2016-05-01

    Full Text Available Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although rare (familial and common (sporadic forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell’s quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an ‘intelligent system’, in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to

  18. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    Afroza Khanam Irin

    2015-01-01

    Full Text Available Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL. This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson’s disease (PD and Multiple Sclerosis (MS.

  19. Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways

    Zilka Norbert

    2012-03-01

    Full Text Available Abstract Neurodegeneration, induced by misfolded tau protein, and neuroinflammation, driven by glial cells, represent the salient features of Alzheimer's disease (AD and related human tauopathies. While tau neurodegeneration significantly correlates with disease progression, brain inflammation seems to be an important factor in regulating the resistance or susceptibility to AD neurodegeneration. Previously, it has been shown that there is a reciprocal relationship between the local inflammatory response and neurofibrillary lesions. Numerous independent studies have reported that inflammatory responses may contribute to the development of tau pathology and thus accelerate the course of disease. It has been shown that various cytokines can significantly affect the functional and structural properties of intracellular tau. Notwithstanding, anti-inflammatory approaches have not unequivocally demonstrated that inhibition of the brain immune response can lead to reduction of neurofibrillary lesions. On the other hand, our recent data show that misfolded tau could represent a trigger for microglial activation, suggesting the dual role of misfolded tau in the Alzheimer's disease inflammatory cascade. On the basis of current knowledge, we can conclude that misfolded tau is located at the crossroad of the neurodegenerative and neuroinflammatory pathways. Thus disease-modified tau represents an important target for potential therapeutic strategies for patients with Alzheimer's disease.

  20. Analysis of optical neural stimulation effects on neural networks affected by neurodegenerative diseases

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2016-03-01

    The number of people in risk of developing a neurodegenerative disease increases as the life expectancy grows due to medical advances. Multiple techniques have been developed to improve patient's condition, from pharmacological to invasive electrodes approaches, but no definite cure has yet been discovered. In this work Optical Neural Stimulation (ONS) has been studied. ONS stimulates noninvasively the outer regions of the brain, mainly the neocortex. The relationship between the stimulation parameters and the therapeutic response is not totally clear. In order to find optimal ONS parameters to treat a particular neurodegenerative disease, mathematical modeling is necessary. Neural networks models have been employed to study the neural spiking activity change induced by ONS. Healthy and pathological neocortical networks have been considered to study the required stimulation to restore the normal activity. The network consisted of a group of interconnected neurons, which were assigned 2D spatial coordinates. The optical stimulation spatial profile was assumed to be Gaussian. The stimulation effects were modeled as synaptic current increases in the affected neurons, proportional to the stimulation fluence. Pathological networks were defined as the healthy ones with some neurons being inactivated, which presented no synaptic conductance. Neurons' electrical activity was also studied in the frequency domain, focusing specially on the changes of the spectral bands corresponding to brain waves. The complete model could be used to determine the optimal ONS parameters in order to achieve the specific neural spiking patterns or the required local neural activity increase to treat particular neurodegenerative pathologies.

  1. Effect of electromagnetic radiations on neurodegenerative diseases- technological revolution as a curse in disguise.

    Hasan, Gulam M; Sheikh, Ishfaq A; Karim, Sajjad; Haque, Absarul; Kamal, Mohammad A; Chaudhary, Adeel G; Azhar, Essam; Mirza, Zeenat

    2014-01-01

    In the present developed world, all of us are flooded with electromagnetic radiations (EMR) emanating from generation and transmission of electricity, domestic appliances and industrial equipments, to telecommunications and broadcasting. We have been exposed to EMR for last many decades; however their recent steady increase from artificial sources has been reported as millions of antennas and satellites irradiate the global population round the clock, year round. Needless to say, these are so integral to modern life that interaction with them on a daily basis is seemingly inevitable; hence, the EMR exposure load has increased to a point where their health effects are becoming a major concern. Delicate and sensitive electrical system of human body is affected by consistent penetration of electromagnetic frequencies causing DNA breakages and chromosomal aberrations. Technological innovations came with Pandora's Box of hazardous consequences including neurodegenerative disorders, hearing disabilities, diabetes, congenital abnormalities, infertility, cardiovascular diseases and cancer to name few, all on a sharp rise. Electromagnetic non-ionizing radiations pose considerable health threat with prolonged exposure. Mobile phones are usually held near to the brain and manifest progressive structural or functional alterations in neurons leading to neurodegenerative diseases and neuronal death. This has provoked awareness among both the general public and scientific community and international bodies acknowledge that further systematic research is needed. The aim of the present review was to have an insight in whether and how cumulative electro-magnetic field exposure is a risk factor for neurodegenerative disorders.

  2. Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols.

    Ajami, Marjan; Pazoki-Toroudi, Hamidreza; Amani, Hamed; Nabavi, Seyed Fazel; Braidy, Nady; Vacca, Rosa Anna; Atanasov, Atanas Georgiev; Mocan, Andrei; Nabavi, Seyed Mohammad

    2017-02-01

    Searching for effective therapeutic agents‏‎ to ‎‏prevent‏ ‏neurodegeneration ‎is a challenging task due ‎to ‎the growing list of neurodegenerative disorders associated with a multitude of inter-related pathways.‎ The induction and inhibition of several different signaling pathways has been shown to slow down and/or attenuate ‎neurodegeneration and decline in cognition and locomotor function. Among these signaling pathways, a new class of enzymes known as sirtuins or silent information regulators of gene transcription has been shown to play important regulatory roles in the ageing process. SIRT1, a nuclear sirtuin, has received ‎particular interest due to its role as a deacetylase for several metabolic and signaling proteins involved in stress response, apoptosis, mitochondrial function, self-renewal, and ‎neuroprotection. ‎A new strategy to treat ‎neurodegenerative diseases is targeted therapy. In ‎this ‎paper, we‎ ‎ reviewed up-to-date findings regarding the targeting of ‎SIRT1 by polyphenolic ‎compounds,‎ ‎as a ‎new ‎‏approach in the search for novel, safe and effective treatments for ‎ ‎neurodegenerativediseases. ‎.

  3. Comprehension of insincere communication in neurodegenerative disease: lies, sarcasm, and theory of mind.

    Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott N; Growdon, Matthew E; Jang, Jung Y; Ketelle, Robin S; Miller, Bruce L; Rankin, Katherine P

    2012-01-01

    Comprehension of insincere communication is an important aspect of social cognition requiring visual perspective taking, emotion reading, and understanding others' thoughts, opinions, and intentions. Someone who is lying intends to hide their insincerity from the listener, while a sarcastic speaker wants the listener to recognize they are speaking insincerely. We investigated whether face-to-face testing of comprehending insincere communication would effectively discriminate among neurodegenerative disease patients with different patterns of real-life social deficits. We examined ability to comprehend lies and sarcasm from a third-person perspective, using contextual cues, in 102 patients with one of four neurodegenerative diseases (behavioral variant frontotemporal dementia [bvFTD], Alzheimer's disease [AD], progressive supranuclear palsy [PSP], and vascular cognitive impairment) and 77 healthy older adults (normal controls--NCs). Participants answered questions about videos depicting social interactions involving deceptive, sarcastic, or sincere speech using The Awareness of Social Inference Test. All subjects equally understood sincere remarks, but bvFTD patients displayed impaired comprehension of lies and sarcasm compared with NCs. In other groups, impairment was not disease-specific but was proportionate to general cognitive impairment. Analysis of the task components revealed that only bvFTD patients were impaired on perspective taking and emotion reading elements and that both bvFTD and PSP patients had impaired ability to represent others' opinions and intentions (i.e., theory of mind). Test performance correlated with informants' ratings of subjects' empathy, perspective taking and neuropsychiatric symptoms in everyday life. Comprehending insincere communication is complex and requires multiple cognitive and emotional processes vulnerable across neurodegenerative diseases. However, bvFTD patients show uniquely focal and severe impairments at every level

  4. Getting miRNA Therapeutics into the Target Cells for Neurodegenerative Diseases: A Mini-Review

    Ming Ming Wen

    2016-11-01

    Full Text Available Abstract:MiRNAs play important roles in modulating gene expression in varying cellular processes and disease pathogenesis, including neurodegenerative diseases. Several miRNAs are expressed in the brain and control brain development and identified as important biomarkers in the pathogenesis of motor- and neuro-cognitive diseases such as Alzheimer, Huntington's and Parkinson's diseases and amyotrophic lateral sclerosis. These remarkable miRNAs could be used as diagnostic markers and therapeutic targeting potential for many stressful and untreatable progressive neurodegenerative diseases. To modulate these miRNA activities, there are currently two strategies involved; first one is to therapeutically restore the suppressed miRNA level by miRNA mimics (agonist, and the other one is to inhibit miRNA function by using antimiR (antagonist to repress overactive miRNA function. However, RNAi-based therapeutics often faces in vivo instability because naked nucleic acids are subject to enzyme degradation before reaching the target sites. Therefore, an effective, safe and stable bio-responsive delivery system is necessary to protect the nucleic acids from serum degradation and assist their entrance to the cells. Since neuronal cells are non-regenerating, to design engineered miRNAs to be delivered to the CNS for long term gene expression and knockdown is representing an enormous challenge for scientists. This article provides an insight summary on some of the innovative strategies employed to deliver miRNA into target cells. These viral and non-viral carrier systems hold promise in RNA therapy delivery for neurodegenerative diseases.

  5. Neural stem cells could serve as a therapeutic material forage-related neurodegenerative diseases

    Sarawut Suksuphew; Parinya Noisa

    2015-01-01

    Progressively loss of neural and glial cells is the keyevent that leads to nervous system dysfunctions anddiseases. Several neurodegenerative diseases, forinstance Alzheimer's disease, Parkinson's disease, andHuntington's disease, are associated to aging andsuggested to be a consequence of deficiency of neuralstem cell pool in the affected brain regions. Endogenousneural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cellsare responsible for the regeneration of new neurons torestore, in the normal circumstance, the functions of thebrain. Endogenous neural stem cells can be isolated,propagated, and, notably, differentiated to most celltypes of the brain. On the other hand, other types ofstem cells, such as mesenchymal stem cells, embryonicstem cells, and induced pluripotent stem cells can alsoserve as a source for neural stem cell production, thathold a great promise for regeneration of the brain. Thereplacement of neural stem cells, either endogenousor stem cell-derived neural stem cells, into impairedbrain is highly expected as a possible therapeutic meanfor neurodegenerative diseases. In this review, clinicalfeatures and current routinely treatments of agerelatedneurodegenerative diseases are documented.Noteworthy, we presented the promising evidence ofneural stem cells and their derivatives in curing suchdiseases, together with the remaining challenges toachieve the best outcome for patients.

  6. [Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].

    Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P

    2015-01-01

    Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies.

  7. Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer's disease characterization.

    Liu, Sidong; Cai, Weidong; Wen, Lingfeng; Feng, David Dagan; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Eberl, Stefan

    2014-09-01

    Neuroimaging has played an important role in non-invasive diagnosis and differentiation of neurodegenerative disorders, such as Alzheimer's disease and Mild Cognitive Impairment. Various features have been extracted from the neuroimaging data to characterize the disorders, and these features can be roughly divided into global and local features. Recent studies show a tendency of using local features in disease characterization, since they are capable of identifying the subtle disease-specific patterns associated with the effects of the disease on human brain. However, problems arise if the neuroimaging database involved multiple disorders or progressive disorders, as disorders of different types or at different progressive stages might exhibit different degenerative patterns. It is difficult for the researchers to reach consensus on what brain regions could effectively distinguish multiple disorders or multiple progression stages. In this study we proposed a Multi-Channel pattern analysis approach to identify the most discriminative local brain metabolism features for neurodegenerative disorder characterization. We compared our method to global methods and other pattern analysis methods based on clinical expertise or statistics tests. The preliminary results suggested that the proposed Multi-Channel pattern analysis method outperformed other approaches in Alzheimer's disease characterization, and meanwhile provided important insights into the underlying pathology of Alzheimer's disease and Mild Cognitive Impairment.

  8. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases.

    Tang, Yu; Le, Weidong

    2016-03-01

    One of the most striking hallmarks shared by various neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease (AD), and amyotrophic lateral sclerosis, is microglia-mediated neuroinflammation. Increasing evidence indicates that microglial activation in the central nervous system is heterogeneous, which can be categorized into two opposite types: M1 phenotype and M2 phenotype. Depending on the phenotypes activated, microglia can produce either cytotoxic or neuroprotective effects. In this review, we focus on the potential role of M1 and M2 microglia and the dynamic changes of M1/M2 phenotypes that are critically associated with the neurodegenerative diseases. Generally, M1 microglia predominate at the injury site at the end stage of disease, when the immunoresolution and repair process of M2 microglia are dampened. This phenotype transformation is very complicated in AD due to the phagocytosis of regionally distributed β-amyloid (Aβ) plaque and tangles that are released into the extracellular space. The endogenous stimuli including aggregated α-synuclein, mutated superoxide dismutase, Aβ, and tau oligomers exist in the milieu that may persistently activate M1 pro-inflammatory responses and finally lead to irreversible neuron loss. The changes of microglial phenotypes depend on the disease stages and severity; mastering the stage-specific switching of M1/M2 phenotypes within appropriate time windows may provide better therapeutic benefit.

  9. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.

  10. Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases.

    Stolp, H B; Dziegielewska, K M

    2009-04-01

    The causes of most neurological disorders are not fully understood. Inflammation and blood-brain barrier dysfunction appear to play major roles in the pathology of these diseases. Inflammatory insults that occur during brain development may have widespread effects later in life for a spectrum of neurological disorders. In this review, a new hypothesis suggesting a mechanistic link between inflammation and blood-brain barrier function (integrity), which is universally important in both neurodevelopmental and neurodegenerative diseases, is proposed. The role of inflammation and the blood-brain barrier will be discussed in cerebral palsy, schizophrenia, Parkinson's disease, Alzheimer's disease and multiple sclerosis, conditions where both inflammation and blood-brain barrier dysfunction occur either during initiation and/or progression of the disease. We suggest that breakdown of normal blood-brain barrier function resulting in a short-lasting influx of blood-born molecules, in particular plasma proteins, may cause local damage, such as reduction of brain white matter observed in some newborn babies, but may also be the mechanism behind some neurodegenerative diseases related to underlying brain damage and long-term changes in barrier properties.

  11. Signaling, Polyubiquitination, Trafficking, and Inclusions: Sequestosome 1/p62's Role in Neurodegenerative Disease

    Marie W. Wooten

    2006-01-01

    Full Text Available Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome. P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases. Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed.

  12. Analysis of the mitochondrial genome of cheetahs (Acinonyx jubatus) with neurodegenerative disease.

    Burger, Pamela A; Steinborn, Ralf; Walzer, Christian; Petit, Thierry; Mueller, Mathias; Schwarzenberger, Franz

    2004-08-18

    The complete mitochondrial genome of Acinonyx jubatus was sequenced and mitochondrial DNA (mtDNA) regions were screened for polymorphisms as candidates for the cause of a neurodegenerative demyelinating disease affecting captive cheetahs. The mtDNA reference sequences were established on the basis of the complete sequences of two diseased and two nondiseased animals as well as partial sequences of 26 further individuals. The A. jubatus mitochondrial genome is 17,047-bp long and shows a high sequence similarity (91%) to the domestic cat. Based on single nucleotide polymorphisms (SNPs) in the control region (CR) and pedigree information, the 18 myelopathic and 12 non-myelopathic cheetahs included in this study were classified into haplotypes I, II and III. In view of the phenotypic comparability of the neurodegenerative disease observed in cheetahs and human mtDNA-associated diseases, specific coding regions including the tRNAs leucine UUR, lysine, serine UCN, and partial complex I and V sequences were screened. We identified a heteroplasmic and a homoplasmic SNP at codon 507 in the subunit 5 (MTND5) of complex I. The heteroplasmic haplotype I-specific valine to methionine substitution represents a nonconservative amino acid change and was found in 11 myelopathic and eight non-myelopathic cheetahs with levels ranging from 29% to 79%. The homoplasmic conservative amino acid substitution valine to alanine was identified in two myelopathic animals of haplotype II. In addition, a synonymous SNP in the codon 76 of the MTND4L gene was found in the single haplotype III animal. The amino acid exchanges in the MTND5 gene were not associated with the occurrence of neurodegenerative disease in captive cheetahs.

  13. Osteoarthritis accelerates and exacerbates Alzheimer's disease pathology in mice

    Yang Meixiang

    2011-09-01

    Full Text Available Abstract Background The purpose of this study was to investigate whether localized peripheral inflammation, such as osteoarthritis, contributes to neuroinflammation and neurodegenerative disease in vivo. Methods We employed the inducible Col1-IL1βXAT mouse model of osteoarthritis, in which induction of osteoarthritis in the knees and temporomandibular joints resulted in astrocyte and microglial activation in the brain, accompanied by upregulation of inflammation-related gene expression. The biological significance of the link between peripheral and brain inflammation was explored in the APP/PS1 mouse model of Alzheimer's disease (AD whereby osteoarthritis resulted in neuroinflammation as well as exacerbation and acceleration of AD pathology. Results Induction of osteoarthritis exacerbated and accelerated the development of neuroinflammation, as assessed by glial cell activation and quantification of inflammation-related mRNAs, as well as Aβ pathology, assessed by the number and size of amyloid plaques, in the APP/PS1; Col1-IL1βXAT compound transgenic mouse. Conclusion This work supports a model by which peripheral inflammation triggers the development of neuroinflammation and subsequently the induction of AD pathology. Better understanding of the link between peripheral localized inflammation, whether in the form of osteoarthritis, atherosclerosis or other conditions, and brain inflammation, may prove critical to our understanding of the pathophysiology of disorders such as Alzheimer's, Parkinson's and other neurodegenerative diseases.

  14. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases.

    Reijs, Babette L R; Teunissen, Charlotte E; Goncharenko, Nikolai; Betsou, Fay; Blennow, Kaj; Baldeiras, Inês; Brosseron, Frederic; Cavedo, Enrica; Fladby, Tormod; Froelich, Lutz; Gabryelewicz, Tomasz; Gurvit, Hakan; Kapaki, Elisabeth; Koson, Peter; Kulic, Luka; Lehmann, Sylvain; Lewczuk, Piotr; Lleó, Alberto; Maetzler, Walter; de Mendonça, Alexandre; Miller, Anne-Marie; Molinuevo, José L; Mollenhauer, Brit; Parnetti, Lucilla; Rot, Uros; Schneider, Anja; Simonsen, Anja Hviid; Tagliavini, Fabrizio; Tsolaki, Magda; Verbeek, Marcel M; Verhey, Frans R J; Zboch, Marzena; Winblad, Bengt; Scheltens, Philip; Zetterberg, Henrik; Visser, Pieter Jelle

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer's disease (AD) and Parkinson's disease (PD). The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF) and blood samples were collected according to the BIOMARKAPD standardized pre-analytical procedures and stored at Integrated BioBank of Luxembourg. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), vascular dementia, multiple system atrophy, progressive supranuclear palsy, PD, PD with dementia, and dementia with Lewy bodies. The virtual biobank contains information on over 8,600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank.

  15. The central biobank and virtual biobank of BIOMARKAPD: a resource for studies on neurodegenerative diseases

    Babette eReijs

    2015-10-01

    Full Text Available AbstractBiobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's Disease (BIOMARKAPD is a European multicenter study, funded by the EU Joint Programme - Neurodegenerative Disease Research (JPND, that aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD and Parkinson’s disease (PD. The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF and blood samples were collected according to the BIOMARKAPD standardized preanalytical procedures (SOP and stored at Integrated BioBank of Luxembourg (IBBL. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI, AD, frontotemporal dementia (FTD, vascular dementia (VaD, multiple system atrophy (MSA, progressive supranuclear palsy (PSP, PD, PD with dementia, and dementia with Lewy bodies (DLB. The virtual biobank contains information on over 8600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank.

  16. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    Reijs, Babette L. R.; Teunissen, Charlotte E.; Goncharenko, Nikolai; Betsou, Fay; Blennow, Kaj; Baldeiras, Inês; Brosseron, Frederic; Cavedo, Enrica; Fladby, Tormod; Froelich, Lutz; Gabryelewicz, Tomasz; Gurvit, Hakan; Kapaki, Elisabeth; Koson, Peter; Kulic, Luka; Lehmann, Sylvain; Lewczuk, Piotr; Lleó, Alberto; Maetzler, Walter; de Mendonça, Alexandre; Miller, Anne-Marie; Molinuevo, José L.; Mollenhauer, Brit; Parnetti, Lucilla; Rot, Uros; Schneider, Anja; Simonsen, Anja Hviid; Tagliavini, Fabrizio; Tsolaki, Magda; Verbeek, Marcel M.; Verhey, Frans R. J.; Zboch, Marzena; Winblad, Bengt; Scheltens, Philip; Zetterberg, Henrik; Visser, Pieter Jelle

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer’s and Parkinson’s disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD) and Parkinson’s disease (PD). The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF) and blood samples were collected according to the BIOMARKAPD standardized pre-analytical procedures and stored at Integrated BioBank of Luxembourg. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), vascular dementia, multiple system atrophy, progressive supranuclear palsy, PD, PD with dementia, and dementia with Lewy bodies. The virtual biobank contains information on over 8,600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank. PMID:26528237

  17. Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases

    Guofen eGao

    2014-02-01

    Full Text Available Mitochondrial ferritin (FtMt is a novel iron-storage protein in mitochondria. Evidences have shown that FtMt is structurally and functionally similar to the cytosolic H-chain ferritin. It protects mitochondria from iron-induced oxidative damage presumably through sequestration of potentially harmful excess free iron. It also participates in the regulation of iron distribution between cytosol and mitochondrial contents. Unlike the ubiquitously expressed H-ferritin, FtMt is mainly expressed in testis and brain, which suggests its tissue-related roles. FtMt is involved in pathogenesis of neurodegenerative diseases, as its increased expression has been observed in Alzheimer’s disease, restless legs syndrome and Friedreich’s ataxia. Studies from our laboratory showed that in Alzheimer’s disease, FtMt overexpression attenuated the β-amyloid induced neurotoxicity, which on the other hand increased significantly when FtMt expression was knocked down. It is also found that, by maintaining mitochondrial iron homeostasis, FtMt could prevent 6-hydroxydopamine induced dopaminergic cell damage in Parkinson’s disease. These recent findings on FtMt regarding its functions in regulation of brain iron homeostasis and its protective role in pathogenesis of neurodegenerative diseases are summarized and reviewed.

  18. Treatment implications of the altered cytokine-insulin axis in neurodegenerative disease.

    Clark, Ian A; Vissel, Bryce

    2013-10-01

    The disappointments of a series of large anti-amyloid trials have brought home the point that until the driving force behind Alzheimer's disease, and the way it causes harm, are firmly established and accepted, researchers will remain ill-equipped to find a way to treat patients successfully. The origin of inflammation in neurodegenerative diseases is still an open question. We champion and expand the argument that a shift in intracellular location of α-synuclein, thereby moving a key methylation enzyme from the nucleus, provides global hypomethylation of patients' cerebral DNA that, through being sensed by TLR9, initiates production of the cytokines that drive these cerebral inflammatory states. After providing a background on the relevant inflammatory cytokines, this commentary then discusses many of the known alternatives to the primary amyloid argument of the pathogenesis of Alzheimer's disease, and the treatment approaches they provide. A key point to appreciate is the weight of evidence that inflammatory cytokines, largely through increasing insulin resistance and thereby reducing the strength of the ubiquitously important signaling mediated by insulin, bring together most of these treatments under development for neurodegenerative disease under the one roof. Moreover, the principles involved apply to a wide range of inflammatory diseases on both sides of the blood brain barrier.

  19. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases.

    Zeliger, Harold I

    2013-09-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.

  20. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  1. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases.

    Mendelsohn, Andrew R; Larrick, James W

    2013-12-01

    Decline of cognition and increasing risk of neurodegenerative diseases are major problems associated with aging in humans. Of particular importance is how the brain removes potentially toxic biomolecules that accumulate with normal neuronal function. Recently, a biomolecule clearance system using convective flow between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove toxic metabolites in the brain was described. Xie and colleagues now report that in mice the clearance activity of this so-called "glymphatic system" is strongly stimulated by sleep and is associated with an increase in interstitial volume, possibly by shrinkage of astroglial cells. Moreover, anesthesia and attenuation of adrenergic signaling can activate the glymphatic system to clear potentially toxic proteins known to contribute to the pathology of Alzheimer disease (AD) such as beta-amyloid (Abeta). Clearance during sleep is as much as two-fold faster than during waking hours. These results support a new hypothesis to answer the age-old question of why sleep is necessary. Glymphatic dysfunction may pay a hitherto unsuspected role in the pathogenesis of neurodegenerative diseases as well as maintenance of cognition. Furthermore, clinical studies suggest that quality and duration of sleep may be predictive of the onset of AD, and that quality sleep may significantly reduce the risk of AD for apolipoprotein E (ApoE) ɛ4 carriers, who have significantly greater chances of developing AD. Further characterization of the glymphatic system in humans may lead to new therapies and methods of prevention of neurodegenerative diseases. A public health initiative to ensure adequate sleep among middle-aged and older people may prove useful in preventing AD, especially in apolipoprotein E (ApoE) ɛ4 carriers.

  2. Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases.

    Gao, Aijing; Peng, Yuhua; Deng, Yulin; Qing, Hong

    2013-01-01

    Difficulties in realizing persistent neurogenesis, inabilities in modeling pathogenesis of most cases, and a shortage of disease material for screening therapeutic agents restrict our progress to overcome challenges presented by neurodegenerative diseases. We propose that reprogramming primary somatic cells of patients into induced pluripotent stem cells (iPSCs) provides a new avenue to overcome these impediments. Their abilities in self-renewal and differentiation into various cell types will enable disease investigation and drug development. In this review, we introduce efficient approaches to generate iPSCs and distinct iPSCs differentiation stages, and critically discuss paradigms of iPSCs technology application to investigate neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Although iPSCs technology is in its infancy and faces many obstacles, it has great potential in helping to identify therapeutic targets for treating neurodegenerative diseases.

  3. Infectivity versus Seeding in Neurodegenerative Diseases Sharing a Prion-Like Mechanism

    Natalia Fernández-Borges

    2013-01-01

    Full Text Available Prions are considered the best example to prove that the biological information can be transferred protein to protein through a conformational change. The term “prion-like” is used to describe molecular mechanisms that share similarities with the mammalian prion protein self-perpetuating aggregation and spreading characteristics. Since prions are presumably composed only of protein and are infectious, the more similar the mechanisms that occur in the different neurodegenerative diseases, the more these processes will resemble an infection. In vitro and in vivo experiments carried out during the last decade in different neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's diseases (PD, and amyotrophic lateral sclerosis (ALS have shown a convergence toward a unique mechanism of misfolded protein propagation. In spite of the term “infection” that could be used to explain the mechanism governing the diversity of the pathological processes, other concepts as “seeding” or “de novo induction” are being used to describe the in vivo propagation and transmissibility of misfolded proteins. The current studies are demanding an extended definition of “disease-causing agents” to include those already accepted as well as other misfolded proteins. In this new scenario, “seeding” would be a type of mechanism by which an infectious agent can be transmitted but should not be used to define a whole “infection” process.

  4. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging NanoSensors Technology

    Shah, Pratik; Cho, Seok Keun; Thulstrup, Peter Waaben; Bjerrum, Morten Jannik; Lee, Phil Hyu; Kang, Ju-Hee; Bhang, Yong-Joo; Yang, Seong Wook

    2017-01-01

    MicroRNAs (miRNAs) are essential small RNA molecules (20–24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters (DNA/AgNCs), has increasingly been adopted to create nanoscale bio-sensing systems due to its attractive optical properties, such as brightness, tuneable emission wavelengths and photostability. Using the DNA/AgNCs sensor methods, the presence of miRNAs can be detected simply by monitoring the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases. PMID:28122423

  5. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  6. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence?

    Pamela eMaher

    2015-12-01

    Full Text Available Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors and a class of G-protein coupled receptors (metabotropic glutamate receptors. Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

  7. Heat Shock Proteins: Old and Novel Roles in Neurodegenerative Diseases in the Central Nervous System.

    van Noort, Johannes M; Bugiani, Marianna; Amor, Sandra

    2016-10-31

    Heat shock proteins (HSPs) are families of molecular chaperones that play important homeostatic functions in the central nervous system (CNS) by preventing protein misfolding, promoting degradation of improperly folded proteins, and protecting against apoptosis and inflammatory damage especially during hyperthermia, hypoxia, or oxidative stress. Under stress conditions, HSPs are upregulated to protect cells from damage that accumulates during ageing as well as pathological conditions. An important, yet frequently overlooked function of some HSPs is their ability to function as extracellular messengers (also termed chaperokines) that modulate immune responses within the CNS. Given the strong association between protein aggregation, innate immune cell activation and neurodegeneration, the expression and roles of HSPs in the CNS is attracting attention in many neurodegenerative disorders including inflammatory diseases such as multiple sclerosis, protein folding diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, and genetic white matter diseases. This is especially so since several studies show that HSPs act therapeutically by modulating innate immune activation and may thus serve as neuroprotective agents. Here we review the evidence linking HSPs with neurodegenerative disorders in humans and the experimental animal models of these disorders. We discuss the mechanisms by which HSP protect cells, and how the knowledge of their endogenous functions can be exploited to treat disorders of the CNS.

  8. Extracting salient brain patterns for imaging-based classification of neurodegenerative diseases.

    Rueda, Andrea; González, Fabio A; Romero, Eduardo

    2014-06-01

    Neurodegenerative diseases comprise a wide variety of mental symptoms whose evolution is not directly related to the visual analysis made by radiologists, who can hardly quantify systematic differences. Moreover, automatic brain morphometric analyses, that do perform this quantification, contribute very little to the comprehension of the disease, i.e., many of these methods classify but they do not produce useful anatomo-functional correlations. This paper presents a new fully automatic image analysis method that reveals discriminative brain patterns associated to the presence of neurodegenerative diseases, mining systematic differences and therefore grading objectively any neurological disorder. This is accomplished by a fusion strategy that mixes together bottom-up and top-down information flows. Bottom-up information comes from a multiscale analysis of different image features, while the top-down stage includes learning and fusion strategies formulated as a max-margin multiple-kernel optimization problem. The capacity of finding discriminative anatomic patterns was evaluated using the Alzheimer's disease (AD) as the use case. The classification performance was assessed under different configurations of the proposed approach in two public brain magnetic resonance datasets (OASIS-MIRIAD) with patients diagnosed with AD, showing an improvement varying from 6.2% to 13% in the equal error rate measure, with respect to what has been reported by the feature-based morphometry strategy. In terms of the anatomical analysis, discriminant regions found by the proposed approach highly correlates to what has been reported in clinical studies of AD.

  9. Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes.

    Sin, Olga; Nollen, Ellen A A

    2015-11-01

    Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding, trafficking and clearance of proteins, all of which act in an orchestrated manner to ensure proteome stability. The protein quality control system is enhanced by stress response pathways, which take action whenever the proteome is challenged by environmental or physiological stress. Aging, however, damages the proteome, and such proteome damage is thought to be associated with aging-related diseases. In this review, we discuss the different cellular processes that define the protein quality control system and focus on their role in protein conformational diseases. We highlight the power of using small organisms to model neurodegenerative diseases and how these models can be exploited to discover genetic modulators of protein aggregation and toxicity. We also link findings from small model organisms to the situation in higher organisms and describe how some of the genetic modifiers discovered in organisms such as worms are functionally conserved throughout evolution. Finally, we demonstrate that the non-coding genome also plays a role in maintaining protein homeostasis. In all, this review highlights the importance of protein and RNA homeostasis in neurodegenerative diseases.

  10. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    Michael S. Wolfe

    2012-01-01

    Full Text Available The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer’s disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies.

  11. Use of C. elegans as a Model to Study Alzheimer’s Disease and Other Neurodegenerative Diseases

    Adanna G Alexander

    2014-09-01

    Full Text Available Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD. AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP and the microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions.C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have orthologues in C. elegans, including an APP ortholog, APL-1, a tau homolog, PTL-1, and presenilin homologues, such as SEL-12 and HOP-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.

  12. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases

    Maria H. Madeira

    2017-01-01

    Full Text Available Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

  13. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  14. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC

    Tingaud-Sequeira, Angèle; Raldúa, Demetrio; Lavie, Julie

    2016-01-01

    ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid...... knockdown morphants were consistent with human PHARC hallmarks. High abhd12 transcript levels were found in the optic tectum and tract, colocalized with myelin basic protein, and in the spinal cord. Morphants have myelination defects and concomitant functional deficits, characterized by progressive ataxia...

  15. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  16. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease.

    Simon, Matthew J; Iliff, Jeffrey J

    2016-03-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.

  17. Network Analysis of Neurodegenerative Disease Highlights a Role of Toll-Like Receptor Signaling

    Thanh-Phuong Nguyen

    2014-01-01

    Full Text Available Despite significant advances in the study of the molecular mechanisms altered in the development and progression of neurodegenerative diseases (NDs, the etiology is still enigmatic and the distinctions between diseases are not always entirely clear. We present an efficient computational method based on protein-protein interaction network (PPI to model the functional network of NDs. The aim of this work is fourfold: (i reconstruction of a PPI network relating to the NDs, (ii construction of an association network between diseases based on proximity in the disease PPI network, (iii quantification of disease associations, and (iv inference of potential molecular mechanism involved in the diseases. The functional links of diseases not only showed overlap with the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration.

  18. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001-2010.

    Forrester, Joseph D; Kugeler, Kiersten J; Perea, Anna E; Pastula, Daniel M; Mead, Paul S

    2015-11-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions.

  19. Multi-target drug design approaches for multifactorial diseases: from neurodegenerative to cardiovascular applications.

    Katselou, M G; Matralis, A N; Kourounakis, A P

    2014-01-01

    In multi-target drug design (MTD) medicinal chemistry aims to integrate multiple pharmacophores into a single drug molecule in order to make it active on several molecular biological mechanisms simultaneously. Given the fact that most diseases are multifactorial in nature, MTD is being pursued with increasing intensity, which has resulted in improved outcomes in disease models and several compounds have entered clinical trials. In a wide range of examples we illustrate how various functionalities have been combined within single structures and how this has affected their (pre)clinical outcome. This review describes the successful application of MTD for disorders such as neurodegenerative, cardiovascular, diabetes, metabolic and inflammatory diseases, especially focusing on the field of atherosclerosis where multi-target strategies are a promising alternative to the classical "one target-one drug" design approach.

  20. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  1. Utility of autoantibodies as biomarkers for diagnosis and staging of neurodegenerative diseases.

    DeMarshall, Cassandra; Sarkar, Abhirup; Nagele, Eric P; Goldwaser, Eric; Godsey, George; Acharya, Nimish K; Nagele, Robert G

    2015-01-01

    Autoantibodies are self-reactive antibodies that have been widely implicated as causal agents of autoimmune diseases. They are found in the blood of all human sera, regardless of age, gender, or the presence or absence of disease. While the underlying reason for their ubiquity remains unknown, it has been hypothesized that they participate in the clearance of blood-borne cell and tissue debris generated in both healthy and diseased individuals on a daily basis. Although much evidence supports this debris clearance role, recent studies also suggest a causal role for autoantibodies in disease. This chapter first presents well-known examples of autoimmune diseases that emphasize a direct causal role for autoantibodies and then discusses the veritable explosion of evidence now supporting their involvement in a wide variety of other diseases, including cancers and several types of neurological and neurodegenerative diseases. Lastly, translational strategies that take advantage of the "cause and/or effect" role of autoantibodies and recent technological advancements in their detection to exploit autoantibodies as sensitive and specific biomarkers useful for the detection and diagnosis of disease are outlined. Their use in the diagnosis and staging of Alzheimer's and Parkinson's diseases is presented, and future applications in clinical medicine and basic science are highlighted.

  2. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention.

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J; Sollberger, Marc; Miller, Bruce L; Rankin, Katherine P

    2014-08-01

    Accurate self-awareness is essential for adapting one's tasks and goals to one's actual abilities. Patients with neurodegenerative diseases, particularly those with right frontal involvement, often present with poor self-awareness of their functional limitations that may exacerbate their already jeopardized decision-making and behaviour. We studied the structural neuroanatomical basis for impaired self-awareness among patients with neurodegenerative disease and healthy older adults. One hundred and twenty-four participants (78 patients with neurodegenerative diseases including Alzheimer's disease, behavioural variant frontotemporal dementia, right-temporal frontotemporal dementia, semantic variant and non-fluent variant primary progressive aphasia, and 46 healthy controls) described themselves on the Patient Competency Rating Scale, rating observable functioning across four domains (daily living activities, cognitive, emotional control, interpersonal). All participants underwent structural magnetic resonance imaging. Informants also described subjects' functioning on the same scale. Self-awareness was measured by comparing self and informant ratings. Group differences in discrepancy scores were analysed using general linear models, controlling for age, sex and disease severity. Compared with controls, patients with behavioural variant frontotemporal dementia overestimated their functioning in all domains, patients with Alzheimer's disease overestimated cognitive and emotional functioning, patients with right-temporal frontotemporal dementia overestimated interpersonal functioning, and patients with non-fluent aphasia overestimated emotional and interpersonal functioning. Patients with semantic variant aphasia did not overestimate functioning on any domain. To examine the neuroanatomic correlates of impaired self-awareness, discrepancy scores were correlated with brain volume using voxel-based morphometry. To identify the unique neural correlates of overlooking

  3. Schisandrin B protects PC12 cells against oxidative stress of neurodegenerative diseases.

    Jiang, En-Ping; Li, He; Yu, Chun-Rong; Yu, Chun-Yan; Jing, Shu; Sun, Hong-Xia; Wang, Chun-Mei; Fan, Xin-Tian; Chen, Jian-Guang; Wang, Sen

    2015-04-15

    Increasing evidence places Schisandrin B (Sch B) at an important position in nerve protection, indicating that Sch B might play a positive role in the therapy of neurodegenerative diseases. However, there is little information on it. Our studies showed that pretreatment with Sch B could reduce lactate dehydrogenase, malondialdehyde, and reactive oxygen species release and significantly increase the cell viability and the superoxide dismutase level. Sch B (10 μM) markedly inhibited cell apoptosis, whereas LY294002 (20 μM), a phosphatidylinositol-3 kinase inhibitor, blocked the antiapoptotic effect. More importantly, Sch B (10 μM) increased the phosphoprotein kinase B/protein kinase B (Akt) and B-cell lymphoma-2/Bcl-2 associated X protein ratios on preincubation with cells for 2 h, which was then inhibited by LY294002 (20 μM). Results indicate that Sch B can protect PC12 cells from apoptosis by activating the phosphatidylinositol-3 kinase/Akt signaling pathway and may emerge as a potential drug for neurodegenerative diseases.

  4. Grey and White Matter Clinico-Anatomical Correlates of Disinhibition in Neurodegenerative Disease

    Santillo, Alexander Frizell; Lundblad, Karl; Nilsson, Markus; Landqvist Waldö, Maria; van Westen, Danielle; Lätt, Jimmy; Blennow Nordström, Erik; Vestberg, Susanna; Lindberg, Olof; Nilsson, Christer

    2016-01-01

    Disinhibition is an important symptom in neurodegenerative diseases. However, the clinico-anatomical underpinnings remain controversial. We explored the anatomical correlates of disinhibition in neurodegenerative disease using the perspective of grey and white matter imaging. Disinhibition was assessed with a neuropsychological test and a caregiver information-based clinical rating scale in 21 patients with prefrontal syndromes due to behavioural variant frontotemporal dementia (n = 12) or progressive supranuclear palsy (n = 9), and healthy controls (n = 25). Cortical thickness was assessed using the Freesurfer software on 3T MRI data. The integrity of selected white matter tracts was determined by the fractional anisotropy (FA) from Diffusion Tensor Imaging. Disinhibition correlated with the cortical thickness of the right parahippocampal gyrus, right orbitofrontal cortex and right insula and the FA of the right uncinate fasciculus and right anterior cingulum. Notably, no relationship was seen with the thickness of ventromedial prefrontal cortex. Our results support an associative model of inhibitory control, distributed in a medial temporal lobe-insular-orbitofrontal network, connected by the intercommunicating white matter tracts. This reconciles some of the divergences among previous studies, but also questions the current conceptualisation of the “prefrontal” syndrome and the central role attributed to the ventromedial prefrontal cortex in inhibitory control. PMID:27723823

  5. Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases

    Rafał eMarciniak

    2014-01-01

    Full Text Available Effect of different meditation practices on various aspects of mental and physical health is receiving growing attention. The present paper reviews evidence about effects of several mediation practices on cognitive functions in the context of aging and neurodegenerative diseases. The effect of meditation in this area is still poorly explored. Seven studies were detected through the databases search which explores the effect of meditation on attention, memory, executive functions and other miscellaneous measures of cognition in a sample of older people and people suffering from neurodegenerative diseases. Overall, reviewed studies suggested a positive effect of meditation techniques, particularly in the area of attention, as well as memory, verbal fluency and cognitive flexibility. These findings are discussed in the context of MRI studies suggesting structural correlates of the effects. Meditation can be a potentially suitable non-pharmacological intervention aimed at the prevention of cognitive decline in the elderly. However, the conclusions of these studies are limited by their methodological flaws and differences of various types of meditation techniques. Further research in this direction could help to verify the validity of the findings and clarify the problematic aspects.

  6. Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases.

    Marciniak, Rafał; Sheardova, Katerina; Cermáková, Pavla; Hudeček, Daniel; Sumec, Rastislav; Hort, Jakub

    2014-01-01

    Effect of different meditation practices on various aspects of mental and physical health is receiving growing attention. The present paper reviews evidence on the effects of several mediation practices on cognitive functions in the context of aging and neurodegenerative diseases. The effect of meditation in this area is still poorly explored. Seven studies were detected through the databases search, which explores the effect of meditation on attention, memory, executive functions, and other miscellaneous measures of cognition in a sample of older people and people suffering from neurodegenerative diseases. Overall, reviewed studies suggested a positive effect of meditation techniques, particularly in the area of attention, as well as memory, verbal fluency, and cognitive flexibility. These findings are discussed in the context of MRI studies suggesting structural correlates of the effects. Meditation can be a potentially suitable non-pharmacological intervention aimed at the prevention of cognitive decline in the elderly. However, the conclusions of these studies are limited by their methodological flaws and differences of various types of meditation techniques. Further research in this direction could help to verify the validity of the findings and clarify the problematic aspects.

  7. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.

    Okazawa, H; Ikawa, M; Tsujikawa, T; Kiyono, Y; Yoneda, M

    2014-12-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases.

  8. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?

    Shayne Anthony Bellingham

    2012-05-01

    Full Text Available Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB. When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD of humans or bovine spongiform encephalopathy (BSE of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP which is associated with Alzheimer's disease (AD. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I (SOD-1 and alpha-synuclein (involved in Amyotrophic Lateral Sclerosis (ALS and Parkinson’s disease respectively are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics and diagnostics for these diseases.

  9. Brain transplants. A new approach to the therapy of neurodegenerative disease.

    Tulipan, N

    1988-05-01

    There is now a wealth of experimental evidence to suggest that transplantation to the brain may ameliorate a variety of neurologic and endocrine disorders. Many unanswered questions remain. Chief among these questions are the duration of any salutary effects and the potential long-term risks to the host CNS. Answers to these questions will only come with carefully controlled long-term clinical studies. Given the high incidence and devastating nature of many of these diseases, such studies will have enormous scientific and social impact. Regardless of the outcome, there is the potential for a greater understanding of the pathologic mechanisms underlying neurodegenerative diseases and, thus, the possibility that definitive therapies will be found as a result.

  10. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases.

  11. Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury

    Wang, Miao; Han, Xianlin

    2016-01-01

    Summary Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarized the principles underlying this platform and presented a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples. We believe that this protocol could aid the researchers in the field to determine the altered lipid patterns in neurodegenerative diseases and brain injury. PMID:26235081

  12. The utility of α-synuclein as biofluid marker in neurodegenerative diseases

    Simonsen, Anja Hviid; Kuiperij, Bea; El-Agnaf, Omar Mukhtar Ali

    2016-01-01

    The discovery of α-synuclein (α-syn) as a major component of Lewy bodies, neuropathological hallmark of Parkinson's disease (PD), dementia with Lewy bodies and of glial inclusions in multiple system atrophy initiated the investigation of α-syn as a biomarker in cerebrospinal fluid (CSF). Due...... to the involvement of the periphery in PD the quantification of α-syn in peripheral fluids such as serum, plasma and saliva has been investigated as well. We review how the development of multiple assays for the quantification of α-syn has yielded novel insights into the variety of α-syn species present...... in the different fluids; the optimal preanalytical conditions required for robust quantification and the potential clinical value of α-syn as biomarker. We also suggest future approaches to use of CSF α-syn in neurodegenerative diseases....

  13. Melatonin and other tryptophan metabolites produced by yeasts: implications in cardiovascular and neurodegenerative diseases

    Ruth eHornedo-Ortega

    2016-01-01

    Full Text Available Yeast metabolism produces compounds derived from tryptophan, which are found in fermented beverages, such as wine and beer. Melatonin and serotonin, in particular, may play a significant role due to their bioactivity in humans. Indeed, the former is a neurohormone related to circadiam rhythms, which also has a putative protective effect against degenerative diseases. Serotonin, on the other hand, is a neurotransmitter itself, in addition to being a precursor of melatonin synthesis. This paper summarizes data reported on fermented beverages, to evaluate dietary intake. Additionally, the article reviews observed effects of yeast amino acid metabolites on the prevention of neurodegenerative diseases (Alzheimer’s and Parkinson’s and angiogenesis, focusing on evidence of the molecular mechanism involved and identification of molecular targets

  14. The Progress of Mitophagy and Related Pathogenic Mechanisms of the Neurodegenerative Diseases and Tumor

    Ying Song

    2015-01-01

    Full Text Available Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases.

  15. Protein misfolding in the late-onset neurodegenerative diseases: common themes and the unique case of amyotrophic lateral sclerosis.

    Mulligan, Vikram Khipple; Chakrabartty, Avijit

    2013-08-01

    Enormous strides have been made in the last 100 years to extend human life expectancy and to combat the major infectious diseases. Today, the major challenges for medical science are age-related diseases, including cancer, heart disease, lung disease, renal disease, and late-onset neurodegenerative disease. Of these, only the neurodegenerative diseases represent a class of disease so poorly understood that no general strategies for prevention or treatment exist. These diseases, which include Alzheimer's disease, Parkinson's disease, Huntington's disease, the transmissible spongiform encephalopathies, and amyotrophic lateral sclerosis (ALS), are generally fatal and incurable. The first section of this review summarizes the diversity and common features of the late-onset neurodegenerative diseases, with a particular focus on protein misfolding and aggregation-a recurring theme in the molecular pathology. The second section focuses on the particular case of ALS, a late-onset neurodegenerative disease characterized by the death of central nervous system motor neurons, leading to paralysis and patient death. Of the 10% of ALS cases that show familial inheritance (familial ALS), the largest subset is caused by mutations in the SOD1 gene, encoding the Cu, Zn superoxide dismutase (SOD1). The unusual kinetic stability of SOD1 has provided a unique opportunity for detailed structural characterization of conformational states potentially involved in SOD1-associated ALS. This review discusses past studies exploring the stability, folding, and misfolding behavior of SOD1, as well as the therapeutic possibilities of using detailed knowledge of misfolding pathways to target the molecular mechanisms underlying ALS and other neurodegenerative diseases.

  16. Niemann-Pick C disease gene mutations and age-related neurodegenerative disorders.

    Michael Zech

    Full Text Available Niemann-Pick type C (NPC disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95% or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson's disease (PD, frontotemporal lobar degeneration (FTLD and progressive supranuclear palsy (PSP, and to genetically determine the proportion of potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients clinically diagnosed with PD (n = 563, FTLD (n = 133 and PSP (n = 94, and 846 population-based controls. The frequencies of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2 mutations were found in six PD patients (1.1% and seven control subjects (0.8%, but not in FTLD or PSP. All rare variation was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC patients were not present in our samples. However, further assessment of NPC disease genes in age-related neurodegeneration is warranted.

  17. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases.

    Uzma Saeed

    Full Text Available Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1, a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal models of neurodegenerative diseases, such as Parkinson's and motor neuron disease. We examined the mechanism underlying the regulation of mitochondrial function by Grx1. Downregulation of Grx1 by shRNA results in loss of mitochondrial membrane potential (MMP, which is prevented by the thiol antioxidant, alpha-lipoic acid, or by cyclosporine A, an inhibitor of mitochondrial permeability transition. The thiol groups of voltage dependent anion channel (VDAC, an outer membrane protein in mitochondria but not adenosine nucleotide translocase (ANT, an inner membrane protein, are oxidized when Grx1 is downregulated. We then examined the effect of beta-N-oxalyl amino-L-alanine (L-BOAA, an excitatory amino acid implicated in neurolathyrism (a type of motor neuron disease, that causes mitochondrial dysfunction. Exposure of cells to L-BOAA resulted in loss of MMP, which was prevented by overexpression of Grx1. Grx1 expression is regulated by estrogen in the CNS and treatment of SH-SY5Y cells with estrogen upregulated Grx1 and protected from L-BOAA mediated MMP loss. Our studies demonstrate that Grx1, a cytosolic oxido-reductase, helps maintain mitochondrial integrity and prevents MMP loss caused by oxidative insult. Further, downregulation of Grx1 leads to mitochondrial dysfunction through oxidative modification of the outer membrane protein, VDAC, providing support for the critical role of Grx1 in maintenance of MMP.

  18. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases.

  19. Copper toxicity induced hepatocerebral and neurodegenerative diseases: an urgent need for prognostic biomarkers.

    Pal, Amit

    2014-01-01

    Copper (Cu) has been the subject of intensive research over several decades as numerous evidence robustly support the involvement of excess Cu induced neurotoxicity in hepatocerebral (Wilson's disease) and neurodegenerative disorders (especially Alzheimer's disease and Parkinson's disease); notwithstanding, the ideal Cu neurotoxicity biomarker/s for early prognosis remains elusive. Non-ceruloplasmin bound Cu is a biological marker of Wilson's disease and recent studies have shown that its levels are also increased in Alzheimer's disease. Copper chaperone for superoxide dismutase seems to be the other most promising biomarker of Cu toxicity (subject to its validation). Serum/plasma Cu, urine Cu and ceruloplasmin concentrations, most widely used laboratory indicators to diagnose Wilson's disease, are not specific for Cu excess milieu as these are also influenced by age, sex, inflammation and hormonal status. High inter-individual variability, nonexistence of standardized assays and non-specificity limit the use of other cuproenzymes as biomarkers of Cu neurotoxicity. The majority of Cu neurotoxicity biomarker research has focused in plasma/serum where other factors including inflammation, oxidative stress, dietary and environmental factors influence the Cu condition being studied. Proteomics study of cerebrospinal fluid, due to its high specificity and sensitivity represents an alternative approach to study early peripheral Cu neurotoxicity biomarker/s in experimental animals. In addition, network biology, transcriptomics in conjunction with novel in vivo Cu imaging techniques allow us to explore other potential candidates and propose new targets to be studied for chronic Cu neurotoxicity biomarker/s, and for possible therapeutic interventions.

  20. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease

    J. Thomas

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia.

  1. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection.

    Nguyen, Linda; Lucke-Wold, Brandon P; Mookerjee, Shona; Kaushal, Nidhi; Matsumoto, Rae R

    2017-01-01

    Sigma-1 receptors are molecular chaperones that may act as pathological mediators and targets for novel therapeutic applications in neurodegenerative diseases. Accumulating evidence indicates that sigma-1 ligands can either directly or indirectly modulate multiple neurodegenerative processes, including excitotoxicity, calcium dysregulation, mitochondrial and endoplasmic reticulum dysfunction, inflammation, and astrogliosis. In addition, sigma-1 ligands may act as disease-modifying agents in the treatment for central nervous system (CNS) diseases by promoting the activity of neurotrophic factors and neural plasticity. Here, we summarize their neuroprotective and neurorestorative effects in different animal models of acute brain injury and chronic neurodegenerative diseases, and highlight their potential role in mitigating disease. Notably, current data suggest that sigma-1 receptor dysfunction worsens disease progression, whereas enhancement amplifies pre-existing functional mechanisms of neuroprotection and/or restoration to slow disease progression. Collectively, the data support a model of the sigma-1 receptor as an amplifier of intracellular signaling, and suggest future clinical applications of sigma-1 ligands as part of multi-therapy approaches to treat neurodegenerative diseases.

  2. TDP-43 Proteinopathies: A New Player in Neurodegenerative Diseases with Defective Protein Folding

    Suna Lahut

    2012-03-01

    Full Text Available The proteome is the sum of all proteins inside a cell, and proteostasis (protein homeostasis is the stable condition of the proteome. Proteostasis is essential for the cellular and organismal health. Stress, aging and the chronic expression of misfolded proteins challenge the proteostasis machinery and the vitality of the cell. There is increasing evidence that the accumulation of damaged proteins not only has direct consequences on the efficiency and fidelity of cellular processes but, when not corrected, that they initiate a cascade of dysfunction, which in humans is associated with a plethora of diseases of protein conformation, referred to as proteinopathies. Alzheimer’s Disease (AD, Parkinson’s Disease (PD, Huntington’s Disease (HD, Amyotrophic Lateral Sclerosis (ALS, cancer and diabetes, whose frequencies have drastically increased in countries with aging populations, are all consequences of misfolded proteins. This paper focuses on TDP-43, which excelled as a key protein in neurodegenerative processes because of its association with different diseases, especially with ALS and Frontotemporal Lobar Dementia (FTLD, the two best studied examples of TDP-43 proteinopathies.

  3. Concise review: toward stem cell-based therapies for retinal neurodegenerative diseases.

    Bull, Natalie D; Martin, Keith R

    2011-08-01

    Loss of sight due to irreversible retinal neurodegeneration imposes a significant disease burden on both patients and society. Glaucoma and age-related macular degeneration are the commonest neurodegenerative blinding diseases in the developed world, and both are becoming increasingly prevalent as populations age. Our heavy reliance on our sense of sight means that visual loss often severely restricts day-to-day life, making it difficult to function without additional support. Visual impairment also limits employment possibilities, adding to the economic burden. Current therapies for many degenerative retinopathies are limited in their efficacy, often treating the effects of disease rather than the underlying causes. Consequently, the development of novel adjunctive neuroprotective and neuroregenerative treatments are important goals. Evidence from animal models suggests that stem cells could be useful as part of novel new treatment strategies for eye disease. The accessibility of the eye and extensive repertoire of available surgical techniques may facilitate the translation of stem cell-based therapies, for example, via transplantation, to the retina more rapidly than to other parts of the central nervous system. This concise review will examine how cell therapies are being applied experimentally for neuroregenerative and neuroprotective treatment of currently incurable degenerative retinal diseases. Furthermore, recent progress toward clinical translation of such therapies will be highlighted.

  4. The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases.

    Philippens, Ingrid H C H M; 't Hart, Bert A; Torres, German

    2010-12-01

    Aging societies face an increasing prevalence of neurodegenerative disorders for which no cure exists. The paucity of relevant animal models that faithfully reproduce clinical and pathogenic features of neurodegenerative diseases is a major cause for the lack of effective therapies. Clinically distinct disorders, such as Alzheimer's and Parkinson's disease, are driven by overlapping pathogenic mechanisms that converge onto vulnerable neurons to ultimately cause abnormal clinical outcomes. These similarities, particularly in the early phases of neurodegeneration, might help identify appropriate animal model systems for studying of cell pathology. While reviewing some of the cellular mechanisms of disease progression, we discuss the MPTP-induced model of Parkinsonism in marmoset monkeys as a model system for construct, face and predictive validity in neurodegenerative studies.

  5. Fluctuations in protein aggregation: Design of preclinical screening for early diagnosis of neurodegenerative disease

    Costantini, Giulio; Taloni, Alessandro; Buell, Alexander K; Zapperi, Stefano; La Porta, Caterina A M

    2016-01-01

    Autocatalytic fibril nucleation has recently been proposed to be a determining factor for the spread of neurodegenerative diseases, but the same process could also be exploited to amplify minute quantities of protein aggregates in a diagnostic context. Recent advances in microfluidic technology allow analysis of protein aggregation in micron-scale samples potentially enabling such diagnostic approaches, but the theoretical foundations for the analysis and interpretation of such data are so far lacking. Here we study computationally the onset of protein aggregation in small volumes and show that the process is ruled by intrinsic fluctuations whose volume dependent distribution we also estimate theoretically. Based on these results, we develop a strategy to quantify in silico the statistical errors associated with the detection of aggregate containing samples. Our work opens a new perspective on the forecasting of protein aggregation in asymptomatic subjects.

  6. PET and the multitracer concept in the study of neurodegenerative diseases

    Henry Engler

    Full Text Available ABSTRACT The complexity of the pathological reactions of the brain to an aggression caused by an internal or external noxa represents a challenge for molecular imaging. Positron emission tomography (PET can indicate in vivo,anatomopathological changes involved in the development of different clinical symptoms in patients with neurodegenerative disorders. PET and the multitracer concept can provide information from different systems in the brain tissue building an image of the whole disease. We present here the combination of 18F-flourodeoxyglucose (FDG and N-[11C-methyl]-L-deuterodeprenyl (DED, FDG and N-[11C-methyl] 2-(4'-methylaminophenyl-6-hydroxybenzothiazole (PIB, PIB and L-[11C]-3'4-Dihydrophenylalanine (DOPA and finally PIB and [15O]H2O.

  7. Fluctuations in Protein Aggregation: Design of Preclinical Screening for Early Diagnosis of Neurodegenerative Disease

    Costantini, Giulio; Budrikis, Zoe; Taloni, Alessandro; Buell, Alexander K.; Zapperi, Stefano; La Porta, Caterina A. M.

    2016-09-01

    Autocatalytic fibril nucleation has recently been proposed to be a determining factor for the spread of neurodegenerative diseases, but the same process could also be exploited to amplify minute quantities of protein aggregates in a diagnostic context. Recent advances in microfluidic technology allow the analysis of protein aggregation in micron-scale samples, potentially enabling such diagnostic approaches, but the theoretical foundations for the analysis and interpretation of such data are, so far, lacking. Here, we study computationally the onset of protein aggregation in small volumes and show that the process is ruled by intrinsic fluctuations whose volume-dependent distribution we also estimate theoretically. Based on these results, we develop a strategy to quantify in silico the statistical errors associated with the detection of aggregate-containing samples. Our work explores a different perspective on the forecasting of protein aggregation in asymptomatic subjects.

  8. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases.

    Kan, I; Melamed, E; Offen, D

    2007-01-01

    Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.

  9. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases

    Graciela Cristina dos Santos

    2009-12-01

    Full Text Available According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q10 (CoQ10 has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP. The property of CoQ10 to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ10 has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ10 before exposing patients to unnecessary health risks at significant costs.De acordo com estudos clínicos e pré-clínicos, o estresse oxidativo e suas conseqüências podem ser a causa, ou, no mínimo, o fator que contribui para grande número de doenças degenerativas. Estas doenças incluem problemas comuns e debilitantes, caracterizados por perda progressiva e irreversível de neurônios em regiões específicas do cérebro. As doenças degenerativas mais comuns são doença de Parkinson, de Hutington, de Alzheimer e esclerose amiotrófica lateral. A Coenzima Q10 (CoQ10 tem sido intensamente estudada desde sua descoberta, em 1957. É um componente da cadeia de transporte eletrônico e participa da respiração aeróbica celular, gerando energia na forma de trifosfato de

  10. Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases.

    Srinageshwar, Bhairavi; Maiti, Panchanan; Dunbar, Gary L; Rossignol, Julien

    2016-02-02

    The main objectives of this review are to survey the current literature on the role of epigenetics in determining the fate of stem cells and to assess how this information can be used to enhance the treatment strategies for some neurodegenerative disorders, like Huntington's disease, Parkinson's disease and Alzheimer's disease. Some of these epigenetic mechanisms include DNA methylation and histone modifications, which have a direct impact on the way that genes are expressed in stem cells and how they drive these cells into a mature lineage. Understanding how the stem cells are behaving and giving rise to mature cells can be used to inform researchers on effective ways to design stem cell-based treatments. In this review article, the way in which the basic understanding of how manipulating this process can be utilized to treat certain neurological diseases will be presented. Different genetic factors and their epigenetic changes during reprogramming of stem cells into induced pluripotent stem cells (iPSCs) have significant potential for enhancing the efficacy of cell replacement therapies.

  11. Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases

    Bhairavi Srinageshwar

    2016-02-01

    Full Text Available The main objectives of this review are to survey the current literature on the role of epigenetics in determining the fate of stem cells and to assess how this information can be used to enhance the treatment strategies for some neurodegenerative disorders, like Huntington’s disease, Parkinson’s disease and Alzheimer’s disease. Some of these epigenetic mechanisms include DNA methylation and histone modifications, which have a direct impact on the way that genes are expressed in stem cells and how they drive these cells into a mature lineage. Understanding how the stem cells are behaving and giving rise to mature cells can be used to inform researchers on effective ways to design stem cell-based treatments. In this review article, the way in which the basic understanding of how manipulating this process can be utilized to treat certain neurological diseases will be presented. Different genetic factors and their epigenetic changes during reprogramming of stem cells into induced pluripotent stem cells (iPSCs have significant potential for enhancing the efficacy of cell replacement therapies.

  12. Beneficial Role of Coffee and Caffeine in Neurodegenerative Diseases: A Minireview

    Yenisetti SC

    2016-06-01

    Full Text Available Coffee is among the most widespread and healthiest beverages in the world. Coffee typically contains more caffeine than most other beverages, and is widely and frequently consumed. Thus, it contributes significantly to the overall caffeine consumption within the general population, particularly in adults. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health-promoting potential. Several lines of evidence have highlighted the beneficial effects towards several disease conditions including Type II diabetes, hepatitis C virus, hepatocellular carcinoma, nonalcoholic fatty liver disease and neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's disease (PD and Amyotrophic Lateral Sclerosis (ALS. The health-promoting properties of coffee are largely attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, and hydroxy hydroquinone. In this minireview, an attempt has been made to discuss the various evidences which are mainly derived from animal and cell models. Various mechanisms chiefly responsible for the beneficial effects of caffeine have also been briefly outlined. A short note on the undesirable effects of excessive coffee intakes is also presented.

  13. Pharmacological Effects of Active Compounds on Neurodegenerative Disease with Gastrodia and Uncaria Decoction, a Commonly Used Poststroke Decoction

    Stanley C. C. Chik

    2013-01-01

    Full Text Available Neurodegenerative diseases refer to the selective loss of neuronal systems in patients. The diseases cause high morbidity and mortality to approximately 22 million people worldwide and the number is expected to be tripled by 2050. Up to now, there is no effective prevention and treatment for the neurodegenerative diseases. Although some of the clinical therapies target at slowing down the progression of symptoms of the diseases, the general effectiveness of the drugs has been far from satisfactory. Traditional Chinese medicine becomes popular alternative remedies as it has been practiced clinically for more than thousands of years in China. As neurodegenerative diseases are mediated through different pathways, herbal decoction with multiple herbs is used as an effective therapeutic approach to work on multiple targets. Gastrodia and Uncaria Decoction, a popular TCM decoction, has been used to treat stroke in China. The decoction contains compounds including alkaloids, flavonoids, iridoids, carotenoids, and natural phenols, which have been found to possess anti-inflammatory, antioxidative, and antiapoptotic effects. In this review, we will summarize the recent publications of the pharmacological effects of these five groups of compounds. Understanding the mechanisms of action of these compounds may provide new treatment opportunities for the patients with neurodegenerative diseases.

  14. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases.

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Guo, Xiangyu; Li, Xiao-Jiang

    2015-08-04

    Animal models are extremely valuable to help us understand the pathogenesis of neurodegenerative disorders and to find treatments for them. Since large animals are more like humans than rodents, they make good models to identify the important pathological events that may be seen in humans but not in small animals; large animals are also very important for validating effective treatments or confirming therapeutic targets. Due to the lack of embryonic stem cell lines from large animals, it has been difficult to use traditional gene targeting technology to establish large animal models of neurodegenerative diseases. Recently, CRISPR/Cas9 was used successfully to genetically modify genomes in various species. Here we discuss the use of CRISPR/Cas9 technology to establish large animal models that can more faithfully mimic human neurodegenerative diseases.

  15. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  16. Biological metals and metal-targeting compounds in major neurodegenerative diseases.

    Barnham, Kevin J; Bush, Ashley I

    2014-10-01

    Multiple abnormalities occur in the homeostasis of essential endogenous brain biometals in age-related neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. As a result, metals both accumulate in microscopic proteinopathies, and can be deficient in cells or cellular compartments. Therefore, bulk measurement of metal content in brain tissue samples reveal only the "tip of the iceberg", with most of the important changes occurring on a microscopic and biochemical level. Each of the major proteins implicated in these disorders interacts with biological transition metals. Tau and the amyloid protein precursor have important roles in normal neuronal iron homeostasis. Changes in metal distribution, cellular deficiencies, or sequestration in proteinopathies all present abnormalities that can be corrected in animal models by small molecules. These biochemical targets are more complex than the simple excess of metals that are targeted by chelators. In this review we illustrate some of the richness in the science that has developed in the study of metals in neurodegeneration, and explore its novel pharmacology.

  17. Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio).

    Gao, Dongxu; Wu, Meifang; Wang, Chonggang; Wang, Yuanchuan; Zuo, Zhenghong

    2015-10-01

    Previous epidemiological and animal studies report that exposure to environmental pollutant exposure links to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Benzo[a]pyrene (BaP), a neurotoxic polycyclic aromatic hydrocarbon, has been increasingly released into the environment during recent decades. So far, the role of BaP on the development of neurodegenerative diseases remaind unclear. This study aimed to determine whether chronic exposure to low dose BaP would cause neurodegenerative disease-like syndromes in zebrafish (Danio rerio). We exposed zebrafish, from early embryogenesis to adults, to environmentally relevant concentrations of BaP for 230 days. Our results indicated that BaP decreased the brain weight to body weight ratio, locomotor activity and cognitive ability; induced the loss of dopaminergic neurons; and resulted in neurodegeneration. In addition, obvious cell apoptosis in the brain was found. Furthermore, the neurotransmitter levels of dopamine and 3,4-dihydroxyphenylacetic acid, the mRNA levels of the genes encoding dopamine transporter, Parkinson protein 7, phosphatase and tensin-induced putative kinase 1, ubiquitin carboxy-terminal hydrolase L1, leucine-rich repeat serine/threonine kinase 2, amyloid precursor protein b, presenilin 1 and presenilin 2 were significantly down-regulated by BaP exposure. These findings suggest that chronic exposure to low dose BaP could cause the behavioral, neuropathological, neurochemical, and genetic features of neurodegenerative diseases. This study provides clues that BaP may constitute an important environmental risk factor for neurodegenerative diseases in humans.

  18. Neuro degenerative diseases: clinical concerns; Les maladies neuro-degeneratives: problemes cliniques

    Ibanez, V. [Hopitaux Universitaires de Geneve (HUG), Unite de Neuroimagerie, Dept. de Psychiatrie (Switzerland)

    2005-04-15

    Idiopathic Parkinson's disease (PD) and Alzheimer's disease (AD) are the main neuro-degenerative diseases (NDDs) seen clinically. They share some common clinical symptoms and neuro-pathological findings. The increase of life expectancy in the developed countries will inevitably contribute to enhance the prevalence of these diseases. Behavioral disorders, common in NDDs, will produce major care management challenges. Idiopathic Parkinson's disease corresponds to a histopathological diagnosis, based on the observation of a de-pigmentation and a neuronal loss in the substantia nigra, as well as on the presence of intra-neuronal inclusion bodies. AD is insidious with slowly progressive dementia in which the decline in memory constitutes the main complaint. The diagnosis of definite AD requires the presence of clinical criteria as well as the histopathological confirmation of brain lesions. The two main lesions are the presence of senile plaques and neuro-fibrillary tangles. Positron emission tomography (PET) explores cerebral metabolism and neurotransmitter kinetics in NDDs using principally [{sup 18}F]-deoxyglucose and [{sup 18}F]-dopa. Nigrostriatal dopaminergic function is altered in PD, as evidenced by the low uptake of [{sup 18}F]-dopa in the posterior putamen as compared to anterior putamen and caudate nucleus. In contrast, [{sup 18}F]-dopa uptake is equally depressed in all striatal structures in progressive supra-nuclear palsy. Regional glucose metabolism at rest is preserved in elderly once cerebral atrophy is taken into account. On the contrary, glucose metabolism is globally reduced in AD, with marked decrease in the parietal and temporal regions. PET has proved to be useful to study in vivo neurochemical processes in patients suffering from NDDs. The potential of this approach is still largely unexploited, and depends on new ligand production to establish early diagnosis and treatment follow-up. (author)

  19. Caring for Others: Internet Video-Conferencing Group Intervention for Family Caregivers of Older Adults with Neurodegenerative Disease

    Marziali, Elsa; Donahue, Peter

    2006-01-01

    Purpose: The aim of this pilot feasibility study was to evaluate the effects of an innovative, Internet-based psychosocial intervention for family caregivers of older adults with neurodegenerative disease. Design and Methods: After receiving signed informed consent from each participant, we randomly assigned 66 caregivers to an Internet-based…

  20. DIMETER: A Haptic Master Device for Tremor Diagnosis in Neurodegenerative Diseases

    Roberto González

    2014-03-01

    Full Text Available In this study, a device based on patient motion capture is developed for the reliable and non-invasive diagnosis of neurodegenerative diseases. The primary objective of this study is the classification of differential diagnosis between Parkinson's disease (PD and essential tremor (ET. The DIMETER system has been used in the diagnoses of a significant number of patients at two medical centers in Spain. Research studies on classification have primarily focused on the use of well-known and reliable diagnosis criteria developed by qualified personnel. Here, we first present a literature review of the methods used to detect and evaluate tremor; then, we describe the DIMETER device in terms of the software and hardware used and the battery of tests developed to obtain the best diagnoses. All of the tests are classified and described in terms of the characteristics of the data obtained. A list of parameters obtained from the tests is provided, and the results obtained using multilayer perceptron (MLP neural networks are presented and analyzed.

  1. Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases.

    Herrera-Arozamena, Clara; Martí-Marí, Olaia; Estrada, Martín; de la Fuente Revenga, Mario; Rodríguez-Franco, María Isabel

    2016-09-01

    The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer's disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2).

  2. Relevance of the Anti-Inflammatory Properties of Curcumin in Neurodegenerative Diseases and Depression

    Yousef Tizabi

    2014-12-01

    Full Text Available This review is an attempt to summarize our current understanding of curcumin’s potential as a neuroprotectant and an antidepressant. This dual property confers a unique advantage to this herbal medication, believed to be devoid of any major side effects, to combat commonly observed co-morbid conditions of a neurodegenerative and a neuropsychiatric disorder. Moreover, in line with the theme of this series, the role of inflammation and stress in these diseases and possible anti-inflammatory effects of curcumin, as well as its interaction with signal transduction proteins as a common denominator in its varied mechanisms of action, are also discussed. Thus, following a brief introduction of curcumin’s pharmacology, we present research suggesting how its anti-inflammatory properties have therapeutic potential in treating a devastating neurological disorder (Parkinson’s disease = PD and a debilitating neuropsychiatric disorder (major depressive disorder = MDD. It is concluded that curcumin, or better yet, an analog with better and longer bioavailability could be of important therapeutic potential in PD and/or major depression.

  3. The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases

    Rahul Sharma

    2013-01-01

    Full Text Available Leprosy (also known as Hansen’s disease is an infectious peripheral neurological disorder caused by Mycobacterium leprae that even today leaves millions of individuals worldwide with life-long disabilities. The specific mechanisms by which this bacterium induces nerve injury remain largely unknown, mainly owing to ethical and practical limitations in obtaining affected human nerve samples. In addition to humans, nine-banded armadillos (Dasypus novemcinctus are the only other natural host of M. leprae, and they develop a systemically disseminated disease with extensive neurological involvement. M. leprae is an obligate intracellular parasite that cannot be cultivated in vitro. Because of the heavy burdens of bacilli they harbor, nine-banded armadillos have become the organism of choice for propagating large quantities of M. leprae, and they are now advancing as models of leprosy pathogenesis and nerve damage. Although armadillos are exotic laboratory animals, the recently completed whole genome sequence for this animal is enabling researchers to undertake more sophisticated molecular studies and to develop armadillo-specific reagents. These advances will facilitate the use of armadillos in piloting new therapies and diagnostic regimens, and will provide new insights into the oldest known infectious neurodegenerative disorder.

  4. New strategies for the treatment of Parkinson's disease hold considerable promise for future management of neurodegenerative disorders

    Bjarkam, Carsten Reidies; Sørensen, Jens Christian; Sunde, Niels Å;

    2001-01-01

    Neurodegenerative diseases are often consideredincurable with no efficient therapies to modifyor halt the progress of disease, and ultimatelylead to reduced quality of life and to death.Our knowledge of the nervous system in healthand disease has, however, increasedconsiderably during the last...... fifty years andtoday, neuroscience reveals promising newstrategies to deal with disorders of thenervous system.Some of these results have been implementedwith success in the treatment of Parkinson'sdisease, a common neurodegenerative illnessaffecting approximately 1% of the populationaged seventy...... or more. Parkinson's disease ischaracterized by a massive loss of dopaminergicneurons in the substantia nigra, leading tosevere functional disturbance of the neuronalcircuitry in the basal ganglia. A thoroughdescription of basal ganglia circuitry inhealth and disease is presented. We describehow...

  5. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  6. Neurodegenerative diseases in a dish: the promise of iPSC technology in disease modeling and therapeutic discovery.

    Xie, Y Z; Zhang, R X

    2015-01-01

    The study of stem-cell biology has been a flourishing research area because of its multi-differentiation potential. The emergence of induced pluripotent stem cells (iPSCs) open up the possibility of addressing obstructs, such as the limited cell source, inherent complexity of the human brain, and ethical constrains. Though still at its infancy phase, reprogramming of somatic cells has been demonstrating the ability to enhance in vitro study of neurodegenerative diseases and potential treatment. However, iPSCs would not thoroughly translate to the clinic before limitations are addressed. In this review, by summarizing the recent development of iPSC-based models, we will discuss the feasibility of iPSC technology on relevant diseases depth and illustrate how this new tool applies to drug screening and celluar therapy.

  7. Drug Development for Neurodegenerative Diseases--Second Annual marcus evans Conference. Advances in drug development for NDD and expediting discovery through novel compounds and sound clinical trials.

    Morimoto, Bruce

    2010-07-01

    The Second Annual marcus evens Drug Development for Neurodegenerative Diseases Conference, held in Boston, included topics covering new therapeutic developments in the field of neurodegenerative diseases. This conference report highlights selected presentations on biomarkers for neurodegenerative diseases; novel approaches to therapy for neurodegenerative disorders, including targeting PKCepsilon in Alzheimer's disease, small-molecule therapeutics for neurogenesis, neureglins to promote neurorecovery, and updates on several investigational drugs; and progress in neurodegenerative disease research, including measuring microtubule dynamics in Parkinson's disease and drug delivery to the brain. Investigational drugs discussed include NNI-251 (NeuroNascent Inc), neuregulins including glial growth factor 2 (Acorda Therapeutics Inc), AL-108 (Allon Therapeutics Inc) and EVP-0962 (EnVivo Pharmaceuticals Inc).

  8. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function.

    Esteras, Noemí; Dinkova-Kostova, Albena T; Abramov, Andrey Y

    2016-05-01

    The nuclear factor erythroid-derived 2 (NF-E2)-related factor 2 (Nrf2) is a transcription factor well-known for its function in controlling the basal and inducible expression of a variety of antioxidant and detoxifying enzymes. As part of its cytoprotective activity, increasing evidence supports its role in metabolism and mitochondrial bioenergetics and function. Neurodegenerative diseases are excellent candidates for Nrf2-targeted treatments. Most neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia and Friedreich's ataxia are characterized by oxidative stress, misfolded protein aggregates, and chronic inflammation, the common targets of Nrf2 therapeutic strategies. Together with them, mitochondrial dysfunction is implicated in the pathogenesis of most neurodegenerative disorders. The recently recognized ability of Nrf2 to regulate intermediary metabolism and mitochondrial function makes Nrf2 activation an attractive and comprehensive strategy for the treatment of neurodegenerative disorders. This review aims to focus on the potential therapeutic role of Nrf2 activation in neurodegeneration, with special emphasis on mitochondrial bioenergetics and function, metabolism and the role of transporters, all of which collectively contribute to the cytoprotective activity of this transcription factor.

  9. The Role of the Ubiquitin-Proteasome System and p62 in the Development of Neurodegenerative Disease

    Michael G. Paine

    2006-01-01

    Full Text Available The ubiquitin-proteasome system (UPS is the pathway for degradation of nuclear and cytosolic proteins that are aged, damaged, or misfolded. Malfunctions in the UPS have been implicated in a wide variety of neurodegenerative diseases. Some proteins, when not properly degraded through the UPS, tend to form aggregates by binding to one another to form an insoluble structure that is very difficult to disassemble. Some have hypothesized that protein aggregation is toxic to cells, while others argue that the potentially toxic species are the proteins themselves, and that aggregation protects cells from improperly degraded proteins.Sequestosome 1/p62 is a protein that contains multiple binding domains, and serves a variety of cellular functions. Recent evidence suggests that p62 shuttles some proteins for degradation through the UPS. p62 has been found in protein aggregates from many UPS dysfunction-related diseases, such as Alzheimers disease, Parkinsons disease, and Huntingtons disease. Many of the components of neurodegenerative disease aggregates have been studied for their ability to form independent aggregates in vitro and in vivo. In this review, the UPS and protein aggregation are described and the role of p62 in each pathway is discussed, along with their relation to neurodegenerative disease.

  10. High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation.

    Ullah, Faheem; Liang, Andy; Rangel, Alejandra; Gyengesi, Erika; Niedermayer, Garry; Münch, Gerald

    2017-04-01

    Neuroinflammation is a pathophysiological process present in a number of neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, Parkinson's disease, stroke, traumatic brain injury including chronic traumatic encephalopathy and other age-related CNS disorders. Although there is still much debate about the initial trigger for some of these neurodegenerative disorders, during the progression of disease, broad range anti-inflammatory drugs including cytokine suppressive anti-inflammatory drugs (CSAIDs) might be promising therapeutic options to limit neuroinflammation and improve the clinical outcome. One of the most promising CSAIDs is curcumin, which modulates the activity of several transcription factors (e.g., STAT, NF-κB, AP-1) and their pro-inflammatory molecular signaling pathways. However, normal curcumin preparations demonstrate low bioavailability in vivo. To increase bioavailability, preparations of high bioavailability curcumin have been introduced to achieve therapeutically relevant concentrations in target tissues. This literature review aims to summarize the pharmacokinetic and toxicity profile of different curcumin formulations.

  11. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review

    El-Khodor, Bassem; Dhana, Klodian; Nano, Jana; Pulido, Tammy; Kraja, Bledar; Zaciragic, Asija; Bramer, Wichor M.; Troup, John; Chowdhury, Rajiv; Ikram, M. Arfam; Dehghan, Abbas; Muka, Taulant; Franco, Oscar H.

    2016-01-01

    Importance Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Objective To systematically review studies investigating epigenetic marks in AD or PD. Methods Eleven bibliographic databases (Embase.com, Medline (Ovid), Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost), Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar) were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form. Results Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes). There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue) in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA) was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD. Conclusion Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND. PMID:27973581

  12. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

    Ralf Gold

    2012-09-01

    Full Text Available Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS. Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2-related factor 2 (Nrf2. Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE, an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE.

  13. The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia

    2011-01-01

    Hempseed is rich in polyunsaturated fatty acids (PUFAs), which have potential as therapeutic compounds for the treatment of neurodegenerative and cardiovascular dis-ease. However, the effect of hempseed meal (HSM) intake on the animal models of these diseases has yet to be elucidated. In this study, we assessed the effects of the intake of HSM and PUFAs on oxidative stress, cytotoxicity and neurological phenotypes, and cholesterol uptake, using Drosophila models. HSM intake was shown to reduc...

  14. NF-κB in innate neuroprotection and age-related neurodegenerative diseases

    Annamaria eLanzillotta

    2015-05-01

    Full Text Available NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programming of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation but site specific acetylation on lysine 310 triggers the expression of pro-apoptotic genes.Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN dopaminergic (DA neurons to aging and induces a parkinsonian like pathology in mice. c-rel-/- mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein and iron. Moreover, they develop motor deficits responsive to L-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.

  15. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases.

    Li, Rui; Bai, Ye; Liu, Tongtong; Wang, Xiaoqun; Wu, Qian

    2013-06-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specifi c iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.

  16. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    Matthew J Haney

    Full Text Available The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD. This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.

  17. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics.

    Cho, Seongeun; Wood, Andrew; Bowlby, Mark R

    2007-03-01

    Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.

  18. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases.

    Saraiva, Cláudia; Praça, Catarina; Ferreira, Raquel; Santos, Tiago; Ferreira, Lino; Bernardino, Liliana

    2016-08-10

    The blood-brain barrier (BBB) is a vital boundary between neural tissue and circulating blood. The BBB's unique and protective features control brain homeostasis as well as ion and molecule movement. Failure in maintaining any of these components results in the breakdown of this specialized multicellular structure and consequently promotes neuroinflammation and neurodegeneration. In several high incidence pathologies such as stroke, Alzheimer's (AD) and Parkinson's disease (PD) the BBB is impaired. However, even a damaged and more permeable BBB can pose serious challenges to drug delivery into the brain. The use of nanoparticle (NP) formulations able to encapsulate molecules with therapeutic value, while targeting specific transport processes in the brain vasculature, may enhance drug transport through the BBB in neurodegenerative/ischemic disorders and target relevant regions in the brain for regenerative processes. In this review, we will discuss BBB composition and characteristics and how these features are altered in pathology, namely in stroke, AD and PD. Additionally, factors influencing an efficient intravenous delivery of polymeric and inorganic NPs into the brain as well as NP-related delivery systems with the most promising functional outcomes will also be discussed.

  19. Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases

    Shafique Pineda

    2014-06-01

    Full Text Available Carbon nanostructures (CNs are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs. In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.

  20. Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury

    Bakhru, Sasha H.

    The intrinsic abilities of mammalian neural stem cells (NSCs) to self-renew, migrate over large distances, and give rise to all primary neural cell types of the brain offer unprecedented opportunity for cell-based treatment of neurodegenerative diseases and injuries. This thesis discusses development of technologies in support of autologous NSC-based therapies, encompassing harvest of brain tissue biopsies from living human patients; isolation of NSCs from harvested tissue; efficient culture and expansion of NSCs in 3D polymeric microcapsule culture systems; optimization of microcapsules as carriers for efficient in vivo delivery of NSCs; genetic engineering of NSCs for drug-induced, enzymatic release of transplanted NSCs from microcapsules; genetic engineering for drug-induced differentiation of NSCs into specific therapeutic cell types; and synthesis of chitosan/iron-oxide nanoparticles for labeling of NSCs and in vivo tracking by cellular MRI. Sub-millimeter scale tissue samples were harvested endoscopically from subventricular zone regions of living patient brains, secondary to neurosurgical procedures including endoscopic third ventriculostomy and ventriculoperitoneal shunt placement. On average, 12,000 +/- 3,000 NSCs were isolated per mm 3 of subventricular zone tissue, successfully demonstrated in 26 of 28 patients, ranging in age from one month to 68 years. In order to achieve efficient expansion of isolated NSCs to clinically relevant numbers (e.g. hundreds of thousands of cells in Parkinson's disease and tens of millions of cells in multiple sclerosis), an extracellular matrix-inspired, microcapsule-based culture platform was developed. Initial culture experiments with murine NSCs yielded unprecedented expansion folds of 30x in 5 days, from initially minute NSC populations (154 +/- 15 NSCs per 450 mum diameter capsule). Within 7 days, NSCs expanded as almost perfectly homogenous populations, with 94.9% +/- 4.1% of cultured cells staining positive for

  1. The influence of Na+,K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence

    Paula Fernanda Kinoshita

    2016-06-01

    Full Text Available Decreased Na+,K+-ATPase (NKA activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β and γ, with four distinct isoforms of the catalytic α subunit (α1-4. Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS, the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2, while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP and alternating hemiplegia of childhood (AHC, as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2/3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP and cGMP‐dependent protein kinase (PKG pathway. Glutamate, through nitric oxide synthase (NOS, cGMP and PKG, stimulates brain α2/3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid‐β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.

  2. Kuru: a half-opened window onto the landscape of neurodegenerative diseases.

    Liberski, Paweł P; Brown, Paul

    2004-01-01

    Kuru, the first human neurodegenerative disease classified as a transmissible spongiform encephalopathy (TSE), prion disease or, in the past, as a slow unconventional virus disease, was first reported to Western medicine in 1957 by Gajdusek and Zigas. A complete bibliography of kuru through 1975 has been published by Alpers et al. The solution of the kuru riddle opened a novel field of biomedical sciences and initiated more than a quarter of century of research that has already resulted in two Nobel prizes (to D. Carleton Gajdusek in 1976 and to Stanley B. Prusiner in 1997) and was linked to a third (to Kurt Wüthrich who determined the structure of the prion protein). Kuru research has impacted the concepts of nucleation-polymerization "protein cancers", and "conformational disorders". This paper is dedicated to Dr. Carleton Gajdusek on the occasion of his 80th birthday. "Kuru" in the Fore (Fig. 1) language means to shiver from fever or cold. The Fore used the noun of the kuru-verb to describe the always fatal disease which decimated their children and adult women but rarely men. It has been and still is restricted to natives of the Fore linguistic group at Papua New Guinea's Eastern Highlands and those neighboring linguistic groups which exchange women with Fore people (Auiana, Awa, Usurufa, Kanite, Keiagana, late, Kamano, Kimi; Fig. 2). Neighboring groups into which kuru-affected people did not settle through marriage or adoption, such as the Anga (Kukukuku), and remote lagaria, Kamano and Auiana people, were not affected. It seems that Kuru first appeared at or shortly after the turn of XX century in Uwami village of Keiagana people and spread to the Awande in the North Fore where the Uwami had social contacts. Within 20 years it had spread further into the Kasokana (in 1922 according to Lindebaum) and Miarasa villages of North Fore, and a decade later had reached the South Fore at the Wanikanto and Kamira villages. Kuru became endemic in all villages that it

  3. A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases

    Jocelyn M Madeira

    2015-01-01

    Full Text Available Neurodegenerative disorders including Alzheimer′s disease are characterized by chronic inflammation in the central nervous system. The two main glial types involved in inflammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease specific stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inflammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinflammation after disease processes are fully established. Gold thiol compounds, including auranofin, comprise another class of medications effective at reducing peripheral inflammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inflammatory conditions could be helpful in neurodegenerative disease. Three different classes of anti-inflammatory compounds, which have a potential to inhibit neuroinflammation are highlighted below.

  4. Fractalkine Mediates Communication between Pathogenic Proteins and Microglia: Implications of Anti-Inflammatory Treatments in Different Stages of Neurodegenerative Diseases

    Nicole M. Desforges

    2012-01-01

    Full Text Available The role of inflammation in neurodegenerative diseases has been widely demonstrated. Intraneuronal protein accumulation may regulate microglial activity via the fractalkine (CX3CL1 signaling pathway that provides a mechanism through which neurons communicate with microglia. CX3CL1 levels fluctuate in different stages of neurodegenerative diseases and in various animal models, warranting further investigation of the mechanisms underlying microglial response to pathogenic proteins, including Tau, β-amyloid (Aβ, and α-synuclein. The temporal relationship between microglial activity and localization of pathogenic proteins (intra- versus extracellular likely determines whether neuroinflammation mitigates or exacerbates disease progression. Evidence in transgenic models suggests a beneficial effect of microglial activity on clearance of proteins like Aβ and a detrimental effect on Tau modification, but the role of CX3CL1 signaling in α-synucleinopathies is less clear. Here we review the nature of fractalkine-mediated neuronmicroglia interaction, which has significant implications for the efficacy of anti-inflammatory treatments during different stages of neurodegenerative pathology. Specifically, it is likely that anti-inflammatory treatment in early stages of disease during intraneuronal accumulation of proteins could be beneficial, while anti-inflammatory treatment in later stages when proteins are secreted to the extracellular space could exacerbate disease progression.

  5. A new look at auranoifn, dextromethorphan and rosiglitazone for reduction of glia-mediated inlfammation in neurodegenerative diseases

    Jocelyn M. Madeira; Stephanie M. Schindler; Andis Klegeris

    2015-01-01

    Neurodegenerative disorders including Alzheimer’s disease are characterized by chronic in-lfammation in the central nervous system. The two main glial types involved in inlfammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease speciifc stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inlfammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inlfamma-tory drugs (NSAIDs) is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinlfammation after disease processes are fully established. Gold thiol compounds, including auranoifn, comprise an-other class of medications effective at reducing peripheral inlfammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inlfammatory conditions could be helpful in neu-rodegenerative disease. Three different classes of anti-inlfammatory compounds, which have a potential to inhibit neuroinlfammation are highlighted below.

  6. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review

    Sandeep K. Vishwakarma

    2014-05-01

    Full Text Available Since last few years, an impressive amount of data has been generated regarding the basic in vitro and in vivo biology of neural stem cells (NSCs and there is much far hope for the success in cell replacement therapies for several human neurodegenerative diseases and stroke. The discovery of adult neurogenesis (the endogenous production of new neurons in the mammalian brain more than 40 years ago has resulted in a wealth of knowledge about stem cells biology in neuroscience research. Various studies have done in search of a suitable source for NSCs which could be used in animal models to understand the basic and transplantation biology before treating to human. The difficulties in isolating pure population of NSCs limit the study of neural stem behavior and factors that regulate them. Several studies on human fetal brain and spinal cord derived NSCs in animal models have shown some interesting results for cell replacement therapies in many neurodegenerative diseases and stroke models. Also the methods and conditions used for in vitro culture of these cells provide an important base for their applicability and specificity in a definite target of the disease. Various important developments and modifications have been made in stem cells research which is needed to be more specified and enrolment in clinical studies using advanced approaches. This review explains about the current perspectives and suitable sources for NSCs isolation, characterization, in vitro proliferation and their use in cell replacement therapies for the treatment of various neurodegenerative diseases and strokes.

  7. Role of apolipoprotein E polymorphism as a prognostic marker in traumatic brain injury and neurodegenerative disease: a critical review.

    Maiti, Tanmoy Kumar; Konar, Subhas; Bir, Shyamal; Kalakoti, Piyush; Bollam, Papireddy; Nanda, Anil

    2015-11-01

    OBJECT The difference in course and outcome of several neurodegenerative conditions and traumatic injuries of the nervous system points toward a possible role of genetic and environmental factors as prognostic markers. Apolipoprotein E (Apo-E), a key player in lipid metabolism, is recognized as one of the most powerful genetic risk factors for dementia and other neurodegenerative diseases. In this article, the current understanding of APOE polymorphism in various neurological disorders is discussed. METHODS The English literature was searched for various studies describing the role of APOE polymorphism as a prognostic marker in neurodegenerative diseases and traumatic brain injury. The wide ethnic distribution of APOE polymorphism was discussed, and the recent meta-analyses of role of APOE polymorphism in multiple diseases were analyzed and summarized in tabular form. RESULTS Results from the review of literature revealed that the distribution of APOE is varied in different ethnic populations. APOE polymorphism plays a significant role in pathogenesis of neurodegeneration, particularly in Alzheimer's disease. APOE ε4 is considered a marker for poor prognosis in various diseases, but APOE ε2 rather than APOE ε4 has been associated with cerebral amyloid angiopathy-related bleeding and sporadic Parkinson's disease. The role of APOE polymorphism in various neurological diseases has not been conclusively elucidated. CONCLUSIONS Apo-E is a biomarker for various neurological and systemic diseases. Therefore, while analyzing the role of APOE polymorphism in neurological diseases, the interpretation should be done after adjusting all the confounding factors. A continuous quest to look for associations with various neurological diseases and wide knowledge of available literature are required to improve the understanding of the role of APOE polymorphism in these conditions and identify potential therapeutic targets.

  8. Prominent effects and neural correlates of visual crowding in a neurodegenerative disease population.

    Yong, Keir X X; Shakespeare, Timothy J; Cash, Dave; Henley, Susie M D; Nicholas, Jennifer M; Ridgway, Gerard R; Golden, Hannah L; Warrington, Elizabeth K; Carton, Amelia M; Kaski, Diego; Schott, Jonathan M; Warren, Jason D; Crutch, Sebastian J

    2014-12-01

    provides a neurodegenerative disease model for exploring the basis of crowding. These data have significant implications for patients with, or who will go on to develop, dementia-related visual impairment, in whom acquired excessive crowding likely contributes to deficits in word, object, face and scene perception.

  9. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad?

    Saiko, Philipp; Szakmary, Akos; Jaeger, Walter; Szekeres, Thomas

    2008-01-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene; RV), a dietary constituent found in grapes and wine, exerts a wide variety of pharmacological activities. Because the grape skins are not fermented in the production process of white wines, only red wines contain considerable amounts of this compound. RV is metabolized into sulfated and glucuronidated forms within approximately 15min of entering the bloodstream, and moderate consumption of red wine results in serum levels of RV that barely reach the micromolar concentrations. In contrast, its metabolites, which may be the active principle, circulate in serum for up to 9h. RV has been identified as an effective candidate for cancer chemoprevention due its ability to block each step in the carcinogenesis process by inhibiting several molecular targets such as kinases, cyclooxygenases, ribonucleotide reductase, and DNA polymerases. In addition, RV protects the cardiovascular system by a large number of mechanisms, including defense against ischemic-reperfusion injury, promotion of vasorelaxation, protection and maintenance of intact endothelium, anti-atherosclerotic properties, inhibition of low-density lipoprotein oxidation, and suppression of platelet aggregation, thereby strongly supporting its role in the prevention of coronary disease. Promising data within the use of RV have also been obtained regarding progressive neurodegenerative maladies such as Alzheimer's, Huntington's, and Parkinson's diseases. Because neurotoxicity is often related to mitochondrial dysfunction and may be ameliorated through the inclusion of metabolic modifiers and/or antioxidants, RV may provide an alternative (and early) intervention approach that could prevent further damage. RV induces a multitude of effects that depend on the cell type (e.g., NF-kappaB modulation in cancer cells vs. neural cells), cellular condition (normal, stressed, or malignant), and concentration (proliferative vs. growth arrest), and it can have opposing activities

  10. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma

    Bahmad, Hisham; Hadadeh, Ola; Chamaa, Farah; Cheaito, Katia; Darwish, Batoul; Makkawi, Ahmad-Kareem; Abou-Kheir, Wassim

    2017-01-01

    With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro. The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases. PMID:28293168

  11. Zebrafish as a model for investigating developmental lead (Pb) neurotoxicity as a risk factor in adult neurodegenerative disease: a mini-review.

    Lee, Jinyoung; Freeman, Jennifer L

    2014-07-01

    Lead (Pb) exposure has long been recognized to cause neurological alterations in both adults and children. While most of the studies in adults are related to higher dose exposure, epidemiological studies indicate cognitive decline and neurobehavioral alterations in children associated with lower dose environmental Pb exposure (a blood Pb level of 10μg/dL and below). Recent animal studies also now report that an early-life Pb exposure results in pathological hallmarks of Alzheimer's disease later in life. While previous studies evaluating higher Pb exposures in adult animal models and higher occupational Pb exposures in humans have suggested a link between higher dose Pb exposure during adulthood and neurodegenerative disease, these newer studies now indicate a link between an early-life Pb exposure and adult neurodegenerative disease. These studies are supporting the "fetal/developmental origin of adult disease" hypothesis and present a new challenge in our understanding of Pb neurotoxicity. There is a need to expand research in this area and additional model systems are needed. The zebrafish presents as a complementary vertebrate model system with numerous strengths including high genetic homology. Several zebrafish genes orthologous to human genes associated with neurodegenerative diseases including Alzheimer's and Parkinson's diseases are identified and this model is starting to be applied in neurodegenerative disease research. Moreover, the zebrafish is being used in developmental Pb neurotoxicity studies to define genetic mechanisms of toxicity and associated neurobehavioral alterations. While these studies are in their infancy, the genetic and functional conservation of genes associated with neurodegenerative diseases and application in developmental Pb neurotoxicity studies supports the potential for this in vivo model to further investigate the link between developmental Pb exposure and adult neurodegenerative disease pathogenesis. In this review, the

  12. How strong is the relationship between glaucoma, the retinal nerve fibre layer, and neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis?

    Jones-Odeh, E; Hammond, C J

    2015-10-01

    Glaucoma is a neurodegenerative disorder with established relationships with ocular structures such as the retinal nerve fibre layer (RNFL) and the ganglion cell layer (GCL). Ocular imaging techniques such as optical coherence tomography (OCT) allow for quantitative measurement of these structures. OCT has been used in the monitoring of glaucoma, as well as investigating other neurodegenerative conditions such as Alzheimer's disease (AD) and multiple sclerosis (MS). In this review, we highlight the association between these disorders and ocular structures (RNFL and GCL), examining their usefulness as biomarkers of neurodegeneration. The average RNFL thickness loss in patients with AD is 11 μm, and 7 μm in MS patients. Most of the studies investigating these changes are cross-sectional. Further longitudinal studies are required to assess sensitivity and specificity of these potential ocular biomarkers to neurodegenerative disease progression.

  13. 蛋白激酶与神经变性疾病%Protein kinases and neurodegenerative diseases

    杨胜乾; 杜冠华

    2014-01-01

    神经变性疾病是由于神经元或者髓鞘的损伤、丢失引起的神经系统疾病,其病因复杂,影响因素甚多,发病机制尚不完全明确。蛋白激酶在神经变性疾病的发生发展过程中发挥着重要的作用。然而,蛋白激酶抑制剂能有效保护神经细胞,缓解或减轻神经变性疾病的病情。本文就阿尔茨海默病、帕金森病、亨廷顿病等神经变性疾病中所涉及的蛋白激酶及其抑制剂进行综述,分析各蛋白激酶与主要神经变性疾病疾病之间的相互关系,为针对这些疾病的药物研发提供新的思路和策略,认为新型复方药物可能成为治疗神经变性疾病药物研发的方向。%Neurodegenerative diseases are complex nervous system disorders as a result of myelin damage,synapses loss and/ or neuron loss. The pathogenesis of these diseases is still not completely clear. Protein kinases play an important role in both normal nerve cells and neurodegenerative disorders. lnhibitors of protein kinases can effectively regulate the physiological function of nerve cells and prevent the development and progression of the disease. This article reviews protein kinases and their inhibitors involved in Alzheimer disease,Parkinson disease,Huntington disease and other neurodegenerative diseases.

  14. Implications of Parkinson's disease pathophysiology for the development of cell replacement strategies and drug discovery in neurodegenerative diseases.

    Pan-Montojo, Francisco; Funk, Richard H W

    2012-11-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder traditionally characterized by the loss of dopaminergic neurons in the substantia nigra (SN) at the midbrain. The potential use of adult or embryonic stem cells, induced pluriputent stem (iPS) cells and endogenous neurogenesis in cell replacement strategies has lead to numerous studies and clinical trials in this direction. It is now possible to differentiate stem cells into dopaminergic neurons in vitro and clinical trials have shown an improvement in PD-related symptoms after intra-striatal embryonic transplants and acceptable cell survival rates on the mid term. However, clinical improvement is transitory and associated with a strong placebo effect. Interestingly, recent pathological studies in PD patients who received embryonic stem cells show that in PD patients, grafted neurons show PD-related pathology. In this manuscript we review the latest findings regarding PD pathophysiology and give an outlook on the implications of these findings in how cell replacement strategies for PD treatment should be tested. These include changes in the type of animal models used, the preparation/conditioning of the cells before intracerebral injection, specially regarding backbone chronic diseases in iPS cells and determining the optimal proliferation, survival, differentiation and migration capacity of the grafted cells.

  15. Assessing the potential clinical utility of transplantations of neural and mesenchymal stem cells for treating neurodegenerative diseases.

    Lescaudron, Laurent; Boyer, C; Bonnamain, Virginie; Fink, K D; Lévêque, X; Rossignol, J; Nerrière-Daguin, V; Malouet, A C; Lelan, F; Dey, N D; Michel-Monigadon, D; Lu, M; Neveu, I; von Hörsten, S; Naveilhan, P; Dunbar, G L

    2012-01-01

    Treatments for neurodegenerative diseases have little impact on the long-term patient health. However, cellular transplants of neuroblasts derived from the aborted embryonic brain tissue in animal models of neurodegenerative disorders and in patients have demonstrated survival and functionality in the brain. However, ethical and functional problems due to the use of this fetal tissue stopped most of the clinical trials. Therefore, new cell sources were needed, and scientists focused on neural (NSCs) and mesenchymal stem cells (MSCs). When transplanted in the brain of animals with Parkinson's or Huntington's disease, NSCs and MSCs were able to induce partial functional recovery by promoting neuroprotection and immunomodulation. MSCs are more readily accessible than NSCs due to sources such as the bone marrow. However, MSCs are not capable of differentiating into neurons in vivo where NSCs are. Thus, transplantation of NSCs and MSCs is interesting for brain regenerative medicine. In this chapter, we detail the methods for NSCs and MSCs isolation as well as the transplantation procedures used to treat rodent models of neurodegenerative damage.

  16. Circulating MicroRNA as Potential Source for Neurodegenerative Diseases Biomarkers.

    Zi, Ying; Yin, Zhongmin; Xiao, Weizhong; Liu, Xinwei; Gao, Zhixiang; Jiao, Li; Deng, Lianfu

    2015-12-01

    An increasing number of circulating micro-ribonucleic acids (microRNAs, miRNAs) have been discovered its potential as biomarkers to diagnose neurodegenerative diseases (NDs) by many researchers. However, there were obvious inconsistencies among previous studies, and thus we performed this meta-analysis to evaluate whether miRNA is an effective biomarker with high accuracy to diagnose the NDs. PubMed, MEDLINE, EMBASE, the Cochrane Library, and other related databases were used to search eligible articles. The data of sensitivity and specificity were employed to plot the summary receiver operator characteristic (SROC) curve and calculate the area under the SROC curve (AUC). I (2) test were used to estimate the heterogeneity among different studies. In addition, the possible sources of heterogeneity were further explored by subgroup analyses and meta-regression. All analyses were performed by STATA 12.0 software. In this meta-analysis, eight publications with 459 NDs patients and 340 healthy controls were included to investigate the diagnostic performance of circulating miRNAs for NDs. The overall sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ration (NLR), and diagnostic odds ratio (DOR) were 0.83 (95% confidence interval (CI) 0.77-0.88), 0.87 (95% CI 0.83-0.89), 6.2 (95% CI 4.9-7.9), 0.19 (95% CI 0.14-0.27), 33 (95% CI 20-52), and 0.91 (95% CI: 0.88-0.93), respectively. The overall SROC curve was plotted with AUC of 0.91 (95% CI 0.88-0.93), which indicated an excellent diagnostic performance of circulating miRNA for NDs. Subgroup analysis based on miRNA profile demonstrated that multiple-miRNA assay had higher diagnostic accuracy for NDs when compared with single-miRNA assay. In conclusion, the circulating miRNAs may be the potential biomarkers in the clinical diagnosis of NDs, and the diagnostic accuracy would be better by using multiple-miRNA assay. However, large-scale studies are still needed to explore the relation between the

  17. Assessment of the degree of asymmetry of pathological features in neurodegenerative diseases. What is the significance for brain banks?

    King, Andrew; Bodi, Istvan; Nolan, Matthew; Troakes, Claire; Al-Sarraj, Safa

    2015-10-01

    Brain banks allow researchers access to tissue from well-characterised neurodegenerative disease cases. Fixed tissue employed for diagnosis is often not appropriate for research and frozen tissue is therefore made available. Many brain banks use a protocol where half the brain is fixed and half frozen. Recently a study has shown that there can be asymmetry in protein deposition between the hemispheres especially with tau and TDP-43. We aimed to test this hypothesis by prospectively taking bilateral cortical blocks from 30 brains on arrival, and immunostaining to assess the degree of asymmetry. In 6 out 14 cases of AD (Alzheimer's Disease) (Modified Braak Stage V-VI), there was some asymmetrical staining for tau. In 2 cases, there was moderate discrepancy for tau staining between left and right calcarine cortices. However, careful analysis in both these cases revealed discrepancies in tau staining in adjacent regions even on the same side. The α-synuclein staining showed asymmetry in one case only, the Aβ showed only mild asymmetry in 3 cases of AD. The TDP-43 pathology appeared symmetrical in the 2 cases of frontotemporal lobar degeneration with motor neurone disease, but there was asymmetry noted when seen in conjunction with AD. In conclusion, there is the potential for asymmetrical pathology in neurodegenerative diseases and caution should be maintained when freezing half and fixing half of the brain in neurodegenerative diseases. Nevertheless, marked variability in staining can also be identified in adjacent cortical areas so there is no guarantee that an alternative strategy would be superior.

  18. 细胞骨架与神经退行性疾病%Cytoskeleton and neurodegenerative diseases

    张蕊; 苑玉和; 赵明; 陈乃宏

    2011-01-01

    Neurodegenerative diseases is a kind of chronic progressive neurological disease characterized by neuron degeneration.There have been many theories accounting for this complex disease, including mitochondrial dysfunction, oxidative stress theory, misfolded protein aggregation, inflammation, immune defects, and genetic mutations.In recent years, researches have demonstrated that cytoskeleton played an important role in neuronal degeneration process.Cytoskeleton system determines and maintains cell morphology and it is involved in cell movement, division, cytoplasmic transport and of great significance to other signal transduction.In this review, we discuss recent research progress in neurodegenerative diseases.%神经退行性疾病(Neurodegenerative disease)是一种以神经元退行性病变为基础的慢性进行性神经系统疾病,其病因十分复杂,其中线粒体功能障碍学说、氧化应激学说、蛋白质发生错误折叠聚集、炎症、免疫功能缺陷,基因突变等已经得到普遍认可.近年来的研究发现,细胞骨架在神经元变性过程中发挥了重要作用.细胞骨架是细胞质内蛋白质丝组成的纤维网架体系,其决定和维持着细胞的形态结构,同时参与细胞运动、分裂、胞浆运输等生命活动,对信号传导具有重要的意义.该文就其在神经退行性疾病方面的研究进行综述.

  19. Insights into brain function through the examination of art: the influence of neurodegenerative diseases.

    Kleiner-Fisman, Galit; Lang, Anthony E

    2004-04-29

    There has been intense interest in determining how the visual brain processes the outside world, and in identifying the neuroanatomical correlates of the ability to create art. Comparing art production before and after illness onset permits some speculation on the function of selective brain regions affected by the neurodegenerative process. In this review of cases of neurodegenerative illness in visual artists, the evolution of abstraction may be argued to either reflect an enhancement of previous skills or, that the emergence of abstraction, when it was previously absent, is a manifestation of cognitive and visuo-spatial decline. We present examples of each, illustrating both perspectives and suggest that the two opposing views may not be mutually exclusive.

  20. Early diagnosis of neurodegenerative diseases - the long awaited Holy Grail and bottleneck of modern brain research - 19th HUPO BPP workshop: May 22-24, 2013, Dortmund, Germany.

    Schrötter, Andreas; Magraoui, Fouzi El; Gröttrup, Bernd; Wiltfang, Jens; Heinsen, Helmut; Marcus, Katrin; Meyer, Helmut E; Grinberg, Lea T; Park, Young Mok

    2013-10-01

    The HUPO Brain Proteome Project (HUPO BPP) held its 19th workshop in Dortmund, Germany, from May 22 to 24, 2013. The focus of the spring workshop was on strategies and developments concerning early diagnosis of neurodegenerative diseases.

  1. 神经退行性疾病的嗅觉障碍%Olfactory dysfunction in neurodegenerative diseases

    周小燕; 王晓明

    2016-01-01

    嗅觉是人类重要的感觉之一。近年研究发现,嗅觉障碍与神经退行性疾病密切相关,其可能是神经退行性疾病的首发症状,有望成为一项早期诊断及预测病情进展的生物学指标。现就神经退行性疾病与嗅觉障碍的关系及研究进展进行综述。%Olfactory is an important sensation. In recent years, the smell problems are generating considerable interest in the neurological field. Olfactory dysfunction may has potential as a medication-independent biomarker for disease progression and as an early indicator for the diagnosis of neurodegenerative disorders. The article summarized the up-to-date knowledge on changes of olfactory system in neurodegenerative disorders and attempted to find the association between olfactory dysfunction and neurodegenerative disorders.

  2. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury%p75 neurotrophin receptor positive dental pulp stem cells:new hope for patients with neurodegenerative disease and neural injury

    DAI Jie-wen; YUAN Hao; SHEN Shun-yao; LU Jing-ting; ZHU Xiao-fang; YANG Tong; ZHANG Jiang-fei

    2013-01-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation.Cell based treatment for these diseases had gained special interest in recent years.Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo,and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities.Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells.However,DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells,and most were fibroblast cells while just contain a small portion of DPSCs.Thus,there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells.p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs,which had capacity of differentiation into neurons and repairing neural system.In this article,we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast,and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis.This will bring great hope to patients with neurodegenerative disease and neural injury.

  3. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J. (WU-MED)

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  4. Extracellular vesicles--Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases.

    Coleman, Bradley M; Hill, Andrew F

    2015-04-01

    Many cell types, including neurons, are known to release small membranous vesicles known as exosomes. In addition to their protein content these vesicles have recently been shown to contain messenger RNA (mRNA) and micro RNA (miRNA) species. Roles for these vesicles include cell-cell signalling, removal of unwanted proteins, and transfer of pathogens (including prion-like misfolded proteins) between cells, such as infectious prions. Prions are the infectious particles that are responsible for transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Exosomes are also involved in processing the amyloid precursor protein (APP), which is associated with Alzheimer's disease (AD). As exosomes can be isolated from circulating fluids such as serum, urine, and cerebrospinal fluid (CSF), they provide a potential source of biomarkers for neurological conditions. Here, we review the roles these vesicles play in neurodegenerative disease and highlight their potential in diagnosing these disorders through analysis of their RNA content.

  5. Accelerated vaccine development against emerging infectious diseases.

    Leblanc, Pierre R; Yuan, Jianping; Brauns, Tim; Gelfand, Jeffrey A; Poznansky, Mark C

    2012-07-01

    Emerging and re-emerging infectious diseases represent a major challenge to vaccine development since it involves two seemingly contradictory requirements. Rapid and flexible vaccine generation while using technologies and processes that can facilitate accelerated regulatory review. Development in the "-omics" in combination with advances in vaccinology offer novel opportunities to meet these requirements. Here we describe how a consortium of five different organizations from academia and industry is addressing these challenges. This novel approach has the potential to become the new standard in vaccine development allowing timely deployment to avert potential pandemics.

  6. [Multiple system atrophy and Alzheimer's disease: a case report of a rare association of two neuro-degenerative disorders].

    Rusina, R; Bourdain, F; Matej, R

    2007-12-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder typically characterised by cerebellar dysfunction, parkinsonism, pyramidal signs and dysautonomy. Cognitive impairement is usually limited to a moderate subcortical dysexecutive syndrom. We report the case of a 62-year-old woman suffering from MSA who progressively developed severe dementia. Neuropathological examination confirmed the diagnosis of definite MSA and also showed histopathological hallmarks of Alzheimer's disease. This association is extremely rare in the literature. Our observation confirmes that franc dementia in MSA should prompt a search for another associated cause and underlines the usefulness of neuropathological verifications in atypical clinical pictures.

  7. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  8. Interplay between HDAC6 and its interacting partners: essential roles in the aggresome-autophagy pathway and neurodegenerative diseases.

    Yan, Jin

    2014-09-01

    Cytoplasmic localization and possession of two deacetylase domains and a ubiquitin-binding domain make histone deacetylase 6 (HDAC6) a unique histone deacetylase. HDAC6 interacts with a number of proteins in the cytoplasm. Some of these proteins can be deacetylated by HDAC6 deacetylase activity. Others can affect HDAC6 functions by modulating its catalytic activity or ubiquitin-binding capability. Over the last decade, HDAC6 has been shown to play important roles in the aggresome-autophagy pathway, which selectively targets on protein aggregates or damaged organelles for their accumulation and clearance in cells. HDAC6-interacting partners are integral components in this pathway with regard to their regulatory roles through interaction with HDAC6. The aggresome-autophagy pathway appears to be an attractive therapeutic target for the treatment of neurodegenerative diseases as accumulation of protein aggregates are hallmarks in these diseases. In the current review, I discuss the molecular details of how HDAC6 and its interacting partners regulate each individual step in the aggresome-autophagy pathway and also provide perspectives of how HDAC6 can be targeted in treating neurodegenerative diseases.

  9. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  10. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease.

    Daniel W Neef

    2010-01-01

    Full Text Available Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

  11. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina.

    Cascio, Caterina; Deidda, Irene; Russo, Domenica; Guarneri, Patrizia

    2015-11-01

    These last two decades have seen an explosion of clinical and epidemiological research, and basic research devoted to envisage the influence of gender and hormonal fluctuations in the retina/ocular diseases. Particular attention has been paid to age-related disorders because of the overlap of endocrine and neuronal dysfunction with aging. Hormonal withdrawal has been considered among risk factors for diseases such as glaucoma, diabetic retinopathy and age-related macular disease (AMD), as well as, for Alzheimer's disease, Parkinson's disease, or other neurodegenerative disorders. Sex hormones and aging have been also suggested to drive the incidence of ocular surface diseases such as dry eye and cataract. Hormone therapy has been approached in several clinical trials. The discovery that the retina is another CNS tissue synthesizing neurosteroids, among which neuroactive steroids, has favored these studies. However, the puzzling data emerged from clinical, epidemiological and experimental studies have added several dimensions of complexity; the current landscape is inherently limited to the weak information on the influence and interdependence of endocrine, paracrine and autocrine regulation in the retina, but also in the brain. Focusing on the estrogenic retina, we here review our knowledge on local 17β-oestradiol (E2) synthesis from cholesterol-based neurosteroidogenic path and testosterone aromatization, and presence of estrogen receptors (ERα and ERβ). The first cholesterol-limiting step and the final aromatase-limiting step are discussed as possible check-points of retinal functional/dysfunctional E2. Possible E2 neuroprotection is commented as a group of experimental evidence on excitotoxic and oxidative retinal paradigms, and models of retinal neurodegenerative diseases, such as glaucoma, diabetic retinopathy and AMD. These findings may provide a framework to support clinical studies, although further basic research is needed.

  12. Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease.

    Lee, Suzee E; Tartaglia, Maria C; Yener, Görsev; Genç, Sermin; Seeley, William W; Sanchez-Juan, Pascual; Moreno, Fermin; Mendez, Mario F; Klein, Eric; Rademakers, Rosa; López de Munain, Adolfo; Combarros, Onofre; Kramer, Joel H; Kenet, Robert O; Boxer, Adam L; Geschwind, Michael D; Gorno-Tempini, Maria-Luisa; Karydas, Anna M; Rabinovici, Gil D; Coppola, Giovanni; Geschwind, Daniel H; Miller, Bruce L

    2013-01-01

    Recently, Coppola and colleagues demonstrated that a rare microtubule-associated protein tau (MAPT) sequence variant, c.454G>A (p.A152T) significantly increases the risk of frontotemporal dementia (FTD) spectrum disorders and Alzheimer disease (AD) in a screen of 15,369 subjects. We describe clinical features of 9 patients with neurodegenerative disease (4 women) harboring p.A152T, aged 51 to 79 years at symptom onset. Seven developed FTD spectrum clinical syndromes, including progressive supranuclear palsy syndrome (n=2), behavioral variant FTD (bvFTD, n=1), nonfluent variant primary progressive aphasia (nfvPPA, n=2), and corticobasal syndrome (n=2); 2 patients were diagnosed with clinical AD. Thus, MAPT p.A152T is associated with a variety of FTD spectrum clinical presentations, although patients with clinical AD are also identified. These data warrant larger studies with clinicopathologic correlation to elucidate the influence of this genetic variant on neurodegenerative disease.

  13. More than just two peas in a pod: common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases.

    Lee, Virginia M-Y; Giasson, Benoit I; Trojanowski, John Q

    2004-03-01

    Intracytoplasmic filamentous aggregates, such as neurofibrillary tangles in Alzheimer's disease and Lewy bodies in Parkinson's disease, are composed of the proteins tau and alpha-synuclein, respectively. These pathological inclusions are linked directly to the etiology and mechanisms of disease in a wide spectrum of neurodegenerative disorders, termed 'tauopathies' and 'synucleinopathies'. Emerging evidence indicates that there is frequent overlap of the pathological and clinical features of patients with tauopathies and synucleinopathies, thereby re-enforcing the notion that these disorders might be linked mechanistically. Indeed, several lines of investigation suggest that tau and alpha-synuclein might constitute a unique class of unstructured proteins that assemble predominantly into homopolymeric (rather than heteropolymeric) fibrils, which deposit mainly in separate amyloid inclusions, but occasionally deposit together. Thus, the ability of tau and alpha-synuclein to affect each other directly or indirectly might contribute to the overlap in the clinical and pathological features of tauopathies and synucleinopathies.

  14. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases.

  15. 空气污染与神经退行性疾病%Air pollution and neurodegenerative diseases

    吴远双; 孟庆雄; 魏大巧; 白洁

    2011-01-01

    随着现代社会工业的发展,空气污染日益严重,空气污染对人体的损害也越来越大.空气污染中的有害物质,能通过各种途径引起各系统的疾病,甚至会影响儿童的身体和智力发育.研究发现,长期暴露或急性暴露在某些空气污染物中可以直接损伤中枢神经系统,或污染物引起呼吸系统和免疫系统等产生有害因子,通过外周循环到达大脑,导致大脑的神经炎症、神经毒性、氧化应激等反应,最终产生神经退行性病变,如阿尔茨海默病(Alzheimer's disease,AD)、帕金森病(Parkinson's disease,PD)等.%With the quick development of modern industry, air pollution has been exploding in the past decades, which consequently results in more and more damage to human body. Environmental toxins from polluted air can cause pathologic change of every system in our body and even influence body and intelligence development of children. Recently, it has been reported that chronic exposure or acute exposure to the pollution matters could cause direct damage on the central nervous system (CNS), or stimulate some susceptible system (e.g., the respiratory system, immune system, etc.) to produce some harmful factors, which can reach the brain though peripheral circulation and then cause neuroinflammation, neurotoxicity, oxidative stress, eventually result in neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. This review focuses on the pathways and the mechanisms of neurodegenerative diseases caused by air pollution.

  16. Sham neurosurgical procedures in clinical trials for neurodegenerative diseases: scientific and ethical considerations.

    Galpern, Wendy R; Corrigan-Curay, Jacqueline; Lang, Anthony E; Kahn, Jeffrey; Tagle, Danilo; Barker, Roger A; Freeman, Thomas B; Goetz, Christopher G; Kieburtz, Karl; Kim, Scott Y H; Piantadosi, Steven; Comstock Rick, Amy; Federoff, Howard J

    2012-07-01

    There have been several recent scientific advances in gene-based and cell-based therapies that might translate into novel therapeutic approaches for neurodegenerative disorders. Such therapies might need to be directly delivered into the CNS, and complex scientific and ethical assessment will be needed to determine whether a sham neurosurgical arm should be included in clinical trials assessing these agents. We have developed a framework of points for investigators to consider when designing trials that involve direct delivery of a therapeutic agent to the CNS. The inclusion of a sham neurosurgical arm will be guided in part by the objectives of the clinical study (preliminary safety, optimisation, and feasibility vs preliminary efficacy vs confirmatory efficacy) and the need to minimise bias and confounds. Throughout the clinical development process, the perspectives of researchers, ethicists, and patients must be considered, and risks should be minimised whenever possible in a manner that is consistent with good trial design.

  17. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  18. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases

    Koon, Alex C.; Chan, Ho Yin Edwin

    2017-01-01

    For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development. PMID:28377694

  19. The utility of α-synuclein as biofluid marker in neurodegenerative diseases: a systematic review of the literature.

    Simonsen, Anja Hviid; Kuiperij, Bea; El-Agnaf, Omar Mukhtar Ali; Engelborghs, Sebastian; Herukka, Sanna-Kaisa; Parnetti, Lucilla; Rektorova, Irena; Vanmechelen, Eugeen; Kapaki, Elisabeth; Verbeek, Marcel; Mollenhauer, Brit

    2016-01-01

    The discovery of α-synuclein (α-syn) as a major component of Lewy bodies, neuropathological hallmark of Parkinson's disease (PD), dementia with Lewy bodies and of glial inclusions in multiple system atrophy initiated the investigation of α-syn as a biomarker in cerebrospinal fluid (CSF). Due to the involvement of the periphery in PD the quantification of α-syn in peripheral fluids such as serum, plasma and saliva has been investigated as well. We review how the development of multiple assays for the quantification of α-syn has yielded novel insights into the variety of α-syn species present in the different fluids; the optimal preanalytical conditions required for robust quantification and the potential clinical value of α-syn as biomarker. We also suggest future approaches to use of CSF α-syn in neurodegenerative diseases.

  20. Heritable retinoblastoma and accelerated aortic valve disease

    Abeyratne, L R; Kingston, J E; Onadim, Z; Dubrey, S W

    2013-01-01

    Heritable retinoblastoma is associated with a germline mutation in the tumour suppressor gene RBI. The Rb protein (pRb) arises from the RB1 gene, which was the first demonstrated cancer susceptibility gene in humans. 1 Second primary malignancies are recognised complications of retinoblastoma. Furthermore, pRb is implicated in valve remodelling in calcific aortic valve disease. 2 3 We report a family with hereditary retinoblastoma and associated secondary primary malignancies. There are two interesting aspects to this family. The first is the concept of ‘cancer susceptibility genes’; the RBI gene being the first reported in humans. A further feature of note is that two family members also have bicuspid aortic valves. We discuss a potential association between the gene defect responsible for retinoblastoma (with its associated propensity for further malignancies) and accelerated deterioration of the bicuspid aortic valve in the proband carrying this gene defect. PMID:23595191

  1. Structure of an aprataxin-DNA complex with insights into AOA1 neurodegenerative disease

    Tumbale, Percy; Appel, C Denise; Kraehenbuehl, Rolf; Robertson, Patrick D; Williams, Jessica S; Krahn, Joe; Ahel, Ivan; Williams, R Scott [NIEHS; (Manchester)

    2012-09-17

    DNA ligases finalize DNA replication and repair through DNA nick-sealing reactions that can abort to generate cytotoxic 5'-adenylation DNA damage. Aprataxin (Aptx) catalyzes direct reversal of 5'-adenylate adducts to protect genome integrity. Here the structure of a Schizosaccharomyces pombe Aptx-DNA-AMP-Zn2+ complex reveals active site and DNA interaction clefts formed by fusing a histidine triad (HIT) nucleotide hydrolase with a DNA minor groove-binding C2HE zinc finger (Znf). An Aptx helical 'wedge' interrogates the base stack for sensing DNA ends or DNA nicks. The HIT-Znf, the wedge and an '[F/Y]PK' pivot motif cooperate to distort terminal DNA base-pairing and direct 5'-adenylate into the active site pocket. Structural and mutational data support a wedge-pivot-cut HIT-Znf catalytic mechanism for 5'-adenylate adduct recognition and removal and suggest that mutations affecting protein folding, the active site pocket and the pivot motif underlie Aptx dysfunction in the neurodegenerative disorder ataxia with oculomotor apraxia 1 (AOA1).

  2. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors.

  3. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases?

    Du, Xin; Pang, Terence Y

    2015-01-01

    There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.

  4. Dietary fat and antioxidant vitamin intake in patients of neurodegenerative disease in a rural region of Jalisco, Mexico

    Navarro-Meza, Mónica; Gabriel-Ortiz, Genaro; Pacheco-Moisés, Fermín P.; Cruz-Ramos, José A.; López-Espinoza, Antonio

    2014-01-01

    Objective To evaluate and compare the intake of lipids and (A, E, and C) vitamins in patients with and without possible neurodegenerative diseases. Methods Twenty adults with possible Alzheimer's disease or Parkinson's disease and 41 control subjects (50–89 years old) from a rural region were studied. Dietary intake was evaluated with the analysis of macronutrients and micronutrients conducted by a food frequency questionnaire and 24 hours dietary record. Analyses were adjusted for age, sex, body mass index, and energy intake. Through interrogation and use of medical record form of health secretary we obtained information about the sociodemographic characteristics. Multivariate analysis of variance to allow for covariated adjustment was used. Results Patients had a lower energy intake, vitamin C (P = 0.016), fruits (P animal fat diet (P = 0.024), and whole milk (P < 0.001); 2.4% of the controls smoke and 5% are alcohol consumers. Eighty-five percent of patients and 78% of the controls do not have physical activity. Family history of subjects in this study indicated chronic diseases. Conclusion The subjects included in this study had a high intake of C vitamin, this is due to the consumption of fruits and vegetables. However, patients with possible Alzheimer's or Parkinson's disease had a lower intake of fruits and vegetables, which could be due to type of food to which they have access. PMID:24257159

  5. The possible role of stem cells in acupuncture treatment for neurodegenerative diseases: a literature review of basic studies.

    Ho, Tsung-Jung; Chan, Tzu-Min; Ho, Li-Ing; Lai, Ching-Yuan; Lin, Chia-Hsien; Macdonald, Iona; Harn, Horng-Jyh; Lin, Jaung-Geng; Lin, Shinn-Zong; Chen, Yi-Hung

    2014-01-01

    This review reports on recent findings concerning the effects of acupuncture and electroacupuncture (EA) on stem cell mobilization and differentiation, in particular with regard to neurogenesis. Traditional Chinese acupuncture has a history of over 2,500 years and is becoming more popular worldwide. Evidence has demonstrated that acupuncture may be of benefit in stroke rehabilitation, parkinsonism, dementia, and depression. This article reviews recent studies concerning the effects of acupuncture/EA on stem cell mobilization and on progenitor cell proliferation in the CNS. The reviewed evidence indicates that acupuncture/EA has beneficial effects in several neurodegenerative diseases, and it may prove to be a nondrug method for mobilizing stem cells in the CNS.

  6. Autophagy and neurodegenerative disorders

    Evangelia Kesidou; Roza Lagoudaki; Olga Touloumi; Kyriaki-Nefeli Poulatsidou; Constantina Simeonidou

    2013-01-01

    Accumulation of aberrant proteins and inclusion bodies are hallmarks in most neurodegenerative diseases. Consequently, these aggregates within neurons lead to toxic effects, overproduction of reactive oxygen species and oxidative stress. Autophagy is a significant intracel ular mechanism that removes damaged organelles and misfolded proteins in order to maintain cel homeostasis. Excessive or insufficient autophagic activity in neurons leads to altered homeostasis and influences their survival rate, causing neurodegeneration. The review article provides an update of the role of autophagic process in representative chronic and acute neurodegenerative disorders.

  7. Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases

    Kinji Ohno

    2012-01-01

    Full Text Available Effects of molecular hydrogen on various diseases have been documented for 63 disease models and human diseases in the past four and a half years. Most studies have been performed on rodents including two models of Parkinson's disease and three models of Alzheimer's disease. Prominent effects are observed especially in oxidative stress-mediated diseases including neonatal cerebral hypoxia; Parkinson's disease; ischemia/reperfusion of spinal cord, heart, lung, liver, kidney, and intestine; transplantation of lung, heart, kidney, and intestine. Six human diseases have been studied to date: diabetes mellitus type 2, metabolic syndrome, hemodialysis, inflammatory and mitochondrial myopathies, brain stem infarction, and radiation-induced adverse effects. Two enigmas, however, remain to be solved. First, no dose-response effect is observed. Rodents and humans are able to take a small amount of hydrogen by drinking hydrogen-rich water, but marked effects are observed. Second, intestinal bacteria in humans and rodents produce a large amount of hydrogen, but an addition of a small amount of hydrogen exhibits marked effects. Further studies are required to elucidate molecular bases of prominent hydrogen effects and to determine the optimal frequency, amount, and method of hydrogen administration for each human disease.

  8. Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies

    Sheinerman, Kira S.; Umansky, Samuil R.

    2013-01-01

    Many neurodegenerative diseases, such as Alzheimer's disease, Parkinson disease, vascular and frontotemporal dementias, as well as other chronic neurological pathologies, are characterized by slow development with a long asymptomatic period followed by a stage with mild clinical symptoms. As a consequence, these serious pathologies are diagnosed late in the course of a disease, when massive death of neurons has already occurred and effective therapeutic intervention is problematic. Thus, the ...

  9. [Late-onset Neurodegenerative Diseases Following Traumatic Brain Injury: Chronic Traumatic Encephalopathy (CTE) and Alzheimer's Disease Secondary to TBI (AD-TBI)].

    Takahata, Keisuke; Tabuchi, Hajime; Mimura, Masaru

    2016-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease, which is associated with mild repetitive traumatic brain injury (TBI). This long-term and progressive symptom due to TBI was initially called punch-drunk syndrome or dementia pugilistica, since it was believed to be associated with boxing. However, serial neuropathological studies of mild repetitive TBI in the last decade have revealed that CTE occurs not only in boxers but also in a wider population including American football players, wrestlers, and military personnel. CTE has gained large public interest owing to dramatic cases involving retired professional athletes wherein serious behavioral problems and tragic incidents were reported. Unlike mild repetitive TBI, a single episode of severe TBI can cause another type of late-onset neuropsychiatric disease including Alzheimer's disease (AD). Several epidemiological studies have shown that a single episode of severe TBI is one of the major risk factors of AD. Pathologically, both AD and CTE are characterized by abnormal accumulations of hyperphosphorylated tau proteins. However, recent neuropathological studies revealed that CTE demonstrates a unique pattern of tau pathology in neurons and astrocytes, and accumulation of other misfolded proteins such as TDP-43. Currently, no reliable biomarkers of late-onset neurodegenerative diseases following TBI are available, and a definitive diagnosis can be made only via postmortem neuropathological examination. Development in neuroimaging techniques such as tau and amyloid positron emission tomography imaging might not only enable early diagnosis of CTE, but also contribute to the interventions for prevention of late-onset neurodegenerative diseases following TBI. Further studies are necessary to elucidate the mechanisms of neurodegeneration in the living brain of patients with TBI.

  10. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases.

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Montes, Sergio; Rios, Camilo

    2008-09-01

    The understanding of oxidative damage in different neurodegenerative diseases could enhance therapeutic strategies. Our objective was to quantify lipoperoxidation and other oxidative products as well as the activity of antioxidant enzymes and cofactors in cerebrospinal fluid (CSF) samples. We recorded data from all new patients with a diagnosis of either one of the four most frequent neurodegenerative diseases: Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and lateral amyotrophic sclerosis (ALS). The sum of nitrites and nitrates as end products of nitric oxide (NO) were increased in the four degenerative diseases and fluorescent lipoperoxidation products in three (excepting ALS). A decreased Cu/Zn-dependent superoxide dismutase (SOD) activity characterized the four diseases. A significantly decreased ferroxidase activity was found in PD, HD and AD, agreeing with findings of iron deposition in these entities, while free copper was found to be increased in CSF and appeared to be a good biomarker of PD.

  11. Anti-aging herbal medicine--how and why can they be used in aging-associated neurodegenerative diseases?

    Ho, Yuen-Shan; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2010-07-01

    Aging is a universal biological process that leads to progressive and deleterious changes in organisms. From ancient time, mankind has already interested in preventing and keeping ourselves young. Anti-aging study is certainly not a new research area. Nowadays, the meaning of anti-aging has been changed from simply prolonging lifespan to increasing health span, which emphasizes more on the quality of life. This is the concept of healthy aging and prevention of pathological aging, which is associated with diseases. Keeping our brain functions as in young age is an important task for neuroscientists to prevent aging-associated neurological disorders, such as Alzheimer's diseases (AD) and Parkinson's disease (PD). The causes of these diseases are not fully understood, but it is believed that these diseases are affected by multiple factors. Neurodegenerative diseases can be cross-linked with a number of aging-associated conditions. Based on this, a holistic approach in anti-aging research seems to be more reasonable. Herbal medicine has a long history in Asian countries. It is believed that many of the medicinal herbs have anti-aging properties. Recent studies have shown that some medicinal herbs are effective in intervention or prevention of aging-associated neurological disorders. In this review, we use wolfberry and ginseng as examples to elaborate the properties of anti-aging herbs. The characteristics of medicinal herbs, especially their applications in different disease stages (prevention and intervention) and multi-targets properties, allow them to be potential anti-aging intervention in prevention and treatment of the aging-associated neurological disorders.

  12. Krabbe Disease: Report of a Rare Lipid Storage and Neurodegenerative Disorder

    Pavuluri, Pratyusha; Vadakedath, Sabitha; Gundu, Rajkumar; Uppulety, Sushmitha

    2017-01-01

    Krabbe disease is a rare (one in 100,000 births) autosomal recessive condition, usually noticed among children. It causes sphingolipidosis (dysfunctional metabolism of sphingolipids) and leads to fatal degenerative changes affecting the myelin sheath of the nervous system. We report a case of a six-year-old male child who presented with symptoms of muscle spasticity and irritability. Diagnosis of this disease can only be made with clinical suspicion. Laboratory diagnosis includes brain magnetic resonance imaging (MRI), magnetic resonance (MR) spectroscopy, biochemical analysis of cerebrospinal fluid, and genetic analysis for detecting mutation in genes coding for galactosyl cerebroside (GALC). We report a case of late infantile Krabbe disease.

  13. [The role of the adaptive stress response in the pathogenesis of neurodegenerative diseases, cancer and diabetes mellitus type 2].

    Rozpędek, Wioletta; Markiewicz, Łukasz; Diehl, J Alan; Pytel, Dariusz; Majsterek, Ireneusz

    2015-12-01

    The ER (Endoplasmatic Reticulum) an intricate intracellular membrane system is responsible for many functions within cells; including folding and post-translational modifications of secretory proteins biosynthesis of ceramides, phospholipids and coordination of cell homeostasis. Perturbation of these ER processes leads to high levels unfolded and misfolded proteins within the lumen of the ER. These disturbances lead to activation of three primary receptors: PERK (Protein kinase RNA-like endoplasmic reticulum kinase), IRE1 (Inositol-Requiring-Enzyme 1) and ATF6 (Activating Transcription Factor 6). These signal transducers are responsible for inducing signalling pathways termed UPR (Unfolded Protein Response) restoring cell homeostasis. In contrast, unresolved ER stress contributes to cell death by apoptosis. Recent research allows for a conclusion that the deregulation of UPR is the main causative factor for functional cell loss and moreover, cell death by apoptosis, which is strictly linked to the pathology of human diseases to include: cancer, diabetes mellitus type 2 and neurodegenerative diseases such as Alzheimer's, Parkinson's and prion diseases.

  14. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease

    McDonald Jacob

    2011-08-01

    Full Text Available Abstract Background Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. Objective We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Methods Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m3 by inhalation over 6 months. Results DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m3 significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m3 and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m3 in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m3 exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Conclusions Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may

  15. Dysregulation of the HPA axis as a core pathophysiology mediating co-morbid depression in neurodegenerative diseases

    Xin eDu

    2015-03-01

    Full Text Available There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson’s disease and Huntington’s disease. These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression, and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioural deficits and/or mood disorders. Dysregulation of the HPA axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, anti-depressant drugs such as the selective serotonin reuptake inhibitors (SSRI have been shown to alter HPA axis activity. In this review, we will summarize the current state of knowledge regarding HPA axis pathology in Alzheimer’s, Parkinson’s and Huntington’s diseases, differentiating between prodromal and later stages of disease progression where possible. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the pre-clinical evidence to better inform prospective, intervention studies.

  16. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases

    Enrica Serretiello

    2015-09-01

    Full Text Available Transglutaminases (TG, E.C. 2.3.2.13 are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physiological roles of human TGs have been widely studied in numerous cell types and tissues and recently their roles in several diseases have begun to be identified. It has been hypothesized that transglutaminase activity is directly involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue TG (tTG, TG2, a member of the TG enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD, one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, some biochemical and immunological aspects of this very common disease have been clarified, and “tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the major factors. The aim of this review is to summarize the most recent findings concerning the relationships between the biochemical properties of the transglutaminase activity and the basic molecular mechanisms responsible for some human diseases, with particular reference to neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and the use of transglutaminase inhibitors are also discussed.

  17. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases.

    Auddy, B; Ferreira, M; Blasina, F; Lafon, L; Arredondo, F; Dajas, F; Tripathi, P C; Seal, T; Mukherjee, B

    2003-02-01

    A number of Indian medicinal plants have been used for thousands of years in the traditional system of medicine (Ayurveda). Amongst these are plants used for the management of neurodegenerative diseases such as Parkinson's, Alzheimer's, loss of memory, degeneration of nerves and other neuronal disorders by the Ayurvedic practitioners. Though the etiology of neurodegenerative diseases remains enigmatic, there is evidence, which indicates that defective energy metabolism, excitotoxicity and oxidative damage may be crucial factors (Ann. Neurol. 38 (3) (1995) 357). The part of the Ayurvedic system that provides an approach to prevention and treatment of degenerative diseases is known as Rasayana, and plants used for this purpose are classed as rejuvenators. This group of plants generally possesses strong antioxidant activity (Pharmacol. Biochem. Behav. 43 (1992) 1175), but only a few have been investigated in detail. In the present study, three such rasayana plants were tested for the first time for their toxicity and free radical scavenging activity both in vitro and ex vivo. All the three plant infusions (up to 1 mg/ml) showed no toxic effects on the viability of PC12 cell line as judged by MTT-test. Both ethanolic extracts and water infusions of the plants were tested for their antioxidant activity in the 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS*(+)) radical cation decolorization assay; inhibition of lipid peroxidation by plant infusions was carried out using spontaneous lipid peroxidation of rat brain homogenate, and IC50 values were determined. The results from the ABTS assay showed that the ethanolic extract of Sida cordifolia was found to be most potent (IC50 16.07 microg/ml), followed by Evolvulus alsinoides (IC50 33.39 microg/ml) and Cynodon dactylon (IC50 78.62 microg/ml). The relative antioxidant capacity for the water infusions was observed in the following order: E. alsinoides (IC50 172.25 microg/ml)>C. dactylon (IC50 273.64 microg

  18. Radio Electric Asymmetric Conveyer: A Novel Neuromodulation Technology in Alzheimer’s and Other Neurodegenerative Diseases

    2015-01-01

    Global research in the field of pharmacology has not yet found effective drugs to treat Alzheimer's disease. Thus, alternative therapeutic strategies are under investigation, such as neurostimulation by physical means. Radio electric asymmetric conveyer (REAC) is one of these technologies and has, until now, been used in clinical studies on several psychiatric and neurological disorders with encouraging results in the absence of side effects. Moreover, studies at the cellular level have shown...

  19. Selective Activation of mTORC1 Signaling Recapitulates Microcephaly, Tuberous Sclerosis, and Neurodegenerative Diseases

    Hidetoshi Kassai

    2014-06-01

    Full Text Available Mammalian target of rapamycin (mTOR has been implicated in human neurological diseases such as tuberous sclerosis complex (TSC, neurodegeneration, and autism. However, little is known about when and how mTOR is involved in the pathogenesis of these diseases, due to a lack of animal models that directly increase mTOR activity. Here, we generated transgenic mice expressing a gain-of-function mutant of mTOR in the forebrain in a temporally controlled manner. Selective activation of mTORC1 in embryonic stages induced cortical atrophy caused by prominent apoptosis of neuronal progenitors, associated with upregulation of HIF-1α. In striking contrast, activation of the mTORC1 pathway in adulthood resulted in cortical hypertrophy with fatal epileptic seizures, recapitulating human TSC. Activated mTORC1 in the adult cortex also promoted rapid accumulation of cytoplasmic inclusions and activation of microglial cells, indicative of progressive neurodegeneration. Our findings demonstrate that mTORC1 plays different roles in developmental and adult stages and contributes to human neurological diseases.

  20. Computer Aided Drug Design Studies in the Discovery of Secondary Metabolites Targeted Against Age-Related Neurodegenerative Diseases.

    Scotti, Luciana; Scotti, Marcus Tullius

    2015-01-01

    Secondary metabolites are plant products that occur usually in differentiated cells, generally not being necessary for the cells themselves, but likely useful for the plant as a whole. Neurodegeneration can be found in many different levels in the neurons, it always begins at the molecular level and progresses toward the systemic levels. Usually, alterations are observed such as decreasing cholinergic impulse, toxicity related to reactive oxygen species (ROS, inflammatory "amyloid plaque" related processes, catecholamine disequilibrium, etc. Computer aided drug design (CADD has become relevant in the drug discovery process; technological advances in the areas of molecular structure characterization, computational science, and molecular biology have contributed to the planning of new drugs against neurodegenerative diseases. This review discusses scientific CADD studies of the secondary metabolites. Flavonoids, alkaloids, and xanthone compounds have been studied by various researchers (as inhibitory ligands in molecular docking; mainly with three enzymes: acetylcholinesterase (AChE; EC 3.1.1.7, butyrylcholinesterase (BChE; EC 3.1.1.8, and monoamine oxidase (MAO; EC 1.4.3.4. In addition, we have applied ligand-based-virtual screening (using Random Forest, associated with structure-based- virtual screening (docking of a small dataset of 469 alkaloids of the Apocynaceae family from an in-house data bank to select structures with potential inhibitory activity against human AChE. This computer-aided drug design study selected certain alkaloids that might be useful in further studies for the treatment of neurological disorders such as Alzheimer's and Parkinson's disease.

  1. Effect of Systemic Iron Overload and a Chelation Therapy in a Mouse Model of the Neurodegenerative Disease Hereditary Ferritinopathy

    Li, Wei; Goodwin, Charles B.; Richine, Briana; Acton, Anthony; Chan, Rebecca J.; Peacock, Munro; Muhoberac, Barry B.; Ghetti, Bernardino; Vidal, Ruben

    2016-01-01

    Mutations in the ferritin light chain (FTL) gene cause the neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic iron-containing ferritin inclusion bodies (IBs) in glia and neurons throughout the central nervous system (CNS) and in tissues of multiple organ systems. Herein, using primary mouse embryonic fibroblasts from a mouse model of HF, we show significant intracellular accumulation of ferritin and an increase in susceptibility to oxidative damage when cells are exposed to iron. Treatment of the cells with the iron chelator deferiprone (DFP) led to a significant improvement in cell viability and a decrease in iron content. In vivo, iron overload and DFP treatment of the mouse model had remarkable effects on systemic iron homeostasis and ferritin deposition, without significantly affecting CNS pathology. Our study highlights the role of iron in modulating ferritin aggregation in vivo in the disease HF. It also puts emphasis on the potential usefulness of a therapy based on chelators that can target the CNS to remove and redistribute iron and to resolubilize or prevent ferritin aggregation while maintaining normal systemic iron stores. PMID:27574973

  2. Electronic approaches to restitute vision in patients with neurodegenerative diseases of the retina.

    Stingl, K; Zrenner, E

    2013-01-01

    Degenerations of the outer retina are hereditary diseases leading to significant loss of vision. Several concepts of active electrical stimulation of the remaining retinal network resulted in the development of retinal visual implants and prosthetic vision. Subretinal and epiretinal visual implants are currently the leading approaches in restoring functional vision in blind humans with retinitis pigmentosa or other outer retinal degenerations. This review gives a short overview about the principles, advantages, limitations and vision outcome of the up-to-date published artificial vision by electronic visual implants, as well as their known biocompatibility and safety issues.

  3. CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases

    Weili eYang; Zhuchi eTu; Qiang eSun; Xiao-Jiang eLi

    2016-01-01

    CRISPR/Cas9 is now used widely to genetically modify the genomes of various species. The ability of CRISPR/Cas9 to delete DNA sequences and correct DNA mutations opens up a new avenue to treat genetic diseases that are caused by DNA mutations. In this review, we describe the advantages of using CRISPR/Cas9 to engineer genomic DNAs in animal embryos, as well as in specific regions or cell types in the brain. We also discuss how to apply CRISPR/Cas9 to establish animal models of neurodegenerati...

  4. Role of Abca7 in mouse behaviours relevant to neurodegenerative diseases.

    Warren Logge

    Full Text Available ATP-binding cassette transporters of the subfamily A (ABCA are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer's disease. However, Abca7's role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous Abca7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs and Alzheimer's disease (i.e. cognitive domains. Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in Abca7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female Abca7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in Abca7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, Abca7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.

  5. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases.

    Bakker, Erik N T P; Bacskai, Brian J; Arbel-Ornath, Michal; Aldea, Roxana; Bedussi, Beatrice; Morris, Alan W J; Weller, Roy O; Carare, Roxana O

    2016-03-01

    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (Aβ). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer's disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that Aβ is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of Aβ in the glia limitans in Alzheimer's disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of Aβ. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance.

  6. Non linear approach to study the dynamics of neurodegenerative diseases by Multifractal Detrended Cross-correlation Analysis-A quantitative assessment on gait disease

    Dutta, Srimonti; Ghosh, Dipak; Samanta, Shukla

    2016-04-01

    This paper studies the human gait pattern of normal people and patients suffering from Parkinson's disease using the MFDXA (Multifractal Detrended Cross-correlation Analysis) methodology. The auto correlation and cross correlation of the time series of the total force under the left foot and right foot were studied. The study reveals that the degree of multifractality (W) and degree of correlation (γ) are generally more for normal patients than the diseased set. It is also observed that the values of W and γ are nearly same for left foot and right. It is also observed that the study of autocorrelation alone is not sufficient, cross correlations should also be studied to get a better concept of neurodegenerative diseases.

  7. CAFFEINE AND CHLOROGENIC ACIDS IN COFFEE AND EFFECTS ON SELECTED NEURODEGENERATIVE DISEASES

    Santos Roseane Maria Maia

    2013-08-01

    Full Text Available Much controversy and misunderstanding has surrounded the disputed health impact of coffee consumption. Recent studies now help clarify the pharmacological and neurological health promoting properties of coffee daily intake. Benefits are shown attributable to coffee’s rich phytochemistry that includes (besides caffeine, phenolic compounds, such as chlorogenic acids, diterpenes, trigonelline, minerals, amino acids and other volatile compounds. It is also a powerful disease fighting antioxidant, the primary source of antioxidants in several countries. The purpose of this article is to review results from current epidemiological and mechanistic studies on the central nervous system attributed to coffee. A primary focus to this review is the activity of caffeine and chlorogenic acids and their implications to CNS health. The discussion will highlight possible molecular mechanisms responsible for the respective pharmacological benefits.

  8. Quantification of muscle activity during sleep for patients with neurodegenerative diseases

    Hanif, Umaer; Trap, Lotte; Jennum, Poul;

    2015-01-01

    Idiopathic REM sleep behavior disorder (iRBD) is a very strong predictor for later development of Parkinson's disease (PD), and is characterized by REM sleep without atonia (RSWA), resulting in increased muscle activity during REM sleep. Abundant studies have shown the loss of atonia during REM...... sleep, but our aim was to investigate whether iRBD and PD patients have increased muscle activity in both REM and NREM sleep compared to healthy controls. This was achieved by developing a semi-automatic algorithm for quantification of mean muscle activity per second during all sleep stages...... to the different sleep stages and muscle activity beyond the threshold was counted. The results were evaluated statistically using the two-sided Mann-Whitney U-test. The results suggested that iRBD patients also exhibit distinctive muscle activity characteristics in NREM sleep, however not as evident as in REM...

  9. Movement and Other Neurodegenerative Syndromes in Patients with Systemic Rheumatic Diseases: A Case Series of 8 Patients and Review of the Literature.

    Menezes, Rikitha; Pantelyat, Alexander; Izbudak, Izlem; Birnbaum, Julius

    2015-08-01

    Patients with rheumatic diseases can present with movement and other neurodegenerative disorders. It may be underappreciated that movement and other neurodegenerative disorders can encompass a wide variety of disease entities. Such disorders are strikingly heterogeneous and lead to a wider spectrum of clinical injury than seen in Parkinson's disease. Therefore, we sought to stringently phenotype movement and other neurodegenerative disorders presenting in a case series of rheumatic disease patients. We integrated our findings with a review of the literature to understand mechanisms which may account for such a ubiquitous pattern of clinical injury.Seven rheumatic disease patients (5 Sjögren's syndrome patients, 2 undifferentiated connective tissue disease patients) were referred and could be misdiagnosed as having Parkinson's disease. However, all of these patients were ultimately diagnosed as having other movement or neurodegenerative disorders. Findings inconsistent with and more expansive than Parkinson's disease included cerebellar degeneration, dystonia with an alien-limb phenomenon, and nonfluent aphasias.A notable finding was that individual patients could be affected by cooccurring movement and other neurodegenerative disorders, each of which could be exceptionally rare (ie, prevalence of ∼1:1000), and therefore with the collective probability that such disorders were merely coincidental and causally unrelated being as low as ∼1-per-billion. Whereas our review of the literature revealed that ubiquitous patterns of clinical injury were frequently associated with magnetic resonance imaging (MRI) findings suggestive of a widespread vasculopathy, our patients did not have such neuroimaging findings. Instead, our patients could have syndromes which phenotypically resembled paraneoplastic and other inflammatory disorders which are known to be associated with antineuronal antibodies. We similarly identified immune-mediated and inflammatory markers of injury

  10. Gait and cognition: Mapping the global and discrete relationships in ageing and neurodegenerative disease.

    Morris, Rosie; Lord, Sue; Bunce, Jennifer; Burn, David; Rochester, Lynn

    2016-05-01

    Recent research highlights the association of gait and cognition in older adults but a stronger understanding is needed to discern coincident pathophysiology, patterns of change, examine underlying mechanisms and aid diagnosis. This structured review mapped associations and predictors of gait and cognition in older adults with and without cognitive impairment, and Parkinson's disease. Fifty papers out of an initial yield of 22,128 were reviewed and a model of gait guided analysis and interpretation. Associations were dominated by the pace domain of gait; the most frequently studied domain. In older adults pace was identified as a predictor for cognitive decline. Where comprehensive measurement of gait was conducted, more specific pathological patterns of association were evident highlighting the importance of this approach. This review confirmed a robust association between gait and cognition and argues for a selective, comprehensive measurement approach. Results suggest gait may be a surrogate marker of cognitive impairment and cognitive decline. Understanding the specific nature of this relationship is essential for refinement of diagnostics and development of novel therapies.

  11. The Emerging Role of Guanine Exchange Factors in ALS and other neurodegenerative diseases

    Cristian eDroppelmann

    2014-09-01

    Full Text Available Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs, of which two classes: Dbl-related exchange factors and the more recently described Dock family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF in the pathogenesis of amyotrophic lateral sclerosis (ALS. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament (NEFL mRNA 3’UTR to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.

  12. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?

    Washington, Patricia M; Villapol, Sonia; Burns, Mark P

    2016-01-01

    Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer's disease (AD), while repeat mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position-examining epidemiological and case control human studies, neuropathological evidence, and preclinical data. Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson's disease. Further, human post-mortem studies on both single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a 'polypathology'. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI. The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI is viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI.

  13. Cerebral ABC transporter-common mechanisms may modulate neurodegenerative diseases and depression in elderly subjects.

    Pahnke, Jens; Fröhlich, Christina; Paarmann, Kristin; Krohn, Markus; Bogdanovic, Nenad; Årsland, Dag; Winblad, Bengt

    2014-11-01

    In elderly subjects, depression and dementia often coincide but the actual reason is currently unknown. Does a causal link exist or is it just a reactive effect of the knowledge to suffer from dementia? The ABC transporter superfamily may represent a causal link between these mental disorders. Since the transporters ABCB1 and ABCC1 have been discovered as major β-amyloid-exporting molecules at the blood-brain barrier and ABCC1 was found to be directly activated by St. John's wort (SJW), depression and dementia certainly share an important pathophysiologic link. It was recognized that herbal anti-depressant formulations made from SJW are at least as effective for the treatment of unipolar depression in old age as classical pharmacotherapy, while having fewer side effects (Cochrane reports, 2008). SJW is known to activate various metabolizing and transport systems in the body, with cytochrome P450 enzymes and ABC transporters being most important. Does the treatment of depression in elderly subjects using pharmacological compounds or phytomedical extracts target a mechanism that also accounts for peptide storage in Alzheimer's disease and perhaps other proteopathies of the brain? In this review we summarize recent data that point to a common mechanism and present the first promising causal treatment results of demented elderly subjects with distinct SJW extracts. Insufficient trans-barrier clearance may indeed present a common problem in all the proteopathies of the brain where toxic peptides are deposited in a location-specific manner. Thus, activation of efflux molecules holds promise for future treatment of this large group of devastating disorders.

  14. Detecting sarcasm from paralinguistic cues: anatomic and cognitive correlates in neurodegenerative disease.

    Rankin, Katherine P; Salazar, Andrea; Gorno-Tempini, Maria Luisa; Sollberger, Marc; Wilson, Stephen M; Pavlic, Danijela; Stanley, Christine M; Glenn, Shenly; Weiner, Michael W; Miller, Bruce L

    2009-10-01

    While sarcasm can be conveyed solely through contextual cues such as counterfactual or echoic statements, face-to-face sarcastic speech may be characterized by specific paralinguistic features that alert the listener to interpret the utterance as ironic or critical, even in the absence of contextual information. We investigated the neuroanatomy underlying failure to understand sarcasm from dynamic vocal and facial paralinguistic cues. Ninety subjects (20 frontotemporal dementia, 11 semantic dementia [SemD], 4 progressive non-fluent aphasia, 27 Alzheimer's disease, 6 corticobasal degeneration, 9 progressive supranuclear palsy, 13 healthy older controls) were tested using the Social Inference - Minimal subtest of The Awareness of Social Inference Test (TASIT). Subjects watched brief videos depicting sincere or sarcastic communication and answered yes-no questions about the speaker's intended meaning. All groups interpreted Sincere (SIN) items normally, and only the SemD group was impaired on the Simple Sarcasm (SSR) condition. Patients failing the SSR performed more poorly on dynamic emotion recognition tasks and had more neuropsychiatric disturbances, but had better verbal and visuospatial working memory than patients who comprehended sarcasm. Voxel-based morphometry analysis of SSR scores in SPM5 demonstrated that poorer sarcasm comprehension was predicted by smaller volume in bilateral posterior parahippocampi (PHc), temporal poles, and R medial frontal pole (pFWE<0.05). This study provides lesion data suggesting that the PHc may be involved in recognizing a paralinguistic speech profile as abnormal, leading to interpretive processing by the temporal poles and right medial frontal pole that identifies the social context as sarcastic, and recognizes the speaker's paradoxical intentions.

  15. Chinese herbal extract dl-3n-butylphthalide A commonly used drug for the treatment of ischemic stroke as a novel therapeutic approach to treat neurodegenerative diseases

    Wenfang He; Wensheng Zhou; Zhiping Hu

    2011-01-01

    Dl-3n-butylphthalide is the active component isolated from the seeds of Apium graveolens Linn. A number of pharmacological and clinical studies have proven that dl-3n-butylphthalide is highly po-tent and multi-targeted with low toxicity and has a long time-window for the treatment of ischemic cerebrovascular disease. The mechanisms underlying dl-3n-butylphthalide include improving mi-tochondrial function and microcirculation, inhibiting apoptosis and reducing oxidative stress. Fur-thermore, dl-3n-butylphthalide may also be promising for the treatment of neurodegenerative dis-eases, such as Alzheimer's disease, vascular dementia and Parkinson's disease.

  16. [NEURODEGENERATIVE DISEASES; NUTRITIONAL ASPECTS].

    de Luis, Daniel A; Izaola, Olatz; de la Fuente, Beatriz; Muñoz-Calero, Paloma; Franco-Lopez, Angeles

    2015-08-01

    Introducción: las enfermedades neurodegenerativas producen alteraciones en el nivel de conciencia o en los mecanismos de la deglución que con frecuencia hacen necesario un soporte nutricional especializado. Objetivo: revisar el riesgo de desnutrición, así como su tratamiento, en pacientes con enfermedad cerebral vascular, enfermedad de Parkinson, demencia y esclerosis lateral amiotrófica. Desarrollo: las enfermedades neurológicas degenerativas son una de las principales indicaciones de soporte nutricional en nuestro país. En los procesos agudos (enfermedad vascular cerebral), el correcto manejo nutricional se relaciona con una mejor evolución y con una disminución de las complicaciones. En los procesos neurodegenerativos crónicos (esclerosis lateral amiatrófica y demencia), la malnutrición es un problema importante que empeora el pronóstico de estos pacientes siendo, necesario un correcto manejo de la disfagia y sus complicaciones, así como la utilización de diferentes etapas de soporte nutricional. Una correcta valoración nutricional de estos pacientes, así como un claro esquema de intervención nutricional, es imprescindible en el seguimiento de su enfermedad. Por último, en la enfermedad de Parkinson avanzada, el soporte nutricional, como en las enfermedades neurodegenerativas anteriores, es de vital importancia, sin olvidarnos de la carga proteica y su distribución en la dieta de estos pacientes. Las sociedades científicas internacionales (American Society for Parenteral and Enteral Nutrition ASPEN) recomiendan, con un grado de evidencia B, realizar un cribaje de malnutrición a los pacientes con enfermedades neurológicas. Conclusiones: una correcta valoración nutricional, así como un adecuado soporte nutricional deben formar parte del proceso diagnóstico y terapéutico de estas enfermedades.

  17. Context-Dependent Neural Activation: Internally and Externally Guided Rhythmic Lower Limb Movement in Individuals With and Without Neurodegenerative Disease.

    Hackney, Madeleine E; Lee, Ho Lim; Battisto, Jessica; Crosson, Bruce; McGregor, Keith M

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients' quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, and Tai Chi) have shown improvements to motor symptoms, lower limb control, and postural stability in people with PD (1-6). However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task-specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG) and externally guided (EG) movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG vs. EG designs. Because of the potential task-specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training) and highlight research gaps. We believe better understanding of lower limb neural activity with respect to PD impairment during rhythmic IG and EG movement will facilitate the development of novel and effective therapeutic approaches to mobility limitations and postural instability.

  18. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases

    Larissa Takser

    2016-01-01

    Full Text Available Cyanotoxins have been shown to be highly toxic for mammalian cells, including brain cells. However, little is known about their effect on inflammatory pathways. This study investigated whether mammalian brain and immune cells can be a target of certain cyanotoxins, at doses approximating those in the guideline levels for drinking water, either alone or in mixtures. We examined the effects on cellular viability, apoptosis and inflammation signalling of several toxins on murine macrophage-like RAW264.7, microglial BV-2 and neuroblastoma N2a cell lines. We tested cylindrospermopsin (CYN, microcystin-LR (MC-LR, and anatoxin-a (ATX-a, individually as well as their mixture. In addition, we studied the neurotoxins β-N-methylamino-l-alanine (BMAA and its isomer 2,4-diaminobutyric acid (DAB, as well as the mixture of both. Cellular viability was determined by the MTT assay. Apoptosis induction was assessed by measuring the activation of caspases 3/7. Cell death and inflammation are the hallmarks of neurodegenerative diseases. Thus, our final step was to quantify the expression of a major proinflammatory cytokine TNF-α by ELISA. Our results show that CYN, MC-LR and ATX-a, but not BMAA and DAB, at low doses, especially when present in a mixture at threefold less concentrations than individual compounds are 3–15 times more potent at inducing apoptosis and inflammation. Our results suggest that common cyanotoxins at low doses have a potential to induce inflammation and apoptosis in immune and brain cells. Further research of the neuroinflammatory effects of these compounds in vivo is needed to improve safety limit levels for cyanotoxins in drinking water and food.

  19. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease

    Madeleine Eve Hackney

    2015-12-01

    Full Text Available Parkinson’s Disease (PD is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, tai chi have shown improvements to motor symptoms, lower limb control and postural stability in people with PD (Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell et al., 2013; Earhart, 2009; M. E. Hackney & Earhart, 2008; Kadivar, Corcos, Foto, & Hondzinski, 2011; Morris, Iansek, & Kirkwood, 2009; Ridgel, Vitek, & Alberts, 2009. However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG and externally guided (EG movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG versus EG designs. Because of the potential task specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging (fMRI and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training and highlight research gaps. We believe better understanding of lower limb neural

  20. Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases

    Howard Prentice

    2015-01-01

    Full Text Available In stroke and neurodegenerative disease, neuronal excitotoxicity, caused by increased extracellular glutamate levels, is known to result in calcium overload and mitochondrial dysfunction. Mitochondrial deficits may involve a deficiency in energy supply as well as generation of high levels of oxidants which are key contributors to neuronal cell death through necrotic and apoptotic mechanisms. Excessive glutamate receptor stimulation also results in increased nitric oxide generation which can be detrimental to cells as nitric oxide interacts with superoxide to form the toxic molecule peroxynitrite. High level oxidant production elicits neuronal apoptosis through the actions of proapoptotic Bcl-2 family members resulting in mitochondrial permeability transition pore opening. In addition to apoptotic responses to severe stress, accumulation of misfolded proteins and high levels of oxidants can elicit endoplasmic reticulum (ER stress pathways which may also contribute to induction of apoptosis. Two categories of therapeutics are discussed that impact major pro-death events that include induction of oxidants, calcium overload, and ER stress. The first category of therapeutic agent includes the amino acid taurine which prevents calcium overload and is also capable of preventing ER stress by inhibiting specific ER stress pathways. The second category involves N-methyl-D-aspartate receptor (NMDA receptor partial antagonists illustrated by S-Methyl-N, N-diethyldithiocarbamate sulfoxide (DETC-MeSO, and memantine. DETC-MeSO is protective through preventing excitotoxicity and calcium overload and by blocking specific ER stress pathways. Another NMDA receptor partial antagonist is memantine which prevents excessive glutamate excitation but also remarkably allows maintenance of physiological neurotransmission. Targeting of these major sites of neuronal damage using pharmacological agents is discussed in terms of potential therapeutic approaches for

  1. Development of the CHARIOT Research Register for the Prevention of Alzheimer's Dementia and Other Late Onset Neurodegenerative Diseases.

    Mark E Larsen

    socioeconomically disadvantaged practices (r = 0.68, and practices with a higher proportion of White patients (r = 0.82.Response rates are comparable to other registers reported in the literature, and indicate good interest and support for a research register and for participation in research for the prevention of age-related neurodegenerative diseases and dementia. We consider that the simplicity of the approach means that this system is easily scalable and replicable across the UK and internationally.

  2. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network

    Mustafa Sertbaş

    2014-01-01

    Full Text Available Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization.

  3. Mitochondrial dysfunction and neurodegenerative diseases%线粒体功能障碍与神经退行性疾病

    刘桓; 李清华

    2014-01-01

    线粒体自身形态和功能异常出现于很多神经退行性疾病,这些疾病包括极为常见的帕金森病(PD)和阿尔茨海默病(AD),也包括较为罕见的亨廷顿疾病(HD)和肌萎缩性脊髓侧索硬化症(ALS)以及脊髓小脑性共济失调(SCA)等.某些疾病所特有的线粒体形态与功能的改变或损伤已经被体内外的实验所证明.线粒体自身功能的受损会对正常神经细胞功能造成损伤,引起神经系统功能障碍,导致疾病的发生.本文将对线粒体自身形态和功能的损伤与神经系统退行性疾病之间的关系加以综述.%The abnormal of mitochondrial morphology and function discover in many neurodegenerative disorders,including Parkinson's disease (PD) and Alzheimer's disease (AD) which are extremely common diseases,also including rare types of neurodegenerative diseases,such as Huntington s disease (HD),amyotrophic lateral sclerosis (ALS),spinocerebellar ataxia (SCA) and so on.The specific changes of mitochondrial morphology and function or mitochondrial defects in some diseases have been demonstrated in vivo and vitro experiments.Mitochondrial defects that lead to the damage of normal neurons and the dysfunction of nervous system,eventually result in the neurodegenerative disorders.Here is to make a review of abnormalities of mitochondrial function and morphology and relationships between with the degenerative diseases.

  4. Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and Insulin in the Treatment for Alzheimer's Disease and Other Neurodegenerative Diseases.

    Calsolaro, Valeria; Edison, Paul

    2015-12-01

    The link between diabetes mellitus and Alzheimer's disease (AD) has been known for the last few decades. Since insulin and insulin receptors are known to be present in the brain, the downstream signalling as well as the effect of hyperinsulinemia have been extensively studied in both AD and Parkinson's disease. Glucagon-like peptide-1 (GLP-1) is a hormone belonging to the increti