WorldWideScience

Sample records for accelerates central nervous

  1. Central Nervous System Vasculitis

    Science.gov (United States)

    ... Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Central nervous system (CNS) vasculitis is inflammation of ... CNS (PACNS). What is the cause of CNS Vasculitis? How the vessels in the brain become inflamed ...

  2. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system

    Science.gov (United States)

    Gonzalez, Ginez A.; Hofer, Matthias P.; Syed, Yasir A.; Amaral, Ana I.; Rundle, Jon; Rahman, Saifur; Zhao, Chao; Kotter, Mark R. N.

    2016-01-01

    Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERβ, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models. PMID:27554391

  3. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  4. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  5. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities ...

  6. Central nervous system tuberculosis.

    Science.gov (United States)

    Torres, Carlos; Riascos, Roy; Figueroa, Ramon; Gupta, Rakesh K

    2014-06-01

    Tuberculosis (TB) has shown a resurgence in nonendemic populations in recent years and accounts for 8 million deaths annually in the world. Central nervous system involvement is one of the most serious forms of this infection, acting as a prominent cause of morbidity and mortality in developing countries. The rising number of cases in developed countries is mostly attributed to factors such as the pandemic of acquired immunodeficiency syndrome and increased migration in a globalized world. Mycobacterium TB is responsible for almost all cases of tubercular infection in the central nervous system. It can manifest in a variety of forms as tuberculous meningitis, tuberculoma, and tubercular abscess. Spinal infection may result in spondylitis, arachnoiditis, and/or focal intramedullary tuberculomas. Timely diagnosis of central nervous system TB is paramount for the early institution of appropriate therapy, because delayed treatment is associated with severe morbidity and mortality. It is therefore important that physicians and radiologists understand the characteristic patterns, distribution, and imaging manifestations of TB in the central nervous system. Magnetic resonance imaging is considered the imaging modality of choice for the study of patients with suspected TB. Advanced imaging techniques including magnetic resonance perfusion and diffusion tensor imaging may be of value in the objective assessment of therapy and to guide the physician in the modulation of therapy in these patients.

  7. Central Nervous System Tuberculosis

    OpenAIRE

    Bano, Shahina; Chaudhary, Vikas; Yadav, Sachchidanand

    2012-01-01

    Central nervous system tuberculosis is a rare presentation of active tuberculosis and accounts for about 1% of cases (1). The three clinical categories include meningitis, intracranial tuberculomas, and spinal tuberculous arachnoiditis. We report a case of a young man who presented with active pulmonary tuberculosis in addition to tuberculous meningitis and the presence of numerous intracranial tuberculomas.

  8. Borna disease virus accelerates inflammation and disease associated with transgenic expression of interleukin-12 in the central nervous system.

    Science.gov (United States)

    Freude, Susanna; Hausmann, Jürgen; Hofer, Markus; Pham-Mitchell, Ngan; Campbell, Iain L; Staeheli, Peter; Pagenstecher, Axel

    2002-12-01

    Targeted expression of biologically active interleukin-12 (IL-12) in astrocytes of the central nervous system (CNS) results in spontaneous neuroimmunological disease of aged mice. Borna disease virus (BDV) can readily multiply in the mouse CNS but does not trigger disease in most strains. Here we show that a large percentage of IL-12 transgenic mice developed severe ataxia within 5 to 10 weeks after infection with BDV. By contrast, no disease developed in mock-infected IL-12 transgenic and wild-type mice until 4 months of age. Neurological symptoms were rare in infected wild-type animals, and if they occurred, these were milder and appeared later. Histological analyses showed that the cerebellum of infected IL-12 transgenic mice, which is the brain region with strongest transgene expression, contained large numbers of CD4(+) and CD8(+) T cells as well as lower numbers of B cells, whereas other parts of the CNS showed only mild infiltration by lymphocytes. The cerebellum of diseased mice further showed severe astrogliosis, calcifications and signs of neurodegeneration. BDV antigen and nucleic acids were present in lower amounts in the inflamed cerebellum of infected transgenic mice than in the noninflamed cerebellum of infected wild-type littermates, suggesting that IL-12 or IL-12-induced cytokines exhibited antiviral activity. We propose that BDV infection accelerates the frequency by which immune cells such as lymphocytes and NK cells enter the CNS and then respond to IL-12 present in the local milieu causing disease. Our results illustrate that infection of the CNS with a virus that is benign in certain hosts can be harmful in such normally disease-resistant hosts if the tissue is unfavorably preconditioned by proinflammatory cytokines.

  9. Central nervous system stimulants.

    Science.gov (United States)

    George, A J

    2000-03-01

    Three major types of CNS stimulant are currently abused in sport: amphetamine, cocaine and caffeine. Each drug type has its own characteristic mechanism of action on CNS neurones and their associated receptors and nerve terminals. Amphetamine is widely abused in sports requiring intense anaerobic exercise where it prolongs the tolerance to anaerobic metabolism. It is addictive, and chronic abuse causes marked behavioural change and sometimes psychosis. Major sports abusing amphetamine are cycling, American football, ice-hockey and baseball. Cocaine increases tolerance to intense exercise, yet most of its chronic effects on energy metabolism are negative. Its greatest effects seem to be as a central stimulant and the enhancement of short-term anaerobic exercise. It is highly addictive and can cause cerebral and cardiovascular fatalities. Caffeine enhances fatty acid metabolism leading to glucose conservation, which appears to benefit long-distance endurance events such as skiing. Caffeine is also addictive, and chronic abuse can lead to cardiac damage. Social abuse of each of the three drugs is often difficult to distinguish from their abuse in sport.

  10. Central nervous system tuberculosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kioumehr, F.; Dadsetan, M.R.; Rooholamini, S.A.; Au, A.

    1994-02-01

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  11. Novel central nervous system drug delivery systems.

    Science.gov (United States)

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  12. Haemangiopericytoma of central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Borg, M.F.; Benjamin, C.S. [Auckland Hospital, Auckland (New Zealand). Dept. of Clinical Oncology

    1995-02-01

    The records of four patients presenting with a histological diagnosis of haemangiopericytoma of the central nervous system, in Auckland, New Zealand, between 1970 and 1990 were reviewed retrospectively, with the aim of determining the natural history of the disease and response to various treatment modalities. Three out of the four patients reviewed presented with primary cerebral disease and the fourth with a primary spinal cord tumour. All three cerebral primary patients were initially treated with local surgical excision. All three patients received radical radiotherapy following local recurrence. The first two patients remained disease-free locally although one patient developed a solitary liver metastasis 5 years after radiotherapy. The third patient was referred with multiple cerebral metastases and failed to respond to radiotherapy. The patient with the primary lesion in the spinal cord was treated with local excision followed by postoperative radiotherapy and remains disease-free 17 years after treatment. One patient failed to respond to chemotherapy, prescribed to treat a local recurrence adjacent to the previous radiotherapy field. This was successfully excised subsequently. The patient presenting with multiple cerebral metastases was the only patient to die of this disease. Results suggest that local recurrence is avoidable with adequate wide excision of the primary tumour followed by local radical radiotherapy. The role of chemotherapy remains controversial and no conclusion could be drawn regarding the role of palliative radiotherapy from this study. Active treatment and long-term follow-up are necessary because of the relative aggressiveness of this disease and the propensity for late relapses. 22 refs., 2 tabs., 6 figs.

  13. Central nervous system involvement in diabetic neuropathy.

    Science.gov (United States)

    Selvarajah, Dinesh; Wilkinson, Iain D; Davies, Jennifer; Gandhi, Rajiv; Tesfaye, Solomon

    2011-08-01

    Diabetic neuropathy is a chronic and often disabling condition that affects a significant number of individuals with diabetes. Long considered a disease of the peripheral nervous system, there is now increasing evidence of central nervous system involvement. Recent advances in neuroimaging methods detailed in this review have led to a better understanding and refinement of how diabetic neuropathy affects the central nervous system. Recognition that diabetic neuropathy is, in part, a disease that affects the whole nervous system is resulting in a critical rethinking of this disorder, opening a new direction for further research.

  14. [Functional anatomy of the central nervous system].

    Science.gov (United States)

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  15. viral infections of the central nervous system

    African Journals Online (AJOL)

    Viral infections of the central nervous system (CNS) include both acute and chronic conditions ... ADEM is a rare, immune-mediated disorder that is triggered by an environmental stimulus in ... difficulties and apathy. Typically there is cognitive ...

  16. MRI of central nervous system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  17. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  18. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  19. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  20. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  1. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  2. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  3. Superficial siderosis in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Pythinen, J. [Oulu Univ. (Finland). Dept. of Diagnostic Radiology; Paeaekkoe, E. [Oulu Univ. (Finland). Dept. of Diagnostic Radiology; Ilkko, E. [Oulu Univ. (Finland). Dept. of Diagnostic Radiology

    1995-02-01

    We describe a rare entity, superficial siderosis of the central nervous system, due to multiple small episodes of subarachnoid haemorrhage from any source. Non-specific neurological findings are associated with deposition of iron-containing pigments in the leptomeninges and superficial layers of the cortex. T2-weighted magnetic resonance imaging demonstrates characteristic low signal in the meninges. (orig.)

  4. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  5. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our know

  6. Primary Angiitis Of The Central Nervous System

    Directory of Open Access Journals (Sweden)

    Sundaram Meenakshi

    2001-01-01

    Full Text Available An unusual case of primary angiitis of central nervous system (PACNS presenting with headache, seizures and focal deficits is presented. Despite multiple lesions noted on brain MRI, definitive diagnosis required a brain biopsy. A high index of clinical suspicious and the utility of brain biopsy for diagnosis are emphasized.

  7. Phenylketonuria: central nervous system and microbiome interaction

    Directory of Open Access Journals (Sweden)

    Demian Arturo Herrera Morban

    2017-06-01

    Full Text Available Phenylketonuria (PKU is an autosomal recessive inborn error of metabolism characterized by increased phenylalanine (Phe levels causing an inadequate neurodevelopment; the treatment of PKU is a Phe-restricting diet, and as such it can modulate the intestinal microbiome of the individual, generating central nervous system secondary disturbances that, added to the baseline disturbance, can influence the outcome of the disease.

  8. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  9. [Central nervous system malformations: neurosurgery correlates].

    Science.gov (United States)

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-06

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  10. Primary Angiitis of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Mojdeh Ghabaee

    2012-03-01

    Full Text Available Primary angiitis of the central nervous system (PACNS is an idiopathic disorder (vasculitis restricted to the central nervous system (CNS. It often presents with focal neurological deficits suggesting stroke or a combination of confusion and headache. We herein report three cases with various combinations of fever, partial seizure, encephalopathy, paresis, headache and ataxia. One of them was initially treated as herpes simplex meningoencephalitis, but further investigations revealed primary angiitis. Primary angiitis of the CNS has protean manifestations and should always be considered in patients suspicious to have CNS infection or stroke, particularly who does not respond to the routine treatments. Clinical data, exclusion of differential diagnoses and typical angiography seem to be enough to justify the diagnosis in the majority of cases.

  11. Central Nervous System Involvement in Whipple Disease

    OpenAIRE

    Compain, Caroline; Sacre, Karim; Puéchal, Xavier; Klein, Isabelle; Vital-Durand, Denis; Houeto, Jean-Luc; De Broucker, Thomas; Raoult, Didier; Papo, Thomas

    2013-01-01

    Abstract Whipple disease (WD) is a rare multisystemic infection with a protean clinical presentation. The central nervous system (CNS) is involved in 3 situations: CNS involvement in classic WD, CNS relapse in previously treated WD, and isolated CNS infection. We retrospectively analyzed clinical features, diagnostic workup, brain imaging, cerebrospinal fluid (CSF) study, treatment, and follow-up data in 18 patients with WD and CNS infection. Ten men and 8 women were included with a median ag...

  12. Tuberculoma of the central nervous system.

    Science.gov (United States)

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  13. Rhabdoid tumors of the central nervous system.

    Science.gov (United States)

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  14. The Olig family affects central nervous system development and disease

    Institute of Scientific and Technical Information of China (English)

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  15. Systematic approaches to central nervous system myelin.

    Science.gov (United States)

    de Monasterio-Schrader, Patricia; Jahn, Olaf; Tenzer, Stefan; Wichert, Sven P; Patzig, Julia; Werner, Hauke B

    2012-09-01

    Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.

  16. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    Science.gov (United States)

    ... Sheets Vasculitis Syndromes of the Central and Peripheral Nervous Systems Fact Sheet Table of Contents (click to jump ... flow of blood. How does vasculitis affect the nervous system? Vasculitis can cause problems in any organ system, ...

  17. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  18. Parasitic diseases of the central nervous system.

    Science.gov (United States)

    Chacko, Geeta

    2010-08-01

    Parasitic infections, though endemic to certain regions, have over time appeared in places far removed from their original sites of occurrence facilitated probably by the increase in world travel and the increasing migration of people from their native lands to other, often distant, countries. The frequency of occurrence of some of these diseases has also changed based on a variety of factors, including the presence of intermediate hosts, geographic locations, and climate. One factor that has significantly altered the epidemiology of parasitic diseases within the central nervous system (CNS) is the HIV pandemic. In this review of the pathology of parasitic infections that affect the CNS, each parasite is discussed in the sequence of epidemiology, life cycle, pathogenesis, and pathology.

  19. Central nervous system involvement by multiple myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  20. Central Nervous System Involvement by Multiple Myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, A.; Gozzetti, A.; Cerase, A.

    2015-01-01

    Introduction: Central nervous system (CNS) involvement by multiple myeloma (MM) is a rare occurrence and is found in approximately 1% of MM patients at some time during the course of their disease. At the time of diagnosis, extramedullary MM is found in 7% of patients, and another 6% may develop....... Results: The median time from MM diagnosis to CNS MM diagnosis was 3 years. Upon diagnosis, 97% patients with CNS MM received frontline therapy, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. The most common symptoms at presentation were visual changes (36...... history of chemotherapy and unfavorable cytogenetic profile, survival of individuals free from these negative prognostic factors can be prolonged due to administration of systemic treatment and/or radiotherapy. Prospective multi-institutional studies are warranted to improve the outcome of patients...

  1. [Tumors of the central nervous system].

    Science.gov (United States)

    Alegría-Loyola, Marco Antonio; Galnares-Olalde, Javier Andrés; Mercado, Moisés

    2017-01-01

    Central nervous system (CNS) tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. Recent advances in the underlying oncogenic mechanisms of these tumors have led to new classification systems, which, in turn, allow for a better diagnostic approach and therapeutic planning. Most of these neoplasms occur sporadically and several risk factors have been found to be associated with their development, such as exposure to ionizing radiation or electromagnetic fields and the concomitant presence of conditions like diabetes, hypertension and Parkinson's disease. A relatively minor proportion of primary CNS tumors occur in the context of hereditary syndromes. The purpose of this review is to analyze the etiopathogenesis, clinical presentation, diagnosis and therapy of CNS tumors with particular emphasis in the putative risk factors mentioned above.

  2. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  3. Central nervous system lupus erythematosus in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko (Yokohama City Univ. (Japan). Faculty of Medicine)

    1989-12-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author).

  4. Glucocorticoids and central nervous system inflammation.

    Science.gov (United States)

    Dinkel, Klaus; Ogle, William O; Sapolsky, Robert M

    2002-12-01

    Glucocorticoids (GCs) are well known for their anti-inflammatory and immunosuppressive properties in the periphery and are therefore widely and successfully used in the treatment of autoimmune diseases, chronic inflammation, or transplant rejection. This led to the assumption that GCs are uniformly anti-inflammatory in the periphery and the central nervous system (CNS). As a consequence, GCs are also used in the treatment of CNS inflammation. There is abundant evidence that an inflammatory reaction is mounted within the CNS following trauma, stroke, infection, and seizure, which can augment the brain damage. However an increasing number of studies indicate that the concept of GCs being universally immunosuppressive might be oversimplified. This article provides a review of the current literature, showing that under certain circumstances GCs might fail to have anti-inflammatory effects and sometimes even enhance inflammation.

  5. Corticosteroids In Infections Of Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meena AK

    2003-01-01

    Full Text Available Infections of central nervous system are still a major problem. Despite the introduction of newer antimicrobial agents, mortality and long-term sequelace associated with these infections is unacceptably high. Based on the evidence that proinflammtory cytokines have a role in pathophysiology of bacterial and tuberculous meningitis, corticosteroids with a potent anti-inflammatory and immunomodulating effect have been tested and found to be of use in experimental and clinical studies, Review of the available literature suggests steroid administration just prior to antimicrobial therapy is effective in decreasing audiologic and neurologic sequelae in childern with H. influenzae nenigitis. Steroid use for bacterial meningitis in adults is found to be beneficial in case of S. pneumoniae. The value of adjunctive steroid therapy for other bacterial causes of meningitis remains unproven. Corticocorticoids are found to be of no benefit in viral meningitis, Role of steroids in HIV positive patients needs to be studied.

  6. Advances in Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  7. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    Cubomedusae, or box jellyfish, are renowned for their immense stinging power, but another truly remarkable feature is their visual system. They have four sensory structures called rhopalia, and each of the rhopalia contains six eyes of four morphological types. These eyes support a range of behav......Cubomedusae, or box jellyfish, are renowned for their immense stinging power, but another truly remarkable feature is their visual system. They have four sensory structures called rhopalia, and each of the rhopalia contains six eyes of four morphological types. These eyes support a range...... of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...

  8. Central nervous system manifestations of neonatal lupus: a systematic review.

    Science.gov (United States)

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  9. Bilastine and the central nervous system.

    Science.gov (United States)

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  10. Time Perception Mechanisms at Central Nervous System

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  11. Central nervous system toxicity of metallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Feng XL

    2015-07-01

    Full Text Available Xiaoli Feng,1 Aijie Chen,1 Yanli Zhang,1 Jianfeng Wang,2 Longquan Shao,1 Limin Wei2 1Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Nanomaterials (NMs are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano­neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. Keywords: nanomaterials, neurotoxicity, blood–brain barrier, autophagy, ROS

  12. Epidemiology of central nervous system mycoses

    Directory of Open Access Journals (Sweden)

    Chakrabarti Arunaloke

    2007-01-01

    Full Text Available Fungal infections of the central nervous system (CNS were considered rare until the 1970s. This is no longer true in recent years due to widespread use of corticosteroids, cytotoxic drugs and antibiotics. Immunocompromised patients with underlying malignancy, organ transplantations and acquired immune deficiency syndrome are all candidates for acquiring fungal infections either in meninges or brain. A considerable number of cases of CNS fungal infections even in immunocompetent hosts have been reported. A vast array of fungi may cause infection in the CNS, but barring a few, most of them are anecdotal case reports. Cryptococcus neoformans , Candida albicans, Coccidioides immitis. Histoplasma capsulatum are common causes of fungal meningitis; Aspergillus spp., Candida spp., Zygomycetes and some of the melanized fungi are known to cause mass lesions in brain. Few fungi like C. neoformans, Cladophialophora bantiana, Exophiala dermatitidis, Ramichloridium mackenzie, Ochroconis gallopava are considered as true neurotropic fungi. Most of the fungi causing CNS infection are saprobes with worldwide distribution; a few are geographically restricted like Coccidioides immitis . The infections reach the CNS either by the hematogenous route or by direct extension from colonized sinuses or ear canal or by direct inoculation during neurosurgical procedures.

  13. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  14. Inflammation in central nervous system injury.

    Science.gov (United States)

    Allan, Stuart M; Rothwell, Nancy J

    2003-10-29

    Inflammation is a key component of host defence responses to peripheral inflammation and injury, but it is now also recognized as a major contributor to diverse, acute and chronic central nervous system (CNS) disorders. Expression of inflammatory mediators including complement, adhesion molecules, cyclooxygenase enzymes and their products and cytokines is increased in experimental and clinical neurodegenerative disease, and intervention studies in experimental animals suggest that several of these factors contribute directly to neuronal injury. Most notably, specific cytokines, such as interleukin-1 (IL-1), have been implicated heavily in acute neurodegeneration, such as stroke and head injury. In spite of their diverse presentation, common inflammatory mechanisms may contribute to many neurodegenerative disorders and in some (e.g. multiple sclerosis) inflammatory modulators are in clinical use. Inflammation may have beneficial as well as detrimental actions in the CNS, particularly in repair and recovery. Nevertheless, several anti-inflammatory targets have been identified as putative treatments for CNS disorders, initially in acute conditions, but which may also be appropriate to chronic neurodegenerative conditions.

  15. Optimized optical clearing method for imaging central nervous system

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan

    2015-03-01

    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  16. Congenital tumors of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Severino, Mariasavina [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); Schwartz, Erin S. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Rydland, Jana [MR Center, St. Olav' s Hospital HF, Trondheim (Norway); Nikas, Ioannis [Agia Sophia Children' s Hospital, Imaging Department, Athens (Greece); Rossi, Andrea [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); G. Gaslini Children' s Hospital, Department of Pediatric Neuroradiology, Genoa (Italy)

    2010-06-15

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors

  17. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...... that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating...... the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes....

  18. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    Science.gov (United States)

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis.

  19. Central nervous system stimulants and drugs that suppress appetite

    DEFF Research Database (Denmark)

    Aagaard, Lise

    2014-01-01

    of the January 2012 to June 2013 publications on central nervous system stimulants and drugs that suppress appetite covers amphetamines (including metamfetamine, paramethoxyamfetamine and paramethoxymetamfetamine), fenfluramine and benfluorex, atomoxetine, methylphenidate, modafinil and armodafinil...

  20. "Suicide" Gen Therapy for Malignant Central Nervous System Tumors

    NARCIS (Netherlands)

    A.J.P.E. Vincent (Arnoud)

    1998-01-01

    textabstractDespite development in surgical techniques, chemotherapy and radiotherapy, most malignancies of the central nervous system are still devastating tumors with a poor prognosis. For example, median survival of patients with malignant gliomas (astrocytoma, oligodendroglioma or mixed rype) is

  1. [Microglial cells and development of the embryonic central nervous system].

    Science.gov (United States)

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  2. Central Nervous System Infections in Patients with Severe Burns

    Science.gov (United States)

    2010-01-01

    both patients had bacteremia with identical microorganisms as isolated from CSF ( Acinetobacter baumannii and methicillin resistant Staphylococcus...multiresistant Acinetobacter baumannii central nervous system infections with intraventricular or intrathecal colistin: case series and literature review. J

  3. Central nervous system adaptation to exercise training

    Science.gov (United States)

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  4. Role of metallothionein-III following central nervous system damage

    DEFF Research Database (Denmark)

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes

    2003-01-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area...... the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process....

  5. Nosocomial infections in patients with acute central nervous system infections

    OpenAIRE

    2007-01-01

    Due to current increase in the rate of nosocomial infections, our objective was to examine the frequency, risk factors, clinical presentation and etiology of nosocomial infections in patients with central nervous system infections. 2246 patients with central nervous system infections, treated in the intensive care units of the Institute of Infectious and Tropical Diseases, Clinical Center of Serbia in Belgrade and at the Department of Infectious Diseases of the Clinical Hospital Center Kraguj...

  6. Histologic examination of the rat central nervous system after intrathecal administration of human beta-endorphin

    DEFF Research Database (Denmark)

    Hée, P.; Klinken, Leif; Ballegaard, Martin

    1992-01-01

    Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity......Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity...

  7. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  8. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  9. Diagnosis of Fetal Central Nervous System Anomalies by Ultrasonography

    Directory of Open Access Journals (Sweden)

    F. Tuncay Ozgunen

    2003-04-01

    Full Text Available During the last 30 years, one of the most important instruments in diagnosis is ultrasonograph. It has an indispensible place in obstetrics. Its it possible to evaluate normal fetal anatomy, to follow-up fetal growth and to diagnose fetal congenital anomalies by ultrasonography. Central nervous system anomalies is the one of the most commonly seen and the best time for screening is between 18- and 22-week of pregnancy. In this paper, it is presented the sonographic features of some outstanding Central Nervous System anomalies. [Archives Medical Review Journal 2003; 12(2.000: 77-89

  10. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  11. The Role of Central Nervous System Plasticity in Tinnitus

    Science.gov (United States)

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  12. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  13. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Science.gov (United States)

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  14. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Science.gov (United States)

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  15. Tuberculosis of the central nervous system : overview of neuroradiological findings

    NARCIS (Netherlands)

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    2003-01-01

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  16. Tuberculosis of the central nervous system : overview of neuroradiological findings

    NARCIS (Netherlands)

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    2003-01-01

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  17. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  18. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    Science.gov (United States)

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  19. Aberrant nerve fibres within the central nervous system.

    Science.gov (United States)

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  20. Tuberculosis of the central nervous system : overview of neuroradiological findings

    NARCIS (Netherlands)

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  1. Evolution of flatworm central nervous systems: Insights from polyclads

    Directory of Open Access Journals (Sweden)

    Sigmer Y. Quiroga

    2015-09-01

    Full Text Available The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.

  2. Evolution of flatworm central nervous systems: Insights from polyclads

    Science.gov (United States)

    Quiroga, Sigmer Y.; Carolina Bonilla, E.; Marcela Bolaños, D.; Carbayo, Fernando; Litvaitis, Marian K.; Brown, Federico D.

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies. PMID:26500427

  3. Space radiation risks to the central nervous system

    Science.gov (United States)

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  4. Transcriptome analysis of the Octopus vulgaris central nervous system.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available BACKGROUND: Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. RESULTS: With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e(-5. The comparison between the Octopus vulgaris central nervous system (CNS library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e(-5 using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%-46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. CONCLUSION: This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology.

  5. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  6. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  7. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neurotropic Enterovirus Infections in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hsing-I Huang

    2015-11-01

    Full Text Available Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  9. Central nervous system infection in the pediatric population

    Directory of Open Access Journals (Sweden)

    Rabi Narayan Sahu

    2009-01-01

    Full Text Available Infection of the central nervous system is a life-threatening condition in the pediatric population. Almost all agents can cause infection within the central nervous system and the extent of infection ranges from diffuse involvement of the meninges, brain, or the spinal cord to localized involvement presenting as a space-occupying lesion. Modern imaging techniques define the anatomic region infected, the evolution of the disease, and help in better management of these patients. Acute bacterial meningitis remains a major cause of mortality and long-term neurological disability. Fortunately, the incidence of infection after clean craniotomy is < 5%, but it leads to significant morbidity as well as fiscal loss. The most significant causative factor in postcraniotomy infections is postoperative CSF leak. Cerebral abscess related to organic congenital heart disease is one of the leading causes of morbidity and mortality in the pediatric population. The administration of prophylactic antibiotics is indicated for contaminated and clean-contaminated wounds.

  10. [Eales' disease involving central nervous system white matter].

    Science.gov (United States)

    Antigüedad, A; Zarranz, J J

    1994-01-01

    Eales' disease (ED) is a rare condition characterized by repeated retinal and vitreous hemorrhages. The only extraocular involvement described occasionally in the literature is neurological. Histologically, vasculitis in ED is usually restricted to the eye, but occasionally involves the central nervous system, where demyelinizing lesions may also occur. We present a 34-year-old male with ED and subclinical central nervous system involvement. Craneal magnetic resonance images (MR) suggested demyelinization; brainstem auditory and somatosensory evoked potentials were abnormal. There was moderate pleocytosis in CSF and intratecal production of immunoglobulins with oligoclonal bands. Follow-up over a period of 2.5 years showed no clinical, MR or CSF changes in spite of continued opthamological impairment. Little is known about factors that affect the development or not of demyelinizing lesions in ED patients with neurological involvement demonstrated by intratecal production of immunoglobulins. Identification of such factors may contribute to our understanding of other diseases, such as multiple sclerosis.

  11. Central nervous system histoplasmosis in an immunocompetent pediatric patient.

    Science.gov (United States)

    Esteban, Ignacio; Minces, Pablo; De Cristofano, Analía M; Negroni, Ricardo

    2016-06-01

    Neurohistoplasmosis is a rare disease, most prevalent in immunosuppressed patients, secondary to disseminated disease with a high mortality rate when diagnosis and treatment are delayed. We report a previously healthy 12 year old girl, from a bat infested region of Tucuman Province, Argentine Republic, who developed meningoencephalitis due to Histoplasma capsulatum. Eighteen months prior to admission the patient started with headaches and intermittent fever. The images of the central nervous system showed meningoencephalitis suggestive of tuberculosis. She received antibiotics and tuberculostatic medications without improvement. Liposomal amphotericin B was administered for six weeks. The patient's clinical status improved remarkably. Finally the culture of cerebral spinal fluid was positive for micelial form of Histoplasma capsulatum. The difficulties surrounding the diagnosis and treatment of neurohistoplasmosis in immunocompetent patients are discussed in this manuscript, as it also intends to alert to the presence of a strain of Histoplasma capsulatum with affinity for the central nervous system.

  12. [Neurogenesis as a therapeutic strategy to regenerate central nervous system].

    Science.gov (United States)

    Arias-Carrión, O; Drucker-Colín, R

    In the past few years, it has been demonstrated that the adult mammalian brain maintains the capacity to generate new neurons from neural stem/progenitor cells. These new neurons integrate into pre-existing systems through a process referred to as 'neurogenesis in the adult brain'. This discovery has modified our understanding of how the central nervous system functions in health and disease. Until today, a great effort has been made attempting to decipher the mechanisms regulating adult neurogenesis, which might help to induce neuronal endogenous cell replacement in various neurological diseases. In this revision, we will attempt to shed some light on the neurogenesis process with respect to diseases of the central nervous system and we will describe some therapeutic potentials in relation to neurodegenerative diseases.

  13. Primary central nervous system lymphoma in an immunocompetent patient

    OpenAIRE

    Málaga-Zenteno, José; Médico Asistente, Servicio de Hematología, Hospital Nacional Carlos Alberto Seguín Escobedo, EsSalud, Arequipa, Perú.; Mamani-Quispe, Jersson Alonso; Estudiante de Medicina Humana, Centro de Investigación y Estudios Médicos (CIEM), Universidad Católica Santa María, Arequipa, Perú. Sociedad Científica Médico Estudiantil Peruana (SOCIMEP).; Fuentes Fuentes, Mariela; Médico Asistente, Servicio de Hematología, Hospital Nacional Carlos Alberto Seguín Escobedo, EsSalud, Arequipa, Perú.; Suclla-Velásquez, José Alonso; Estudiante de Medicina Humana, Centro de Investigación y Estudios Médicos (CIEM), Universidad Católica Santa María, Arequipa, Perú. Sociedad Científica Médico Estudiantil Peruana (SOCIMEP).; Meza Aragón, Julio; Médico Asistente, Servicio de Neurocirugía, Hospital Nacional Carlos Alberto Seguín Escobedo, EsSalud, Arequipa, Perú.

    2012-01-01

    Primary central nervous system lymphoma (PCNSL) constitutes 2% of extranodal lymphomas and 0,3%-1,5% of all intracranial neoplasms in immunocompetent patients, being more frequent after the sixth decade of life. We report a case of a 76 year-old man with no antecedents who started his disease with march instability, difficulty to move left side of his body with brachial predominance, holocraneal headache and dizziness. He arrived at emergency with Glasgow 14 and right eyelid ptosis. He had le...

  14. Simultaneous central nervous system complications of C. neoformans infection

    Science.gov (United States)

    González-Duarte, Alejandra; Higera Calleja, Jesus; Mitre, Vicente Gijón; Ramos, Guillermo Garcia

    2009-01-01

    The most common neurological manifestation of Cryptococcus neoformans infection is meningitis. Other less common manifestations include parenchymal central nervous system (CNS) granulomatous disease, hydrocephalus and stroke. C. neoformans is often suspected in immunodepressed patients, but it can be easily overlooked in otherwise healthy patients. This paper provides a detailed clinical description of a patient without immunosupression who developed multiple simultaneous neurological manifestations after the infection with C. neoformans. PMID:21577360

  15. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    Science.gov (United States)

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  16. Targeting of the central nervous system by Listeria monocytogenes.

    OpenAIRE

    Disson, Olivier; Lecuit, Marc

    2012-01-01

    Among bacteria that reach the central nervous system (CNS), Listeria monocytogenes (Lm) is one of deadliest, in human and ruminant. This facultative intracellular bacterium has the particularity to induce meningitis, meningoencephalitis and rhombencephalitis. Mechanisms by which Lm accesses the CNS remain poorly understood, but two major routes of infection have been proposed, based on clinical, in vitro and in vivo observations. A retrograde neural route is likely to occur in ruminants upon ...

  17. Diagnosis of Fetal Central Nervous System Anomalies by Ultrasonography

    OpenAIRE

    F. Tuncay Ozgunen

    2003-01-01

    During the last 30 years, one of the most important instruments in diagnosis is ultrasonograph. It has an indispensible place in obstetrics. Its it possible to evaluate normal fetal anatomy, to follow-up fetal growth and to diagnose fetal congenital anomalies by ultrasonography. Central nervous system anomalies is the one of the most commonly seen and the best time for screening is between 18- and 22-week of pregnancy. In this paper, it is presented the sonographic features of some outstandin...

  18. Central nervous system manifestations of HIV infection in children

    Energy Technology Data Exchange (ETDEWEB)

    George, Reena; Andronikou, Savvas; Plessis, Jaco du; Plessis, Anne-Marie du; Maydell, Arthur [University of Stellenbosch, Department of Radiology, Tygerberg Academic Hospital, Cape Town (South Africa); Toorn, Ronald van [University of Stellenbosch, Department of Paediatrics and Child Health, Tygerberg Academic Hospital, Cape Town (South Africa)

    2009-06-15

    Vertically transmitted HIV infection is a major problem in the developing world due to the poor availability of antiretroviral agents to pregnant women. HIV is a neurotrophic virus and causes devastating neurological insults to the immature brain. The effects of the virus are further compounded by the opportunistic infections and neoplasms that occur as a result of the associated immune suppression. This review focuses on the imaging features of HIV infection and its complications in the central nervous system. (orig.)

  19. Central nervous system inflammatory demyelinating disorders of childhood

    OpenAIRE

    Kamate Mahesh; Chetal Vivek; Tonape Venkatesh; Mahantshetti Niranjana; Hattiholi Virupaxi

    2010-01-01

    Background and Objectives: Childhood Central Nervous System (CNS) inflammatory demyelinating disorders (CIDD) are being diagnosed more commonly now. There is ambiguity in the use of different terms in relation to CIDD. Recently, consensus definitions have been proposed so that there is uniformity in studies across the world. The prevalence of these disorders and the spectrum varies from place to place. This study was undertaken to study the clinico-radiological profile and outcome of children...

  20. Central nervous system infection caused by Morganella morganii.

    Science.gov (United States)

    Abdalla, Jehad; Saad, Mustafa; Samnani, Imran; Lee, Prescott; Moorman, Jonathan

    2006-01-01

    Central nervous system (CNS) infection with Morganella morganii is very rare. We describe a 38-year-old female patient with frontal brain abscess caused by M morganii who was unsuccessfully treated. We also review all reported cases of Morganella CNS infections with an emphasis on treatment modalities and outcomes. Aggressive surgical management and appropriate antimicrobial therapy can lead to cure, but the mortality rate for these infections remains high.

  1. Radon exposure and tumors of the central nervous system.

    Science.gov (United States)

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Central- and autonomic nervous system coupling in schizophrenia.

    Science.gov (United States)

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen; Voss, Andreas

    2016-05-13

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback-feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central-autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age-gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS-ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity.

  3. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chr

  4. Functional roles of neuropeptides in the insect central nervous system

    Science.gov (United States)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  5. Refining the Ciona intestinalis model of central nervous system regeneration.

    Directory of Open Access Journals (Sweden)

    Carl Dahlberg

    Full Text Available BACKGROUND: New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism. METHODOLOGY/PRINCIPAL FINDINGS: We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage. CONCLUSIONS/SIGNIFICANCE: The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.

  6. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-06

    ... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs... and circulation) of the central nervous system. The BBB is an area consisting of specialized cells...

  7. The Central Nervous Connections Involved in the Vomiting Reflex

    Science.gov (United States)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  8. Hypopituitarism as unusual sequelae to central nervous system tuberculosis

    Directory of Open Access Journals (Sweden)

    S Mageshkumar

    2011-01-01

    Full Text Available Neurological tuberculosis can very rarely involve the hypophysis cerebri. We report a case of an eighteen year old female who presented with five months duration of generalised apathy, secondary amenorrhea and weight gain. She was on irregular treatment for tuberculosis of the central nervous system for the last five months. Neuroimaging revealed sellar and suprasellar tuberculomas and communicating hydrocephalus requiring emergency decompression. Endocrinological investigation showed hypopituitarism manifesting as pituitary hypothyroidism, hypocortisolism, hypogonadotropic hypogonadism, and hyperprolactinemia. Restarting anti-tuberculosis treatment, hormone replacement therapy, and a ventriculo-peritoneal shunt surgery led to remarkable improvement in the general condition of the patient.

  9. Central nervous system frontiers for the use of erythropoietin

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    2003-01-01

    Recombinant human erythropoietin (r-HuEPO; epoetin alfa) is well established as safe and effective for the treatment of anemia. In addition to the erythropoietic effects of endogenous erythropoietin (EPO), recent evidence suggests that it may elicit a neuroprotective effect in the central nervous...... system (CNS). Preclinical studies have demonstrated the presence of EPO receptors in the brain that are up-regulated under hypoxic or ischemic conditions. Intracerebral and systemic administration of epoetin alfa have been demonstrated to elicit marked neuroprotective effects in multiple preclinical...

  10. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  11. Masquerade Syndrome of Multicentre Primary Central Nervous System Lymphoma

    Directory of Open Access Journals (Sweden)

    Silvana Guerriero

    2011-01-01

    Full Text Available Purpose. In Italy we say that the most unlucky things can happen to physicians when they get sick, despite the attention of colleagues. To confirm this rumor, we report the sad story of a surgeon with bilateral vitreitis and glaucoma unresponsive to traditional therapies. Methods/Design. Case report. Results. After one year of steroidal and immunosuppressive therapy, a vitrectomy, and a trabeculectomy for unresponsive bilateral vitreitis and glaucoma, MRI showed a multicentre primary central nervous system lymphoma, which was the underlying cause of the masquerade syndrome. Conclusions. All ophthalmologists and clinicians must be aware of masquerade syndromes, in order to avoid delays in diagnosis.

  12. [Congenital anomalies of the central nervous system in autopsy specimens].

    Science.gov (United States)

    Sobaniec-Lotowska, M; Ostapiuk, H; Sulkowski, S; Sobaniec, W; Sulik, M; Famulski, W

    1989-02-01

    On the basis of an analysis of 2398 autopsies of infants aged up to 1 year in 194 cases congenital anomalies of the central nervous system were found (8.1%). Most cases of these anomalies were noted in the group of newborns (85%) and the most frequent anomalies were: myelomeningocele (35.6%), multiple anomalies (20.1%), congenital hydrocephalus (17%), anencephaly (14.4%) and corpus callosum malformations (3.6%). Myelomeningocele, congenital hydrocephalus, anencephaly and true microcephaly were more frequent in girls, while multiple anomalies and corpus callosum malformations were more frequent in boys.

  13. Area 51: How do Acanthamoeba invade the central nervous system?

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis.

  14. Isolated Central Nervous System Vasculitis Associated with Antiribonuclear Protein Antibody

    Directory of Open Access Journals (Sweden)

    Amer M. Awad

    2011-01-01

    Full Text Available We describe the case of a young woman who was referred to a tertiary care center with unexplained subacute progressive encephalopathy preceded by long-standing severe headaches. Her extensive workup was remarkable for abnormal intracranial angiography suggestive of small- and medium-vessel vasculitis, persistently elevated protein in the cerebrospinal fluid and persistently high titers of antiribonuclear protein antibody. The patient showed a modest response to intravenous high-dose steroids. We propose that the patient's neurologic disease is secondary to immune-mediated central nervous system vasculitis, possibly as an initial manifestation of mixed connective tissue disease.

  15. Involvement of central nervous system in the schistosomiasis

    Directory of Open Access Journals (Sweden)

    Teresa Cristina de Abreu Ferrari

    2004-08-01

    Full Text Available The involvement of the central nervous system (CNS by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resourses available for treating NS. The outcome is variable and is better in cerebral disease.

  16. Engineering Biomaterial Properties for Central Nervous System Applications

    Science.gov (United States)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  17. A Rare Case of Central Nervous System Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ravish Parekh

    2014-01-01

    Full Text Available Intracranial abscess is an extremely rare form of central nervous system (CNS tuberculosis (TB. We describe a case of central nervous system tuberculous abscess in absence of human immunodeficiency virus (HIV infection. A 82-year-old Middle Eastern male from Yemen was initially brought to the emergency room due to altered mental status and acute renal failure. Cross-sectional imaging revealed multiple ring enhancing lesions located in the left cerebellum and in bilateral frontal lobe as well as in the inferior parietal lobe on the left. The patient was placed on an empiric antibiotic regimen. Preliminary testing for infectious causes was negative. Chest radiography and CT of chest showed no positive findings. He was not on any immunosuppressive medications and human immunodeficiency virus (HIV enzyme immunoassay (EIA test was negative. A subsequent MRI one month later showed profound worsening of the lesions with increasing vasogenic edema and newly found mass effect impinging on the fourth ventricle. Brain biopsy showed focal exudative cerebellitis and inflamed granulation tissue consistent with formation of abscesses. The diagnosis of CNS TB was finally confirmed by positive acid-fast bacilli (AFB cultures. The patient was started on standard tuberculosis therapy but expired due to renal failure and cardiac arrest.

  18. Genetic perspectives on the ascidian central nervous system

    Directory of Open Access Journals (Sweden)

    A Locascio

    2009-03-01

    Full Text Available In 2002, date of publication of the Ciona intestinalis genome, ascidians entered the post-genomic era. This tool had a fundamental role and has become the starting point for a series of new functional and genomic studies. Recently, great efforts have been done to characterize the genetic cascades of genes having a key role in early embryonic development and to draw the regulatory networks in which they are involved. In this review, we focused our attention on the last advances obtained in the attempt to clarify the complex molecular events governing ascidian central nervous system development with a special interest for anterior neural and sensory structures. We discussed the more recent theories on its early induction and late regionalization. In particular, we used some conserved genes fully or partially characterized as examples to compare ascidian and vertebrate central nervous system (CNS.By integrating the various results obtained with microarray, morpholino loss of function and promoter analyses, we showed that many progresses have been done to unravel the gene networks controlling early CNS induction and formation. Unfortunately, fewer advances have been done in the identification of the regulatory cascades controlling late CNS regionalization and sensory organs differentiation. Some results are discussed to point out the importance of fully characterizing also these specific regulatory cascades.

  19. Radiobiology of Radiosurgery for the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Antonio Santacroce

    2013-01-01

    Full Text Available According to Leksell radiosurgery is defined as “the delivery of a single, high dose of irradiation to a small and critically located intracranial volume through the intact skull.” Before its birth in the early 60s and its introduction in clinical therapeutic protocols in late the 80s dose application in radiation therapy of the brain for benign and malignant lesions was based on the administration of cumulative dose into a variable number of fractions. The rationale of dose fractionation is to lessen the risk of injury of normal tissue surrounding the target volume. Radiobiological studies of cell culture lines of malignant tumors and clinical experience with patients treated with conventional fractionated radiotherapy helped establishing this radiobiological principle. Radiosurgery provides a single high dose of radiation which translates into a specific toxic radiobiological response. Radiobiological investigations to study the effect of high dose focused radiation on the central nervous system began in late the 50s. It is well known currently that radiobiological principles applied for dose fractionation are not reproducible when single high dose of ionizing radiation is delivered. A review of the literature about radiobiology of radiosurgery for the central nervous system is presented.

  20. Applications of Nanotechnology to the Central Nervous System

    Science.gov (United States)

    Blumling, James P., II

    Nanotechnology and nanomaterials, in general, have become prominent areas of academic research. The ability to engineer at the nano scale is critical to the advancement of the physical and medical sciences. In the realm of physical sciences, the applications are clear: smaller circuitry, more powerful computers, higher resolution intruments. However, the potential impact in the fields of biology and medicine are perhaps even grander. The implementation of novel nanodevices is of paramount importance to the advancement of drug delivery, molecular detection, and cellular manipulation. The work presented in this thesis focuses on the development of nanotechnology for applications in neuroscience. The nervous system provides unique challenges and opportunities for nanoscale research. This thesis discusses some background in nanotechnological applications to the central nervous system and details: (1) The development of a novel calcium nanosenser for use in neurons and astrocytes. We implemented the calcium responsive component of Dr. Roger Tsien's Cameleon sensor, a calmodulin-M13 fusion, in the first quantum dot-based calcium sensor. (2) The exploration of cell-penetrating peptides as a delivery mechanism for nanoparticles to cells of the nervous system. We investigated the application of polyarginine sequences to rat primary cortical astrocytes in order to assess their efficacy in a terminally differentiated neural cell line. (3) The development of a cheap, biocompatible alternative to quantum dots for nanosensor and imaging applications. We utilized a positively charged co-matrix to promote the encapsulation of free sulforhodamine B in silica nanoparticles, a departure from conventional reactive dye coupling to silica matrices. While other methods have been invoked to trap dye not directly coupled to silica, they rely on positively charged dyes that typically have a low quantum yield and are not extensively tested biologically, or they implement reactive dyes bound

  1. Interactions between taurine and ethanol in the central nervous system.

    Science.gov (United States)

    Olive, M F

    2002-01-01

    This purpose of this review will be to summarize the interactions between the endogenous amino acid taurine and ethyl alcohol (ethanol) in the central nervous system (CNS). Taurine is one of the most abundant amino acids in the CNS and plays an integral role in physiological processes such as osmoregulation, neuroprotection and neuromodulation. Both taurine and ethanol exert positive allosteric modulatory effects on neuronal ligand-gated chloride channels (i.e., GABA(A) and glycine receptors) as well as inhibitory effects on other ligand- and voltage-gated cation channels (i.e., NMDA and Ca(2+) channels). Behavioral evidence suggests that taurine can alter the locomotor stimulatory, sedating, and motivational effects of ethanol in a strongly dose-dependent manner. Microdialysis studies have revealed that ethanol elevates extracellular levels of taurine in numerous brain regions, although the functional consequences of this phenomenon are currently unknown. Finally, taurine and several related molecules including the homotaurine derivative acamprosate (calcium acetylhomotaurinate) can reduce ethanol self-administration and relapse to drinking in both animals and humans. Taken together, these data suggest that the endogenous taurine system may be an important modulator of effects of ethanol on the nervous system, and may represent a novel therapeutic avenue for the development of medications to treat alcohol abuse and alcoholism.

  2. Signaling mechanisms regulating myelination in the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Jared T.Ahrendsen; Wendy Macklin

    2013-01-01

    The precise and coordinated production of myelin is essential for proper development and function of the nervous system.Diseases that disrupt myelin,including multiple sclerosis,cause significant functional disability.Current treatment aims to reduce the inflammatory component of the disease,thereby preventing damage resulting from demyelination.However,therapies are not yet available to improve natural repair processes after damage has already occurred.A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair.In this review,we summarize the positive and negative regulators of myelination,focusing primarily on central nervous system myelination.Axon-derived signals,extracellular signals from both diffusible factors and the extracellular matrix,and intracellular signaling pathways within myelinating oligodendrocytes are discussed.Much is known about the positive regulators that drive myelination,while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time.Therefore,we also provide new data on potential negative regulators of CNS myelination.

  3. Ion channels as drug targets in central nervous system disorders.

    Science.gov (United States)

    Waszkielewicz, A M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.

  4. Materials directed to implants for repairing Central Nervous System

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Moreno-Burriel, B.; Chinarro, E.

    2014-07-01

    Central Nervous System (CNS) can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as secondary injury. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon. (Author)

  5. Methanol intoxication: pathological changes of central nervous system (17 cases).

    Science.gov (United States)

    Karayel, Ferah; Turan, Arzu A; Sav, Aydin; Pakis, Isil; Akyildiz, Elif U; Ersoy, Gokhan

    2010-03-01

    The nervous system has increased susceptibility for methanol intoxication. The aim of this study is to investigate various central nervous system lesions of methanol intoxication in 17 cases autopsied in the mortuary department of the Council of Forensic Medicine in Istanbul, Turkey. The reasons of methanol intoxication in the cases was likely the unwitting ingestion of methanol while drinking illegal alcohol. Survival times ranged from several hours to days. In 8 cases (47%), cerebral edema and in 9 cases (53%) at occipital, temporal and parietal cortex, basal ganglia and pons, petechial bleeding was observed. In addition to these findings, hemorrhagic necrosis were observed in thalamus, putamen, and globus pallidus in 5 cases (29.4%) and, in cerebral cortex in another 3 cases (17.6%). In 3 of the cases (17.6%) in which cerebral edema was found, herniation findings accompanied to the situation and in 2 cases (11.7%), pons bleeding was observed. Around the basal ganglia, in 2 of the cases with hemorrhagic necrosis, the situation ended with a ventricular compression. In 7 cases (41%), the associated findings of chronic ischemic changes in cortical neurons, lacunae formation, degeneration of granular cell layer of the cerebellum, and reactive gliosis were considered as the results of chronic alcoholism.

  6. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  7. Fungal Infections of the Central Nervous System: A Pictorial Review

    Directory of Open Access Journals (Sweden)

    Jose Gavito-Higuera

    2016-01-01

    Full Text Available Fungal infections of the central nervous system (CNS pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome.

  8. Diagnosis and classification of central nervous system vasculitis.

    Science.gov (United States)

    Hajj-Ali, Rula A; Calabrese, Leonard H

    2014-01-01

    Central nervous system vasculitis is one of the foremost diagnostic challenges in rheumatology. It results in inflammation and destruction of the vasculature within the CNS. When vasculitis is confined to brain, meninges or spinal cord, it is referred to as primary angiitis of the CNS. Secondary CNS vasculitis occurs in the setting of a systemic vasculitis, auto-inflammatory or infectious disease. Prompt and accurate diagnosis of CNS vasculitis is essential to prevent irreversible brain damage, and to secure precise treatment decisions. Progressive debilitating and unexplained neurological deficits, associated with abnormal cerebrospinal fluid is the typical picture of the disease. Biopsy of the brain remains the gold standard diagnostic test. The differential diagnosis of CNS vasculitis is highly diverse with a broad array of mimics at the clinical, radiographic and angiographic levels.

  9. The expression of SEIPIN in the mouse central nervous system.

    Science.gov (United States)

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  10. Programming and reprogramming neuronal subtypes in the central nervous system.

    Science.gov (United States)

    Rouaux, Caroline; Bhai, Salman; Arlotta, Paola

    2012-07-01

    Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish.

  11. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  12. Are astrocytes executive cells within the central nervous system?

    Science.gov (United States)

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  13. Central nervous system lymphoma: magnetic resonance imaging features at presentation.

    Science.gov (United States)

    Schwingel, Ricardo; Reis, Fabiano; Zanardi, Veronica A; Queiroz, Luciano S; França, Marcondes C

    2012-02-01

    This paper aimed at studying presentations of the central nervous system (CNS) lymphoma using structural images obtained by magnetic resonance imaging (MRI). The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  14. HIV and aging: effects on the central nervous system.

    Science.gov (United States)

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J

    2014-02-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.

  15. [Histoplasmosis of the central nervous system in an immunocompetent patient].

    Science.gov (United States)

    Osorio, Natalia; López, Yúrika; Jaramillo, Juan Camilo

    2014-01-01

    Histoplasmosis is a multifaceted condition caused by the dimorphic fungi Histoplasma capsulatum whose infective spores are inhaled and reach the lungs, the primary organ of infection. The meningeal form, considered one of the most serious manifestations of this mycosis, is usually seen in individuals with impaired cellular immunity such as patients with acquired immunodeficiency syndrome, systemic lupus erythematous or solid organ transplantation, and infants given their immunological immaturity. The most common presentation is self-limited and occurs in immunocompetent individuals who have been exposed to high concentrations of conidia and mycelia fragments of the fungi. In those people, the condition is manifested by pulmonary disorders and late dissemination to other organs and systems. We report a case of central nervous system histoplasmosis in an immunocompetent child.

  16. Fungal infections of the central nervous system: The clinical syndromes

    Directory of Open Access Journals (Sweden)

    Murthy J.M.K

    2007-01-01

    Full Text Available Fungal infections of the central nervous system (CNS are being increasingly diagnosed both in immunocompromised and immunocompetent individuals. Sinocranial aspergillosis is more frequently described from countries with temperate climates, more often in otherwise immunocompetent individuals. The clinical syndromes with which fungal infections of the CNS can present are protean and can involve most part of the neuroaxis. Certain clinical syndromes are specific for certain fungal infections. The rhinocerebral form is the most common presenting syndrome with zygomycosis and skull-base syndromes are often the presenting clinical syndromes in patients with sinocranial aspergillosis. Subacute and chronic meningitis in patients with HIV infection is more likely to be due to cryptococcal infection. Early recognition of the clinical syndromes in an appropriate clinical setting is the first step towards achieving total cure in some of these infections.

  17. Central nervous system syndromes in solid organ transplant recipients.

    Science.gov (United States)

    Wright, Alissa J; Fishman, Jay A

    2014-10-01

    Solid organ transplant recipients have a high incidence of central nervous system (CNS) complications, including both focal and diffuse neurologic deficits. In the immunocompromised host, the initial clinical evaluation must focus on both life-threatening CNS infections and vascular or anatomic lesions. The clinical signs and symptoms of CNS processes are modified by the immunosuppression required to prevent graft rejection. In this population, these etiologies often coexist with drug toxicities and metabolic abnormalities that complicate the development of a specific approach to clinical management. This review assesses the multiple risk factors for CNS processes in solid organ transplant recipients and establishes a timeline to assist in the evaluation and management of these complex patients.

  18. Adult neural stem cells in the mammalian central nervous system

    Institute of Scientific and Technical Information of China (English)

    Dengke K Ma; Michael A Bonaguidi; Guo-li Ming; Hongjun Song

    2009-01-01

    Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.

  19. Primary Histiocytic Sarcoma of the Central Nervous System

    Science.gov (United States)

    So, Hoonsub; Kim, Sun A; Yoon, Dok Hyun; Khang, Shin Kwang; Hwang, Jihye; Suh, Chong Hyun; Suh, Cheolwon

    2015-01-01

    Histiocytic sarcoma is a type of lymphoma that rarely involves the central nervous system (CNS). Its rarity can easily lead to a misdiagnosis. We describe a patient with primary CNS histocytic sarcoma involving the cerebral hemisphere and spinal cord, who had been initially misdiagnosed as demyelinating disease. Two biopsies were necessary before a correct diagnosis was made. A histologic examination showed bizarre shaped histiocytes with larger nuclei and nuclear atypia. The cells were positive for CD68, CD163, and S-100 protein. As a resection was not feasible due to multifocality, he was treated with highdose methotrexate, but showed no response. As a result, he was switched to high dose cytarabine; but again, showed no response. The patient died 2 months from the start of chemotherapy and 8 months from the onset of symptoms. Since few patients with this condition have been described and histopathology is difficult to diagnose, suspicion of the disease is essential. PMID:25345462

  20. MRT of the central nervous system; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, M.; Jansen, O. (eds.)

    2006-07-01

    The book presents the state of the art of MRT imaging of the central nervous system. Detailed information is presented in order to provide sufficient knowledge for the medical diagnostician to discuss any case encountered at eye level with the clinical physician. The book is an indispensable reference manual and a quick orientation already during examination in difficult cases. It contains images made with the most recent technology and with excellent representation of details. Even rare findings are described in detail. The imaging principle is illustrated by more than 1000 pictures and graphical representations as well as more than 100 complementary tables. Findings are classified by regions, i.e. 'brain' and 'spinal cord', including anatomical descriptions. (orig.)

  1. Fungal central nervous system infections: prevalence and diagnosis.

    Science.gov (United States)

    Kourbeti, Irene S; Mylonakis, Eleftherios

    2014-02-01

    Fungal infections of the central nervous system (CNS) are rare but they pose a significant challenge. Their prevalence spans a wide array of hosts including immunosuppressed and immunocompetent individuals, patients undergoing neurosurgical procedures and those carrying implantable CNS devices. Cryptococcus neoformans and Aspergillus spp. remain the most common pathogens. Magnetic resonance imaging can help localize the lesions, but diagnosis is challenging since invasive procedures may be needed for the retrieval of tissue, especially in cases of fungal abscesses. Antigen and antibody tests are available and approved for use in the cerebrospinal fluid (CSF). PCR-based techniques are promising but they are not validated for use in the CSF. This review provides an overview on the differential diagnosis of the fungal CNS disease based on the host and the clinical syndrome and suggests the optimal use of diagnostic techniques. It also summarizes the emergence of Cryptococcus gatti and an unanticipated outbreak caused by Exserohilum rostratum.

  2. Therapeutic approaches of magnetic nanoparticles for the central nervous system.

    Science.gov (United States)

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2015-10-01

    The diseases of the central nervous system (CNS) represent one of the fastest growing areas of concern requiring urgent medical attention. Treatment of CNS ailments is hindered owing to different physiological barriers including the blood-brain barrier (BBB), which limits the accessibility of potential drugs. With the assistance of a nanotechnology-based drug delivery strategy, the problems could be overcome. Recently, magnetic nanoparticles (MNPs) have proven immensely useful as drug carriers for site-specific delivery and as contrast agents owing to their magnetic susceptibility and biocompatibility. By utilizing MNPs, diagnosis and treatment of CNS diseases have progressed by overcoming the hurdles of the BBB. In this review, the therapeutic aspect and the future prospects related to the theranostic approach of MNPs are discussed.

  3. Chemokines and their receptors in central nervous system disease.

    Science.gov (United States)

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  4. Development-inspired reprogramming of the mammalian central nervous system.

    Science.gov (United States)

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  5. Protective and Pathological Immunity during Central Nervous System Infections.

    Science.gov (United States)

    Klein, Robyn S; Hunter, Christopher A

    2017-06-20

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. Copyright © 2017. Published by Elsevier Inc.

  6. Central Nervous System Vasculitis: Still More Questions than Answers

    Science.gov (United States)

    Alba, Marco A; Espígol-Frigolé, Georgina; Prieto-González, Sergio; Tavera-Bahillo, Itziar; García-Martínez, Ana; Butjosa, Montserrat; Hernández-Rodríguez, José; Cid, Maria C

    2011-01-01

    The central nervous system (CNS) may be involved by a variety of inflammatory diseases of blood vessels. These include primary angiitis of the central nervous system (PACNS), a rare disorder specifically targeting the CNS vasculature, and the systemic vasculitides which may affect the CNS among other organs and systems. Both situations are severe and convey a guarded prognosis. PACNS usually presents with headache and cognitive impairment. Focal symptoms are infrequent at disease onset but are common in more advanced stages. The diagnosis of PACNS is difficult because, although magnetic resonance imaging is almost invariably abnormal, findings are non specific. Angiography has limited sensitivity and specificity. Brain and leptomeningeal biopsy may provide a definitive diagnosis when disclosing blood vessel inflammation and are also useful to exclude other conditions presenting with similar findings. However, since lesions are segmental, a normal biopsy does not completely exclude PACNS. Secondary CNS involvement by systemic vasculitis occurs in less than one fifth of patients but may be devastating. A prompt recognition and aggressive treatment is crucial to avoid permanent damage and dysfunction. Glucocorticoids and cyclophosphamide are recommended for patients with PACNS and for patients with secondary CNS involvement by small-medium-sized systemic vasculitis. CNS involvement in large-vessel vasculitis is usually managed with high-dose glucocorticoids (giant-cell arteritis) or glucocorticoids and immunosuppressive agents (Takayasu’s disease). However, in large vessel vasculitis, where CNS symptoms are usually due to involvement of extracranial arteries (Takayasu’s disease) or proximal portions of intracranial arteries (giant-cell arteritis), revascularization procedures may also have an important role. PMID:22379458

  7. Temozolomide and radiation for aggressive pediatric central nervous system malignancies.

    Science.gov (United States)

    Loh, Kenneth C; Willert, Jennifer; Meltzer, Hal; Roberts, William; Kerlin, Bryce; Kadota, Richard; Levy, Michael; White, Greg; Geddis, Amy; Schiff, Deborah; Martin, Laura; Yu, Alice; Kung, Faith; Spear, Matthew A

    2005-05-01

    This study describes the outcomes of children treated with combinations of temozolomide and radiation therapy for various aggressive central nervous system malignancies. Their age at diagnosis ranged from 1 to 15 years. Patients with focal disease were treated with concomitant temozolomide (daily 75 mg/m) and three-dimensional conformal radiotherapy in a dose that ranged from 50 to 54 Gy, followed by temozolomide (200 mg/m/d x 5 days/month in three patients, 150 mg/m x 5 days/ month in one patient). Patients with disseminated disease were treated with craniospinal radiation (39.6 Gy) before conformal boost. One patient received temozolomide (200 mg/m x 5 days/month) before craniospinal radiation, and one patient received temozolomide (daily 95 mg/m) concomitant with craniospinal radiation and a radiosurgical boost, followed by temozolomide (200 mg/m x 5 days/month). Three patients achieved a partial response during treatment, with two of these patients dying of progressive disease after treatment. One patient has no evidence of disease. Three patients achieved stable disease, with one of these patients dying of progressive disease after treatment. Toxicities observed included low-grade neutropenia, thrombocytopenia, and lymphopenia. The combination of temozolomide and radiotherapy appears to be well tolerated in a variety of treatment schemas for aggressive pediatric central nervous system malignancies. This information is of particular use in designing future studies, given the recent positive results in a randomized study examining the use of temozolomide concomitant with radiation in the treatment of adult glioblastoma.

  8. The renin-angiotensin system and the central nervous system.

    Science.gov (United States)

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  9. The role of microbiome in central nervous system disorders.

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H

    2014-05-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    Science.gov (United States)

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  11. Fast food, central nervous system insulin resistance, and obesity.

    Science.gov (United States)

    Isganaitis, Elvira; Lustig, Robert H

    2005-12-01

    Rates of obesity and insulin resistance have climbed sharply over the past 30 years. These epidemics are temporally related to a dramatic rise in consumption of fast food; until recently, it was not known whether the fast food was driving the obesity, or vice versa. We review the unique properties of fast food that make it the ideal obesigenic foodstuff, and elucidate the mechanisms by which fast food intake contributes to obesity, emphasizing its effects on energy metabolism and on the central regulation of appetite. After examining the epidemiology of fast food consumption, obesity, and insulin resistance, we review insulin's role in the central nervous system's (CNS) regulation of energy balance, and demonstrate the role of CNS insulin resistance as a cause of leptin resistance and in the promotion of the pleasurable or "hedonic" responses to food. Finally, we analyze the characteristics of fast food, including high-energy density, high fat, high fructose, low fiber, and low dairy intake, which favor the development of CNS insulin resistance and obesity.

  12. Connexin32 expression in central and peripheral nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H. [Univ. of Pennslylvania, PA (United States)

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  13. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA: CLINICOPATHOLOGICAL AND IMMUNOHISTOCHEMICAL PROFILE

    Directory of Open Access Journals (Sweden)

    Kanwardeep Singh

    2016-03-01

    Full Text Available BACKGROUND Primary central nervous system lymphoma (PCNSL is a rare form of extranodal non-Hodgkin lymphoma (NHL confined to the brain, spinal cord and/or eye, occurring in immunocompetent individuals. Histologically, they are diffuse large B-cell lymphomas. Over the last few decades there has been a gradual increase in their incidence. AIM To study the clinical, histopathological and immunohistochemical profile of primary central nervous system lymphoma. SETTING AND DESIGN Retrospective audit of seven cases of PCNSL diagnosed over a period of five years in a tertiary referral hospital of North India. MATERIAL AND METHODS The clinical, radiological and laboratory findings were retrieved from the hospital records. Histopathology slides were reviewed, studied in detail and a panel of immunohistochemical markers comprising of CD3, CD5, CD20, CD10, BCL6, BCL2, MUM1, CD30, EBV (LMP1, Ki-67 and p53 was done on all cases. RESULTS The male to female ratio was 3:4 with a median age of 60 years. The most common form of presentation was neurological deficits and altered sensorium. Imaging showed contrast enhancing, single or multiple, deep seated lesions within the cerebral hemispheres. Histologically, all were high-grade diffuse large B-cell lymphomas showing typical angiocentricity and a median Ki-67 proliferative index of 80%. Based on immunohistochemistry (Hans classifier three cases had germinal centre B-cell (GCB and four had non-germinal centre B-cell (non-GCB phenotype. p53 was expressed in all cases with strong expression in four of them. Four patients died before treatment could be initiated, one received palliative chemo-radiotherapy and two did not follow up after diagnosis. CONCLUSIONS Primary CNS lymphomas are high-grade diffuse large B-cell lymphomas which show high Ki-67 proliferative indices and frequent overexpression of p53. Irrespective of histological subtype, GCB or non-GCB, outcome is uniformly poor. Early and prompt diagnosis is

  14. Evolution of bilaterian central nervous systems: a single origin?

    Science.gov (United States)

    Holland, Linda Z; Carvalho, João E; Escriva, Hector; Laudet, Vincent; Schubert, Michael; Shimeld, Sebastian M; Yu, Jr-Kai

    2013-10-07

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates

  15. [Dementia in Patients with Central Nervous System Mycosis].

    Science.gov (United States)

    Morita, Akihiko; Ishihara, Masaki; Konno, Michiko

    2016-04-01

    Central nervous system (CNS) mycosis is a potentially life-threatening but treatable neurological emergency. CNS mycoses progress slowly and are sometimes difficult to distinguish from dementia. Though most patients with CNS mycosis have an underlying disease, such as human immunodeficiency virus (HIV) infection, cancer, diabetes mellitus, and/or use of immunosuppressants, cryptococcosis can occur in non-immunosuppressed persons. One of the major difficulties in accurate diagnosis is to detect the pathogen in patients' cerebrospinal fluid (CSF) cultures. Thus, the clinical diagnosis is often made by combining circumstantial evidence, including mononuclear cell-dominant pleocytosis with low glucose and protein elevation in the CSF, as well as positive results from an antigen-based assay and a (1-3)-beta-D-glucan assay using plasma and/or CSF. Polymerase chain reaction (PCR)-based diagnostics, which are not performed as routine examinations and are mostly performed as part of academic research in Japan, are sensitive tools for the early diagnosis of CNS mycosis. Mognetic resonance imaging (MRI) is useful to assess the complications of fungal meningitis, such as abscess, infarction, and hydrocephalus. Clinicians should realize the advantages and disadvantages of these diagnostic tools. Early and accurate diagnosis, including identification of the particular fungal species, enables optimal antifungal treatment that produces good outcomes in patients with CNS mycosis.

  16. Microparticles: A New Perspective in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Stephanie M. Schindler

    2014-01-01

    Full Text Available Microparticles (MPs are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.

  17. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.

    Science.gov (United States)

    Wager, Travis T; Hou, Xinjun; Verhoest, Patrick R; Villalobos, Anabella

    2016-06-15

    Significant progress has been made in prospectively designing molecules using the central nervous system multiparameter optimization (CNS MPO) desirability tool, as evidenced by the analysis reported herein of a second wave of drug candidates that originated after the development and implementation of this tool. This simple-to-use design algorithm has expanded design space for CNS candidates and has further demonstrated the advantages of utilizing a flexible, multiparameter approach in drug discovery rather than individual parameters and hard cutoffs of physicochemical properties. The CNS MPO tool has helped to increase the percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood-brain barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through regulatory toxicology into First in Human studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of design ideas and the quality of the compounds nominated for clinical development.

  18. HCV-related central and peripheral nervous system demyelinating disorders.

    Science.gov (United States)

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered.

  19. Fractal Structure and Entropy Production within the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Andrew J. E. Seely

    2014-08-01

    Full Text Available Our goal is to explore the relationship between two traditionally unrelated concepts, fractal structure and entropy production, evaluating both within the central nervous system (CNS. Fractals are temporal or spatial structures with self-similarity across scales of measurement; whereas entropy production represents the necessary exportation of entropy to our environment that comes with metabolism and life. Fractals may be measured by their fractal dimension; and human entropy production may be estimated by oxygen and glucose metabolism. In this paper, we observe fractal structures ubiquitously present in the CNS, and explore a hypothetical and unexplored link between fractal structure and entropy production, as measured by oxygen and glucose metabolism. Rapid increase in both fractal structures and metabolism occur with childhood and adolescent growth, followed by slow decrease during aging. Concomitant increases and decreases in fractal structure and metabolism occur with cancer vs. Alzheimer’s and multiple sclerosis, respectively. In addition to fractals being related to entropy production, we hypothesize that the emergence of fractal structures spontaneously occurs because a fractal is more efficient at dissipating energy gradients, thus maximizing entropy production. Experimental evaluation and further understanding of limitations and necessary conditions are indicated to address broad scientific and clinical implications of this work.

  20. Eosinophilic vasculitis in an isolated central nervous system distribution

    Science.gov (United States)

    Sommerville, R Brian; Noble, James M; Vonsattel, Jean Paul; Delapaz, Robert; Wright, Clinton B

    2009-01-01

    Eosinophilic vasculitis has been described as part of the Churg–Strauss syndrome, but affects the central nervous system (CNS) in <10% of cases. A 39-year-old woman with a history of migraine without aura presented to an institution in an acute confusional state with concurrent headache and left-sided weakness. Laboratory evaluation showed an increased cerebrospinal fluid (CSF) protein level, but otherwise unremarkable serologies. Magnetic resonance imaging showed bifrontal polar gyral-enhancing brain lesions. Her symptoms resolved over two weeks without residual deficits. Eighteen months later the patient presented with similar symptoms and neuroradiological findings showed involvement of territories different from those in her first episode. Brain biopsy showed transmural, predominantly eosinophilic, inflammatory infiltrates and fibrinoid necrosis without granulomas. She improved when treated with corticosteroids. To our knowledge, this is the first case of non-granulomatous eosinophilic vasculitis isolated to the CNS. No aetiology for this patient’s primary CNS eosinophilic vasculitis has yet been identified. PMID:21686608

  1. Central nervous system and cervical spine abnormalities in Apert syndrome.

    Science.gov (United States)

    Breik, Omar; Mahindu, Antony; Moore, Mark H; Molloy, Cindy J; Santoreneos, Stephen; David, David J

    2016-05-01

    Apert syndrome characterized by acrocephalosyndactyly is a rare autosomal dominant congenital malformation with a prevalence of 1/65,000 births. With an extensive range of phenotypic and developmental manifestations, its management requires a multidisciplinary approach. A variety of craniofacial, central nervous system (CNS), and cervical spine abnormalities have been reported in these patients. This study aimed to determine the incidence of these CNS abnormalities in our case series. Retrospective review of Australian Craniofacial Unit (ACFU) database for Apert patients was performed. Data collected that included demographics, place of origin, age at presentation, imaging performed, and images were reviewed and recorded. Where available, developmental data was also recorded. Ninety-four patients seen and managed at the ACFU had their CNS and cervical spine abnormalities documented. The main CNS abnormalities were prominent convolutional markings (67 %), ventriculomegaly (48 %), crowded foramen magnum (36 %), deficient septum pellucidum (13 %), and corpus callosum agenesis in 11 %. Major C-spine findings were present in 50.8 % of patients and included fusion of posterior elements of C5/C6 (50 %) and C3/4 (27 %). Multilevel fusion was seen in 20 %. Other abnormalities were C1 spina bifida occulta (7 %) and atlanto-axial subluxation (7 %). Multiple CNS and cervical spine (c-spine) abnormalities are common in Apert syndrome. The significance of these abnormalities remains largely unknown. Further research is needed to better understand the impact of these findings on growth, development, and treatment outcomes.

  2. Preferential lentiviral targeting of astrocytes in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Michael Fassler

    Full Text Available The ability to visualize and genetically manipulate specific cell populations of the central nervous system (CNS is fundamental to a better understanding of brain functions at the cellular and molecular levels. Tools to selectively target cells of the CNS include molecular genetics, imaging, and use of transgenic animals. However, these approaches are technically challenging, time consuming, and difficult to control. Viral-mediated targeting of cells in the CNS can be highly beneficial for studying and treating neurodegenerative diseases. Yet, despite specific marking of numerous cell types in the CNS, in vivo selective targeting of astrocytes has not been optimized. In this study, preferential targeting of astrocytes in the CNS was demonstrated using engineered lentiviruses that were pseudotyped with a modified Sindbis envelope and displayed anti-GLAST IgG on their surfaces as an attachment moiety. Viral tropism for astrocytes was initially verified in vitro in primary mixed glia cultures. When injected into the brains of mice, lentiviruses that displayed GLAST IgG on their surface, exhibited preferential astrocyte targeting, compared to pseudotyped lentiviruses that did not incorporate any IgG or that expressed a control isotype IgG. Overall, this approach is highly flexible and can be exploited to selectively target astrocytes or other cell types of the CNS. As such, it can open a window to visualize and genetically manipulate astrocytes or other cells of the CNS as means of research and treatment.

  3. Paracoccidioidomycosis of the central nervous system: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Rodacki, M.A. [Section of Neuroradiology, Service of Radiology, Sta Isabel Hospital, Sta Catarina (Brazil); Toni, G. de [University Hospital, Medical School of Curitiba, Parana (Brazil); Borba, L.A. [Division of Neurosurgery, Sta Isabel Hospital, Blumenau, Sta Catarina (Brazil); Oliveira, G.G. [Division of Pathology, Sta Isabel Hospital, Blumenau, Sta Catarina (Brazil)

    1995-11-01

    A retrospective analisis of six cases of central nervous system paracoccidioidomycosis, all but one proven by biopsy and surgery, was carried out to study the CT and clinical data and pathological correlation. Most of the patients were from the country. Headache, vomiting, seizures and hemiparesis were the most frequent symptoms. Papilloedema was present in four patients with raised intracranial pressure. Five patients had chronic lung disease and two with advanced systemic disease, skin and mucous membrane lesions were also observed. The neurological disturbance was sometimes the presenting features and the diagnosis was discovered incidentally after surgery. Both solitary and multiple parenchymal lesions were observed and the cerebral hemispheres were more commonly involved in four patients. Local meningeal involvement was observed in one with a single cortical granuloma. We enphasise the usefulness of CT, showing a rounded or lobulated mass with an isodense or radiolucent centre after contrast enhancement, surrounded by an irregular wall of varying thickness. There was always moderate oedema, extending peripherally. Other infections or neoplastic diseases may present similar findings. Preoperative diagnosis should rest on integration of clinical data, chest films, laboratory and neuroimaging studies. (orig.). With 4 figs., 2 tabs.

  4. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gary V.; Shihadeh, Ferial [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kantarjian, Hagop [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Allen, Pamela [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rondon, Gabriela; Kebriaei, Partow [Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); O' Brien, Susan [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kedir, Aziza; Said, Mustefa; Grant, Jonathan D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thomas, Deborah A. [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gidley, Paul W. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dabaja, Bouthaina S., E-mail: bdabaja@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  5. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system.

    Science.gov (United States)

    Calcagno, Andrea; Di Perri, Giovanni; Bonora, Stefano

    2014-10-01

    HIV-positive patients may be effectively treated with highly active antiretroviral therapy and such a strategy is associated with striking immune recovery and viral load reduction to very low levels. Despite undeniable results, the central nervous system (CNS) is commonly affected during the course of HIV infection, with neurocognitive disorders being as prevalent as 20-50 % of treated subjects. This review discusses the pathophysiology of CNS infection by HIV and the barriers to efficacious control of such a mechanism, including the available data on compartmental drug penetration and on pharmacokinetic/pharmacodynamic relationships. In the reviewed articles, a high variability in drug transfer to the CNS is highlighted with several mechanisms as well as methodological issues potentially influencing the observed results. Nevirapine and zidovudine showed the highest cerebrospinal fluid (CSF) to plasma ratios, although target concentrations are currently unknown for the CNS. The use of the composite CSF concentration effectiveness score has been associated with better virological outcomes (lower HIV RNA) but has been inconsistently associated with neurocognitive outcomes. These findings support the CNS effectiveness of commonly used highly antiretroviral therapies. The use of antiretroviral drugs with increased CSF penetration and/or effectiveness in treating or preventing neurocognitive disorders however needs to be assessed in well-designed prospective studies.

  6. MRI in central nervous system infections: A simplified patterned approach

    Institute of Scientific and Technical Information of China (English)

    Krithika; Rangarajan; Chandan; J; Das; Atin; Kumar; Arun; Kumar; Gupta

    2014-01-01

    Recognition and characterization of central nervous system infections poses a formidable challenge to the neuro-radiologist.Imaging plays a vital role,the lesions typically being relatively inaccessible to tisue sampling.The results of an accurate diagnosis are endlessly re-warding,given the availability of excellent pharmaco-logical regimen.The availability of numerous magnetic resonance(MR)sequences which provide functional and molecular information is a powerful tool in the hands of the radiologist.However,the plethora of se-quences and the possibilities on each sequence is also intimidating,and often confusing as well as time con-suming.While a large number of reviews have already described in detail the possible imaging findings in each infection,we intend to classify infections based on their imaging characteristics.In this review we describe an algorithm for first classifying the imaging findings into patterns based on basic MR sequences(T1,T2 and enhancement pattern with Gadolinium),and then sub-classify them based on more advanced molecular and functional sequences(Diffusion,Perfusion,Susceptibili-ty imaging,MR Spectroscopy).This patterned approachis intended as a guide to radiologists in-training and in-practice for quickly narrowing their list of differentials when faced with a clinical challenge.The entire content of the article has also been summarised in the form of flow-charts for the purpose of quick reference.

  7. Microglioma, a histiocytic neoplasm of the central nervous system.

    Science.gov (United States)

    Hulette, C M

    1996-03-01

    Neuropathologists have long suspected the existence of a tumor derived from the microglia, which are the resident immunocompetent cells of the central nervous system. Previously, definitive characterization of this rare putative tumor was hampered by the lack of precise immunohistochemical reagents. We herein report on a patient with microglioma, and we define the immunohistochemical characteristics of the tumor. The patient was a 50-year-old white woman who presented with a 1-year history of progressive paresthesia, visual difficulties, and cranial nerve abnormalities. The patient died in June 1972. At autopsy, the brain weighed 1540 grams and was remarkable for a diffusely infiltrating periventricular tumor, which extended from the rostral tip of the lateral ventricles through the spinal cord. Microscopically, the tumor cells had extremely long, slender, twisted nuclei, and the cells diffusely infiltrated the brain parenchyma so that the extent of the tumor was difficult to determine. Formalin-fixed, paraffin-embedded tissue blocks from the neuropathology archives were studied. The neoplastic cells stained intensely with CD68 (KP1) and Ricinus communis agglutinin-120 markers for microglia and also with HAM-56, a marker for macrophages. The tumor cells stained negative for glial fibrillary acidic protein. The recent availability of precise immunohistochemical reagents has clearly defined this rare neoplasm and has facilitated reliable distinction from lymphoma and gliomatosis cerebri.

  8. Cytokines and Myelination in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Thomas Schmitz

    2008-01-01

    Full Text Available Myelin abnormalities that reflect damage to developing and mature brains are often found in neurological diseases with evidence of inflammatory infiltration and microglial activation. Many cytokines are virtually undetectable in the uninflamed central nervous system (CNS, so that their rapid induction and sustained elevation in immune and glial cells contributes to dysregulation of the inflammatory response and neural cell homeostasis. This results in aberrant neural cell development, cytotoxicity, and loss of the primary myelin-producing cells of the CNS, the oligodendrocytes. This article provides an overview of cytokine and chemokine activity in the CNS with relevance to clinical conditions of neonatal and adult demyelinating disease, brain trauma, and mental disorders with observed white matter defects. Experimental models that mimic human disease have been developed in order to study pathogenic and therapeutic mechanisms, but have shown mixed success in clinical application. However, genetically altered animals, and models of CNS inflammation and demyelination, have offered great insight into the complexities of neuroimmune interactions that impact oligodendrocyte function. The intracellular signaling pathways of selected cytokines have also been highlighted to illustrate current knowledge of receptor-mediated events. By learning to interpret the actions of cytokines and by improving methods to target appropriate predictors of disease risk selectively, a more comprehensive understanding of altered immunoregulation will aid in the development of advanced treatment options for patients with inflammatory white matter disorders.

  9. Systematic review of central nervous system anomalies in incontinentia pigmenti

    Directory of Open Access Journals (Sweden)

    Minić Snežana

    2013-02-01

    Full Text Available Abstract The objective of this study was to present a systematic review of the central nervous system (CNS types of anomalies and to consider the possibility to include CNS anomalies in Incontinentia pigmenti (IP criteria. The analyzed literature data from 1,393 IP cases were from the period 1993–2012. CNS anomalies were diagnosed for 30.44% of the investigated IP patients. The total number of CNS types of anomalies per patient was 1.62. In the present study there was no significantly higher number of anomalies per patient in females than males. The most frequent CNS types of anomalies were seizures, motor impairment, mental retardation, and microcephaly. The most frequently registered CNS lesions found using brain imaging methods were brain infarcts or necrosis, brain atrophies, and corpus callosum lesions. IKBKG exon 4–10 deletion was present in 86.00% of genetically confirmed IP patients. The frequency of CNS anomalies, similar to the frequency of retinal anomalies in IP patients, concurrent with their severity, supports their recognition in the list of IP minor criteria.

  10. Central nervous system infections in the intensive care unit

    Directory of Open Access Journals (Sweden)

    B. Vengamma

    2014-04-01

    Full Text Available Neurological infections constitute an uncommon, but important aetiological cause requiring admission to an intensive care unit (ICU. In addition, health-care associated neurological infections may develop in critically ill patients admitted to an ICU for other indications. Central nervous system infections can develop as complications in ICU patients including post-operative neurosurgical patients. While bacterial infections are the most common cause, mycobacterial and fungal infections are also frequently encountered. Delay in institution of specific treatment is considered to be the single most important poor prognostic factor. Empirical antibiotic therapy must be initiated while awaiting specific culture and sensitivity results. Choice of empirical antimicrobial therapy should take into consideration the most likely pathogens involved, locally prevalent drug-resistance patterns, underlying predisposing, co-morbid conditions, and other factors, such as age, immune status. Further, the antibiotic should adequately penetrate the blood-brain and blood- cerebrospinal fluid barriers. The presence of a focal collection of pus warrants immediate surgical drainage. Following strict aseptic precautions during surgery, hand-hygiene and care of catheters, devices constitute important preventive measures. A high index of clinical suspicion and aggressive efforts at identification of aetiological cause and early institution of specific treatment in patients with neurological infections can be life saving.

  11. Clinical Proton MR Spectroscopy in Central Nervous System Disorders

    Science.gov (United States)

    Alger, Jeffry R.; Barker, Peter B.; Bartha, Robert; Bizzi, Alberto; Boesch, Chris; Bolan, Patrick J.; Brindle, Kevin M.; Cudalbu, Cristina; Dinçer, Alp; Dydak, Ulrike; Emir, Uzay E.; Frahm, Jens; González, Ramón Gilberto; Gruber, Stephan; Gruetter, Rolf; Gupta, Rakesh K.; Heerschap, Arend; Henning, Anke; Hetherington, Hoby P.; Howe, Franklyn A.; Hüppi, Petra S.; Hurd, Ralph E.; Kantarci, Kejal; Klomp, Dennis W. J.; Kreis, Roland; Kruiskamp, Marijn J.; Leach, Martin O.; Lin, Alexander P.; Luijten, Peter R.; Marjańska, Małgorzata; Maudsley, Andrew A.; Meyerhoff, Dieter J.; Mountford, Carolyn E.; Nelson, Sarah J.; Pamir, M. Necmettin; Pan, Jullie W.; Peet, Andrew C.; Poptani, Harish; Posse, Stefan; Pouwels, Petra J. W.; Ratai, Eva-Maria; Ross, Brian D.; Scheenen, Tom W. J.; Schuster, Christian; Smith, Ian C. P.; Soher, Brian J.; Tkáč, Ivan; Vigneron, Daniel B.; Kauppinen, Risto A.

    2014-01-01

    A large body of published work shows that proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of 1H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which 1H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article. PMID:24568703

  12. Mutational analysis of primary central nervous system lymphoma.

    Science.gov (United States)

    Bruno, Aurélie; Boisselier, Blandine; Labreche, Karim; Marie, Yannick; Polivka, Marc; Jouvet, Anne; Adam, Clovis; Figarella-Branger, Dominique; Miquel, Catherine; Eimer, Sandrine; Houillier, Caroline; Soussain, Carole; Mokhtari, Karima; Daveau, Romain; Hoang-Xuan, Khê

    2014-07-15

    Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies.

  13. Central Nervous System Agents for Ischemic Stroke: Neuroprotection Mechanisms

    Science.gov (United States)

    Pandya, Rachna S.; Mao, Lijuan; Zhou, Hua; Zhou, Shuanhu; Zeng, Jiang; Popp, A. John; Wang, Xin

    2011-01-01

    Stroke is the third leading cause of mortality and disability in the United States. Ischemic stroke constitutes 85% of all stroke cases. However, no effective treatment has been found to prevent damage to the brain in such cases except tissue plasminogen activator with narrow therapeutic window, and there is an unmet need to develop therapeutics for neuroprotection from ischemic stroke. Studies have shown that mechanisms including apoptosis, necrosis, inflammation, immune modulation, and oxidative stress and mediators such as excitatory amino acids, nitric oxide, inflammatory mediators, neurotransmitters, reactive oxygen species, and withdrawal of trophic factors may lead to the development of the ischemic cascade. Hence, it is essential to develop neuroprotective agents targeting either the mechanisms or the mediators leading to development of ischemic stroke. This review focuses on central nervous system agents targeting these biochemical pathways and mediators of ischemic stroke, mainly those that counteract apoptosis, inflammation, and oxidation, and well as glutamate inhibitors which have been shown to provide neuroprotection in experimental animals. All these agents have been shown to improve neurological outcome after ischemic insult in experimental animals in vivo, organotypic brain slice/acute slice ex vivo, and cell cultures in vitro and may therefore aid in preventing long-term morbidity and mortality associated with ischemic stroke. PMID:21521165

  14. Corticosteroid-related central nervous system side effects

    Directory of Open Access Journals (Sweden)

    Miriam Ciriaco

    2013-01-01

    Full Text Available Corticosteroids have been used since the 50s as anti-inflammatory and immunosuppressive drugs for the treatment of several pathologies such as asthma, allergy, rheumatoid arthritis, and dermatological disorders. Corticosteroids have three principal mechanisms of action: 1 inhibit the synthesis of inflammatory proteins blocking NF-kB, 2 induce the expression of anti-inflammatory proteins by IkB and MAPK phosphatase I, and 3 inhibit 5-lipoxygenase and cyclooxygenase-2. The efficacy of glucocorticoids in alleviating inflammatory disorders results from the pleiotropic effects of the glucocorticoid receptors on multiple signaling pathways. However, they have adverse effects: Growth retardation in children, immunosuppression, hypertension, hyperglycemia, inhibition of wound repair, osteoporosis, metabolic disturbances, glaucoma, and cataracts. Less is known about psychiatric or side effects on central nervous system, as catatonia, decreased concentration, agitation, insomnia, and abnormal behaviors, which are also often underestimated in clinical practice. The aim of this review is to highlight the correlation between the administration of corticosteroids and CNS adverse effects, giving a useful guide for prescribers including a more careful assessment of risk factors and encourage the use of safer doses of this class of drugs.

  15. Ventriculoperitoneal shunt for hydrocephalus caused by central nervous system metastasis.

    Science.gov (United States)

    Lee, Seung Hoon; Kong, Doo Sik; Seol, Ho Joon; Nam, Do-Hyun; Lee, Jung-Il

    2011-09-01

    The development of better diagnostic tools and therapeutic modalities has increased the incidence of central nervous system (CNS) metastasis in malignant tumor patients. Hydrocephalus can result from CNS metastasis and frustrate cancer treatment. The authors sought to investigate the outcomes and the roles of ventriculoperitoneal shunts (VPS) in patients with CNS metastasis. The medical records of 50 consecutive patients who underwent VPS for hydrocephalus related to CNS metastasis were analyzed retrospectively. Data included features of primary malignancies, CNS involvement, clinical course and surgical outcome. Median patient age was 55.0 years (range 25-77), and 30 female and 20 male patients were included in the study. At the time of VPS, 10 patients had parenchymal metastases only and 40 patients had leptomeningeal seeding (LMS). Symptom improvement was observed postoperatively in 40 patients (80%), mean Karnofsky performance status (KPS) scale change was from 37.8 to 46.0, and median survival from VPS was 3.0 months (2 days to 54 months). A ventricular opening pressure of >30 cmH(2)O (HR 6.44, 95% CI 1.26-32.9, P = 0.02) and further cancer treatment after VPS (HR 0.17, 95% CI 0.07-0.42, P Hydrocephalus in CNS metastasis requiring VPS is commonly associated with LMS. VPS is an effective palliative measure and an adequate cancer treatment after VPS may provide the best means of improving survival.

  16. Cell replacement therapy for central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Danju Tso; Randall D. McKinnon

    2015-01-01

    The brain and spinal cord can not replace neurons or supporting glia that are lost through trau-matic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this ifeld needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate pa-tient-speciifc replacement cells is to reprogram autologous cells such as ifbroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms ifbroblasts into the ifnal graft-able cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efifciency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.

  17. Intrinsic regenerative mechanisms of central nervous system neurons.

    Science.gov (United States)

    Muramatsu, Rieko; Ueno, Masaki; Yamashita, Toshihide

    2009-10-01

    Injuries to the adult central nervous system (CNS), such as spinal cord injury and brain contusion, can cause permanent functional deficits if axonal connections are broken. Spontaneous functional recovery rarely occurs. It has been widely accepted that the extracellular environment of the CNS inhibits neuronal regeneration. However, it should be noted that another reason for injured neurons failing to regenerate is their weak intrinsic ability to do so. The regeneration of injured neurons is a process involving many intracellular phenomena, including cytoskeletal changes, gene and protein expression, and changes in the responsiveness to extracellular cues. The capacity of injured neurons to regenerate is modulated to some extent by changes in the expression of intracellular signaling molecules such as glycogen synthase kinase-3beta and cyclic adenosine 3',5'-monophosphate. Knowledge of these effects has guided the development of animal models for regenerative therapies of CNS injury. Enhancing the intrinsic regenerative machinery of injured axons in the adult CNS is a potentially powerful strategy for treating patients with a CNS injury.

  18. Scar-modulating treatments for central nervous system injury.

    Science.gov (United States)

    Shen, Dingding; Wang, Xiaodong; Gu, Xiaosong

    2014-12-01

    Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.

  19. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    Directory of Open Access Journals (Sweden)

    Meike Mitsdoerffer

    2016-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS, which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease, however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function and clinical significance. Mechanistic studies in patiens are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.

  20. Central nervous system inflammatory demyelinating disorders of childhood

    Directory of Open Access Journals (Sweden)

    Kamate Mahesh

    2010-01-01

    Full Text Available Background and Objectives: Childhood Central Nervous System (CNS inflammatory demyelinating disorders (CIDD are being diagnosed more commonly now. There is ambiguity in the use of different terms in relation to CIDD. Recently, consensus definitions have been proposed so that there is uniformity in studies across the world. The prevalence of these disorders and the spectrum varies from place to place. This study was undertaken to study the clinico-radiological profile and outcome of children with CIDD using the recent consensus definition. Study design: Prospective descriptive study. Materials and Methods: All patients admitted in pediatric ward and pediatric intensive care with neurological symptoms and signs suggestive of CNS inflammatory demyelinating disorders from July 2007−August 2008 were enrolled. The details of clinical presentation, neuroimaging findings, laboratory results, treatment, and outcome were noted and analyzed. Results: Fifteen patients (11 with acute disseminated encephalomyelitis and 4 with clinically isolated syndrome were diagnosed with CIDD. Clinical presentation was quite varied. Eight patients recovered completely; 4 cases were left with sequelae and 3 patients expired. There were no cases of multiple sclerosis or neuromyelitis optica. Conclusions: CNS inflammatory demyelinating disorders are common illnesses in developing countries because of recurrent infections. Even the spectrum of CIDD is different. Neuroimaging in the form of magnetic resonance imaging is essential for diagnosis.

  1. Imaging features of central nervous system fungal infections

    Directory of Open Access Journals (Sweden)

    Jain Krishan

    2007-01-01

    Full Text Available Fungal infections of the central nervous system (CNS are rare in the general population and are invariably secondary to primary focus elsewhere, usually in the lung or intestine. Except for people with longstanding diabetes, they are most frequently encountered in immunocompromised patients such as those with acquired immunodeficiency syndrome or after organ transplantation. Due to the lack of inflammatory response, neuroradiological findings are often nonspecific and are frequently mistaken for tuberculous meningitis, pyogenic abscess or brain tumor. Intracranial fungal infections are being identified more frequently due to the increased incidence of AIDS patients, better radiological investigations, more sensitive microbiological techniques and better critical care of moribund patients. Although almost any fungus may cause encephalitis, cryptococcal meningoencephalitis is most frequently seen, followed by aspergillosis and candidiasis. The biology, epidemiology and imaging features of the common fungal infections of the CNS will be reviewed. The radiographic appearance alone is often not specific, but the combination of the appropriate clinical setting along with computed tomography or magnetic resonance may help to suggest the correct diagnosis.

  2. Central nervous system mycosis: Analysis of 10 cases

    Directory of Open Access Journals (Sweden)

    Anju Shukla

    2014-01-01

    Full Text Available Aim: To describe the clinicopathological features in patients with fungal infections of the central nervous system (CNS presenting as mass lesions. Materials and Methods: A retrospective analysis of records obtained from 10 patients was done with histopathologically confirmed fungal infections presenting as ICSOL, diagnosed in the department of pathology. Clinical features at presentation, findings of radiological investigations performed and histopathology were noted for each patient and subjected for analysis. Results: Infection was higher in males, and paranasal sinusitis was the most common predisposing factor. Location was intraparenchymal followed by sphenoid wing. Four dural-based lesions mimicked meningioma clinically. The most common fungus identified was zygomycosis (seven cases, followed by phaeohyphomycosis (two cases and aspergillosis (one case. Conclusion: There is a rising trend of CNS mycosis, both in immunocompromised and immunocompetent patients. Intracranial fungal granuloma may mimic radiologically as glioma or meningioma, therefore a high index of suspicion is needed to detect early CNS fungal infections, especially in immunocompetent young patients with no predisposing illness. Fungi should always be excluded in patients with inflammatory or granulomatous pathology of CNS.

  3. Medulloblastomas and central nervous system primitive neuroectodermal tumors.

    Science.gov (United States)

    McLean, Thomas W

    2003-12-01

    Significant advances in the treatment of medulloblastoma and primitive neuroectodermal tumors have been made in the past three decades. Maximal surgical resection is a mainstay of therapy. However, unlike many other central nervous system neoplasms, medulloblastoma and primitive neuroectodermal tumors are radiation and chemotherapy responsive. Despite this response, the prognosis for patients with these tumors remains variable and is relatively poor in infants and patients with metastatic disease. These tumors most commonly arise in children, thus most clinical trials emphasize the reduction of long-term sequelae, in addition to improving survival. All newly diagnosed patients who are eligible should be offered participation in a clinical trial. If a patient is ineligible or declines consent/assent for a clinical trial, the best current treatment approach is surgical resection, followed by radiation therapy (except for children younger than 3 years) with weekly vincristine. For high-risk patients, 36 Gy of craniospinal irradiation should be delivered plus a boost of 19.8 Gy to the posterior fossa/primary tumor bed and sites of bulk metastatic disease. For average-risk patients, the craniospinal irradiation dose may be lowered to 23.4 Gy plus 32.4 Gy to the posterior fossa/tumor bed. After radiation therapy, intensive multimodal chemotherapy should be used for all patients.

  4. Nanotechnologies for the study of the central nervous system.

    LENUS (Irish Health Repository)

    Ajetunmobi, A

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.

  5. Diffusion imaging in pediatric central nervous system infections

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, J. [Dept. de Imagiologia, Hospital Geral De Santo Antonio, Porto (Portugal); Zimmerman, R.A.; Haselgrove, J.C.; Bilaniuk, L.T.; Hunter, J.V. [Dept. of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2001-12-01

    Our purpose was to investigate the role of diffusion imaging (DI) in central nervous system (CNS) infections in pediatric patients. It was anticipated that DI would be more sensitive than conventional MRI in the detection of the infarctive complications of infection, and possibly, in the detection of the infectious process as well. Seventeen pediatric patients, eight having meningitis'' five with herpes encephalitis, three with brain abscess or cerebritis and one with sepsis, were evaluated at 1.5-T with DI. All herpes patients had positive DI at the site of herpetic involvement, and two had the addition of watershed infarctions. DI demonstrated more lesions in three of the four cases of herpetic encephalitis. Half the meningitis cases had watershed infarction where DI was better and half had vasculitic infarctions in which DI was equal to or better than conventional MRI. Diffusion imaging was more sensitive than conventional MRI alone in detection of changes due to infections and ischemic lesions, but did not differentiate between them by DI or apparent diffusion coefficient (ADC), although anatomic distribution of lesions proved useful. (orig.)

  6. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  7. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  8. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  9. 78 FR 20328 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  10. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  11. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons......RNA-related gene regulatory networks in the mammalian central nervous system. Udgivelsesdato: 2008-Mar...

  12. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  13. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  14. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  15. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  16. Effects of petroleum ether extract of Amorphophallus paeoniifolius tuber on central nervous system in mice

    Directory of Open Access Journals (Sweden)

    Das S

    2009-01-01

    Full Text Available The central nervous system activity of the petroleum ether extract of Amorphophallus paeoniifolius tuber was examined in mice, fed normal as well as healthy conditions. The petroleum ether extract of Amorphophallus paeoniifolius tuber at the doses of 100, 300 and 1000 mg/kg showed significant central nervous system activity in mice.

  17. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  18. Doppler colour flow mapping of fetal intracerebral arteries in the presence of central nervous system anomalies

    NARCIS (Netherlands)

    J.W. Wladimiroff (Juriy); R. Heydanus (Rogier); P.A. Stewart (Patricia)

    1993-01-01

    textabstractThe adjunctive role of Doppler colour flow mapping in the evaluation of intracerebral morphology and arterial blood flow in the presence of normal and abnormal central nervous system morphology was determined. A total of 59 fetuses with suspected central nervous system pathology between

  19. Magnetic Resonance Imaging of the Central Nervous System—An Update

    OpenAIRE

    Brant-Zawadzki, Michael; Norman, David; Newton, T. Hans; Kucharczyk, Walter

    1985-01-01

    Magnetic resonance imaging has developed rapidly and now has superior ability to detect and to characterize disease in the central nervous system without any significant biologic hazard. It is becoming the screening method of choice in the diagnosis of neoplasm, ischemia, hemorrhage, infection and degenerative and demyelinating diseases involving the central nervous system.

  20. Materials directed to implants for repairing Central Nervous System

    Directory of Open Access Journals (Sweden)

    Canillas, M.

    2014-12-01

    Full Text Available Central Nervous System (CNS can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as “secondary injury”. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon.Existen diferentes tipos de lesiones o desordenes del Sistema Nervioso Central (SNC que pueden provocar graves secuelas e incluso en algunos casos una discapacidad permanente. Además, el proceso de reparación del SNC tiene algunas complicaciones. El mecanismo natural de reacción a una lesión, el cual consiste en la formación de una cicatriz glial, es desencadenado por un proceso inflamatorio. Las moléculas liberadas durante estos procesos, la inflamación y formación de la cicatriz glial, así como la deficiencia en oxígeno y glucosa debidos a la lesión, crean un ambiente que inhibe la regeneración axonal creando la llamada “lesión secundaria”. Los biomateriales están adquiriendo un papel cada vez más importante en la reparación de SNC. Las

  1. Central nervous system activity of Illicium verum fruit extracts.

    Science.gov (United States)

    Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S

    2013-11-01

    To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Canine Central Nervous System Neoplasm Phenotyping Using Tissue Microarray Technique.

    Science.gov (United States)

    Spitzbarth, I; Heinrich, F; Herder, V; Recker, T; Wohlsein, P; Baumgärtner, W

    2017-05-01

    Tissue microarrays (TMAs) represent a useful technique for the simultaneous phenotyping of large sample numbers and are particularly suitable for histopathologic tumor research. In this study, TMAs were used to evaluate semiquantitatively the expression of multiple antigens in various canine central nervous system (CNS) neoplasms and to identify markers with potential discriminative diagnostic relevance. Ninety-seven canine CNS neoplasms, previously diagnosed on hematoxylin and eosin sections according to the World Health Organization classification, were investigated on TMAs, with each tumor consisting of 2 cylindrical samples from the center and the periphery of the neoplasm. Tumor cells were phenotyped using a panel of 28 monoclonal and polyclonal antibodies, and hierarchical clustering analysis was applied to group neoplasms according to similarities in their expression profiles. Hierarchical clustering generally grouped cases with similar histologic diagnoses; however, gliomas especially exhibited a considerable heterogeneity in their positivity scores. Multiple tumor groups, such as astrocytomas and oligodendrogliomas, significantly differed in the proportion of positive immunoreaction for certain markers such as p75(NTR), AQP4, GFAP, and S100 protein. The study highlights AQP4 and p75(NTR) as novel markers, helping to discriminate between canine astrocytoma and oligodendroglioma. Furthermore, the results suggest that p75(NTR) and proteolipid protein may represent useful markers, whose expression inversely correlates with malignant transformation in canine astrocytomas and oligodendrogliomas, respectively. Tissue microarray was demonstrated to be a useful and time-saving tool for the simultaneous immunohistochemical characterization of multiple canine CNS neoplasms. The present study provides a detailed overview of the expression patterns of different types of canine CNS neoplasms.

  3. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  4. Central nervous system activity ofIllicium verum fruit extracts

    Institute of Scientific and Technical Information of China (English)

    Divya Chouksey; Neeraj Upmanyu; RS Pawar

    2013-01-01

    Objective:To research the acute toxicity of Illicium verum(I. verum) fruit extracts and its action on central nervous system.Methods:TheTLC andHPTLC techniques were used as fingerprints to determine the chemical components present in I. verum.Male albino rats and mice were utilized for study.The powdered material was successively extracted withn-hexane, ethyl acetate and methanol using aSoxhlet extractor.Acute toxicity studies were performed as per OECD guidelines.TheCNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity.The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each.The drug was administered by intraperitoneal route according to body weight.The dosing was done as prescribed in each protocol.Results:Toxicity studies reported2000 mg/kg as toxicological dose and1/10 of the same dose was taken as therapeutic doseIntraperitoneal injection of all extracts at dose of200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantlyalter muscles coordination activity.The three extracts of I. verum at the dose of200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts.Conclusions:The observation suggested that the extracts ofI. verum possess potentCNS depressant action and anxiolytic effect without interfering with motor coordination.

  5. Central nervous system tumors: Radiologic pathologic correlation and diagnostic approach

    Directory of Open Access Journals (Sweden)

    Ishita Pant

    2015-01-01

    Full Text Available Objective: This study was conducted to formulate location-wise radiologic diagnostic algorithms and assess their concordance with the final histopathological diagnosis so as to evaluate their utility in a rural setting where only basic facilities are available. Materials and Methods: A retrospective analysis to assess the concordance of radiology (primarily MRI with final histopathology report was done. Based on the most common incidence of tumor location and basic radiology findings, diagnostic algorithms were prepared. Results: For supratentorial intraaxial parenchymal location concordance was seen in all high-grade astrocytomas, low- and high-grade oligodendrogliomas, metastatic tumors, primitive neuroectodermal tumors, high-grade ependymomas, neuronal and mixed neuro-glial tumors and tumors of hematopoietic system. Lowest concordance was seen in low-grade astrocytomas. In the supratentorial intraaxial ventricular location, agreement was observed in choroid plexus tumors, ependymomas, low-grade astrocytomas and meningiomas; in the supratentorial extraaxial location, except for the lack of concordance in the only case of metastatic tumor, concordance was observed in meningeal tumors, tumors of the sellar region, tumors of cranial and paraspinal nerves; the infratentorial intraaxial parenchymal location showed agreement in low- as well as high-grade astrocytomas, metastatic tumors, high-grade ependymoma, embryonal tumors and hematopoietic tumors; in the infratentorial intraaxial ventricular location, except for the lack of concordance in one case of low-grade astrocytoma and two cases of medulloblastomas, agreement was observed in low- and high-grade ependymoma; infratentorial extraaxial tumors showed complete agreement in all tumors of cranial and paraspinal nerves, meningiomas, and hematopoietic tumors. Conclusion: A location-based approach to central nervous system (CNS tumors is helpful in establishing an appropriate differential diagnosis.

  6. Extrarenal rhabdoid tumours outside the central nervous system in infancy

    Energy Technology Data Exchange (ETDEWEB)

    Garces-Inigo, Enrique F. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Complejo Hospitalario Universitario de Albacete, Radiology Department, Hermanos Falco, Albacete (Spain); Leung, Rebecca; McHugh, Kieran [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children, Department of Histopathology, London (United Kingdom)

    2009-08-15

    Malignant rhabdoid tumours (RT) are increasingly recognized in young children, probably as a consequence of advances in accurate histological diagnosis rather than a true increase in frequency. Although typically presenting as renal tumours in infancy, extrarenal tumours outside the central nervous system (CNS) in children less than 12 months of age are now well recognized, but previous literature on their imaging features is very limited. To demonstrate the imaging features of extrarenal RTs outside the CNS. A retrospective database review was made from 1989 to 2007 of patients diagnosed with extrarenal RT in infancy, i.e. below 12 months of age. There were nine patients (six boys and three girls). The age at presentation varied from 1 to 11 months (average 6 months). Tumours were located in the thorax/mediastinum (n=3), liver (n=3), neck (n=1), shoulder (n=1) and axilla (n=1). The imaging modalities used included US (n=8), CT (n=7) and MRI (n=6). Bone scan was positive in one patient, while metastases at the time of diagnosis occurred in four patients. On MRI the tumours tended to show nonspecific hypointensity on T1-W images and heterogeneous hyperintensity on T2-W images, with heterogeneous enhancement. This is the largest radiological series of extrarenal RTs outside the CNS in infancy. In our series no imaging features were found specific to the diagnosis. A tendency towards large size and mediastinal/paravertebral location were noted. A hypodense solid component on CT and a heterogeneous hyperintensity on T2-W MR images suggest that this tumour should be considered in the routine differential diagnosis of soft-tissue tumours in infancy, in addition to rhabdomyosarcoma. (orig.)

  7. Central Nervous System Effects of Ginkgo Biloba, a Plant Extract.

    Science.gov (United States)

    Itil, Turan M.; Eralp, Emin; Tsambis, Elias; Itil, Kurt Z.; Stein, Ulrich

    1996-01-01

    Extracts of Ginkgo biloba (EGb) are among the most prescribed drugs in France and Germany. EGb is claimed to be effective in peripheral arterial disorders and in "cerebral insufficiency." The mechanism of action is not yet well understood. Three of the ingredients of the extract have been isolated and found to be pharmacologically active, but which one alone or in combination is responsible for clinical effects is unknown. The recommended daily dose (3 x 40 mg extract) is based more on empirical data than on clinical dose-findings studies. However, despite these, according to double-blind, placebo-controlled clinical trials, EGb has therapeutic effects, at least, on the diagnostic entity of "cerebral insufficiency," which is used in Europe as synonymous with early dementia. To determine whether EGb has significant pharmacological effects on the human brain, a pharmacodynamic study was conducted using the Quantitative Pharmacoelectroencephalogram (QPEEG(R)) method. It was established that the pharmacological effects (based on a predetermined 7.5--13.0-Hz alpha frequency band in a computer-analyzed electroencephalogram = CEEG(R)) of EGb on the central nervous system (CNS) are significantly different than placebo, and the high and low doses could be discriminated from each other. The 120-mg, but particularly the 240-mg, single doses showed the most consistent CNS effects with an earlier onset (1 h) and longer duration (7 h). Furthermore, it was established that the electrophysiological effects of EGb in CNS are similar to those of well-known cognitive activators such as "nootropics" as well as tacrine, the only marketed "antidementia" drug currently available in the United States.

  8. Cerebrospinal fluid interleukin-6 in central nervous system inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Alexandre Wullschleger

    Full Text Available BACKGROUND: Interleukin (IL-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS. OBJECTIVE: To perform a large retrospective study designed to test cerebrospinal fluid (CSF IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS from other inflammatory neurological diseases (OIND. PATIENTS AND METHODS: We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay. Groups tested were composed of demyelinating diseases of the CNS (DD, n = 117, including relapsing-remitting MS (RRMS, n = 65, primary progressive MS (PPMS, n = 11, clinically isolated syndrome (CIS, n = 11, optic neuritis (ON, n = 30; idiopathic transverse myelitis (ITM, n = 10; other inflammatory neurological diseases (OIND, n = 35; and non-inflammatory neurological diseases (NIND, n = 212. Differences between groups were analysed using Kruskal-Wallis test and Mann-Whitney U-test. RESULTS: CSF IL-6 levels exceeded the positivity cut-off of 10 pg/ml in 18 (51.4% of the 35 OIND samples, but in only three (3.9% of the 76 MS samples collected. CSF IL-6 was negative for all NIND samples tested (0/212. IL-6 cut-off of 10 pg/ml offers 96% sensitivity to exclude MS. CONCLUSION: CSF IL-6 may help to differentiate MS from its major differential diagnosis group, OIND.

  9. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  10. Role of Mycobacterium tuberculosis pknD in the Pathogenesis of central nervous system tuberculosis

    Directory of Open Access Journals (Sweden)

    Be Nicholas A

    2012-01-01

    Full Text Available Abstract Background Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. Results We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system, but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. Conclusions Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children.

  11. Clinical features of multiple myeloma invasion of the central nervous system in Chinese patients

    Institute of Scientific and Technical Information of China (English)

    QU Xiao-yan; FU Wei-jun; XI Hao; ZHOU Fan; WEI Wei; HOU Jian

    2010-01-01

    Background Although neurologic manifestations often complicate the course of patients with multiple myeloma, direct central nervous system invasion is rare. This study explored the neurologic symptoms, signs, clinical features, therapy and prognosis of Chinese patients with central nervous system myeloma invasion.Methods The diagnosis, therapy and prognosis were analyzed retrospectively in 11 Chinese multiple myeloma patients with central nervous system infiltration from a total of 625 patients who have been treated at Changzheng Hospital (Shanghai, China) between January 1993 and May 2009. Survival curve was constructed with the use of Kaplan-Meier estimates.Results There were 11 patients with central nervous system involvement from 625 multiple myeloma patients. The occurrence rate was 1.8%. Ten of the 11 patients had other extramedullary diseases. Symptoms included cerebral symptoms, cranial nerve palsies, and spinal cord or spinal nerve roots symptoms.Cerebrospinal fluid was abnormal in 7 patients, usually exhibiting pleocytosis and elevated protein content, plus positive cytologic findings. Specific magnetic resonance imaging findings suggestive of central nervous system invasion were found in 9 patients. After a median follow-up of 19 months, 3 patients were alive. The median overall survival for all patients was 23 months, while the median overall survival for patients after central nervous system invasion was merely 6 months.Conclusions It is exceedingly rare for there to be central nervous system infiltration in multiple myeloma patients. When it occurs, the prognosis is extremely poor despite the use of aggressive local and systemic treatment including stem cell transplantation.

  12. Clinical features of multiple myeloma invasion of the central nervous system in Chinese patients.

    Science.gov (United States)

    Qu, Xiao-yan; Fu, Wei-jun; Xi, Hao; Zhou, Fan; Wei, Wei; Hou, Jian

    2010-06-01

    Although neurologic manifestations often complicate the course of patients with multiple myeloma, direct central nervous system invasion is rare. This study explored the neurologic symptoms, signs, clinical features, therapy and prognosis of Chinese patients with central nervous system myeloma invasion. The diagnosis, therapy and prognosis were analyzed retrospectively in 11 Chinese multiple myeloma patients with central nervous system infiltration from a total of 625 patients who have been treated at Changzheng Hospital (Shanghai, China) between January 1993 and May 2009. Survival curve was constructed with the use of Kaplan-Meier estimates. There were 11 patients with central nervous system involvement from 625 multiple myeloma patients. The occurrence rate was 1.8%. Ten of the 11 patients had other extramedullary diseases. Symptoms included cerebral symptoms, cranial nerve palsies, and spinal cord or spinal nerve roots symptoms. Cerebrospinal fluid was abnormal in 7 patients, usually exhibiting pleocytosis and elevated protein content, plus positive cytologic findings. Specific magnetic resonance imaging findings suggestive of central nervous system invasion were found in 9 patients. After a median follow-up of 19 months, 3 patients were alive. The median overall survival for all patients was 23 months, while the median overall survival for patients after central nervous system invasion was merely 6 months. It is exceedingly rare for there to be central nervous system infiltration in multiple myeloma patients. When it occurs, the prognosis is extremely poor despite the use of aggressive local and systemic treatment including stem cell transplantation.

  13. Primary anaplastic large T cell lymphoma of central nervous system

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2013-01-01

    Full Text Available Background Primary anaplastic large T cell lymphoma (ALCL of central nervous system (CNS can occur in people of all ages, and is usually unrelated with immunodeficiency. It is often misdiagnosed as meningitis, especially tuberculous meningitis, on clinical practice and imaging examination. In pathological diagnosis, the morphological changes of primary ALCL of CNS are similar to the systemic ALCL and the anaplastic lymphoma kinase-1 (ALK-1 can be positive or negative. Being misdiagnosed as meningitis, hormone therapy with glucocorticoid before biopsy is always used, and massive necrosis and a lot of histocyte proliferation and phagocytosis can be found under histological findings. Therefore, when the material is not enough, primary ALCL of CNS is often misdiagnosed as cerebral infarction or malignant histocytosis and so on. This paper reports a case of primary ALCL of CNS and makes a review of relevant literature, so as to summarize the clinical manifestations and elevate the recognition of clinicians and pathologists on this disease. Methods and Results A 12-year-old boy was admitted because of fever, worsening headache, numbness and weakness of right limbs. MRI showed local gyri swelling and abnormal enhancement of pia mater in the right parietal lobe, expanding to the right temporal lobe, and pia mater enhancement in the left parietal lobe. The right temporo-parietal lobe lesion biopsy revealed irregularly shaped tumor cells of large size, rich and eosinophilic cytoplasm and horseshoe-shaped or kidney-shaped nuclei. Immunohistochemical examination showed tumor cells positive for CD3, CD45RO, CD30, ALK-1 and epithelial membrane antigen (EMA, and negative for CD20 and CD79a. Conclusion Primary ALCL of CNS is an extremely rare tumor which is usually misdiagnosed as meningitis according to clinical and imaging examinations. Therefore, for those patients who are considered as meningitis but with poor treatment effect and replase of illness, brain

  14. Progress in study on central nervous system injuries caused by obstructive sleep apnea syndrome

    Directory of Open Access Journals (Sweden)

    ZHAO Xiang-xiang

    2013-05-01

    Full Text Available Chronic and repetitive intermittent hypoxia and dysfunction of sleep architecture mainly contribute to obstructive sleep apnea syndrome (OSAS. More and more evidences demonstrate it is a systemic disease, which is common encountered in clinic and strongly related to the systemic lesion of central nervous system. The central nervous system complications comprise cognitive impairment, brain atrophy and the growing risk of stroke and so on. Early treatment for OSAS has a positive significance on complications of central nervous system, and even the damage can be completely reversed.

  15. Neurocitoma no sistema nervoso central Neurocytoma in the central nervous system: a case report

    Directory of Open Access Journals (Sweden)

    José Torquato Severo

    1973-03-01

    Full Text Available É relatado o caso de uma paciente com 6 anos de idade, hospitalizada com síndrome de hipertensão intracraniana. Após o exame neuro-radiológico que evidenciou processo expansivo frontal direito, a paciente foi submetida à cirurgia, durante a qual ocorreu o óbito. O exame histo-patológico do material retirado durante o ato operatório, permitiu o diagnóstico de neurocitoma, tumor raro no sistema nervoso central.The case of a six years old female with intracranial hypertension is reported. After neuro-radiological examination which showed a frontal expansive process at the right side of the brain the patient was operated and died during this intervention. The hystopathological examination of the part of the tissue removed from the tumor revealed a neurocytoma, a rare tumor of the central nervous system.

  16. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System

    Science.gov (United States)

    Kaliszewski, Michael; Kennedy, Austin K.; Blaes, Shelby L.; Shaffer, Robert S.; Knott, Andrew B.; Song, Wenjun; Hauser, Henry A.; Bossy, Blaise; Huang, Ting-Ting; Bossy-Wetzel, Ella

    2016-01-01

    Superoxide dismutase 1 (SOD1) knockout (Sod1−/−) mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS), and post-translational modification (PTM) of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123). The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1) in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1−/− mice, K123 mutation or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer (GCL) and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells and Schaffer collateral fibers of the cornus ammonis field 1 (CA1) region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus (CP) and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer (RGCL) and axons of retinal ganglion cells (RGCs), the inner nuclear layer (INL) and cone photoreceptors of the outer nuclear layer (ONL). In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system. PMID:28066183

  17. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System

    Directory of Open Access Journals (Sweden)

    Michael Kaliszewski

    2016-12-01

    Full Text Available Superoxide dismutase 1 (SOD1 knockout (Sod1-/- mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS, and post-translational modification (PTM of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123. The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1 in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1-/- mice, K123 mutation, or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells, and Schaffer collateral fibers of the cornus ammonis (CA1 region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons, and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer and axons of retinal ganglion cells, the inner nuclear layer, and cone photoreceptors of the outer nuclear layer. In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system.

  18. Survival of breast cancer patients with synchronous or metachronous central nervous system metastases

    NARCIS (Netherlands)

    Ho, V.K.; Gijtenbeek, J.M.M.; Brandsma, D.; Beerepoot, L.V.; Sonke, G.S.; Loo, M. te

    2015-01-01

    BACKGROUND: Central nervous system (CNS) metastases represent a devastating complication for advanced breast cancer patients. This observational study examines the influence of patient, tumour and treatment characteristics on overall survival after synchronous or metachronous CNS metastases. METHODS

  19. Candida infection of the central nervous system following neurosurgery: a 12-year review.

    LENUS (Irish Health Repository)

    O'Brien, Deirdre

    2011-06-01

    Candida infection of the central nervous system (CNS) following neurosurgery is relatively unusual but is associated with significant morbidity and mortality. We present our experience with this infection in adults and discuss clinical characteristics, treatment options, and outcome.

  20. Bioactivity of marine organisms: Part 7- Effect of seaweed extract on central nervous system

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; DeSouza, L.; Naik, C.G.; Ambiye, V.; Bhakuni, D.S.; Jain, S.; Goel, A.K.; Srimal, R.C.

    Alcohol extracts of marine algae (Rhodophyceae, Phaeophyceae and Chlorophyceae) was screened for their effect on central nervous system. Of 69 species investigated 8 appeared biologically active, 6 being CNS stimulant, sites and dates of collection...

  1. Comparisons and homology in adult and developing vertebrate central nervous systems.

    Science.gov (United States)

    Pritz, Michael B

    2005-01-01

    Comparisons of characters in both adult and developing vertebrate central nervous systems require an understanding of the concept of homology. This article begins with a definition of homology in adult animals and then discusses criteria and methodology used to make appropriate comparisons of characters at a variety of hierarchical levels. Crucial to such an analysis is the methodology employed by neurocladistics to ensure meaningful comparisons. Then, a similar approach is used to address these identical problems in embryos. Concerns unique to comparisons of developing central nervous systems are enumerated. In addition, a number of special features of central nervous system formation and organization in both adults and embryos are discussed within the framework of homology and neurocladistics. Lastly, the concept of field homology as applied to vertebrate central nervous system characters is addressed. Copyright (c) 2005 S. Karger AG, Basel.

  2. Multiple myeloma invasion of the central nervous system

    Directory of Open Access Journals (Sweden)

    Marjanović Slobodan

    2012-01-01

    Full Text Available Introduction. Multiple myeloma (MM is characterized by the presence of neoplastic proliferating plasma cells. The tumor is generally restricted to the bone marrow. The most common complications include renal insufficiency, hypercalcemia, anemia and reccurent infections. The spectrum of MM neurological complications is diverse, however, involvement of MM in the cerebrospinal fluid (CSF and leptomeningeal infiltration are rare considered. In about 1% of the cases, the disease affects the central nervous system (CNS and presents itself in the form of localized intraparenchymal lesions, solitary cerebral plasmocytoma or CNS myelomatosis (LMM. Case report. We presented the clinical course of a 55-year-old man with MM and LMM proven by malignant plasma cells in the CSF, hospitalized with the pain in the thoracic spine. His medical history was uneventful. There had been no evidence of mental or neurological impairment prior to the seizures. Physical examination showed no abnormalities. After a complete staging, the diagnosis of MM type biclonal gammopathia IgG lambda and free lambda light chains in the stage III was confirmed. The treatment started with systemic chemotherapy (with vincristine, doxorubicin plus high-dose dexamethasone - VAD protocol, radiotherapy and bisphosphonate. The patient developed weakness, nausea, febrility, dispnea, bilateral bronchopneumonia, acute renal insufficiency, confusions, headaches and soon thereafter sensomotor aphasias and right hemiparesis. The patient was treated with the adequate therapy including one hemodyalisis. His neurological status was deteriorated, so Multislice Computed Tomography (MSCT of the head was performed and the findings were normal. Analysis of CSF showed pleocytosis, 26 elements/ mL and increased concentrations of proteins. Cytological analysis revealed an increased number of plasma cells (29%. Electrophoretic analysis of proteins disclosed the existance of monoclonal components in the serum

  3. MRI changes in the central nervous system in a child with lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Gieron, M.A. [Dept. of Pediatrics, Univ. of South Florida, Coll. of Medicine, Tampa, FL (United States); Khoromi, S. [Dept. of Neurology, Univ. of South Florida, Coll. of Medicine, Tampa, FL (United States); Campos, A. [Dept. of Pediatrics, Univ. of South Florida, Coll. of Medicine, Tampa, FL (United States)

    1995-05-01

    We report on a 10-year-old girl with systemic lupus erythematosus who presented in status epilepticus as the only manifestation of central nervous system involvement. MRI of the brain showed diffuse gray and white matter lesions which almost completely resolved after treatment with methylprednisolone. MRI findings in this child are similar to those in adults with diffuse clinical manifestations. The study is essential in the initial evaluation of patients suspected of central nervous system lupus. (orig.)

  4. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    Science.gov (United States)

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  5. Central nervous system involvement in acute lymphoblastic leukemia: diagnosis by immunophenotyping

    Directory of Open Access Journals (Sweden)

    Camila Silva Peres Cancela

    2013-08-01

    Full Text Available The central nervous system is the most commonly affected extramedullary site in acute lymphoblastic leukemia. Although morphologic evaluation of the cerebrospinal fluid has been traditionally used for diagnosing central nervous system involvement, it is a method of low sensitivity. The present study aimed at evaluating the use of immunophenotyping in the detection of blasts in the cerebrospinal fluid from children and adolescents with acute lymphoblastic leukemia.

  6. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    Science.gov (United States)

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs.

  7. Central nervous system dysfunction in obesity-induced hypertension.

    Science.gov (United States)

    Head, Geoffrey A; Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Davern, Pamela J

    2014-09-01

    The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin's sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow "neural adaptivity" within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

  8. Congenital and acquired mitochondrial disorders of the central nervous system

    OpenAIRE

    V. V. Nikitina; A. N. Pravdina

    2014-01-01

    Clinical presentations of disorders of the nervous system manifest in young and middle-aged patients with congenital and acquired mitochondrial dysfunctions and cognitive disorders manifest in patients with mitochondrial diseases more often. Nowadays the effective methods of initial diagnosing of these conditions are neurological and neuropsychological examination of patients, using of biochemical markers of mitochondrial diseases: the indices of lactate, total homocysteine in plasma and liqu...

  9. Central nervous system recurrence of systemic lymphoma in the era of stem cell transplantation--an International Primary Central Nervous System Lymphoma Study Group project.

    Science.gov (United States)

    Bromberg, Jacoline E; Doorduijn, Jeanette K; Illerhaus, Gerald; Jahnke, Kristoph; Korfel, Agniezka; Fischer, Lars; Fritsch, Kristina; Kuittinen, Outti; Issa, Samar; van Montfort, Cees; van den Bent, Martin J

    2013-05-01

    Autologous stem cell transplantation has greatly improved the prognosis of systemic recurrent non-Hodgkin's lymphoma. However, no prospective data are available concerning the feasibility and efficacy of this strategy for systemic lymphoma relapsing in the central nervous system. We, therefore, we performed an international multicenter retrospective study of patients with a central nervous system recurrence of systemic lymphoma to assess the outcome of these patients in the era of stem cell transplantation. We collected clinical and treatment data on patients with a first central nervous system recurrence of systemic lymphoma treated between 2000 and 2010 in one of five centers in four countries. Patient- and treatment-related factors were analyzed and compared descriptively. Primary outcome measures were overall survival and percentage of patients transplanted. We identified 92 patients, with a median age of 59 years and a median Eastern Cooperative Oncology Group/World Health Organization performance status of 2, of whom 76% had diffuse large B-cell histology. The majority (79%) of these patients were treated with systemic chemotherapy with or without intravenous rituximab. Twenty-seven patients (29%) were transplanted; age and insufficient response to induction chemotherapy were the main reasons for not being transplanted in the remaining 65 patients. The median overall survival was 7 months (95% confidence interval 2.6-11.4), being 8 months (95% confidence interval 3.8-5.2) for patients ≤ 65 years old. The 1-year survival rate was 34.8%; of the 27 transplanted patients 62% survived more than 1 year. The Memorial Sloan Kettering Prognostic Index for primary central nervous system lymphoma was prognostic for both undergoing transplantation and survival. In conclusion, despite the availability of autologous stem cell transplantation for patients with central nervous system progression or relapse of systemic lymphoma, prognosis is still poor. Long-term survival

  10. Muscle fibers in the central nervous system of nemerteans: spatial organization and functional role.

    Science.gov (United States)

    Petrov, A A; Zaitseva, O V

    2012-08-01

    The system of muscle fibers associated with the brain and lateral nerve cords is present in all major groups of enoplan nemerteans. Unfortunately, very little is known about the functional role and spatial arrangement of these muscles of the central nervous system. This article examines the architecture of the musculature of the central nervous system in two species of monostiliferous nemerteans (Emplectonema gracile and Tetrastemma cf. candidum) using phalloidin staining and confocal microscopy. The article also briefly discusses the body-wall musculature and the muscles of the cephalic region. In both species, the lateral nerve cords possess two pairs of cardinal muscles that run the length of the nerve cords and pass through the ventral cerebral ganglia. A system of peripheral muscles forms a meshwork around the lateral nerve cords in E. gracile. The actin-rich processes that ramify within the nerve cords in E. gracile (transverse fibers) might represent a separate population of glia-like cells or sarcoplasmic projections of the peripheral muscles of the central nervous system. The lateral nerve cords in T. cf. candidum lack peripheral muscles but have muscles similar in their position and orientation to the transverse fibers. The musculature of the central nervous system is hypothesized to function as a support system for the lateral nerve cords and brain, preventing rupturing and herniation of the nervous tissue during locomotion. The occurrence of muscles of the central nervous system in nemerteans and other groups and their possible relevance in taxonomy are discussed.

  11. [Clinical and neuroimaging features of central nervous system impairments in acute intermittent porphyria].

    Science.gov (United States)

    Yuan, Jing; Peng, Bin; You, Hui; Zhang, Wei

    2011-10-25

    To analyze the clinical and neuroimaging features of central nervous system impairments in acute intermittent porphyria, and explore the possible mechanisms. Six cases with intracranial lesions at our hospital from 1991 to 2011 and 13 cases reported in literatures were retrospectively reviewed. The clinical manifestations of central nervous system impairments included seizures, unconsciousness and cortical blindness, etc. EEG (electroencephalogram) showed slow wave or normal. CSF (cerebrospinal fluid) test indicated slightly higher or normal level of CSF protein. Neuroimaging studies showed two types of intracranial lesions. One type (n = 4) mainly affected the cortex and subcortical white matter, especially involving white matter. Another type (n = 2) affected the deep nuclei such as caudate, putamen and thalamus symmetrically. The symptoms of 13 cases reported in literature with central nervous system impairments included unconsciousness, hallucinations, seizures and cortical blindness. Their neuroimaging manifestations were similar with those of the patients at our hospital. Two additional cases showed predominantly cerebral cortex lesions with no involvement of white matter. Acute intermittent porphyria can affect central nervous system, peripheral nervous system and autonomic nervous system. The neuroimaging features of brain may be lesions located in cortex, subcortical white matter and deep nuclei with different mechanisms. A correct diagnosis and a treatment decision should be made during an early stage.

  12. Congenital and acquired mitochondrial disorders of the central nervous system

    Directory of Open Access Journals (Sweden)

    V. V. Nikitina

    2014-01-01

    Full Text Available Clinical presentations of disorders of the nervous system manifest in young and middle-aged patients with congenital and acquired mitochondrial dysfunctions and cognitive disorders manifest in patients with mitochondrial diseases more often. Nowadays the effective methods of initial diagnosing of these conditions are neurological and neuropsychological examination of patients, using of biochemical markers of mitochondrial diseases: the indices of lactate, total homocysteine in plasma and liquor. Neuro-visual study (Magnetic resonance imaging of the brain, MR spectroscopy, tractography, diffusion-weighted magnetic resonance imaging of the brain, mitochondrial DNA typing is actually used for the differential diagnosing of mitochondrial diseases with other disorders that are accompanied by demyelinating disorders.

  13. Isolation and distribution of endomorphins in the central nervous system.

    Science.gov (United States)

    Zadina, James E

    2002-07-01

    Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2, EM-1) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2, EM-2) have the highest affinity and selectivity for the mu-opioid receptor (MOP-R) of all known mammalian opioids. They were isolated from bovine and human brain, and are structurally distinct from the other endogenous opioids. Both EM-1 and EM-2 have potent antinociceptive activity in a variety of animal models of acute, neuropathic and allodynic pain. They regulate cellular signaling processes in a manner consistent with MOP-R-mediated effects. The EMs are implicated in the natural modulation of pain by extensive data localizing EM-like immunoreactivity (EM-LI) near MOP-Rs in several regions of the nervous system known to regulate pain. These include the primary afferents and their terminals in the spinal cord dorsal horn, where EM-2 is well-positioned to modulate pain in its earliest stages of perception. In a nerve-injury model of chronic pain, a loss of spinal EM2-LI occurs concomitant with the onset of chronic pain. The distribution of the EMs in other areas of the nervous system is consistent with a role in the modulation of diverse functions, including autonomic, neuroendocrine and reward functions as well as modulation of responses to pain and stress. Unlike several other mu opioids, the threshold dose of EM-1 for analgesia is well below that for respiratory depression. In addition, rewarding effects of EM-1 can be separated from analgesic effects. These results indicate a favorable therapeutic profile of EM-1 relative to other mu opioids. Thus, the pharmacology and distribution of EMs provide new avenues both for therapeutic development and for understanding the neurobiology of opioids.

  14. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system

    Science.gov (United States)

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M.; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M.

    2017-01-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro. CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06–27.17; odds ratio=6.86, 95% confidence interval, 1.86–25.26, respectively). CCR7 expression in the upper fourth quartile correlated with

  15. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    Science.gov (United States)

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  16. Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Franck, Sophia; Paterka, Magdalena; Birkenstock, Jerome; Zipp, Frauke; Siffrin, Volker; Witsch, Esther

    2016-11-10

    Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

  17. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model.

    Science.gov (United States)

    Slavuljica, Irena; Kveštak, Daria; Huszthy, Peter Csaba; Kosmac, Kate; Britt, William J; Jonjić, Stipan

    2015-03-01

    Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8(+) T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed.

  18. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    Science.gov (United States)

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  19. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  20. Central nervous system tumors and related intracranial pathologies in radium dial workers

    Energy Technology Data Exchange (ETDEWEB)

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs.

  1. Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse.

    Directory of Open Access Journals (Sweden)

    Darius Moharregh-Khiabani

    Full Text Available BACKGROUND: Fumaric acid esters (FAE are a group of compounds which are currently under investigation as an oral treatment for relapsing-remitting multiple sclerosis. One of the suggested modes of action is the potential of FAE to exert a neuroprotective effect. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the impact of monomethylfumarate (MMF and dimethylfumaric acid (DMF on de- and remyelination using the toxic cuprizone model where the blood-brain-barrier remains intact and only scattered T-cells and peripheral macrophages are found in the central nervous system (CNS, thus excluding the influence of immunomodulatory effects on peripheral immune cells. FAE showed marginally accelerated remyelination in the corpus callosum compared to controls. However, we found no differences for demyelination and glial reactions in vivo and no cytoprotective effect on oligodendroglial cells in vitro. In contrast, DMF had a significant inhibitory effect on lipopolysaccharide (LPS induced nitric oxide burst in microglia and induced apoptosis in peripheral blood mononuclear cells (PBMC. CONCLUSIONS: These results contribute to the understanding of the mechanism of action of fumaric acids. Our data suggest that fumarates have no or only little direct protective effects on oligodendrocytes in this toxic model and may act rather indirectly via the modulation of immune cells.

  2. Modeling Tuberculosis in Lung and Central Nervous System

    NARCIS (Netherlands)

    El-Kebir, M.

    2010-01-01

    Tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis (Mtb). Most cases of TB are pulmonary, i.e. the main infection site is in the lung. In this work, we consider pulmonary TB as well as tuberculous meningitis (TBM). The latter is caused by infection of the meninges in the central

  3. Promoting central nervous system regeneration: lessons from cranial nerve I.

    Science.gov (United States)

    Ruitenberg, Marc J; Vukovic, Jana

    2008-01-01

    The olfactory nerve differs from cranial nerves III-XII in that it contains a specialised type of glial cell, called 'olfactory ensheathing cell' (OEC), rather than Schwann cells. In addition, functional neurogenesis persists postnatally in the olfactory system, i.e. the primary olfactory pathway continuously rebuilds itself throughout adult life. The presence of OECs in the olfactory nerve is thought to be critical to this continuous growth process. Because of this intrinsic capacity for self-repair, the mammalian olfactory system has proved as a useful model in neuroregeneration studies. In addition, OECs have been used in transplantation studies to promote pathway regeneration elsewhere in the nervous system. Here, we have reviewed the parameters that allow for repair within the primary olfactory pathway and the role that OECs are thought to play in this process. We conclude that, in addition to intrinsic growth potential, the presence of an aligned substrate to the target structure is a fundamental prerequisite for appropriate restoration of connectivity with the olfactory bulb. Hence, strategies to promote regrowth of injured nerve pathways should incorporate usage of aligned, oriented substrates of OECs or other cellular conduits with additional intervention to boost neuronal cell body responses to injury and/or neutralisation of putative inhibitors.

  4. [Primary malignant melanoma of the central nervous system: A diagnostic challenge].

    Science.gov (United States)

    Quillo-Olvera, Javier; Uribe-Olalde, Juan Salvador; Alcántara-Gómez, Leopoldo Alberto; Rejón-Pérez, Jorge Dax; Palomera-Gómez, Héctor Guillermo

    2015-01-01

    The rare incidence of primary malignant melanoma of the central nervous system and its ability to mimic other melanocytic tumors on images makes it a diagnostic challenge for the neurosurgeon. A 51-year-old patient, with a tumor located in the right forniceal callosum area. Total surgical excision was performed. Histopathological result was consistent with the diagnosis of primary malignant melanoma of the central nervous system, after ruling out extra cranial and extra spinal melanocytic lesions. The primary malignant melanoma of the central nervous system is extremely rare. There are features in magnetic resonance imaging that increase the diagnostic suspicion; nevertheless there are other tumors with more prevalence that share some of these features through image. Since there is not an established therapeutic standard its prognosis is discouraging. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  5. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Science.gov (United States)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  6. Generation of a central nervous system catheter-associated infection in mice with Staphylococcus epidermidis.

    Science.gov (United States)

    Snowden, Jessica N

    2014-01-01

    Animal models are valuable tools for investigating the in vivo pathogenesis of Staphylococcus epidermidis infections. Here, we present the procedure for generating a central nervous system catheter-associated infection in a mouse, to model the central nervous system shunt infections that frequently complicate the treatment of hydrocephalus in humans. This model uses stereotactic guidance to place silicone catheters, pre-coated with S. epidermidis, into the lateral ventricles of mice. This results in a catheter-associated infection in the brain, with concomitant illness and inflammation. This animal model is a valuable tool for evaluating the pathogenesis of bacterial infection in the central nervous system, the immune response to these infections and potential treatment options.

  7. Infecciones del sistema nervioso central en urgencias Infections of the central nervous system in emergency department

    Directory of Open Access Journals (Sweden)

    I. Gastón

    2008-01-01

    Full Text Available Las infecciones del sistema nervioso central son enfermedades frecuentes en la atención urgente, pudiendo ser de origen bacteriano, parasitario o vírico. Los síntomas iniciales pueden ser inespecíficos, lo que puede dificultar y retrasar su diagnóstico, por lo que es de suma importancia toda la información que pueda obtenerse a través de la anamnesis y exploración física y con frecuencia exploraciones complementarias. En los últimos cien años, con la introducción de fármacos antibióticos ha disminuido de forma importante la mortalidad secundaria a meningoencefalitis, pero a pesar de ello siguen provocando alta morbi-mortalidad. Otros fenómenos, como las campañas de vacunación, movimientos migratorios, infección por el virus de la inmunodeficiencia humana y otros estados de inmunosupresión, han dado lugar a importantes cambios epidemiológicos como son la práctica desaparición de algunas infecciones o la aparición de otras previamente casi inexistentes. La lista de infecciones potenciales de sistema nervioso central es extensa por lo que en este artículo de revisión expondremos desde el punto de vista clínico, diagnóstico y terapéutico las más frecuentes en nuestro medio y algunas que, aunque poco frecuentes, pueden requerir atención urgente por su gravedad.Infections of the central nervous system are frequent diseases in emergency care. They can have a bacterial, parasitic or viral origin. Initial symptoms can be non-specific, which can complicate and delay diagnosis, hence the extreme importance of all the information that can be obtained through anamnesis and physical exploration, with frequent complementary explorations. In the last hundred years, with the introduction of antibiotic drugs, there has been a significant fall in mortality secondary to meningoencephalitis, but in spite of that they continue to provoke high morbidity and mortality. Other phenomena, such as vaccination campaigns, migratory movements

  8. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  9. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  10. [Opiate receptors and endorphins at the central nervous system level].

    Science.gov (United States)

    Simon, E J

    1978-01-01

    Four years ago, sterospecific sites for the bending of opiates were discovered within the brain of animals and the human being. All of the properties of these sites are in conformity with the proposition that they are pharmacological receptors which have long been postulated for these drugs. The binding of morphine or of one of its derivatives to these sites should result in chemical or physical reactions leading to well known pharmacological responses. These reactions following the binding of drugs to the receptors are not yet known, but there is some evidence that cyclical nucleotides play a role. The affinity of a whole series of morphine derivatives, agonists and atagonists, is well correlated with their pharmacological effectiveness. In the presence of sodium salts, antagonists become more strongly bound and agonists less strongly than in the absence of sodium. The evidence is presented. This is explained by an equilibrium between two formations of the receptor: one characteristic of the absence of sodium and one of its presence. Receptors are found in the nervous system of all vertebrates and their distribution has been studied in the human brain. The regions with the highest concentration of receptors are those of the limbic system. A high level exists also in the "substantia gelatinosa" of the spinal cord, which is involved in the passage of painful messages. Study of the function of morphine receptors has led to the isolation, in animal brain, of a number of peptides with morphine properties named endorphines. The first two endorphines isolated were pentapeptides named encephalins. The properties of endorphines from the subject of several lecture in this course.

  11. The role of the central nervous system in osteoarthritis pain and implications for rehabilitation.

    Science.gov (United States)

    Murphy, Susan L; Phillips, Kristine; Williams, David A; Clauw, Daniel J

    2012-12-01

    It has been known for some time that central nervous system (CNS) pain amplification is present in some individuals with osteoarthritis; the implications of this involvement, however, are just starting to be realized. In the past year, several research reviews have focused on evidence supporting shared mechanisms across chronic pain conditions for how pain is generated and maintained in the CNS, irrespective of the underlying structural pathology. This review article focuses on current literature describing CNS amplification in osteoarthritis by discussing peripheral sensitization, central sensitization, and central augmentation, and the clinical manifestation of central augmentation referred to as centralized pain, and offers considerations for rehabilitation treatment and future directions for research.

  12. Central nervous system involvement in systemic lupus erythematosus: Overview on classification criteria.

    Science.gov (United States)

    Sciascia, Savino; Bertolaccini, Maria Laura; Baldovino, Simone; Roccatello, Dario; Khamashta, Munther A; Sanna, Giovanni

    2013-01-01

    Central nervous system (CNS) involvement is one of the major causes of morbidity and mortality in systemic lupus erythematosus (SLE) patients. Clinical manifestations can involve both the central and peripheral nervous systems, and they must be differentiated from infections, metabolic complications, and drug-induced toxicity. Recognition and treatment of CNS involvement continues to represent a major diagnostic challenge. In this Review, we sought to summarise the current insights on the various aspects of neuropsychiatric SLE with special emphasis on the terminology and classification criteria needed to correctly attribute the particular event to SLE.

  13. Primary central nervous system lymphoma presenting as isolated oculomotor nerve palsy

    Directory of Open Access Journals (Sweden)

    Terence Tan, MBBS

    2014-09-01

    Full Text Available The authors report an unusual case of primary central nervous system lymphoma presenting with isolated pupil-involved oculomotor nerve palsy. Magnetic resonance imaging demonstrated leptomeningeal involvement of the midbrain and interpeduncular cistern, a single hypothalamic lesion, and intraventricular involvement. Diffuse large B-cell lymphoma was confirmed by stereotactic intraventricular biopsy. Combination chemotherapy with methotrexate, vincristine, procarbazine and rituximab was instituted with resolution of oculomotor nerve palsy and complete disease remission. An interdisciplinary approach involving neurosurgeons, neuroradiologists, neuropathologists and neurologists is crucial in the management of primary central nervous system lymphoma.

  14. Fetal central nervous system development and alcohol--the evidence so far.

    Science.gov (United States)

    Ahmed-Landeryou, Musharrat Jabeen

    2012-12-01

    Currently in the UK, there is no absolute guidance about alcohol consumption in pregnancy. The guidance for drinking during pregnancy is one or two units of alcohol one or two times weekly, but conservative advice is to abstain as a cautionary measure. Despite the lack of consensus about the safe levels of alcohol consumption in pregnancy, there is increasing evidence of the impact of alcohol on the developing central nervous system. This article explores the evidence regarding alcohol consumption and its effects on the developing fetal central nervous system.

  15. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    Science.gov (United States)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  16. Central nervous system medications and falls risk in men aged 60-75 years

    DEFF Research Database (Denmark)

    Masud, Tahir; Frost, Morten; Ryg, Jesper

    2013-01-01

    Introduction: drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years.......Introduction: drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years....

  17. The application values of cerebrospinal fluid cytological examination by slide centrifugation for diagnosis of central nervous system infectious diseases

    Directory of Open Access Journals (Sweden)

    LIU Ting-ting

    2013-02-01

    Full Text Available According to the analysis of cerebrospnial fluid (CSF cytological examination (by slide centrifugation results of 15 940 central nervous system infectious cases, this cytologic examination method shows definite diagnostic values as follows: 1 better etiological diagnostic value for central nervous system infectious diseases, such as purulent, viral, tuberculous, fungus and parasitic encephalitis meningitis and meningoencephalitis; 2 better differential diagnostic value for acute infectious toxic encephalopathy, meningeal carcinomatosis and central nervous system non-infectious diseases such as tumorous, leukemic and hemorrhagic meningoencephalitis and encephalopathy; 3 better clinical value for severity monitoring and prognostic judgement of central nervous system infectious diseases.

  18. Compartmentalized Histoplasma capsulatum Infection of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Albert J. Eid

    2015-01-01

    Full Text Available Background. Histoplasmosis is a common fungal infection in the southeastern, mid-Atlantic, and central states; however, its presentation can be atypical. Case Presentation. We report a case of Histoplasma capsulatum infection presenting as slowly progressive weakness in the lower extremities, followed by the development of numbness below the midthoracic area, urinary incontinence, and slurred speech. Brain MRI showed leptomeningeal enhancement, predominantly linear, involving the basal cisterns, the brainstem, and spinal cord. Cerebrospinal fluid analysis showed lymphocytic pleocytosis. Discussion. CNS histoplasmosis is usually seen in patients with disseminated histoplasmosis. Isolated CNS histoplasmosis is rarely seen, especially in immunocompetent patients. Conclusions. Histoplasmosis should be considered in the differential diagnosis of patients experiencing slowly progressive neurological deficit.

  19. THE RESUSCITATION OF THE CENTRAL NERVOUS SYSTEM OF MAMMALS.

    Science.gov (United States)

    Stewart, G N; Guthrie, C C; Burns, R L; Pike, F H

    1906-03-26

    the same side as the stimulus, crossing of reflexes, to involve the other side, not occurring till later. As a rule, all reflexes return, and a short period of quiet follows. The anterior part of the cord again becomes irritable to strychnine, but succumbs to its action before the normal part. Spasms, of tonic, clonic, or mixed type, then appear, terminating in (a) death, (b) partial or (c) complete recovery. In partial recovery, disturbances of locomotion, such as walking in a circle, paralysis, dementia, loss of sight, hearing, and general intelligence, characterize the post-convulsive period. After complete recovery, there is a return to normal deportment. No gross lesions of the nervous system, other than a congested appearance of the previously anaemic area, were observed. Transection of the spinal cord stops the spasms below the level of section. Hemisection of the cord stops the spasms on the same side, below the level of section. Death, without any return of the reflexes after release of the cerebral arteries, has followed an occlusion of seven and one-half minutes. Respiration has returned after an occlusion of one hour. Five animals have recovered completely after an occlusion of seven minutes or more. Only one animal has recovered completely after an occlusion of fifteen minutes. No animal has recovered completely after an occlusion of twenty minutes. In Herzen's (26) resuscitation of an animal after several hours of cerebral anaemia, there must have been some anastomotic channels to the brain. Mayer's (27) limit of ten to fifteen minutes of cerebral anaemia, beyond which resuscitation is not practicable, is close to the correct one. It appears to us that, in cases of resuscitation two hours after cessation of the heart-beat, (Prus., loc.cit.) the auricles must have kept up a slow but, in some degree, an efficient movement of the blood through the brain. The truth of this suggestion might be tested by introducing some easily recognized, non

  20. Biological characteristics of brain natriuretic peptide and its association with central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Yubao Huang; Changxiang Yan; Chunjiang Yu

    2007-01-01

    OBJECTIVE: To explain the mechanisms of tuhe synthesis, secretion and regulation of brain natriuretic peptide (BNP), and analyze its role in central nervous system diseases.DATA SOURCES: An online search of Pubmed was undertaken to identify articles related to BNP published in English from January 1990 to February 2007 by using the Key words of "brain natriuretic peptide (BNP), central nervous system, subarachnoid hemorrhage (SAH), brain edema, epilepsy". Other articles were searched in China Hospital Knowledge Database (CHKD) by concrete name of journals and title of articles.STUDY SELECTION: The collected articles were primarily screened, those about BNP and its association with central nervous system diseases were selected, whereas the obviously irrelative ones excluded, and the full-texts of the other literatures were searched manually.DATA EXTRACTION: Totally 96 articles were collected, 40 of them were enrolled, and the other 56 were excluded due to repetitive studies or reviews.DATA SYNTHESIS: At present, there are penetrating studies on BNP in the preclinical medicine and clinical medicine of cerebrovascular and cardiovascular diseases, and the investigative outcomes have been gradually applied in clinical practice, and satisfactory results have been obtained. However, the application of BNP in diagnosing and treating central nervous system diseases is still at the experimental phase without -outstanding outcomes, thus the preclinical and clinical studies should be enhanced.CONCLUSION: As a kind of central medium or modulator, BNP plays a certain role in the occurrence,development and termination of central nervous system diseases, the BNP level in serum has certain changing law in AH,brainedema,epilepsy,etc., but the specific mechanisms are unclear.

  1. Vascular, glial, and lymphatic immune gateways of the central nervous system

    NARCIS (Netherlands)

    Engelhardt, Britta; Carare, Roxana O.; Bechmann, Ingo; Fluegel, Alexander; Laman, Jon D.; Weller, Roy O.

    2016-01-01

    Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. R

  2. A perspective on the role of class III semaphorin signaling in central nervous system trauma

    NARCIS (Netherlands)

    Mecollari, Vasil; Nieuwenhuis, Bart; Verhaagen, J.

    2014-01-01

    Traumatic injury of the central nervous system (CNS) has severe impact on the patients' quality of life and initiates many molecular and cellular changes at the site of insult. Traumatic CNS injury results in direct damage of the axons of CNS neurons, loss of myelin sheaths, destruction of the surro

  3. The burden and epidemiology of community-acquired central nervous system infections

    DEFF Research Database (Denmark)

    Erdem, H; Inan, A; Guven, E

    2017-01-01

    Risk assessment of central nervous system (CNS) infection patients is of key importance in predicting likely pathogens. However, data are lacking on the epidemiology globally. We performed a multicenter study to understand the burden of community-acquired CNS (CA-CNS) infections between 2012...

  4. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  5. Microglia - insights into immune system structure, function, and reactivity in the central nervous system

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia A; Vinters, Harry V

    2011-01-01

    Microglia are essential cellular components of a well-functioning central nervous system (CNS). The development and establishment of the microglial population differs from the other major cell populations in the CNS i.e. neurons and macroglia (astrocytes and oligodendrocytes). This different...

  6. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  7. ANTIEPILEPTIC MEDICATION IN PREGNANCY - LATE EFFECTS ON THE CHILDRENS CENTRAL-NERVOUS-SYSTEM DEVELOPMENT

    NARCIS (Netherlands)

    VANDERPOL, MC; HADDERSALGRA, M; HUISJES, HJ; TOUWEN, BCL

    1991-01-01

    In a follow-up study long-term effects of antenatal exposure to two anticonvulsant drugs, phenobarbital and carbamazepine on central nervous system development were evaluated. Children aged 6 to 13 years of epileptic mothers who used phenobarbital (n = 13), carbamazepine (n = 12), phenobarbital plus

  8. Biomarkers in early phase development of central nervous system drugs : a conceptual framework

    NARCIS (Netherlands)

    Post, Jeroen-Paul van der

    2006-01-01

    The main objective of this thesis is to provide a conceptual framework for the use of Central Nervous System (CNS) biomarkers in early phase clinical drug development. In the Introduction the current use of biomarkers in early CNS drug development is discussed. A conceptual framework for the classif

  9. Selenium in the central nervous system of the rat after exposure to L-selenomethionine

    DEFF Research Database (Denmark)

    Grønbæk, Henning; Thorlacius-Ussing, O.

    1990-01-01

    in the anterior pituitary of rats exposed to sodium selenite (Thorlacius-Ussing and Danscher 1985). This histochemical method demonstrates complexes of exogenous selenium and endogenous metal. In the central nervous system and the anterior pituitary, selenium is suggested to form bonds with zinc (Danscher 1984...

  10. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  11. Expression of Nogo-A mRNA after injury of the rat central nervous system

    Institute of Scientific and Technical Information of China (English)

    Xigao Guo; Yang Guo; Tao Huang

    2008-01-01

    BACKGROUND: Nogo protein has been identified as an inhibitor of axonal growth, which was highly expressed in central nervous system; however, there are only a few studies on changes of Nogo-A expression following central nervous system injury.OBJECTIVE: To investigate the dynamic expression of Nogo-A mRNA after rat central nervous system injury.DESIGN: Randomized controlled animal study.MATERIALS: Thirty-five rats were randomly divided into two groups, normal animal group (n = 5) and model group (n = 30). The model group was then divided into six subgroups at six time points: 12, 24 hours and 3, 9, 15, and 21 days post-injury, with five rats in each subgroup.METHODS: The left parietal lobe of rats was contused by free-fall strike, and total RNA was extracted from the entire brain tissue. Semi-quantitative RT-PCR was used to detect Nogo-A mRNA expression, and the ratio between expression of the target gene and glyceraldehyde phosphate dehydrogenase was used to determine the relative expression level.MAIN OUTCOME MEASURES: To determine whether Nogo-A mRNA expression was higher than usual following brain injury.RESULTS: The level of Nogo-A mRNA started to increase 12 hours after injury (P 0.05).CONCLUSION: After injury of the central nervous system, Nogo-A may play a pivotal role in obstructing regeneration of the nerve.

  12. Mild hypothermia as a treatment for central nervous system injuries Positive or negative effects?

    Institute of Scientific and Technical Information of China (English)

    Rami Darwazeh; Yi Yan

    2013-01-01

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure fol owing traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever fol owing brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as wel as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.

  13. Diagnostic and Therapeutic Challenges in a Liver Transplant Recipient with Central Nervous System Invasive Aspergillosis

    Science.gov (United States)

    Dionissios, Neofytos; Shmuel, Shoham; Kerry, Dierberg; Katharine, Le; Simon, Dufresne; Sean, Zhang X; Kieren, Marr A

    2012-01-01

    This is a case report of central nervous system (CNS) invasive aspergillosis (IA) in a liver transplant recipient, which illustrates the utility of enzyme-based diagnostic tools for the timely and accurate diagnosis of IA, the treatment challenges and poor outcomes associated with CNS IA in liver transplant recipients. PMID:22676861

  14. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation

    DEFF Research Database (Denmark)

    Krakowski, M L; Owens, T

    2000-01-01

    shown, although many studies have shown extravasation of activated or memory T cells. We have used a novel experimental system to track naive T cells to the central nervous system (CNS) in TCR transgenic mice with adoptively transferred experimental autoimmune encephalomyelitis. Ovalbumin (OVA...

  15. Treatment of Central Nervous System Tuberculosis Infections and Neurological Complications of Tuberculosis Treatment

    NARCIS (Netherlands)

    van der Harst, J. J.; Luijckx, G. J.

    2011-01-01

    Tuberculosis (TB) with central nervous system (CNS) manifestation is a form of TB with a high mortality and morbidity. Tuberculous meningitis (TM) is the most common form of CNS-TB. Although diagnosis of CNS-TB can be challenging, early treatment of CNS-TB is related to a better outcome. If CNS-TB i

  16. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether sp...

  17. Metallothionein expression in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Ortega-Aznar, A;

    2003-01-01

    Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS...

  18. Vascular, glial, and lymphatic immune gateways of the central nervous system

    NARCIS (Netherlands)

    Engelhardt, Britta; Carare, Roxana O.; Bechmann, Ingo; Fluegel, Alexander; Laman, Jon D.; Weller, Roy O.

    Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system.

  19. A perspective on the role of class III semaphorin signaling in central nervous system trauma

    NARCIS (Netherlands)

    Mecollari, Vasil; Nieuwenhuis, Bart; Verhaagen, J.

    2014-01-01

    Traumatic injury of the central nervous system (CNS) has severe impact on the patients' quality of life and initiates many molecular and cellular changes at the site of insult. Traumatic CNS injury results in direct damage of the axons of CNS neurons, loss of myelin sheaths, destruction of the

  20. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders

    NARCIS (Netherlands)

    De Keyser, Jacques; Mostert, Jop P.; Koch, Marcus W.

    2008-01-01

    Once considered little more than the glue that holds neurons in place, astrocytes are now becoming appreciated for the key roles they play in central nervous system functions. They supply neurons and oligodendrocytes with substrates for energy metabolism, control extracellular water and electrolyte

  1. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors

    NARCIS (Netherlands)

    Vermeulen, Jeroen F; van Hecke, Wim; Spliet, Wim G M; Villacorta Hidalgo, José; Fisch, Paul; Broekhuizen, Roel; Bovenschen, Niels

    2016-01-01

    BACKGROUND: Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant primary brain tumors that occur in young infants. Using current standard therapy, up to 80% of the children still dies from recurrent disease. Cellular immunotherapy might be key to improve overall surviv

  2. Hemichorea in a patient with HIV-associated central nervous system histoplasmosis.

    Science.gov (United States)

    Estrada-Bellmann, Ingrid; Camara-Lemarroy, Carlos R; Flores-Cantu, Hazael; Calderon-Hernandez, Hector J; Villareal-Velazquez, Hector J

    2016-01-01

    Central nervous system histoplasmosis is a rare opportunistic infection with a heterogeneous clinical presentation. We describe the first case of human immunodeficiency virus-associated cerebral histoplasmosis presenting with hemichorea. The patient recovered after treatment with conventional amphotericin B and itraconazole.

  3. Treatment of Central Nervous System Tuberculosis Infections and Neurological Complications of Tuberculosis Treatment

    NARCIS (Netherlands)

    van der Harst, J. J.; Luijckx, G. J.

    Tuberculosis (TB) with central nervous system (CNS) manifestation is a form of TB with a high mortality and morbidity. Tuberculous meningitis (TM) is the most common form of CNS-TB. Although diagnosis of CNS-TB can be challenging, early treatment of CNS-TB is related to a better outcome. If CNS-TB

  4. A clinicopathologic analysis of primary central nervous system lymphomatoid granulomatosis: case report and literature review

    Directory of Open Access Journals (Sweden)

    FU Yong-juan

    2012-10-01

    Full Text Available Objective To investigate the clinical, neuroimaging and histopathological features of primary central nervous system lymphomatoid granulomatosis (LG. Methods The clinical manifestation, neuroimaging, histopathological and biological features of a patient with primary central nervous system LG were presented, and the related literatures were reviewed. Results A 57-year-old male presented with memory impairment, weak in orientation, calculation, apprehension and judgment for 3 months. Magnetic resonance imaging (MRI showed space-occupying lesions in bilateral frontal lobes, with T1WI isointensity and T2WI hyperintensity, and the enhancement was irregular. The lesion was slight expansive with yellow surface and gray-white section in color and soft texture and abundant blood supply. Microscopically, the lesion was characterized by angiocentric and angiodestructive lymphoproliferation, partly showed the structure of LG characterized by T cell predominant proliferation, macrophage infiltration, astrocyte activation, small vessel proliferation and hyalinization, and partly showed the structure of lymphoma characterized by diffuse atypical B cell proliferation, with IgK monoclonal production. Epstein-Barr virus (EBV was negative. Conclusion As a precursor disease of lymphoma, LG should be considered in the differential diagnosis of both diffuse and multifocal lesions of the central nervous system. The relavance between primary central nervous system LG and EBV infection should be further discussed.

  5. Serotonin-like immunoreactivity in the central nervous system of two Ixodid tick species

    Science.gov (United States)

    Immunocytochemistry was used to detect the presence of serotonin-like immunoreactive (5HT-IR) neurons and neuronal processes in the central nervous system (CNS), the synganglion, of two Ixodid tick species; the winter tick, Dermacentor albipictus and the lone star tick, Amblyomma americanum. Seroto...

  6. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders

    NARCIS (Netherlands)

    De Keyser, Jacques; Mostert, Jop P.; Koch, Marcus W.

    2008-01-01

    Once considered little more than the glue that holds neurons in place, astrocytes are now becoming appreciated for the key roles they play in central nervous system functions. They supply neurons and oligodendrocytes with substrates for energy metabolism, control extracellular water and electrolyte

  7. An adult case of chronic myelogenous leukemia with myeloblastic involvement of the central nervous system.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1984-06-01

    Full Text Available A 31-year-old female with chronic myelogenous leukemia, who developed myeloblastic involvement of the central nervous system during acute myeloblastic transformation of the disease, was treated with methotrexate intrathecally. The therapy produced prompt clinical response and complete reversal of abnormal cerebrospinal fluid findings. However, the patient expired 10 months following the acute blastic crisis.

  8. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis.

    NARCIS (Netherlands)

    Raijmakers, R.; Vogelzangs, J.H.P.; Croxford, J.L.; Wesseling, P.; Venrooij, W.J.W. van; Pruijn, G.J.M.

    2005-01-01

    Immunization of mammals with central nervous system (CNS)-derived proteins or peptides induces experimental autoimmune encephalomyelitis (EAE), a disease resembling the human autoimmune disease multiple sclerosis (MS). Both diseases are accompanied by destruction of a part of the of the myelin sheat

  9. Non-viral Nucleic Acid Delivery Strategies to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    James-Kevin Tan

    2016-11-01

    Full Text Available With an increased prevalence and understanding of central nervous system injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the central nervous system and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection, and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the central nervous system are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for central nervous system applications and will ultimately bring non-viral vectors closer to clinical application.

  10. The long term effects of chemotherapy on the central nervous system

    OpenAIRE

    2006-01-01

    Cranial radiotherapy is known to have adverse effects on intelligence. A new study shows that chemotherapy is also toxic to the central nervous system, especially to neural progenitor cells and oligodendrocytes. By identifying the cell populations at risk, these results may help explain the neurological problems previously seen after chemotherapy.

  11. ANTIEPILEPTIC MEDICATION IN PREGNANCY - LATE EFFECTS ON THE CHILDRENS CENTRAL-NERVOUS-SYSTEM DEVELOPMENT

    NARCIS (Netherlands)

    VANDERPOL, MC; HADDERSALGRA, M; HUISJES, HJ; TOUWEN, BCL

    In a follow-up study long-term effects of antenatal exposure to two anticonvulsant drugs, phenobarbital and carbamazepine on central nervous system development were evaluated. Children aged 6 to 13 years of epileptic mothers who used phenobarbital (n = 13), carbamazepine (n = 12), phenobarbital plus

  12. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    Science.gov (United States)

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  13. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module VII. Central Nervous System.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the central nervous system is one of fifteen modules designed for use in the training of emergency medical technicians. Four units of study are presented: (1) anatomy and physiology; (2) assessment of patients with neurological problems; (3) pathophysiology and management of neurological problems; (4)…

  14. A case of central nervous system infection due to Cladophialophora bantiana

    NARCIS (Netherlands)

    Kantarcioglu, A Serda; Guarro, Josep; de Hoog, G Sybren; Apaydin, Hulya; Kiraz, Nuri; Balkan, Ilker Inanç; Ozaras, Resat

    2016-01-01

    BACKGROUND: Cladophialophora bantiana is a melanised mold with a pronounced tropism for the central nervous system, almost exclusively causing human brain abscesses. CASE REPORT: We describe a case of cerebral infection by this fungus in an otherwise healthy 28-year-old coal-miner. Environmental occ

  15. Treatment of Central Nervous System Tuberculosis Infections and Neurological Complications of Tuberculosis Treatment

    NARCIS (Netherlands)

    van der Harst, J. J.; Luijckx, G. J.

    2011-01-01

    Tuberculosis (TB) with central nervous system (CNS) manifestation is a form of TB with a high mortality and morbidity. Tuberculous meningitis (TM) is the most common form of CNS-TB. Although diagnosis of CNS-TB can be challenging, early treatment of CNS-TB is related to a better outcome. If CNS-TB i

  16. Employment and disability pension after central nervous system infections in adults

    DEFF Research Database (Denmark)

    Roed, Casper; Sørensen, Henrik Toft; Rothman, Kenneth J

    2015-01-01

    In this nationwide population-based cohort study using national Danish registries, in the period 1980-2008, our aim was to study employment and receipt of disability pension after central nervous system infections. All patients diagnosed between 20 and 55 years of age with meningococcal (n = 451...

  17. Herpes simplex virus type 2 infections of the central nervous system

    DEFF Research Database (Denmark)

    Omland, Lars Haukali; Vestergaard, Bent Faber; Wandall, Johan

    2008-01-01

    Herpes simplex virus type 2 (HSV-2) infections of the central nervous system (CNS) are rare with meningitis as the most common clinical presentation. We have investigated the clinical spectrum of CNS infections in 49 adult consecutive patients with HSV-2 genome in the cerebrospinal fluid (CSF). HSV...

  18. A case of central nervous system infection due to Cladophialophora bantiana

    NARCIS (Netherlands)

    Kantarcioglu, A Serda; Guarro, Josep; de Hoog, G Sybren; Apaydin, Hulya; Kiraz, Nuri; Balkan, Ilker Inanç; Ozaras, Resat

    2016-01-01

    BACKGROUND: Cladophialophora bantiana is a melanised mold with a pronounced tropism for the central nervous system, almost exclusively causing human brain abscesses. CASE REPORT: We describe a case of cerebral infection by this fungus in an otherwise healthy 28-year-old coal-miner. Environmental

  19. Creatine kinase in the serum of patients with acute infections of the central nervous system

    DEFF Research Database (Denmark)

    Peterslund, N A; Heinsvig, E M; Christensen, K D

    1985-01-01

    Serum creatine kinase was assessed in 94 consecutive patients without convulsions admitted to hospital due to suspicion of infection of the central nervous system. No reliable discrimination between patients with aseptic and those with bacterial meningitis was obtained. Patients with bacterial...

  20. No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau)

    OpenAIRE

    Krut, J. J.; Price, R W; Zetterberg, H; Fuchs, D.; Hagberg, L.; YILMAZ, A.; Cinque, P.; Nilsson, S; Gisslén, M.

    2016-01-01

    BACKGROUND: The prevalence of neurocognitive deficits are reported to be high in HIV-1 positive patients, even with suppressive antiretroviral treatment, and it has been suggested that HIV can cause accelerated aging of the brain. In this study we measured phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as a potential marker for premature central nervous system (CNS) aging. P-tau increases with normal aging but is not affected by HIV-associated neurocognitive disorders. METHODS: With ...

  1. Diagnostic accuracy of frozen section in Central nervous system lesions, a 10-year study.

    Directory of Open Access Journals (Sweden)

    Maliheh KHODDAMI*

    2015-01-01

    Full Text Available How to Cite This Article: Khoddami M, Akbarzadeh A, Mordai A, Bidari Zerehpoush F, Alipour H, Samadzadeh S, Alipour B.Diagnostic Accuracy of Frozen Section of Central Nervous System Lesions: A 10-Year Study. Iran J Child Neurol. 2015 Winter;9(1:25-30. AbstractObjectiveDefinitive diagnosis of the central nervous system (CNS lesions is unknown prior to histopathological examination. To determine the method and the endpoint for surgery, intraoperative evaluation of the lesion helps the surgeon.In this study, the diagnostic accuracy and pitfalls of using frozen section (FS ofCNS lesions is determined.Materials & MethodsIn this retrospective study, we analyzed the results of FS and permanent diagnoses of all CNS lesions by reviewing reports from 3 general hospitals between March 2001 and March 2011.Results273 cases were reviewed and patients with an age range from 3 to 77 years of age were considered. 166 (60.4% had complete concordance between FS and permanent section diagnosis, 83 (30.2% had partial concordance, and 24 cases (9.5% were discordant. Considering the concordant and partially concordant cases, the accuracy rate was 99.5%, sensitivity was 91.4%, specificity was 99.7%, and positive and negative predictive values were 88.4% and 99.8%, respectively.ConclusionOur results show high sensitivity and specificity of FS diagnosis in the evaluation of CNS lesions. A Kappa agreement score of 0.88 shows high concordance for FS results with permanent section. Pathologist’s misinterpretation, small biopsy samples (not representative of the entire tumor, suboptimal slides, and inadequate information about tumor location and radiologic findings appear to be the major causes for these discrepancies indicated from our study. ReferencesTaxy JB, Anthony G. Biopsy interpretation: the frozen section. 1st ed. China: Lippincott Williams & Wilkins; 2010. P.301-3.Somerset HL, Kleinschmidt-DeMasters BK. Approach to the intraoperative consultation for

  2. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    Directory of Open Access Journals (Sweden)

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  3. Secondary infiltration of the central nervous system in patients with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Talita Maira Bueno da Silveira da Rocha

    2013-01-01

    Full Text Available OBJECTIVE: To investigate the incidence and risk factors of infiltration of the central nervous system after the initial treatment of diffuse large B-cell lymphoma in patients treated at Santa Casa de Misericórdia de São Paulo. METHODS: A total of 133 patients treated for diffuse large B-cell lymphoma from January 2001 to April 2008 were retrospectively analyzed in respect to the incidence and risk factors of secondary central nervous system involvement of lymphoma. Intrathecal prophylaxis was not a standard procedure for patients considered to be at risk. This analysis includes patients whether they received rituximab as first-line treatment or not. RESULTS: Nine of 133 (6.7% patients developed central nervous system disease after a mean observation time of 29 months. The median time to relapse or progression was 7.9 months after diagnosis and all but one patient died despite the treatment administered. Twenty-six (19.5% patients of this cohort received rituximab as first-line treatment and nine (7.1% received intrathecal chemoprophylaxis. Of the nine patients that relapsed, seven (77.7% had parenchymal central nervous system involvement; seven (77.7% had stage III or IV disease; one (11.1% had bone marrow involvement; two (22.2% had received intrathecal chemoprophylaxis; and 3 (33.3% had taken rituximab. In a multivariate analysis, the risk factors for this infiltration were being male, previous use of intrathecal chemotherapy and patients that were refractory to initial treatment. CONCLUSION: Central nervous system infiltration in this cohort is similar to that of previous reports in the literature. As this was a small cohort with a rare event, only three risk factors were important for this infiltration

  4. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Trebst, C; Sørensen, Torben Lykke; Kivisäkk, P

    2001-01-01

    Mononuclear phagocytes (monocytes, macrophages, and microglia) are considered central to multiple sclerosis (MS) pathogenesis. Molecular cues that mediate mononuclear phagocyte accumulation and activation in the central nervous system (CNS) of MS patients may include chemokines RANTES/CCL5...

  5. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease.

    Science.gov (United States)

    Wang, Yan; Xiong, Lilin; Tang, Meng

    2017-03-16

    Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

  6. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Science.gov (United States)

    2010-09-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Joint Meeting of the Peripheral and Central Nervous System... the public. Name of Committees: Peripheral and Central Nervous System Drugs Advisory Committee and the...

  7. Immunohistochemical distribution of Calbindin D-28K immunoreactivity in the central nervous system of adult cat

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; LI Jin-lian; XIONG Kang-hui; LI Ji-shuo

    2002-01-01

    Objective: In order to get more information about the possible functions of Calbindin D-28K in the central nervous system of adult cat, the distribution of Calbindin D-28K in the central nervous system of adult cat was examined. Methods: Immunohistochemical staining techniques were used, and immunostained sections were observed under a light microscopy. Results: A high density of both immunoreactive perikarya and fibers were observed in the basal ganglia, amygdaloid complex, nucleus of the fields of Forel, subthalamic nucleus, paracentral nucleus, pulvinar nucleus, subthalamus, dorsal hypothalamic area, lateral hypothalamic area, anterior hypothalamus, suprachiasmatic nucleus, superior colliculus, inferior colliculus, oculomo-tor nucleus, superior olivary complex, marginal nucleus of the brachium conjunctivum, vestibular nuclei, the spinal trigeminal nucleus, nucleus of the solitary tract, cuneate nucleus, inferior olivary complex, dorsal motor nucleus of the vagus nerve, the molecular layer of the cerebellum, the purkinje cell layer of the cerebellum and in the laminae Ⅱ of the spinal cord, whereas the dentate gyrus, the central medial nucleus of the thalamus, the paracentral and central lateral nucleus of the thalamus, the lateral dorsal nucleus of the thalamus,the ventrolateral complex of the thalamus, the medioventral nucleus of the thalamus, the posterior hypothalamic area, the dorsal hypothalamic area, the infundibular nucleus, the dorsomedial hypothalamic nucleus and the interfascicular nucleus had just a high density of immunoreactive perikarya, and no positive fibres were detected in these areas. Conclusion: The present results showed that Calbindin D-28K-like immunoreactivity was widely distributed throughout the central nervous system of adult cat and might play an important role in the activities of the neurons in the central nervous system of adult cat.

  8. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    Science.gov (United States)

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL.

  9. Central and peripheral nervous system functions are independently disturbed in HIV-1 infected patients.

    Science.gov (United States)

    von Giesen, Hans-Jürgen; Köller, Hubertus; Hefter, Harald; Arendt, Gabriele

    2002-06-01

    We examined the peripheral nervous system (PNS) (nerve conduction velocity (NCV)) and the central nervous system (CNS) (basal ganglia-mediated psychomotor speed) in 93 males seropositive for human immunodeficiency virus type 1 (HIV-1) with no prior history of opportunistic brain disease, antiretroviral treatment or intravenous drug use. Patients with different degrees of slowing of peroneal and sural NCV showed no significant differences in psychomotor speed as assessed by tremor peak frequency, most rapid alternating movements, reaction times and contraction times. There was no significant correlation between psychomotor measures and NCV. Psychomotor slowing test findings were independent from peripheral nervous system damage indicating uncorrelated disturbances of CNS and PNS function in HIV-1 infection. Differences in HIV-1 viral quasispecies or host responses may determine the predominance of CNS or PNS injury.

  10. [Molecular genetics of familial tumour syndromes of the central nervous system].

    Science.gov (United States)

    Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor

    2015-02-01

    Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.

  11. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  12. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis.

    Science.gov (United States)

    Rodgers, Jean; Stone, Trevor W; Barrett, Michael P; Bradley, Barbara; Kennedy, Peter G E

    2009-05-01

    Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in

  13. Does Acupuncture Alter Pain-related Functional Connectivity of the Central Nervous System? A Systematic Review.

    Science.gov (United States)

    Villarreal Santiago, María; Tumilty, Steve; Mącznik, Aleksandra; Mani, Ramakrishnan

    2016-08-01

    Acupuncture has been studied for several decades to establish evidence-based clinical practice. This systematic review aims to evaluate evidence for the effectiveness of acupuncture in influencing the functional connectivity of the central nervous system in patients with musculoskeletal pain. A systematic search of the literature was conducted to identify studies in which the central response of acupuncture in patients with musculoskeletal pain was evaluated by neuroimaging techniques. Databases searched were AMED, CINAHL, Cochrane Library, EMBASE, MEDLINE, PEDro, Pubmed, SCOPUS, SPORTDiscuss, and Web of Science. Included studies were assessed by two independent reviewers for their methodological quality by using the Downs and Black questionnaire and for their levels of completeness and transparency in reporting acupuncture interventions by using Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) criteria. Seven studies met the inclusion criteria. Three studies were randomized controlled trials (RCTs) and four studies were nonrandomized controlled trials (NRCTs). The neuroimaging techniques used were functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Positive effects on the functional connectivity of the central nervous system more consistently occurred during long-term acupuncture treatment. The results were heterogeneous from a descriptive perspective; however, the key findings support acupuncture's ability to alter pain-related functional connectivity in the central nervous system in patients with musculoskeletal pain.

  14. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  15. Central Nervous System Tuberculosis: Challenges and Advances in Diagnosis and Treatment.

    Science.gov (United States)

    Chin, Jerome H; Mateen, Farrah J

    2013-10-12

    Mycobacterium tuberculosis is one of the most prevalent human infections. Although the largest share of the burden of disease is in Africa and Asia, tuberculosis has a global footprint due to travel and migration. Resource constraints in many low- and middle-income countries are hampering efforts to control new infections and to prevent drug resistance. Infection of the central nervous system by Mycobacterium tuberculosis includes meningitis, tuberculoma, and abscess and carries a high morbidity and mortality. High clinical suspicion, combined with cerebrospinal fluid analysis and brain imaging studies, can improve the diagnostic certainty. The recent scale-up of nucleic acid amplification technology may allow earlier diagnosis of tuberculous meningitis in many regions of the world. Treatment of tuberculous infection of the central nervous system is usually empirical and follows conventional regimens for pulmonary tuberculosis. The optimal treatment regimen is still being elucidated and has been the subject of recent clinical trials.

  16. Central Nervous System Based Computing Models for Shelf Life Prediction of Soft Mouth Melting Milk Cakes

    Directory of Open Access Journals (Sweden)

    Gyanendra Kumar Goyal

    2012-04-01

    Full Text Available This paper presents the latency and potential of central nervous system based system intelligent computer engineering system for detecting shelf life of soft mouth melting milk cakes stored at 10o C. Soft mouth melting milk cakes are exquisite sweetmeat cuisine made out of heat and acid thickened solidified sweetened milk. In today’s highly competitive market consumers look for good quality food products. Shelf life is a good and accurate indicator to the food quality and safety. To achieve good quality of food products, detection of shelf life is important. Central nervous system based intelligent computing model was developed which detected 19.82 days shelf life, as against 21 days experimental shelf life.

  17. Modelling the spatial organization of cell proliferation in the developing central nervous system

    CERN Document Server

    Clairambault, Jean; Perthame, Benoit; Rapacioli, Melina; Rofman, Edmundo; Verdes, Rafael

    2010-01-01

    How far is neuroepithelial cell proliferation in the developing central nervous system a deterministic process? Or, to put it in a more precise way, how accurately can it be described by a deterministic mathematical model? To provide tracks to answer this question, a deterministic system of transport and diffusion partial differential equations, both physiologically and spatially structured, is introduced as a model to describe the spatially organized process of cell proliferation during the development of the central nervous system. As an initial step towards dealing with the three-dimensional case, a unidimensional version of the model is presented. Numerical analysis and numerical tests are performed. In this work we also achieve a first experimental validation of the proposed model, by using cell proliferation data recorded from histological sections obtained during the development of the optic tectum in the chick embryo.

  18. Connexin:a potential novel target for protecting the central nervous system?

    Institute of Scientific and Technical Information of China (English)

    Hong-yan Xie; Yu Cui; Fang Deng; Jia-chun Feng

    2015-01-01

    Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings re-garding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer’s disease, Parkinson’s disease, X-linked Charcot-Marie-Tooth disease, Peli-zaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  19. Intravascular Lymphomatosis Mimicking Primary Central Nervous System Lymphoma: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Masahiro Oomura

    2014-03-01

    Full Text Available We herein report a 75-year-old female patient with intravascular lymphomatosis (IVL who presented with fever of unknown origin. Examination, including contrast-enhanced CT and 67Ga scintigraphy, failed to show any lesions. Her blood levels of lactate dehydrogenase and soluble interleukin-2 receptors were high, suggesting a lymphomatous tumor. A bone marrow puncture was negative, and a random skin biopsy revealed a monoclonal proliferation of naked, large lymphocytes in the vascular space of the subcutaneous tissue, confirming the diagnosis of IVL. MRI, performed 7 weeks after admission, showed a brain mass mimicking primary central nervous system lymphoma. The mass was considered to be a collection of malignant lymphocyte cells invading from the vessels. Without the random skin biopsy, this case may have been misdiagnosed as primary central nervous system lymphoma.

  20. Ramsay Hunt Syndrome Associated with Central Nervous System Involvement in an Adult

    Directory of Open Access Journals (Sweden)

    Tommy L. H. Chan

    2016-01-01

    Full Text Available Ramsay Hunt syndrome associated with varicella zoster virus reactivation affecting the central nervous system is rare. We describe a 55-year-old diabetic female who presented with gait ataxia, right peripheral facial palsy, and painful vesicular lesions involving her right ear. Later, she developed dysmetria, fluctuating diplopia, and dysarthria. Varicella zoster virus was detected in the cerebrospinal fluid by polymerase chain reaction. She was diagnosed with Ramsay Hunt syndrome associated with spread to the central nervous system. Her facial palsy completely resolved within 48 hours of treatment with intravenous acyclovir 10 mg/kg every 8 hours. However, cerebellar symptoms did not improve until a tapering course of steroid therapy was initiated.

  1. Superficial siderosis of the central nervous system secondary to spinal ependymoma.

    Science.gov (United States)

    Pikis, Stylianos; Cohen, José E; Vargas, Andres A; Gomori, J Moshe; Harnof, Sagi; Itshayek, Eyal

    2014-11-01

    Superficial siderosis of the central nervous system is a syndrome caused by deposition of hemosiderin in the subpial layers of the central nervous system, occurring as a result of recurrent asymptomatic or symptomatic bleeding into the subarachnoid space. We report a rare case of superficial siderosis in a 33-year-old man who presented with sensorineural hearing loss. The diagnosis of superficial siderosis on MRI brain studies led to further investigations with detection of a spinal ependymoma at L1-L2, compressing the cauda equina. Gross total resection of the tumor arrested the progression of the neurological deterioration. Our report underlies the importance of early diagnosis and surgical management, with imaging examination of the full neuroaxis to identify the source of bleeding, to halt disease progression and improve prognosis.

  2. Central nervous system metastases from breast carcinoma: a clinical and laboratorial study in 47 patients

    Directory of Open Access Journals (Sweden)

    MACHADO ALUÍZIO B.B.

    1998-01-01

    Full Text Available In this retrospective study, 47 patients with clinical diagnosis of central nervous system metastases of breast cancer were evaluated by computerized tomography (CT, magnetic resonance imaging (MRI and cerebrospinal fluid (CSF examination. The patients were divided in 2 groups: 1, without leptomeningeal neoplasm and 2, with leptomeningeal neoplasm. In the group 2, the time interval between the primary disease and the central nervous system metastasis as well as the survival time were shorter than in group 1 (40 and 4.3 months in group 2 versus 57 and 10 months respectively, in group 1. In both groups the most common neurological symptoms and signs were intracranial hypertension and motor deficits. The most sensitive diagnostic methods were CT and MRI in group 1, and the CSF examination in group 2. The use of the tumor markers CEA and CA-15.3 in the routine examination of CSF showed promising results, mainly in leptomeningeal forms.

  3. Coma blisters after poisoning caused by central nervous system depressants: case report including histopathological findings.

    Science.gov (United States)

    Branco, Maira Migliari; Capitani, Eduardo Mello De; Cintra, Maria Letícia; Hyslop, Stephen; Carvalho, Adriana Camargo; Bucaretchi, Fabio

    2012-01-01

    Blister formation and eccrine sweat gland necrosis is a cutaneous manifestation associated with states of impaired consciousness, most frequently reported after overdoses of central nervous system depressants, particularly phenobarbital. The case of a 45-year-old woman who developed "coma blisters" at six distinct anatomic sites after confirmed (laboratory) phenobarbital poisoning, associated with other central nervous system depressants (clonazepam, promethazine, oxcarbazepine and quetiapine), is presented. A biopsy from the left thumb blister taken on day 4 revealed focal necrosis of the epidermis and necrosis of sweat gland epithelial cells; direct immunofluorescence was strongly positive for IgG in superficial blood vessel walls but negative for IgM, IgA, C3 and C1q. The patient was discharged on day 21 with no sequelae.

  4. Primary central nervous system peripheral T-cell lymphoma in a child.

    Science.gov (United States)

    Gualco, Gabriela; Wludarski, Sheila; Hayashi-Silva, Luciana; Medeiros Filho, Plinio; Veras, Geni; Bacchi, Carlos Eduardo

    2010-01-01

    A 10-year-old Caucasian boy was admitted to the hospital with a 3-month history of headache, vomiting, ataxia, and right amaurosis. A magnetic resonance imaging (MRI) showed a solid, expansive, parasagittal mass in the right parietal hemisphere that extended sagitally to include the optical chiasm. The lesion was considered unresectable. Histology and immunophenotyping of biopsy tissue revealed characteristics of peripheral T-cell lymphoma. No other anatomical region, including bone marrow, was compromised. Primary T-cell lymphomas of the central nervous system are rare, especially in childhood. Here, we describe the rapidly deteriorating and fatal clinical course of a boy with a primary T-cell lymphoma in the central nervous system.

  5. Preventive central nervous system irradiation in children with acute nonlymphocytic leukemia. [Complications of. gamma. radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, G.V.; Simone, J.V.; Hustu, H.O.; Mason, C.

    1978-11-01

    In this study of children with acute nonlymphocytic leukemia an attempt was made to prevent central nervous system relapse and to determine whether this therapy, coupled with multiagent chemotherapy, would be successful in prolonging durations of complete remission. Central nervous system relapses were prevented by irradiation, although patients who received this therapy did no better than those who did not receive irradiation. A small group of patients received irradiation to the liver and spleen, but this modality also failed to improve the duration of remission. Control of extramedullary leukemia, in this study, failed to improve remission duration because bone marrow relapse was not prevented or delayed. It is unlikely that focal therapy will have a significant impact in acute nonlymphocytic leukemia until longer marrow remissions are achieved.

  6. Molecular mechanisms underlying the effects of statins in the central nervous system.

    Science.gov (United States)

    McFarland, Amelia J; Anoopkumar-Dukie, Shailendra; Arora, Devinder S; Grant, Gary D; McDermott, Catherine M; Perkins, Anthony V; Davey, Andrew K

    2014-11-10

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins' effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins' effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins' possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.

  7. A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Natasya Trivena Rokot

    2016-01-01

    Full Text Available Ginseng, a perennial plant belonging to the Panax genus of the Araliaceae family, has been used in China, Korea, and Japan as a traditional herbal medicine for thousands of years. Ginseng is recorded to have exhibited a wide variety of beneficial pharmacological effects and has become a popular and worldwide known health supplement and drug. The protective effects of ginseng on central nervous system are discussed in this review. Ginseng species and ginsenosides and their intestinal metabolism and bioavailability are concisely introduced. The molecular mechanisms of the effects of ginseng on central nervous system, mainly focused on the neuroprotection properties of ginseng, memory, and learning enhanced properties, and the effects on neurodegenerative disorders are presented. Thus, ginseng and its constituents are of potential merits in the treatment of cerebral disorders.

  8. Early and late endocrine effects in pediatric central nervous system diseases.

    Science.gov (United States)

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  9. Connexin: a potential novel target for protecting the central nervous system?

    Directory of Open Access Journals (Sweden)

    Hong-yan Xie

    2015-01-01

    Full Text Available Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer′s disease, Parkinson′s disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  10. Linfoma primário do sistema nervoso central Primary central nervous system lymphoma

    Directory of Open Access Journals (Sweden)

    Marcelo Bellesso

    2008-02-01

    Full Text Available O linfoma primário do sistema nervoso central (LPSNC é um linfoma extralinfonodal que, ao diagnóstico, encontra-se restrito ao parênquima cerebral, às meninges e/ou cordão espinhal e/ou olhos. Sua incidência triplicou nas últimas três décadas para 0,4 casos por 100.000 habitantes, representando 4% dos tumores do sistema nervoso central (SNC. Embora pacientes infectados pelo HIV tenham 3.600 vezes maior risco para o desenvolvimento do LPSNC, a incidência não aumentou apenas neste grupo de pessoas. Dados sugerem reduções da incidência de LPSNC em pacientes infectados após a introdução de drogas anti-retrovirais. Cerca de 90% dos casos de LPSNC são classificados como linfoma difuso de grandes células B, 10% têm envolvimento ocular e 10% são HIV positivos. A apresentação clínica depende da localização tumoral, prevalecendo os sintomas neurológicos em detrimento aos sistêmicos. Os exames de tomografia computadorizada (TC e ressonância nuclear magnética (RNM são essenciais para o diagnóstico, porém o exame confirmatório deve ser o anatomopatológico. O estadiamento deve ser feito com exames de imagem e biópsia de medula óssea (BMO bilateral. Os principais fatores de mau prognóstico são: performance status do paciente acima de 1, idade superior a 60 anos, DHL elevada, hiperproteinorraquia e acometimento de área cerebral não hemisférica. Alguns fatores de prognóstico biológicos também podem influenciar na sobrevida, a exemplo da expressão de Bcl-6, que confere melhor prognóstico. O tratamento de escolha é a combinação de quimioterapia contendo altas doses de metotrexate e radioterapia (RDT. Devido às altas taxas de neurotoxicidade associada à RDT, seu uso tem ficado mais restrito aos pacientes idosos, e os recidivados ou refratários.Primary Central Nervous System lymphoma (PCNSL is an extranodal non-Hodgkin lymphoma in the brain, leptomeninges, spinal cord or eyes. The incidence of PCNSL increased

  11. A review of nanoparticle functionality and toxicity on the central nervous system

    OpenAIRE

    Yang, Z.; Z. W. Liu; Allaker, R P; Reip, P.; Oxford, J; Ahmad, Z.; Ren, G.

    2010-01-01

    Although nanoparticles have tremendous potential for a host of applications, their adverse effects on living cells have raised serious concerns recently for their use in the healthcare and consumer sectors. As regards the central nervous system (CNS), research data on nanoparticle interaction with neurons has provided evidence of both negative and positive effects. Maximal application dosage of nanoparticles in materials to provide applications such as antibacterial and antiviral functions is...

  12. Effect of insulin-induced hypoglycaemia on the central nervous system

    DEFF Research Database (Denmark)

    Jensen, Vivi Flou Hjorth; Bøgh, I. B.; Lykkesfeldt, Jens

    2014-01-01

    normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous...... system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from...

  13. Efficacy of Posaconazole in a Murine Model of Central Nervous System Aspergillosis

    OpenAIRE

    Imai, Jackie K.; Singh, Gaurav; Clemons, Karl V.; Stevens, David A.

    2004-01-01

    Human central nervous system (CNS) aspergillosis has >90% mortality. We compared posaconazole with other antifungals for efficacy against murine CNS aspergillosis. All tested regimens of posaconazole were equivalent to those of amphotericin B and superior in prolonging survival and reducing CFU to those of itraconazole and caspofungin and to vehicle controls. No antifungal regimen effected cure. No toxicity was noted. Overall, posaconazole shows potential for treating CNS aspergillosis.

  14. Multiple giant congenital melanocytic nevi with central nervous system melanosis: A case report

    Directory of Open Access Journals (Sweden)

    Ahuja S

    2003-10-01

    Full Text Available A case of multiple giant congenital melanocytic naevi in whom central nervous system melanosis was detected at 6 weeks of age is described. The infant was asymptomatic, but presence of risk factors such as multiple naevi, giant naevi and naevi on scalp and posterior axial location prompted a magnetic resonance imaging study of the brain. To our knowledge, neurocutaneous melanosis at such a young age has not been reported in Indian literature.

  15. REGULATION OF CENTRAL NERVOUS SYSTEM AUTOIMMUNITY BY THE ARYL HYDROCARBON RECEPTOR

    OpenAIRE

    Quintana, Francisco J.

    2013-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune mediated disorders.

  16. Herpesvirus-Associated Central Nervous System Diseases after Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    2013-01-01

    Herpesvirus infections of the central nervous system (CNS) are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Herpesv...

  17. Two uncommon manifestations of leptospirosis:Sweet’s syndrome and central nervous system vasculitis

    Institute of Scientific and Technical Information of China (English)

    Peter George

    2011-01-01

    To leptospirosis is the commonest spirocheatal infection in the tropical and temperate countries of Indian sub-continent and Africa and the most common zoonosis worldwide. The protean manifestation of this infectious disease is a challenge for practising clinicians across the world. In poor developing countries, at most clinical suspicion it is essential in the diagnosis of this disease. In this report, we are able to document two uncommon manifestations of leptospirosis, namely Sweet’s syndrome and central nervous system vasculitis.

  18. Biomarkers in early phase development of central nervous system drugs: a conceptual framework

    OpenAIRE

    Post, Jeroen-Paul van der

    2006-01-01

    The main objective of this thesis is to provide a conceptual framework for the use of Central Nervous System (CNS) biomarkers in early phase clinical drug development. In the Introduction the current use of biomarkers in early CNS drug development is discussed. A conceptual framework for the classification of biomarkers is suggested, based on general questions that these markers should provide information on. The body of this thesis (Chapters 1-7) exemplifies the use of these markers within t...

  19. Extrinsic factors can mediate resistance to BRAF inhibition in central nervous system melanoma metastases

    OpenAIRE

    Seifert, Heike; Hirata, Eishu; Gore, Martin; Khabra, Komel; Messiou, Christina; Larkin, James; Sahai, Erik

    2015-01-01

    Summary Here, we retrospectively review imaging of 68 consecutive unselected patients with BRAF V600‐mutant metastatic melanoma for organ‐specific response and progression on vemurafenib. Complete or partial responses were less often seen in the central nervous system (CNS) (36%) and bone (16%) compared to lung (89%), subcutaneous (83%), spleen (71%), liver (85%) and lymph nodes/soft tissue (83%), P 

  20. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.

    Science.gov (United States)

    Rawji, Khalil S; Mishra, Manoj K; Michaels, Nathan J; Rivest, Serge; Stys, Peter K; Yong, V Wee

    2016-03-01

    Ageing of the central nervous system results in a loss of both grey and white matter, leading to cognitive decline. Additional injury to both the grey and white matter is documented in many neurological disorders with ageing, including Alzheimer's disease, traumatic brain and spinal cord injury, stroke, and multiple sclerosis. Accompanying neuronal and glial damage is an inflammatory response consisting of activated macrophages and microglia, innate immune cells demonstrated to be both beneficial and detrimental in neurological repair. This article will propose the following: (i) infiltrating macrophages age differently from central nervous system-intrinsic microglia; (ii) several mechanisms underlie the differential ageing process of these two distinct cell types; and (iii) therapeutic strategies that selectively target these diverse mechanisms may rejuvenate macrophages and microglia for repair in the ageing central nervous system. Most responses of macrophages are diminished with senescence, but activated microglia increase their expression of pro-inflammatory cytokines while diminishing chemotactic and phagocytic activities. The senescence of macrophages and microglia has a negative impact on several neurological diseases, and the mechanisms underlying their age-dependent phenotypic changes vary from extrinsic microenvironmental changes to intrinsic changes in genomic integrity. We discuss the negative effects of age on neurological diseases, examine the response of senescent macrophages and microglia in these conditions, and propose a theoretical framework of therapeutic strategies that target the different mechanisms contributing to the ageing phenotype in these two distinct cell types. Rejuvenation of ageing macrophage/microglia may preserve neurological integrity and promote regeneration in the ageing central nervous system.

  1. The effects of aqueous extracts of Desmodium gangeticum DC. (Leguminosae) on the central nervous system.

    Science.gov (United States)

    Jabbar, S; Khan, M T; Choudhuri, M S

    2001-06-01

    The aqueous extract of Desmodium gangeticum DC. (Leguminosae) showed no analgesic activity in the hot plate method, but it showed severe anti-writhing activity in the acetic acid-induced abdominal writhing assay. It exhibited moderate central nervous system depressant activity in the spontaneous motor activity, hole cross, and open field tests and hole board tests. The effects of this extract on locomotion were compared with some standard CNS drugs.

  2. Amyloid-Beta Related Angiitis of the Central Nervous System: Case Report and Topic Review

    Directory of Open Access Journals (Sweden)

    Amre eNouh

    2014-02-01

    Full Text Available Amyloid-beta related angiitis (ABRA of the central nervous system (CNS is a rare disorder with overlapping features of primary angiits of the CNS (PACNS and cerebral amyloid angiopathy (CAA. We evaluated a 74-year-old man with intermittent left sided weakness and MRI findings of leptomeningeal enhancement, vasogenic edema and subcortical white matter disease proven to have ABRA. We discuss clinicopathological features and review the topic of ABRA.

  3. Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation

    OpenAIRE

    Millward, Jason M.; Jörg Schnorr; Matthias Taupitz; Susanne Wagner; Jens T. Wuerfel; Carmen Infante-Duarte

    2013-01-01

    Neuroinflammation during multiple sclerosis involves immune cell infiltration and disruption of the BBB (blood–brain barrier). Both processes can be visualized by MRI (magnetic resonance imaging), in multiple sclerosis patients and in the animal model EAE (experimental autoimmune encephalomyelitis). We previously showed that VSOPs (very small superparamagnetic iron oxide particles) reveal CNS (central nervous system) lesions in EAE which are not detectable by conventional contrast agents in M...

  4. Neural stem cells and strategies for the regeneration of the central nervous system

    OpenAIRE

    Okano, Hideyuki

    2010-01-01

    The adult mammalian central nervous system (CNS), especially that of adult humans, is a representative example of organs that do not regenerate. However, increasing interest has focused on the development of innovative therapeutic methods that aim to regenerate damaged CNS tissue by taking advantage of recent advances in stem cell and neuroscience research. In fact, the recapitulation of normal neural development has become a vital strategy for CNS regeneration. Normal CNS development is init...

  5. Central nervous system vasculitis and polyneuropathy as first manifestations of hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Roberto J Carvalho-Filho; Janaína Luz Narciso-Schiavon; Luciano HL Tolentino; Leonardo L Schiavon; Maria Lucia G Ferraz; Antonio Eduardo B Silva

    2012-01-01

    Sensory or motor peripheral neuropathy may be observed in a significant proportion of hepatitis C virus (HCV)-infected patients. However, central nervous system (CNS) involvement is uncommon, especially in cryoglobulin-negative subjects. We describe a case of peripheral neuropathy combined with an ischemic CNS event as primary manifestations of chronic HCV infection without cryoglobulinemia. Significant improvement was observed after antiviral therapy. We discuss the spectrum of neurological manifestations of HCV infection and review the literature.

  6. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue?

    Science.gov (United States)

    Ricci, Maurizio; Blasi, Paolo; Giovagnoli, Stefano; Rossi, Carlo

    2006-01-01

    This review aims to summarize the non-invasive approaches employed in delivering drugs to the central nervous system which is severely hindered by the presence of the blood-brain barrier (BBB) that limits molecular permeation. Particular attention will be placed on the several available strategies for delivering drugs into the brain, through circumvention of the BBB, in order to critically address the medicinal chemistry and the pharmaceutical technology contributions.

  7. Coccidioidal meningitis complicated by central nervous system vasculitis in a patient with leukemia

    Directory of Open Access Journals (Sweden)

    Dany Tager

    2017-06-01

    Full Text Available Central Nervous System (CNS vasculitis is the most common life-threatening complication of coccidioidal meningitis. It is manifested by cerebral ischemia, hemorrhage, and infarction. We report a case of CNS vasculitis in a patient receiving chemotherapy and review of the literature on coccidioidal meningitis. The patient was treated with combination antifungal therapy and a short course of high dose corticosteroids with a modest improvement in her neurological examination after initiation of steroids.

  8. [References for prenatal diagnosis of morphological defects including the central nervous system].

    Science.gov (United States)

    Blohmer, J U; Caemmerer, C D; Bollmann, R; Bartho, S

    1993-02-01

    Clinical and autopsy records of 209 stillborn and 81 miscarried infants with 484 congenital defects of the central nervous system were analysed. Sets of more than one defect were retrospectively classified by pathogenetic criteria as syndrome, sequence, association and midline defects. Pathogenetic thinking makes the prenatal diagnosis of further defects easier if one has already been diagnosed. Statements regarding the most probable localisation of neural tube defects have been made.

  9. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system.

    Science.gov (United States)

    Xue, Mingshan; Stradomska, Alicja; Chen, Hongmei; Brose, Nils; Zhang, Weiqi; Rosenmund, Christian; Reim, Kerstin

    2008-06-03

    Complexins (Cplxs) are key regulators of synaptic exocytosis, but whether they act as facilitators or inhibitors is currently being disputed controversially. We show that genetic deletion of all Cplxs expressed in the mouse brain causes a reduction in Ca(2+)-triggered and spontaneous neurotransmitter release at both excitatory and inhibitory synapses. Our results demonstrate that at mammalian central nervous system synapses, Cplxs facilitate neurotransmitter release and do not simply act as inhibitory clamps of the synaptic vesicle fusion machinery.

  10. Innovative analytical methods for Central Nervous System Drug analysis in biological fluids

    OpenAIRE

    Musenga, Alessandro

    2009-01-01

    During recent years a consistent number of central nervous system (CNS) drugs have been approved and introduced on the market for the treatment of many psychiatric and neurological disorders, including psychosis, depression, Parkinson disease and epilepsy. Despite the great advancements obtained in the treatment of CNS diseases/disorders, partial response to therapy or treatment failure are frequent, at least in part due to poor compliance, but also genetic variability in the metabolism of ps...

  11. P12.07EPIDERMOID AND DERMOID CYSTS OF THE CENTRAL NERVOUS SYSTEM: SURGICAL RESULTS

    OpenAIRE

    Havryliv, T.S.; Smolanka, V.

    2014-01-01

    INTRODUCTION: Epidermoid and dermoid cysts of the central nervous system are usually developmental, benign tumors that arise when retained ectodermal implants are trapped by two fusing ectodermal surfaces. Together they compromise 1 - 1.5% of all brain tumors. Epidermoid cysts consist solely of layers of stratified squamous epithelium and localize more laterally (lateral sulcus, cerebellopontine angle (CP-angle)). Dermoid cysts also include dermal appendage organs (hair follicles and sebaceou...

  12. Central Nervous System Demyelination in a Charcot-Marie-Tooth Type 1A Patient

    OpenAIRE

    Christos Koros; Maria-Eleftheria Evangelopoulos; Costas Kilidireas; Elisabeth Andreadou

    2013-01-01

    Introduction. Central nervous system involvement, either clinical or subclinical, has been reported mainly in X-linked Charcot-Marie-Tooth (CMT-X) patients. Case Presentation. We present the case of a 31-year-old man with a genetically confirmed history of CMT1A who developed CNS involvement mimicking multiple sclerosis (MS). Clinical, imaging, and laboratory findings suggested an autoimmune CNS demyelination. Discussion. Although the simultaneous existence of CMT1A and MS could be coincident...

  13. Central nervous system involvement in incontinentia pigmenti: cranial MRI of two siblings

    Energy Technology Data Exchange (ETDEWEB)

    Aydingoez, Ue.; Midia, M. [Department of Radiology, Hacettepe University School of Medicine, Ankara (Turkey)

    1998-06-01

    Incontinentia pigmenti is an uncommon neurocutaneous syndrome characterised by skin lesions, dental and ocular abnormalities and central nervous system involvement. We report the cranial MRI findings in two sisters with this condition. These include hypoplasia of the corpus callosum, enlargement of the lateral ventricles and periventricular white-matter lesions. One girl also had unilateral microphthalmia and rostral agenesis of the corpus callosum, a feature not previously described. (orig.) With 2 figs., 9 refs.

  14. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas

    2014-01-01

    BACKGROUND: Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) remains a therapeutic challenge. PROCEDURE: To explore leukemia characteristics of patients with CNS involvement at ALL diagnosis, we analyzed clinical features and early treatment response of 744...... leukemia and patients without such characteristics (0.50 vs. 0.61; P = 0.2). CONCLUSION: CNS involvement at diagnosis is associated with adverse prognostic features but does not indicate a less chemosensitive leukemia....

  15. ADAMTS expression and function in central nervous system injury and disorders

    Science.gov (United States)

    Gottschall, Paul E.; Howell, Matthew D.

    2016-01-01

    The components of the adult extracellular matrix in the central nervous system form a lattice-like structure that is deposited as perineuronal nets, around axon initial segments and as synapse-associated matrix. An abundant component of this matrix is the lecticans, chondroitin sulfate-bearing proteoglycans that are the major substrate for several members of the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) family. Since lecticans are key regulators of neural plasticity, ADAMTS cleavage of lecticans would likely also contribute to neuroplasticity. Indeed, many studies have examined the neuroplastic contribution of the ADAMTSs to damage and recovery after injury and in central nervous system disease. Much of this data supports a role for the ADAMTSs in recovery and repair following spinal cord injury by stimulating axonal outgrowth after degradation of a glial scar and improving synaptic plasticity following seizure-induced neural damage in the brain. The action of the ADAMTSs in chronic diseases of the central nervous system appears to be more complex and less well-defined. Increasing evidence indicates that lecticans participate in synaptic plasticity in neurodegenerative disease states. It will be interesting to examine how ADAMTS expression and action would affect the progression of these diseases. PMID:25622912

  16. Study of Congenital Malformations in Central Nervous System AND Gastro- Intestinal Tract

    Directory of Open Access Journals (Sweden)

    Saiyad SS

    2012-04-01

    Full Text Available Introduction: Congenital malformations comprise 8% of the perinatal mortality in India. They rank fifth as a cause of perinatal mortality, after asphyxia, respiratory problems, infections and cerebral trauma. However, the pattern is changing rapidly with improvement in health care and living standards. Material & Method: In the present study, authors have tried to study the cases of congenital malformations specially related to Central nervous system and Gastro-intestinal system. 5240 cases of newborn babies were studied and results were analyzed and classified in to various categories. Findings: The results show that malformations are more common in still birth, more in female babies and more in central nervous system In live born babies the percentage of malformation is0.63 % whereas in still born baby it is6.53 %. Conclusions: Chances of having malformations increases as the age advances. Parity of mother also influences the incidence. Exposure to radiation & drugs also influences malformations. Incidence of congenital malformation is highest in central nervous system. [National J of Med Res 2012; 2(2.000: 121-123

  17. Study of Incidence of Pediatric Central Nervous System Tumors as Per Age Group.

    Directory of Open Access Journals (Sweden)

    Nidhi S. Soni

    2015-12-01

    Full Text Available Introduction: CNS tumors are the most common solid tumors in children. Tumors of the central nervous system can be divided into primary intracranial tumours that arise from parenchyma of brain, pituitary gland, covering of brain & secondary intracranial tumours which represent local extension from regional tumours or metastasis from primary malignancy in the body. The most common location of the brain tumours in childhood is below the tentorium within the posterior cranial fossa. Materials and methods: Surgical specimen of central nervous system of children (0 to 14 year of age group received from August 2013 to November 2015, in the Tertiary care center, Ahmedabad were studied with keeping the following features in mind: Age, Sex and site of tumours. Results: Fifty eight cases of central Nervous system Tumours between the age of 0 to 14 years over a period of 2.5 years at civil hospital, Ahmedabad were studied. Incidence were more common in male (60.34% than female(39.66% 89.65% were intracranial to 10.35% were intraspinal tumours.Commonly encountered tumour in descending order of frequency were Medulloblastoma (27.58%, astrocytoma (24.13%, Ependymoma (20.68%. All medulloblastomas arose infratentorial, schwannomas arose intraspinal and meningiomas in cranial cavity are supratentorial. Conclusion: CNS Tumors constitute a large proportion of cancers in childhood. They differ from adult CNS tumors both histologically and location wise. Site of the tumor is significant as it can lead to fatal consequences

  18. Surgical treatment of refractory epilepsy, secondary to central nervous system infection

    Institute of Scientific and Technical Information of China (English)

    Yunpeng Wang; Guojun Zhang; Lixin Cai; Yongjie Li

    2011-01-01

    Previous studies have focused on medial temporal lobe epilepsy secondary to central nervous system infections.Several large-sample analyses of multi-lobe injuries or complications of medial temporal lobe epilepsy have been reported.The present study selected 29 patients (10 males and 19 females with a mean age of 18 years) with refractory epilepsy secondary to central nervous system infections (meningitis in 8, encephalitis in 21)from Beijing Functional Neurosurgical Institute from May 2006 to August 2008.All patients underwent computer tomography or magnetic resonance imaging, as well as electroencephalogram examinations; cortical electrodes were embedded in 11 patients.In addition, 13 (45%) patients underwent anterior temporal lobectomy,and 16 (56%) underwent extratemporal corcticectomy.Results showed that 18 (62%) patients obtained favorable outcomes following surgical treatment, including 80% with temporal lobe epilepsy and 50% with extratemporal epilepsy.Central nervous system infection was not a contraindication for epilepsy treatment, and identification of epileptic foci proved to be crucial.In addition, a young age at infection, as well as prolonged latent period from time of infection to initial afebrile seizure, were 2 predictive factors for all patients.Cortical electrodes significantly increased the detection rate of epileptic foci, but did not improve prognosis of foci excision.

  19. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    Science.gov (United States)

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.

  20. Expression of connexin 36 in central nervous system and its role in epileptic seizure

    Institute of Scientific and Technical Information of China (English)

    PENG Yu-fen; WU Jiong-xing; YANG Heng; DONG Xuan-qi; ZHENG Wen; SONG Zhi

    2012-01-01

    Objective This review discusses the experimental and clinical studies those show the expression of connexin 36 in the central nervous system and the possible role of connexin 36 in epileptic seizure.Data sources All articles used in this review were mainly searched from PubMed published in English from 1996 to 2012.Study selection Odginal articles and reviews were selected if they were related to the expression of connexin 36 in the central nervous system and its role in epilepsy.Results The distribution of connexin 36 is developmentally regulated,cell-specific and region-specific.Connexin 36 is involved in some neuronal functions and epileptic synchronization.Changes in the connexin 36 gene and protein were accompanied by seizures.Selective gap junction blockers have exerted anticonvulsant actions in a variety of experiments examined in both humans end experimental animals.Conclusions Connexin 36 plays an important role in both physiological and pathological conditions in the central nervous system.A better understanding of the role of connexin 36 in seizure activity may contribute to the development of new therapeutic approaches to treating epilepsy.

  1. Complement and the central nervous system: emerging roles in development, protection and regeneration.

    Science.gov (United States)

    Rutkowski, Martin J; Sughrue, Michael E; Kane, Ari J; Mills, Steven A; Fang, Shanna; Parsa, Andrew T

    2010-01-01

    As expanding research reveals the novel ability of complement proteins to promote proliferation and regeneration of tissues throughout the body, the concept of the complement cascade as an innate immune effector has changed rapidly. In particular, its interactions with the central nervous system have provided a wealth of information regarding the ability of complement proteins to mediate neurogenesis, synaptogenesis, cell migration, neuroprotection, proliferation and regeneration. At numerous phases of the neuronal and glial cell cycle, complement proteins exert direct or indirect influence over their behavior and fate. Neuronal stem cells differentiate and migrate in response to complement, and it prevents injury and death in adult cells in response to toxic agents. Furthermore, complement proteins promote survival via anti-apoptotic actions, and can facilitate clearance and regeneration of injured tissues in various models of CNS disease. In summary, we highlight the protean abilities of complement proteins in the central nervous system, underscoring an exciting avenue of research that has yielded greater understanding of complement's role in central nervous system health and disease.

  2. The effects of normal aging on myelinated nerve fibers in monkey central nervous system

    Directory of Open Access Journals (Sweden)

    Alan Peters

    2009-07-01

    Full Text Available The effects of aging on myelinated nerve fibers of the central nervous system are complex. Many myelinated nerve fibers in white matter degenerate and are lost, leading to some disconnections between various parts of the central nervous system. Other myelinated nerve fibers are affected differently, because only their sheaths degenerate, leaving the axons intact. Such axons are remyelinated by a series of internodes that are much shorter than the original ones and are composed of thinner sheaths. Thus the myelin-forming cells of the central nervous system, the oligodendrocytes, remain active during aging. Indeed, not only do these neuroglial cell remyelinate axons, with age they also continue to add lamellae to the myelin sheaths of intact nerve fibers, so that sheaths become thicker. It is presumed that the degeneration of myelin sheaths is due to the degeneration of the parent oligodendrocyte, and that the production of increased numbers of internodes as a consequence of remyelination requires additional oligodendrocytes. Whether there is a turnover of oligodendrocytes during life has not been studied in primates, but it has been established that over the life span of the monkey, there is a substantial increase in the numbers of oligodendrocytes. While the loss of some myelinated nerve fibers leads to some disconnections, the degeneration of other myelin sheaths and the subsequent remyelination of axons by shorter internodes slow down the rate conduction along nerve fibers. These changes affect the integrity and timing in neuronal circuits, and there is evidence that they contribute to cognitive decline.

  3. Invasive central nervous system aspergillosis in bone marrow transplantation recipients: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Guermazi, Ali [Department of Radiology, University of California, San Francisco, 350 Parnassus Avenue, Suite 150, San Francisco, CA 94117 (United States); Department of Radiology, Saint-Louis Hospital, AP-HP, Paris (France); Gluckman, Eliane [Department of Bone Marrow Transplantation, Saint-Louis Hospital, AP-HP, Paris (France); Tabti, Bachir [Department of Radiology, Saint-Louis Hospital, AP-HP, Paris (France); Miaux, Yves [Department of Radiology, University of California, San Francisco, 350 Parnassus Avenue, Suite 150, San Francisco, CA 94117 (United States)

    2003-02-01

    Invasive central nervous system aspergillosis is being seen with an increased frequency, particularly due to the increased number of immunosuppressed patients. The major cause of invasive central nervous system aspergillosis is bone marrow transplantation. In most cases, aspergillosis develops in the paranasal sinuses and in the lungs, and secondarily spreads to the brain. Imaging of cerebral aspergillosis may present different patterns depending on the lesion's age and the immunologic status of the patient. Lesions of the spinal cord are far less common but has been encountered in our series. In this article we review the clinical and radiologic features of aspergillosis affecting the central nervous system in patients who underwent bone marrow transplantation. Different CT and MR patterns are presented, including pertinent clinical and pathologic material. Significant morbidity and mortality can be associated with this fungal infection, and it is therefore incumbent upon the radiologist to identify intracranial aspergillosis as early as possible so that appropriate therapy can be administered. (orig.)

  4. Tachykinin-1 in the central nervous system regulates adiposity in rodents.

    Science.gov (United States)

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Yeo, Giles S H; Perez-Tilve, Diego

    2015-05-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.

  5. A Case Of Primary Central Nervous System Vasculitis Who Presented With Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Sırma Geyik

    2014-12-01

    Full Text Available Primary central nervous system vasculitis (PCNV is limited with central nervous system and rare vasculitis that mostly seen in middle-aged men. PCNV vasculitis is usually presented that headache, dementia, stroke and multifocal common neurological symptoms. PCNV especially involves small medium-sized leptomeningeal and cortical arteries. 43 years old male patient who have been progressive forgetfulness and headache for 3 years. He applied with recurrent that before starting right focal and than sprawling whole body which generalized tonic-clonic seizures to us. During management that he was transfered to the intensive care unit due to status epilepticus (SE. Later than we found right hemiparesis, motor aphasia and right babinski positivity in neurologic examination. Diffusion restriction was revealed in left MCA territory in diffusion magnetic resonance imaging(MRI. EEG showed two types abnormality that a slow background ritm and epileptiform activity. Biochemistry of blood, complete blood count, blood sedimentation rate, CRP and markers of vasculitis were found in the normal range. Cerebral anjiography revealed that irregularities in the distal vascular areas and fusiform aneurysm at the top of basilar artery. He was consulted with rheumatology and diagnosed central nervous system vasculitis with the existing findings. Biopsy couldn't be taken from the brain to verify the diagnosis. Finally, we applied treatment that pulse steroid and cyclophosphamide to patient. This case has been presented due to emphasize that PCNV rarely may play a role in the etiology of recurrent stroke and status epilepticus.

  6. Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

    Science.gov (United States)

    2013-07-01

    Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  7. Reconstitution of the central and peripheral nervous system during salamander tail regeneration.

    Science.gov (United States)

    McHedlishvili, Levan; Mazurov, Vladimir; Grassme, Kathrin S; Goehler, Kerstin; Robl, Bernhard; Tazaki, Akira; Roensch, Kathleen; Duemmler, Annett; Tanaka, Elly M

    2012-08-21

    We show that after tail amputation in Ambystoma mexicanum (Axolotl) the correct number and spacing of dorsal root ganglia are regenerated. By transplantation of spinal cord tissue and nonclonal neurospheres, we show that the central spinal cord represents a source of peripheral nervous system cells. Interestingly, melanophores migrate from preexisting precursors in the skin. Finally, we demonstrate that implantation of a clonally derived spinal cord neurosphere can result in reconstitution of all examined cell types in the regenerating central spinal cord, suggesting derivation of a cell with spinal cord stem cell properties.

  8. Progressive central nervous system metastases in responder patients for outside central nervous system metastases on trastuzumab-based therapy--report of two cases of refractory breast cancer.

    Science.gov (United States)

    Okita, Riki; Saeki, Toshiaki; Takashima, Shigemitsu; Aogi, Kenjiro; Ohsumi, Shozo

    2005-03-01

    We report two cases of central nervous system (CNS) metastases during systemic response to trastuzumab in combination with chemotherapy for refractory breast cancer. The patients responded to trastuzumab in combination with chemotherapy. During combination treatment, the patients developed cerebellar metastases. A follow-up computed tomography scan revealed that their diseases continued to respond outside the CNS. These cases suggest that the failure of trastuzumab to cross the blood-brain barrier may compromise its overall effectiveness and raises the possibility that CNS metastasis may become clinically more significant in patients receiving antibody-based therapies, including patients responding to therapy outside the CNS. Additionally, repeated stereotactic radiosurgery as gammaknife combination therapy synchronously with systematic trastuzumab-based therapy was useful for the treatment of metastatic breast carcinoma.

  9. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases.

    Science.gov (United States)

    Karaaslan, Ayşe; Kadayifçi, Eda Kepenekli; Turel, Ozden; Toprak, Demet Gedikbaşi; Soysal, Ahmet; Bakir, Mustafa

    2014-08-12

    In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  10. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    Directory of Open Access Journals (Sweden)

    Ayse Karaaslan

    2014-12-01

    Full Text Available In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  11. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.

    Science.gov (United States)

    Browning, Kirsteen N; Travagli, R Alberto

    2014-10-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.

  12. Herpesvirus-associated central and peripheral nervous system involvement: two clinical cases

    Directory of Open Access Journals (Sweden)

    T. E. Popova

    2015-01-01

    Full Text Available Herpesviruses can directly affect the structure of the nervous system, resulting in encephalitis, and also induce immune-mediated disorders of the peripheral nervous system as sensory-predominant chronic inflammatory demyelinating polyneuropathy (CIDP. Patients with immunodeficiency may simultaneously develop two pathological processes, determining the severity of the condition. Parainfectious limbic encephalitis (PILE associated with viruses from the family Herpes viridae is a form of chronic herpes encephalitis, which is characterized by dysfunction of the limbic system and by a long-term course with exacerbations. CIDP is a dysimmune disease leasing to peripheral nervous system involvement, which belongs to a class of myelinopathies. The paper describes two clinical cases of a concurrence of chronic PILE and CIDP in middle-aged men who have symptomatic status epilepticus and iatrogenic complications. It characterizes difficulties in diagnosis and the clinical features of chronic herpes infection involving the central and peripheral nervous systems. The given clinical cases suggest that not only neurologistsand epileptologists, but also resuscitation specialists and ngiosurgeons should be particularly alert to the pathology in question.

  13. Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana.

    Science.gov (United States)

    Ungerer, Petra; Geppert, Maria; Wolff, Carsten

    2011-03-01

    We describe the formation of the major axon pathways in the embryonic central and peripheral nervous systems of the amphipod crustacean Orchestia cavimana Heller, 1865 by means of antibody staining against acetylated alpha-tubulin. The data add to a long list of previous studies of various other aspects of development in Orchestia and provide a basis for future studies of neurogenesis on a deeper cellular and molecular level. Orchestia exhibits a tripartite dorsal brain, which is a characteristic feature of euarthropods. Its anlagen are the first detectable structures in the developing nervous system and can be traced back to distinct neuronal cell clusters in the early embryo. The development of the ventral nervous system proceeds with an anteroposterior gradient of development. In each trunk segment, the longitudinal connectives and the anterior commissure form first, followed by the intersegmental nerve, the posterior commissure and segmental nerves, respectively. A single commissure of a vestigial seventh pleonal segment is found. In the peripheral nervous system we observe a spatial and temporal pattern of leg innervation, which is strikingly similar in both limb types, the uniramous pereopods and the biramous pleopods. A proximal leg nerve splitting distally into two separated nerves probably reflects a general feature of crustaceans.

  14. Vaccines and the risk of multiple sclerosis and other central nervous system demyelinating diseases.

    Science.gov (United States)

    Langer-Gould, Annette; Qian, Lei; Tartof, Sara Y; Brara, Sonu M; Jacobsen, Steve J; Beaber, Brandon E; Sy, Lina S; Chao, Chun; Hechter, Rulin; Tseng, Hung Fu

    2014-12-01

    Because vaccinations are common, even a small increased risk of multiple sclerosis (MS) or other acquired central nervous system demyelinating syndromes (CNS ADS) could have a significant effect on public health. To determine whether vaccines, particularly those for hepatitis B (HepB) and human papillomavirus (HPV), increase the risk of MS or other CNS ADS. A nested case-control study was conducted using data obtained from the complete electronic health records of Kaiser Permanente Southern California (KPSC) members. Cases were identified through the KPSC CNS ADS cohort between 2008 and 2011, which included extensive review of medical records by an MS specialist. Five controls per case were matched on age, sex, and zip code. Vaccination of any type (particularly HepB and HPV) identified through the electronic vaccination records system. All forms of CNS ADS were analyzed using conditional logistic regression adjusted for race/ethnicity, health care utilization, comorbid diseases, and infectious illnesses before symptom onset. We identified 780 incident cases of CNS ADS and 3885 controls; 92 cases and 459 controls were females aged 9 to 26 years, which is the indicated age range for HPV vaccination. There were no associations between HepB vaccination (odds ratio [OR], 1.12; 95% CI, 0.72-1.73), HPV vaccination (OR, 1.05; 95% CI, 0.62-1.78), or any vaccination (OR, 1.03; 95% CI, 0.86-1.22) and the risk of CNS ADS up to 3 years later. Vaccination of any type was associated with an increased risk of CNS ADS onset within the first 30 days after vaccination only in younger (vaccines with MS or any other CNS ADS, which argues against a causal association. The short-term increase in risk suggests that vaccines may accelerate the transition from subclinical to overt autoimmunity in patients with existing disease. Our findings support clinical anecdotes of CNS ADS symptom onset shortly after vaccination but do not suggest a need for a change in vaccine policy.

  15. Development of the central nervous system in guinea pig (Cavia porcellus, Rodentia, Caviidae

    Directory of Open Access Journals (Sweden)

    Fernanda Menezes de Oliveira e Silva

    Full Text Available Abstract: This study describes the development of the central nervous system in guinea pigs from 12th day post conception (dpc until birth. Totally, 41 embryos and fetuses were analyzed macroscopically and by means of light and electron microscopy. The neural tube closure was observed at day 14 and the development of the spinal cord and differentiation of the primitive central nervous system vesicles was on 20th dpc. Histologically, undifferentiated brain tissue was observed as a mass of mesenchymal tissue between 18th and 20th dpc, and at 25th dpc the tissue within the medullary canal had higher density. On day 30 the brain tissue was differentiated on day 30 and the spinal cord filling throughout the spinal canal, period from which it was possible to observe cerebral and cerebellar stratums. At day 45 intumescences were visualized and cerebral hemispheres were divided, with a clear division between white and gray matter in brain and cerebellum. Median sulcus of the dorsal spinal cord and the cauda equina were only evident on day 50. There were no significant structural differences in fetuses of 50 and 60 dpc, and animals at term were all lissencephalic. In conclusion, morphological studies of the nervous system in guinea pig can provide important information for clinical studies in humans, due to its high degree of neurological maturity in relation to its short gestation period, what can provide a good tool for neurological studies.

  16. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications.

    Science.gov (United States)

    Edwards, Jeffrey G

    2014-01-01

    The function of TRPV1 in the peripheral nervous system is increasingly being investigated for its anti-inflammatory and antinociceptive properties in an effort to find a novel target to fight pain that is nonaddictive. However, in recent years, it was discovered that TRPV1 is also associated with a wide array of functions and behaviors in the central nervous system, such as fear, anxiety, stress, thermoregulation, pain, and, more recently, synaptic plasticity, the cellular mechanism that allows the brain to adapt to its environment. This suggests a new role for brain TRPV1 in areas such as learning and memory, reward and addiction, and development. This wide array of functional aspects of TRPV1 in the central nervous system (CNS) is in part due to its multimodal form of activation and highlights the potential pharmacological implications of TRPV1 in the brain. As humans also express a TRPV1 homologue, it is likely that animal research will be translational to humans and therefore worthy of exploration. This review outlines the basic expression patterns of TRPV1 in the CNS along with what is known regarding its signaling mechanisms and its role in the aforementioned brain functions. As TRPV1 involvement in synaptic plasticity has never been fully reviewed elsewhere, it will be a focus of this review. The chapter concludes with some of the potential pharmaceutical implications of further TRPV1 research.

  17. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  18. Experimental study on central nervous toxicity of 'misonidazole' a hypoxic cell radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, I. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1981-11-01

    'Misonidazole', a radiosensitizer for hypoxic cells is expected to be applied to the treatment of malignant tumors, but its side effect becomes a subject of study, because its effective dose is close to its lethal dose. The author performed experiments with mice on the central nervous toxicity, which is the most lethal of the side effects of Misonidazole, with the following results; 1. The abrupt death seen after the administration of a large dose of Misonidazole was attributable to the central nervous toxicity. LD/sub 50/ for d.d. strain mouse was 1.55 mg per body weight g. 2. The used mice always developed convulsion before death. But the administration of anticonvulsant failed to free them from death. 3. Autopsy findings were such abnormal ones as the degeneration and exfoliation of nerve cells and diapedetic focus. After sacrifice, however, no findings indicative of disturbance of central nerve could be detected. 4. Misonidazole, even in a small divided dose, left intracerebral retention, though slightly, indicating that its accumulation in the brain would be increased with increase in the dose. 5. The disturbance of central nerve was not exacerbated by the whole brain irradiation with Misonidazole.

  19. Application of the 2012 revised diagnostic definitions for paediatric multiple sclerosis and immune-mediated central nervous system demyelination disorders

    NARCIS (Netherlands)

    van Pelt, E. Danielle; Neuteboom, Rinze F.; Ketelslegers, Immy A.; Boon, Maartje; Catsman-Berrevoets, Coriene E.; Hintzen, Rogier Q.

    2014-01-01

    Background Recently, the International Paediatric Multiple Sclerosis Study Group (IPMSSG) definitions for the diagnosis of immune-mediated acquired demyelinating syndromes (ADS) of the central nervous system, including paediatric multiple sclerosis (MS), have been revised. Objective To evaluate the

  20. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    National Research Council Canada - National Science Library

    Karaaslan, Ayşe; Kadayifçi, Eda Kepenekli; Turel, Ozden; Toprak, Demet Gedikbaşi; Soysal, Ahmet; Bakir, Mustafa

    2014-01-01

    .... In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented...

  1. Bone marrow stromal cells. An alternative source of restorative therapy in degenerative diseases of the central nervous system

    National Research Council Canada - National Science Library

    Alberti-Amador, E; García-Miniet, R

    2003-01-01

    The aim of this study is to describe the capacity of bone marrow cells to limit or slow down the damage and chronic neuronal degeneration produced by degenerative diseases of the central nervous system (CNS...

  2. Detection and Cellular Localization of Phospho-STAT2 in the Central Nervous System by Immunohistochemical Staining

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Owens, Trevor

    2013-01-01

    Phosphorylation of signal transducers and activators of transcription (STATs) indicates their involvement in active signaling. Here we describe immunohistochemical staining procedures for detection and identification of the cellular localization of phospho-STAT2 in the central nervous system (CNS...

  3. The role of microtubule-associated protein 1B in axonal growth and neuronal migration in the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Maoguang Yang; Xiaoyu Yang; Minfei Wu; Peng Xia; Chunxin Wang; Peng Yan; Qi Gao; Jian Liu; Haitao Wang; Xingwei Duan

    2012-01-01

    In this review, we discuss the role of microtubule-associated protein 1B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAP1B in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.

  4. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    Science.gov (United States)

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process.

  5. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    Science.gov (United States)

    Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria

    2012-01-01

    Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068

  6. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Camila Silva Peres Cancela

    2012-01-01

    Full Text Available BACKGROUND: Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. METHODS: This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99 treatment protocol. RESULTS: The estimated probabilities of overall survival and event free survival at 5 years were 69.5% ( 3.6% and 58.8% ( 4.0%, respectively. The cumulative incidence of central nervous system (isolated or combined relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis > 50 x 10(9/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count 50 x 10(9/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia.

  7. Self-assembling peptide nanofiber hydrogels for central nervous system regeneration

    Science.gov (United States)

    Liu, Xi; Pi, Bin; Wang, Hui; Wang, Xiu-Mei

    2015-03-01

    Central nervous system (CNS) presents a complex regeneration problem due to the inability of central neurons to regenerate correct axonal and dendritic connections. However, recent advances in developmental neurobiology, cell signaling, cell-matrix interaction, and biomaterials technologies have forced a reconsideration of CNS regeneration potentials from the viewpoint of tissue engineering and regenerative medicine. The applications of a novel tissue regeneration-inducing biomaterial and stem cells are thought to be critical for the mission. The use of peptide nanofiber hydrogels in cell therapy and tissue engineering offers promising perspectives for CNS regeneration. Self-assembling peptide undergo a rapid transformation from liquid to gel upon addition of counterions or pH adjustment, directly integrating with the host tissue. The peptide nanofiber hydrogels have mechanical properties that closely match the native central nervous extracellular matrix, which could enhance axonal growth. Such materials can provide an optimal three dimensional microenvironment for encapsulated cells. These materials can also be tailored with bioactive motifs to modulate the wound environment and enhance regeneration. This review intends to detail the recent status of self-assembling peptide nanofiber hydrogels for CNS regeneration.

  8. Central nervous system involvement in primary Sjogren`s syndrome manifesting as multiple sclerosis.

    Science.gov (United States)

    Liu, Jing-Yao; Zhao, Teng; Zhou, Chun-Kui

    2014-04-01

    Central nervous system symptoms in patients with primary Sjogren`s syndrome are rare. They can present as extraglandular manifestations and require a differential diagnosis from multiple sclerosis. Due to a variety of presentations, Sjogren`s syndrome with neurologic involvement may be difficult to diagnose. Here, we report a case of a 75-year-old woman who was first diagnosed with multiple sclerosis in 2010, but who was subsequently diagnosed with primary Sjogren`s syndrome 2 years later after showing signs of atypical neurologic manifestations. Therefore, primary Sjogren`s syndrome should be suspected in patients who present with atypical clinical and radiologic neurologic manifestations.

  9. Central Nervous System Strongyloidiasis and Cryptococcosis in an HIV-Infected Patient Starting Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Mónica Rodríguez

    2012-01-01

    Full Text Available We report a case of Strongyloides stercoralis hyperinfection syndrome with central nervous system involvement, in a patient with late human immunodeficiency virus (HIV infection starting antiretroviral therapy, in whom Strongyloides stercoralis larvae and Cryptococcus neoformans were isolated antemortem from cerebrospinal fluid. Our patient was not from an endemic region for the parasite, so strongyloidiasis was not originally suspected. For this reason, we conclude that Strongyloides stercoralis infection should be suspected in HIV-infected patients starting antiretroviral therapy in order to avoid potential fatal outcomes.

  10. Toxocariasis of the central nervous system: With report of two cases.

    Science.gov (United States)

    Abir, Bouthouri; Malek, Mansour; Ridha, Mrissa

    2017-03-01

    Toxocariasis is a parasitic infection caused by the roundworms Toxocara canis or Toxocara cati, mostly due to accidental ingestion of embryonated eggs. Clinical manifestations vary and are classified according to the organs affected. Central nervous system involvement is an unusual complication. Here, we report two cases with neurological manifestations, in which there was cerebrospinal fluid (CSF) eosinophilia with marked blood eosinophilia and a positive serology for Toxocara both in serum and CSF. Improvement of signs and symptoms after specific treatment was observed in the two cases.

  11. [Central nervous system infections in HIV patients in the era of high activity antiretroviral treatment].

    Science.gov (United States)

    Rivas González, P; Fernández Guerrero, M L

    2005-06-01

    Although the incidence of most central nervous system infections in HIV+ patients has decreased after the introduction of the modern antiretroviral treatments, they are still a major cause of morbidity and mortality. New technologies in molecular biology and neuroradiology establish the diagnosis in many cases and have decreased the need for cerebral biopsy. Prognosis has improved substantially after the introduction of high activity antiretroviral treatment; more active treatments are needed, however, for infections as PML or citomegalovirus encephalitis because of their still unacceptably high mortality.

  12. The Complex Diagnostic Challenge in Children With Non-Central Nervous System Cancer and Cerebellar Mutism.

    Science.gov (United States)

    Helton, Kathleen; Patterson, Amy L; Khan, Raja B; Sadighi, Zsila S

    2017-08-01

    Multiple etiologies should be considered in the differential diagnosis of immunocompromised patients with non-central nervous system cancer and viral infections who develop mutism. Acute cerebellitis, caused by infections or by neurotoxicity resulting from chemotherapy; paraneoplastic cerebellar degeneration; atypical posterior reversible encephalopathy syndrome; and acute disseminated encephalomyelitis may all cause mutism in such patients. This condition warrants prompt recognition and may require treatment with immunotherapy, as it may be an immune-mediated process. We present 2 patients with leukemia and viral illness who developed cerebellar mutism in the setting of acute cerebellitis and responded to immunotherapy, suggesting that the condition involved a parainfectious immune-mediated response.

  13. Research progress of HIV-associated central nervous system infections and neurosyphilis in China

    Directory of Open Access Journals (Sweden)

    Ying PENG

    2016-08-01

    Full Text Available Currently, acquired immunodeficiency syndrome (AIDS and syphilis are widely epidemic all over the world, which has seriously jeopardized public health security. In China, studies on human immunodeficiency virus (HIV-associated central nervous system (CNS damage and neurosyphilis are increasing. This paper reviews related literatures on HIV-associated CNS infection and neurosyphilis, and summarizes the epidemiological characteristics, pathogenesis, clinical features, diagnosis and treatment strategies, so as to provide new clues for further exploration into clinical diagnosis and treatment. DOI: 10.3969/j.issn.1672-6731.2016.07.003

  14. Fetal magnetic resonance imaging of the central nervous system: a pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut [Institute of Diagnostic Radiology, University Hospital, Zurich (Switzerland); Wisser, Josef [Clinic for Obstetrics, University Hospital, Zurich (Switzerland); Martin, Ernst [Department of Neuroradiology and Magnetic Resonance, University Children' s Hospital, Zurich (Switzerland)

    2002-08-01

    Prenatal ultrasonography is the primary screening modality for the evaluation of fetal pathology. Ultrafast fetal MRI is a recent development that examines the fetus in utero. The short acquisition times (as short as 400 ms/slice) allow to picture freeze the fetus without the need for fetal sedation. The high spatial resolution, good contrast-to-noise ratio, and the multiplanar capabilities are especially advantageous in pathologies of the fetal central nervous system (CNS). Fetal MRI currently serves as a second-line imaging tool for complex fetal cerebral malformations and pathologies. Fetal ventriculomegaly, lesions within the posterior fossa, and abnormalities in cerebral myelination, migration, and sulcation are particularly well identified. (orig.)

  15. Atypical clinical features of children with central nervous system tumor: Delayed diagnosis and switch in handedness.

    Science.gov (United States)

    Yokoi, Kentaro; Yamaoka, Masayoshi; Miyata, Ichiro; Nonaka, Yuichiro; Yuza, Yuki; Kawata, Shoko; Akiyama, Masaharu; Yanagisawa, Takaaki; Ida, Hiroyuki

    2016-09-01

    Herein is described the cases of three children with central nervous system (CNS) tumor, who had switch in handedness occurring before diagnostic confirmation. Although the onset, age, tumor location, and histology were heterogeneous, the diagnosis of CNS tumor was delayed in all three patients. The present experience indicates that switch in handedness should be recognized as a sign of CNS tumor in pediatric patients, and which might prevent delay in diagnosis. Pediatricians should carefully examine such patients who present with some suggestive symptoms of CNS tumor, even when they are unusual, in order to make a timely and appropriate diagnosis. © 2016 Japan Pediatric Society.

  16. Presenting features and imaging in childhood acute myeloid leukemia with central nervous system involvement.

    Science.gov (United States)

    Ranta, Susanna; Palomäki, Maarit; Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas; Hasle, Henrik; Jahnukainen, Kirsi; Heyman, Mats; Harila-Saari, Arja

    2017-02-24

    Central nervous system (CNS) involvement in childhood acute myeloid leukemia (AML) can manifest as leukemic cells in the cerebrospinal fluid, a solid CNS tumor, or as neurological symptoms. We evaluated the presenting symptoms and neuroimaging findings in 33 of 34 children with AML and CNS involvement at diagnosis in the period 2000-2012 in Sweden, Finland, and Denmark. Imaging was performed in 22 patients, of whom 16 had CNS-related symptoms. Seven patients, including all but two with facial palsy, had mastoid cell opacification, considered an incidental finding. The frequent involvement of the mastoid bone with facial palsy warrants evaluation in larger series. © 2017 Wiley Periodicals, Inc.

  17. [Chlamydial infection of the central nervous system. Laboratory diagnosis and clinic and morphological features].

    Science.gov (United States)

    Vaĭnshenker, Iu I; Nuralova, I V; Onishenko, L S

    2014-01-01

    The paper presents data on the diagnosis, clinical and pathomorphological changes in the central nervous system (CNS) in neurochlamydiasis according to clinical, autoptic, and experimental evidence. It discusses the possible implication of Ch. trachomatis, Ch. pneumoniae, and Ch. psittaci in the development and course of different diseases with CNS involvement: atherosclerosis, vasculitis, multiple sclerosis, Alzheimer's disease, schizophrenia, autism, vegetative state, sequels of perinatal lesions in childhood and adolescence, HIV infection, etc. Considerable attention is paid to the specific features of diagnosis of Chlamydia-induced CNS lesions. Purposeful pathomorphological investigations are shown to be needed.

  18. Strychnine Binding Associated with Glycine Receptors of the Central Nervous System

    Science.gov (United States)

    Young, Anne B.; Snyder, Solomon H.

    1973-01-01

    [3H]Strychnine binds to synaptic-membrane fractions of the spinal cord in a selective fashion, indicating an interaction with postsynaptic glycine receptors. Displacement of strychnine by glycine and other amino acids parallels their glycine-like neurophysiologic activity. The regional localization of strychnine binding in the central nervous system correlates closely with endogenous glycine concentrations. In subcellular fractionation experiments, strychnine binding is most enhanced in synaptic-membrane fractions. Strychnine binding is saturable, with affinity constants for glycine and strychnine of 10 and 0.03 μM, respectively. PMID:4200724

  19. Central nervous system myeloid cells as drug targets: current status and translational challenges.

    Science.gov (United States)

    Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

    2016-02-01

    Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

  20. Pleiotropic effect of histamine H4 receptor modulation in the central nervous system

    OpenAIRE

    Nicoletta Galeotti; Maria Domenica Sanna; Carla Ghelardini

    2013-01-01

    The histamine H4 receptor (H4R) is expressed primarily on cells involved in inflammation and immune responses. Recently, it has been reported the functional expression of H4R within neurons of the central nervous system, but their role has been poorly understood. The present study aimed to elucidate the physiopathological role of cerebral H4R in animal models by the intracerebroventricular administration of the H4R agonist VUF 8430 (20e40 mg per mouse). Selectivity of results was ...

  1. Culturing and expansion of "clinical grade" precursors cells from the fetal human central nervous system.

    Science.gov (United States)

    Gelati, Maurizio; Profico, Daniela; Projetti-Pensi, Massimo; Muzi, Gianmarco; Sgaravizzi, Giada; Vescovi, Angelo Luigi

    2013-01-01

    NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines. In this chapter, we illustrate some of the protocols routinely used into our GMP cell bank for the production of "clinical grade" human neural stem cell lines.

  2. A Dual Case of Peritonitis and Central Nervous System Infection Caused by Nutritionally Variant Streptococcal Species

    Science.gov (United States)

    Vivar, Sussi; Girotto, Jennifer E.

    2017-01-01

    Nutritional variant streptococci (NVS) are difficult to identify bacteria that can cause invasive infections such as endocarditis and meningitis. NVS as a cause of peritonitis has not been routinely described. This case of NVS as the etiology of peritonitis associated with previous neurosurgery and ventriculoperitoneal (VP) shunt revision demonstrates its potential role as a significant pathogen in patients with peritonitis and VP shunts. Therapy consists of vancomycin plus a second agent but since there are no standards for susceptibility testing, clinical response remains the standard for determining the efficacy of treatment. When there is central nervous system (CNS) involvement it is important to include drugs with appropriate CNS penetration. PMID:28239499

  3. West Nile Virus Infection in the Central Nervous System [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Evandro R. Winkelmann

    2016-01-01

    Full Text Available West Nile virus (WNV, a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide.  Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae.  Neither antiviral drugs nor vaccines are available for humans.  Animal models have been used to investigate WNV pathogenesis and host immune response in humans.  In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system.

  4. Unusual location of central nervous system langerhans cell histiocytosis: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. Yup; Lee, Jae Kyu; Kim, Chan Kyo; Lee, Chang Hyun; Kang, Chang Ho; Chung, Phil Wook [Armed Forces Capital Hospital, Seongnam (Korea, Republic of)

    2003-03-01

    Langerhans cell histiocytosis of the central nervous system (CNS) usually involves the hypothalamic-pituitary axis, and T1-weighted MR images normally demonstrate infundibular thickening and/or a mass lesion in the hypothalamus and the absence of a posterior pituitary 'bright spot'. We recently encountered a case of CNS langerhans cell histiocytosis with no posterior pituitary 'bright spot' and with lesions involving the cerebellum and basal ganglia but not the hypothalamic-pituitary axis.

  5. Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease

    DEFF Research Database (Denmark)

    Pedersen, Camilla; Poulsen, Aslak Harbo; Rod, Naja Hulvej

    2017-01-01

    Purpose: Evidence of whether exposure to extremely low-frequency magnetic fields (ELF-MF) is related to central nervous system diseases is inconsistent. This study updates a previous study of the incidence of such diseases in a large cohort of Danish utility workers by almost doubling the period...... of exposure (≥1.0 µT), IRRs of 1.44, 1.78, 1.40 and 1.34 were observed for dementia, motor neurone disease, multiple sclerosis and epilepsy, respectively. Conclusions: We observed elevated risks of dementia, motor neurone disease, multiple sclerosis and epilepsy and lower risks of Parkinson disease...

  6. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  7. Late Isolated Central Nervous System Relapse from Ovarian Serous Adenocarcinoma: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tiago Biachi de Castria

    2014-01-01

    Full Text Available Central nervous system involvement by ovarian serous adenocarcinoma is rare. We report a case of a 60-year-old woman that developed brain metastasis as isolated site of relapse 4.5 years after a complete resection and adjuvant chemotherapy for a stage Ic disease. She proceeded to a craniotomy with resection of the lesion and, subsequently, to a whole brain radiotherapy. Nineteen months later, she developed carcinomatous meningitis as isolated site of recurrence. Patient was submitted to intrathecal chemotherapy with methotrexate; however, she died from progressive neurologic involvement disease few weeks later.

  8. Potential Central Nervous System Involvement in Sudden Unexpected Infant Deaths and the Sudden Infant Death Syndrome.

    Science.gov (United States)

    Thach, Bradley T

    2015-07-01

    Sudden unexpected infant death (SUID) in infancy which includes Sudden Infant Death Syndrome (SIDS) is the commonest diagnosed cause of death in the United States for infants 1 month to 1 year of age. Central nervous system mechanisms likely contribute to many of these deaths. We discuss some of these including seizure disorders, prolonged breath holding, arousal from sleep and its habituation, laryngeal reflex apnea potentiated by upper airway infection, and failure of brainstem-mediated autoresuscitation. In the conclusions section, we speculate how lives saved through back sleeping might result in later developmental problems in certain infants who otherwise might have died while sleeping prone.

  9. Tolerance of the central nervous system to photon irradiation. Endocrine complications

    Energy Technology Data Exchange (ETDEWEB)

    Wigg, D.R.; Murray, R.M.L.; Koschel, K. (Royal Adelaide Hospital (Australia))

    1982-01-01

    Dose-response isoeffect equations have been determined for hypothalamic pituitary insufficiency following cranial irradiation. Of particular importance is the occurrence of complications at doses substantially less than those commonly used for the treatment of central nervous system tumors. Such complications may be severe and potentially life threatening. These complications occur when a small midline 'target' volume containing the pituitary gland, infundibulum and adjacent inferior hypothalamic structures is irradiated. Direct pituitary irradiation is unlikely to be a factor, at least in some cases. The possible role of incidental hypothalamic irradiation in the control of acromegaly and pituitary dependent Cushing's syndrome is discussed.

  10. IL-21 optimizes T cell and humoral responses in the central nervous system during viral encephalitis

    Science.gov (United States)

    Phares, Timothy W.; DiSano, Krista D.; Hinton, David R.; Hwang, Mihyun; Zajac, Allan J.; Stohlman, Stephen A.; Bergmann, Cornelia C.

    2013-01-01

    Acute coronavirus encephalomyelitis is controlled by T cells while humoral responses suppress virus persistence. This study defines the contribution of interleukin (IL)-21, a regulator of T and B cell function, to central nervous system (CNS) immunity. IL-21 receptor deficiency did not affect peripheral T cell activation or trafficking, but dampened granzyme B, gamma interferon and IL-10 expression by CNS T cells and reduced serum and intrathecal humoral responses. Viral control was already lost prior to humoral CNS responses, but demyelination remained comparable. These data demonstrate a critical role of IL-21 in regulating CNS immunity, sustaining viral persistence and preventing mortality. PMID:23992866

  11. Magnetic resonance imaging of the central nervous system. Comparison with X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kajima, Toshio; Kagawa, Yoshihiro; Katsuta, Shizutomo.

    1987-06-01

    Magnetic resonance imaging (MRI) and X-ray computed tomography (X-ray CT) have been performed in 169 consecutive patients with central nervous system diseases. The findings from the two methods were compared for the capacity to defect lesions. Magnetic resonance imaging was more sensitive than or equivalent to X-ray CT in detecting lesions - especially detecting. Arnold-Chiari malformation, syringomyelia, spinal cord injury, and pituitary adenoma - in 158 patients (94 %). In six patients (10 %), lesion detection was possible only by MRI. Magnetic resonance imaging was inferior to X-ray CT in 11 patients (7 %) in detecting calcified lesions, meningioma, and cavernous hemangioma. (Namekawa, K.).

  12. Macrophage migration inhibitory factor in cerebrospinal fluid from patients with central nervous system infection

    DEFF Research Database (Denmark)

    Ostergaard, Christian; Benfield, Thomas

    2009-01-01

    ABSTRACT: INTRODUCTION: Macrophage Migration Inhibitory Factor (MIF) plays an essential pathophysiological role in septic shock; however, its role in central nervous system infection (CNS) remains to be defined. METHODS: The aim of the present study was to investigate cerebrospinal fluid (CSF...... suspected of but had no evidence of CNS infection. RESULTS: CSF MIF levels were significantly higher in patients with purulent meningitis of known aetiology (8639 ng/L (3344-20600)) as compared to patients with purulent meningitis of unknown aetiology (2209 ng/L (1516-6550), Mann Whitney test, P=0...

  13. Epilepsy and other central nervous system diseases in atypical autism: a case control study

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    There is an increased but variable risk of epilepsy in autism spectrum disorders. The objective of this study is to compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 89 individuals diagnosed as children with atypical autism (AA......) with 258 matched controls from the general population. Diagnoses were based on data from the nationwide Danish National Hospital Register. The average observation time was 32.9 years, and mean age at follow-up was 48.5 years. Of the 89 individuals with AA, 20 (22.5%) were registered with at least one...

  14. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    Directory of Open Access Journals (Sweden)

    M.A. Pires-Neto

    1999-05-01

    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  15. Isolated Richter's syndrome in central nervous system: case report Sindrome de Richter isolada em sistema nervoso central: relato de caso

    Directory of Open Access Journals (Sweden)

    Lucilene S.R. Resende

    2005-06-01

    Full Text Available Diffuse large cell non Hodgkin's lymphoma associated with chronic lymphoid leukemia (CLL, or Richter's syndrome, is a rare and serious complication. Isolated Richter's syndrome in the central nervous system is very rare; only 12 cases have been reported. We describe a 74-year-old patient with diffuse large cell non Hodgkin's lymphoma in the right frontal region with the appearance of multiform glioblastoma.Linfoma não Hodgkin difuso de grandes células em paciente portador de leucemia linfóide crônica (LLC, ou síndrome de Richter, é complicação rara e grave nesta leucemia. Síndrome de Richter isolada no sistema nervoso central é muito rara, tendo sido encontrados apenas 12 casos descritos. Descrevemos paciente de 74 anos, que apresentou linfoma não Hodgkin difuso de grandes células em região frontal direita, simulando glioblastoma multiforme.

  16. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    Science.gov (United States)

    2015-03-01

    Central Nervous System Following Neural Injury PRINCIPAL INVESTIGATOR: Robert E. Burke, MD CONTRACTING ORGANIZATION: COLUMBIA UNIVERSITY MEDICAL...Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0051 5c...INTRODUCTION A longstanding concept in neuroscience has been that the mature mammalian central nervous system (CNS), unlike the peripheral nervous system (PNS

  17. Unexperienced mechanical effects of muscular fatigue can be predicted by the Central Nervous System as revealed by anticipatory postural adjustments.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2014-09-01

    Muscular fatigue effects have been shown to be compensated by the implementation of adaptive compensatory neuromuscular strategies, resulting in modifications of the initial motion coordination. However, no studies have focused on the efficiency of the feedforward motor commands when muscular fatigue occurs for the first time during a particular movement. This study included 18 healthy subjects who had to perform arm-raising movements in a standing posture at a maximal velocity before and after a fatiguing procedure involving focal muscles. The arm-raising task implies the generation of predictive processes of control, namely Anticipatory Postural Adjustments (APAs), whose temporal and quantitative features have been shown to be dependent on the kinematics of the upcoming arm-raising movement. By altering significantly the kinematic profile of the focal movement with a fatiguing procedure, we sought to find out whether APAs scaled to the lower mechanical disturbance. APAs were measured using surface electromyography. Following the fatiguing procedure, acceleration peaks of the arm movement decreased by ~27%. APAs scaled to this lower fatigue-related disturbance during the very first trial post-fatigue, suggesting that the Central Nervous System can predict unexperienced mechanical effects of muscle fatigue. It is suggested that these results are accounted for by prediction processes in which the central integration of the groups III and IV afferents leads to an update of the internal model by remapping the relationship between focal motor command magnitude and the actual mechanical output.

  18. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura)

    Science.gov (United States)

    Harzsch, S.; Dawirs, R. R.

    1993-02-01

    We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

  19. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  20. Novel Indications for Benzodiazepine Antagonist Flumazenil in GABA Mediated Pathological Conditions of the Central Nervous System.

    Science.gov (United States)

    Hulse, Gary; Kelty, Erin; Hood, Sean; Norman, Amanda; Basso, Maria Rita; Reece, Albert Stuart

    2015-01-01

    This review paper discusses the central role of gamma-aminobutyric acid (GABA) in diverse physiological systems and functions and the therapeutic potential of the benzodiazepine antagonist flumazenil (Ro 15- 1788) for a wide range of disorders of the central nervous system (CNS). Our group and others have studied the potential of flumazenil as a treatment for benzodiazepine dependence. A small but growing body of research has indicated that flumazenil may also have clinical application in CNS disorders such as Parkinson's disease, idiopathic hypersomnia and amyotrophic lateral sclerosis. Despite this body of research the therapeutic potential of flumazenil remains poorly understood and largely unrealized. The purpose of this paper is not to provide an exhaustive review of all possible therapeutic applications for flumazenil but rather to stimulate research interest, and discussion of the exciting therapeutic potential of this drug for a range of chronic debilitating conditions.

  1. Activity on the central nervous system of Himanthalia elongata; Part II.

    Science.gov (United States)

    Anca, J M; Lamela, M; Gato, M A; Cadavid, I; Calleja, J M

    1993-04-01

    We report the effects on the central nervous system (CNS) and on analgesic activity of a fraction (F2) obtained from a Himanthalia elongata extract. The fraction was assayed for effects on spontaneous locomotor activity, d-amphetamine-induced hypermotility, motor coordination, muscular relaxation, rectal temperature, sodium pentobarbital-induced hypnosis, and pentylenetetrazole-induced convulsions. Analgesic activity was evaluated using the hot plate test and the Randall-Selitto test (1). The fraction caused significant reductions in spontaneous locomotor activity, hypermotility, rectal temperature, and motor coordination and postponed pentylenetetrazole-induced death, but no effect was noted on muscle relaxation or the duration of sodium pentobarbital-induced sleep. The fraction exhibited central analgesic effects in the hot plate and Randall-Selitto tests.

  2. Central nervous system regulation of eating: Insights from human brain imaging.

    Science.gov (United States)

    Farr, Olivia M; Li, Chiang-Shan R; Mantzoros, Christos S

    2016-05-01

    Appetite and body weight regulation are controlled by the central nervous system (CNS) in a rather complicated manner. The human brain plays a central role in integrating internal and external inputs to modulate energy homeostasis. Although homeostatic control by the hypothalamus is currently considered to be primarily responsible for controlling appetite, most of the available evidence derives from experiments in rodents, and the role of this system in regulating appetite in states of hunger/starvation and in the pathogenesis of overeating/obesity remains to be fully elucidated in humans. Further, cognitive and affective processes have been implicated in the dysregulation of eating behavior in humans, but their exact relative contributions as well as the respective underlying mechanisms remain unclear. We briefly review each of these systems here and present the current state of research in an attempt to update clinicians and clinical researchers alike on the status and future directions of obesity research.

  3. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway.

    Directory of Open Access Journals (Sweden)

    Seii eOHKA

    2012-04-01

    Full Text Available In humans, paralytic poliomyelitis results from the invasion of the central nervous system by circulating poliovirus (PV via the blood-brain barrier (BBB. After the virus enters the central nervous system (CNS, it replicates in neurons, especially in motor neurons (MNs, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, neural pathway has been reported in humans, monkeys, and PV-sensitive human PV receptor (hPVR/CD155-transgenic (Tg mice. We demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerve of hPVR-Tg mice and that intramuscularly inoculated PV causes paralysis in a hPVR-dependent manner. We also showed that hPVR-independent axonal transport of PV exists in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Circulating PV after intravenous inoculation in mice cross the BBB at a high rate in a hPVR-independent manner. Recently, we identified transferrin receptor 1 (TfR1 of mouse brain capillary endothelial cells as a binding protein to PV, implicating that TfR1 is a possible receptor for PV to permeate the BBB.

  4. [Central nervous system leukemia mimicking rapidly progressive HTLV-1 associated myelopathy].

    Science.gov (United States)

    Haruki, Hiroyo; Tanaka, Shinichiro; Koga, Michiaki; Kawai, Motoharu; Negoro, Kiyoshi; Kanda, Takashi

    2009-03-01

    A 79-year-old woman was suffered from rapidly progressive paresthesia of lower limbs and gait disturbance. After one month, she showed flaccid paraplegia and hyperreflexia in the lower limbs with positive Babinski signs. Anti-HTLV-1 antibody titer was elevated in the serum, but negative in the cerebrospinal fluid (CSF). CSF examination showed mild pleocytosis, elevated protein, and normal glucose content. Adult T cell lymphoma (ATL)-like cells were seen in the CSF. MRI showed no abnormal intensity in the spinal cord and brain. Two months later, she showed rapid worsening of the paraplegia and she became unable to stand. A tentative diagnosis of rapidly progressive HTLV-1 associated myelopathy (HAM) was given, but intravenous methylprednisolone was ineffective. Six months later, she developed pneumonia, and abundant ATL cells were seen in the peripheral blood, suggesting a diagnosis of ATL. Direct infiltration of ATL cells to central nervous system was therefore suggested to have caused neurological abnormalities in this case. One may consider central nervous system leukemia when rapidly progressive HAM-like symptoms and signs are recognized, especially without positive anti-HTLV-1 antibody in the CSF.

  5. Incidence, risk factors and outcome of nosocomial pneumonia in patients with central nervous system infections

    Directory of Open Access Journals (Sweden)

    Gajović Olgica

    2011-01-01

    Full Text Available Introduction. Pneumonia is the most frequent nosocomial infection in intensive care units. The reported frequency varies with definition, the type of hospital or intensive care units and the population of patients. The incidence ranges from 6.8-27%. Objective. The objective of this study was to determine the frequency, risk factors and mortality of nosocomial pneumonia in intensive care patients. Methods. We analyzed retrospectively and prospectively the collected data of 180 patients with central nervous system infections who needed to stay in the intensive care unit for more than 48 hours. This study was conducted from 2003 to 2009 at the Clinical Centre of Kragujevac. Results. During the study period, 54 (30% patients developed nosocomial pneumonia. The time to develop pneumonia was 10±6 days. We found that the following risk factors for the development of nosocomial pneumonia were statistically significant: age, Glasgow Coma Scale (GCS score <9, mechanical ventilation, duration of mechanical ventilation, tracheostomy, presence of nasogastric tube and enteral feeding. The most commonly isolated pathogens were Klebsiella-Enterobacter spp. (33.3%, Pseudomonas aeruginosa (24.1%, Acinetobacter spp. (16.6% and Staphylococcus aureus (25.9%. Conclusion. Nosocomial pneumonia is the major cause of morbidity and mortality of patients with central nervous system infections. Patients on mechanical ventilation are particularly at a high risk. The mortality rate of patients with nosocomial pneumonia was 54.4% and it was five times higher than in patients without pneumonia.

  6. Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection.

    Science.gov (United States)

    Sauder, C; de la Torre, J C

    1999-04-01

    Borna disease virus (BDV) causes central nervous system (CNS) disease in several vertebrate species, which is frequently accompanied by behavioral abnormalities. In the adult rat, intracerebral (i.c.) BDV infection leads to immunomediated meningoencephalitis. In contrast, i.c. infection of neonates causes a persistent infection in the absence of overt signs of brain inflammation. These rats (designated PTI-NB) display distinct behavioral and neurodevelopmental abnormalities. However, the molecular mechanisms for these virally induced CNS disturbances are unknown. Cytokines play an important role in CNS function, both under normal physiological and pathological conditions. Astrocytes and microglia are the primary resident cells of the central nervous system with the capacity to produce cytokines. Strong reactive astrocytosis is observed in the PTI-NB rat brain. We have used a ribonuclease protection assay to investigate the mRNA expression levels of proinflammatory cytokines in different brain regions of PTI-NB and control rats. We show here evidence of a chronic upregulation of proinflammatory cytokines interleukin-6, tumor necrosis factor alpha, interleukins-1alpha, and -1beta in the hippocampus and cerebellum of the PTI-NB rat brain. These brain regions exhibited only a very mild and transient immune infiltration. In contrast, in addition to reactive astrocytes, a strong and sustained microgliosis was observed in the PTI-NB rat brains. Our data suggest that CNS resident cells, namely astrocytes and microglia, are the major source of cytokine expression in the PTI-NB rat brain. The possible implications of these findings are discussed.

  7. Central nervous system transplantation benefited by low-level laser irradiation

    Science.gov (United States)

    Rochkind, S.; Lubart, Rachel; Wollman, Yoram; Simantov, Rabi; Nissan, Moshe; Barr-Nea, Lilian

    1990-06-01

    Effect of low-level laser irradiation on the central nervous system transplantation is reported. Ernbryonal brain allografts were transplanted into the brain of 20 adult rats and peripheral nerve graft transplanted into the severely injured spinal cord of 16 dogs. The operated wound of 10 rats and 8 dogs were exposed daily for 21 days to lowpower laser irradiation CW HeNe laser (35 mW, 632.8 run, energy density of 30 J/cm2 at each point for rats and 70 J/cm2 at each point for dogs). This study shows that (i) the low-level laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between embryonal transplants and host brain; (ii) Dogs made paraplegic by spinal cord injury were able to walk 3-6 months later. Recovery of these dogs was effected by the implantation of a fragment of autologous sciatic nerve at the site of injury and subsequently exposing the dogs to low-level laser irradiation. The effect of laser irradiation on the embryonal nerve cells grown in tissue culture was also observed. We found that low-level laser irradiation induced intensive migration of neurites outward of the aggregates 15-22 The results of the present study and our previous investigations suggest that low-level laser irradiation is a novel tool for treatment of peripheral and central nervous system injuries.

  8. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review

    Science.gov (United States)

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-01-01

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future. PMID:27413138

  9. Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System

    Science.gov (United States)

    Jayasena, T.; Poljak, A.; Braidy, N.; Zhong, L.; Rowlands, B.; Muenchhoff, J.; Grant, R.; Smythe, G.; Teo, C.; Raftery, M.; Sachdev, P.

    2016-10-01

    Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies.

  10. [Pharmacological study of mequitazine (LM-209) (III). Action on the central nervous system (author's transl)].

    Science.gov (United States)

    Fujimura, H; Tsurumi, K; Yanagihara, M; Hiramatsu, Y; Tamura, Y; Shimizu, Y; Hojo, M; Yoshida, Y; Serizawa, I

    1981-10-01

    The action of an anti-histaminic agent, Mequitazine (LM-209) on the central nervous system was investigated. We found that LM-209 did not affect the spontaneous and co-operative movement in mice, did not induce muscle relaxation, analgesic effects or anti-convulsant effect in micr or hypothermic effects in rats. The anti-oxotremorine effect of LM-209 in mice was about 10 times more potent than clemastine fumarate (CL) and the same as promethazine. The activity and duration of the action were also superior to diethazine and orphenadrine used as an anti-Parkinson drug. LM-209 prolonged by 50% the hypnotic time induced by hexobarbital at 50 mg/kg (p.o.) in mice, while CL prolonged 50 and 100% it at 25 and 50 mg/kg (p.o.) respectively. In the EEG of rabbits, LM-209 produced a resting pattern, inhibited the arousal responses and recruiting responses and the effect was the same as CL and less potent than promethazine. From these results, the activity of LM-209 on the central nervous system (except for the anti-oxotremorine effect) seems to be the same as or somewhat less potent than CL. Therefore LM-209 should be an effective and anti-histaminic agent for clinical application.

  11. Magnetic resonance features of primary central nervous system lymphoma in the immunocompetent patient: a pictorial essay.

    Science.gov (United States)

    Yap, Kelvin K; Sutherland, Tom; Liew, Elaine; Tartaglia, Con J; Pang, Mei; Trost, Nick

    2012-04-01

    Primary central nervous system lymphoma (PCNSL) is an uncommon but important variant of non-Hodgkin lymphoma and represents up to 6% of all primary central nervous system (CNS) malignancies. Recognition of this entity by radiologist on MRI may avoid unnecessary neurosurgical resection and redirect to biopsy. The pretreatment MRI of patients with biopsy proven PCNSL from the last 5 years at our institution was reviewed. Selected examples were used to construct a pictorial essay to illustrate some of the typical and atypical MR features of PCNSL. MRI of other CNS conditions with imaging similarities to PCNSL was included to demonstrate possible mimics. The typical features of PCNSL lymphoma are intra-axial homogenous single or multiple contrast enhancing lesions, with marked surrounding oedema and restricted diffusion, usually contacting a cerebrospinal fluid (CSF) surface. Necrosis, peripheral enhancement, haemorrhage or calcification are unusual and other diagnoses should be considered if any of these features are present. Potential mimics include high grade glioma, infarcts, metastatic disease, demyelination, abscess and secondary lymphoma. Careful assessment of the MR features and correlation with the clinical findings should enable the radiologists to raise the possibility of PCNSL and minimise the risk of unnecessary resection. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  12. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Tortosa Raül

    2011-10-01

    Full Text Available Abstract Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.

  13. Guideline on the prevention of secondary central nervous system lymphoma: British Committee for Standards in Haematology.

    Science.gov (United States)

    McMillan, Andrew; Ardeshna, Kirit M; Cwynarski, Kate; Lyttelton, Matthew; McKay, Pam; Montoto, Silvia

    2013-10-01

    The guideline group was selected to be representative of UK-based medical experts. Ovid MEDLINE, EMBASE and NCBI Pubmed were searched systematically for publications in English from 1980 to 2012 using the MeSH subheading 'lymphoma, CNS', 'lymphoma, central nervous system', 'lymphoma, high grade', 'lymphoma, Burkitt's', 'lymphoma, lymphoblastic' and 'lymphoma, diffuse large B cell' as keywords, as well as all subheadings. The writing group produced the draft guideline, which was subsequently revised by consensus by members of the Haemato-oncology Task Force of the British Committee for Standards in Haematology (BCSH). The guideline was then reviewed by a sounding board of ~50 UK haematologists, the BCSH and the British Society for Haematology (BSH) Committee and comments incorporated where appropriate. The 'GRADE' system was used to quote levels and grades of evidence, details of which can be found in Appendix I. The objective of this guideline is to provide healthcare professionals with clear guidance on the optimal prevention of secondary central nervous system (CNS) lymphoma. The guidance may not be appropriate to patients of all lymphoma sub-types and in all cases individual patient circumstances may dictate an alternative approach. Acronyms are defined at time of first use.

  14. LPA receptor expression in the central nervous system in health and following injury.

    Science.gov (United States)

    Goldshmit, Yona; Munro, Kathryn; Leong, Soo Yuen; Pébay, Alice; Turnley, Ann M

    2010-07-01

    Lysophosphatidic acid (LPA) is released from platelets following injury and also plays a role in neural development but little is known about its effects in the adult central nervous system (CNS). We have examined the expression of LPA receptors 1-3 (LPA(1-3)) in intact mouse spinal cord and cortical tissues and following injury. In intact and injured tissues, LPA(1) was expressed by ependymal cells in the central canal of the spinal cord and was upregulated in reactive astrocytes following spinal cord injury. LPA(2) showed low expression in intact CNS tissue, on grey matter astrocytes in spinal cord and in ependymal cells lining the lateral ventricle. Following injury, its expression was upregulated on astrocytes in both cortex and spinal cord. LPA(3) showed low expression in intact CNS tissue, viz. on cortical neurons and motor neurons in the spinal cord, and was upregulated on neurons in both regions after injury. Therefore, LPA(1-3) are differentially expressed in the CNS and their expression is upregulated in response to injury. LPA release following CNS injury may have different consequences for each cell type because of this differential expression in the adult nervous system.

  15. In the presence of danger:the extracellular matrix defensive response to central nervous system injury

    Institute of Scientific and Technical Information of China (English)

    Lyn B. Jakeman; Kent E. Williams; Bryan Brautigam

    2014-01-01

    Glial cells in the central nervous system (CNS) contribute to formation of the extracellular matrix, which provides adhesive sites, signaling molecules, and a diffusion barrier to enhance efifcient neurotransmission and axon potential propagation. In the normal adult CNS, the extracellular matrix (ECM) is relatively stable except in selected regions characterized by dynamic remodel-ing. However, after trauma such as a spinal cord injury or cortical contusion, the lesion epicenter becomes a focus of acute neuroinlfammation. The activation of the surrounding glial cells leads to a dramatic change in the composition of the ECM at the edges of the lesion, creating a perile-sion environment dominated by growth inhibitory molecules and restoration of the peripheral/central nervous system border. An advantage of this response is to limit the invasion of damaging cells and diffusion of toxic molecules into the spared tissue regions, but this occurs at the cost of inhibiting migration of endogenous repair cells and preventing axonal regrowth. The following review was prepared by reading and discussing over 200 research articles in the ifeld published in PubMed and selecting those with signiifcant impact and/or controversial points. This article highlights structural and functional features of the normal adult CNS ECM and then focuses on the reactions of glial cells and changes in the perilesion border that occur following spinal cord or contusive brain injury. Current research strategies directed at modifying the inhibitory perile-sion microenvironment without eliminating the protective functions of glial cell activation are discussed.

  16. Central nervous insulin administration does not potentiate the acute glucoregulatory impact of concurrent mild hyperinsulinemia.

    Science.gov (United States)

    Ott, Volker; Lehnert, Hendrik; Staub, Josefine; Wönne, Kathrin; Born, Jan; Hallschmid, Manfred

    2015-03-01

    Experiments in rodents suggest that hypothalamic insulin signaling essentially contributes to the acute control of peripheral glucose homeostasis. Against this background, we investigated in healthy humans whether intranasal (IN) insulin, which is known to effectively reach the brain compartment, impacts systemic glucose metabolism. Twenty overnight-fasted healthy, normal-weight men were IN administered 210 and 420 international units [IU] (10 and 20 IU every 15 min) of the insulin analog aspart (ins-asp) and placebo, respectively, during experimental sessions lasting 6 h. The use of ins-asp rather than human insulin enabled us to disentangle exogenous and endogenous insulin kinetics. IN insulin dose-dependently decreased plasma glucose concentrations while reducing C-peptide and attenuating endogenous insulin levels. However, we also observed a slight dose-dependent permeation of ins-asp into the circulation. In control experiments mimicking the systemic but not the central nervous uptake of the IN 210 IU dose via intravenous infusion of ins-asp at a dose of 0.12 IU/kg/24 h (n = 10), we obtained essentially identical effects on fasting plasma glucose concentrations. This pattern indicates that sustained IN insulin administration to the human brain to enhance central nervous insulin signaling does not acutely alter systemic glucose homeostasis beyond effects accounted for by concurrent mild hyperinsulinemia.

  17. Candida infection of the central nervous system following neurosurgery: a 12-year review.

    LENUS (Irish Health Repository)

    O'Brien, Deirdre

    2012-02-01

    BACKGROUND: Candida infection of the central nervous system (CNS) following neurosurgery is relatively unusual but is associated with significant morbidity and mortality. We present our experience with this infection in adults and discuss clinical characteristics, treatment options, and outcome. METHODS: All episodes of Candida isolated from the central nervous system were identified by searching our laboratory database. Review of the cases was performed by means of a retrospective chart review. RESULTS: Eleven episodes of Candida CSF infection following neurosurgery were identified over a 12-year period. Candida albicans was the predominant species isolated (n = 8, 73%). All infections were associated with foreign intracranial material, nine with external ventricular drains (82%), one with a ventriculoperitoneal shunt, one with a lumbar drain, and one with Gliadel wafers (1,3-bis [2-chloroethyl]-1-nitrosurea). Fluconazole or liposomal amphotericin B were the most common anti-fungal agents used. The mortality rate identified in our series was 27%. CONCLUSIONS: Candida infection following neurosurgery remains a relatively rare occurrence but one that causes significant mortality. These are complex infections, the management of which benefits from a close liaison between the clinical microbiologist and neurosurgeon. Prompt initiation of antifungal agents and removal of infected devices offers the best hope of a cure.

  18. Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system

    Directory of Open Access Journals (Sweden)

    Stopa Edward G

    2011-01-01

    Full Text Available Abstract Background Because the choroid plexus (CP is uniquely suited to control the composition of cerebrospinal fluid (CSF, there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS. Methods A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity. Results Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependant binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles. Conclusion These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain.

  19. Diffuse large B-cell lymphoma involving the central nervous system.

    Science.gov (United States)

    Gualco, Gabriela; Weiss, Lawrence M; Barber, Glen N; Bacchi, Carlos E

    2011-02-01

    Lymphomas involving the central nervous system are recognized increasingly in immunocompetent as well as immunosuppressed individuals, and the majority of the cases are diffuse large B-cell lymphoma (DLBCL). The aim of this study was to compare the immunophenotype, clinicopathological features, and association with Epstein-Barr virus (EBV) of DLBCL of the central nervous system (CNS) in 3 different clinical situations: primary, in immunocompetent patients; "primary," in immunosuppressed patients; and in patients with secondary involvement by systemic lymphoma. The authors reviewed the clinicopathological features, morphology, immunophenotype (according to germinal-center B-cell-like and nongerminal B-cell-like subtypes), and association with EBV in 36 cases of DLBCL of the CNS, including 25 primary cases, 5 associated with immunosuppression, and 6 cases with secondary involvement. Survival was evaluated in 15 cases of primary CNS lymphomas. Of the 36 patients, 19 were male and 18 female. Only 2 cases of lymphomas were EBV-positive; both occurred in immunosuppressed patients. Separation into germinal-center and non-germinal center subtypes by an immunohistochemistry panel showed that 68% of primary, 80% of secondary, and 83% of the cases associated with immunosuppression were of non-germinal-center subtype, respectively. Patients with non-germinal-center immunophenotype showed significantly worse survival than those with CNS lymphomas of the germinal-center subtype.

  20. [The effects of protein-energy malnutrition on the central nervous system in children].

    Science.gov (United States)

    Cornelio-Nieto, J O

    2007-03-02

    Protein-energy malnutrition continues to affect millions of human beings in developing countries. Children suffer most from the shortage of nutrients because at early ages malnutrition has an important impact on the central nervous system. The changes that malnutrition triggers in the brains of these children will have severe consequences on their development and learning abilities. Reports of important alterations in the head circumference and brain growth of malnourished children have been published in the literature, together with accounts of changes in both the dendritic arborisation and the morphology of the dendritic spines, as well as in myelination. Computerised tomography brain scans and magnetic resonance imaging in children suffering from malnutrition show images that are compatible with cerebral atrophy. The lack of environmental stimulation associated with malnutrition worsens the damage to the central nervous system. All the alterations that are observed in such cases give rise to important compromise of the child's higher brain functions, which may well lead to permanent neuropsychological damage. Protein-energy malnutrition produces notable morphological changes in the brains of children in the developing world. These changes damage the intellectual potential of those who survive and limit their capacity to become part of the competitive world. Paediatric neurologists working in these areas of the world must make greater efforts to disseminate this problem and to make public institutions aware of the issue so that they do not desist in the fight against child malnutrition.

  1. Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Rishab Shyam

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI-g-polyethylene glycol (PEG copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.

  2. P2 receptors in the central and peripheral nervous systems modulating sympathetic vasomotor tone.

    Science.gov (United States)

    Ralevic, V

    2000-07-01

    Arterial pressure depends on the level of activity of sympathetic vasoconstrictor outflow to blood vessels. This activity is generated in the central nervous system, and involves inputs from a variety of brain regions projecting to sympathetic preganglionic neurones. Of especial interest are a group of neurones in the rostral ventrolateral medulla (RVLM), as they have been demonstrated to have a fundamental role in reflex regulation of the cardiovascular system, and in generation of tonic drive to sympathetic outflow. Sympathetic outflow to blood vessels is additionally modulated at sympathetic ganglia, and at the peripheral terminals of sympathetic nerves. This review considers the role of P2 purine receptors in this neural pathway. Ionotropic P2X receptors are expressed in the RVLM, in sympathetic ganglia, and at the sympathetic neuromuscular junction, and mediate fast excitatory neurotransmission, indicating a general role for ATP as a regulator of sympathetic vasomotor tone. P2Y receptors couple to G proteins and mediate slower signalling to ATP; they have been reported to inhibit prejunctionally neurotransmission at the peripheral terminals of sympathetic nerves, but little is known about their possible role in the central nervous system and in sympathetic ganglia.

  3. The role of myelin in Theiler's virus persistence in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Roussarie

    2007-02-01

    Full Text Available Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp, is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.

  4. Mechanisms of spreading depolarization in vertebrate and insect central nervous systems.

    Science.gov (United States)

    Spong, Kristin E; Andrew, R David; Robertson, R Meldrum

    2016-09-01

    Spreading depolarization (SD) is generated in the central nervous systems of both vertebrates and invertebrates. SD manifests as a propagating wave of electrical depression caused by a massive redistribution of ions. Mammalian SD underlies a continuum of human pathologies from migraine to stroke damage, whereas insect SD is associated with environmental stress-induced neural shutdown. The general cellular mechanisms underlying SD seem to be evolutionarily conserved throughout the animal kingdom. In particular, SD in the central nervous system of Locusta migratoria and Drosophila melanogaster has all the hallmarks of mammalian SD. Locust SD is easily induced and monitored within the metathoracic ganglion (MTG) and can be modulated both pharmacologically and by preconditioning treatments. The finding that the fly brain supports repetitive waves of SD is relatively recent but noteworthy, since it provides a genetically tractable model system. Due to the human suffering caused by SD manifestations, elucidating control mechanisms that could ultimately attenuate brain susceptibility is essential. Here we review mechanisms of SD focusing on the similarities between mammalian and insect systems. Additionally we discuss advantages of using invertebrate model systems and propose insect SD as a valuable model for providing new insights to mammalian SD.

  5. Loranthus longiflorus protect central nervous system against oxidative damages of electromagnetic radiation on rat

    Directory of Open Access Journals (Sweden)

    Hemant Nagar

    2013-01-01

    Full Text Available Background: The interaction of mobile phone radio-frequency electromagnetic radiation (RF-EMR with the brain is a serious concern of our society. In this study, we aimed to experiment on the anti-oxidative property of a parasitic plant Loranthus longiflorus (Loranthaceae to protect central nervous system against oxidative damages of mobile phone electromagnetic field (EMF. Materials and Methods: Healthy male albino wistar rats were exposed to RF-EMR by giving 5 min calling/5 min interval for 1 hour per day for 2 months, keeping a GSM (0.9/1.8 GHz mobile phone in silent mode (no ring tone in the cage. After 15, 30, 45, 60 days exposure, three randomly picked animals from each group were tested with using behavioural model of CNS on rats. Results and Conclusion: Loranthus longiflorus bark extract could be effective in decreasing immobility (P < 0.05 and increased locomotor activity (P < 0.05. This result indicates the protective effect of Loranthus longiflorus bark against EMF induced oxidative damage of central nervous system.

  6. Proposal for research and education: joint lectures and practicals on central nervous system anatomy and physiology.

    Science.gov (United States)

    Kageyama, Ikuo; Yoshimura, Ken; Satoh, Yoshihide; Nanayakkara, Chinthani D; Pallegama, Ranjith W; Iwasaki, Shin-Ichi

    2016-07-01

    We coordinated anatomy and physiology lectures and practicals to facilitate an integrated understanding of morphology and function in a basic medical science program for dental students and to reduce the time spent on basic science education. This method is a means to provide the essential information and skills in less time. The overall impression was that the practice of joint central nervous system lectures and practicals was an efficient method for students, which suggests that joint lectures might also be useful for clinical subjects. About two-thirds of students felt that the joint anatomy and physiology lecture on the central nervous system was useful and necessary in understanding the relationship between morphology and function, at least for this subject. One-third of students were neutral on the effectiveness of this method. However, the survey results suggest that improvements are needed in the method and timing of joint lectures and practicals. The present teaching approach can be further improved by conducting combined lectures in which the form and function of anatomic structures are presented by the relevant departments during the same lecture. Finally, joint lecturers and practicals offer an opportunity to increase student understanding of the importance of new research findings by the present authors and other researchers.

  7. Syringomyelia in demyelinating disease of the central nervous system: Report of two cases

    Directory of Open Access Journals (Sweden)

    Savić Dejan

    2011-01-01

    Full Text Available Introduction. Syringomyelia is a cavitary extension inside the spinal cord which can be either symptomatic or congenitally-idiopathic. Syringomyelia during the course of the disease in patients presenting with clinically definite multiple sclerosis was described earlier. Syringomyelia in patients presenting with a clinically isolated syndrome suggestive of multiple sclerosis is unusual. Case Outline. We present two patients presenting with demy-elinating disease of the central nervous system with syringomyelia in the cervical and thoracic spinal cord. We did not find classical clinical signs of syringomyelia in our patients, but we disclosed syringomyelia incidentally during magnetic resonance exploration. Magnetic resonance exploration using the gadolinium contrast revealed the signs of active demyelinating lesions in the spinal cord in one patient but not in the other. Conclusion. Syringomyelia in demyelinating disease of the central nervous system opens the question whether it is a coincidental finding or a part of clinical features of the disease. Differentiation of the significance of syringomyelia finding in these patients plays a role in the choice of treatment concept in such patients.

  8. Primary central nervous system anaplastic large-cell lymphoma mimicking lymphomatosis cerebri.

    Science.gov (United States)

    Sugino, Toshiya; Mikami, Takeshi; Akiyama, Yukinori; Wanibuchi, Masahiko; Hasegawa, Tadashi; Mikuni, Nobuhiro

    2013-01-01

    Primary central nervous system lymphoma (PCNSL) is usually diffuse large B-cell lymphoma. Anaplastic large-cell lymphoma (ALCL) rarely occurs in the central nervous system. PCNSL always presents as single or multiple nodular contrast-enhancing mass lesions within T2-hyperintense areas on magnetic resonance imaging (MRI). Infrequently, diffuse infiltrating change with little contrast enhancement called lymphomatosis cerebri can be seen in PCNSL. In this report, we describe a 75-year-old immunocompetent man who had progressive dementia. On MRI, diffuse white matter lesions with little contrast enhancement were observed to gradually progress, which was clinically consistent with his worsening condition. A biopsy specimen revealed non-destructive, diffusely infiltrating, anaplastic large CD30-positive lymphoma, indicating a diagnosis of ALCL. After the biopsy, he was treated by whole brain irradiation (total 46 Gy) and focal boost irradiation (total 14 Gy). However, his performance status worsened and there was no symptom improvement. The patient died 8 months after symptom onset. The clinical course, diagnostic workup, pathologic correlates, and treatment outcomes are described herein.

  9. Radiotherapy in the treatment of primary central nervous system lymphoma (PCNSL).

    Science.gov (United States)

    Nelson, D F

    1999-07-01

    The use of radiotherapy alone to treat primary central nervous system lymphoma (PCNSL) does not produce the high local control and survival rates that it does in limited extranodal non-Hodgkin's lymphoma outside the central nervous system (CNS). Even with doses of whole brain radiation therapy (WBRT) to 40+20 Gy boost, the Radiation Therapy Oncology Group (RTOG) reported a local control rate of 39%. Seventy-nine percent of recurrences were in the 60 Gy region. The median survival was 11.6 months. This response to local radiotherapy is quite different from the response of non-CNS Diffuse Large Cell Lymphoma where doses of 30-40 and >40 Gy have a 75-90% local control rate. Neither systemic lymphoma nor PCNSL have a classic radiotherapy dose response. For PCNSL there appears to be a threshold dose that ranges in the literature between 30 and > 50 Gy with a median of 40 Gy. Therefore, when radiotherapy is combined with chemotherapy that crosses the BBB, WBRT and/or boost doses may be able to be decreased, especially in patients achieving a complete response. Promising data from the Centre Leon Berard suggest that this is possible. When such chemotherapy was combined with intrathecal chemotherapy and 20 Gy WBRT, they obtained a 56% actuarial 5 year survival rate. Confirmation of single institution reports of favorable results such as these are needed. Cooperative group and intergroup trials are needed to define optimal therapy.

  10. Mosaic expression of Atrx in the mouse central nervous system causes memory deficits

    Directory of Open Access Journals (Sweden)

    Renee J. Tamming

    2017-02-01

    Full Text Available The rapid modulation of chromatin organization is thought to play a crucial role in cognitive processes such as memory consolidation. This is supported in part by the dysregulation of many chromatin-remodelling proteins in neurodevelopmental and psychiatric disorders. A key example is ATRX, an X-linked gene commonly mutated in individuals with syndromic and nonsyndromic intellectual disability. The consequences of Atrx inactivation for learning and memory have been difficult to evaluate because of the early lethality of hemizygous-null animals. In this study, we evaluated the outcome of brain-specific Atrx deletion in heterozygous female mice. These mice exhibit a mosaic pattern of ATRX protein expression in the central nervous system attributable to the location of the gene on the X chromosome. Although the hemizygous male mice die soon after birth, heterozygous females survive to adulthood. Body growth is stunted in these animals, and they have low circulating concentrations of insulin growth factor 1. In addition, they are impaired in spatial, contextual fear and novel object recognition memory. Our findings demonstrate that mosaic loss of ATRX expression in the central nervous system leads to endocrine defects and decreased body size and has a negative impact on learning and memory.

  11. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy.

    Science.gov (United States)

    Tortosa, Raül; Castells, Xavier; Vidal, Enric; Costa, Carme; Ruiz de Villa, María del Carmen; Sánchez, Alex; Barceló, Anna; Torres, Juan María; Pumarola, Martí; Ariño, Joaquín

    2011-10-28

    Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.

  12. Primary angiitis of the central nervous system: an ante-mortem diagnosis.

    Directory of Open Access Journals (Sweden)

    Singh S

    2000-10-01

    Full Text Available A rare case of primary angiitis of the central nervous system (PACNS is reported with its clinical and magnetic resonance imaging (MRI features. A 20-year-old girl presented with headache, projectile vomiting, unsteadiness of gait and urgency of micturition. She had left seventh nerve upper motor neuron type paresis, increased tone in all four limbs, exaggerated deep tendon reflexes, cerebellar signs, and papilloedema. Cerebrospinal fluid showed lymphocytosis with elevated protein and normal glucose level. Cerebral computerised tomographic scan and MRI showed bilateral diffuse asymmetric supra- and infra-tentorial lesions (predominantly in the supratentorial and left cerebrum. On MRI, the lesions were hyperintense on T2, and proton density-weighted images and hypointense on T1-weighted images. Based on the clinical findings of raised intracranial tension and MRI features, initial diagnoses of gliomatosis cerebrii, tuberculous meningitis, primary central nervous system lymphoma and chronic viral encephalitis were considered. PACNS was not included in the initial differentials and, an open brain biopsy was advised which established the definitive diagnosis.

  13. Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis.

    Science.gov (United States)

    Bery, Amandine; Cardona, Albert; Martinez, Pedro; Hartenstein, Volker

    2010-09-01

    The neuroarchitecture of Acoela has been at the center of morphological debates. Some authors, using immunochemical tools, suggest that the nervous system in Acoela is organized as a commissural brain that bears little resemblance to the central, ganglionic type brain of other flatworms, and bilaterians in general. Others, who used histological staining on paraffin sections, conclude that it is a compact structure (an endonal brain; e.g., Raikova 2004; von Graff 1891; Delage Arch Zool Exp Gén 4:109-144, 1886). To address this question with modern tools, we have obtained images from serial transmission electron microscopic sections of the entire hatchling of Symsagittifera roscoffensis. In addition, we obtained data from wholemounts of hatchlings labeled with markers for serotonin and tyrosinated tubulin. Our data show that the central nervous system of a juvenile S. roscoffensis consists of an anterior compact brain, formed by a dense, bilobed mass of neuronal cell bodies surrounding a central neuropile. The neuropile flanks the median statocyst and contains several types of neurites, classified according to their types of synaptic vesicles. The neuropile issues three pairs of nerve cords that run at different dorso-ventral positions along the whole length of the body. Neuronal cell bodies flank the cords, and neuromuscular synapses are abundant. The TEM analysis also reveals different classes of peripheral sensory neurons and provides valuable information about the spatial relationships between neurites and other cell types within the brain and nerve cords. We conclude that the acoel S. roscoffensis has a central brain that is comparable in size and architecture to the brain of other (rhabditophoran) flatworms.

  14. Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy.

    Science.gov (United States)

    Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H

    2007-03-01

    To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.

  15. Estimated central blood volume in cirrhosis: relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Bendtsen, Flemming; Gerbes, A L

    1992-01-01

    The estimated central blood volume (i.e., blood volume in the heart cavities, lungs and central arterial tree) was determined by multiplying cardiac output by circulatory mean transit time in 19 patients with cirrhosis and compared with sympathetic nervous activity and circulating level of atrial...

  16. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations.

    Science.gov (United States)

    Morgan, Julie A; Corrigan, Frances; Baune, Bernhard T

    2015-01-01

    Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer's disease, depression, and Parkinson's disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important CNS functions have yet to be clarified. Here we review murine evidence about the effects of exercise on discrete brain regions involved in important CNS functions. Exercise effects on circadian rhythm, central metabolism, cardiovascular function, stress responses in the brain stem and hypothalamic pituitary axis, and movement are examined. The databases Pubmed, Web of Science, and Embase were searched for articles investigating regional brain adaptations to exercise. Brain regions examined included the brain stem, hypothalamus, and basal ganglia. We found evidence of multiple regional adaptations to both forced and voluntary exercise. Exercise can induce molecular adaptations in neuronal function in many instances. Taken together, these findings suggest that the regional physiological adaptations that occur with exercise could constitute a promising field for elucidating molecular and cellular mechanisms of recovery in psychiatric and neurological health conditions.

  17. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons.

    Science.gov (United States)

    Simpson, Matthew T; Venkatesh, Ishwariya; Callif, Ben L; Thiel, Laura K; Coley, Denise M; Winsor, Kristen N; Wang, Zimei; Kramer, Audra A; Lerch, Jessica K; Blackmore, Murray G

    2015-09-01

    Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Biochemical changes in the central nervous system of rats exposed to 1-bromopropane for seven days.

    Science.gov (United States)

    Wang, Hailan; Ichihara, Gaku; Ito, Hidenori; Kato, Kanefusa; Kitoh, Junzoh; Yamada, Tetsuya; Yu, Xiaozhong; Tsuboi, Seiji; Moriyama, Yoshinori; Sakatani, Rie; Shibata, Eiji; Kamijima, Michihiro; Itohara, Seiichiro; Takeuchi, Yasuhiro

    2002-05-01

    1-Bromopropane is used widely as an alternative to ozone-depleting solvents. The neurotoxic effects of this agent have been described in humans and experimental animals. Here we investigated the underlying mechanisms of the neurotoxic effects of 1-bromopropane by examining the initial biochemical changes in the central nervous system. Four groups of 9 Wistar male rats each were exposed to 200, 400, or 800 ppm 1-bromopropane or only fresh air, 8 h per day for 7 days. At the end of the experiment, the cerebrum, cerebellum, brain stem and lumbar enlargement of the spinal cord were dissected out from each rat (n = 8) for biochemical analyses. Morphological examinations of the nervous system were performed in the remaining rat of each group. 1-Bromopropane dose-dependently decreased neurospecific gamma-enolase, total glutathione, and nonprotein sulfhydryl groups in the cerebrum and cerebellum. Creatine kinase activity decreased dose-dependently in the brain and spinal cord. Histopathological examination showed swelling of preterminal axons in gracile nucleus and degeneration of myelin in peripheral nerves. Our results of low levels of gamma-enolase suggested that 1-bromopropane might primarily cause functional or cellular loss of neurons in the cerebrum and cerebellum. Glutathione depletion or modification to functional proteins containing a sulfhydryl base as a critical site might be the underlying mechanism of 1-bromopropane neurotoxicity.

  19. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    Science.gov (United States)

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  20. Kynurenines and Multiple Sclerosis: The Dialogue between the Immune System and the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Cecilia Rajda

    2015-08-01

    Full Text Available Multiple sclerosis is an inflammatory disease of the central nervous system, in which axonal transection takes place in parallel with acute inflammation to various, individual extents. The importance of the kynurenine pathway in the physiological functions and pathological processes of the nervous system has been extensively investigated, but it has additionally been implicated as having a regulatory function in the immune system. Alterations in the kynurenine pathway have been described in both preclinical and clinical investigations of multiple sclerosis. These observations led to the identification of potential therapeutic targets in multiple sclerosis, such as synthetic tryptophan analogs, endogenous tryptophan metabolites (e.g., cinnabarinic acid, structural analogs (laquinimod, teriflunomid, leflunomid and tranilast, indoleamine-2,3-dioxygenase inhibitors (1MT and berberine and kynurenine-3-monooxygenase inhibitors (nicotinylalanine and Ro 61-8048. The kynurenine pathway is a promising novel target via which to influence the immune system and to achieve neuroprotection, and further research is therefore needed with the aim of developing novel drugs for the treatment of multiple sclerosis and other autoimmune diseases.

  1. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    Directory of Open Access Journals (Sweden)

    William J Buchser

    Full Text Available Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs. Peripheral nervous system (PNS neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG or permissive (laminin substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX. Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  2. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    Science.gov (United States)

    Buchser, William J; Smith, Robin P; Pardinas, Jose R; Haddox, Candace L; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R; Bixby, John L; Lemmon, Vance P

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  3. Toxocariasis of the central nervous system: with report of two cases

    Directory of Open Access Journals (Sweden)

    Moreira-Silva Sandra F.

    2004-01-01

    Full Text Available Clinical involvement of the nervous system in visceral larva migrans due to Toxocara is rare, although in experimental animals the larvae frequently migrate to the brain. A review of the literature from the early 50's to date found 29 cases of brain involvement in toxocariasis. In 20 cases, various clinical and laboratory manifestations of eosinophilic meningitis, encephalitis, myelitis or radiculopathy were reported. We report two children with neurological manifestations, in which there was cerebrospinal fluid pleocytosis with marked eosinophilia and a positive serology for Toxocara both in serum and CSF. Serology for Schistosoma mansoni, Cysticercus cellulosae, Toxoplasma and cytomegalovirus were negative in CSF, that was sterile in both cases. Improvement of signs and symptoms after specific treatment (albendazole or thiabendazole was observed in the two cases. A summary of data described in the 25 cases previously reported is presented and we conclude that in cases of encephalitis and myelitis with cerebrospinal fluid pleocytosis and eosinophilia, parasitic infection of the central nervous system should be suspected and serology should be performed to establish the correct diagnosis and treatment.

  4. Chemokines Referee Inflammation within the Central Nervous System during Infection and Disease.

    Science.gov (United States)

    Durrant, Douglas M; Williams, Jessica L; Daniels, Brian P; Klein, Robyn S

    2014-01-01

    The discovery that chemokines and their receptors are expressed by a variety of cell types within the normal adult central nervous system (CNS) has led to an expansion of their repertoire as molecular interfaces between the immune and nervous systems. Thus, CNS chemokines are now divided into those molecules that regulate inflammatory cell migration into the CNS and those that initiate CNS repair from inflammation-mediated tissue damage. Work in our laboratory throughout the past decade has sought to elucidate how chemokines coordinate leukocyte entry and interactions at CNS endothelial barriers, under both homeostatic and inflammatory conditions, and how they promote repair within the CNS parenchyma. These studies have identified several chemokines, including CXCL12 and CXCL10, as critical regulators of leukocyte migration from perivascular locations. CXCL12 additionally plays an essential role in promoting remyelination of injured white matter. In both scenarios we have shown that chemokines serve as molecular links between inflammatory mediators and other effector molecules involved in neuroprotective processes.

  5. Chemokines Referee Inflammation within the Central Nervous System during Infection and Disease

    Directory of Open Access Journals (Sweden)

    Douglas M. Durrant

    2014-01-01

    Full Text Available The discovery that chemokines and their receptors are expressed by a variety of cell types within the normal adult central nervous system (CNS has led to an expansion of their repertoire as molecular interfaces between the immune and nervous systems. Thus, CNS chemokines are now divided into those molecules that regulate inflammatory cell migration into the CNS and those that initiate CNS repair from inflammation-mediated tissue damage. Work in our laboratory throughout the past decade has sought to elucidate how chemokines coordinate leukocyte entry and interactions at CNS endothelial barriers, under both homeostatic and inflammatory conditions, and how they promote repair within the CNS parenchyma. These studies have identified several chemokines, including CXCL12 and CXCL10, as critical regulators of leukocyte migration from perivascular locations. CXCL12 additionally plays an essential role in promoting remyelination of injured white matter. In both scenarios we have shown that chemokines serve as molecular links between inflammatory mediators and other effector molecules involved in neuroprotective processes.

  6. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin.

    Science.gov (United States)

    Mitew, S; Hay, C M; Peckham, H; Xiao, J; Koenning, M; Emery, B

    2014-09-12

    Oligodendrocytes and the myelin they produce are a remarkable vertebrate specialization that enables rapid and efficient nerve conduction within the central nervous system. The generation of myelin during development involves a finely-tuned pathway of oligodendrocyte precursor specification, proliferation and migration followed by differentiation and the subsequent myelination of appropriate axons. In this review we summarize the molecular mechanisms known to regulate each of these processes, including the extracellular ligands that promote or inhibit development of the oligodendrocyte lineage, the intracellular pathways they signal through and the key transcription factors that mediate their effects. Many of these regulatory mechanisms have recurring roles in regulating several transitions during oligodendrocyte development, highlighting their importance. It is also highly likely that many of these developmental mechanisms will also be involved in myelin repair in human neurological disease.

  7. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    Science.gov (United States)

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  8. Hazard effects of nanoparticles in central nervous system: Searching for biocompatible nanomaterials for drug delivery.

    Science.gov (United States)

    Leite, Paulo Emílio Corrêa; Pereira, Mariana Rodrigues; Granjeiro, José Mauro

    2015-10-01

    Nanostructured materials are widely used in many applications of industry and biomedical fields. Nanoparticles emerges as potential pharmacological carriers that can be applied in the regenerative medicine, diagnosis and drug delivery. Different types of nanoparticles exhibit ability to cross the brain blood barrier (BBB) and accumulate in several brain areas. Then, efforts have been done to develop safer nanocarrier systems to treat disorders of central nervous system (CNS). However, several in vitro and in vivo studies demonstrated that nanoparticles of different materials exhibit a wide range of neurotoxic effects inducing neuroinflammation and cognitive impairment. For this reason, polymeric nanoparticles arise as a promisor alternative due to their biocompatible and biodegradable properties. After an overview of CNS location and neurotoxic effects of translocated nanoparticles, this review addresses the use of polymeric nanoparticles to the treatment of neuroinfectious diseases, as acquired immunodeficiency syndrome (AIDS) and meningitis.

  9. PICK1 expression in the Drosophila central nervous system primarily occurs in the neuroendocrine system

    DEFF Research Database (Denmark)

    Jansen, Anna M; Nässel, Dick R; Madsen, Kenneth L

    2009-01-01

    in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1...... (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically...... neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells...

  10. Intraoperative consultation on pediatric central nervous system tumors by squash cytology.

    Science.gov (United States)

    Lacruz, César R; Catalina-Fernández, Inmaculada; Bardales, Ricardo H; Pimentel, José; López-Presa, Dolores; Sáenz-Santamaría, Javier

    2015-06-01

    Squash cytology (SC) is a very useful procedure during neurosurgical intraoperative consultation (IOC), and it is especially recommended for the evaluation of soft tumors or tumors that are highly cellular (just the characteristics of pediatric central nervous system [CNS] tumors). The aim of this review is to familiarize pathologists with the range of cytomorphologic appearances that can occur during IOC for pediatric CNS tumors and with the diagnostic dilemmas and pitfalls encountered in this setting. This article is based on the medical literature and the authors' experience with a large series of cases accrued over a 12-year period at 3 institutions. SC is a specially recommended procedure in IOC for pediatric CNS tumors; it reveals the fine cellular details and background features in a manner not seen in corresponding frozen sections. Indeed, a differential diagnosis between histologically look-alike processes can be achieved with more confidence if SC is employed.

  11. Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats

    Institute of Scientific and Technical Information of China (English)

    REN Yong-sheng; WU Sheng-ying; WANG Xing-jun; YU Fang; ZHAO Jing; TANG Chao-shu; OUYANG Jing-ping; GENG Bin

    2011-01-01

    Background Endogenous hydrogen sulfide is a new neuromodulator which takes part in the regulation of central nervous system physiology and diseases.Whether endogenous hydrogen sulfide in the central nervous system regulates cardiovascular activity is not known.In the present study,we observed the hemodynamic changes of hydrogen sulfide or its precursor by intracerebroventricular injection,and investigate the possible roles of endogenous digitalis like factors and sympathetic activity in the regulation.Methods Ninety-four Sprague-Dawley rats underwent a right cerebroventricular puncture,then the hydrogen sulfide saturation buffer or its precursor injected by intrcerebroventricular catheter.A heperin-filled catheter was inserted into the right femoral artery or into the left ventricle,and changes of blood pressure or cardiac function recorded by a Powerlab/4S instrument.Phentolamine or metoprolol were pre-injected to observe the possible role in autonomic nerve activity.After rats were sacrificed,plasma was collected and endogenous digitalis-like factors were measured with a commercial radioimmunoassay kit.The aortic,cardiac sarcolemmal vesicles were isolated and the activity of Na+-K+-ATPase was measured as ouabain-sensitive ATP hydrolysis under maximal velocity conditions by measuring the release of inorganic phosphate from ATP.Unpaired Student's ttest for two groups or analysis of variances (ANOVA) for multiple groups were used to compare the differences of the changes.Results Intracerebroventricular injection of hydrogen sulfide induced a transient hypotension,then dramatic hypertenive effects in a dose-dependent manner.Bolus injection of L-cysteine or beta-mercaptopyruvate also increased mean arterial pressure (P <0.01),whereas hydroxylamine-a cystathionine beta synthase inhibitor decreased the arterial pressure (P <0.01).Hydrogen sulfide and L-cysteine increased mean arterial pressure,left ventricular develop pressure and left-ventricle maximal rate of

  12. Brain stem infarction associated with familial Mediterranean fever and central nervous system vasculitis.

    Science.gov (United States)

    Luger, Sebastian; Harter, Patrick N; Mittelbronn, Michel; Wagner, Marlies; Foerch, Christian

    2013-01-01

    Familial Mediterranean fever (FMF) is an autoinflammatory autosomal recessive disease caused by mutations of the Mediterranean fever (MEFV) gene on chromosome 16p. Clinically, it is characterized by recurrent episodes of fever and painful polyserositis. An association of FMF with systemic vasculitis, namely Henoch-Schönlein purpura, polyarteritis nodosa and Behçet's disease has been described. Neurological manifestations of FMF occur rarely and include demyelinating (MS-like) lesions, posterior reversible encephalopathy syndrome, and pseudotumour cerebri. Hitherto hardly known, we herein present a young patient with a genetically proven FMF who suffered a brain stem infarction during a typical FMF attack. After a careful diagnostic workup including cerebrospinal fluid analysis, intra-arterial angiography and leptomeningeal biopsy, a FMF-associated central nervous system vasculitis was identified as the cause of stroke. The pathophysiological background and potential therapeutic strategies are discussed.

  13. Kinin Receptor Antagonists as Potential Neuroprotective Agents in Central Nervous System Injury

    Directory of Open Access Journals (Sweden)

    Anna V Leonard

    2010-09-01

    Full Text Available Injury to the central nervous system initiates complex physiological, cellular and molecular processes that can result in neuronal cell death. Of interest to this review is the activation of the kinin family of neuropeptides, in particular bradykinin and substance P. These neuropeptides are known to have a potent pro-inflammatory role and can initiate neurogenic inflammation resulting in vasodilation, plasma extravasation and the subsequent development of edema. As inflammation and edema play an integral role in the progressive secondary injury that causes neurological deficits, this review critically examines kinin receptor antagonists as a potential neuroprotective intervention for acute brain injury, and more specifically, traumatic brain and spinal cord injury and stroke.

  14. Recent Advances of the NLRP3 Inflammasome in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Keren Zhou

    2016-01-01

    Full Text Available Inflammasomes are multiprotein complexes that trigger the activation of caspases-1 and subsequently the maturation of proinflammatory cytokines interleukin-1β and interleukin-18. These cytokines play a critical role in mediating inflammation and innate immunity response. Among various inflammasome complexes, the NLRP3 inflammasome is the best characterized, which has been demonstrated as a crucial role in various diseases. Here, we review recently described mechanisms that are involved in the activation and regulation of NLRP3 inflammasome. In addition, we summarize the recent researches on the role of NLRP3 inflammasome in central nervous system (CNS diseases, including traumatic brain injury, ischemic stroke and hemorrhagic stroke, brain tumor, neurodegenerative diseases, and other CNS diseases. In conclusion, the NLRP3 inflammasome may be a promising therapeutic target for these CNS diseases.

  15. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion.

    Science.gov (United States)

    Dando, Samantha J; Mackay-Sim, Alan; Norton, Robert; Currie, Bart J; St John, James A; Ekberg, Jenny A K; Batzloff, Michael; Ulett, Glen C; Beacham, Ifor R

    2014-10-01

    The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.

  16. Effects of low-dose prenatal irradiation on the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolving uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.

  17. Central nervous system activity of the ethanol leaf extract of Sida acuta in rats.

    Science.gov (United States)

    Ibironke, G F; Umukoro, A S; Ajonijebu, D C

    2014-03-01

    The study investigated the pharmacological effects of ethanol extract of Sida acuta leaves on central nervous system activities in mice. Adult male mice (18 - 25g) were used for the study. The extract was administered orally in male mice and evaluated in the following tests: forced swimming, tail suspension, formalin-induced paw licking, acetic acid--induced mouse writhing and apomorphine-induced stereotypy. The results revealed a reduction in the frequency of abdominal constrictions induced by acetic acid, decreased licking times in both phases of the formalin test, reduction in immobility times in forced swimming and tail suspension tests. However, the extract produced no effect on apomorphine-induced stereotyped behaviour. These results suggest that the ethanol extract of Sida acuta contains psychoactive substances with analgesic and antidepressant-like properties which may be beneficial in the management of pain.

  18. Reconstitution of the central nervous system during salamander tail regeneration from the implanted neurospheres.

    Science.gov (United States)

    McHedlishvili, Levan; Mazurov, Vladimir; Tanaka, Elly M

    2012-01-01

    Urodele amphibians such as axolotl are well known for their regenerative potential of the damaged central nervous system structures. Upon tail amputation, neural stem cells behind the amputation plane undergo self-renewing divisions and contribute to the functional spinal cord in the newly formed regenerate. The neural stem cells, harboring this potential, can be isolated from the animal and cultured under the suspension conditions. After 2-3 weeks in vitro they will proliferate and form the floating aggregates of the spherical shape, so-called neurospheres. Reimplanted back into the animal, the neurospheres can efficiently integrate in the spinal cord lesion and contribute to the following spinal cord regeneration events. Here we demonstrate the unique method of the axolotl tail spinal cord regeneration from the implanted neurosphere.

  19. NEUROSPECIFIC ENOLASE IN DIAGNOSTICS FOR PERINATAL DAMAGE TO THE CENTRAL NERVOUS SYSTEM IN PREMATURE INFANTS

    Directory of Open Access Journals (Sweden)

    E.G. Novopol'tseva

    2010-01-01

    Full Text Available Neurospecific enolase is an endoenzyme of the central nervous system (CNS present in neurons of the brain and peripheral neuraltissue. This is currently the only known general marker of all differentiated neurons. The article illustrates the results of determining this enzyme in premature infants with fetal infections and assessment of their importance as a marker of damage to CNS in this group of children. A high level of neurospecific enolase in children with infectious and inflammatory diseases is not only the marker of damage to blood-brain barrier, but also reflects the nature of damage (hypoxia, intoxication, inflammation. This parameter in premature infants with various pathologies may serve as a degree of perinatal damage severity, and along with other parameters, determine the performed therapy tactics. Key words: neurospecific enolase, marker of CNS damage, perinatal damage, children. (Pediatric Pharmacology. – 2010; 7(3:66-70

  20. PET/MRI of central nervous system: current status and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen Lu; Zhang, Long Jiang [Jinling Hospital, Medical School of Nanjing University, Department of Medical Imaging, Nanjing, Jiangsu (China)

    2016-10-15

    Imaging plays an increasingly important role in the early diagnosis, prognosis prediction and therapy response evaluation of central nervous system (CNS) diseases. The newly emerging hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) can perform ''one-stop-shop'' evaluation, including anatomic, functional, biochemical and metabolic information, even at the molecular level, for personalised diagnoses and treatments of CNS diseases. However, there are still several problems to be resolved, such as appropriate PET detectors, attenuation correction and so on. This review will introduce the basic physical principles of PET/MRI and its potential clinical applications in the CNS. We also provide the future perspectives for this field. (orig.)

  1. The soft mechanical signature of glial scars in the central nervous system

    Science.gov (United States)

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-03-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

  2. Primary angiitis of the central nervous system with diffuse cerebral mass effect and giant cells.

    LENUS (Irish Health Repository)

    Kinsella, J A

    2012-02-01

    Primary angiitis of the central nervous system (PACNS), also called primary CNS vasculitis, is an idiopathic inflammatory condition affecting only intracranial and spinal cord vessels, particularly medium-sized and smaller arteries and arterioles. Angiography and histopathology typically do not reveal evidence of systemic vasculitis.(1,2) Histopathology usually reveals granulomatous inflammation affecting arterioles and small arteries of the parenchyma and\\/or leptomeninges, similar to that seen in Takayasu\\'s or giant cell arteritis.(1-3) We report a patient with biopsy-proven PACNS with giant cells and cerebral mass effect on MRI. Magnetic resonance angiography and cerebral angiography appeared normal and there was no evidence of extracranial vasculitis.

  3. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    Directory of Open Access Journals (Sweden)

    Xian-hui Dong

    2015-01-01

    Full Text Available Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer′s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer′s disease patients. An APP swe/PS1ΔE9 double transgenic mouse model of Alzheimer′s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer′s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer′s disease.

  4. linical characteristics of nosocomial infections of patients with acute central nervous system infections treated in ICU

    Directory of Open Access Journals (Sweden)

    Olgica Gajović

    2011-08-01

    Full Text Available A retrospective study was performed to evaluate the clinical characteristics of nosocomial infections in patients with acute infection of central nervous system (ACNS infections. The study included 1,686 patients admitted to the ICU. Of 1,686 patients, 936 (55.5% had ACNS infection. Nosocomial infections was confirmedin 221 (23.6% patients with ACNS infection. The most common risk factors for ICU-acquired nosocomial infections were consciousness disorder, mechanical ventilation and nasogastric tube. The coagulase – negative Staphylococcus aureus was the most frequent isolated pathogen (285 isolates, 56.5%. Results suggest that a persistently high level of therapeutic activity and persistently depressed consciousness after the ICU admission are associatedwith the occurrence of hospital-acquired infection in critically ill patients hospitalized at a medical ICU.

  5. Positive correlation between pesticide sales and central nervous system and cardiovascular congenital abnormalities in Brazil.

    Science.gov (United States)

    Froes Asmus, Carmen I R; Camara, Volney M; Raggio, Ronir; Landrigan, Philip J; Claudio, Luz

    2017-10-01

    This study investigated the association between pesticide exposure in Brazil (2005-2013) with rates of central nervous system (CNS) and cardiovascular system (CVS) congenital abnormalities in 2014. An exposure variable was established from data on production and sales of pesticides (kg) per crop area (ha) for 2012 and 2013 years. The Brazilian states were divided into three categories: high, medium, and low pesticide use and rate ratios were estimated for each group of states (CI: 95 %). In 2013 and 2014, the high use group presented a 100 and a 75 % increase, and the medium group a 65 and 23 % increase, respectively, in the risk of CNS and CVS congenital abnormalities at birth, compared to the low use group. These findings suggest that pesticide exposure could be associated with increased risk of congenital malformations at birth in Brazil.

  6. Gut-central nervous system axis is a target for nutritional therapies

    Directory of Open Access Journals (Sweden)

    Pimentel Gustavo D

    2012-04-01

    Full Text Available Abstract Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies.

  7. Maternal endotoxemia, fetal anomalies, and central nervous system damage: a rat model of a human problem.

    Science.gov (United States)

    Ornoy, A; Altshuler, G

    1976-01-15

    Endotoxemia is a common consequence of the gram-negative urinary tract infections that complicate human pregnancies. Only rarely, however, have the effects of maternal endotoxemia been evaluated by animal experiments or by human investigations. Data of the Collaborative Perinatal Study suggest an association between maternal endotoxemia and fetal central nervous system damage. For these reasons we performed controlled studies of the fetal effects of treatment of pregnant rats, at appropriate gestational ages, with E. coli endotoxin. We found a maximum 7 per cent incidence of fetal anomalies in the treated animals but no anomalies in controls. Placental light microscopy examinations indicated the mechanism to include Shwartzman-lixemia produces periventricular leukomalacia. We obtained an incidence of neuronal necrosis in treated fetuses that was 10 times greater than in control fetuses. It is therefore of importance that additional studies of the pathologic effects of endotoxin be performed.

  8. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    Directory of Open Access Journals (Sweden)

    Bruna Fernandes Azevedo

    2012-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced.

  9. Analgesic, antibacterial and central nervous system depressant activities of Albizia procera leaves

    Institute of Scientific and Technical Information of China (English)

    Mst. Mahfuza Khatoon; Mst. Hajera Khatun; Md. Ekramul Islam; Mst. Shahnaj Parvin

    2014-01-01

    Objective: To ascertain analgesic, antibacterial and central nervous system (CNS) depressant activities of ethyl acetate, dichloromethane and carbon tetrachloride fractions of methanol extract of Albizia procera (A. procera) leaves. Methods: Leaves extracts of A. procera were tested for analgesic activity by acetic acid induced and formalin test method in mice. The in vitro antibacterial activity was performed by agar well diffusion method. CNS depressant activity was evaluated by hole cross and open field tests. Results: All the extracts at 200 mg/kg exhibited significant (P Conclusions: It is concluded that all the extracts possess potential analgesic and CNS depressants activity. This study also showed that different fractions of methanol extract could be potential sources of new antimicrobial agents.

  10. Management of pediatric central nervous system emergencies: a review for general radiologists.

    Science.gov (United States)

    Rebollo Polo, M

    2016-05-01

    To review the most common and most important diseases and disorders of the central nervous system (CNS) in pediatric emergencies, discussing the indications for different imaging tests in each context. In pediatric patients, acute neurologic symptoms (seizures, deteriorating level of consciousness, focal neurologic deficits, etc.) can appear in diverse clinical situations (trauma, child abuse, meningoencephalitis, ischemia…). It is important to decide on the most appropriate neuroimaging diagnostic algorithm for each situation and age group, as well as to know the signs of the most typical lesions that help us in the etiological differential diagnosis. Pediatric patients' increased vulnerability to ionizing radiation and the possible need for sedation in studies that require more time are factors that should be taken into account when indicating an imaging test. It is essential to weigh the risks and benefits for the patient and to avoid unnecessary studies. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  11. [Neuroimaging of Langerhans cell histiocytosis in the central nervous system of children].

    Science.gov (United States)

    De La Hoz Polo, M; Rebollo Polo, M; Fons Estupiña, C; Muchart López, J; Cruz Martinez, O

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare disease characterized by the accumulation within tissues of anomalous dendritic cells similar to Langerhans cells. The clinical presentation varies, ranging from the appearance of a single bone lesion to multisystemic involvement. Central nervous system (CNS) involvement, manifesting as diabetes insipidus secondary to pituitary involvement, has been known since the original description of the disease. Two types of CNS lesions are currently differentiated. The first, pseudotumoral lesions with infiltration by Langerhans cells, most commonly manifests as pituitary infiltration. The second, described more recently, consists of neurodegenerative lesions of the CNS associated with neurologic deterioration. This second type of lesion constitutes a complication of the disease; however, there is no consensus about the cause of this complication. Our objective was to describe the radiologic manifestations of LCH in the CNS in pediatric patients. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  12. [Dynamics of morphofunctional state of central nervous system in white rates exposed to vibration].

    Science.gov (United States)

    Pankov, V A; Katamanova, E V; Kuleshova, M V; Titov, E A; Kartapol'tseva, N V; Iakimova, N L; Lizarev, A V

    2014-01-01

    The authors presented results of experimental studies assessing influence of vibration on white rats. Dynamics of morphologic changes development in brain of experimental animals exposed to vibration were shown. Exposure to vibration in white rats daily during 4 hours over 15 days causes astrogliosis--compensation process in response to brain injury; over 1 month--causes morphologic brain changes (vacuoles formation in neuropile, decrease in astroglia cells number); over 2 months--causes lower plasticity of brain neurons, preserved astrogliosis; over 4 months--causes perivascular edema. Changes in brain bioelectric activity indicate stages of pathologic process in central nervous system. Increase in vibration exposure duration leads to more severe diffuse pathologic changes in brain and local cortical and diencephalic disorders. Exposure to vibration in white rats causes increase in general mobility, nonspecific activation of behaviour, intense emotional exertion, negative emotional state, but less severe effects of vibration were seen in orientative-trying reactions that are inborn, inherited forms of behaviour.

  13. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas; Forestier, Erik; Frandsen, Thomas L; Harila-Saari, Arja; Heyman, Mats; Jonsson, Olafur G; Lähteenmäki, Päivi M; Lausen, Birgitte; Vaitkevičienė, Goda; Asberg, Ann; Schmiegelow, Kjeld

    2014-08-01

    Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) remains a therapeutic challenge. To explore leukemia characteristics of patients with CNS involvement at ALL diagnosis, we analyzed clinical features and early treatment response of 744 patients on Nordic-Baltic trials. CNS status was classified as CNS1 (no CSF blasts), CNS2 ( 0.15). The 12-year event-free survival for patients with leukemic mass on neuroimaging did not differ from patients with negative or no scan (0.50 vs. 0.60; P = 0.7) or between patients with symptoms or signs suggestive of CNS leukemia and patients without such characteristics (0.50 vs. 0.61; P = 0.2). CNS involvement at diagnosis is associated with adverse prognostic features but does not indicate a less chemosensitive leukemia. © 2014 Wiley Periodicals, Inc.

  14. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    Directory of Open Access Journals (Sweden)

    Viola Nordström

    Full Text Available Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase. As a major mechanism of central nervous system (CNS metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV-mediated Ugcg delivery to the arcuate nucleus (Arc significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  15. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    Institute of Scientific and Technical Information of China (English)

    Xian-hui Dong; Cong Liu; Jiang-tao Bai; Wei-na Kong; Xiao-ping He; Peng Yan; Tie-mei Shao; Wen-guo Yu; Xi-qing Chai; Yan-hua Wu

    2015-01-01

    Abnormally increased levels of iron in the brain trigger cascade ampliifcation in Alzheimer’s dis-ease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragas-tric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These com-pounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease.

  16. A case of Erdheim Chester disease with central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Anil Kumar Patil

    2015-01-01

    Full Text Available Erdheim Chester disease (ECD is a rare non-Langerhans cell histiocytosis, commonly involving the musculoskeletal system. Other tissue can also be involved, including the central nervous system with wide spectrum of clinical features, at times being nonspecific. This can cause diagnostic dilemmas with delay in diagnosis and initiation of therapy. Here we describe a 63-year-old man who had presented with ataxia and behavioral changes, bony pains, weight loss, and fatigue. His computed tomography (CT, 99Tc scintigraphy and histopathological features on bone biopsy were consistent with ECD. Thus, ECD should be considered as a differential diagnosis in patients presenting with bony pain and nonspecific features of multiorgan involvement.

  17. Cloning and characterization of an apolipoprotein C2 promoter in the mouse central nervous system

    Institute of Scientific and Technical Information of China (English)

    Zhaoyang Li; Bing Du; Shengyang Li; Xiangchuan Lv; Shenglai Zhou; Yang Yu; Wei Wang; Zhihong Zheng

    2013-01-01

    Apolipoprotein C2 is an important member of the apolipoprotein C family, and is a potent activator of lipoprotein lipase. In the central nervous system, apolipoprotein C2 plays an important role in the catabolism of triglyceride-rich lipoproteins. Studies into the exact regulatory mechanism of mouse apolipoprotein C2 expression have not been reported. In this study, seven luciferase expression vectors, which contained potential mouse apolipoprotein C2 gene promoters, were constructed and co-transfected with pRL-TK into HEK293T cells to investigate apolipoprotein C2 promoter activity. Luciferase assays indicated that the apolipoprotein C2 promoter region was mainly located in the +104 bp to +470 bp region. The activity of the different lengths of apolipoprotein C2 promoter region varied. This staggered negative-positive-negative arrangement indicates the complex regulation of apolipoprotein C2 expression and provides important clues for elucidating the regulatory mechanism of apolipoprotein C2 gene transcription.

  18. Guidance of longitudinally projecting axons in the developing central nervous system

    Directory of Open Access Journals (Sweden)

    Nozomi eSakai

    2012-05-01

    Full Text Available The directed and stereotypical growth of axons to their synaptic targets is a crucial phase of neural circuit formation. Many axons in the developing vertebrate and invertebrate central nervous systems (CNS, including those that remain on their own (ipsilateral, and those that cross over to the opposite (commissural, side of the midline project over long distances along the anterior-posterior body axis within precisely-positioned longitudinally-oriented tracts to facilitate the transmission of information between CNS regions. Despite the widespread distribution and functional importance of these longitudinal tracts, the mechanisms that regulate their formation and projection to poorly characterized synaptic targets remain largely unknown. Nevertheless, recent studies carried out in a variety of invertebrate and vertebrate model systems have begun to elucidate the molecular logic that controls longitudinal axon guidance.

  19. Fighting the Monster: Applying the Host Damage Framework to Human Central Nervous System Infections

    Directory of Open Access Journals (Sweden)

    Anil A. Panackal

    2016-03-01

    Full Text Available The host damage-response framework states that microbial pathogenesis is a product of microbial virulence factors and collateral damage from host immune responses. Immune-mediated host damage is particularly important within the size-restricted central nervous system (CNS, where immune responses may exacerbate cerebral edema and neurological damage, leading to coma and death. In this review, we compare human host and therapeutic responses in representative nonviral generalized CNS infections that induce archetypal host damage responses: cryptococcal menigoencephalitis and tuberculous meningitis in HIV-infected and non-HIV-infected patients, pneumococcal meningitis, and cerebral malaria. Consideration of the underlying patterns of host responses provides critical insights into host damage and may suggest tailored adjunctive therapeutics to improve disease outcome.

  20. Central nervous system lymphoma presenting as trigeminal neuralgia: A diagnostic challenge

    Science.gov (United States)

    Ang, Jensen W. J.; Khanna, Arjun; Walcott, Brian P.; Kahle, Kristopher T.; Eskandar, Emad N.

    2015-01-01

    We describe an atypical man with diffuse large B cell lymphoma localized to the sphenoid wing and adjacent cavernous sinus, initially presenting with isolated ipsilateral facial pain mimicking trigeminal neuralgia due to invasion of Meckel’s cave but subsequently progressing to intra-axial extension and having synchronous features of systemic lymphoma. Primary central nervous system lymphoma is uncommon, accounting for approximately 2% of all primary intra-cranial tumors, but its incidence has been steadily increasing in some groups [1]. It usually arises in periventricular cerebral white matter, reports of lymphoma in extra-axial regions are rare [2]. This man highlights the importance of maintaining lymphoma in the differential diagnosis of tumors of the skull base presenting with trigeminal neuralgia-like symptoms. PMID:25865026