WorldWideScience

Sample records for accelerates cellular senescence

  1. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  2. Never-ageing cellular senescence

    OpenAIRE

    Ogrunc, Müge; d’Adda di Fagagna, Fabrizio

    2011-01-01

    Cellular senescence was historically discovered as a form of cellular ageing of in vitro cultured cells. It has been under the spotlight following the evidence of oncogene-induced senescence in vivo and its role as a potent tumour suppressor mechanism. Presently, a PubMed search using keywords ‘cellular senescence and cancer’ reveals 8398 number of references (by April 2011) showing that while our knowledge of senescence keeps expanding, the complexity of the phenomenon keeps us – researchers...

  3. Cellular senescence in aging primates.

    Science.gov (United States)

    Herbig, Utz; Ferreira, Mark; Condel, Laura; Carey, Dee; Sedivy, John M

    2006-03-01

    The aging of organisms is characterized by a gradual functional decline of all organ systems. Mammalian somatic cells in culture display a limited proliferative life span, at the end of which they undergo an irreversible cell cycle arrest known as replicative senescence. Whether cellular senescence contributes to organismal aging has been controversial. We investigated telomere dysfunction, a recently discovered biomarker of cellular senescence, and found that the number of senescent fibroblasts increases exponentially in the skin of aging baboons, reaching >15% of all cells in very old individuals. In addition, the same cells contain activated ataxia-telangiectasia mutated kinase and heterochromatinized nuclei, confirming their senescent status. PMID:16456035

  4. Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence.

    Science.gov (United States)

    Bosshard, Franziska; Riedel, Kathrin; Schneider, Thomas; Geiser, Carina; Bucheli, Margarete; Egli, Thomas

    2010-11-01

    Solar disinfection (SODIS) is a simple drinking water treatment method that improves microbiological water quality where other means are unavailable. It makes use of the deleterious effect of solar irradiation on pathogenic microbes and viruses. A positive impact on health has been documented in several epidemiological studies. However, the molecular mechanisms damaging cells during this simple treatment are not yet fully understood. Here we show that protein damage is crucial in the process of inactivation by sunlight. Protein damages in UVA-irradiated Escherichia coli cells have been evaluated by an immunoblot method for carbonylated proteins and an aggregation assay based on semi-quantitative proteomics. A wide spectrum of structural and enzymatic proteins within the cell is affected by carbonylation and aggregation. Vital cellular functions like the transcription and translation apparatus, transport systems, amino acid synthesis and degradation, respiration, ATP synthesis, glycolysis, the TCA cycle, chaperone functions and catalase are targeted by UVA irradiation. The protein damage pattern caused by SODIS strongly resembles the pattern caused by reactive oxygen stress. Hence, sunlight probably accelerates cellular senescence and leads to the inactivation and finally death of UVA-irradiated cells.

  5. Aging, cellular senescence, and cancer.

    Science.gov (United States)

    Campisi, Judith

    2013-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  6. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Science.gov (United States)

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data. PMID:26805432

  7. Androgen receptor drives cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yelena Mirochnik

    Full Text Available The accepted androgen receptor (AR role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor.

  8. Pirin inhibits cellular senescence in melanocytic cells.

    Science.gov (United States)

    Licciulli, Silvia; Luise, Chiara; Scafetta, Gaia; Capra, Maria; Giardina, Giuseppina; Nuciforo, Paolo; Bosari, Silvano; Viale, Giuseppe; Mazzarol, Giovanni; Tonelli, Chiara; Lanfrancone, Luisa; Alcalay, Myriam

    2011-05-01

    Cellular senescence has been widely recognized as a tumor suppressing mechanism that acts as a barrier to cancer development after oncogenic stimuli. A prominent in vivo model of the senescence barrier is represented by nevi, which are composed of melanocytes that, after an initial phase of proliferation induced by activated oncogenes (most commonly BRAF), are blocked in a state of cellular senescence. Transformation to melanoma occurs when genes involved in controlling senescence are mutated or silenced and cells reacquire the capacity to proliferate. Pirin (PIR) is a highly conserved nuclear protein that likely functions as a transcriptional regulator whose expression levels are altered in different types of tumors. We analyzed the expression pattern of PIR in adult human tissues and found that it is expressed in melanocytes and has a complex pattern of regulation in nevi and melanoma: it is rarely detected in mature nevi, but is expressed at high levels in a subset of melanomas. Loss of function and overexpression experiments in normal and transformed melanocytic cells revealed that PIR is involved in the negative control of cellular senescence and that its expression is necessary to overcome the senescence barrier. Our results suggest that PIR may have a relevant role in melanoma progression. PMID:21514450

  9. Telomere-independent cellular senescence in human fetal cardiomyocytes

    OpenAIRE

    Ball, Andrew J.; Levine, F

    2005-01-01

    Fetal cardiomyocytes have been proposed as a potential source of cell-based therapy for heart failure. This study examined cellular senescence in cultured human fetal ventricular cardiomyocytes (HFCs). HFCs were isolated and identified by immunocytochemistry and RT-PCR. Cells were found to senesce after 20-25 population doublings, as determined by growth arrest, morphological changes and senescence-associated beta-galactosidase activity. Using the telomeric repeat amplification protocol assay...

  10. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  11. Vitamin E Supplementation Delays Cellular Senescence In Vitro.

    Science.gov (United States)

    La Fata, Giorgio; Seifert, Nicole; Weber, Peter; Mohajeri, M Hasan

    2015-01-01

    Vitamin E is an important antioxidant that protects cells from oxidative stress-induced damage, which is an important contributor to the progression of ageing. Ageing can be studied in vitro using primary cells reaching a state of irreversible growth arrest called senescence after a limited number of cellular divisions. Generally, the most utilized biomarker of senescence is represented by the expression of the senescence associated β-galactosidase (SA-β-gal). We aimed here to study the possible effects of vitamin E supplementation in two different human primary cell types (HUVECs and fibroblasts) during the progression of cellular senescence. Utilizing an unbiased automated system, based on the detection of the SA-β-gal, we quantified cellular senescence in vitro and showed that vitamin E supplementation reduced the numbers of senescent cells during progression of ageing. Acute vitamin E supplementation did not affect cellular proliferation, whereas it was decreased after chronic treatment. Mechanistically, we show that vitamin E supplementation acts through downregulation of the expression of the cycline dependent kinase inhibitor P21. The data obtained from this study support the antiageing properties of vitamin E and identify possible mechanisms of action that warrant further investigation. PMID:26613084

  12. Vitamin E Supplementation Delays Cellular Senescence In Vitro

    Directory of Open Access Journals (Sweden)

    Giorgio La Fata

    2015-01-01

    Full Text Available Vitamin E is an important antioxidant that protects cells from oxidative stress-induced damage, which is an important contributor to the progression of ageing. Ageing can be studied in vitro using primary cells reaching a state of irreversible growth arrest called senescence after a limited number of cellular divisions. Generally, the most utilized biomarker of senescence is represented by the expression of the senescence associated β-galactosidase (SA-β-gal. We aimed here to study the possible effects of vitamin E supplementation in two different human primary cell types (HUVECs and fibroblasts during the progression of cellular senescence. Utilizing an unbiased automated system, based on the detection of the SA-β-gal, we quantified cellular senescence in vitro and showed that vitamin E supplementation reduced the numbers of senescent cells during progression of ageing. Acute vitamin E supplementation did not affect cellular proliferation, whereas it was decreased after chronic treatment. Mechanistically, we show that vitamin E supplementation acts through downregulation of the expression of the cycline dependent kinase inhibitor P21. The data obtained from this study support the antiageing properties of vitamin E and identify possible mechanisms of action that warrant further investigation.

  13. The impact of cellular senescence in cancer therapy:is it true or not?

    Institute of Scientific and Technical Information of China (English)

    Yi ZHANG; Jin-ming YANG

    2011-01-01

    Cellular senescence is defined as the physiological program of terminal growth arrest,which can be triggered by various endogenous or exogenous stress signals.Cellular senescence can be induced in response to oncogenic activation and acts as a barrier to tumorigenesis.Moreover,tumor cells can undergo senescence when exposed to chemotherapeutic agents.In addition to suppressing tumorigenesis,senescent cells remain metabolically active and may contribute to tumor formation and to therapy resistance.In the current review,we discuss the molecular regulation of cellular senescence,the potential implications of senescence in human cancers,and the possibility of exploiting cellular senescence for the treatment of cancers.

  14. Cellular senescence as the causal nexus of aging

    Directory of Open Access Journals (Sweden)

    Naina eBhatia-Dey

    2016-02-01

    Full Text Available We present cellular senescence as the ultimate driver of the aging process, as a causal nexus that bridges microscopic subcellular damage with the phenotypic, macroscopic effect of aging. It is important to understand how the various types of subcellular damage correlated with the aging process lead to the larger, visible effects of anatomical aging. While it has always been assumed that subcellular damage (cause results in macroscopic aging (effect, the bridging link between the two has been hard to define. Here, we propose that this bridge, which we term the causal nexus, is in fact cellular senescence. The subcellular damage itself does not directly cause the visible signs of aging, but rather, as the damage accumulates and reaches a critical mass, cells cease to proliferate and acquire the deleterious senescence-associated secretory phenotype (SASP which then leads to the macroscopic consequences of tissue breakdown to create the physiologically aged phenotype. Thus senescence is a precondition for anatomical aging, and this explains why aging is a gradual process that remains largely invisible during most of its progression. The subcellular damage includes shortening of telomeres, damage to mitochondria, aneuploidy and DNA double-strand breaks triggered by various genetic, epigenetic, and environmental factors. Damage pathways acting in isolation or in concert converge at the causal nexus of cellular senescence. In each species some types of damage can be more causative than in others and operate at a variable pace; for example, telomere erosion appears to be a primary cause in human cells, whereas activation of tumor suppressor genes is more causative in rodents. Such species-specific mechanisms indicate that despite different initial causes, most of aging is traced to a single convergent causal nexus: senescence. The exception is in some invertebrate species that escape senescence, and in nondividing cells such as neurons, where

  15. ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Katherine M. Aird

    2015-05-01

    Full Text Available Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.

  16. Senescence-accelerated mouse (SAM): a novel murine model of senescence.

    Science.gov (United States)

    Takeda, T; Hosokawa, M; Higuchi, K

    1997-01-01

    The Senescence-Accelerated Mouse (SAM) has been under development by our research team at Kyoto University since 1970 through the selective inbreeding of the AKR/J strain of mice donated by the Jackson Laboratory in 1968, based on a graded score for senescence, life span, and pathologic phenotype. At present, there are 12 lines of SAM: nine senescence-prone inbred strains (SAMP) including SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10, and SAMP11; and three senescence-resistant inbred strains (SAMR) including SAMR1, SAMR4, and SAMR5. Data from survival curves, Gompertzian function, and grading score of senescence, together with growth patterns of body weight of these SAMP and SAMR, revealed that the characteristic feature of aging common to all SAMP mice is "accelerated senescence;" early onset and irreversible advance of senescence manifested by several signs and gross lesions such as the loss of normal behavior, various skin lesions, increased lordokyphosis, etc., after a period of normal development. In the course of SAM development, it became evident that SAMP strains manifest various pathologic phenotypes that are characteristic enough to differentiate the SAM strains. The genetic background and significance of SAM development are discussed. PMID:9088907

  17. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    OpenAIRE

    Xurui Zhang; Caiyong Ye; Fang Sun; Wenjun Wei; Burong Hu; Jufang Wang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. ...

  18. Telomerase prevents accelerated senescence in glucose-6-phosphate dehydrogenase (G6PD-deficient human fibroblasts

    Directory of Open Access Journals (Sweden)

    Wu Yi-Hsuan

    2009-02-01

    Full Text Available Abstract Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction.

  19. Adiponectin corrects premature cellular senescence and normalizes antimicrobial peptide levels in senescent keratinocytes.

    Science.gov (United States)

    Jin, Taewon; Kim, Min Jeong; Heo, Won Il; Park, Kui Young; Choi, Sun Young; Lee, Mi-Kyung; Hong, Seung-Phil; Kim, Seong-Jin; Im, Myung; Moon, Nam Ju; Seo, Seong Jun

    2016-09-01

    Stress-induced premature senescence or aging causes dysfunction in the human somatic system. Adiponectin (Acrp30) plays a role in functional recovery, especially with adenosine 3',5'-monophosphate (AMP)-activated protein kinase (AMPK) and silent mating type information regulation 2 homolog 1 (SIRT1). Acrp30 stimulation reduced the premature senescence positive ratio induced by hydrogen peroxide (H2O2) and restituted human β-defensin 2 (hBD-2) levels in senescent keratinocytes. Acrp30 recovered AMPK activity in senescent keratinocytes and increased SIRT1 deacetylation activity. As a result, FoxO1 and FoxO3 transcription activity was recovered. Additionally, Acrp30 stimulation suppresses NFκB p65, which induces abnormal expression of hBD-2 induced by H2O2. In the present study, we have shown that Acrp30 reduces premature senescence and recovers cellular function in keratinocytes. These results suggest a role for Acrp30 as an anti-aging agent to improve impaired skin immune barriers. PMID:27349869

  20. Reorganization of chromosome architecture in replicative cellular senescence.

    Science.gov (United States)

    Criscione, Steven W; De Cecco, Marco; Siranosian, Benjamin; Zhang, Yue; Kreiling, Jill A; Sedivy, John M; Neretti, Nicola

    2016-02-01

    Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells. PMID:26989773

  1. Genetic characterization of senescence-accelerated mouse (SAM).

    Science.gov (United States)

    Higuchi, K

    1997-01-01

    The Senescence-Accelerated Mouse (SAM) strains are unique and appropriate models for genetic studies on aging because the SAMP strains have an "accelerated senescence" phenotype for which the SAMR strains are controls, and each SAMP strain has a strain-specific age-associated disorder. Furthermore, because they have gone through sufficient generations of sister-brother mating, they can be considered inbred strains, which can be analyzed genetically. There are now 11 SAMP strains and 3 SAMR strains descended from the progenitor litters. Analysis with the Gompertz function shows that the SAMP strains have the same initial mortality rate (IMR) as the SAMR strains but a shorter mortality rate doubling time (MRDT), presumably due to genes that accelerated the rate of senescence in the SAMP strains. This accelerated senescence may also occur in cultured fibroblast-like cells. We performed molecular genetic characterization of all the SAM strains to acquire a base of genetic information from which we could develop hypotheses on the mechanism of development of SAM strains and genetic factors that contribute to accelerated senescence. PMID:9088910

  2. Fat tissue, aging, and cellular senescence.

    NARCIS (Netherlands)

    Tchkonia, T.; Morbeck, D.E.; Zglinicki, T. von; Deursen, J.M.A. van; Lustgarten, J.; Scrable, H.; Khosla, S.; Jensen, M.D.; Kirkland, J.L.

    2010-01-01

    Fat tissue, frequently the largest organ in humans, is at the nexus of mechanisms involved in longevity and age-related metabolic dysfunction. Fat distribution and function change dramatically throughout life. Obesity is associated with accelerated onset of diseases common in old age, while fat abla

  3. Fat tissue, aging, and cellular senescence.

    OpenAIRE

    Tchkonia, T.; Morbeck, D.E.; Zglinicki, T. von; Deursen, J.M.A. van; Lustgarten, J.; Scrable, H.; Khosla, S.; Jensen, M.D.; Kirkland, J L

    2010-01-01

    Fat tissue, frequently the largest organ in humans, is at the nexus of mechanisms involved in longevity and age-related metabolic dysfunction. Fat distribution and function change dramatically throughout life. Obesity is associated with accelerated onset of diseases common in old age, while fat ablation and certain mutations affecting fat increase life span. Fat cells turn over throughout the life span. Fat cell progenitors, preadipocytes, are abundant, closely related to macrophages, and dys...

  4. The thorny path linking cellular senescence to organismalaging

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Christopher K.; Mian, Saira; Campisi, Judith

    2005-08-09

    Half a century is fast approaching since Hayflick and colleagues formally described the limited ability of normal human cells to proliferate in culture (Hayflick and Moorhead, 1961). This finding--that normal somatic cells, in contrast to cancer cells, cannot divide indefinitely--challenged the prevailing idea that cells from mortal multicellular organisms were intrinsically ''immortal'' (Carrell, 1912). It also spawned two hypotheses, essential elements of which persist today. The first held that the restricted proliferation of normal cells, now termed cellular senescence, suppresses cancer (Hayflick, 1965; Sager, 1991; Campisi, 2001). The second hypothesis, as explained in the article by Lorenzini et al., suggested that the limited proliferation of cells in culture recapitulated aspects of organismal aging (Hayflick, 1965; Martin, 1993). How well have these hypotheses weathered the ensuing decades? Before answering this question, we first consider current insights into the causes and consequences of cellular senescence. Like Lorenzini et al., we limit our discussion to mammals. We also focus on fibroblasts, the cell type studied by Lorenzini et al., but consider other types as well. We suggest that replicative capacity in culture is not a straightforward assessment, and that it correlates poorly with both longevity and body mass. We speculate this is due to the malleable and variable nature of replicative capacity, which renders it an indirect metric of qualitative and quantitative differences among cells to undergo senescence, a response that directly alters cellular phenotype and might indirectly alter tissue structure and function.

  5. The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model.

    Science.gov (United States)

    Chiba, Yoichi; Shimada, Atsuyoshi; Kumagai, Naoko; Yoshikawa, Keisuke; Ishii, Sanae; Furukawa, Ayako; Takei, Shiro; Sakura, Masaaki; Kawamura, Noriko; Hosokawa, Masanori

    2009-04-01

    The SAM strain of mice is actually a group of related inbred strains consisting of a series of SAMP (accelerated senescence-prone) and SAMR (accelerated senescence-resistant) strains. Compared with the SAMR strains, the SAMP strains show a more accelerated senescence process, a shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to human geriatric disorders. The higher oxidative stress status observed in SAMP mice is partly caused by mitochondrial dysfunction, and may be a cause of this senescence acceleration and age-dependent alterations in cell structure and function. Based on our recent observations, we discuss a possible mechanism for mitochondrial dysfunction resulting in the excessive production of reactive oxygen species, and a role for the hyperoxidative stress status in neurodegeneration in SAMP mice. These SAM strains can serve as a useful tool to understand the cellular mechanisms of age-dependent degeneration, and to develop clinical interventions. PMID:18688709

  6. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  7. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress

    Science.gov (United States)

    Nidadavolu, Lolita S.; Niedernhofer, Laura J.; Khan, Saleem A.

    2013-01-01

    XFE progeroid syndrome, a disease of accelerated aging caused by deficiency in the DNA repair endonuclease XPF-ERCC1, is modeled by Ercc1 knockout and hypomorphic mice. Tissues and primary cells from these mice senesce prematurely, offering a unique opportunity to identify factors that regulate senescence and aging. We compared microRNA (miRNA) expression in Ercc1−/− primary mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs in different growth conditions to identify miRNAs that drive cellular senescence. Microarray analysis showed three differentially expressed miRNAs in passage 7 (P7) Ercc1−/− MEFs grown at 20% O2 compared to Ercc1−/− MEFs grown at 3% O2. Thirty-six differentially expressed miRNAs were identified in Ercc1−/− MEFs at P7 compared to early passage (P3) in 3% O2. Eight of these miRNAs (miR-449a, miR-455*, miR-128, miR-497, miR-543, miR-450b-3p, miR-872 and miR-10b) were similarly downregulated in the liver of progeroid Ercc1−/Δ and old WT mice compared to adult WT mice, a tissue that senesces with aging. Three miRNAs (miR-449a, miR-455* and miR-128) were also downregulated in Ercc1−/Δ and WT old mice kidneys compared to young WT mice. We also discovered that the miRNA expression regulator Dicer is significantly downregulated in tissues of old mice and late passage cells compared to young controls. Collectively these results support the conclusion that the miRNAs identified may play an important role in staving off cellular senescence and their altered expression could be indicative of aging. PMID:23852002

  8. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence

    OpenAIRE

    Chuprin, Anna; Gal, Hilah; BIRON-SHENTAL, Tal; Biran, Anat; Amiel, Aliza; Rozenblatt, Shmuel; Krizhanovsky, Valery

    2013-01-01

    Cellular senescence limits proliferation of potentially detrimental cells, preventing tumorigenesis and restricting tissue damage. However, the function of senescence in nonpathological conditions is unknown. Here, Krizhanovsky and colleagues discover a new pathway to activate senescence cell fusion. The authors find that fusion-induced senescence occurs during embryonic development in the placenta. A counterpart of this process is also observed after infection by the measles virus. The resul...

  9. Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess Anti-Aging Modalities

    OpenAIRE

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-as...

  10. Cellular and molecular biomarkers indicate precocious in vitro senescence in fibroblasts from SAMP6 mice. Evidence supporting a murine model of premature senescence and osteopenia.

    Science.gov (United States)

    Lecka-Czernik, B; Moerman, E J; Shmookler Reis, R J; Lipschitz, D A

    1997-11-01

    A variety of short-lived mouse strains (SAMP strains) and control strains of less abbreviated life span (SAMR strains) have been proposed as murine models of accelerated senescence. Each SAMP strain, in addition to displaying "progeroid" traits of accelerated aging, exhibits a singular age-related pathology. The application of this animal model to the study of normal aging processes has been and remains controversial. Therefore, we have undertaken a study of dermal fibroblasts derived from the short-lived SAMP6 strain, which shows early-onset and progressive osteopenia. We have investigated cellular and molecular characteristics that are associated with in vitro aging of normal human fibroblasts, and which are exacerbated in fibroblasts from patients with Werner syndrome, a human model of premature senescence. We found that SAMP6 dermal fibroblasts, relative to SAMR1 and C57BL/6 controls, exhibit characteristics of premature or accelerated cellular senescence with regard to in vitro life span, initial growth rate, and patterns of gene expression. PMID:9402934

  11. The Yin-Yang of DNA Damage Response: Roles in Tumorigenesis and Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2013-01-01

    Full Text Available Senescent cells are relatively stable, lacking proliferation capacity yet retaining metabolic activity. In contrast, cancer cells are rather invasive and devastating, with uncontrolled proliferative capacity and resistance to cell death signals. Although tumorigenesis and cellular senescence are seemingly opposite pathological events, they are actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage response (DDR network can impose a tumorigenesis barrier by navigating abnormal cells to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR components, may prevent cellular senescence but at the expense of tumor formation. Here we provide an overview of the fundamental role of DDR in tumorigenesis and cellular senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is placed on discussing DDR outcome in the light of in vivo models. This information is critical as it can help make better decisions for clinical treatments of cancer patients.

  12. Novel Approach to Bile Duct Damage in Primary Biliary Cirrhosis: Participation of Cellular Senescence and Autophagy

    Directory of Open Access Journals (Sweden)

    Motoko Sasaki

    2012-01-01

    Full Text Available Primary biliary cirrhosis (PBC is characterized by antimitochondrial autoantibodies (AMAs in patients' sera and histologically by chronic nonsuppurative destructive cholangitis in small bile ducts, eventually followed by extensive bile duct loss and biliary cirrhosis. The autoimmune-mediated pathogenesis of bile duct lesions, including the significance of AMAs, triggers of the autoimmune process, and so on remain unclear. We have reported that cellular senescence in biliary epithelial cells (BECs may be involved in bile duct lesions and that autophagy may precede the process of biliary epithelial senescence in PBC. Interestingly, BECs in damaged bile ducts show characteristicsof cellular senescence and autophagy in PBC. A suspected causative factor of biliary epithelial senescence is oxidative stress. Furthermore, senescent BECs may modulate the microenvironment around bile ducts by expressing various chemokines and cytokines called senescence-associated secretory phenotypes and contribute to the pathogenesis in PBC.

  13. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  14. Cellular senescence in aging and age-related disease: from mechanisms to therapy

    NARCIS (Netherlands)

    Childs, B.G.; Durik, M.; Baker, D.J.; Deursen, J.M.A. van

    2015-01-01

    Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senesc

  15. Cellular and molecular aspects of quinoa leaf senescence.

    Science.gov (United States)

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. PMID:26259186

  16. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    Science.gov (United States)

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  17. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research.

    Science.gov (United States)

    Takeda, T

    1999-01-01

    The senescence-accelerated mouse (SAM), consisting of 14 senescence-prone inbred strains (SAMP) and 4 senescence-resistant inbred strains (SAMR) has been under development since 1970 through the selective inbreeding of AKR/J strain mice donated by the Jackson laboratory in 1968, based on the data of the grading score of senescence, life span, and pathologic phenotypes. The characteristic feature of aging common to all SAMP and SAMR mice is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains manifest various pathobiological phenotypes which include such neurobiological phenotypes as deficits in learning and memory, emotional disorders, abnormal circadian rhythms, brain atrophy, hearing impairment, etc., and are often characteristic enough to differentiate the strains. Various efforts are currently being made using the SAM model to clarify the underlying mechanisms in accelerated senescence as well as the etiopathogenic mechanisms in age-associated pathobiologies. Genetic background and significance of SAM development are discussed. PMID:10537019

  18. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Science.gov (United States)

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  19. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Xurui Zhang

    Full Text Available Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  20. PTTG1 attenuates drug-induced cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yunguang Tong

    Full Text Available As PTTG1 (pituitary tumor transforming gene abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1(-/- exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1(-/- senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001. p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1(-/- cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1(-/- cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1(-/- HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1(-/- tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes.

  1. The role of cellular senescence during vascular calcification: a key paradigm in aging research.

    Science.gov (United States)

    Mackenzie, N C W; MacRae, V E

    2011-07-01

    Vascular calcification has severe clinical consequences and is considered an accurate predictor of future adverse cardiovascular events. Vascular calcification refers to the deposition of calcium phosphate mineral, most often hydroxyapatite, in arteries. Extensive calcification of the vascular system is a key characteristic of aging. In this article, we outline the mechanisms governing vascular calcification and highlight its association with cellular senescence. This review discusses the molecular mechanisms of cellular senescence and its affect on calcification of vascular cells, the relevance of phosphate regulation and the function of FGF23 and Klotho proteins. The association of vascular calcification and cellular senescence with the rare human aging disorder Hutchison-Gilford Progeria Syndrome (HGPS) is highlighted and the mouse models used to try to determine the underlying pathways are discussed. By understanding the pathways involved in these processes novel drug targets may be elucidated in an effort to reduce the effects of cellular aging as a risk factor in cardiovascular disease.

  2. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1

    Institute of Scientific and Technical Information of China (English)

    Lin Bai; Xiaoli Deng; Juanjuan Li; Miao Wang; Qian Li; Wei An; Deli A; Yu-Sheng Cong

    2011-01-01

    Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts.Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senes cence is dependent on its targeting to caveolae and its interaction with caveolin-l, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways.

  3. Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities.

    Science.gov (United States)

    Zhao, Hong; Darzynkiewicz, Zbigniew

    2014-01-01

    Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21(WAF1) ) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents.

  4. In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice.

    Science.gov (United States)

    Getchell, Thomas V; Peng, Xuejun; Green, C Paul; Stromberg, Arnold J; Chen, Kuey-Chu; Mattson, Mark P; Getchell, Marilyn L

    2004-08-01

    We utilized high-density Affymetrix oligonucleotide arrays to investigate gene expression in the olfactory mucosae of near age-matched aging senescence-accelerated mice (SAM). The senescence-prone (SAMP) strain has a significantly shorter lifespan than does the senescence-resistant (SAMR) strain. To analyze our data, we applied biostatistical methods that included a correlation analysis to evaluate sources of methodologic and biological variability; a two-sided t-test to identify a subpopulation of Present genes with a biologically relevant P-value SAMRs (SAMR-Os, 12.5 months). Volcano plots related the variability in the mean hybridization signals as determined by the two-sided t-test to fold changes in gene expression. The genes were categorized into the six functional groups used previously in gene profiling experiments to identify candidate genes that may be relevant for senescence at the genomic and cellular levels in the aging mouse brain (Lee et al. [2000] Nat Genet 25:294-297) and in the olfactory mucosa (Getchell et al. [2003] Ageing Res Rev 2:211-243), which serves several functions that include chemosensory detection, immune barrier function, xenobiotic metabolism, and neurogenesis. Because SAMR-Os and SAMP-Os have substantially different median lifespans, we related the rate constant alpha in the Gompertz equation on aging to intrinsic as opposed to environmental mechanisms of senescence based on our analysis of genes modulated during aging in the olfactory mucosa. PMID:15248299

  5. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis.

    Science.gov (United States)

    Zhang, Yi; Cheng, Yan; Ren, Xingcong; Hori, Tsukasa; Huber-Keener, Kathryn J; Zhang, Li; Yap, Kai Lee; Liu, David; Shantz, Lisa; Qin, Zheng-Hong; Zhang, Suping; Wang, Jianrong; Wang, Hong-Gang; Shih, Ie-Ming; Yang, Jin-Ming

    2012-08-15

    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.

  6. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression.

    Science.gov (United States)

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  7. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    Science.gov (United States)

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  8. p53 isoforms, Δ133p53 and p53β, are endogenous regulators of replicative cellular senescence

    OpenAIRE

    Fujita, Kaori; Mondal, Abdul M.; Horikawa, Izumi; Nguyen, Giang H.; Kumamoto, Kensuke; Sohn, Jane J.; Bowman, Elise D.; Mathe, Ewy A.; Schetter, Aaron J.; Pine, Sharon R.; Ji, Helen; Vojtesek, Borivoj; Bourdon, Jean-Christophe; Lane, David P; Harris, Curtis C.

    2009-01-01

    The finite proliferative potential of normal human cells leads to replicative cellular senescence, which is a critical barrier to tumour progression in vivo1–3. We show that human p53 isoforms (Δ133p53 and p53β)4 constitute an endogenous regulatory mechanism for p53-mediated replicative senescence. Induced p53β and diminished Δ133p53 were associated with replicative senescence, but not oncogene-induced senescence, in normal human fibroblasts. The replicatively senescent fibroblasts also expre...

  9. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes.

    Science.gov (United States)

    Thijssen, Peter E; Tobi, Elmar W; Balog, Judit; Schouten, Suzanne G; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P; Heijmans, Bastiaan T; van der Maarel, Silvère M

    2013-05-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence.

  10. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice.

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    Full Text Available Taurine (2-aminoethanesulfonic acid is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a. Tissue taurine depletion also enhances unfolded protein response (UPR, which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.

  11. Androgen receptor accelerates premature senescence of human dermal papilla cells in association with DNA damage.

    Directory of Open Access Journals (Sweden)

    Yi-Chien Yang

    Full Text Available The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16(INK4a, and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature senescence of dermal papilla cells, we first compared frontal scalp dermal papilla cells of androgenetic alopecia patients with matched normal controls and observed that premature senescence is more prominent in the dermal papilla cells of androgenetic alopecia patients. Exposure of androgen induced premature senescence in dermal papilla cells from non-balding frontal and transitional zone of balding scalp follicles but not in beard follicles. Overexpression of the AR promoted androgen-induced premature senescence in association with p16(INK4a upregulation, whereas knockdown of the androgen receptor diminished the effects of androgen. An analysis of γ-H2AX expression in response to androgen/androgen receptor signaling suggested that DNA damage contributes to androgen/androgen receptor-accelerated premature senescence. These results define androgen/androgen receptor signaling as an accelerator of premature senescence in dermal papilla cells and suggest that the androgen/androgen receptor-mediated DNA damage-p16(INK4a axis is a potential therapeutic target in the treatment of androgenetic alopecia.

  12. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    Science.gov (United States)

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3.

  13. Gamma-H2AX upregulation caused by Wip1 deficiency increases depression-related cellular senescence in hippocampus

    Science.gov (United States)

    He, Zhi-Yong; Wang, Wen-Yue; Hu, Wei-Yan; Yang, Lu; Li, Yan; Zhang, Wei-Yuan; Yang, Ya-Shu; Liu, Si-Cheng; Zhang, Feng-Lan; Mei, Rong; Xing, Da; Xiao, Zhi-Cheng; Zhang, Ming

    2016-01-01

    The PP2C family member Wild-type p53-induced phosphatase 1 (Wip1) critically regulates DNA damage response (DDR) under stressful situations. In the present study, we investigated whether Wip1 expression was involved in the regulation of DDR-induced and depression-related cellular senescence in mouse hippocampus. We found that Wip1 gene knockout (KO) mice showed aberrant elevation of hippocampal cellular senescence and of γ-H2AX activity, which is known as a biomarker of DDR and cellular senescence, indicating that the lack of Wip1-mediated γ-H2AX dephosphorylation facilitates cellular senescence in hippocampus. Administration of the antidepressant fluoxetine had no significant effects on the increased depression-like behaviors, enriched cellular senescence, and aberrantly upregulated hippocampal γ-H2AX activity in Wip1 KO mice. After wildtype C57BL/6 mice were exposed to the procedure of chronic unpredictable mild stress (CUMS), cellular senescence and γ-H2AX activity in hippocampus were also elevated, accompanied by the suppression of Wip1 expression in hippocampus when compared to the control group without CUMS experience. These CUMS-induced symptoms were effectively prevented following fluoxetine administration in wildtype C57BL/6 mice, with the normalization of depression-like behaviors. Our data demonstrate that Wip1-mediated γ-H2AX dephosphorylation may play an important role in the occurrence of depression-related cellular senescence. PMID:27686532

  14. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hag Dong [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Jang, Chang-Young [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Choe, Jeong Min [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Sohn, Jeongwon, E-mail: biojs@korea.ac.kr [Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Kim, Joon, E-mail: joonkim@korea.ac.kr [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  15. Effects of Longyanshen polysaccharides on free radical metabolism in senescence accelerated-prone mice

    Institute of Scientific and Technical Information of China (English)

    Zhongshi Huang; Haiyuan Xie; Shijun Zhang; Yang Jiao; Weizhe Jiang; Renbin Huang

    2008-01-01

    BACKGROUND: Along with aging, antioxidase activity decreases and oxygen-derived free radicals greatly accumulate, resulting in cellular senescence, or even cell death. This is manifested by hypomnesia and disordered metabolism of free radicals. Studies have reported that Longyanshen polysaccharidcs have the function of antioxidation and improved brain memory.OBJECTIVE: To observe the effects of Longyanshen polysaccharides on free radical metabolism in brain tissue to verify the anti-aging mechanisms in senescence accelerated-prime (SAMPS) mice. DESIGN, TIME AND SETTING: The randomized, controlled, biochemical experiment was performed in the Department of Pharmacology and Scientific Experimental Center of Guangxi Medical University (China) from September 2005 to January 2008.MATERIALS: Forty SAMP8 mice were randomized into four groups: SAMP8 control group, as well as low-, mid-, and high-dose polysaccharide, with 10 mice in each group. Ten senescence accelerated-resistant-prone (SAMR 1) mice served as the normal control group. Longyanshen polysaccharides, extracted from the medical plant Longyanshen, were supplied by the Department of Pharmacology, Guangxi Medical University. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malonaldehydc (MDA), nitric oxide (NO), and total protein test kitwere purchased from Nanjing Jiancheng Bioengineering Institute (China).METHODS: SAMP8 mice were used to establish a dementia animal model. SAMP8 and SAMRI control mice were administered 30 mL/kg saline. The low-, middle-, and high-dose polysaccharide groups were administered 45, 90, and 180 mg/kg Longyanshen polysaccharides, respectively. Each group was treated by intragastric administration, once daily, for 50 continuous days.MAIN OUTCOME MEASURES: One hour after the last administration, mouse brain tissues were collected, and retro orbital blood sampling was performed. Spectrophotometry was used to measure SOD and GSH-Px activity, as well as MDA and NO concentration

  16. Cellular senescence in livers from children with end stage liver disease.

    Directory of Open Access Journals (Sweden)

    Gabriela Gutierrez-Reyes

    Full Text Available BACKGROUND: Senescent cells occur in adults with cirrhotic livers independent of the etiology. AIM: Investigate the presence rate of cellular senescence and expression of cell cycle check points in livers from children with end stage disease. METHODOLOGY/PRINCIPAL FINDINGS: Livers of five children aged three years or less undergoing liver transplantation due to tyrosinemia (n = 1, biliary atresia (n = 2, or fulminant hepatitis (n = 2 were analyzed for senescence associated beta-galactosidase (SA-betagal activity and p16INK4a, p21cip1 and p53. All livers displayed positive cellular staining for SA-betagal in the canals of Hering and interlobular biliary ducts. In the presence of cirrhosis (3/5 cases SA-betagal was found at the cholangioles and hepatocytes surrounding the regenerative nodules. Children with fulminant hepatic failure without cirrhosis had significant ductular transformation with intense SA-betagal activity. No SA-betagal activity was evident in the fibrous septa. Staining for p53 had a similar distribution to that observed for SA-betagal. Staining for p16(INK4a and p21(cip1 was positive in the explanted liver of the patient with tyrosinemia, in the hepatocytes, the canals of Hering, cholangioles and interlobular bile ducts. In the livers with fulminant hepatitis, p21(cip1 staining occurred in the areas of ductular transformation and in the interlobular bile ducts. CONCLUSIONS/SIGNIFICANCE: Cellular senescence in livers of children with end stage disease is associated with damage rather than corresponding to an age dependent phenomenon. Further studies are needed to support the hypothesis that these senescence markers correlate with disease progression.

  17. The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence.

    Science.gov (United States)

    Klein, Laura E; Freeze, B Scott; Smith, Amos B; Horwitz, Susan Band

    2005-03-01

    Discodermolide is a microtubule stabilizing agent that suppresses dynamic instability and blocks cells in mitosis. Selection of A549 nonsmall cell lung carcinoma cells with increasing concentrations of discodermolide yielded a clone that proliferated in 8 nM. When these cells were exposed to any concentration greater than 8 nM, replication ceased and the cells developed a flattened, enlarged, granular morphology. Accelerated senescence was demonstrated by a functional beta-galactosidase activity at pH 6. When parental A549 cells were treated with IC50-concentrations of doxorubicin, Taxol or discodermolide, the latter two drugs quickly produced aberrant mitosis. However, discodermolide, but not Taxol, also produced a large increase in senescence-associated beta-galactosidase activity and altered levels of known senescence markers. Although some of these differences between Taxol and discodermolide were dose dependent, only discodermolide produced a doxorubicin-like induction of a senescence phenotype, including a senescence-associated beta-galactosidase activity, up-regulation of PAI-1 and p66Shc, and a strong, sustained, Erk1/2 activation. This research provides insights into the mechanism of action of discodermolide and provides the first demonstration of a microtubule stabilizing agent that inhibits tumor cell growth with a powerful induction of accelerated senescence.

  18. Bacterial Intoxication Evokes Cellular Senescence with Persistent DNA Damage and Cytokine Signaling

    DEFF Research Database (Denmark)

    Blazkova, Hana; Krejcikova, Katerina; Moudry, Pavel;

    2009-01-01

    Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram-negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type-dependent cell-cycle arrest or apoptosis; however the cell fate responses to suc...... of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.......Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram-negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type-dependent cell-cycle arrest or apoptosis; however the cell fate responses...... features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may...

  19. Genetic typing of the senescence-accelerated mouse (SAM) strains with microsatellite markers.

    Science.gov (United States)

    Xia, C; Higuchi, K; Shimizu, M; Matsushita, T; Kogishi, K; Wang, J; Chiba, T; Festing, M F; Hosokawa, M

    1999-03-01

    The Senescence-Accelerated Mouse (SAM) strains constitute a murine model of accelerated senescence originating from the ancestral AKR/J strains and consist of nine senescence-prone (SAMP) strains and four senescence-resistant (SAMR) strains. The chromosomes (Chrs) of the SAM strains were typed with 581 microsatellite markers amplified by PCR, and the fundamental genetic information of the SAM strains was obtained. One-third of the examined markers displayed polymorphism among the strains, and only two alleles were detected in almost all loci among the SAM and AKR/J strains. However, in 12 loci (5.6% of total 215 polymorphic markers), the third allele was detected among the SAM strains. The genetic typing and developmental history suggested that the SAM strains were related inbred strains developed by the accidental crossing between the AKR/J strain and other unknown strain(s). Comparison of the distribution of the loci in the SAMP and the SAMR series revealed notable differences in the four regions on Chrs 4, 14, 16, and 17. This indicated that some of these chromosomal sites might contain the genes responsible for accelerated senescence in the SAMP series. PMID:10051317

  20. Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing

    OpenAIRE

    Konstantinos Voutetakis; Aristotelis Chatziioannou; Gonos, Efstathios S.; Trougakos, Ioannis P.

    2015-01-01

    Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved...

  1. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis*

    OpenAIRE

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycl...

  2. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21.

    Science.gov (United States)

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M James; Wang, Zhong; Gan, Boyi

    2016-04-12

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology.

  3. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells

    DEFF Research Database (Denmark)

    Dokkedahl, Karin Stenderup; Justesen, Jeannette; Clausen, Christian;

    2003-01-01

    -gal+) cells and mean telomere length in early-passage cells obtained from young and old donors. However, MSC from old donors exhibited accelerated senescence evidenced by increased number of SA beta-gal+ cells per PD as compared with young (4% per PD vs 0.4% per PD, respectively). MSC from young and old...

  4. D-serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slice from aged senescence-accelerated mouse prone/8

    Institute of Scientific and Technical Information of China (English)

    ShengYANG; Hai-faQIAO; LeiWEN; Wen-xiaZHOU; Yong-xiangZHANG

    2004-01-01

    The molecular and cellular mechanisms underlying the cognitive deficient of senescence-accelerated mouse prone/8 (SAMP8) have been attributed to many pathobiological changes in neurons. Recently, increasing evidence have shown that astrocyte, by mean of D-serine, was involved in the process of synaptic transmission. Here we reported the decrease of longterm potentiation (LTP) in SAMP8 along with aging, and the

  5. Molecular and cellular biology of the senescent hypertrophied and failing heart.

    Science.gov (United States)

    Swynghedauw, B; Besse, S; Assayag, P; Carré, F; Chevalier, B; Charlemagne, D; Delcayre, C; Hardouin, S; Heymes, C; Moalic, J M

    1995-11-01

    During aging, experimental studies have revealed various cellular changes, principal among which is myocyte hypertrophy, which compensates for the loss of myocytes and is associated with fibrosis. The expression of alpha-myosin heavy chain is replaced by that of the isogene beta-myosin, which leads to decreased myosin adenosine triphosphatase (ATPase) activity. In consequence, contraction is slower and more energetically economical. The Ca(2+)-ATPase of the sarcoplasmic reticulum and Na+/Ca2+ exchange activity are decreased, which probably explains the reduced velocity of relaxation. Membrane receptors are also modified, since the density of both the total beta-adrenergic and muscarinic receptors is decreased. The senescent heart is able to hypertrophy in response to overload and to adapt to the new requirements. Similar alterations are observed both in the senescent heart and in the overloaded heart, in clinical as well as in experimental studies; however, differences do exist, especially in terms of fibrosis and arrhythmias. PMID:7495213

  6. DNA-damage response network at the crossroads of cell-cycle checkpoints,cellular senescence and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SCHMITT Estelle; PAQUET Claudie; BEAUCHEMIN Myriam; BERTRAND Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation,cellular senescence and cell death.Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities.Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms.Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death.The intimate link between the cell cycle,cellular senescence,apoptosis regulation,cancer development and tumor responses to cancer treatment has become eminently apparent.Extensive research on tumor suppressor genes,oncogenes,the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways,referred to as the DNA-damage response network,are tied to cell proliferation,cell-cycle arrest,cellular senescence and apoptosis.DNA-damage responses are complex,involving "sensor" proteins that sense the damage,and transmit signals to "transducer" proteins,which,in turn,convey the signals to numerous "effector" proteins implicated in specific cellular pathways,including DNA repair mechanisms,cell-cycle checkpoints,cellular senescence and apoptosis.The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation.In addition,several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle,DNA repair/recombination and cellular senescence,effects that are generally distinct from their function in apoptosis.In this review,we report progress in understanding the molecular networks that regulate cell-cycle checkpoints,cellular senescence and apoptosis after DNA damage,and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  7. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism

    Directory of Open Access Journals (Sweden)

    Arantxa eBolinches-Amorós

    2014-05-01

    Full Text Available Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca2+ homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-βgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.

  8. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.

    Science.gov (United States)

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A; Kumar, Sheetal; Kalab, Petr

    2016-04-15

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  9. Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong-Yeon Cho

    Full Text Available Autophagy is a critical cellular process required for maintaining cellular homeostasis in health and disease states, but the molecular mechanisms and impact of autophagy on cancer is not fully understood. Here, we found that Sox2, a key transcription factor in the regulation of the "stemness" of embryonic stem cells and induced-pluripotent stem cells, strongly induced autophagic phenomena, including intracellular vacuole formation and lysosomal activation in colon cancer cells. The activation occurred through Sox2-mediated ATG10 gene expression and resulted in the inhibition of cell proliferation and anchorage-independent colony growth ex vivo and tumor growth in vivo. Further, we found that Sox2-induced-autophagy enhanced cellular senescence by up-regulating tumor suppressors or senescence factors, including p16(INK4a, p21 and phosphorylated p53 (Ser15. Notably, knockdown of ATG10 in Sox2-expressing colon cancer cells restored cancer cell properties. Taken together, our results demonstrated that regulation of autophagy mediated by Sox2 is a mechanism-driven novel strategy to treat human colon cancers.

  10. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence

    Directory of Open Access Journals (Sweden)

    Ryosuke eOhsawa

    2013-07-01

    Full Text Available It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.

  11. Age-related trends in gene expression in the chemosensory-nasal mucosae of senescence-accelerated mice.

    Science.gov (United States)

    Getchell, Thomas V; Peng, Xuejun; Stromberg, Arnold J; Chen, Kuey-Chu; Paul Green, C; Subhedar, Nishikant K; Shah, Dharmen S; Mattson, Mark P; Getchell, Marilyn L

    2003-04-01

    We have utilized high-density GeneChip oligonucleotide arrays to investigate the use of the senescence-accelerated mouse (SAM) as a biogerontological resource to identify patterns of gene expression in the chemosensory-nasal mucosa. Gene profiling in chronologically young and old mice of the senescence-resistant (SAMR) and senescence-prone (SAMP) strains revealed 133 known genes that were modulated by a three-fold or greater change either in one strain or the other or in both strains during aging. We also identified known genes in our study which based on their encoded proteins were identified as aging-related genes in the aging neocortex and cerebellum of mice as reported by Lee et al. (2000) [Nat. Genet. 25 (2000) 294]. Changes in gene profiles for chemosensory-related genes including olfactory and vomeronasal receptors, sensory transduction-associated proteins, and odor and pheromone transport molecules in the young SAMR and SAMP were compared with age-matched C57BL/6J mice. An analysis of known gene expression profiles suggests that changes in the expression of immune factor genes and genes associated with cell cycle progression and cell death were particularly prominent in the old SAM strains. A preliminary cellular validation study supported the dysregulation of cell cycle-related genes in the old SAM strains. The results of our initial study indicated that the use of the SAM models of aging could provide substantive information leading to a more fundamental understanding of the aging process in the chemosensory-nasal mucosa at the genomic, molecular, and cellular levels. PMID:12605961

  12. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  13. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Birgit Berkenkamp

    Full Text Available Acute kidney injury is a major clinical problem and advanced age is associated with ineffective renal regeneration and poor functional outcome. Data from kidney injury models suggest that a loss of tubular epithelial proliferation contributes to a decrease in renal repair capacity with aging, but aging can also lead to a higher severity of inflammation and damage which may influence repair. In this study we tested intrinsic age-dependent changes in tubular epithelial proliferation in young and old mice, by injecting low-dose lead acetate as a non-injurious mitogen. In parallel, we explored in vitro techniques of studying cellular senescence in primary tubular epithelial cells (PTEC. Lead acetate induced tubular epithelial proliferation at a significantly higher rate in young as compared to old mice. Old kidneys showed significantly more senescence as demonstrated by increased p16 (INK4a, senescence associated β-galactosidase, and γH2AX(+/Ki-67(- cells. This was paralleled in old kidneys by a higher number of Cyclin D1 positive tubular cells. This finding was corroborated by a positive correlation between Cyclin D1 positivity and age in human renal biopsies. When tubular cells were isolated from mouse kidneys they rapidly lost their age-associated differences under culture conditions. However, senescence was readily induced in PTEC by γ-irradiation representing a future model for study of cellular senescence in the renal epithelium. Together, our data indicate that the tubular epithelium of aged kidney has an intrinsically reduced proliferative capacity probably due to a higher load of senescent cells. Moreover, stress induced models of cellular senescence are preferable for study of the renal epithelium in vitro. Finally, the positive correlation of Cyclin D1 with age and cellular senescence in PTEC needs further evaluation as to a functional role of renal epithelial aging.

  14. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  15. Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants12

    Science.gov (United States)

    Corpas, Francisco J.; Barroso, Juan B.; Carreras, Alfonso; Quirós, Miguel; León, Ana M.; Romero-Puertas, María C.; Esteban, Francisco J.; Valderrama, Raquel; Palma, José M.; Sandalio, Luisa M.; Gómez, Manuel; del Río, Luis A.

    2004-01-01

    The cellular and subcellular localization of endogenous nitric oxide (NO˙) in leaves from young and senescent pea (Pisum sativum) plants was studied. Confocal laser scanning microscopy analysis of pea leaf sections with the fluorescent probe 4,5-diaminofluorescein diacetate revealed that endogenous NO˙ was mainly present in vascular tissues (xylem and phloem). Green fluorescence spots were also detected in the epidermal cells, palisade and spongy mesophyll cells, and guard cells. In senescent leaves, NO˙ generation was clearly reduced in the vascular tissues. At the subcellular level, by electron paramagnetic resonance spectroscopy with the spin trap Fe(MGD)2 and fluorometric analysis with 4,5-diaminofluorescein diacetate, NO˙ was found to be an endogenous metabolite of peroxisomes. The characteristic three-line electron paramagnetic resonance spectrum of NO˙, with g = 2.05 and aN = 12.8 G, was detected in peroxisomes. By fluorometry, NO˙ was also found in these organelles, and the level measured of NO˙ was linearly dependent on the amount of peroxisomal protein. The enzymatic production of NO˙ from l-Arg (nitric oxide synthase [NOS]-like activity) was measured by ozone chemiluminiscence. The specific activity of peroxisomal NOS was 4.9 nmol NO˙ mg−1 protein min−1; was strictly dependent on NADPH, calmodulin, and BH4; and required calcium. In senescent pea leaves, the NOS-like activity of peroxisomes was down-regulated by 72%. It is proposed that peroxisomal NO˙ could be involved in the process of senescence of pea leaves. PMID:15347796

  16. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence.

    Science.gov (United States)

    Noren Hooten, Nicole; Martin-Montalvo, Alejandro; Dluzen, Douglas F; Zhang, Yongqing; Bernier, Michel; Zonderman, Alan B; Becker, Kevin G; Gorospe, Myriam; de Cabo, Rafael; Evans, Michele K

    2016-06-01

    Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA-processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post-transcriptional mechanism involving the RNA-binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life-extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1-dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence-associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age-related disease. PMID:26990999

  17. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Arun, E-mail: arun.azad@bccancer.bc.ca [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Pathology, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Bukczynska, Patricia; Jackson, Susan [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Haput, Ygal; Cullinane, Carleen [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia); McArthur, Grant A.; Solomon, Benjamin [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Medicine, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia)

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  18. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    Science.gov (United States)

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  19. Data on the optimization of behavioral tasks for senescence-accelerated mouse prone 8 (SAMP8).

    Science.gov (United States)

    Yanai, Shuichi; Endo, Shogo

    2016-09-01

    This data article contains the supporting information for the research article entitled "Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8)" [1]. Senescence-accelerated mouse prone 8 (SAMP8), which originally developed from AKR/J mice, shows learning and memory impairments at the age of 8-12 months. However, little information is still available on phenotypical characteristics of younger SAMP8. To fully understand the phenotype of younger SAMP8, we optimized two behavioral tasks for SAMP8. In the object recognition task, 4-month-old SAMP8 made significantly more contacts with the familiar objects compared to age-matched SAMR1, however, distance traveled for both strains of mice were comparable. In the fear conditioning task, conventionally-used CS-US combination failed to induce robust conditioned fear in both strains of mice. PMID:27331099

  20. Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence.

    Directory of Open Access Journals (Sweden)

    Enrico Giampieri

    Full Text Available The amount of cellular proteins is a crucial parameter that is known to vary between cells as a function of the replicative passages, and can be important during physiological aging. The process of protein degradation is known to be performed by a series of enzymatic reactions, ranging from an initial step of protein ubiquitination to their final fragmentation by the proteasome. In this paper we propose a stochastic dynamical model of nuclear proteins concentration resulting from a balance between a constant production of proteins and their degradation by a cooperative enzymatic reaction. The predictions of this model are compared with experimental data obtained by fluorescence measurements of the amount of nuclear proteins in murine tail fibroblast (MTF undergoing cellular senescence. Our model provides a three-parameter stationary distribution that is in good agreement with the experimental data even during the transition to the senescent state, where the nuclear protein concentration changes abruptly. The estimation of three parameters (cooperativity, saturation threshold, and maximal velocity of the reaction, and their evolution during replicative passages shows that only the maximal velocity varies significantly. Based on our modeling we speculate the reduction of functionality of the protein degradation mechanism as a possible competitive inhibition of the proteasome.

  1. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Yafan Yang

    2015-01-01

    Full Text Available Ultraviolet (UV irradiation causes damage in skin by generating excessive reactive oxygen species (ROS and induction of matrix metalloproteinases (MMPs, leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption.

  2. Evaluating the Role of p38 MAPK in the Accelerated Cell Senescence of Werner Syndrome Fibroblasts

    Directory of Open Access Journals (Sweden)

    Terence Davis

    2016-04-01

    Full Text Available Progeroid syndromes show features of accelerated ageing and are used as models for human ageing, of which Werner syndrome (WS is one of the most widely studied. WS fibroblasts show accelerated senescence that may result from p38 MAP kinase activation since it is prevented by the p38 inhibitor SB203580. Thus, small molecule inhibition of p38-signalling may be a therapeutic strategy for WS. To develop this approach issues such as the in vivo toxicity and kinase selectivity of existing p38 inhibitors need to be addressed, so as to strengthen the evidence that p38 itself plays a critical role in mediating the effect of SB203580, and to find an inhibitor suitable for in vivo use. In this work we used a panel of different p38 inhibitors selected for: (1 having been used successfully in vivo in either animal models or human clinical trials; (2 different modes of binding to p38; and (3 different off-target kinase specificity profiles, in order to critically address the role of p38 in the premature senescence seen in WS cells. Our findings confirmed the involvement of p38 in accelerated cell senescence and identified p38 inhibitors suitable for in vivo use in WS, with BIRB 796 the most effective.

  3. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis

    Institute of Scientific and Technical Information of China (English)

    Guocan Wang; Chia-Hsin Chan; Yuan Gao; Hui-Kuan Lin

    2012-01-01

    S-phase kinase-associated protein 2 (Skp2) belongs to the F-box protein family.It is a component of the SCF E3 ubiquitin ligase complex.Skp2 has been shown to regulate cellular proliferation by targeting several cell cycle-regulated proteins for ubiquitination and degradation,including cyclin-dependent kinase inhibitor p27.Skp2 has also been demonstrated to display an oncogenic function since its overexpression has been observed in many human cancers.This review discusses the recent discoveries on the novel roles of Skp2 in regulating cellular senescence,cancer progression,and metastasis,as well as the therapeutic potential of targeting Skp2 for human cancer treatment.

  4. [Senescence-accelerated mouse (SAM): with special reference to age-associated pathologies and their modulation].

    Science.gov (United States)

    Takeda, T

    1996-07-01

    The senescence-accelerated mouse (SAM) has been under development by our research team at Kyoto University since 1970 through selective inbreeding of the AKR/J strain of mice donated by the Jackson Laboratory in 1968, based on the data of the grading score of senescence, life span, and pathologic phenotypes. At present, there are 12 lines of SAM; the 9 senescence-prone inbred strains (SAMP) include SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10 and SAMP11, and the 3 senescence-resistant inbred strains (SAMR) SAMR1, SANR4 and SAMR5. Data from survival curves, the Gompertzian function and the grading score of senescence, together with growth patterns of body weight of these SAMP and SAMR mice revealed that the characteristic feature of aging common to all SAMP mice is "accelerated senescence": early onset and irreversible advance of senescence manifested by several signs and gross lesions such as the loss of normal behavior, various skin lesions, increased lordokyphosis, etc., after a period of normal development. Routine postmortem examinations and the pathobiological features revealed by systematically designed studies have shown several pathologic phenotypes, which are often characteristic enough to differentiate among the various SAM strains: senile amyloidosis in SAMP1, -P2, -P7, -P9, -P10 and -P11, secondary amyloidosis in SAMP2 and -P6, contracted kidney in SAMP1, -P2, -P10, -P11, immunoblastic lymphoma in SAMR1 and -R4, histiocytic sarcoma in SAMR1 and -R4, ovarian cysts in SAMR1, impaired immune response in SAMP1, -P2 and -P8, hyperinflation of the lungs in SAMP1, hearing impairment in SAMP1, degenerative temporomandibular joint disease in SAMP3, senile osteoporosis in SAMP6, deficits in learning and memory in SAMP8 and -P10, emotional disorders in SAMP8 and -P10, cataracts in SAMP9, and brain atrophy in SAMP10. These are all age-associated pathologies, the incidence and severity of which increase with advancing age. The SAM model in which these

  5. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    International Nuclear Information System (INIS)

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes

  6. A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice.

    Science.gov (United States)

    Hosokawa, Masanori

    2002-11-01

    The SAM strain of mice is actually a group of related inbred strains consisting of series of SAMP (accelerated senescence-prone, short-lived) and SAMR (accelerated senescence-resistant, longer-lived) strains. Comparing with the SAMR strains, the SAMP strains of mice show a more accelerated senescence process, shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to several geriatric disorders observed in humans, including senile osteoporosis, degenerative joint disease, age-related deficits in learning and memory, olfactory bulb and forebrain atrophy, presbycusis and retinal atrophy, senile amyloidosis, immunosenescence, senile lungs, and diffuse medial thickening of the aorta. The higher oxidative stress observed in the SAMP strains of mice are partly caused by mitochondrial dysfunction, and may be one cause of the senescence acceleration and age-dependent alterations in cell structure and function, including neuronal cell degeneration. This senescence acceleration is also observed during senescence/crisis in cultures of isolated fibroblast-like cells from SAMP strains of mice, and was associated with a hyperoxidative status. These observations suggest that the SAM strains are useful tools in the attempt to understand the mechanisms of age-dependent degeneration of cells and tissues, and their aggravation, and to develop clinical interventions. PMID:12470893

  7. No effects of lifelong creatine supplementation on sarcopenia in senescence-accelerated mice (SAMP8).

    Science.gov (United States)

    Derave, Wim; Eijnde, Bert O; Ramaekers, Monique; Hespel, Peter

    2005-08-01

    Oral creatine supplementation can acutely ameliorate skeletal muscle function in older humans, but its value in the prevention of sarcopenia remains unknown. We evaluated the effects of lifelong creatine supplementation on muscle mass and morphology, contractility, and metabolic properties in a mouse model of muscle senescence. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 wk. Soleus and extensor digitorum longus muscles were tested for in vitro contractile properties, creatine content, and morphology at weeks 25 and 60. Both muscle types showed reduced phosphocreatine content at week 60 that could not be prevented by creatine. Accordingly, age-associated decline in muscle mass and contractility was not influenced by treatment. Aged soleus muscles had fewer and smaller fast-twitch glycolytic fibers irrespective of treatment received. It is concluded that lifelong creatine supplementation is no effective strategy to prevent sarcopenia in senescence-accelerated mice. PMID:15727953

  8. Biology of cancer and aging: a complex association with cellular senescence.

    Science.gov (United States)

    Falandry, Claire; Bonnefoy, Marc; Freyer, Gilles; Gilson, Eric

    2014-08-20

    Over the last 50 years, major improvements have been made in our understanding of the driving forces, both parallel and opposing, that lead to aging and cancer. Many theories on aging first proposed in the 1950s, including those associated with telomere biology, senescence, and adult stem-cell regulation, have since gained support from cumulative experimental evidence. These views suggest that the accumulation of mutations might be a common driver of both aging and cancer. Moreover, some tumor suppressor pathways lead to aging in line with the theory of antagonist pleiotropy. According to the evolutionary-selected disposable soma theory, aging should affect primarily somatic cells. At the cellular level, both intrinsic and extrinsic pathways regulate aging and senescence. However, increasing lines of evidence support the hypothesis that these driving forces might be regulated by evolutionary-conserved pathways that modulate energy balance. According to the hyperfunction theory, aging is a quasi-program favoring both age-related diseases and cancer that could be inhibited by the regulation of longevity pathways. This review summarizes these hypotheses, as well as the experimental data that have accumulated over the last 60 years linking aging and cancer.

  9. Impaired motor function in senescence-accelerated mouse prone 1 (SAMP1).

    Science.gov (United States)

    Aoyama, Yo; Kim, Tae Yeon; Yoshimoto, Takuro; Niimi, Kimie; Takahashi, Eiki; Itakura, Chitoshi

    2013-06-17

    Senescence-accelerated mouse prone (SAMP) strains of mice show early onset of senescence, whereas senescence-accelerated mouse resistant (SAMR) strains are resistant to early senescence and serve as controls. Although SAMP6 and SAMP8 are established models of central nervous system alterations, it is unclear whether SAMP1/Sku (SAMP1) is characterized by brain alterations and dysfunction related to behavioral functioning. In the present study, behavioral tests (i.e., locomotor activity, Y-maze, rotating rod, hind-limb extension, and traction), histochemistry, and Western blot analyses were employed to study this mouse model using 2- and 4-month-old SAMP1 and age-matched control SAMR1. Although 2-month-old SAMP1 and SAMR1 showed similar activity, 4-month-old SAMP1 exhibited less activity than age-matched SAMR1 in locomotor activity and Y-maze tests. In rotating rod test, 2- and 4-month-old SAMP1 showed motor-coordination dysfunction. An abnormal extension reflex in the hind-limb test was observed in 2- and 4-month-old SAMP1. There were no significant differences between SAMP1 and SAMR1 with respect to grip strength in the traction test or alternation behavior in the Y-maze test. Histochemistry and Western blot analyses exhibited that cerebellar Purkinje cells in 4-month-old SAMP1 mice persistently expressed tyrosine hydroxylase. These results suggest that SAMP1 is a useful model for examining mechanisms underlying motor dysfunction. PMID:23583482

  10. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation.

    Science.gov (United States)

    Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P

    2015-12-01

    Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes. PMID:26467393

  11. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    Science.gov (United States)

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  12. [Anti-aging studies on the senescence accelerated mouse (SAM) strains].

    Science.gov (United States)

    Takahashi, Ryoya

    2010-01-01

    Senescence accelerated mouse (SAM), a murine model of accelerated senescence, was established by Toshio Takeda and colleagues. SAM consists of series of SAMP (prone) and SAMR (resistant) lines. All SAMP lines (from SAMP1 to SAMP11) are characterized by accelerated accumulation of senile features, earlier onset and faster progress of age-associated pathological phenotypes, such as amyloidosis, impaired immune response, senile osteoporosis and deficits in learning and memory. These SAMP lines are useful for evaluation of putative anti-aging therapies. For example, SAMP1 line is used to study the anti-aging effect of the antioxidant containing foods and various anti-oxidants, such as coenzyme Q10, vitamin C, lycopene. SAMP8 line exhibiting an early onset of impaired learning and memory is often used for test strategies for therapeutic intervention of dementia of early onset. SAMP6 is used as an animal model for developing new strategies for the treatment of osteoporosis in humans. Various lines of SAM (P1, P6, P8, P10 and R1) are now commercially available for research. In this review, I will briefly introduce various usages of SAM in anti-aging research. PMID:20046059

  13. Radiation-Induced Loss of Salivary Gland Function Is Driven by Cellular Senescence and Prevented by IL6 Modulation.

    Science.gov (United States)

    Marmary, Yitzhak; Adar, Revital; Gaska, Svetlana; Wygoda, Annette; Maly, Alexander; Cohen, Jonathan; Eliashar, Ron; Mizrachi, Lina; Orfaig-Geva, Carmit; Baum, Bruce J; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H

    2016-03-01

    Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy. PMID:26759233

  14. Adiposity-Related Biochemical Phenotype in Senescence-Accelerated Mouse Prone 6 (SAMP6)

    OpenAIRE

    NIIMI, Kimie; TAKAHASHI, Eiki; ITAKURA, Chitoshi

    2009-01-01

    Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceri...

  15. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence.

    Science.gov (United States)

    Kretova, Miroslava; Sabova, Ludmila; Hodny, Zdenek; Bartek, Jiri; Kollarovic, Gabriel; Nelson, Buck D; Hubackova, Sona; Luciakova, Katarina

    2014-12-01

    Oxidative stress and persistent activation of DNA damage response (DDR) are causally involved in the development of cellular senescence, a phenomenon implicated in fundamental (patho)physiological processes such as aging, fetal development and tumorigenesis. Here, we report that adenine nucleotide translocase-2 (ANT2) is consistently down-regulated in all three major forms of cellular senescence: replicative, oncogene-induced and drug-induced, in both normal and cancerous human cells. We previously reported formation of novel NF1/Smad transcription repressor complexes in growth-arrested fibroblasts. Here we show that such complexes form in senescent cells. Mechanistically, binding of the NF1/Smad complexes to the NF1-dependent repressor elements in the ANT2 gene promoter repressed ANT2 expression. Etoposide-induced formation of these complexes and repression of ANT2 were relatively late events co-incident with production and secretion of, and dependent on, TGF-β. siRNA-mediated knock-down of ANT2 in proliferating cells resulted in increased levels of reactive oxygen species (ROS) and activation of the DDR. Knock-down of ANT2, together with etoposide treatment, further intensified ROS production and DNA damage signaling, leading to enhanced apoptosis. Together, our data show that TGF-β-mediated suppression of ANT2 through NF1/Smad4 complexes contributes to oxidative stress and DNA damage during induction of cellular senescence. PMID:25220407

  16. Cellular senescence induced by prolonged subculture adversely affects glutamate uptake in C6 lineage.

    Science.gov (United States)

    Pereira, Mery Stéfani Leivas; Zenki, Kamila; Cavalheiro, Marcela Mendonça; Thomé, Chairini Cássia; Filippi-Chiela, Eduardo Cremonese; Lenz, Guido; de Souza, Diogo Onofre Gomes; de Oliveira, Diogo Losch

    2014-05-01

    Several researchers have recently used C6 cells to evaluate functional properties of high-affinity glutamate transporters. However, it has been demonstrated that this lineage suffers several morphological and biochemical alterations according to the number of passages in culture. Currently, there are no reports showing whether functional properties of high-affinity glutamate transporters comply with these sub culturing-dependent modifications. The present study aimed to compare the functional properties of high-affinity glutamate transporters expressed in early (EPC6) and late (LPC6) passage C6 cells through a detailed pharmacological and biochemical characterization. Between 60-180 min of L-[(3)H]glu incubation, LPC6 presented an intracellular [(3)H] 55% lower than EPC6. Both cultures showed a time-dependent increase of intracellular [(3)H] reaching maximal levels at 120 min. Cultures incubated with D-[(3)H]asp showed a time-dependent increase of [(3)H] until 180 min. Moreover, LPC6 have a D-[(3)H]asp-derived intracellular [(3)H] 30-45% lower than EPC6 until 120 min. Only EAAT3 was immunodetected in cultures and its total content was equal between them. PMA-stimulated EAAT3 trafficking to membrane increased 50% of L-[(3)H]glu-derived intracellular [(3)H] in EPC6 and had no effect in LPC6. LPC6 displayed characteristics that resemble senescence, such as high β-Gal staining, cell enlargement and increase of large and regular nuclei. Our results demonstrated that LPC6 exhibited glutamate uptake impairment, which may have occurred due to its inability to mobilize EAAT3 to cell membrane. This profile might be related to senescent process observed in this culture. Our results suggest that LPC6 cells are an inappropriate glial cellular model to investigate the functional properties of high-affinity glutamate transporters.

  17. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes.

    Science.gov (United States)

    Kim, Hye Kyung

    2016-01-01

    Ultraviolet (UV) irradiation generates reactive oxygen species (ROS) in the cells, which induces the cellular senescence and photoaging. The present study investigated the protective effects of garlic on photo-damage and cellular senescence in UVB-exposed human keratinocytes, HaCaT cells. An in vitro cell free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and nitric oxide (NO). The effect of garlic extract on ROS formation, MMP-1 protein and mRNA expressions, cytokines such as interleukin (IL)-1β and IL-6, senescence associated-β-galactosidase (SA-β-gal) activity, and silent information regulator T1 (SIRT1) activity were determined in UVB-irradiated HaCaT cells. Garlic exhibited strong DPPH radical and NO scavenging activity in cell free system exhibiting IC50 values of 2.50 mg/mL and 4.38 mg/mL, respectively. Garlic pretreatment attenuated the production of UVB-induced intracellular ROS. MMP-1 level, which has been known to be induced by ROS, was dramatically elevated by UVB irradiation, and UVB-induced MMP-1 mRNA and protein expressions were significantly reduced by garlic treatment (50 µg/mL) comparable to those of UV-unexposed control cells. UV-induced pro-inflammatory cytokine productions (IL-6 and IL-1β) were significantly inhibited by pretreatment with garlic in a dose-dependent manner. SA-β-gal activity, a classical biomarker of cellular senescence, and SIRT1 activity, which has attracted attention as an anti-aging factor in recent years, were ameliorated by garlic treatment in UV-irradiated HaCaT cells. The present study provides the first evidence of garlic inhibiting UVB-induced photoaging as a result of augmentation of cellular senescence in HaCaT human keratinocytes. PMID:27483310

  18. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach.

    Science.gov (United States)

    Okuma, Y; Nomura, Y

    1998-12-01

    To elucidate the fundamental mechanism of age-related deficiencies of learning and to develop effective drugs for intervention in age-related diseases such as learning dysfunctions, pertinent animal models that have characteristics closely similar to human dysfunctions should be established. SAM (senescence-accelerated mouse) has been established as a murine model of the SAM strains, groups of related inbred strains including nine strains of accelerated senescence-prone, short-lived mice (SAMP) and three strains of accelerated senescence-resistant, long-lived mice (SAMR). SAMP-strain mice show relatively strain-specific age-associated phenotypic pathologies such as shortened life span and early manifestation of senescence. Among the SAMP-strain mice, SAMP8 mice show an age-related deterioration in learning ability. Here, the neuropathological, neurochemical and pharmacological features of SAM are reported, especially for SAMP8. Moreover, the effects of several drugs on the biochemical and behavioral alterations in SAMP8 and the etiologic manifestation of accelerated senescence are also discussed. PMID:9920195

  19. Influence of Electroacupuncture on COX Activity of Hippocampal Mitochondria in Senescence- accelerated Mouse Prone 8 Mice

    Institute of Scientific and Technical Information of China (English)

    Peng Jing; Zeng Fang; He Yu-heng; Tang Yong; Yin Hai-yan; Yu Shu-guang

    2014-01-01

    Objective: To observe the effect of electroacupuncture (EA) on cytochrome c oxidase (COX)activity of hippocampal mitochondria in senescence-accelerated mouse prone 8 (SAMP8) mice, and to explore the EA mechanism on Alzheimer disease (AD) in improving energy metabolic disorder. Methods: Twelve SAMP8 mice were randomly divided into a model group and an EA group, with six in each group. Six senescence-accelerated mouse resistance 1 (SAMR1) mice were prepared as blank group. Mice in the EA group received EA on Baihui (GV 20) and Yongquan (KI 1), once a day for 7 d as a course, altogether 3 courses with one day intervalbetween two courses. Mice in the model group and the blank group were manipulated and fixed as those in the EA group. After interventions, Morris water maze was employed to test spatial learning and memory ability to evaluate EA effect; spectrophotometry was used to detect the activity of hippocampal mitochondria COX. Results: Compared with the blank group, mean escape latenciesof the EA group and model group were prolonged significantly in Morris water maze tests (P Conclusion: It’s plausible that EA improves AD learning and memory ability by increasing mitochondria COX activity, protecting the structure and function, and improving energy metabolism.

  20. Icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels in the hippocampus of the senescence- accelerated mouse

    Institute of Scientific and Technical Information of China (English)

    Zhanwei Zhang; Ting Zhang; Keli Dong

    2012-01-01

    At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected signifi-cantly increased levels of cyclic adenosine monophosphate response element binding protein. These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippo-campus of the senescence-accelerated mouse.

  1. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jian-Ying [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Hung, Jan-Jong, E-mail: petehung@mail.ncku.edu.tw [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  2. Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8.

    Science.gov (United States)

    Sureda, Francesc X; Gutierrez-Cuesta, Javier; Romeu, Marta; Mulero, Miquel; Canudas, Anna Maria; Camins, Antoni; Mallol, Jordi; Pallàs, Mercè

    2006-04-01

    The senescence-accelerated strains of mice (SAMP) are well-characterized animal models of senescence. Senescence may be related to enhanced production or defective control of reactive oxygen species, which lead to neuronal damage. Therefore, the activity of various oxidative-stress related enzymes was determined in the cortex of 5 months-old senescence-accelerated mice prone-8 (SAMP-8) of both sexes and compared with senescence-accelerated mice-resistant-1 (SAMR-1). Glutathione reductase and peroxidase activities in SAMP-8 male mice were lower than in male SAMR-1, and a decreased catalase activity was found in both male and female SAMP-8 mice, which correlates with the lower catalase expression found by Western blotting. Nissl staining showed marked loss of neuronal cells in the cerebral cortex of five month-old SAMP-8 mice. SAMP-8 mice also had marked astrogliosis and microgliosis. We also found an increase in caspase-3 and calpain activity in the cortex. In addition, we observed morphological changes in the immunostaining of tau protein in SAMP-8, indicative of a loss of their structural function. Altogether, these results show that, at as early as 5 months of age, SAMP-8 mice have cytological and molecular alterations indicative of neurodegeneration in the cerebral cortex and suggestive of altered control of the production of oxidative species and hyper-activation of calcium-dependent enzymes. PMID:16542809

  3. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10.

    Science.gov (United States)

    Miyamoto, M

    1997-01-01

    Senescence-Accelerated Mouse (SAM), a murine model of accelerated senescence, has been established by Takeda et al. (1981). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. In 1991 there were eight different substrains in the P-series, which commonly exhibited accelerated aging with a shortened life span (Takeda et al., 1991). Among the P-series, we have found that SAMP8 mice show significant impairments in a variety of learning tasks when compared with SAMR1 mice (Miyamoto et al., 1986). Further studies suggest that SAMP8 exhibits an age-related emotional disorder characterized by reduced anxiety-like behavior (Miyamoto et al., 1992). On the other hand, it has been shown that SAMP10 exhibits brain atrophy and learning impairments in an avoidance task (Shimada et al., 1992, 1993). Here, characteristics of age-related deficits in learning and memory, changes in emotional behavior, and abnormality of circadian rhythms in SAMP8 and SAMP10 mice are described. In the experiments, SAMP8/Ta (SAMP8), SAMP10/(/)Ta (SAMP10) and SAMR1TA (SAMR1) reared under specific pathogen-free conditions at Takeda Chemical Industries were used. PMID:9088911

  4. Increased SHP-1 expression results in radioresistance, inhibition of cellular senescence, and cell cycle redistribution in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Radioresistance is the main limit to the efficacy of radiotherapy in nasopharyngeal carcinoma (NPC). SHP-1 is involved in cancer progression, but its role in radioresistance and senescence of NPC is not well understood. This study aimed to assess the role of SHP-1 in the radioresistance and senescence of NPC cells. SHP-1 was knocked-down and overexpressed in CNE-1 and CNE-2 cells using lentiviruses. Cells were irradiated to observe their radiosensitivity by colony forming assay. BrdU incorporation assay and flow cytometry were used to monitor cell cycle. A β-galactosidase assay was used to assess senescence. Western blot was used to assess SHP-1, p21, p53, pRb, Rb, H3K9Me3, HP1γ, CDK4, cyclin D1, cyclin E, and p16 protein expressions. Compared with CNE-1-scramble shRNA cells, SHP-1 downregulation resulted in increased senescence (+107 %, P < 0.001), increased radiosensitivity, higher proportion of cells in G0/G1 (+33 %, P < 0.001), decreased expressions of CDK4 (−44 %, P < 0.001), cyclin D1 (−41 %, P = 0.001), cyclin E (−97 %, P < 0.001), Rb (−79 %, P < 0.001), and pRb (−76 %, P = 0.001), and increased expression of p16 (+120 %, P = 0.02). Furthermore, SHP-1 overexpression resulted in radioresistance, inhibition of cellular senescence, and cell cycle arrest in the S phase. Levels of p53 and p21 were unchanged in both cell lines (all P > 0.05). SHP-1 has a critical role in radioresistance, cell cycle progression, and senescence of NPC cells. Down-regulating SHP-1 may be a promising therapeutic approach for treating patients with NPC

  5. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via Nrf2

    Science.gov (United States)

    Shin, Joo-Hyun; Jeon, Hyo-Jin; Park, Jihye; Chang, Mi-Sook

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have great therapeutic potential due to their high plasticity, immune privileged status and ease of preparation, as well as a lack of ethical barriers to their use. However, their ultimate usefulness is limited by cellular senescence occurring secondary to increased cellular levels of reactive oxygen species (ROS) during their propagation in culture. The underlying molecular mechanisms responsible for this process in hMSCs remain unclear. An antioxidant polyphenol epigallocatechin-3-gallate (EGCG) found in green tea, is known to activate nuclear factor-erythroid 2-related factor 2 (Nrf2), a master transcriptional regulator of antioxidant genes. Herein, we examined the EGCG-mediated antioxidant mechanism in hMSCs exposed to ROS which involves Nrf2 activation. The H2O2-exposed hMSCs showed cellular senescence with significantly increased protein levels of acetyl-p53 and p21 in comparison with the untreated hMSCs, and these effects were prevented by pre-treatment with EGCG. By contrast, in Nrf2-knockdown hMSCs, EGCG lost its antioxidant effect, exhibiting high levels of acetyl-p53 and p21 following EGCG pre-treatment and H2O2 exposure. This indicates that Nrf2 and p53/p21 may be involved in the anti-senescent effect of EGCG in hMSCs. Taken together, these findings indicate the important role of EGCG in preventing oxidative stress-induced cellular senescence in hMSCs through Nrf2 activation, which has applications for the massive production of more suitable hMSCs for cell-based therapy. PMID:27498709

  6. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori

    2010-05-01

    Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders. PMID:20490324

  7. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence.

    Science.gov (United States)

    Patel, Priyanka L; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-08-23

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc-dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  8. Long-term wheel running changes on sensorimotor activity and skeletal muscle in male and female mice of accelerated senescence

    OpenAIRE

    Sanchez-Roige, Sandra; Jaume F Lalanza; Alvarez-López, María Jesús; Cosín-Tomás, Marta; Griñan-Ferré, Christian; Pallàs, Merce; Kaliman, Perla; Rosa M. Escorihuela

    2014-01-01

    The senescence-accelerated mouse prone 8 (SAMP8) is considered a useful non-transgenic model for studying aspects of aging. Using SAM resistant 1 (SAMR1) as controls, the long-term effects of wheel running on skeletal muscle adaptations and behavioral traits were evaluated in senescent (P8) and resistant (R1) male and female mice. Long-term wheel running (WR) led to increases in locomotor activity, benefits in sensorimotor function, and changes in body weight in a gender-dependent manner. WR ...

  9. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Directory of Open Access Journals (Sweden)

    L. Chularojmontri

    2013-01-01

    Full Text Available Citrus flavonoids have been shown to reduce cardiovascular disease (CVD risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX- induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH levels. The changes in glutathione-S-transferase (GST activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.

  10. Characterization of senescence-accelerated mouse prone 6 (SAMP6) as an animal model for brain research.

    Science.gov (United States)

    Niimi, Kimie; Takahashi, Eiki

    2014-01-01

    The senescence-accelerated mouse (SAM) was developed by selective breeding of the AKR/J strain, based on a graded score for senescence, which led to the development of both senescence-accelerated prone (SAMP), and senescence-accelerated resistant (SAMR) strains. Among the SAMP strains, SAMP6 is well characterized as a model of senile osteoporosis, but its brain and neuronal functions have not been well studied. We therefore decided to characterize the central nervous system of SAMP6, in combination with different behavioral tests and analysis of its biochemical and pharmacological properties. Multiple behavioral tests revealed higher motor activity, reduced anxiety, anti-depressant activity, motor coordination deficits, and enhanced learning and memory in SAMP6 compared with SAMR1. Biochemical and pharmacological analyses revealed several alterations in the dopamine and serotonin systems, and in long-term potentiation (LTP)-related molecules. In this review, we discuss the possibility of using SAMP6 as a model of brain function. PMID:24521858

  11. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence

    Science.gov (United States)

    Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio

    2016-01-01

    AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. PMID:27512140

  12. Another Facet to the Anticancer Response to Lamellarin D: Induction of Cellular Senescence through Inhibition of Topoisomerase I and Intracellular Ros Production

    Directory of Open Access Journals (Sweden)

    Caroline Ballot

    2014-01-01

    Full Text Available Lamellarin D (LamD is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2 and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with β-galactosidase activity is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS, which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents.

  13. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice.

    Science.gov (United States)

    Takeda, Toshio

    2009-04-01

    The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders. PMID:19199030

  14. Dexamethasone reduces sensitivity to cisplatin by blunting p53-dependent cellular senescence in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Haiyan Ge

    Full Text Available INTRODUCTION: Dexamethasone (DEX co-treatment has proved beneficial in NSCLC patients, improving clinical symptoms by the reduction of side effects after chemotherapy. However, recent studies have shown that DEX could render cancer cells more insensitive to cytotoxic drug therapy, but it is not known whether DEX co-treatment could influence therapy-induced senescence (TIS, and unknown whether it is in a p53-dependent or p53-independent manner. METHODS: We examined in different human NSCLC cell lines and detected cellular senescence after cisplatin (DDP treatment in the presence or absence of DEX. The in vivo effect of the combination of DEX and DDP was assessed by tumor growth experiments using human lung cancer cell lines growing as xenograft tumors in nude mice. RESULTS: Co-treatment with DEX during chemotherapy in NSCLC resulted in increased tumor cell viability and inhibition of TIS compared with DDP treated group. DEX co-treatment cells exhibited the decrease of DNA damage signaling pathway proteins, the lower expression of p53 and p21(CIP1, the lower cellular secretory program and down-regulation of NF-κB and its signaling cascade. DEX also significantly reduced DDP sensitivity in vivo. CONCLUSIONS: Our results underscore that DEX reduces chemotherapy sensitivity by blunting therapy induced cellular senescence after chemotherapy in NSCLC, which may, at least in part, in a p53-dependent manner. These data therefore raise concerns about the widespread combined use of gluocorticoids (GCs with antineoplastic drugs in the clinical management of cancer patients.

  15. Behavioral assessment of the senescence-accelerated mouse (SAM P8 and R1).

    Science.gov (United States)

    Markowska, A L; Spangler, E L; Ingram, D K

    1998-04-01

    Senescence-accelerated mice (SAM P8 and R1) were behaviorally assessed in a cross-sectional study at 4 and 15 months of age. Behavioral measures included memory (place discrimination and repeated acquisition in a water maze), sensorimotor performance (turning in an alley, traversing bridges, wire rod hanging, and falls from a wire screen), psychomotor performance (open-field exploration), and emotionality (entries in a plus maze, grooming, and defecation in a plus maze and in an open field). In the water maze, aged P8 mice were impaired in place discrimination and in repeated acquisition tasks, demonstrating evidence of an age-related decline in spatial memory processing abilities. The demonstration of this impairment, however, was complicated by noncognitive factors, such as the tendency of many older P8 mice to float. Sensorimotor skill impairment was accelerated with age in P8 mice, but not in R1 mice, and this impairment was present despite the lack of age-related changes in body weight in P8 mice. Although P8 and R1 mice were not different in general activity at old age, P8 mice were substantially more hyperactive in an open field and in the plus maze than R1 mice when compared at young age. Independent of age, P8 mice demonstrated a reduction of anxiety-like behavior in the plus maze. Taken as a whole, the data suggest that although age-related behavioral alterations occur in the P8 mice, some of these changes are evident at 4 months of age. Thus, the behavioral abnormalities that exist not only represent an accelerated aging phenomenon but may also be considered a developmental pathology. PMID:9661977

  16. Immune Dysfunction Associated with Abnormal Bone Marrow-Derived Mesenchymal Stroma Cells in Senescence Accelerated Mice

    Science.gov (United States)

    Li, Ming; Guo, Kequan; Adachi, Yasushi; Ikehara, Susumu

    2016-01-01

    Senescence accelerated mice (SAM) are a group of mice that show aging-related diseases, and SAM prone 10 (SAMP10) show spontaneous brain atrophy and defects in learning and memory. Our previous report showed that the thymus and the percentage of T lymphocytes are abnormal in the SAMP10, but it was unclear whether the bone marrow-derived mesenchymal stroma cells (BMMSCs) were abnormal, and whether they played an important role in regenerative medicine. We thus compared BMMSCs from SAMP10 and their control, SAM-resistant (SAMR1), in terms of cell cycle, oxidative stress, and the expression of PI3K and mitogen-activated protein kinase (MAPK). Our cell cycle analysis showed that cell cycle arrest occurred in the G0/G1 phase in the SAMP10. We also found increased reactive oxygen stress and decreased PI3K and MAPK on the BMMSCs. These results suggested the BMMSCs were abnormal in SAMP10, and that this might be related to the immune system dysfunction in these mice. PMID:26840301

  17. Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8).

    Science.gov (United States)

    Yanai, Shuichi; Endo, Shogo

    2016-07-15

    Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old. PMID:27093926

  18. El nucléolo como un regulador del envejecimiento celular The nucleolus as a regulator of cellular senescence

    Directory of Open Access Journals (Sweden)

    María Rosete

    2007-04-01

    Full Text Available El nucléolo, considerado únicamente como el sitio de síntesis de los ribosomas, actualmente representa una estructura nuclear dinámica que participa en la regulación de importantes procesos celulares. Numerosas evidencias han demostrado que el envejecimiento celular es una de las diversas funciones que son controladas por el nucléolo. Las mutaciones en las proteínas de localización nucleolar promueven el envejecimiento prematuro en levaduras y humanos. La carencia de represión en la transcripción de genes que codifican para el ARNr que se encuentran dañados, y las mutaciones en las helicasas del ADN encargadas de minimizar la formación de círculos extra-cromosómicos del ADN que codifica para el ARNr, provocan modificaciones en la estructura del nucléolo e inducen envejecimiento prematuro en levaduras. De igual manera, en los humanos la carencia de las helicasas del ADN localizadas en el nucléolo y que participan en el mantenimiento de la integridad genómica, favorecen el desarrollo de aquellas enfermedades asociadas con el envejecimiento acelerado. Además, la presencia de algunos componentes de la telomerasa en el nucléolo, indica que parte de la biosíntesis de esta enzima se realiza en esta estructura nuclear, sugiriendo una conexión entre el nucléolo y la síntesis de los telómeros en la regulación del envejecimiento celular. Por otra parte, el nucléolo secuestra proteínas para regular su actividad biológica durante el inicio o término de la vida replicativa celular.The nucleolus has been considered originally only as the site for the ribosome synthesis, but now it is well known that it represents a dynamic nuclear structure involved in important cellular processes. Several evidences have demonstrated that the nucleolus regulates the cellular senescence. Specific mutations on the DNAs codifying for nucleolar proteins induced premature senescence from yeast to human. The failure to repress the genes transcription

  19. RESEARCH PROGRESS OF CELLULAR SENESCENCE AND SENESCENT SECRETARY PHENOTYPE IN INTERVERTEBRAL DISC DEGENERATION%细胞老化及老化表型改变在椎间盘退行性变中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王锋; 郑陈静美; 吴小涛

    2012-01-01

    Objective To summarize the role of cellular senescence and senescent secretary phenotype in the intervertebral disc (IVD) degeneration. Methods Relevant articles that discussed the roles of cellular senescence in the IVD degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. The senescent phenomenon during IVD degeneration, senescent secretary phenotype of the disc cells, senescent pathways within the IVD microenvironment, as well as the anti-senescent approaches for IVD regeneration were systematically reviewed. Results During aging and degeneration, IVD cells gradually and/or prematurely undergo senescence by activating p53-p21-retinoblastoma (RB) or pl6INK4A-RB senescent pathways. The accumulation of senescent cells not only decreases the self-renewal ability of IVD, but also deteriorates the disc microenvironment by producing more inflammatory cytokines and matrix degrading enzymes. More specific senescent biomarkers are required to fully understand the phenotype change of senescent disc cells during IVD degeneration. Molecular analysis of the senescent disc cells and their intracellular signaling pathways are needed to get a safer and more efficient anti-senescence strategy for IVD regeneration. Conclusion Cellular senescence is an important mechanism by which IVD cells decrease viabil ity and degenerate biological behaviors, which provide a new thinking to understand the pathogenesis of IVD degeneration.%目的 综述细胞老化及老化表型改变在椎间盘退行性变中的研究进展. 方法 查阅椎间盘退行性变领域细胞老化相关的国内外文献并回顾分析,综述椎间盘细胞的老化现象、老化表型改变、老化信号激活与椎间盘退行性变的相互关系,评价抗老化治疗对椎间盘退行性变的修复作用. 结果 随着机体衰老与椎间盘退行性变,椎间盘细胞通过选择性地激活p53-p21-视网膜母细胞瘤(retinoblastoma,RB)或p16INK4A-RB信号

  20. [Effect of epitalon and melatonin on life span and spontaneous carcinogenesis in senescence accelerated mice (SAM)].

    Science.gov (United States)

    Anisimov, V N; Popovich, I G; Zabezhinskiĭ, M A; Rozenfel'd, S V; Khavinson, V Kh; Semenchenko, A V; Iashin, A I

    2005-01-01

    Female senescence accelerated mice SAMP-1. (prone) and SAMR-1 (resistant) were exposed 5 times a week monthly to melatonin (with drinking water 20mg/ml during the night hours) or to s.c. injections of epitalon (Ala-Glu-Asp-Gly) at a single dose 1mkg/mouse. Control mice were intact or exposed to injection of 0.1 ml normal saline. The body weight and temperature, food consumption, estrous function were monitored regularly. The life span and tumor incidence were evaluated as well. As age advanced, the weight increased whereas food consumption and body temperature did not change. There was no significant substrain difference in these parameters. Exposure to melatonin or epitalon also failed to influence those indices. As age advanced, the incidence of irregular estrous cycles increased both in SAMP-1 and SAMR-1, whereas the treatment with both melatonin and epitalon prevented such disturbances. SAMP-1 revealed some features of accelerated aging as compared to SAMR-1. The mean life span of the 10% of the last survivors among treated SAMP-1 was shorter than that of SAMR-1, aging rate increased and mortality doubling time decreased. There was a direct correlation between body mass of the two substrains at the age of 3 and 12 months matched by body mass increase and longer life span. Melatonin or epitalon treatment was followed by longer mean and maximum survival in the 10% of the last survivors among SAMP-1. Melatonin involved decreased aging rate and increased mortality doubling time. Malignant lymphomas predominated in SAM without any significant difference in frequency between the substrains. While melatonin failed to influence tumor incidence or term of detection in SAMP-1, neither did epitalon affect frequency. However, it was followed by longer survival in tumor-free animals. No link between melatonin or epitalon treatment, on the one hand, and carcinogenesis, on the other, was reported in SAMR-1. PMID:15909815

  1. A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns.

    Science.gov (United States)

    Wagstaff, Carol; Bramke, Irene; Breeze, Emily; Thornber, Sarah; Harrison, Elizabeth; Thomas, Brian; Buchanan-Wollaston, Vicky; Stead, Tony; Rogers, Hilary

    2010-06-01

    Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses. PMID:20457576

  2. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle.

    Science.gov (United States)

    Sato, Chisato; Iso, Yoshitaka; Mizukami, Takuya; Otabe, Koji; Sasai, Masahiro; Kurata, Masaaki; Sanbe, Takeyuki; Sekiya, Ichiro; Miyazaki, Akira; Suzuki, Hiroshi

    2016-02-12

    Although muscle wasting and/or degeneration are prevalent in patients with chronic kidney disease, it remains unknown whether FGF-23 influences muscle homeostasis and regeneration. Mesenchymal stem cells (MSCs) in skeletal muscle are distinct from satellite cells and have a known association with muscle degeneration. In this study we sought to investigate the effects of FGF-23 on MSCs isolated from human skeletal muscle in vitro. The MSCs expressed FGF receptors (1 through 4) and angiotensin-II type 1 receptor, but no traces of the Klotho gene were detected. MSCs and satellite cells were treated with FGF-23 and angiotensin-II for 48 h. Treatment with FGF-23 significantly decreased the number of MSCs compared to controls, while treatment with angiotensin-II did not. FGF-23 and angiotensin-II both left the cell counts of the satellite cells unchanged. The FGF-23-treated MSCs exhibited the senescent phenotype, as judged by senescence-associated β-galactosidase assay, cell morphology, and increased expression of p53 and p21 in western blot analysis. FGF-23 also significantly altered the gene expression of oxidative stress regulators in the cells. In conclusion, FGF-23 induced premature senescence in MSCs from skeletal muscle via the p53/p21/oxidative-stress pathway. The interaction between the MSCs and FGF-23 may play a key role in the impaired muscle reparative mechanisms of chronic kidney disease.

  3. Expression of Senescence-Associated microRNAs and Target Genes in Cellular Aging and Modulation by Tocotrienol-Rich Fraction

    Directory of Open Access Journals (Sweden)

    Sharon Gwee Sian Khee

    2014-01-01

    Full Text Available Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a and established target genes of miR-34a (CCND1, CDK4, and SIRT1 during replicative senescence of human diploid fibroblasts (HDFs. Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5 mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P<0.05. TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P<0.05. TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression.

  4. Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice.

    Science.gov (United States)

    Matsugo, S; Kitagawa, T; Minami, S; Esashi, Y; Oomura, Y; Tokumaru, S; Kojo, S; Matsushima, K; Sasaki, K

    2000-01-01

    The tissue concentration of lipid peroxides was determined in the brain, heart, liver, lung and kidney of accelerated senescence-prone (SAMP-8) and -resistant (SAMR-1) mice at 3, 6 and 9 months of age by a method involving chemical derivatization and high performance liquid chromatography. The level of lipid peroxides in the brain did not show an age-dependent change, but at each age the brain level of lipid peroxides was significantly higher in SAMP-8 than in SAMR-1. In contrast, the lipid peroxide levels in the peripheral organs showed increases with aging in both strains, and they were significantly higher in SAMP-8 than in SAMR-1 at both 3 and 6 months of age (except at 3 months of age in the kidney). These results suggest that increased oxidative stress in the brain and peripheral organs is a cause of the senescence-related degeneration and impairments seen in SAMP-8. PMID:10643812

  5. Beneficial effects of asiaticoside on cognitive deficits in senescence-accelerated mice.

    Science.gov (United States)

    Lin, Xing; Huang, Renbin; Zhang, Shijun; Wei, Ling; Zhuo, Lang; Wu, Xiaoyan; Tang, Aicun; Huang, Quanfang

    2013-06-01

    The effect of asiaticoside isolated from Hydrocotyle sibthorpioides (AHS) on the promotion of cognition in senescence-accelerated mice (SAMP) was evaluated. Six-month old male SAMP8 mice were orally administered 20, 40 or 80 mg/kg AHS daily for three months. SAMR1 mice were used as a "normal aging" control. The results showed that treatment with AHS significantly improved learning and memory abilities in behavioral tests. AHS-treated mice showed higher antioxidant enzyme activity and lower lipid oxidation in serum compared with untreated SAMP8 mice. Mechanistically, studies showed that AHS markedly reduced the content and deposition of β-amyloid peptide (Aβ) by inhibiting the expression of mRNA for amyloid protein precursor, β-site amyloid cleaving enzyme-1 and cathepsin B and promoting the expression of mRNA for neprilysin and insulin degrading enzyme. In addition, AHS significantly increased the expression of plasticity-related proteins including postsynaptic density-95, phosphor-N-methyl-D-aspartate receptor 1, phospho-calcium-calmodulin dependent kinase II, phospho-protein kinase A Catalyticβ subunit, protein kinase Cγ subunit, phospho-CREB and brain derived neurotrophic factor. Furthermore, AHS increased the levels of acetylcholine (Ach), but decreased cholinesterase (AchE) activity. These results demonstrated that AHS administration may prevent spatial learning and memory decline by scavenging free radicals, up-regulating the activity of antioxidant enzymes, decreasing the level of Aβ, ameliorating dysfunction in synaptic plasticity, and reversing abnormal changes in Ach level and AchE activity. Thus, AHS should be developed as a new drug to prevent age-related cognitive deficits.

  6. Enhanced experimental tumor metastasis with age in senescence-accelerated mouse

    International Nuclear Information System (INIS)

    Tumor metastasis is affected by the host immune surveillance system. Since aging may attenuate the host immune potential, the experimental tumor metastasis may be enhanced with age. In the present study, we investigated this alteration of experimental tumor metastasis with age. We used senescence-accelerated mice prone 10 (SAMP10) as a model of aged animals. Natural killer cell (NK) activity, as an indicator of immune surveillance potential, in 8-month-old (aged) SAMP10 mice was observed to be much lower than that in 2-month-old (young) mice. When we examined the in vivo trafficking of lung-metastatic K1735M2 melanoma cells in SAMP10 with positron emission tomography (PET), K1735M2 cells labeled with [2-18F]2-deoxy-2-fluoro-D-glucose ([18F]FDG) were observed in both young and aged SAMP10 just after injection of the cells, whereas the clearance of 18F from the lungs was retarded in aged animals. The accumulation of 5-[125I]iodo-2'-deoxyuridine ([125I]IUdR)-labeled K1735M2 cells in the lungs of SAMP10 at 24 h after injection was significantly higher in aged mice. Corresponding to these results, the number of metastatic colonies in the lung was larger in the aged SAMP10 of the experimental tumor metastasis model. The present study demonstrated that the aging process produced a susceptible environment allowing the tumor cells to metastasize due to decrease in the host immune surveillance potential with age. (author)

  7. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    International Nuclear Information System (INIS)

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation

  8. A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns

    OpenAIRE

    Wagstaff, Carol; Bramke, I.; Breeze, E.; Thornber, S.; Harrison, E; Thomas, B.; Buchanan-Wollaston, V.; Stead, T.; Rogers, H.

    2010-01-01

    Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are r...

  9. Long-term wheel running changes on sensorimotor activity and skeletal muscle in male and female mice of accelerated senescence.

    Science.gov (United States)

    Sanchez-Roige, Sandra; Lalanza, Jaume F; Alvarez-López, María Jesús; Cosín-Tomás, Marta; Griñan-Ferré, Christian; Pallàs, Merce; Kaliman, Perla; Escorihuela, Rosa M

    2014-01-01

    The senescence-accelerated mouse prone 8 (SAMP8) is considered a useful non-transgenic model for studying aspects of aging. Using SAM resistant 1 (SAMR1) as controls, the long-term effects of wheel running on skeletal muscle adaptations and behavioral traits were evaluated in senescent (P8) and resistant (R1) male and female mice. Long-term wheel running (WR) led to increases in locomotor activity, benefits in sensorimotor function, and changes in body weight in a gender-dependent manner. WR increased body weight and baseline levels of locomotor activity in female mice and improved balance and strength in male mice, compared to sedentary-control mice. WR resulted in key metabolic adaptations in skeletal muscle, associated with an increased activity of the sirtuin 1-AMP-activated protein kinase (AMPK)-PGC-1 alpha axis and changes in vascular endothelial growth factor A (Vegfa), glucose transporter type 4 (Glut4), and Cluster of Differentiation 36 (Cd36) gene expression. Overall, our data indicate that activity, balance, and strength decrease with age and that long-term WR may significantly improve the motor function in a mouse model of senescence in a gender-dependent manner. PMID:25129573

  10. Neurobiological and pharmacological validity of curcumin in ameliorating memory performance of senescence-accelerated mice.

    Science.gov (United States)

    Sun, Chen Y; Qi, Shuang S; Zhou, Peng; Cui, Huai R; Chen, Shi X; Dai, Kai Y; Tang, Mao L

    2013-04-01

    The senescence-accelerated mouse prone 8 (SAMP8 mice) is known as a neurodegenerative model and may show age-related deficits of cognition. Curcumin, a major active component of spic turmeric, could increase the capacity of learning and memory in the aged rat. However, it is not known whether curcumin could improve cognitive deficits in SAMP8 mice. The present study was undertaken to evaluate the effect of curcumin on the learning and memory of SAMP8 mice and its possible mechanisms. Subjects were randomly divided into four groups: SAMR1 mice, SAMP8 mice and two SAMP8 mice groups treated, intragastrically, with curcumin at the dose of 20 and 50mg/kg per day, respectively. After 25days, spatial memory, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, p-calcium/calmodulin-dependent kinase II (p-CaMKII) and p-N-methyl-d-aspartate receptor subunit 1 (p-NMDAR1) expression in the hippocampus of mice were examined by using the Morris water maze, biochemical analysis, immunohistochemistry and Western blot. Compared with SAMR1 mice, SAMP8 mice had longer escape latency, higher MDA content, lower SOD activity in the hippocampus, and lower intensity of p-CaMKII in the stratum lucidum of hippocampal CA3 and p-NMDAR1 expression in the hippocampal membrane fraction. Both 20 and 50mg/kg curcumin administration significantly shortened the escape latencies and decreased the hippocampal MDA content in the SAMP8 mice. 50mg/kg curcumin administration significantly ameliorated the hippocampal SOD activity, and increased the intensity of p-CaMKII in the stratum lucidum of hippocampal CA3 and p-NMDAR1 expression in the hippocampal membrane fraction of the SAMP8 mice. The present study demonstrated that curcumin treatment could attenuate cognitive deficits of SAMP8 mice in a dose-dependent manner by decreasing the oxidative stress and improving the expression of p-CaMKII and p-NMDAR1 in the hippocampus. Thus treatment with curcumin may have a potential therapeutic agent

  11. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway.

    Science.gov (United States)

    Xu, Xinsen; Chen, Wei; Miao, Runchen; Zhou, Yanyan; Wang, Zhixin; Zhang, Lingqiang; Wan, Yong; Dong, Yafeng; Qu, Kai; Liu, Chang

    2015-02-28

    Increasing evidence suggests that miRNAs can act as either tumor suppressors or oncogenes in carcinogenesis. In the present study, we identified the role of miR-34a in regulating telomerase activity, with subsequent effect on cellular senescence and viability. We found the higher expression of miR-34a was significantly correlated with the advanced clinicopathologic parameters in hepatocellular carcinoma. Furthermore, tumor tissues of 75 HCC patients demonstrated an inverse correlation between the miR-34a level and telomere indices (telomere length and telomerase activity). Transient introduction of miR-34a into HCC cell lines inhibited the telomerase activity and telomere length, which induced senescence-like phenotypes and affected cellular viability. We discovered that miR-34a potently targeted c-Myc and FoxM1, both of which were involved in the activation of telomerase reverse transcriptase (hTERT) transcription, essential for the sustaining activity of telomerase to avoid senescence. Taken together, our results demonstrate that miR-34a functions as a potent tumor suppressor through the modulation of telomere pathway in cellular senescence. PMID:25686834

  12. Photobiomodulation on senescence

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  13. Induction of cellular senescence by doxorubicin is associated with upregulated miR-375 and induction of autophagy in K562 cells.

    Directory of Open Access Journals (Sweden)

    Ming-Yu Yang

    Full Text Available BACKGROUND: Cellular senescence is a specialized form of growth arrest that is generally irreversible. Upregulated p16, p53, and p21 expression and silencing of E2F target genes have been characterized to promote the establishment of senescence. It can be further aided by the transcriptional repression of proliferation-associated genes by the action of HP1γ, HMGA, and DNMT proteins to produce a repressive chromatin environment. Therefore, senescence has been suggested to functions as a natural brake for tumor development and plays a critical role in tumor suppression and aging. METHODOLOGY/PRINCIPAL FINDINGS: An in vitro senescence model has been established by using K562 cells treated with 50 nM doxorubicin (DOX. Since p53 and p16 are homozygously deleted in the K562 cells, the DOX-induced senescence in K562 cells ought to be independent of p53 and p16-pRb pathways. Indeed, no change in the expression of the typical senescence-associated premalignant cell markers in the DOX-induced senescent K562 cells was found. MicroRNA profiling revealed upregulated miR-375 in DOX-induced senescent K562 cells. Treatment with miR-375 inhibitor was able to reverse the proliferation ability suppressed by DOX (p<0.05 and overexpression of miR-375 suppressed the normal proliferation of K562 cells. Upregulated miR-375 expression was associated with downregulated expression of 14-3-3zeta and SP1 genes. Autophagy was also investigated since DOX treatment was able to induce cells entering senescence and eventually lead to cell death. Among the 24 human autophagy-related genes examined, a 12-fold increase of ATG9B at day 4 and a 20-fold increase of ATG18 at day 2 after DOX treatment were noted. CONCLUSIONS/SIGNIFICANCE: This study has demonstrated that in the absence of p53 and p16, the induction of senescence by DOX was associated with upregulation of miR-375 and autophagy initiation. The anti-proliferative function of miR-375 is possibly exerted, at least in part

  14. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis

    DEFF Research Database (Denmark)

    Tran, Phuoc T; Shroff, Emelyn H; Burns, Timothy F;

    2012-01-01

    the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently......KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer...... mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor...

  15. Androgen Receptor Accelerates Premature Senescence of Human Dermal Papilla Cells in Association with DNA Damage

    OpenAIRE

    Yi-Chien Yang; Hung-Chun Fu; Ching-Yuan Wu; Kuo-Ting Wei; Ko-En Huang; Hong-Yo Kang

    2013-01-01

    The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16(INK4a), and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature...

  16. Androgen Receptor Accelerates Premature Senescence of Human Dermal Papilla Cells in Association with DNA Damage

    OpenAIRE

    Yang, Yi-Chien; Fu, Hung-Chun; Wu, Ching-Yuan; Wei, Kuo-Ting; Huang, Ko-En; Kang, Hong-Yo

    2013-01-01

    The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16 INK4a , and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature...

  17. Protease activated receptor-1 regulates macrophage-mediated cellular senescence : a risk for idiopathic pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; Rezaee, Farhad; Waasdorp, Maaike; Shi, Kun; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive disease in part resulting from premature or mature cellular aging. Protease-activated receptor-1 (PAR-1) recently emerged as a critical component in the context of fibrotic lung diseases. Therefore, we aimed to study the role of macrophages in PAR

  18. Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium.

    Science.gov (United States)

    Dong, Xian; Xiong, Yinfeng; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2014-04-01

    Fusarium oxysporum f.sp. cubense (FOC) is a causal agent of vascular wilt and leaf chlorosis of banana plants. Chloroses resulting from FOC occur first in the lowest leaves of banana seedlings and gradually progress upward. To investigate the responses of different leaf positions to FOC infection, hydroponic experiments with FOC inoculation were conducted in a greenhouse. Fusarium-infected seedlings exhibited a decrease in net photosynthesis rate, stomatal conductance, and transpiration rate of all leaves. The wilting process in Fusarium-infected seedlings varied with leaf position. Measurements of the maximum photochemical efficiency of photosystem II (F(V)/F(max) and visualization with transmission electron microscopy showed a positive correlation between chloroplast impairment and severity of disease symptoms. Furthermore, results of malondialdehyde content and relative membrane conductivity measurements demonstrated that the membrane system was damaged in infected leaves. Additionally, the activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were increased and total soluble phenolic compounds were significantly accumulated in the leaves of infected plants. The structural and biochemical changes of infected plants was consistent with plant senescence. As the FOC was not detected in infected leaves, we proposed that the chloroplast and membrane could be damaged by fusaric acid produced by Fusarium. During the infection, fusaric acid was first accumulated in the lower leaves and water-soluble substances in the lower leaves could dramatically enhance fusaric acid production. Taken together, the senescence of infected banana plants was induced by Fusarium infection with fusaric acid production and the composition of different leaf positions largely contribute to the particular senescence process.

  19. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway

    OpenAIRE

    Xu, Xinsen; Chen, Wei; Miao, Runchen; Zhou, Yanyan; Wang, Zhixin; Zhang, Lingqiang; Wan, Yong; Dong, Yafeng; Qu, Kai; Liu, Chang

    2015-01-01

    Increasing evidence suggests that miRNAs can act as either tumor suppressors or oncogenes in carcinogenesis. In the present study, we identified the role of miR-34a in regulating telomerase activity, with subsequent effect on cellular senescence and viability. We found the higher expression of miR-34a was significantly correlated with the advanced clinicopathologic parameters in hepatocellular carcinoma. Furthermore, tumor tissues of 75 HCC patients demonstrated an inverse correlation between...

  20. Assessment of social interaction and anxiety-like behavior in senescence-accelerated-prone and -resistant mice.

    Science.gov (United States)

    Meeker, Harry C; Chadman, Kathryn K; Heaney, Agnes T; Carp, Richard I

    2013-06-13

    Two members of the senescence-accelerated mouse group, SAMP8 and SAMP10, are characterized by learning and memory deficits, while the SAMR1 strain is not. In this study, we used two behavioral tests, social approach and object recognition and compared the results observed for the SAMP strains with those seen in the control strain, SAMR1. In social approach experiments, the 2 SAMP strains showed decreased sociability compared to SAMR1 as shown by their reluctance to spend time near a stranger mouse and increased immobility. In object recognition experiments, SAMP strains spent more time in the thigmotaxis zone and less time in the more exposed central zone than SAMR1 mice. From a behavioral standpoint, SAMP mice were less interactive and showed increased anxiety-like behavior compared to SAMR1. PMID:23672852

  1. Icariin and differential protein expression in the entorhinal area of senescence-accelerated mouse prone 8 mice

    Institute of Scientific and Technical Information of China (English)

    Ting Zhang; Zhanwei Zhang; Keli Dong; Guangcheng Li; Hong Zhu

    2011-01-01

    The present study sought to explore the mechanism of action by which icariin, an active component of Epimedii Herba, treats Alzheimer's disease at the proteomics level. Two-dimensional gel electrophoresis was used to isolate total protein from the entorhinal cortex of senescence-accelerated mouse prone 8 (SAMP8) mice, and differential protein spots were obtained. Corresponding peptide mass fingerprinting was conducted through mass spectrography to identify differential protein spots. Twenty-six differential protein spots were found in the entorhinal area of SAMP8 mice at 8 weeks following intragastric perfusion with icariin and double distilled water. Fourteen spots were identified, which were involved in mitochondrial energy metabolism, oxidative stress, and neuronal function. The results revealed that icariin can regulate the expression of various proteins in the entorhinal cortex of SAMP8 mice, and treat Alzheimer's disease by improving mitochondrial function, suppressing oxidative stress, inhibiting neuracell apoptosis, and protecting neurons.

  2. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model.

    Science.gov (United States)

    Puig, Ángela; Rancan, Lisa; Paredes, Sergio D; Carrasco, Adrián; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2016-03-01

    Aging is associated with an increase in oxidative stress and inflammation. The aging lung is particularly affected since it is continuously exposed to environmental oxidants while antioxidant machinery weakens with age. Melatonin, a free radical scavenger, counteracts inflammation and apoptosis in healthy cells from several tissues. Its effects on the aging lung are, however, not yet fully understood. This study aimed to investigate the effect of chronic administration of melatonin on the expression of inflammation markers (TNF-α, IL-1β, NFκB2, HO-1) and apoptosis parameters (BAD, BAX, AIF) in the lung tissue of male senescence-accelerated prone mice (SAMP8). In addition, RNA oxidative damage, as the formation of 8-hydroxyguanosine (8-OHG), was also evaluated. Young and old animals, aged 2 and 10 months respectively, were divided into 4 groups: untreated young, untreated old, old mice treated with 1mg/kg/day melatonin, and old animals treated with 10mg/kg/day melatonin. Untreated young and old male senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed. Lungs were collected and immediately frozen in liquid nitrogen. mRNA and protein expressions were measured by RT-PCR and Western blotting, respectively. Levels of 8-OHG were quantified by ELISA. Mean values were analyzed using ANOVA. Old nontreated SAMP8 animals showed increased (paging-derived inflammation (paging, the effect being counteracted with melatonin (pAging also caused a significant elevation (panimals treated with melatonin (paging lungs, exerting a protective effect on age-induced damage. PMID:26656745

  3. PML, SUMOylation and senescence

    Directory of Open Access Journals (Sweden)

    Hugues eDe Thé

    2013-07-01

    Full Text Available Since its discovery, 25 years ago, PML has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation... there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence and SUMOylation, notably in the context of cellular transformation.

  4. Absolute leukocyte telomere length in HIV-infected and uninfected individuals: evidence of accelerated cell senescence in HIV-associated chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Joseph C Y Liu

    Full Text Available Combination antiretroviral therapy (cART has extended the longevity of human immunodeficiency virus (HIV-infected individuals. However, this has resulted in greater awareness of age-associated diseases such as chronic obstructive pulmonary disease (COPD. Accelerated cellular senescence may be responsible, but its magnitude as measured by leukocyte telomere length is unknown and its relationship to HIV-associated COPD has not yet been established. We measured absolute telomere length (aTL in peripheral leukocytes from 231 HIV-infected adults. Comparisons were made to 691 HIV-uninfected individuals from a population-based sample. Subject quartiles of aTL were assessed for relationships with measures of HIV disease severity, airflow obstruction, and emphysema severity on computed tomographic (CT imaging. Multivariable regression models identified factors associated with shortened aTL. Compared to HIV-uninfected subjects, the mean aTL in HIV-infected patients was markedly shorter by 27 kbp/genome (p<0.001; however, the slopes of aTL vs. age were not different (p=0.469. Patients with longer known durations of HIV infection (p=0.019 and lower nadir CD4 cell counts (p=0.023 had shorter aTL. Shorter aTL were also associated with older age (p=0.026, smoking (p=0.005, reduced forced expiratory volume in one second (p=0.030, and worse CT emphysema severity score (p=0.049. HIV-infected subjects demonstrate advanced cellular aging, yet in a cART-treated cohort, the relationship between aTL and age appears no different from that of HIV-uninfected subjects.

  5. Differences in saccharin preference and genetic alterations of the Tas1r3 gene among senescence-accelerated mouse strains and their parental AKR/J strain.

    Science.gov (United States)

    Niimi, Kimie; Takahashi, Eiki

    2014-05-10

    The senescence-accelerated mouse (SAM) is used as an animal model of senescence acceleration and age-associated disorders. SAM is derived from unexpected crosses between the AKR/J and unknown mouse strains. There are nine senescence-prone (SAMP) strains and three senescence-resistant (SAMR) strains. Although SAMP strains exhibit strain-specific and age-related pathological changes, the genes responsible for the pathologic changes in SAMP strains have not been comprehensively identified. In the present study, we evaluated sweet taste perception using the two-bottle test. We compared genotypes of the taste related gene, Tas1r3, using SAM strains and the parental AKR/J strain. The two-bottle test revealed that SAMR1 (R1), SAMP6 (P6), SAMP8 (P8), and SAMP10 (P10) mice were saccharin-preferring strains, whereas AKR/J did not prefer saccharin. All genotypes of the R1, P6, P8, and P10 strains at the polymorphic sites in Tas1r3, which is known to influence saccharin preference, were identical to those of C57BL6/J, a well-known saccharin-preferring strain, and were completely different from those of the parental AKR/J strain. These genetic alterations in SAM strains appear to arise from an unknown strain that is thought to have been crossed with AKR/J initially. PMID:24726396

  6. Spontaneous and artificial lesions of magnocellular reticular formation of brainstem deteriorate avoidance learning in senescence-accelerated mouse SAM.

    Science.gov (United States)

    Yagi, H; Akiguchi, I; Ohta, A; Yagi, N; Hosokawa, M; Takeda, T

    1998-04-27

    The role of the magnocellular reticular formation (MGRF) of the brainstem on learning and memory was examined in memory-deficient mice with spontaneous spongy degeneration in the brainstem (senescence-accelerated mouse, SAMP8) and control mice (accelerated-senescence resistant mouse, SAMR 1). SAMP8 showed spontaneous age-related impairment of learning and memory, as determined by passive and active avoidance responses. The deficits of learning and memory function in passive avoidance performances began at two months of age and increased with ageing. In the brains of SAMP8 at one month of age and older, spongy degeneration was mainly observed in the brainstem, while no vacuoles were evident in SAMR1 control (normal ageing mouse) brains in the age range tested (up to 12 months). The vacuolization in SAMP8 was marked in the MGRF, especially in the dorsomedial MGRF. Quantitative analysis of the vacuolization showed that the total area and number of vacuoles in the MGRF increased with age, and they were affected by the degree of deficits in learning and memory. The latency 24 h after footshock in passive avoidance tests decreased with the increase in total area and number of vacuoles in MGRF. The number of shocks in active avoidance tests increased with the increase in total number and area of vacuoles. Thus, learning and memory ability in passive and active avoidance responses deteriorated with enlargement in the vacuolated area in MGRF, and it was assumed that MGRF (especially, the dorsomedial part) possesses functions related to learning and memory. To confirm this notion, behavior and memory tests (passive avoidance and active avoidance tests, open field tests and shock sensitivity measurements) were carried out in SAMR1 mice, whose bilateral dorsomedial MGRF was destroyed electrolytically (MGRF-lesioned mice). The MGRF-lesioned mice showed no difference from sham mice in sensory threshold or open field activity; however, there was severe deterioration in passive

  7. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  8. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice. PMID:24660475

  9. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Science.gov (United States)

    Nakano, Hiroki; Mizuno, Nobuyuki; Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  10. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Hiroki Nakano

    Full Text Available Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.

  11. Tissue Depletion of Taurine Accelerates Skeletal Muscle Senescence and Leads to Early Death in Mice

    OpenAIRE

    Takashi Ito; Natsumi Yoshikawa; Takaaki Inui; Natsuko Miyazaki; Schaffer, Stephen W.; Junichi Azuma

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates agin...

  12. Depressive behavior and alterations in receptors for dopamine and 5-hydroxytryptamine in the brain of the senescence accelerated mouse (SAM)-P10.

    Science.gov (United States)

    Onodera, T; Watanabe, R; Tha, K K; Hayashi, Y; Murayama, T; Okuma, Y; Ono, C; Oketani, Y; Hosokawa, M; Nomura, Y

    2000-08-01

    The senescence accelerated mouse (SAM) is known as a murine model of aging. SAM consists of senescence accelerated-prone mouse (SAMP) and senescence accelerated-resistant mouse (SAMR). Previous studies reported that SAMP10 exhibits age-related learning impairments and behavioral depression in a tail suspension test after 7 months. We investigated the changes in emotional behavior in a forced swimming test and in receptors for dopamine and 5-hydroxytryptamine (5-HT) in SAMP10. SAMP10 at 8 months showed an increase of immobility in the test compared with SAMR1. Treatment with desipramine (25 mg/kg, i.p., 3 days) in SAMP10 caused a decrease in immobility. In the cortex from SAMP10, [3H]quinpirole binding to D2/D3 dopamine receptors increased significantly compared with control SAMR1. In the hippocampus from SAMP10, [3H]8-hydroxy DPAT binding to 5-HT1A receptor increased. In midbrains from SAMP10, bindings of [3H]quinpirole and [3H]8-hydroxy DPAT increased. [3H]SCH23390 binding to D1/D5 receptors and [3H]ketanserin binding to 5-HT2 receptor in brain regions examined in SAMP10 were similar to those in SAMR1. The present findings represent the first neurochemical evidence of an increase of D2/D3 and 5-HT1A receptors in SAMP10. SAMP10 may be a useful model of aging associated depressive behavior. PMID:11001177

  13. Evidence that glucose metabolism is decreased in the cerebrum of aged female senescence-accelerated mouse; possible involvement of a low hexokinase activity.

    Science.gov (United States)

    Kurokawa, T; Sato, E; Inoue, A; Ishibashi, S

    1996-08-16

    d-Glucose metabolism in cerebral cells prepared from aged senescence-accelerated mouse (SAM), was investigated in consideration of a sex difference. The production of 14CO2 from 6-[14C]D-glucose was reduced in female senescence-accelerated-prone mouse (SAMP) 8, a prone substrain, in comparison with that in female senescence-accelerated-resistant mouse (SAMR) 2, a control substrain, whereas there was no difference in males. The 2-deoxy-D-glucose uptake into cerebral cells from female SAMP8 was also lower than that of control mice. But, the 3-O-methyl-D-glucose uptake in SAMP8 was higher than that of SAMR2, suggesting that the low hexokinase activity was involved in the decreased glucose metabolism in cerebrum of SAMP8 females irrespective of glucose transporter. This possibility was supported by the finding that the contents of glucose 6-phosphate produced from glucose added to cerebral cells from SAMP8 was lower than that in ICR mice. PMID:8873128

  14. Cyanidin-3-O-galactoside and Blueberry Extracts Supplementation Improves Spatial Memory and Regulates Hippocampal ERK Expression in Senescence-accelerated Mice

    Institute of Scientific and Technical Information of China (English)

    TAN Long; YANG Hong Peng; PANG Wei; LU Hao; HU Yan Dan; LI Jing; LU Shi Jun; ZHANG Wan Qi; JIANG Yu Gang

    2014-01-01

    Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. Methods 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg·bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg·bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Results Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Conclusion Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects.

  15. Cell death in the Purkinje cells of the cerebellum of senescence accelerated mouse (SAMP(8)).

    Science.gov (United States)

    Zhu, Yonghong; Lee, Cleo C L; Lam, W P; Wai, Maria S M; Rudd, John A; Yew, David T

    2007-10-01

    The cerebella of SAMP(8) (accelerated aging mouse) and SAMR(1) controls were analyzed by Western Blotting of tyrosine hydroxylase and choline acetyltransferase, as well as by TUNEL and histological silver staining. Both tyrosine hydroxylase and choline acetyltransferase levels were higher in SAMR(1) than in SAMP(8). There was also an age-related decrease in enzyme levels in SAMP(8), with the reduction of tyrosine hydroxylase being more apparent. Concomitantly, there was an age-related increase of apoptosis in the medial neocerebellum and the vermis as revealed by TUNEL, with changes being significant in the SAMP(8) strain. Histologically, some Purkinje cells appeared to disappear during aging. Taken together, the data suggests that the aging SAMP(8) strain displays differential Purkinje cell death in the medial cerebellum and that some of the dying cells are likely to be catecholaminergic. PMID:17415677

  16. Effect of epithalon on the incidence of chromosome aberrations in senescence-accelerated mice.

    Science.gov (United States)

    Rosenfeld, S V; Togo, E F; Mikheev, V S; Popovich, I G; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    The incidence of chromosome aberrations in bone marrow cells of 12-month-old SAMP-1 female mice characterized by accelerated aging was 1.8 times higher than in wild-type SAMR-1 females and 2.2 times higher than in SHR females of the same age. Treatment with Epithalon (Ala-Glu-Asp-Gly) starting from the age of 2 months decreased the incidence of chromosome aberrations in SAMP-1, SAMR-1, and SHR mice by 20%, 30.1%, and 17.9%, respectively, compared to age-matched controls (p<0.05). Treatment with melatonin (given with drinking water in a dose of 20 mg/liter in night hours) had no effect on the incidence of chromosome aberrations in SHR mice. These data indicate antimutagenic effect of Epithalon, which probably underlies the geroprotective effect of this peptide. PMID:12360351

  17. Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis

    OpenAIRE

    Liu, Fang(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China); Guo, Fang-Qing

    2013-01-01

    Nitric oxide (NO) has been known to preserve the level of chlorophyll (Chl) during leaf senescence. However, the mechanism by which NO regulates Chl breakdown remains unknown. Here we report that NO negatively regulates the activities of Chl catabolic enzymes during dark-induced leaf senescence. The transcriptional levels of the major enzyme genes involving Chl breakdown pathway except for RED CHL CATABOLITE REDUCTASE (RCCR) were dramatically up-regulated during dark-induced Chl degradation i...

  18. Accelerating cellular automata simulations using AVX and CUDA

    CERN Document Server

    Szkoda, Sebastian; Tykierko, Mateusz

    2012-01-01

    We investigated various methods of parallelization of the Frish-Hasslacher-Pomeau (FHP) cellular automata algorithm for modeling fluid flow. These methods include SSE, AVX, and POSIX Threads for central processing units (CPUs) and CUDA for graphics processing units (GPUs). We present implementation details of the FHP algorithm based on AVX/SSE and CUDA technologies. We found that (a) using AVX or SSE is necessary to fully utilize the potential of modern CPUs; (b) CPUs and GPUs are comparable in terms of computational and economic efficiency only if the CPU code uses AVX or SSE instructions; (c) AVX does not offer any substantial improvement relative to SSE.

  19. Evolution of plant senescence

    Directory of Open Access Journals (Sweden)

    Young Mike

    2009-07-01

    characteristics of senescence-related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts.

  20. Alpha fucosidase and beta galactosidase in serum of a Lyme disease patients as a possible marker of accelerated senescence — a preliminary study

    Directory of Open Access Journals (Sweden)

    Anna Wasiluk

    2012-07-01

    Full Text Available Lyme disease (LD is the most prevalent tick-borne disease in Europe. LD is caused by the spirochete Borrelia burgdorferi. LD is a chronic disease which can attack a number of organs: skin, heart, brain, joints. Chronic, low-grade inflammation involves general production of pro-inflammatory cytokines and inflammatory markers and is a typical feature of aging. So far, the best method of diagnosing LD is a time-consuming and expensive two-stage serological method. The aim of our study was to evaluate the activity of two lysosomal exoglycosidases: α-fucosidase (FUC and β-galactosidase (GAL in the serum of patients with Lyme disease, as potential markers of LD. Due to the increasing number of patients with Lyme disease and a number of false results, new ways to diagnose this disease are still being sought. As elevated level of β-galactosidase is a manifestation of residual lysosomal activity in senescent cells, the increase in its activity in serum during chronic Lyme disease might be a marker of a potentially accelerated senescence process. The study was performed on serum taken from cubital veins of 15 patients with Lyme disease and eight healthy subjects (control group. FUC and GAL activity was measured by the method of Chatterjee et al. as modified by Zwierz et al. In the serum of patients with Lyme disease, GAL activity significantly increased (p = 0.029, and the activity of FUC had a tendency to increase (p = 0.153, compared to the control group. A significant increase in GAL activity in the serum of patients with Lyme disease indicates an increased catabolism of glycoconjugates (glycoproteins, glycolipids, proteoglycans and could be helpful in the diagnosis of Lyme disease, although this requires confirmation in a larger group of patients. As GAL is the most widely used assay for detection of senescent cells, an elevated level of β-galactosidase might be a manifestation of accelerated senescence process in the course of Lyme

  1. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway.

    Science.gov (United States)

    Binet, Romuald; Ythier, Damien; Robles, Ana I; Collado, Manuel; Larrieu, Delphine; Fonti, Claire; Brambilla, Elisabeth; Brambilla, Christian; Serrano, Manuel; Harris, Curtis C; Pedeux, Rémy

    2009-12-15

    Senescence is a tumor suppression mechanism that is induced by several stimuli, including oncogenic signaling and telomere shortening, and controlled by the p53/p21(WAF1) signaling pathway. Recently, a critical role for secreted factors has emerged, suggesting that extracellular signals are necessary for the onset and maintenance of senescence. Conversely, factors secreted by senescent cells may promote tumor growth. By using expression profiling techniques, we searched for secreted factors that were overexpressed in fibroblasts undergoing replicative senescence. We identified WNT16B, a member of the WNT family of secreted proteins. We found that WNT16B is overexpressed in cells undergoing stress-induced premature senescence and oncogene-induced senescence in both MRC5 cell line and the in vivo murine model of K-Ras(V12)-induced senescence. By small interfering RNA experiments, we observed that both p53 and WNT16B are necessary for the onset of replicative senescence. WNT16B expression is required for the full transcriptional activation of p21(WAF1). Moreover, WNT16B regulates activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overall, we identified WNT16B as a new marker of senescence that regulates p53 activity and the PI3K/AKT pathway and is necessary for the onset of replicative senescence.

  2. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence.

    Science.gov (United States)

    Rane, Sushil G; Cosenza, Stephen C; Mettus, Richard V; Reddy, E Premkumar

    2002-01-01

    Mutations in CDK4 and its key kinase inhibitor p16(INK4a) have been implicated in the genesis and progression of familial human melanoma. The importance of the CDK4 locus in human cancer first became evident following the identification of a germ line CDK4-Arg24Cys (R24C) mutation, which abolishes the ability of CDK4 to bind to p16(INK4a). To determine the role of the Cdk4(R24C) germ line mutation in the genesis of other cancer types, we introduced the R24C mutation in the Cdk4 locus of mice by using Cre-loxP-mediated "knock-in" technology. Cdk4(R24C/R24C) mouse embryo fibroblasts (MEFs) displayed increased Cdk4 kinase activity resulting in hyperphosphorylation of all three members of the Rb family, pRb, p107, and p130. MEFs derived from Cdk4(R24C/R24C) mice displayed decreased doubling times, escape from replicative senescence, and escape sensitivity to contact-induced growth arrest. These MEFs also exhibited a high degree of susceptibility to oncogene-induced transformation, suggesting that the Cdk4(R24C) mutation can serve as a primary event in the progression towards a fully transformed phenotype. In agreement with the in vitro data, homozygous Cdk4(R24C/R24C) mice developed tumors of various etiology within 8 to 10 months of their life span. The majority of these tumors were found in the pancreas, pituitary, brain, mammary tissue, and skin. In addition, Cdk4(R24C/R24C) mice showed extraordinary susceptibility to carcinogens and developed papillomas within the first 8 to 10 weeks following cutaneous application of the carcinogens 9,10-di-methyl-1,2-benz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). This report formally establishes that the activation of Cdk4 is sufficient to promote cancer in many tissues. The observation that a wide variety of tumors develop in mice harboring the Cdk4(R24C) mutation offers a genetic proof that Cdk4 activation may constitute a central event in the genesis of many types of cancers in addition to melanoma.

  3. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Paik, Sang Gi [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of); Cho, Eun Wie, E-mail: ewcho@kribb.re.kr [Daejeon-KRIBB-FHCRC Cooperation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-09-10

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  4. Particle acceleration in a complex solar active region modelled by a Cellular automata model

    Science.gov (United States)

    Dauphin, C.; Vilmer, N.; Anastasiadis, A.

    2004-12-01

    The models of cellular automat allowed to reproduce successfully several statistical properties of the solar flares. We use a cellular automat model based on the concept of self-organised critical system to model the evolution of the magnetic energy released in an eruptive active area. Each burst of magnetic energy released is assimilated to a process of magnetic reconnection. We will thus generate several current layers (RCS) where the particles are accelerated by a direct electric field. We calculate the energy gain of the particles (ions and electrons) for various types of magnetic configuration. We calculate the distribution function of the kinetic energy of the particles after their interactions with a given number of RCS for each type of configurations. We show that the relative efficiency of the acceleration of the electrons and the ions depends on the selected configuration.

  5. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging

    OpenAIRE

    Adams, Peter D

    2007-01-01

    Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews ou...

  6. Senescence and cancer: An evolving inflammatory paradox.

    Science.gov (United States)

    Ruhland, Megan K; Coussens, Lisa M; Stewart, Sheila A

    2016-01-01

    The senescent phenotype was first described in 1961 as a phenomenon characterized by the cessation of cellular division. After years of debate as to whether it represented a tissue culture artifact or an important biological process, it is now appreciated that senescence plays an important role in tumorigenesis. Further, senescence is integral to normal biological processes such as embryogenesis and the maintenance of tissue homeostasis. Now with defined roles in development, wound healing, tumor promotion and tumor suppression, it is not surprising that attention has turned to refining our understanding of the mechanisms behind, and consequences of, the induction of senescence. One emerging role for senescence lies in the ability of senescence to orchestrate an inflammatory response: factors secreted by senescent cells have been identified in multiple contexts to modulate various aspects of the immune response. As with many of the previously described roles for senescence, the type of inflammation established by the senescence phenotype is varied and dependent on context. In this review, we discuss the current state of the field with a focus on the paradoxical outcomes of the senescence-induced inflammatory responses in the context of cancer. A more complete understanding of senescence and an appreciation for its complexities will be important for eventual development of senescence-targeted therapies. PMID:26453912

  7. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Chunhua Wan

    Full Text Available The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12 and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.

  8. Age-related expression of sigma1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse.

    Science.gov (United States)

    Phan, Vân-Ly; Miyamoto, Yoshiaki; Nabeshima, Toshitaka; Maurice, Tangui

    2005-02-15

    The sigma1 receptor is a unique intracellular receptor whose activation results in an efficient modulation of several neurotransmitter responses. Its role as a target for the rapid nongenomic effects of neuro(active)steroids and the age-related diminutions in steroid levels suggested that targeting the sigma1 receptor might allow alleviation of age-related neuronal dysfunctions. We examined here the expression and behavioral efficacy of sigma1 receptors in the senescence-accelerated (SAM) mouse model. The sigma1 receptor mRNA expression was measured by using comparative RT-PCR in the olfactory bulb, hippocampus, hypothalamus, cortex, or cerebellum of senescence-prone SAMP/8 and senescence-resistant SAMR/1 control animals. No difference was observed between substrains in 6-, 9-, and 12-month-old (m.o.) mice. The sigma1 protein expression was analyzed by using immunohistochemical techniques. Labeling was intense in the olfactory bulb, hippocampus, hypothalamus, and midbrain of both SAMR/1 and SAMP/8 mice, and the distribution appeared unchanged in 6-, 9-, and 12-m.o. animals. The receptor's in vivo availability was examined by using in vivo [3H](+)-SKF-10,047 binding. No age-related difference was observed in the olfactory bulb, hippocampus, hypothalamus, cortex, cerebellum, and brainstem of 6- or 12-m.o. SAMR/1 or SAMP/8 mice. The antidepressant efficacy of the selective agonist igmesine was examined in the forced-swimming test. The compound decreased significantly the immobility duration at 60 mg/kg in 6- and 12-m.o. SAMR/1 and in 6-m.o. SAMP/8 mice. In 12-m.o. SAMP/8 mice, the drug efficacy was facilitated; a significant effect was measured at 30 mg/kg. Decreased neurosteroid levels, particularly of progesterone, were seen in 12-m.o. SAMP/8 mice that might explain the enhanced efficacy of igmesine. Preserved sigma1 receptor expression and enhanced behavioral efficacy of sigma1 agonists were measured in SAM animals, confirming the therapeutic opportunities for

  9. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    Science.gov (United States)

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice. PMID:14967896

  10. Amyloid β Protein Aggravates Neuronal Senescence and Cognitive Deficits in 5XFAD Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Wei, Zhen; Chen, Xiao-Chun; Song, Yue; Pan, Xiao-Dong; Dai, Xiao-Man; Zhang, Jing; Cui, Xiao-Li; Wu, Xi-Lin; Zhu, Yuan-Gui

    2016-01-01

    Background: Amyloid β (Aβ) has been established as a key factor for the pathological changes in the brains of patients with Alzheimer's disease (AD), and cellular senescence is closely associated with aging and cognitive impairment. However, it remains blurred whether, in the AD brains, Aβ accelerates the neuronal senescence and whether this senescence, in turn, impairs the cognitive function. This study aimed to explore the expression of senescence-associated genes in the hippocampal tissue from young to aged 5XFAD mice and their age-matched wild type (WT) mice to determine whether senescent neurons are present in the transgenic AD mouse model. Methods: The 5XFAD mice and age-matched wild type mice, both raised from 1 to 18 months, were enrolled in the study. The senescence-associated genes in the hippocampus were analyzed and differentially expressed genes (DEGs) were screened by quantitative real-time polymerase chain reaction. Cognitive performance of the mice was evaluated by Y-maze and Morris water maze tests. Oligomeric Aβ (oAβ) (1–42) was applied to culture primary neurons to simulate the in vivo manifestation. Aging-related proteins were detected by Western blotting analysis and immunofluorescence. Results: In 5XFAD mice, of all the DEGs, the senescence-associated marker p16 was most significantly increased, even at the early age. It was mainly localized in neurons, with a marginal expression in astrocytes (labeled as glutamine synthetase), nil expression in activated microglia (labeled as Iba1), and negatively correlated with the spatial cognitive impairments of 5XFAD mice. oAβ (1–42) induced the production of senescence-related protein p16, but not p53 in vitro, which was in line with the in vivo manifestation. Conclusions: oAβ-accelerated neuronal senescence may be associated with the cognitive impairment in 5XFAD mice. Senescence-associated marker p16 can serve as an indicator to estimate the cognitive prognosis for AD population. PMID

  11. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    Science.gov (United States)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  12. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    Science.gov (United States)

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  13. Senescence induction; a possible cancer therapy

    OpenAIRE

    Kondoh Hiroshi; Artero-Castro Ana; LLeonart Matilde E

    2009-01-01

    Abstract Cellular immortalization is a crucial step during the development of human cancer. Primary mammalian cells reach replicative exhaustion after several passages in vitro, a process called replicative senescence. During such a state of permanent growth arrest, senescent cells are refractory to physiological proliferation stimuli: they have altered cell morphology and gene expression patterns, although they remain viable with preserved metabolic activity. Interestingly, senescent cells h...

  14. Screening of microRNAs associated with Alzheimer's disease using oxidative stress cell model and different strains of senescence accelerated mice.

    Science.gov (United States)

    Zhang, Rui; Zhang, Qingfu; Niu, Jingya; Lu, Kang; Xie, Bing; Cui, Dongsheng; Xu, Shunjiang

    2014-03-15

    Oxidative stress plays a critical role in the etiology and pathogenesis of Alzheimer's disease (AD), and the molecular mechanisms that control the neuron response to oxidative stress have been extensively studied. However, the effects of oxidative stress on miRNA expression in hippocampal neurons has not been investigated, and little is known about the roles of ROS-modulated miRNAs in cell function as yet. In this study, miRNA microarray technology was used to analyze the expression of miRNAs in the oxidative stressed primary hippocampal neurons, hippocampus of senescence accelerated mouse prone 8 (SAMP8) and prone 10 (SAMP10). The targets of co-regulated microRNAs were also selected for computational prediction using miRWalk software and functional analysis by the DAVID software. In addition, the changes of co-regulated microRNA expression were validated by quantitative real-time PCR. The results of microarray analysis showed that miR-329, miR-193b, miR-20a, miR-296, and miR-130b were all upregulated in H2O2-induced primary hippocampal neurons and different strains of senescence accelerated mice. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these co-regulated microRNAs may be involved in the regulation of cell growth, apoptosis, signal transmission and cancer development. In which, mitogen-activated protein kinase (MAPK) signaling pathway was one of the most significant pathways to be affected by 83 target genes of miR-329, miR-193b, miR-20a miR-296, and miR-130b. The quantitative real-time PCR data confirmed the alterations of the co-upregulated miRNAs. These results suggested that oxidative stress alters the miRNA expression profile of hippocampal neurons, and the deregulated miRNAs might play potential roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). This study provided a strong basis for the future study aiming at contributions of miRNAs induced by oxidative stress in AD.

  15. 细胞衰老与细胞自噬的生物学关联及其意义%Biological relevancy and its significance of cellular senescence and autophagy

    Institute of Scientific and Technical Information of China (English)

    蔡世忠; 王亚平

    2011-01-01

    Cellular senescence is defined as cell cycle arrest, death approaching, limited capacity to proliferate,altered responsiveness to apoptosis stimuli, altered senescence associated gene expression, remarkable morphologic transformation in vitro.There are at least two types of cellular senescence: replicative senescence and stress-induced senescence.Autophagy is "self eating" phenomenon, and also the catabolism, which is depended on lysosomes and has the role of cleaning up damaged proteins and senescent or damaged organelle, can be triggered by diverse stimulus, and autophagy is characterized by the formation of autophagosomes, which plays a basally active role in the quality control of proteins or organelles and the maintenance of cell energy homeostasis.More recently, it has been demonstrated that autophagy plays a very indispensable role in cellular senescence.The members of the BAG protein family regulate the proteasomal and autophagic signaling pathway, and that the ratio of BAG3/BAG1 is elevated during cell replicative senescence.Obviously, BAG3 mediates the activation of autophagy in the processes of cellular senescence.It also can be observed that autophagy is highly activated in Ras-induced senescent cells.Furthermore, genetic evidence of autophagy as an anti-age effector has been provided in lower eukaryotes.Spermidine is the major component of human sperm and can trigger deacetylation of histone H3.The altered acetylation status of the chromatin leads to significant upregulation of various autophagy-related transcripts, results in triggering autophagy and enhancing longevity.Other studies suggest that p53 and its positive regulator, Arf (the so-called super-p53/Arf) exhibit resisted aging under their normal gene regulation.It is exciting that Arf can also positively modulate autophagy.Conceivably, autophagy contributes to cellular senescence establishment and is an effector mechanism of cellular senescence.%细胞衰老是指细胞生理功能的衰减,

  16. Senescence induction; a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Kondoh Hiroshi

    2009-01-01

    Full Text Available Abstract Cellular immortalization is a crucial step during the development of human cancer. Primary mammalian cells reach replicative exhaustion after several passages in vitro, a process called replicative senescence. During such a state of permanent growth arrest, senescent cells are refractory to physiological proliferation stimuli: they have altered cell morphology and gene expression patterns, although they remain viable with preserved metabolic activity. Interestingly, senescent cells have also been detected in vivo in human tumors, particularly in benign lesions. Senescence is a mechanism that limits cellular lifespan and constitutes a barrier against cellular immortalization. During immortalization, cells acquire genetic alterations that override senescence. Tumor suppressor genes and oncogenes are closely involved in senescence, as their knockdown and ectopic expression confer immortality and senescence induction, respectively. By using high throughput genetic screening to search for genes involved in senescence, several candidate oncogenes and putative tumor suppressor genes have been recently isolated, including subtypes of micro-RNAs. These findings offer new perspectives in the modulation of senescence and open new approaches for cancer therapy.

  17. Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit.

    Science.gov (United States)

    Zhu, Mingku; Li, Yali; Chen, Guoping; Ren, Lijun; Xie, Qiaoli; Zhao, Zhiping; Hu, Zongli

    2015-01-09

    The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, and in response to biotic and abiotic stress. However, little is known about its roles in other plant species. Here, we study the function of an Elongator complex protein 2-like gene in tomato, here designated as SlELP2L, through RNAi-mediated gene silencing. Silencing SlELP2L in tomato inhibits leaf growth, accelerates leaf and sepal senescence, and produces dark-green fruit with reduced GA and IAA contents in leaves, and increased chlorophyll accumulation in pericarps. Gene expression analysis indicated that SlELP2L-silenced plants had reduced transcript levels of ethylene- and ripening-related genes during fruit ripening with slightly decreased carotenoid content in fruits, while the expression of DNA methyltransferase genes was up-regulated, indicating that SlELP2L may modulate DNA methylation in tomato. Besides, silencing SlELP2L increases ABA sensitivity in inhibiting seedling growth. These results suggest that SlELP2L plays important roles in regulating plant growth and development, as well as in response to ABA in tomato.

  18. Accelerated senescence prone mouse-8 shows early onset of deficits in spatial learning and memory in the radial six-arm water maze.

    Science.gov (United States)

    Chen, Gui-Hai; Wang, Yue-Ju; Wang, Xiao-Min; Zhou, Jiang-Ning

    2004-10-15

    Available data indicate that the senescence-accelerated prone mouse 8 (SAMP8) is an appropriate model of brain aging, with impairments in nonspatial learning and memory beginning as early as 2 months of age, and spatial learning and memory deficiencies not becoming apparent until after 4 months of age. However, with other strains (e.g., C57BL mice), the impairment in spatial memory was found earlier than that in nonspatial memory. We considered the possibility that the observed differences could be due to strain-specific differences in the training equipment. In the present study, a new optimized testing apparatus-the radial six-arm water maze (RAWM)-for detecting spatial learning and memory in mice, was employed, to determine whether there is impairment of spatial learning and memory in young SAMP8. The relationship between the spatial learning measures observed with the RAWM and the Morris maze, a classic spatial learning and memory testing apparatus, was also explored. It was found that, in the RAWM, rather than in the Morris maze, the impairment in spatial learning could be measured in SAMP8 mice as early as 3 months old, and the impairment in spatial memory in SAMP8 mice aged 5 months. These results suggested that the spatial learning and memory deficiencies could be found in early life of SAMP8 mice, and that RAWM and Morris maze each detect different aspects of spatial learning and memory.

  19. Extracts of Cistanche deserticola Can Antagonize Immunosenescence and Extend Life Span in Senescence-Accelerated Mouse Prone 8 (SAM-P8 Mice

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    2014-01-01

    Full Text Available The senescence accelerated mouse prone 8 substrain (SAM-P8, widely accepted as an animal model for studying aging and antiaging drugs, was used to examine the effects of dietary supplementation with extracts of Cistanche deserticola (ECD which has been used extensively in traditional Chinese medicine because of its perceived ability to promote immune function in the elderly. Eight-month-old male SAM-P8 mice were treated with ECD by daily oral administrations for 4 weeks. The results showed that dietary supplementation of 150 mg/kg and 450 mg/kg of ECD could extend the life span measured by Kaplan-Meier survival analysis in dose-dependent manner. Dietary supplementation of SAM-P8 mice for 4 weeks with 100, 500, and 2500 mg/kg of ECD was shown to result in significant increases in both naive T and natural killer cells in blood and spleen cell populations. In contrast, peripheral memory T cells and proinflammatory cytokine, IL-6 in serum, were substantially decreased in the mice that ingested 100 and 500 mg/kg of ECD daily. Additionally, Sca-1 positive cells, the recognized progenitors of peripheral naive T cells, were restored in parallel. Our results provide clear experimental support for long standing clinical observational studies showing that Cistanche deserticola possesses significant effects in extending life span and suggest this is achieved by antagonizing immunosenescence.

  20. Particle acceleration and radiation in flaring complex solar active regions modeled by cellular automata

    Science.gov (United States)

    Dauphin, C.; Vilmer, N.; Anastasiadis, A.

    2007-06-01

    Context: We study the acceleration and radiation of electrons and ions interacting with multiple small-scale dissipation regions resulting from the magnetic energy release process. Aims: We aim to calculate the distribution functions of the kinetic energy of the particles and the X-ray spectra and γ-ray fluxes produced by the accelerated particles. Methods: The evolution of the magnetic energy released in an active region is mimicked by a cellular automaton model based on the concept of self-organized criticality. Each burst of magnetic energy release is associated with a reconnecting current sheet (RCS) in which the particles are accelerated by a direct electric field. Results: We calculate the energy gain of the particles (ions and electrons) for three different magnetic configurations of the RCS after their interactions with a given number of RCS. We finally compare our results with existing observations. Conclusions: The results of our simulation can reproduce several properties of the observations such as variable electron and ion energy contents and γ-ray line ratio. Even if very flat X-ray spectra have been reported in a few events, the X-ray spectra produced in this model are too flat when compared to most X-ray observations.

  1. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  2. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    Science.gov (United States)

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  3. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  4. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients.

    Science.gov (United States)

    Gu, Zhifeng; Jiang, Jinxia; Tan, Wei; Xia, Yunfei; Cao, Haixia; Meng, Yan; Da, Zhanyun; Liu, Hong; Cheng, Chun

    2013-01-01

    Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs) from systemic lupus erythematosus (SLE) patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  5. p53/p21 Pathway Involved in Mediating Cellular Senescence of Bone Marrow-Derived Mesenchymal Stem Cells from Systemic Lupus Erythematosus Patients

    Directory of Open Access Journals (Sweden)

    Zhifeng Gu

    2013-01-01

    Full Text Available Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs from systemic lupus erythematosus (SLE patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  6. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    Science.gov (United States)

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. PMID:26890602

  7. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  8. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    2008-12-01

    Full Text Available Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  9. Accelerating the calculation of time-resolved electronic spectra with the cellular dephasing representation

    Science.gov (United States)

    Šulc, Miroslav; Vaníček, Jiří

    2012-05-01

    Dephasing representation of fidelity, also known as the phase averaging method, can be considered as a special case of Miller's linearized semiclassical initial value representation and belongs among the most efficient approximate semiclassical approaches for the calculation of ultrafast time-resolved electronic spectra. Recently it has been shown that the number of trajectories required for convergence of this method is independent of the system's dimensionality. Here we propose a further accelerated version of the dephasing representation in the spirit of Heller's cellular dynamics. The basic idea of the 'cellular dephasing representation' is to decompose the Wigner transform of the initial state into a phase space Gaussian basis and then evaluate the contribution of each Gaussian to the relevant correlation function approximately analytically, using numerically acquired information only along the trajectory of the Gaussian's centre. The approximate nature of the DR classifies it among semiclassical perturbation approximations proposed by Miller and Smith, and suggests its limited accuracy. Yet, the proposed method turns out to be sufficiently accurate whenever the interaction with the environment diminishes the importance of recurrences in the correlation functions of interest. Numerical tests on a collinear NCO molecule indicate that even results based on a single classical trajectory are in a remarkable agreement with the fully converged DR requiring approximately 104 trajectories.

  10. Accelerator Mass Spectrometry Allows for Cellular Quantification of Doxorubicin at Femtomolar Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    DeGregorio, M W; Dingley, K H; Wurz, G T; Ubick, E; Turteltaub, K W

    2005-04-12

    Accelerator mass spectrometry (AMS) is a highly sensitive analytical methodology used to quantify the content of radioisotopes, such as {sup 14}C, in a sample. The primary goals of this work were to demonstrate the utility of AMS in determining cellular [{sup 14}C]doxorubicin (DOX) concentrations and to develop a sensitive assay that is superior to high performance liquid chromatography (HPLC) for the quantification of DOX at the tumor level. In order to validate the superior sensitivity of AMS versus HPLC with fluorescence detection, we performed three studies comparing the cellular accumulation of DOX: one in vitro cell line study, and two in vivo xenograft mouse studies. Using AMS, we quantified cellular DOX content up to 4 hours following in vitro exposure at concentrations ranging from 0.2 pg/ml (345 fM) to 2 {micro}g/ml (3.45 {micro}M) [{sup 14}C]DOX. The results of this study show that, compared to standard fluorescence-based HPLC, the AMS method was over five orders of magnitude more sensitive. Two in vivo studies compared the sensitivity of AMS to HPLC using a nude mouse xenograft model in which breast cancer cells were implanted subcutaneously. After sufficiently large tumors formed, DOX was administered intravenously at two dose levels. Additionally, we tested the AMS method in a nude mouse xenograft model of multidrug resistance (MDR) in which each mouse was implanted with both wild type and MDR+ cells on opposite flanks. The results of the second and third studies showed that DOX concentrations were significantly higher in the wild type tumors compared to the MDR+ tumors, consistent with the MDR model. The extreme sensitivity of AMS should facilitate similar studies in humans to establish target site drug delivery and to potentially determine the optimal treatment dose and regimen.

  11. Effect of Low-Magnitude, High-Frequency Vibration Treatment on Retardation of Sarcopenia: Senescence-Accelerated Mouse-P8 Model.

    Science.gov (United States)

    Guo, An-Yun; Leung, Kwok-Sui; Qin, Jiang-Hui; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2016-08-01

    Sarcopenia-related falls and fall-related injuries in community-dwelling elderly people garnered more and more interest in recent years. Low-magnitude high-frequency vibration (LMHFV) was proven beneficial to musculoskeletal system and recommended for sarcopenia treatment. This study aimed to evaluate the effects of LMHFV on the sarcopenic animals and explore the mechanism of the stimulatory effects. Senescence-accelerated mouse P8 (SAMP8) mice at month 6 were randomized into control (Ctrl) and vibration (Vib) groups and the mice in the Vib group were given LMHFV (0.3 g, 20 min/day, 5 days/week) treatment. At months 0, 1, 2, 3, and 4 post-treatment, muscle mass, structure, and function were assessed. The potential proliferation capacity of the muscle was also evaluated by investigating satellite cells (SCs) pool and serum myostatin expression. At late stage, the mice in the Vib group showed higher muscle strength (month 4, p = 0.028). Generally, contractibility was significantly improved by LMHFV (contraction time [CT], p = 0.000; half-relaxation time [RT50], p = 0.000). Enlarged cross-sectional area of fiber type IIA was observed in the Vib group when compared with Ctrl group (p = 0.000). No significant difference of muscle mass was observed. The promotive effect of LMHFV on myoregeneration was reflected by suppressed SC pool reduction (month 3, p = 0.000; month 4, p = 0.000) and low myostatin expression (p = 0.052). LMHFV significantly improved the structural and functional outcomes of the skeletal muscle, hence retarding the progress of sarcopenia in SAMP8. It would be a good recommendation for prevention of the diseases related to skeletal muscle atrophy. PMID:26608404

  12. Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state.

    Science.gov (United States)

    Jang, Wookju; Jeoung, Nam Ho; Cho, Kyung-Hyun

    2011-05-01

    Long-term consumption of artificial sweeteners (AS) has been the recent focus of safety concerns. However, the potential risk of the AS in cardiovascular disease and lipoprotein metabolism has not been investigated sufficiently. We compared the influence of AS (aspartame, acesulfame K, and saccharin) and fructose in terms of functional and structural correlations of apolipoprotein (apo) A-I and high-density lipoproteins (HDL), which have atheroprotective effects. Long-term treatment of apoA-I with the sweetener at physiological concentration (3 mM for 168 h) resulted in loss of antioxidant and phospholipid binding activities with modification of secondary structure. The AS treated apoA-I exhibited proteolytic cleavage to produce 26 kDa-fragment. They showed pro-atherogenic properties in acetylated LDL phagocytosis of macrophages. Each sweetener alone or sweetener-treated apoA-I caused accelerated senescence in human dermal fibroblasts. These results suggest that long-term consumption of AS might accelerate atherosclerosis and senescence via impairment of function and structure of apoA-I and HDL. PMID:21533907

  13. Human endothelial senescence induced by IL-1α in vitro

    Institute of Scientific and Technical Information of China (English)

    YAO Aiyu; ZHOU Jianjun; LIU Yabing; FENG Meifu; ZHOU Rouli

    2004-01-01

    Interleukin 1(IL-1) is an important proinflammatory cytokine that causes pleiotropic effects. Vascular endothelial cells stimulated by IL-1α can lead to the inflammatory response. Reactive oxygen species (ROS) are also generated at the site of inflammation and serve as an important factor against foreign invader. Here we report that long-term stimulation of human vein endothelial cells with IL-1α can accelerate their senescence associated with β-galactosidase activity. The flow cytometric analyses showed that most of the induced cells entered G0-G1 phase. DNA damage was more severe in senescent cells by comet assay. The induced cells by IL-1α had higher levels of ROS and malonyldialdehyde (MDA), lower activity of antioxidant enzymes and lower capacity of total antioxidant systems than control, which led to cell damage and cell degeneration, that is to say, which contributed to cellular senescence. Our results gave a direct proof to a new hypothesis-"the inflammation hypothesis of aging" on cellular level, and also provided a basis for the study on anti-aging and aging-related diseases.

  14. Age-Related Changes in Bone Mass in the Senescence-Accelerated Mouse (SAM): SAM-R/3 and SAM-P/6 as New Murine Models for Senile Osteoporosis

    OpenAIRE

    Matsushita, Mutsumi; Tsuboyama, Tadao; Kasai, Ryuichi; Okumura, Hideo; Yamamuro, Takao; HIGUCHI, Keiichi; Higuchi, Kayoko; Kohno, Atsuko; Yonezu, Tomonori; Utani, Atsushi; Umezawa, Makiko; TAKEDA, Toshio

    1986-01-01

    Age-related changes of the femoral bone mass in several strains of the senescence-accelerated mouse (SAM) were investigated. Microdensitometrically, all strains exhibited essentially the same patterns of age changes, that is, bone mass corrected by the diameter of the shaft reached the peak value when the mice were 4 or 5 months of age and then fell linearly with age up to over 20 months of age. Two strains, SAM-R/3 and SAM-P/6, which originated from the same ancestry on pedigree, had a signi...

  15. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  16. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  17. Effect of driver over-acceleration on traffic breakdown in three-phase cellular automaton traffic flow models

    Science.gov (United States)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Schreckenberg, Michael

    2013-09-01

    Based on simulations with cellular automaton (CA) traffic flow models, a generic physical feature of the three-phase models studied in the paper is disclosed. The generic feature is a discontinuous character of driver over-acceleration caused by a combination of two qualitatively different mechanisms of over-acceleration: (i) Over-acceleration through lane changing to a faster lane, (ii) over-acceleration occurring in car-following without lane changing. Based on this generic feature a new three-phase CA traffic flow model is developed. This CA model explains the set of the fundamental empirical features of traffic breakdown in real heterogeneous traffic flow consisting of passenger vehicles and trucks. The model simulates also quantitative traffic pattern characteristics as measured in real heterogeneous flow.

  18. An experimental investigation on self-acceleration of cellular spherical flames

    DEFF Research Database (Denmark)

    Wu, Fujia; Jomaas, Grunde; Law, Chung K.

    2013-01-01

    The cells that continuously develop over the flame surface of an expanding spherical flame increase its area and thereby the global propagation rate, resulting in the possibility of self-acceleration. The present study examines whether this self-acceleration could be self-similar, and, if so...... demonstrate the strong possibility of self-similar flame acceleration, weak influence of the system pressure and diffusional-thermal instability, and a corresponding moderate spread in the power-law acceleration exponent....

  19. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice.

    Science.gov (United States)

    Xu, Jianguo; Gonzalez, Edilson T; Iyer, Smita S; Mac, Valerie; Mora, Ana L; Sutliff, Roy L; Reed, Alana; Brigham, Kenneth L; Kelly, Patricia; Rojas, Mauricio

    2009-07-01

    The incidence of pulmonary fibrosis increases with age. Studies from our group have implicated circulating progenitor cells, termed fibrocytes, in lung fibrosis. In this study, we investigate whether the preceding determinants of inflammation and fibrosis were augmented with aging. We compared responses to intratracheal bleomycin in senescence-accelerated prone mice (SAMP), with responses in age-matched control senescence-accelerated resistant mice (SAMR). SAMP mice demonstrated an exaggerated inflammatory response as evidenced by lung histology. Bleomycin-induced fibrosis was significantly higher in SAMP mice compared with SAMR controls. Consistent with fibrotic changes in the lung, SAMP mice expressed higher levels of transforming growth factor-beta1 in the lung. Furthermore, SAMP mice showed higher numbers of fibrocytes and higher levels of stromal cell-derived factor-1 in the peripheral blood. This study provides the novel observation that apart from increases in inflammatory and fibrotic factors in response to injury, the increased mobilization of fibrocytes may be involved in age-related susceptibility to lung fibrosis. PMID:19359440

  20. HDACs and the senescent phenotype of WI-38 cells

    Directory of Open Access Journals (Sweden)

    Noonan Emily J

    2005-10-01

    Full Text Available Abstract Background Normal cells possess a limited proliferative life span after which they enter a state of irreversible growth arrest. This process, known as replicative senescence, is accompanied by changes in gene expression that give rise to a variety of senescence-associated phenotypes. It has been suggested that these gene expression changes result in part from alterations in the histone acetylation machinery. Here we examine the influence of HDAC inhibitors on the expression of senescent markers in pre- and post-senescent WI-38 cells. Results Pre- and post-senescent WI-38 cells were treated with the HDAC inhibitors butyrate or trichostatin A (TSA. Following HDAC inhibitor treatment, pre-senescent cells increased p21WAF1 and β-galactosidase expression, assumed a flattened senescence-associated morphology, and maintained a lower level of proteasome activity. These alterations also occurred during normal replicative senescence of WI-38 cells, but were not accentuated further by HDAC inhibitors. We also found that HDAC1 levels decline during normal replicative senescence. Conclusion Our findings indicate that HDACs impact numerous phenotypic changes associated with cellular senescence. Reduced HDAC1 expression levels in senescent cells may be an important event in mediating the transition to a senescent phenotype.

  1. The Identification of Senescence-Specific Genes during the Induction of Senescence in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Steven R. Schwarze

    2005-09-01

    Full Text Available Classic mechanisms of tumor response to chemotherapy include apoptosis, mitotic catastrophe. Recent studies have suggested that cellular senescence, a terminal proliferation arrest seen in vitro, may be invoked during the exposure of cancer cells to chemotherapeutic agents. To identify markers associated specifically with the cellular senescence phenotype, we utilized expression data from cDNA microarray experiments identifying transcripts whose expression levels increased as human prostate epithelial cells progressed to senescence. When screened against other growth-inhibitory conditions, including quiescence, apoptosis, many of these transcripts were also upregulated, indicating that similar pathways occur between apoptosis, senescence. A senescent-like phenotype was then induced in several prostate cancer cell lines using 5-aza-2′-deoxycytidine, doxorubicin, or Docetaxel. Treatment with these agents resulted in a significant increase in the induction of senescence-specific genes when compared to nonsenescent conditions. The performance of the panel was improved with fluorescence-activated cell sorting using PKH26 to isolate nonproliferating, viable, drug-treated populations, indicating that a heterogeneous response occurs with chemotherapy. We have defined an RNA-based gene panel that characterizes the senescent phenotype induced in cancer cells by drug treatment. These data also indicate that a panel of genes, rather than one marker, needs to be utilized to identify senescence.

  2. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  3. NKG2D ligands mediate immunosurveillance of senescent cells.

    Science.gov (United States)

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  4. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.

    Science.gov (United States)

    Poret, Marine; Chandrasekar, Balakumaran; van der Hoorn, Renier A L; Avice, Jean-Christophe

    2016-05-01

    Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation. PMID:26993244

  5. Stress-Induced Premature Senescence or Stress-Induced Senescence-Like Phenotype: One In Vivo Reality, Two Possible Definitions?

    Directory of Open Access Journals (Sweden)

    Olivier Toussaint

    2002-01-01

    Full Text Available No consensus exists so far on the definition of cellular senescence. The narrowest definition of senescence is irreversible growth arrest triggered by telomere shortening counting cell generations (definition 1. Other authors gave an enlarged functional definition encompassing any kind of irreversible arrest of proliferative cell types induced by damaging agents or cell cycle deregulations after overexpression of proto-oncogenes (definition 2. As stress increases, the proportion of cells in “stress-induced premature senescence-like phenotype” according to definition 1 or “stress-induced premature senescence,” according to definition 2, should increase when a culture reaches growth arrest, and the proportion of cells that reached telomere-dependent replicative senescence due to the end-replication problem should decrease. Stress-induced premature senescence-like phenotype and telomere-dependent replicatively senescent cells share basic similarities such as irreversible growth arrest and resistance to apoptosis, which may appear through different pathways. Irreversible growth arrest after exposure to oxidative stress and generation of DNA damage could be as efficient in avoiding immortalisation as “telomere-dependent” replicative senescence. Probabilities are higher that the senescent cells (according to definition 2 appearing in vivo are in stress-induced premature senescence rather than in telomere-dependent replicative senescence. Examples are given suggesting these cells affect in vivo tissue (pathophysiology and aging.

  6. Amyloid β Protein Aggravates Neuronal Senescence and Cognitive Deficits in 5XFAD Mouse Model of Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Zhen Wei; Xiao-Chun Chen; Yue Song; Xiao-Dong Pan; Xiao-Man Dai; Jing Zhang; Xiao-Li Cui

    2016-01-01

    Background:Amyloid β (Aβ) has been established as a key factor for the pathological changes in the brains of patients with Alzheimer's disease (AD),and cellular senescence is closely associated with aging and cognitive impairment.However,it remains blurred whether,in the AD brains,Aβ accelerates the neuronal.senescence and whether this senescence,in turn,impairs the cognitive function.This study aimed to explore the expression of senescence-associated genes in the hippocampal tissue from young to aged 5XFAD mice and their age-matched wild type (WT) mice to determine whether senescent neurons are present in the transgenic AD mouse model.Methods:The 5XFAD mice and age-matched wild type mice,both raised from 1 to 18 months,were enrolled in the study.The senescence-associated genes in the hippocampus were analyzed and differentially expressed genes (DEGs) were screened by quantitative real-time polymerase chain reaction.Cognitive performance of the mice was evaluated by Y-maze and Morris water maze tests.Oligomeric Aβ (oAβ) (1-42) was applied to culture primary neurons to simulate the in vivo manifestation.Aging-related proteins were detected by Western blotting analysis and immunofluorescence.Results:In 5XFAD mice,of all the DEGs,the senescence-associated marker p 16 was most significantly increased,even at the early age.It was mainly localized in neurons,with a marginal expression in astrocytes (labeled as glutamine synthetase),nil expression in activated microglia (labeled as Iba1),and negatively correlated with the spatial cognitive impairments of 5XFAD mice.oAβ (1-42) induced the production of senescence-related protein p 16,but not p53 in vitro,which was in line with the in vivo manifestation.Conclusions:oAβ-accelerated neuronal senescence may be associated with the cognitive impairment in 5XFAD mice.Senescence-associated marker p 16 can serve as an indicator to estimate the cognitive prognosis for AD population.

  7. Chronic Hepatitis B Virus Infection: The Relation between Hepatitis B Antigen Expression, Telomere Length, Senescence, Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Phaedra M Tachtatzis

    Full Text Available Chronic Hepatitis B virus (HBV infection can lead to the development of chronic hepatitis, cirrhosis and hepatocellular carcinoma. We hypothesized that HBV might accelerate hepatocyte ageing and investigated the effect of HBV on hepatocyte cell cycle state and biological age. We also investigated the relation between inflammation, fibrosis and cell cycle phase.Liver samples from patients with chronic HBV (n = 91, normal liver (n = 55 and regenerating liver (n = 15 were studied. Immunohistochemistry for cell cycle phase markers and HBV antigens was used to determine host cell cycle phase. Hepatocyte-specific telomere length was evaluated by quantitative fluorescent in-situ hybridization (Q-FISH in conjunction with hepatocyte nuclear area and HBV antigen expression. The effects of induced cell cycle arrest and induced cellular senescence on HBV production were assessed in vitro.13.7% hepatocytes in chronic HBV had entered cell cycle, but expression of markers for S, G2 and M phase was low compared with regenerating liver. Hepatocyte p21 expression was increased (10.9% in chronic HBV and correlated with liver fibrosis. Mean telomere length was reduced in chronic HBV compared to normal. However, within HBV-affected livers, hepatocytes expressing HBV antigens had longer telomeres. Telomere length declined and hepatocyte nuclear size increased as HBV core antigen (HBcAg expression shifted from the nucleus to cytoplasm. Nuclear co-expression of HBcAg and p21 was not observed. Cell cycle arrest induced in vitro was associated with increased HBV production, in contrast to in vitro induction of cellular senescence, which had no effect.Chronic HBV infection was associated with hepatocyte G1 cell cycle arrest and accelerated hepatocyte ageing, implying that HBV induced cellular senescence. However, HBV replication was confined to biologically younger hepatocytes. Changes in the cellular location of HBcAg may be related to the onset of cellular senescence.

  8. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells.

    Science.gov (United States)

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2013-06-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16/p21 in bone. Feeding a diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only prior to puberty [postnatal day 21 (PND21) to PND34] prevents OVX-induced effects on expression of these molecules at PND68. In order to provide more evidence and gain a better understanding on the association between bone collagen matrix and resident bone cell fate, in vitro studies on the cellular senescence pathway using primary calvarial cells and three cell lines (ST2 cells, OB6, and MLO-Y4) were conducted. We found that senescence was inhibited by collagen in a dose-response manner. Treatment of cells with serum from OVX rats accelerated osteoblastic cell senescence pathways, but serum from BB-fed OVX rats had no effect. In the presence of low collagen or treatment with OVX rat serum, ST2 cells exhibited higher potential to differentiate into adipocytes. Finally, we demonstrated that bone cell senescence is associated with decreased Sirt1 expression and activated p53, p16, and p21. These results suggest that (1) a significant prevention of OVX-induced bone cell senescence from adult rats can occur after only 14 days consumption of a BB-containing diet immediately prior to puberty, and (2) the molecular mechanisms underlying this effect involves, at least in part, prevention of collagen degradation. PMID:22555620

  9. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1.

    Science.gov (United States)

    Han, J; Miyamae, Y; Shigemori, H; Isoda, H

    2010-09-01

    As aged population dramatically increases in these decades, efforts should be made on the intervention for curing age-associated neurologic degenerative diseases such as Alzheimer's disease (AD). Caffeoylquinic acid (CQA), an antioxidant component and its derivatives are natural functional compounds isolated from a variety of plants. In this study, we determined the neuroprotective effect of 3,5-di-O-CQA on Abeta(1-42) treated SH-SY5Y cells using MTT assay. To investigate the possible neuroprotective mechanism of 3,5-di-O-CQA, we performed proteomics analysis, real-time PCR analysis and measurement of the intracellular ATP level. In addition, we carried out the measurement of escape latency time to find the hidden platform in Morris water maze (MWM), real-time PCR using senescence-accelerated-prone mice (SAMP) 8 and senescence-accelerated-resistant mice (SAMR) 1 mice. Results showed that 3,5-di-O-CQA had neuroprotective effect on Abeta (1-42) treated cells. The mRNA expression of glycolytic enzyme (phosphoglycerate kinase-1; PGK1) and intracellular ATP level were increased in 3,5-di-O-CQA treated SH-SY5Y cells. We also found that 3,5-di-O-CQA administration induced the improvement of spatial learning and memory on SAMP8 mice, and the overexpression of PGK1 mRNA. These findings suggest that 3,5-di-O-CQA has a neuroprotective effect on neuron through the upregulation of PGK1 expression and ATP production activation. PMID:20570715

  10. Senescence rates in patients with end-stage renal disease

    DEFF Research Database (Denmark)

    Koopman, J J E; Rozing, M P; Kramer, Ada;

    2011-01-01

    The most frequently used model to describe the exponential increase in mortality rate over age is the Gompertz equation. Logarithmically transformed, the equation conforms to a straight line, of which the slope has been interpreted as the rate of senescence. Earlier, we proposed the derivative...... function of the Gompertz equation as a superior descriptor of senescence rate. Here, we tested both measures of the rate of senescence in a population of patients with end-stage renal disease. It is clinical dogma that patients on dialysis experience accelerated senescence, whereas those with a functional...

  11. A novel autosomal recessive TERT T1129P mutation in a dyskeratosis congenita family leads to cellular senescence and loss of CD34+ hematopoietic stem cells not reversible by mTOR-inhibition.

    Science.gov (United States)

    Stockklausner, Clemens; Raffel, Simon; Klermund, Julia; Bandapalli, Obul Reddy; Beier, Fabian; Brümmendorf, Tim H; Bürger, Friederike; Sauer, Sven W; Hoffmann, Georg F; Lorenz, Holger; Tagliaferri, Laura; Nowak, Daniel; Hofmann, Wolf-Karsten; Buergermeister, Rebecca; Kerber, Carolin; Rausch, Tobias; Korbel, Jan O; Luke, Brian; Trumpp, Andreas; Kulozik, Andreas E

    2015-11-01

    The TERT gene encodes for the reverse transcriptase activity of the telomerase complex and mutations in TERT can lead to dysfunctional telomerase activity resulting in diseases such as dyskeratosis congenita (DKC). Here, we describe a novel TERT mutation at position T1129P leading to DKC with progressive bone marrow (BM) failure in homozygous members of a consanguineous family. BM hematopoietic stem cells (HSCs) of an affected family member were 300-fold reduced associated with a significantly impaired colony forming capacity in vitro and impaired repopulation activity in mouse xenografts. Recent data in yeast suggested improved cellular checkpoint controls by mTOR inhibition preventing cells with short telomeres or DNA damage from dividing. To evaluate a potential therapeutic option for the patient, we treated her primary skin fibroblasts and BM HSCs with the mTOR inhibitor rapamycin. This led to prolonged survival and decreased levels of senescence in T1129P mutant fibroblasts. In contrast, the impaired HSC function could not be improved by mTOR inhibition, as colony forming capacity and multilineage engraftment potential in xenotransplanted mice remained severely impaired. Thus, rapamycin treatment did not rescue the compromised stem cell function of TERTT1129P mutant patient HSCs and outlines limitations of a potential DKC therapy based on rapamycin. PMID:26546739

  12. Amyloid β Protein Aggravates Neuronal Senescence and Cognitive Deficits in 5XFAD Mouse Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Zhen Wei

    2016-01-01

    Conclusions: oAβ-accelerated neuronal senescence may be associated with the cognitive impairment in 5XFAD mice. Senescence-associated marker p16 can serve as an indicator to estimate the cognitive prognosis for AD population.

  13. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence.

    Science.gov (United States)

    Jing, Hai-Chun; Anderson, Lisa; Sturre, Marcel J G; Hille, Jacques; Dijkwel, Paul P

    2007-01-01

    Evolutionary theories of senescence predict that genes with pleiotropic functions are important for senescence regulation. In plants there is no direct molecular genetic test for the existence of such senescence-regulatory genes. Arabidopsis cpr5 mutants exhibit multiple phenotypes including hypersensitivity to various signalling molecules, constitutive expression of pathogen-related genes, abnormal trichome development, spontaneous lesion formation, and accelerated leaf senescence. These indicate that CPR5 is a beneficial gene which controls multiple facets of the Arabidopsis life cycle. Ectopic expression of CPR5 restored all the mutant phenotypes. However, in transgenic plants with increased CPR5 transcripts, accelerated leaf senescence was observed in detached leaves and at late development around 50 d after germination, as illustrated by the earlier onset of senescence-associated physiological and molecular markers. Thus, CPR5 has early-life beneficial effects by repressing cell death and insuring normal plant development, but late-life deleterious effects by promoting developmental senescence. As such, CPR5 appears to function as a typical senescence-regulatory gene as predicted by the evolutionary theories of senescence.

  14. CELLULAR RESPONSES TO DNA DAMAGE AND ONCOGENESIS BY THE p53 AND pRb/E2F PATHWAYS

    OpenAIRE

    Elza Ibrahim Auerkari; Ismu Suharsono Suwelo; Achmad Tjarta; Santoso Cornain; T. W. Rahardjo; Eto, K; Ikeda, M.A

    2015-01-01

    Cellular responses to stress including DNA damage, show multiple options involving the mechanisms of growth arrest. DNA repair and programmed cell death or apoptosis. Failures in these mechanisms can result in oncogenesis or accelerated senescence. Much of the response is coordinated by p53, a nuclear phosphoprotein with a central role in the defences against physical, chemical and pathogenic agents which challenge the DNA integrity. The p53 pathways for mobilising the cellular defences are l...

  15. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.

    Science.gov (United States)

    Malaquin, Nicolas; Martinez, Aurélie; Rodier, Francis

    2016-09-01

    Cellular senescence is historically associated with cancer suppression and aging. Recently, the reach of the senescence genetic program has been extended to include the ability of senescent cells to actively participate in tissue remodelling during many physiological processes, including placental biology, embryonic patterning, wound healing, and tissue stress responses caused by cancer therapy. Besides growth arrest, a significant feature of senescent cells is their ability to modify their immediate microenvironment using a senescence-associated (SA) secretome, commonly termed the SA secretory phenotype (SASP). Among others, the SASP contains growth factors, cytokines, and extracellular proteases that modulate the majority of both the beneficial and detrimental microenvironmental phenotypes caused by senescent cells. The SASP is thus becoming an obvious pharmaceutical target to manipulate SA effects. Herein, we review known signalling pathways underlying the SASP, including the DNA damage response (DDR), stress kinases, inflammasome, alarmin, inflammation- and cell survival-related transcription factors, miRNAs, RNA stability, autophagy, chromatin components, and metabolic regulators. We also describe the SASP as a temporally regulated dynamic sub-program of senescence that can be divided into a rapid DDR-associated phase, an early self-amplification phase, and a late "mature" phase, the late phase currently being the most widely studied SASP signature. Finally, we discuss how deciphering the signalling pathways regulating the SASP reveal targets that can be manipulated to harness the SA effects to benefit therapies for cancer and other age-related pathologies. PMID:27235851

  16. Senescence and immortality in hepatocellular carcinoma.

    Science.gov (United States)

    Ozturk, Mehmet; Arslan-Ergul, Ayca; Bagislar, Sevgi; Senturk, Serif; Yuzugullu, Haluk

    2009-12-01

    Cellular senescence is a process leading to terminal growth arrest with characteristic morphological features. This process is mediated by telomere-dependent, oncogene-induced and ROS-induced pathways, but persistent DNA damage is the most common cause. Senescence arrest is mediated by p16(INK4a)- and p21(Cip1)-dependent pathways both leading to retinoblastoma protein (pRb) activation. p53 plays a relay role between DNA damage sensing and p21(Cip1) activation. pRb arrests the cell cycle by recruiting proliferation genes to facultative heterochromatin for permanent silencing. Replicative senescence that occurs in hepatocytes in culture and in liver cirrhosis is associated with lack of telomerase activity and results in telomere shortening. Hepatocellular carcinoma (HCC) cells display inactivating mutations of p53 and epigenetic silencing of p16(INK4a). Moreover, they re-express telomerase reverse transcriptase required for telomere maintenance. Thus, senescence bypass and cellular immortality is likely to contribute significantly to HCC development. Oncogene-induced senescence in premalignant lesions and reversible immortality of cancer cells including HCC offer new potentials for tumor prevention and treatment. PMID:19070423

  17. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions.

    Science.gov (United States)

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-02-22

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/microm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to (137)Cs gamma-rays. The mutation frequency increased up to 105 keV/microm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/mum showed all or partial deletions of exons, while among gamma-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not.

  18. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.

    Science.gov (United States)

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  19. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3.

    Science.gov (United States)

    Kitao, Mitsutoshi; Yasuda, Yukio; Kominami, Yuji; Yamanoi, Katsumi; Komatsu, Masabumi; Miyama, Takafumi; Mizoguchi, Yasuko; Kitaoka, Satoshi; Yazaki, Kenichi; Tobita, Hiroyuki; Yoshimura, Kenichi; Koike, Takayoshi; Izuta, Takeshi

    2016-01-01

    Ground-level ozone (O3) concentrations are expected to increase over the 21(st) century, especially in East Asia. However, the impact of O3 has not been directly assessed at the forest level in this region. We performed O3 flux-based risk assessments of carbon sequestration capacity in an old cool temperate deciduous forest, consisting of O3-sensitive Japanese beech (Fagus crenata), and in a warm temperate deciduous and evergreen forest dominated by O3-tolerant Konara oak (Quercus serrata) based on long-term CO2 flux observations. On the basis of a practical approach for a continuous estimation of canopy-level stomatal conductance (Gs), higher phytotoxic ozone dose above a threshold of 0 uptake (POD0) with higher Gs was observed in the beech forest than that in the oak forest. Light-saturated gross primary production, as a measure of carbon sequestration capacity of forest ecosystem, declined earlier in the late growth season with increasing POD0, suggesting an earlier autumn senescence, especially in the O3-sensitive beech forest, but not in the O3-tolerant oak forest. PMID:27601188

  20. Global Reorganization of the Nuclear Landscape in Senescent Cells

    Directory of Open Access Journals (Sweden)

    Tamir Chandra

    2015-02-01

    Full Text Available Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF. However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs, somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.

  1. Emerging roles of lncRNAs in senescence

    DEFF Research Database (Denmark)

    Montes Resano, Marta; Lund, Anders H

    2016-01-01

    Cellular senescence is a complex stress response that leads to an irreversible state of cell growth arrest. Senescence may be induced by different stimuli such as telomere shortening, DNA damage or oncogenic insult among others. Senescent cells are metabolically highly active producing a wealth o...... current knowledge of the mechanistic roles of lncRNAs affecting the main senescence pathways and discuss the importance of identifying new regulators. This article is protected by copyright. All rights reserved.......Cellular senescence is a complex stress response that leads to an irreversible state of cell growth arrest. Senescence may be induced by different stimuli such as telomere shortening, DNA damage or oncogenic insult among others. Senescent cells are metabolically highly active producing a wealth...... of cytokines and chemokines that depending on the context may have a beneficial or deleterious impact on the organism. Senescence is considered a tightly regulated stress response that is largely governed by the p53/p21 and p16/Rb pathways. Many molecules have been identified as regulators of these two...

  2. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    Directory of Open Access Journals (Sweden)

    Nishida E

    2016-05-01

    Full Text Available Erika Nishida,1 Hirofumi Miyaji,1 Akihito Kato,1 Hiroko Takita,2 Toshihiko Iwanaga,3 Takehito Momose,1 Kosuke Ogawa,1 Shusuke Murakami,1 Tsutomu Sugaya,1 Masamitsu Kawanami11Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan; 2Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan; 3Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, JapanAbstract: Graphene oxide (GO consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM, physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1

  3. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  4. Senescence Meets Dedifferentiation

    Directory of Open Access Journals (Sweden)

    Yemima Givaty Rapp

    2015-06-01

    Full Text Available Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation.

  5. Exploring the link between depression and accelerated cellular aging: telomeres hold the key

    Directory of Open Access Journals (Sweden)

    Yu R

    2015-12-01

    Full Text Available Ruby Yu, Jean Woo Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China Abstract: Accumulating evidence suggests that telomeres may be a marker for biological aging and telomere length may be affected by multifactorial influences, including cumulative exposure to depression. Associations with telomere length have been reported for major depressive disorder, lifetime duration of depression, higher depression severity, and history of depression. The exact underling mechanisms for these associations have yet to be fully elucidated; however, oxidative stress, chronic inflammation, dysregulated hypothalamus-pituitary-adrenal axis, and altered cortisol levels may be important biochemical mediators. These mediators could also be influenced by psychological stress, unhealthy lifestyle behaviors, or other potential factors, such as childhood abuse, post-traumatic stress disorder, and anxiety that are commonly associated with depression. As such, stress reduction and lifestyle interventions that may affect the telomere maintenance system should be considered for individuals with depression.Keywords: depression, telomere length, biomarkers, cellular ageing

  6. Senescent cells and their secretory phenotype as targets for cancer therapy

    NARCIS (Netherlands)

    Velarde, Michael C; Demaria, Marco; Campisi, Judith

    2013-01-01

    Cancer is a devastating disease that increases exponentially with age. Cancer arises from cells that proliferate in an unregulated manner, an attribute that is countered by cellular senescence. Cellular senescence is a potent tumor-suppressive process that halts the proliferation, essentially irreve

  7. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  8. Evasion of Cell Senescence Leads to Medulloblastoma Progression.

    Science.gov (United States)

    Tamayo-Orrego, Lukas; Wu, Chia-Lun; Bouchard, Nicolas; Khedher, Ahmed; Swikert, Shannon M; Remke, Marc; Skowron, Patryk; Taylor, Michael D; Charron, Frédéric

    2016-03-29

    How brain tumors progress from precancerous lesions to advanced cancers is not well understood. Using Ptch1(+/-) mice to study medulloblastoma progression, we found that Ptch1 loss of heterozygosity (LOH) is an early event that is associated with high levels of cell senescence in preneoplasia. In contrast, advanced tumors have evaded senescence. Remarkably, we discovered that the majority of advanced medulloblastomas display either spontaneous, somatic p53 mutations or Cdkn2a locus inactivation. Consistent with senescence evasion, these p53 mutations are always subsequent to Ptch1 LOH. Introduction of a p53 mutation prevents senescence, accelerates tumor formation, and increases medulloblastoma incidence. Altogether, our results show that evasion of senescence associated with Ptch1 LOH allows progression to advanced tumors. PMID:26997276

  9. Evasion of Cell Senescence Leads to Medulloblastoma Progression

    Directory of Open Access Journals (Sweden)

    Lukas Tamayo-Orrego

    2016-03-01

    Full Text Available How brain tumors progress from precancerous lesions to advanced cancers is not well understood. Using Ptch1+/− mice to study medulloblastoma progression, we found that Ptch1 loss of heterozygosity (LOH is an early event that is associated with high levels of cell senescence in preneoplasia. In contrast, advanced tumors have evaded senescence. Remarkably, we discovered that the majority of advanced medulloblastomas display either spontaneous, somatic p53 mutations or Cdkn2a locus inactivation. Consistent with senescence evasion, these p53 mutations are always subsequent to Ptch1 LOH. Introduction of a p53 mutation prevents senescence, accelerates tumor formation, and increases medulloblastoma incidence. Altogether, our results show that evasion of senescence associated with Ptch1 LOH allows progression to advanced tumors.

  10. The emerging role of senescent cells in tissue homeostasis and pathophysiology

    Directory of Open Access Journals (Sweden)

    Kaoru Tominaga

    2015-05-01

    Full Text Available Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging, and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells. Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells may largely contribute to physiological and pathological consequences in organisms. Here I review the molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological settings.

  11. Chotosan (Diaoteng San-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8 involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain

    Directory of Open Access Journals (Sweden)

    Tanaka Ken

    2011-09-01

    Full Text Available Abstract Background Chotosan (CTS, Diaoteng San, a Kampo medicine (ie Chinese medicine formula, is reportedly effective in the treatment of patients with cerebral ischemic insults. This study aims to evaluate the therapeutic potential of CTS in cognitive deficits and investigates the effects and molecular mechanism(s of CTS on learning and memory deficits and emotional abnormality in an animal aging model, namely 20-week-old senescence-accelerated prone mice (SAMP8, with and without a transient ischemic insult (T2VO. Methods Age-matched senescence-resistant inbred strain mice (SAMR1 were used as control. SAMP8 received T2VO (T2VO-SAMP8 or sham operation (sham-SAMP8 at day 0. These SAMP8 groups were administered CTS (750 mg/kg, p.o. or water daily for three weeks from day 3. Results Compared with the control group, both sham-SAMP8 and T2VO-SAMP8 groups exhibited cognitive deficits in the object discrimination and water maze tests and emotional abnormality in the elevated plus maze test. T2VO significantly exacerbated spatial cognitive deficits of SAMP8 elucidated by the water maze test. CTS administration ameliorated the cognitive deficits and emotional abnormality of sham- and T2VO-SAMP8 groups. Western blotting and immunohistochemical studies revealed a marked decrease in the levels of phosphorylated forms of neuroplasticity-related proteins, N-methyl-D-aspartate receptor 1 (NMDAR1, Ca2+/calmodulin-dependent protein kinase II (CaMKII, cyclic AMP responsive element binding protein (CREB and brain-derived neurotrophic factor (BDNF in the frontal cortices of sham-SAMP8 and T2VO-SAMP8. Moreover, these animal groups showed significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF, VEGF receptor type 2 (VEGFR2, platelet-derived growth factor-A (PDGF-A and PDGF receptor α (PDGFRα. CTS treatment reversed the expression levels of these factors down-regulated in the brains of sham- and T2VO-SAMP8

  12. Myeloperoxidase-derived hypochlorous acid promotes ox-LDL-induced senescence of endothelial cells through a mechanism involving β-catenin signaling in hyperlipidemia.

    Science.gov (United States)

    Liu, Wei-Qi; Zhang, Yin-Zhuang; Wu, Yan; Zhang, Jie-Jie; Li, Tin-Bo; Jiang, Tian; Xiong, Xiao-Ming; Luo, Xiu-Ju; Ma, Qi-Lin; Peng, Jun

    2015-11-27

    Myeloperoxidase (MPO)-derived product hypochlorous acid (HOCl) is able to induce cellular senescence and MPO is also expressed in endothelial cells besides the well-recognized immune cells. This study aims to clarify the association of endothelium-derived MPO with endothelial senescence in hyperlipidemia. The rats were fed with high-fat diet for 8 weeks to establish a hyperlipidemic model, which showed an increase in plasma lipids, endothelium-derived MPO expression, endothelial senescence and endothelial dysfunction concomitant with a reduction in glycogen synthase kinase 3 beta (GSK-3β) activity and phosphorylated β-catenin (p-β-catenin) level as well as an increase in β-catenin and p53 levels within the endothelium. Next, human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low density lipoprotein (ox-LDL, 100 μg/ml) for 24 h to establish a senescent cell model in vitro. Consistent with the finding in vivo, ox-LDL-induced MPO expression and HUVECs senescence, accompanied by a decrease in GSK-3β activity and p-β-catenin level as well as an increase in HOCl content, β-catenin and p53 levels; these phenomena were attenuated by MPO inhibitor. Replacement of ox-LDL with HOCl could also induce HUVECs senescence and activate the β-catenin/p53 pathway. Based on these observations, we conclude that endothelium-derived MPO is upregulated in hyperlipidemic rats, which may contribute to the accelerated vascular endothelial senescence through a mechanism involving the β-catenin/p53 pathway.

  13. A 181 GOPS AKAZE Accelerator Employing Discrete-Time Cellular Neural Networks for Real-Time Feature Extraction.

    Science.gov (United States)

    Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun

    2015-01-01

    This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures. PMID:26404305

  14. Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts

    DEFF Research Database (Denmark)

    Micutkova, Lucia; Diener, Thomas; Li, Chen;

    2011-01-01

    Cellular senescence can be induced by a variety of mechanisms, and recent data suggest a key role for cytokine networks to maintain the senescent state. Here, we have used a proteomic LC-MS/MS approach to identify new extracellular regulators of senescence in human fibroblasts. We identified 26...... extracellular proteins with significantly different abundance in conditioned media from young and senescent fibroblasts. Among these was insulin-like growth factor binding protein-6 (IGFBP-6), which was chosen for further analysis. When IGFBP-6 gene expression was downregulated, cell proliferation was inhibited...... and apoptotic cell death was increased. Furthermore, downregulation of IGFBP-6 led to premature entry into cellular senescence. Since IGFBP-6 overexpression increased cellular lifespan, the data suggest that IGFBP-6, in contrast to other IGF binding proteins, is a negative regulator of cellular...

  15. Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Kumar, Manish; Seeger, Werner; Voswinckel, Robert

    2014-09-01

    Chronic obstructive pulmonary disease (COPD) is a major disease of the lungs. It primarily occurs after a prolonged period of cigarette smoking. Chronic inflammation of airways and the alveolar space as well as lung tissue destruction are the hallmarks of COPD. Recently it has been shown that cellular senescence might play a role in the pathogenesis of COPD. Cellular senescence comprises signal transduction program, leading to irreversible cell cycle arrest. The growth arrest in senescence can be triggered by many different mechanisms, including DNA damage and its recognition by cellular sensors, leading to the activation of cell cycle checkpoint responses and activation of DNA repair machinery. Senescence can be induced by several genotoxic factors apart from telomere attrition. When senescence induction is based on DNA damage, senescent cells display a unique phenotype, which has been termed "senescence-associated secretory phenotype" (SASP). SASP may be an important driver of chronic inflammation and therefore may be part of a vicious cycle of inflammation, DNA damage, and senescence. This research perspective aims to showcase cellular senescence with relevance to COPD and the striking similarities between the mediators and secretory phenotype in COPD and SASP. PMID:25171460

  16. Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity.

    Science.gov (United States)

    Breslin, Loretta; Prosser, Suzanna L; Cuffe, Sandra; Morrison, Ciaran G

    2014-01-01

    Somatic cells senesce in culture after a finite number of divisions indefinitely arresting their proliferation. DNA damage and senescence increase the cellular number of centrosomes, the 2 microtubule organizing centers that ensure bipolar mitotic spindles. Centrosomes also provide the basal body from which primary cilia extend to sense and transduce various extracellular signals, notably Hedgehog. Primary cilium formation is facilitated by cellular quiescence a temporary cell cycle exit, but the impact of senescence on cilia is unknown. We found that senescent human fibroblasts have increased frequency and length of primary cilia. Levels of the negative ciliary regulator CP110 were reduced in senescent cells, as were levels of key elements of the Hedgehog pathway. Hedgehog inhibition reduced proliferation in young cells with increased cilium length accompanying cell cycle arrest suggesting a regulatory function for Hedgehog in primary ciliation. Depletion of CP110 in young cell populations increased ciliation frequencies and reduced cell proliferation. These data suggest that primary cilia are potentially novel determinants of the reduced cellular proliferation that initiates senescence. PMID:25486364

  17. Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity

    Science.gov (United States)

    Breslin, Loretta; Prosser, Suzanna L; Cuffe, Sandra; Morrison, Ciaran G

    2014-01-01

    Somatic cells senesce in culture after a finite number of divisions indefinitely arresting their proliferation. DNA damage and senescence increase the cellular number of centrosomes, the 2 microtubule organizing centers that ensure bipolar mitotic spindles. Centrosomes also provide the basal body from which primary cilia extend to sense and transduce various extracellular signals, notably Hedgehog. Primary cilium formation is facilitated by cellular quiescence a temporary cell cycle exit, but the impact of senescence on cilia is unknown. We found that senescent human fibroblasts have increased frequency and length of primary cilia. Levels of the negative ciliary regulator CP110 were reduced in senescent cells, as were levels of key elements of the Hedgehog pathway. Hedgehog inhibition reduced proliferation in young cells with increased cilium length accompanying cell cycle arrest suggesting a regulatory function for Hedgehog in primary ciliation. Depletion of CP110 in young cell populations increased ciliation frequencies and reduced cell proliferation. These data suggest that primary cilia are potentially novel determinants of the reduced cellular proliferation that initiates senescence. PMID:25486364

  18. Stress-Induced Premature Senescence or Stress-Induced Senescence-Like Phenotype: One In Vivo Reality, Two Possible Definitions?

    OpenAIRE

    Olivier Toussaint; Patrick Dumont; Jose Remacle; Jean-Francois Dierick; Thierry Pascal; Christophe Frippiat; Joao Pedro Magalhaes; Stephanie Zdanov; Florence Chainiaux

    2002-01-01

    No consensus exists so far on the definition of cellular senescence. The narrowest definition of senescence is irreversible growth arrest triggered by telomere shortening counting cell generations (definition 1). Other authors gave an enlarged functional definition encompassing any kind of irreversible arrest of proliferative cell types induced by damaging agents or cell cycle deregulations after overexpression of proto-oncogenes (definition 2). As stress increases, the proportion of cells in...

  19. Metformin lowers the threshold for stress-induced senescence: a role for the microRNA-200 family and miR-205.

    Science.gov (United States)

    Cufí, Sílvia; Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Quirantes, Rosa; Segura-Carretero, Antonio; Micol, Vicente; Joven, Jorge; Bosch-Barrera, Joaquim; Del Barco, Sonia; Martin-Castillo, Begoña; Vellon, Luciano; Menendez, Javier A

    2012-03-15

    We have tested the hypothesis that the antidiabetic biguanide metformin can be used to manipulate the threshold for stress-induced senescence (SIS), thus accelerating the onset of cancer-protective cellular senescence in response to oncogenic stimuli. Using senescence-prone murine embryonic fibroblasts (MEFs), we assessed whether metformin treatment modified the senescence phenotype that is activated in response to DNA damaging inducers. Metformin significantly enhanced the number of MEFs entering a senescent stage in response to doxorubicin, an anthracycline that induces cell senescence by activating DNA damage signaling pathways (e.g., ATM/ATR) in a reactive oxygen species (ROS)-dependent manner. Using WI-38 and BJ-1 human diploid fibroblasts (HDFs), we explored whether metformin supplementation throughout their entire replicative lifespan may promote the early appearance of the biomarkers of replicative senescence. Chronic metformin significantly reduced HDFs' lifespan by accelerating both the loss of replicative potential and the acquisition of replicative senescence-related biomarkers (e.g., enlarged and flattened cell shapes, loss of arrayed arrangement, accumulation of intracellular and extracellular debris and SA-β-gal-positive staining). Metformin functioned as a bona fide stressful agent, inducing monotonic, dose-dependent, SIS-like responses in BJ-1 HDFs, which are highly resistant to ROS-induced premature senescence. Metformin-induced SIS in BJ-1 fibroblasts was accompanied by the striking activation of several microRNAs belonging to the miR-200s family (miR-200a, miR-141 and miR429) and miR-205, thus mimicking a recently described ability of ROS to chemosensitize cancer cells by specifically upregulating anti-EMT (epithelial-to-mesenchymal transition) miR-200s. Because the unlimited proliferative potential of stem cells results from their metabolic refractoriness to SIS, we finally tested if metformin treatment could circumvent the stress (e.g., ROS

  20. Perturbation of Ribosome Biogenesis Drives Cells into Senescence through 5S RNP-Mediated p53 Activation

    Directory of Open Access Journals (Sweden)

    Kazuho Nishimura

    2015-03-01

    Full Text Available The 5S ribonucleoprotein particle (RNP complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses.

  1. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential.

    Directory of Open Access Journals (Sweden)

    Barbara Mara Klinkhammer

    Full Text Available Mesenchymal stem cell (MSC transplantation has the potential for organ repair. Nevertheless, some factors might lessen the regenerative potential of MSCs, e.g. donor age or systemic disease. It is thus important to carefully assess the patient's suitability for autologous MSC transplantation. Here we investigated the effects of chronic kidney disease (CKD on MSC function. We isolated bone marrow MSCs from remnant kidney rats (RK with CKD (CKD-RK-MSC and found signs of premature senescence: spontaneous adipogenesis, reduced proliferation capacity, active senescence-associated-β-galactosidase, accumulation of actin and a modulated secretion profile. The functionality of CKD-RK-MSCs in vivo was tested in rats with acute anti-Thy1.1-nephritis, where healthy MSCs have been shown to be beneficial. Rats received healthy MSCs, CKD-RK-MSC or medium by injection into the left renal artery. Kidneys receiving healthy MSCs exhibited accelerated healing of glomerular lesions, whereas CKD-RK-MSC or medium exerted no benefit. The negative influence of advanced CKD/uremia on MSCs was confirmed in a second model of CKD, adenine nephropathy (AD. MSCs from rats with adenine nephropathy (CKD-AD-MSC also exhibited cellular modifications and functional deficits in vivo. We conclude that CKD leads to a sustained loss of in vitro and in vivo functionality in MSCs, possibly due to premature cellular senescence. Considering autologous MSC therapy in human renal disease, studies identifying uremia-associated mechanisms that account for altered MSC function are urgently needed.

  2. Induction of Extracellular Matrix-Remodeling Genes by the Senescence-Associated Protein APA-1

    OpenAIRE

    Benanti, Jennifer A.; Williams, Dawnnica K.; Robinson, Kristin L; Ozer, Harvey L.; Galloway, Denise A.

    2002-01-01

    Human fibroblasts undergo cellular senescence after a finite number of divisions, in response to the erosion of telomeres. In addition to being terminally arrested in the cell cycle, senescent fibroblasts express genes that are normally induced upon wounding, including genes that remodel the extracellular matrix. We have identified the novel zinc finger protein APA-1, whose expression increased in senescent human fibroblasts independent of telomere shortening. Extended passage, telomerase-imm...

  3. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    OpenAIRE

    Rong Liu; Hua Liu; Yonju Ha; Tilton, Ronald G.; Wenbo Zhang

    2014-01-01

    Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protei...

  4. Delayed leaf senescence induces extreme drought tolerance in a flowering plant

    OpenAIRE

    Rivero, Rosa M.; Kojima, Mikiko; Gepstein, Amira; Sakakibara, Hitoshi; Mittler, Ron; Gepstein, Shimon; Blumwald, Eduardo

    2007-01-01

    Drought, the most prominent threat to agricultural production worldwide, accelerates leaf senescence, leading to a decrease in canopy size, loss in photosynthesis and reduced yields. On the basis of the assumption that senescence is a type of cell death program that could be inappropriately activated during drought, we hypothesized that it may be possible to enhance drought tolerance by delaying drought-induced leaf senescence. We generated transgenic plants expressing an isopentenyltransfera...

  5. Interactions Between Temperature and Sugars in the Regulation of Leaf Senescence in the Perennial Herb Arabis alpina L.

    Institute of Scientific and Technical Information of China (English)

    Astrid Wingler; Emma Josefine Stangberg; Triambak Saxena; Rupal Mistry

    2012-01-01

    Annual plants usually flower and set seed once before senescence results in the death of the whole plant (monocarpic senescence).Leaf senescence also occurs in polycarpic perennials; even in "evergreen" species individual leaves senesce.In the annual model Arabidopsis thaliana sugars accumulate in the senescent leaves and senescence is accelerated by high sugar availability.Similar to A.thaliana,sugar contents increased with leaf age in the perennial Arabis alpina grown under warm conditions (22 ℃day/18 night).At 5 ℃,sugar contents in non-senescent leaves were higher than at a warm temperature,but dependent on the accession,either sugars did not accumulate or their contents decreased in old leaves.In A.alpina plants grown in their natural habitat in the Alps,sugar contents declined with leaf age.Growth at a cold temperature slightly delayed senescence in A.alpina.In both warm and cold conditions,an external glucose supply accelerated senescence,but natural variation was found in this response.In conclusion,sugar accumulation under warm conditions could accelerate leaf senescence in A.alpina plants,but genotype-specific responses and interactions with growth temperature are likely to influence senescence under natural conditions.

  6. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation.

    Directory of Open Access Journals (Sweden)

    Tomohisa Hayakawa

    Full Text Available Senescent cells develop a pro-inflammatory response termed the senescence-associated secretory phenotype (SASP. As many SASP components affect surrounding cells and alter their microenvironment, SASP may be a key phenomenon in linking cellular senesence with individual aging and age-related diseases. We herein demonstrated that the expression of Sirtuin1 (SIRT1 was decreased and the expression of SASP components was reciprocally increased during cellular senescence. The mRNAs and proteins of SASP components, such as IL-6 and IL-8, quickly accumulated in SIRT1-depleted cells, and the levels of these factors were also higher than those in control cells, indicating that SIRT1 negatively regulated the expression of SASP factors at the transcriptional level. SIRT1 bound to the promoter regions of IL-8 and IL-6, but dissociated from them during cellular senescence. The acetylation of Histone H3 (K9 and H4 (K16 of the IL-8 and IL-6 promoter regions gradually increased during cellular senescence. In SIRT1-depleted cells, the acetylation levels of these regions were already higher than those in control cells in the pre-senescent stage. Moreover, these acetylation levels in SIRT1-depleted cells were significantly higher than those in control cells during cellular senescence. These results suggest that SIRT1 repressed the expression of SASP factors through the deacetylation of histones in their promoter regions.

  7. Chitosan Treatment Delays the Induction of Senescence in Human Foreskin Fibroblast Strains.

    Directory of Open Access Journals (Sweden)

    Ching-Wen Tsai

    Full Text Available Fibroblasts have been extensively used as a model to study cellular senescence. The purpose of this study was to investigate whether the human foreskin fibroblast aging process could be regulated by using the biomaterial chitosan. Fibroblasts cultured on commercial tissue culture polystyrene (TCPS entered senescence after 55-60 population doublings (PDs, and were accompanied by larger cell shape, higher senescence-associated β-galactosidase (SA β-gal activity, lower proliferation capacity, and upregulation of senescence-associated molecular markers p21, p53, retinoblastoma (pRB, and p16. Before senescence was reached, PD48 cells were collected from TCPS and seeded on chitosan for three days (PD48-Cd3 to form multicellular spheroids. The protein expression of senescence-associated secretory phenotypes (SASPs and senescence-associated molecular markers of these cells in PD48-Cd3 spheroids were downregulated significantly. Following chitosan treatment, fibroblasts reseeded on TCPS showed lower SA β-gal activity, increased cellular motility, and a higher proliferation ability of 70-75 PDs. These phenotypic changes were not accompanied by colonies forming in soft agar and a continuous decrease in the senescence-associated proteins p53 and pRB which act as a barrier to tumorigenesis. These results demonstrate that chitosan treatment could delay the induction of senescence which may be useful and safe for future tissue engineering applications.

  8. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric;

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...

  9. Mitochondrial bioenergetics in young, adult, middle-age and senescent brown Norway rats

    Science.gov (United States)

    Mitochondria are central regulators of energy homeostasis and may play a pivotal role in mechanisms of cellular senescence and age-related neurodegenerative and metabolic disorders. However, mitochondrial bioenergetic parameters have not been systematically evaluated under identi...

  10. A two-step model for senescence triggered by a single critically short telomere

    DEFF Research Database (Denmark)

    Abdallah, Pauline; Luciano, Pierre; Runge, Kurt W;

    2009-01-01

    telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p-ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide......Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very short...... for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very...

  11. Human endothelial senescence can be induced by TNF-α

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    TNF-α is one of the most important proinfiammatory cytokines in mediating multiple physio-pathological functions during immunological responses. Vascular endothelial cells, when stimulated by TNF-α2 can increase the expression of multiple cytokines and cellular adhesion molecules and, in turn, actively promote the inflammatory responses by recruiting and activating of leukocytes to the inflammatory site. In addition to endothelial death induced by TNF-α2 we found for the first time that TNF-α can also induce the human endothelial cells senescence. The induced senescent endothelial cells will display SA-β-Gal staining and they were arrested in G0-G1 phase. We found that Aψm would always be up-regulated in response to TNF-α stimulation at early time but when the cells become senescent, A ψmshows a tendency to decrease. It may reflect the sthenic function of mitochondria at early time in response to TNF-αstimulation and decay when the endothelial cells were induced senescent. ROS fluctuates at early time and also decreases when the endothelial cells become senescent. Our results show that the change of mitochondrial function may be related to the senescent process.``

  12. Autophagy Protects Against Senescence and Apoptosis via the RAS-Mitochondria in High-Glucose-Induced Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2014-04-01

    Full Text Available Backgrounds: Autophagy is an important process in the pathogenesis of diabetes and plays a critical role in maintaining cellular homeostasis. However, the autophagic response and its mechanism in diabetic vascular endothelium remain unclear. Methods and Results: We studied high-glucose-induced renin-angiotensin system (RAS-mitochondrial damage and its effect on endothelial cells. With regard to therapeutics, we investigated the beneficial effect of angiotensin-converting enzyme inhibitors (ACEIs or angiotensin II type 1 receptor blockers (ARBs against high-glucose-induced endothelial responses. High glucose activated RAS, enhanced mitochondrial damage and increased senescence, apoptosis and autophagic-responses in endothelial cells, and these effects were mimicked by using angiotensin II (Ang. The use of an ACEI or ARB, however, inhibited the negative effects of high glucose. Direct mitochondrial injury caused by carbonyl cyanide 3-chlorophenylhydrazone (CCCP resulted in similar negative effects of high glucose or Ang and abrogated the protective effects of an ACEI or ARB. Additionally, by impairing autophagy, high-glucose-induced senescence and apoptosis were accelerated and the ACEI- or ARB-mediated beneficial effects were abolished. Furthermore, increases in FragEL™ DNA Fragmentation (TUNEL-positive cells, β-galactosidase activation and the expression of autophagic biomarkers were revealed in diabetic patients and rats, and the treatment with an ACEI or ARB decreased these responses. Conclusions: These data suggest that autophagy protects against senescence and apoptosis via RAS-mitochondria in high-glucose-induced endothelial cells.

  13. Joint action of ozone and hydrogen fluoride on foliar senescence in maize.

    Science.gov (United States)

    MacLean, D C

    1990-01-01

    Maize (Zea mays, L.) plants were exposed intermittently to O(3), HF or both pollutants and the progression of foliar senescence was followed by measuring chlorophyll loss, membrane breakdown and changes in stomatal conductance. At concentrations insufficient to cause foliar symptoms (0.06 microl O(3) litre(-1) and 1.0 microg Fm(-3)), exposures to HF had little or no effect, whereas O(3) exposures accelerated the rate of senescence. The rapid rate of senescence produced by O(3) was moderated if the plants were also exposed to HF. Topical application of 6-benzyladenine (BA) prior to pollutant exposures delayed senescence in all plants and completely prevented the O(3)-induced acceleration of senescence. PMID:15092310

  14. Density dependence triggers runaway selection of reduced senescence.

    Directory of Open Access Journals (Sweden)

    Robert M Seymour

    2007-12-01

    Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  15. Does bristlecone pine senesce?

    Science.gov (United States)

    Lanner, R M; Connor, K F

    2001-04-01

    We evaluated hypotheses of senescence in old trees by comparing putative biomarkers of aging in Great Basin bristlecone pine (Pinus longaeva) ranging in age from 23 to 4713 years. To test a hypothesis that water and nutrient conduction is impaired in old trees we examined cambial products in the xylem and phloem. We found no statistically significant age-related changes in tracheid diameter, or in several other parameters of xylem and phloem related to cambial function. The hypothesis of continuously declining annual shoot growth increments was tested by comparing trees of varying ages in regard to stem unit production and elongation. No statistically significant age-related differences were found. The hypothesis that aging results from an accumulation of deleterious mutations was addressed by comparing pollen viability, seed weight, seed germinability, seedling biomass accumulation, and frequency of putative mutations, in trees of varying ages. None of these parameters had a statistically significant relationship to tree age. Thus, we found no evidence of mutational aging. It appears that the great longevity attained by some Great Basin bristlecone pines is unaccompanied by deterioration of meristem function in embryos, seedlings, or mature trees, an intuitively necessary manifestation of senescence. We conclude that the concept of senescence does not apply to these trees. PMID:11295507

  16. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence. PMID:27651846

  17. Mediterranean diet reduces senescence-associated stress in endothelial cells

    OpenAIRE

    Marin, Carmen; Delgado-Lista, Javier; Ramirez, Rafael; Carracedo, Julia; Caballero, Javier; Perez-Martinez, Pablo; Gutierrez-Mariscal, Francisco Miguel; Garcia-Rios, Antonio; Delgado-Casado, Nieves; Cruz-Teno, Cristina; Yubero-Serrano, Elena Maria; Tinahones, Francisco; Malagon, Maria del Mar; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2011-01-01

    This paper aims to study the effects of the oxidative stress induced by quality and quantity of dietary fat on cellular senescence. Twenty elderly subjects consumed three diets, each for 4 weeks: a saturated fatty acid diet (SFA), a low-fat and high-carbohydrate diet (CHO-ALA), and a Mediterranean diet (MedDiet) enriched in monounsaturated fatty acid following a randomized crossover design. For each diet, we investigated intracellular reactive oxidative species (ROS), cellular apoptosis and t...

  18. 松果菊苷通过下调p53的表达抑制人成纤维细胞的衰老%Echinacoside suppresses cellular senescence of human fibroblastic cells by down-regulation of p53

    Institute of Scientific and Technical Information of China (English)

    朱慧; 成聪; 张弛; 王钊

    2011-01-01

    松果菊苷是一种从肉苁蓉中分离得到的苯乙醇苷类化合物,前期研究结果表明其有延缓人成纤维细胞衰老的作用.为了阐明松果菊苷抗衰老的机制,我们对相关基因p53,p16,p21及Rb的mRNA及蛋白水平的表达进行了检测,结果表明用松果菊苷处理后,衰老的人成纤维细胞(MRC-5) p53的表达被下调,且呈剂量依赖方式.进一步的研究显示可能和SIRTI蛋白的上调有关.分子对接模拟结果显示松果菊苷的作用可能优于另一公认的抗衰老剂白藜芦醇.松果菊苷可能是一种潜在的可以调控细胞衰老的化合物.%Echinacoside is one of the phenylethanoids isolated from the stems of Cistanches salsa.Our previous research showed that echinacoside has anti-senescence activity.To investigate the mechanism of echinacoside's anti-senescence activity,the expressions of p53,p21,p16 and Rb at the mRNA and protein levels were determined.Results showed that the expression of p53 was down-regulated significantly in a dose dependent manner after treatment with echinacoside.Further experiments suggested that the down-regulation of p53 may be correlated with the uprcgulation of SIRT1.In addition,echinacoside may exhibit considerable higher affinity towards SIRT1 than resveratrol,according to our molecular docking simulation.In conclusion,we expect that echinacoside might be a promising candidate for regulating cell senescence.

  19. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells.

    Science.gov (United States)

    Capasso, Stefania; Alessio, Nicola; Squillaro, Tiziana; Di Bernardo, Giovanni; Melone, Mariarosa A; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-11-24

    A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes. PMID:26540573

  20. Protections of Ginsenoside Rg1 on liver mitochondria in senescence accelerated mice%人参皂甙Rg1对快速老化小鼠肝脏线粒体的保护作用

    Institute of Scientific and Technical Information of China (English)

    王月华; 贺晓丽; 李晓秀; 杨海光; 毕明刚; 杜冠华

    2009-01-01

    目的 探讨人参皂苷Rg1防治阿尔茨海默病的作用机制.方法 将8.5月龄快速老化小鼠(SAMP8)随机分为SAMP8对照组、SAMP8给Rg1 10 mg/kg组、SAMP8给Rg1 30 mg/kg组,每组10只.同月龄SAMR1 10只作为对照组.给药65 d后提取肝脏线粒体,测定线粒体呼吸功能、线粒体肿胀度和线粒体膜电位.线粒体于-20℃/20℃反复冻融3次破坏线粒体膜,测定线粒体内MDA含量、SOD活性和LDH含量.结果 与SAMR1相比,SAMP8肝脏线粒体呼吸功能显著降低,表现为线粒体3态呼吸显著降低,4态呼吸改变不明显,呼吸控制指数和磷氧比值显著降低;SAMP8小鼠线粒体膜肿胀度显著增高,线粒体膜电位显著降低.此外,SAMP8线粒体MDA含量显著增多、SOD活性显著升高、LDH显著增高.与SAMP8对照组相比,Rg1 10 和30 mg/kg均可显著改善这些线粒体结构和呼吸功能障碍,改善线粒体内生化功能的改变.结论 人参皂苷Rg1可改善快速老化小鼠线粒体结构和功能障碍.%Objective To observe the influence of Rg1 on the mitochondria of senescence accelerated mice (SAM) to explore its mechanism on Alzheimer's disease (AD). Methods The 8?-month-old SAM were divided into SAM-prone/8 (SAMP8) group, SAMP8 treated with Rg1 10 mg/kg group and 30 mg/kg group. The same old SAM-resistance/1 (SAMR1) act as control. After treatment for 65 d, the liver mitochondria was isolated. Mitochondrial respiratory activity, mitochondrial membrane potential and mitochondrial swelling degree were determined. Mitochondrial oxidative stress was determined by measuring the level of lipid peroxidation and the activity of anti-oxidation enzymes. Results Respiratory control index (RCI), ADP/O ratio, State 3 respiration, and OPR were significantly lower in SAMP8 than those in SAMR1. State 4 respiration was no significantly change in SAMP8 compared with that in SAMR1. At the same time, the loss of mitochondrial membrane potential and the increase of mitochondrial

  1. Effect of Naohuan Pills on Learning and Memory of Senescence Accelerated Mice%脑还丹对快速老化小鼠学习记忆能力的影响

    Institute of Scientific and Technical Information of China (English)

    陶彦谷; 黄启辉

    2011-01-01

    Objective To observe the effect of traditional Chinese medicine Naohuan Pills (NP) on learning and memory of senescence accelerated mice. Methods Thirty six-month old SAMP/8 mice were randomly divided into low- and high-dose NP groups and model group, and 10 six-month old SAMR/1 mice were in normal control group. After medication for 8 weeks, we analyzed the parameters of place navigation test and spatial probe test in Morris water maze. Results Learning and memory ability in SAMP/8 mice was significantly lower than SAMR/1 mice, manifesting as the prolongation of the escape latency from the second day, and the shortening of the time of staying on original platform quadrant. After treatment NP for 8 weeks, escape latency of SAMP/8 mice was shortened(P < 0.001-0.05) , the time of staying on original platform quadrant was prolonged(P < 0.001-0.05) , and the effect was in dose-dependent(P < 0.05 ). Conclusion NP can improve the learning ability in navigation and memory consolidation and reappearance in SAMP/8 mice%目的 观察脑还丹对快速老化( SAMP/8)小鼠学习记忆能力的影响.方法 用6月龄雄性SAMP/8小鼠随机等分为脑还丹高、低剂量组和模型组,6月龄正常老化(SAMR/1)小鼠为正常对照组.给药8周后,运用Morris水迷宫方法测试各组小鼠的定位航行和空间探索能力.结果 SAMP/8小鼠的学习记忆能力明显低于同月龄SAMR/1小鼠,表现为逃避潜伏期从第2天起显著延长,原平台象限停留时间缩短.给予脑还丹8周治疗,SAMP/8小鼠逃避潜伏期明显缩短(P<0.001~0.05).原平台象限停留时间明显延长(P<0.001~0.05),且有一定的量效关系(P<0.05).结论 脑还丹能显著改善SAMP/8小鼠方向辨别的学习能力及记忆巩固、再现能力.

  2. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  3. Identification of Secreted Proteins from Ionizing Radiation-Induced Senescent MCF7 Cells Using Comparative Proteomics

    International Nuclear Information System (INIS)

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated β-galactosidase positivity and over the years a large number of molecular phenotypes have been described, such as changes in gene expression, protein processing and chromatin organization. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence-associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence

  4. The M-type receptor PLA2R regulates senescence through the p53 pathway.

    Science.gov (United States)

    Augert, Arnaud; Payré, Christine; de Launoit, Yvan; Gil, Jesus; Lambeau, Gérard; Bernard, David

    2009-03-01

    Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss-of-function genetic screen in primary human fibroblasts. We report that knockdown of the M-type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress-induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species-DNA damage-p53-dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway.

  5. Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40

    Directory of Open Access Journals (Sweden)

    Bianka Janack

    2016-09-01

    Full Text Available The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated knockdown of the HvWHIRLY1 gene were grown under normal and drought stress conditions. The course of leaf senescence in these lines was monitored by physiological parameters and studies on the expression of senescence- and drought stress-related genes. Drought treatment accelerated leaf senescence in WT plants, whereas WHIRLY 1 knockdown lines (RNAi-W1 showed a stay-green phenotype. Expression of both senescence-associated and drought stress-responsive genes, was delayed in the transgenic plants. Notably, expression of transcription factors of the WRKY and NAC families, which are known to function in senescence- and stress-related signaling pathways, was affected in plants with impaired accumulation of WHIRLY1, indicating that WHIRLY1 acts as an upstream regulator of drought stress-induced senescence. To reveal the epigenetic indexing of HvS40 at the onset of drought-induced senescence in WT and RNAi-W1 lines, stress-responsive loading with histone modifications of promoter and coding sequences of HvS40 was analyzed by chromatin immunoprecipitation and quantified by qRT-PCR. In the wildtype, the euchromatic mark H3K9ac of the HvS40 gene was low under control conditions and was established in response to drought treatment, indicating the action of epigenetic mechanisms in response to drought stress. However, drought stress caused no significant increase in H3K9ac in plants impaired in accumulation of WHIRLY1. The results show that WHIRLY1 knockdown sets in motion a delay in senescence that involves all aspects of gene expression, including changes in chromatin structure.

  6. Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40

    Science.gov (United States)

    Janack, Bianka; Sosoi, Paula; Krupinska, Karin; Humbeck, Klaus

    2016-01-01

    The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated knockdown of the HvWHIRLY1 gene were grown under normal and drought stress conditions. The course of leaf senescence in these lines was monitored by physiological parameters and studies on the expression of senescence- and drought stress-related genes. Drought treatment accelerated leaf senescence in WT plants, whereas WHIRLY 1 knockdown lines (RNAi-W1) showed a stay-green phenotype. Expression of both senescence-associated and drought stress-responsive genes, was delayed in the transgenic plants. Notably, expression of transcription factors of the WRKY and NAC families, which are known to function in senescence- and stress-related signaling pathways, was affected in plants with impaired accumulation of WHIRLY1, indicating that WHIRLY1 acts as an upstream regulator of drought stress-induced senescence. To reveal the epigenetic indexing of HvS40 at the onset of drought-induced senescence in WT and RNAi-W1 lines, stress-responsive loading with histone modifications of promoter and coding sequences of HvS40 was analyzed by chromatin immunoprecipitation and quantified by qRT-PCR. In the wildtype, the euchromatic mark H3K9ac of the HvS40 gene was low under control conditions and was established in response to drought treatment, indicating the action of epigenetic mechanisms in response to drought stress. However, drought stress caused no significant increase in H3K9ac in plants impaired in accumulation of WHIRLY1. The results show that WHIRLY1 knockdown sets in motion a delay in senescence that involves all aspects of gene expression, including changes in chromatin structure. PMID:27608048

  7. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Thomas Secher

    Full Text Available Cellular senescence is an irreversible state of proliferation arrest evoked by a myriad of stresses including oncogene activation, telomere shortening/dysfunction and genotoxic insults. It has been associated with tumor activation, immune suppression and aging, owing to the secretion of proinflammatory mediators. The bacterial genotoxin colibactin, encoded by the pks genomic island is frequently harboured by Escherichia coli strains of the B2 phylogenetic group. Mammalian cells exposed to live pks+ bacteria exhibit DNA-double strand breaks (DSB and undergo cell-cycle arrest and death. Here we show that cells that survive the acute bacterial infection with pks+ E. coli display hallmarks of cellular senescence: chronic DSB, prolonged cell-cycle arrest, enhanced senescence-associated β-galactosidase (SA-β-Gal activity, expansion of promyelocytic leukemia nuclear foci and senescence-associated heterochromatin foci. This was accompanied by reactive oxygen species production and pro-inflammatory cytokines, chemokines and proteases secretion. These mediators were able to trigger DSB and enhanced SA-β-Gal activity in bystander recipient cells treated with conditioned medium from senescent cells. Furthermore, these senescent cells promoted the growth of human tumor cells. In conclusion, the present data demonstrated that the E. coli genotoxin colibactin induces cellular senescence and subsequently propel bystander genotoxic and oncogenic effects.

  8. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    International Nuclear Information System (INIS)

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  9. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The aim of this study was to determine whether an increase of ROS level in cellular senescence induced by IR could mediate mtDNA deletion via impairment of mitochondria biogenesis in IMR-90 human lung fibroblast cells. Our results showed that IR induced cellular senescence, intracellular ROS, and mtDNA deletion, and in particular, suppressed the expression of mitochondrial biogenesis genes (NRF-1, TFAM). Furthermore, these IR-induced events were abolished using a potent antioxidant, NAC, which suggests that ROS is a key cause of mtDNA deletion in IR-induced cellular senescence, and that the alteration of mitochondrial biogenesis may mediate these processes

  10. The case for negative senescence

    DEFF Research Database (Denmark)

    Vaupel, James W; Baudisch, Annette; Dölling, Martin;

    2004-01-01

    kinds of animals that may experience negative senescence and conclude that negative senescence may be widespread, especially in indeterminate-growth species for which size and fertility increase with age. We develop optimization models of life-history strategies that demonstrate that negative senescence......Negative senescence is characterized by a decline in mortality with age after reproductive maturity, generally accompanied by an increase in fecundity. Hamilton (1966) ruled out negative senescence: we adumbrate the deficiencies of his model. We review empirical studies of various plants and some...... is theoretically possible. More generally, our models contribute to understanding of the evolutionary and demographic forces that mold the age-trajectories of mortality, fertility and growth....

  11. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca;

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...... transformed with such constructs the stay-green character has led to increased biomass, but only in few cases to increased seed yield. A coincidence of drought stress resistance and stay-green trait is observed in many transgenic plants....

  12. MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Laura N Bonifacio

    Full Text Available Senescence is a highly regulated process that limits cellular replication by enforcing a G1 arrest in response to various stimuli. Replicative senescence occurs in response to telomeric DNA erosion, and telomerase expression can offset replicative senescence leading to immortalization of many human cells. Limited data exists regarding changes of microRNA (miRNA expression during senescence in human cells and no reports correlate telomerase expression with regulation of senescence-related miRNAs. We used miRNA microarrays to provide a detailed account of miRNA profiles for early passage and senescent human foreskin (BJ fibroblasts as well as early and late passage immortalized fibroblasts (BJ-hTERT that stably express the human telomerase reverse transcriptase subunit hTERT. Selected miRNAs that were differentially expressed in senescence were assayed for expression in quiescent cells to identify miRNAs that are specifically associated with senescence-associated growth arrest. From this group of senescence-associated miRNAs, we confirmed the ability of miR-143 to induce growth arrest after ectopic expression in young fibroblasts. Remarkably, miR-143 failed to induce growth arrest in BJ-hTERT cells. Importantly, the comparison of late passage immortalized fibroblasts to senescent wild type fibroblasts reveals that miR-146a, a miRNA with a validated role in regulating the senescence associated secretory pathway, is also regulated during extended cell culture independently of senescence. The discovery that miRNA expression is impacted by expression of ectopic hTERT as well as extended passaging in immortalized fibroblasts contributes to a comprehensive understanding of the connections between telomerase expression, senescence and processes of cellular aging.

  13. Effect of Total Body Irradiation on Cellular Senescence Related Indexes of Bone Marrow Mesenchymal Stem Cells%全身照射对小鼠骨髓间充质干细胞细胞衰老相关指标的影响

    Institute of Scientific and Technical Information of China (English)

    马杰; 王宏兰; 李静; 史明霞; 李炳宗; 陈斌; 胡建立; 赵春华; 孙慧

    2008-01-01

    为了探讨小鼠骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMMSCs)在放射损伤后细胞衰老(cellular senescence)的细胞和分子水平相关指标的变化,本研究采用全身照射(total body irradiation,TBI)小鼠模型,观察4 Gy TBI后4周内不同时间点小鼠BMMSCs的形态学和衰老相关β-半乳糖苷酶(senescence-associated β-galactosidase,SA-β-gal)的变化,用流式细胞术分析TBI对BMMSCs细胞周期分布的影响,用实时定量RT-PCR检测细胞衰老相关基因p16INK4a、p21Cipl/Wafl、p53和TGF-β1在TBI前后的表达变化.结果显示,4 Gy TBI后4周内小鼠BMMSC的形态和SA-β-gal的表达无明显变化,也未出现细胞衰老相关的细胞周期阻滞和衰老相关基因表达增高.结论:小鼠BMMSCs在4 Gy TBI后近期内未出现细胞衰老相关的分子水平的改变.

  14. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.;

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes...... as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics...

  15. Senescence in adipose-derived stem cells and its implications in nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Cristina Mantovani; Giorgio Terenghi; Valerio Magnaghi

    2014-01-01

    Adult mesenchymal stem cells, specifically adipose-derived stem cells have self-renewal and multiple differentiation potentials and have shown to be the ideal candidate for therapeutic applications in regenerative medicine, particularly in peripheral nerve regeneration. Adipose-de-rived stem cells are easily harvested, although they may show the effects of aging, hence their potential in nerve repair may be limited by cellular senescence or donor age. Cellular senescence is a complex process whereby stem cells grow old as consequence of intrinsic events (e.g., DNA damage) or environmental cues (e.g., stressful stimuli or diseases), which determine a permanent growth arrest. Several mechanisms are implicated in stem cell senescence, although no one is exclusive of the others. In this review we report some of the most important factors modulating the senescence process, which can inlfuence adipose-derived stem cell morphology and function, and compromise their clinical application for peripheral nerve regenerative cell therapy.

  16. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes.

    Science.gov (United States)

    Davalos, Albert R; Kawahara, Misako; Malhotra, Gautam K; Schaum, Nicholas; Huang, Jiahao; Ved, Urvi; Beausejour, Christian M; Coppe, Jean-Philippe; Rodier, Francis; Campisi, Judith

    2013-05-13

    Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.

  17. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells.

    Science.gov (United States)

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-07-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects.

  18. Calculating the Rate of Senescence From Mortality Data: An Analysis of Data From the ERA-EDTA Registry.

    Science.gov (United States)

    Koopman, Jacob J E; Rozing, Maarten P; Kramer, Anneke; Abad, José M; Finne, Patrik; Heaf, James G; Hoitsma, Andries J; De Meester, Johan M J; Palsson, Runolfur; Postorino, Maurizio; Ravani, Pietro; Wanner, Christoph; Jager, Kitty J; van Bodegom, David; Westendorp, Rudi G J

    2016-04-01

    The rate of senescence can be inferred from the acceleration by which mortality rates increase over age. Such a senescence rate is generally estimated from parameters of a mathematical model fitted to these mortality rates. However, such models have limitations and underlying assumptions. Notably, they do not fit mortality rates at young and old ages. Therefore, we developed a method to calculate senescence rates from the acceleration of mortality directly without modeling the mortality rates. We applied the different methods to age group-specific mortality data from the European Renal Association-European Dialysis and Transplant Association Registry, including patients with end-stage renal disease on dialysis, who are known to suffer from increased senescence rates (n = 302,455), and patients with a functioning kidney transplant (n = 74,490). From age 20 to 70, senescence rates were comparable when calculated with or without a model. However, when using non-modeled mortality rates, senescence rates were yielded at young and old ages that remained concealed when using modeled mortality rates. At young ages senescence rates were negative, while senescence rates declined at old ages. In conclusion, the rate of senescence can be calculated directly from non-modeled mortality rates, overcoming the disadvantages of an indirect estimation based on modeled mortality rates.

  19. Biology of senescent liver peroxisomes: role in hepatocellular aging and disease.

    OpenAIRE

    Youssef, J; Badr, M

    1999-01-01

    Despite rising interest in the health problems of the elderly, information on senescence-related alterations in essential metabolic pathways and their responses to various chemicals is scarce. Although peroxisomal pathways are involved in a multitude of cellular functions, little attention has been given to the potential relationship between senescence of these organelles and the process of aging and disease. Although the prevailing experimental evidence points to a decline in liver peroxisom...

  20. Androgen Deprivation-Induced Senescence Promotes Outgrowth of Androgen-Refractory Prostate Cancer Cells

    OpenAIRE

    Burton, Dominick G. A.; Giribaldi, Maria G.; Anisleidys Munoz; Katherine Halvorsen; Asmita Patel; Merce Jorda; Carlos Perez-Stable; Priyamvada Rai

    2013-01-01

    Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refra...

  1. Impact on cellular immunocompetence by late course accelerated hyperfractionation radiotherapy assisted with cisplatin in the treatment of esophageal carcinoma

    International Nuclear Information System (INIS)

    Objective: To investigate the therapeutic results of late course accelerated hyperfractionation radiotherapy (LCAHR) combined with concomitant cisplatin administration as a sensitizer, and to assess the effects on cell-mediated immunocompetence in the treatment of esophageal carcinoma. Methods: From Jan. to Nov. 199, 104 patients with squamous cell carcinoma (SCC) of the esophagus were randomized to receive LCAHR alone (Group A, 53 patients) or LCAHR plus cisplatin (Group B, 51 patients). For both groups, the same radiation technic was given with the conventional fractionation in the first 3 weeks and 1.5 Gy twice daily, a minimum inter fraction interval of 6 hours, 5 days per week in the final 2 weeks. The total dose was 60 Gy/35 fs/5 wk. For the B group patients, cisplatin was given synchronously with 20 mg once daily for 5 days in the 1 st and 5 th weeks. The CD4, CD8 and CD56 expressions in peripheral blood lymphocytes (PBL) were quantitatively assessed with flow cytometry before and during the treatment. Results: The CD4/CD8 ratio of PBL decreased significantly after treatment completion (P < 0.01 in Group A and P < 0.01 in Group B). Whereas the percentage of positive CD56 PBL increased dramatically (P < 0.01 in two groups). There were no evidence that CD expression difference had any statistical or clinical significance. Conclusion: Immunosuppression may be present on cell-mediated immuno-activity (CD4/CD8) and NK cell (CD56)immuno-enhancement may be obtainable on immuno-surveillance, when esophageal carcinoma is being treated by LCAHR with or without cisplatin

  2. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin

    Directory of Open Access Journals (Sweden)

    Huiqiang eChen

    2014-06-01

    Full Text Available Age-related mesenchymal stem cells (MSCs senescence, which impairs its tissue repair capacity in vivo and hence compromises the effects of MSCs-based therapy in clinical applications, is closely related to aging and aging-related diseases. Here, we demonstrated the effect of SIRT1, a NAD+-dependent deacetylase, on age-related MSCs senescence. Knockdown of SIRT1 in young MSCs induces cellular senescence and inhibits cellular proliferation ability whereas overexpression of SIRT1 in aged MSCs reversed the cellular senescence and regained its proliferation capacity, suggesting that SIRT1 could modulate age-induced MSCs senescence. Aging-related proteins, P16 and P21, might be involved in SIRT1-mediated anti-aging effect on MSCs. SIRT1 could positively modulate age-related DNA damage in MSCs. In addition, SIRT1 could induce telomerase reverse transcriptase (TERT expression and consequently enhance telomerase activity, however, no significant change was observed in telomere length. Moreover, SIRT1 could positively regulate TPP1, an important member of telomere shelterin, expression. Together, these results demonstrate that SIRT1 dampens age-related MSCs senescence, which was correlated with the up-regulation of TPP1 expression, telomerase activity and down-regulation of DNA damage.

  3. NETRIN-4 protects glioblastoma cells FROM temozolomide induced senescence.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4 and integrin beta-4 (ITGB4, which promotes glioblastoma cell proliferation via activating AKT-mTOR signaling pathway. In the current work we have explored the effect of NTN4/ITGB4 interaction on TMZ induced glioblastoma cell senescence. We report here that the suppression of either ITGB4 or NTN4 in glioblastoma cell lines significantly enhances cellular senescence. The sensitivity of GBM cells to TMZ was primarily determined by the expression of MGMT. To omit the effect of MGMT, we concentrated on the cell lines devoid of expression of MGMT. NTN4 partially inhibited TMZ induced cell senescence and rescued AKT from dephosphorylation in U251MG cells, a cell line bearing decent levels of ITGB4. However, addition of exogenous NTN4 displayed no significant effect on TMZ induced senescence rescue or AKT activation in U87MG cells, which expressed ITGB4 at low levels. Furthermore, overexpression of ITGB4 combined with exogenous NTN4 significantly attenuated U87MG cell senescence induced by TMZ. These data suggest that NTN4 protects glioblastoma cells from TMZ induced senescence, probably via rescuing TMZ triggered ITGB4 dependent AKT dephosphorylation. This suggests that interfering the interaction between NTN4 and ITGB4 or concomitant use of the inhibitors of the AKT pathway may improve the therapeutic efficiency of TMZ.

  4. Senescence in fishes

    Energy Technology Data Exchange (ETDEWEB)

    Woodhead, A.D.

    1979-01-01

    A long-standing theory, that there is a fundamental difference in aging between fishes and higher vertebrates, is still alive in the minds of many. In 1932, Bidder proposed that aging was causatively related to the cessation of growth at sexual maturity. Fish, which continue to grow throughout their lives, would not age, and therefore were potentially immortal. His ideas were clearly disproven by Comfort, who established that the survival curves of a laboratory population of guppies, Poecilia reticulata, were very similar to those of a small mammal population under laboratory conditions. Recent data from field and laboratory studies, including histological evidence, amply confirm the occurrence of senescence in fishes. Natural death in fish has been associated with reproduction. There is good evidence for a number of species which shows that, with increasing size, the gonad forms a greater proportion of total body weight. In older, larger fish, extensive energy depletion for reproduction is suggested as an important factor in mortality. Reproductive modifications in older fish are also noted.

  5. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-12-01

    . Nuclear export is initiated by ROS-induced phosphorylation of tyrosine 707 within hTERT by the Src kinase family. It might be presumed that protection of mitochondria against oxidative stress is an important telomere length-independent function for telomerase in cell survival. Biotechnology companies are focused on development of therapeutic telomerase vaccines, telomerase inhibitors, and telomerase promoter-driven cell killing in oncology, have a telomerase antagonist in late preclinical studies. Anti-aging medicine-oriented groups have intervened on the market with products working on telomerase activation for a broad range of degenerative diseases in which replicative senescence or telomere dysfunction may play an important role. Since oxidative damage has been shown to shorten telomeres in tissue culture models, the adequate topical, transdermal, or systemic administration of antioxidants (such as, patented ocular administration of 1% N-acetylcarnosine lubricant eye drops in the treatment of cataracts) may be beneficial at preserving telomere lengths and delaying the onset or in treatment of disease in susceptible individuals. Therapeutic strategies toward controlled transient activation of telomerase are targeted to cells and replicative potential in cell-based therapies, tissue engineering and regenerative medicine.

  6. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-12-01

    . Nuclear export is initiated by ROS-induced phosphorylation of tyrosine 707 within hTERT by the Src kinase family. It might be presumed that protection of mitochondria against oxidative stress is an important telomere length-independent function for telomerase in cell survival. Biotechnology companies are focused on development of therapeutic telomerase vaccines, telomerase inhibitors, and telomerase promoter-driven cell killing in oncology, have a telomerase antagonist in late preclinical studies. Anti-aging medicine-oriented groups have intervened on the market with products working on telomerase activation for a broad range of degenerative diseases in which replicative senescence or telomere dysfunction may play an important role. Since oxidative damage has been shown to shorten telomeres in tissue culture models, the adequate topical, transdermal, or systemic administration of antioxidants (such as, patented ocular administration of 1% N-acetylcarnosine lubricant eye drops in the treatment of cataracts) may be beneficial at preserving telomere lengths and delaying the onset or in treatment of disease in susceptible individuals. Therapeutic strategies toward controlled transient activation of telomerase are targeted to cells and replicative potential in cell-based therapies, tissue engineering and regenerative medicine. PMID:26034007

  7. Plants do not count… or do they? New perspectives on the universality of senescence.

    Science.gov (United States)

    Salguero-Gómez, Roberto; Shefferson, Richard P; Hutchings, Michael J

    2013-05-01

    1. Senescence, the physiological decline that results in decreasing survival and/or reproduction with age, remains one of the most perplexing topics in biology. Most theories explaining the evolution of senescence (i.e. antagonistic pleiotropy, accumulation of mutations, disposable soma) were developed decades ago. Even though these theories have implicitly focused on unitary animals, they have also been used as the foundation from which the universality of senescence across the tree of life is assumed. 2. Surprisingly, little is known about the general patterns, causes and consequences of whole-individual senescence in the plant kingdom. There are important differences between plants and most animals, including modular architecture, the absence of early determination of cell lines between the soma and gametes, and cellular division that does not always shorten telomere length. These characteristics violate the basic assumptions of the classical theories of senescence and therefore call the generality of senescence theories into question. 3. This Special Feature contributes to the field of whole-individual plant senescence with five research articles addressing topics ranging from physiology to demographic modelling and comparative analyses. These articles critically examine the basic assumptions of senescence theories such as age-specific gene action, the evolution of senescence regardless of the organism's architecture and environmental filtering, and the role of abiotic agents on mortality trajectories. 4. Synthesis. Understanding the conditions under which senescence has evolved is of general importance across biology, ecology, evolution, conservation biology, medicine, gerontology, law and social sciences. The question 'why is senescence universal or why is it not?' naturally calls for an evolutionary perspective. Senescence is a puzzling phenomenon, and new insights will be gained by uniting methods, theories and observations from formal demography, animal

  8. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Liu AL

    2016-07-01

    Full Text Available Ailing Liu,1,2,* Jinxiang Wu,1,* Aijun Li,2 Wenxiang Bi,3 Tian Liu,1 Liuzhao Cao,1 Yahui Liu,1 Liang Dong1 1Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Pulmonary Diseases, Weihai Municipal Hospital, Weihai, Shandong, People’s Republic of China; 3Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Objectives: Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence.Methods: Human bronchial epithelial cells (16HBE cells cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS, PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway.Results: Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence.Conclusion: CSE can induce cellular senescence in human bronchial

  9. A role for SUV39H1-mediated H3K9 trimethylation in the control of genome stability and senescence in WI38 human diploid lung fibroblasts

    OpenAIRE

    Sidler, Corinne; Woycicki, Rafal; Li, Dongping; Wang, Bo; Kovalchuk, Igor; Kovalchuk, Olga

    2014-01-01

    Cellular senescence has been associated with the age-dependent decline in tissue repair and regeneration, the increasing deterioration of the immune system, and the age-dependent increase in the incidence of cancer. Here, we show that senescence of human lung fibroblast WI-38 cells is associated with extensive changes to the gene expression profile, including the differential expression of transcriptional and epigenetic regulators. Among those, SUV39H1 was downregulated in senescent cells, co...

  10. Evolution of maternal effect senescence.

    Science.gov (United States)

    Moorad, Jacob A; Nussey, Daniel H

    2016-01-12

    Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton's evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton's age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species.

  11. Role of polyamines and ethylene as modulators of plant senescence

    Indian Academy of Sciences (India)

    S Pandey; S A Ranade; P K Nagar; Nikhil Kumar

    2000-09-01

    Under optimal conditions of growth, senescence, a terminal phase of development, sets in after a certain physiological age. It is a dynamic and closely regulated developmental process which involves an array of changes at both physiological and biochemical levels including gene expression. A large number of biotic and abiotic factors accelerate the process. Convincing evidence suggests the involvement of polyamines (PAs) and ethylene in this process. Although the biosynthetic pathways of both PAs and ethylene are interrelated, S-adenosylmethionine (SAM) being a common precursor, their physiological functions are distinct and at times antagonistic, particularly during leaf and flower senescence and also during fruit ripening. This provides an effective means for regulation of their biosynthesis and also to understand the mechanism by which the balance between the two can be established for manipulating the senescence process. The present article deals with current advances in the knowledge of the interrelationship between ethylene and PAs during senescence which may open up new vistas of investigation for the future.

  12. Changes in the Transcriptome of Human Astrocytes Accompanying Oxidative Stress-Induced Senescence.

    Science.gov (United States)

    Crowe, Elizabeth P; Tuzer, Ferit; Gregory, Brian D; Donahue, Greg; Gosai, Sager J; Cohen, Justin; Leung, Yuk Y; Yetkin, Emre; Nativio, Raffaella; Wang, Li-San; Sell, Christian; Bonini, Nancy M; Berger, Shelley L; Johnson, F Brad; Torres, Claudio

    2016-01-01

    Aging is a major risk factor for many neurodegenerative disorders. A key feature of aging biology that may underlie these diseases is cellular senescence. Senescent cells accumulate in tissues with age, undergo widespread changes in gene expression, and typically demonstrate altered, pro-inflammatory profiles. Astrocyte senescence has been implicated in neurodegenerative disease, and to better understand senescence-associated changes in astrocytes, we investigated changes in their transcriptome using RNA sequencing. Senescence was induced in human fetal astrocytes by transient oxidative stress. Brain-expressed genes, including those involved in neuronal development and differentiation, were downregulated in senescent astrocytes. Remarkably, several genes indicative of astrocytic responses to injury were also downregulated, including glial fibrillary acidic protein and genes involved in the processing and presentation of antigens by major histocompatibility complex class II proteins, while pro-inflammatory genes were upregulated. Overall, our findings suggest that senescence-related changes in the function of astrocytes may impact the pathogenesis of age-related brain disorders. PMID:27630559

  13. Predatory senescence in ageing wolves

    Science.gov (United States)

    MacNulty, D.R.; Smith, D.W.; Vucetich, J.A.; Mech, L.D.; Stahler, D.R.; Packer, C.

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics. ?? 2009 Blackwell Publishing Ltd/CNRS.

  14. A Novel Protein RLS1 with NB-ARM Domains Is Involved in Chloroplast Degradation during Leaf Senescence in Rice

    Institute of Scientific and Technical Information of China (English)

    Bin-Bin Jiao; Jian-Jun Wang; Xu-Dong Zhu; Long-Jun Zeng; Qun Li; Zu-Hua He

    2012-01-01

    Leaf senescence,a type of programmed cell death (PCD) characterized by chlorophyll degradation,is important to plant growth and crop productivity.It emerges that autophagy is involved in chloroplast degradation during leaf senescence.However,the molecular mechanism(s) involved in the process is not well understood.In this study,the genetic and physiological characteristics of the rice rls1 (rapid leaf senescence 1) mutant were identified.The rls1 mutant developed small,yellow-brown lesions resembling disease scattered over the whole surfaces of leaves that displayed earlier senescence than those of wild-type plants.The rapid loss of chlorophyll content during senescence was the main cause of accelerated leaf senescence in rls1.Microscopic observation indicated that PCD was misregulated,probably resulting in the accelerated degradation of chloroplasts in rls1 leaves.Map-based cloning of the RLS1 gene revealed that it encodes a previously uncharacterized NB (nucleotide-binding site)-containing protein with an ARM (armadillo) domain at the carboxyl terminus.Consistent with its involvement in leaf senescence,RLS1 was up-regulated during dark-induced leaf senescence and down-regulated by cytokinin.Intriguingly,constitutive expression of RLS1 also slightly accelerated leaf senescence with decreased chlorophyll content in transgenic rice plants.Our study identified a previously uncharacterized NB-ARM protein involved in PCD during plant growth and development,providing a unique tool for dissecting possible autophagymediated PCD during senescence in plants.

  15. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.

    Science.gov (United States)

    Helman, Aharon; Klochendler, Agnes; Azazmeh, Narmen; Gabai, Yael; Horwitz, Elad; Anzi, Shira; Swisa, Avital; Condiotti, Reba; Granit, Roy Z; Nevo, Yuval; Fixler, Yaakov; Shreibman, Dorin; Zamir, Amit; Tornovsky-Babeay, Sharona; Dai, Chunhua; Glaser, Benjamin; Powers, Alvin C; Shapiro, A M James; Magnuson, Mark A; Dor, Yuval; Ben-Porath, Ittai

    2016-04-01

    Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.

  16. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  17. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  18. Selective insulin resistance in hepatocyte senescence

    International Nuclear Information System (INIS)

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance

  19. Selective insulin resistance in hepatocyte senescence

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, Aloysious [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Challis, Benjamin [Institute of Metabolic Sciences, University of Cambridge, Cambridge (United Kingdom); Shannon, Nicholas [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Hoare, Matthew [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Heaney, Judith [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Foundation for Liver Research, Institute of Hepatology, London (United Kingdom); Alexander, Graeme J.M., E-mail: gja1000@doctors.org.uk [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom)

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  20. Genetics of melanoma progression: the rise and fall of cell senescence.

    Science.gov (United States)

    Bennett, Dorothy C

    2016-03-01

    There are many links between cell senescence and the genetics of melanoma, meaning both familial susceptibility and somatic-genetic changes in sporadic melanoma. For example, CDKN2A, the best-known melanoma susceptibility gene, encodes two effectors of cell senescence, while other familial melanoma genes are related to telomeres and their maintenance. This article aimed to analyze our current knowledge of the genetic or epigenetic driver changes necessary to generate a cutaneous metastatic melanoma, the commonest order in which these occur, and the relation of these changes to the biology and pathology of melanoma progression. Emphasis is laid on the role of cell senescence and the escape from senescence leading to cellular immortality, the ability to divide indefinitely. PMID:26386262

  1. Nitric oxide prevents alveolar senescence and emphysema in a mouse model.

    Directory of Open Access Journals (Sweden)

    Amanda E Boe

    Full Text Available Nω-nitro-L-arginine methyl ester (L-NAME treatment induces arteriosclerosis and vascular senescence. Here, we report that the systemic inhibition of nitric oxide (NO production by L-NAME causes pulmonary emphysema. L-NAME-treated lungs exhibited both the structural (alveolar tissue destruction and functional (increased compliance and reduced elastance characteristics of emphysema development. Furthermore, we found that L-NAME-induced emphysema could be attenuated through both genetic deficiency and pharmacological inhibition of plasminogen activator inhibitor-1 (PAI-1. Because PAI-1 is an important contributor to the development of senescence both in vitro and in vivo, we investigated whether L-NAME-induced senescence led to the observed emphysematous changes. We found that L-NAME treatment was associated with molecular and cellular evidence of premature senescence in mice, and that PAI-1 inhibition attenuated these increases. These findings indicate that NO serves to protect and defend lung tissue from physiological aging.

  2. Psychiatric Disorders, Morbidity, and Mortality: Tracing Mechanistic Pathways to Accelerated Aging.

    Science.gov (United States)

    Kiecolt-Glaser, Janice K; Wilson, Stephanie J

    2016-09-01

    A meta-analysis published in this issue of Psychosomatic Medicine provides convincing evidence that certain psychiatric populations have shorter telomeres than nonpsychiatric controls, in accord with the strong evidence linking psychiatric disorders with premature mortality. After addressing the clinical significance of shorter telomeres, this editorial describes mechanistic pathways that lead to telomere shortening. Additionally, two other novel methods for measuring biological markers of accelerated aging are briefly discussed: DNA methylation and cellular senescence based on p16. These innovative approaches could be used to confirm and extend our understanding of psychiatric patients' increased health and mortality risks.

  3. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants.

    Science.gov (United States)

    Agüera, Eloísa; Cabello, Purificación; de la Haba, Purificación

    2010-03-01

    in N- plants these activities started to decrease earlier, APX after 16 days and catalase after 22 days, suggesting that senescence is accelerated in N-leaves. It is probable that systemic signals, such as a deficit in amino acids or other metabolites associated with the nitrogen metabolism produced in plants grown with low nitrogen, lead to an early senescence and a higher oxidation state of the cells of these plant leaves.

  4. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Young; Woo, Chang-Hoon [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Kang, Young Jin; Lee, Kwang Youn [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2011-09-16

    Highlights: {yields} An aging model was established by stimulating VSMC with adriamycin. {yields} Adriamycin increased p-LKB1, p-AMPK, p53 and p21 expressions. {yields} Inhibition of AMPK diminished SA-{beta}-gal staining and restored VSMC proliferation. {yields} p53 and p21 siRNA attenuated adriamycin-induced SA-{beta}-gal staining in VSMC. {yields} p53-p21 pathway is a mediator of LKB1/AMPK induced VSMC senescence. -- Abstract: Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated {beta}-galactosidase (SA-{beta}-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-{beta}-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53-p21 pathway is a mediator of LKB1/AMPK-induced senescence.

  5. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    of telomere length and associated damage, and the accompanying changes that take place elicit signals that have an impact on a number of molecules and downstream events. Precise measurements of replicative senescence biomarkers in biological samples from individuals could be clinically associated...

  6. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Chang

    Full Text Available Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO, and ABA (NCED biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29 was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA and abiotic stresses (dehydration, NaCl and cold. Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.

  7. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2014-01-01

    Accumulation of damaged macromolecules, including irreversibly oxidized proteins, is a hallmark of cellular and organismal ageing. Failure of protein homesotasis is a major contributor to the age-related accumulation of damaged proteins. In skeletal muscle, tissue maintenance and regeneration....... Inactivation of the proteasome in aged cells appeared as a key contributor to the accumulation of such damaged proteins. Untargeted metabolomic profiling and functional analyses indicated glucose metabolism impairment in senescent cells, although mitochondrial respiration remained unaffected. A metabolic shift...... lipids for energy production. Such changes reflect alterations in membrane composition and dysregulation of sphingolipids signaling during senescence. This study establishes a new concept connecting oxidative protein modifications with the altered cellular metabolism associated with the senescent...

  8. CELLULAR RESPONSES TO DNA DAMAGE AND ONCOGENESIS BY THE p53 AND pRb/E2F PATHWAYS

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-07-01

    Full Text Available Cellular responses to stress including DNA damage, show multiple options involving the mechanisms of growth arrest. DNA repair and programmed cell death or apoptosis. Failures in these mechanisms can result in oncogenesis or accelerated senescence. Much of the response is coordinated by p53, a nuclear phosphoprotein with a central role in the defences against physical, chemical and pathogenic agents which challenge the DNA integrity. The p53 pathways for mobilising the cellular defences are linked to the pRB/E2D pathways regulating the cell cycle progression. This paper aims to review the current understanding on the networks and main molecular machinery of these processes. In addition, the implications on cellular decision making for the defences as well as revolutionary aspects of these mechanisms are discussed in brief.

  9. The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells

    DEFF Research Database (Denmark)

    Bendix, Laila; Horn, Peer Bendix; Jensen, Uffe Birk;

    2010-01-01

    history of the cell, superimposed by a more stochastic mechanism, suddenly causing a significant shortening of a single telomere. Previously, studies that have tried to explore the role of critically shortened telomeres have been hampered by methodological problems. With the method presented here...... find a strong correlation between the load of short telomeres and cellular senescence. Further we show that the load of short telomeres is higher in senescent cells compared to proliferating cells at the same passage, offering an explanation of premature cell senescence. This new method, Universal...

  10. Regulation of Senescence in Carnation (Dianthus caryophyllus): Effect of Abscisic Acid and Carbon Dioxide on Ethylene Production.

    Science.gov (United States)

    Mayak, S; Dilley, D R

    1976-11-01

    Abscisic acid hastened senescence of carnation flowers and this was preceded by stimulation of accelerated ethylene production. Carbon dioxide delayed the onset of autocatalytic ethylene production in flowers regardless of treatment with abscisic acid. Flowers exhibited a low and transient climacteric of ethylene production without wilting while in 4% carbon dioxide and underwent accelerated ethylene production culminating in wilting when removed from carbon dioxide. Hypobaric ventilation, which lowers ethylene to hyponormal levels within tissues, extended flower longevity and largely negated enhancement of senescence by abscisic acid. Supplementing hypobarically ventilated flowers with ethylene hastened senescence irrespective of abscisic acid treatment. Collectively, the data indicate that abscisic acid hastens senescence of carnations largely as a result of advancing the onset of autocatalytic ethylene production.

  11. Biological Monitoring of Hexavalent Chromium and Serum Levels of the Senescence Biomarker Apolipoprotein J/Clusterin in Welders

    OpenAIRE

    Vassilios Makropoulos; Gonos, Efstathios S.; Magda Lourda; Trougakos, Ioannis P.; Xenophon Cominos; Alexopoulos, Evangelos C.

    2008-01-01

    Welding fumes contain metals and other toxic substances known or strongly suspected to be related with oxidative stress and premature cellular senescence. Apolipoprotein J/Clusterin (ApoJ/CLU) is a glycoprotein that is differentially regulated in various physiological and disease states including ageing and age-related diseases. In vitro data showed that exposure of human diploid fibroblasts to hexavalent chromium (Cr(VI)) resulted in premature senescence and significant upregulation of the A...

  12. Klotho Prevents NFκB Translocation and Protects Endothelial Cell From Senescence Induced by Uremia.

    Science.gov (United States)

    Buendía, Paula; Carracedo, Julia; Soriano, Sagrario; Madueño, Juan Antonio; Ortiz, Alberto; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2015-10-01

    In patients with renal disease, uremia raises oxidative stress and senescence in endothelial cells, which can lead to endothelial dysfunction and cardiovascular disease. Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. This protein is recognized as an antiaging gene, that modulate both stress-induced senescence and functional response. The aim of the study was to investigate how senescence and oxidative stress induced by uremia in endothelial cells affects Klotho expression and whether intra or extracellular Klotho has effects on the response of these cells. Senescence and oxidative stress was obtained by exposure to uremic serum. Telomere length, the enzyme β-galactosidase, and oxidative stress were studied by flow cytometry. Nuclear factor kappa B activity was determined by electrophoretic mobility shift assay. The expression of Klotho decreased with the uremia and preceded the manifestations of cell aging. Levels of intracellular Klotho decreases associated to endothelial senescence, and exogenous Klotho prevents cellular senescence by inhibiting the increase in oxidative stress induced by uremia and diminished the nuclear factor kappa B-DNA binding ability. PMID:25246106

  13. The oxidative hypothesis of senescence

    Directory of Open Access Journals (Sweden)

    Gilca M

    2007-01-01

    Full Text Available The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g., those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc. This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal β -oxidation and respiratory burst of phagocytic cells, antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol, alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  14. The oxidative hypothesis of senescence.

    Science.gov (United States)

    Gilca, M; Stoian, I; Atanasiu, V; Virgolici, B

    2007-01-01

    The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g, those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc). This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal beta -oxidation and respiratory burst of phagocytic cells), antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol), alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  15. Mitochondrial fission and fusion in astrocytes: a new pathway towards senescence

    Directory of Open Access Journals (Sweden)

    Sonia Luz Albarracin

    2015-02-01

    Full Text Available Astrocytes are highly specialized cells that can maintain the integrity of the synapse, facilitate nutrition and trophic support to neurons, and regulate metabolic coupling between neurons and glia. However, astrocytes are involved in resolving different types of injuries and in aging processes in the brain. Senescence has also been reported in the brain, and senescence-associated loss of astrocyte function is linked to neuronal dysfunction in age-related neurodegenerative diseases such as Alzheimer’s disease and Parkinson's disease. For example, astrocyte senescence per se inhibits synapse maturation and affects synaptic transmission. In response to the cell’s bio-energetic state, mitochondria continuously undergo structural remodeling through fission and fusion processes. These tightly regulated events are believed to be involved in many cellular events such as apoptosis, senescence, and age-related diseases. Although, little is known about the age-related changes that occur in astrocytes and if these cells are able to generate a senescent phenotype mediated by mitochondria, in the present study we evaluated the involvement of mitochondrial remodeling in the senescence process of rat astrocytes in vitro. The results obtained showed that when comparing cells at population doubling two (PD2 with cells at population doubling ten (PD10 there is a significant increase in the activity of the senescence-associated β-galactosidase marker in PD10 cells. In addition, PD10 cells had increased mitochondrial volume, decreased superoxide production, and decreased mitochondrial membrane potential. Protein characterization evidenced changes in the balance between mitochondrial fission and fusion proteins. Collectively, our results demonstrated a senescent-astrocyte phenotype at PD10, which is associated with metabolic and mitochondrial phenotype changes.

  16. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  17. The Lcn2-engineered HEK-293 cells show senescence under stressful condition

    Directory of Open Access Journals (Sweden)

    Bahareh Bahmani

    2015-05-01

    Full Text Available Objective(s: Lipocalin2 (Lcn2 gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC with finite life span under either normal or oxidative stress conditions. However, Lcn2 effects on immortal cell line with infinite proliferation are not defined completely.  Materials and Material and Methods: HEK-293 cells were transfected with recombinant pcDNA3.1 containing Lcn2 fragment (pcDNA3.1-Lcn2. Expression of lipocalin2 in transfected cells was evaluated by RT-PCR, real time RT-PCR, and ELISA. Different cell groups were treated with H2O2 and WST-1 assay was performed to determine their proliferation rate. Senescence was studied by β-galactosidase and gimsa staining methods as well as evaluation of the expression of senescence-related genes by real time RT-PCR. Results: Lcn2 increased cell proliferation under normal culture condition, while the proliferation slightly decreased under oxidative stress.  This decrease was further found to be attributed to senescence. Conclusion: Our findings indicated that under harmful conditions, Lcn2 gene is responsible for the regulation of cell survival through senescence.

  18. Low zinc environment induces stress signaling, senescence and mixed cell death modalities in colon cancer cells.

    Science.gov (United States)

    Rudolf, Emil; Rudolf, Kamil

    2015-12-01

    Currently it is not clear what type of the final cellular response (i.e. cell death modality or senescence) is induced upon chronic intracellular zinc depletion in colon cancer cells. To address this question, isogenic colon cancer lines SW480 and SW620 exposed to low zinc environment were studied over the period of 6 weeks. Low zinc environment reduced total as well as free intracellular zinc content in both cell lines. Decreased intracellular zinc content resulted in changes in cellular proliferation, cell cycle distribution and activation of stress signaling. In addition, colonocytes with low zinc content displayed increased levels of oxidative stress, changes in mitochondrial activity but in the absence of significant DNA damage. Towards the end of treatment (4th-6th week), exposed cells started to change morphologically, and typical markers of senescence as well as cell death appeared. Of two examined colon cancer cell lines, SW480 cells proved to activate predominantly senescent phenotype, with frequent form of demise being necrosis and mixed cell death modality but not apoptosis. Conversely, SW620 cells activated mostly cell death, with relatively equal distribution of apoptosis and mixed types, while senescent phenotypes and necrosis were present only in a small fraction of cell populations. Addition of zinc at the beginning of 4th week of treatment significantly suppressed cell death phenotypes in both cell lines but had no significant effect on senescence. In conclusion, presented results demonstrate variability of responses to chronic zinc depletion in colon cancer as modeled in vitro.

  19. Investigation of protective effects of naloxone on aluminium trichloride-induced memory impairment of senescence-accelerated mice and its mechanism%纳洛酮对三氯化铝致急性衰老小鼠记忆障碍的保护作用及其机制

    Institute of Scientific and Technical Information of China (English)

    顾饶胜; 沈楠; 王艳春; 刘微; 任旷

    2005-01-01

    BACKGROUND: The content of aluminium generally increases in the cerebral cells of patients with senile dementia. Aluminium poisoning in brain has inner link with senile dementia. Naloxone is the specific antagonist of opioid receptor, which can be applied in the treatment of senile dementia according to foreign reports.OBJECTIVE: To investigate protective effects of naloxone on aluminium trichloride-induced memory impairment of senescence-accelerated mice and its mechanism.DESIGN: Randomized controlled trial.SETTING: Jilin Medical College.MATERIALS: The experiment was completed in Laboratory of Pharmacology of Jilin Medical College (formerly the Jilin Military Medical College) from February 2001 to February 2003. A total of 100 healthy adult Kunming mice were selected and randomly divided into 5 groups: control group, model group, naloxone 0.1 mg/kg group, naloxone 0.3 mg/kg group and naloxone 0.9 mg/kg group, with 20 in each group. Except the control group, subcutaneous injection with 70 mg/kg aluminium trichloride was given to the mouse in each group once a day for continuous 7 days; besides this, intraperitoneal injection with 0.1, 0.3, 0.9 mg/kg naloxone was given to the mouse in naloxone groups and the same amount of physiological saline was given to the mouse in the control group.METHODS: The methods of jumping stand and escaping dark were conducted to detect learning ability and memory of mice. Meanwhile, the content of malondialdhehyde in liver and mono-amine oxidase B in brain of mice were also detect.MAIN OUTCOME MEASURES: ① Results of jumping stand experiment of aluminium trichloride-induced model of senescence. ② Results of escaping dark experiment of aluminium trichloride-induced model of senescence. ③ Comparison of malondialdhehyde and mono-amine oxidase B among each group.RESULTS: ① Results of jumping stand experiment of aluminium trichloride-induced model of senescence: Compared withmodel group, the frequency of electric shocks suffered by

  20. Metronomic topotecan impedes tumor growth of MYCN-amplified neuroblastoma cells in vitro and in vivo by therapy induced senescence.

    Science.gov (United States)

    Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Kauer, Maximilian; Kromp, Florian; Frank, Nelli; Rifatbegovic, Fikret; Weiss, Tamara; Ladenstein, Ruth; Hohenegger, Martin; Ambros, Inge M; Ambros, Peter F

    2016-01-19

    Poor prognosis and frequent relapses are major challenges for patients with high-risk neuroblastoma (NB), especially when tumors show MYCN amplification. High-dose chemotherapy triggers apoptosis, necrosis and senescence, a cellular stress response leading to permanent proliferative arrest and a typical senescence-associated secretome (SASP). SASP components reinforce growth-arrest and act immune-stimulatory, while others are tumor-promoting. We evaluated whether metronomic, i.e. long-term, repetitive low-dose, drug treatment induces senescence in vitro and in vivo. And importantly, by using the secretome as a discriminator for beneficial versus adverse effects of senescence, drugs with a tumor-inhibiting SASP were identified.We demonstrate that metronomic application of chemotherapeutic drugs induces therapy-induced senescence, characterized by cell cycle arrest, p21(WAF/CIP1) up-regulation and DNA double-strand breaks selectively in MYCN-amplified NB. Low-dose topotecan (TPT) was identified as an inducer of a favorable SASP while lacking NFKB1/p50 activation. In contrast, Bromo-deoxy-uridine induced senescent NB-cells secret a tumor-promoting SASP in a NFKB1/p50-dependent manner. Importantly, TPT-treated senescent tumor cells act growth-inhibitory in a dose-dependent manner on non-senescent tumor cells and MYCN expression is significantly reduced in vitro and in vivo. Furthermore, in a mouse xenotransplant-model for MYCN-amplified NB metronomic TPT leads to senescence selectively in tumor cells, complete or partial remission, prolonged survival and a favorable SASP.This new mode-of-action of metronomic TPT treatment, i.e. promoting a tumor-inhibiting type of senescence in MYCN-amplified tumors, is clinically relevant as metronomic regimens are increasingly implemented in therapy protocols of various cancer entities and are considered as a feasible maintenance treatment option with moderate adverse event profiles. PMID:26657295

  1. The Relationship Between Learning-memory Function and Neuron Loss of Hippocampal CA1 Region in Senescence Accelerated Mouse P8%快速老化小鼠学习记忆能力与海马CA1区神经元丢失相关性探讨

    Institute of Scientific and Technical Information of China (English)

    李建忠; 郝兴华; 李莎; 崔慧先; 许学华; 刘学敏; 李富德

    2014-01-01

    Objective:To explore the relationship between the decline of learning-memory ability and neuronal loss of hippocampal CA1 region in senescence accelerated mouse P8.Methods:Fourteen 7-month-old healthy male SAMP8 were used as experimental group,and fourteen 7-month-old healthy male SAMR1 were choosed as normal control group.We Detected the spatial learning and memory of mice in each group by Morris water maze (MWM)test,and observsed the number and morphology of neuron in hippocampal CA1 region by Nissl staining.Results:The MWM test showed that the escape latency of SAMP8 group was obviously longer than that in SAMR1 group(P <0.01),and the times of crossing platform also decreased significantly (P < 0.01 ).The Nissl staining demonstrated that the numbers of neuron in hippocampal CA1 region of SAMP8 group drastically reduced(P <0.01)compared with controls.A negative correlation were observed between the escape latency of the fifth day in positioning navigation training and the numbers of neuron in hip-pocampal CA1 region(P<0.01),but the times of crossing platform were positive correlated with the numbers of neuron were (P < 0.05 ).Conclusion:The decrease ability of learning-memory was closely related to the neuronal loss of hippocampal CA1 region in SAMP8 group,thus provided strong evidence for the senescence accelerated mouse P8 as an ideal animal model of researching AD,and also offered new direction for the research and treatment of AD in the future.%目的:探讨快速老化小鼠学习记忆能力下降与海马 CA1区神经元丢失的相关性。方法:选用健康雄性7月龄SAMP8和SAMR1小鼠各14只,通过Morris水迷宫实验检测各组小鼠空间学习记忆能力,Nissl染色观察海马CA1区神经元的数量和形态的变化。结果:与SAMR1对照组相比,SAMP8小鼠逃避潜伏期明显延长(P<0.01),跨越平台次数明显减少(P<0.01);海马CA1区神经元数量明显减少(P<0.01);Morris 水迷宫实验定位航行训练第

  2. 迷迭香对老化小鼠学习记忆功能及抗氧化能力的影响%EFFECT OF ROSEMARY ON THE FUNCTION OF LEARNING AND MEMORY AND ANTIOXIDANT ABILITIES IN SENESCENCE ACCELERATED MICE

    Institute of Scientific and Technical Information of China (English)

    张泽生; 陈頔; 王倩

    2012-01-01

    目的 探究不同剂量迷迭香对老化小鼠(senescence-accelerated mouse,SAM)抗氧化能力的影响. 方法 采用SAM模型,在基础饲料中添加不同剂量(40,80,120 mg/kg bw)迷迭香提取物.实验8w后,用旷场行为学实验检测小鼠在新异环境中的自发行为,并采用Morris水迷宫观察其学习记忆的行为学变化;并于动物处死后,检测小鼠肝、脑组织MDA含量,SOD、GSH-Px的活力. 结果 不同剂量(低、中、高)迷迭香组均可显著增加SAM鼠在新异环境中的自发活动和探究行为,Morris水迷宫结果显示,迷迭香组能使SAM小鼠平均潜伏期明显缩短,穿越平台次数显著增加;与模型组相比,迷迭香各组均可显著提高SAM小鼠肝、脑组织中SOD、GSH-Px的活力,明显降低MDA含量.结论 迷迭香可明显改善SAM小鼠的学习记忆功能,提高抗氧化能力.%Objective To explore the effect of rosemary on the function of learning, memory and antioxidation in senescence-accelerated mice (SAM) . Method The SAM were given rosemary at different doses (40, 80, 120 mg/kg bw). After 8 w, the spontaneous behavior of mice was tested using open field and the learning and memory ability was determined using the Morris water maze tests. Moreover, malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in brain and liver were also assayed. Results The spontaneous activity in the new environment was significantly increased in different rosemary doses groups in the SAM. The Morris water maze test showed that the average latency period of searching platform was significantly reduced and the times of passing through platform was significantly increased in the rosemary groups. Compared with the model group, the contents of MDA of the rosemary groups were significantly decreased, and the activities of SOD and GSH-Px were significantly increased in brain and liver. Conclusion Rosemary can obviously improve the antioxidant

  3. 自愿运动对快速老化小鼠学习记忆能力和海马生长相关蛋白43的影响%Effects of voluntary exercise on learning ability, memory and hippocampus growth-associated protein 43 expression in senescence-accelerated prone mouse

    Institute of Scientific and Technical Information of China (English)

    苑振云; 姜向明; 王铭维; 顾平; 杨秀芬; 苏冠丽; 杨涛; 李斌

    2012-01-01

    Objective To observe the effects of voluntary exercise on the learning ability, memory and hippocampus growth-associated protein 43 (GAP43) expression in senescence-accelerated prone mouse (SAMP8), so as to explore the possible mechanism of exercises on improving the cognitive ability and delaying aging. Methods A total of 60 three-month old female SAMP8 mice were evenly assigned to running cage environment (RCE) group and standard environment (SE) group at random. After three months, Morris water maze test was used to test the platform-seeking latency and search strategy. Then 10 mice were sacrificed in each group for RT-PCR analysis of hippocampus GAP43 mRNA expression, 10 for Western blotting analysis of hippocampus GAP43 protein expression, and 10 for immunohistochemistry staining of hippocampus GAP43 expression. Results Morris water maze test showed that RCE mice had a significant shorter platform-seeking latency than SE mice(P<0. 01, P<0. 05) , and RCE mice had a significant longer time in the first quadrant (P<0. 01) and a shorter time in the fourth quadrant (P<0. 05) compared with SE mice. RCE mice had a significantly higher GAP43 expression in the hippocampus compared with SE mice (P<0. 01). Conclusion Voluntary exercise can improve the learning ability and memory of SAMP8, which might be associated with the increase of GAP43 in the hippocampus.%目的 观察自愿运动对快速老化小鼠(senescence-accelerated mouse prone 8,SA MP8)学习记忆能力和海马生长相关蛋白43(growth-associated protein-43,GAP43)表达的影响,探讨运动提高认知能力延缓衰老的机制.方法 60只3个月龄雌性SAMP8小鼠随机平均分为跑笼环境组(RCE组)和标准环境组(SE组).饲养3个月后,用Morris水迷宫测试小鼠的寻找平台潜伏期及搜索策略.行为学测试后,各组分别取10只小鼠的鼠脑用RT-PCR法检测海马GAP43 mRNA的表达;取10只小鼠的鼠脑用免疫印迹实验检测海马GAP43蛋白的表达;剩余10

  4. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation

    Science.gov (United States)

    Laberge, Remi-Martin; Sun, Yu; Orjalo, Arturo V.; Patil, Christopher K.; Freund, Adam; Zhou, Lili; Curran, Samuel C.; Davalos, Albert R.; Wilson-Edell, Kathleen A.; Liu, Su; Limbad, Chandani; Demaria, Marco; Li, Patrick; Hubbard, Gene B.; Ikeno, Yuji; Javors, Martin; Desprez, Pierre-Yves; Benz, Christopher C.; Kapahi, Pankaj; Nelson, Peter S.; Campisi, Judith

    2015-01-01

    The TOR (target of rapamycin) kinase limits longevity by poorly understood mechanisms. Rapamycin suppresses the mammalian TORC1 complex, which regulates translation, and extends lifespan in diverse species, including mice. We show that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells. Cellular senescence suppresses cancer by preventing cell proliferation. However, as senescent cells accumulate with age, the senescence-associated secretory phenotype (SASP) can disrupt tissues and contribute to age-related pathologies, including cancer. MTOR inhibition suppressed the secretion of inflammatory cytokines by senescent cells. Rapamycin reduced IL6 and other cytokine mRNA levels, but selectively suppressed translation of the membrane-bound cytokine IL1A. Reduced IL1A diminished NF-κB transcriptional activity, which controls much of the SASP; exogenous IL1A restored IL6 secretion to rapamycin-treated cells. Importantly, rapamycin suppressed the ability of senescent fibroblasts to stimulate prostate tumour growth in mice. Thus, rapamycin might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation. PMID:26147250

  5. Petal Senescence: New Concepts for Ageing Cells

    NARCIS (Netherlands)

    Woltering, E.J.; Doorn, van W.G.

    2009-01-01

    Senescence in flower petals can be regarded as a form of programmed cell death (PCD), being a process where cells or tissues are broken down in an orderly and predictable manner, whereby nutrients are re-used by other cells, tissues or plant parts. The process of petal senescence shows many similari

  6. Physiology and molecular biology of petal senescence

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2008-01-01

    Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence

  7. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Winnischofer, Sheila Maria Brochado, E-mail: sheilambw@ufpr.br

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.

  8. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    Full Text Available Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP, which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent" mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen, do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3% oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.

  9. Murine leukemia virus in organs of senescence-prone and -resistant mouse strains.

    Science.gov (United States)

    Carp, R I; Meeker, H C; Chung, R; Kozak, C A; Hosokawa, M; Fujisawa, H

    2002-03-31

    A series of inbred strains of mice have been developed that are either prone (SAMP) or resistant (SAMR) to accelerated senescence. All of these strains originated from an inadvertent cross or crosses between the AKR/J mouse strain and an unknown strain(s). The characteristics of the nine senescence-prone lines differ, with all strains showing generalized aspects of accelerated aging but with each line having a specific aging-related change that is emphasized, e.g. learning and memory deficits, osteoporosis and senile amyloidosis. The senescence-resistant strains have normal patterns of aging and do not show the specific aging-related changes seen in SAMP strains. The fact that AKR mice have high levels of endogenous, ecotropic murine leukemia virus (MuLV) prompted an examination of the expression levels of MuLV in SAM strains. Analysis of brain, spleen and thymus samples revealed that seven of nine SAMP strains had high levels of MuLV and contained the Emv11 provirus (previously termed Akv1) that encodes the predominant MuLV found in AKR mice. In contrast, none of the SAMR strains had Emv11 or significant amounts of virus. The current findings represent an initial step in determining the role of MuLV in the accelerated senescence seen in SAMP strains. PMID:11850021

  10. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence

    Science.gov (United States)

    Largeot, Anne; Perez-Campo, Flor Maria; Marinopoulou, Elli; Lie-a-Ling, Michael; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    The MOZ-TIF2 translocation, which fuses monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase (HAT) with the nuclear co-activator TIF2, is associated with the development of acute myeloid leukemia. We recently found that in the absence of MOZ HAT activity, p16INK4a transcriptional levels are significantly increased, triggering an early entrance into replicative senescence. Because oncogenic fusion proteins must bypass cellular safeguard mechanisms, such as senescence and apoptosis, to induce leukemia, we hypothesized that this repressive activity of MOZ over p16INK4a transcription could be preserved, or even reinforced, in MOZ leukemogenic fusion proteins, such as MOZ-TIF2. We describe here that, indeed, MOZ-TIF2 silences expression of the CDKN2A locus (p16INK4a and p19ARF), inhibits the triggering of senescence and enhances proliferation, providing conditions favorable to the development of leukemia. Furthermore, we describe that abolishing the MOZ HAT activity of the fusion protein leads to a significant increase in expression of the CDKN2A locus and the number of hematopoietic progenitors undergoing senescence. Finally, we report that inhibition of senescence by MOZ-TIF2 is associated with increased apoptosis, suggesting a role for the fusion protein in p53 apoptosis-versus-senescence balance. Our results underscore the importance of the HAT activity of MOZ, preserved in the fusion protein, for repression of the CDKN2A locus transcription and the subsequent block of senescence, a necessary step for the survival of leukemic cells. PMID:26854485

  11. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence.

    Science.gov (United States)

    Largeot, Anne; Perez-Campo, Flor Maria; Marinopoulou, Elli; Lie-a-Ling, Michael; Kouskoff, Valerie; Lacaud, Georges

    2016-04-01

    The MOZ-TIF2 translocation, which fuses monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase (HAT) with the nuclear co-activator TIF2, is associated with the development of acute myeloid leukemia. We recently found that in the absence of MOZ HAT activity, p16(INK4a) transcriptional levels are significantly increased, triggering an early entrance into replicative senescence. Because oncogenic fusion proteins must bypass cellular safeguard mechanisms, such as senescence and apoptosis, to induce leukemia, we hypothesized that this repressive activity of MOZ over p16(INK4a) transcription could be preserved, or even reinforced, in MOZ leukemogenic fusion proteins, such as MOZ-TIF2. We describe here that, indeed, MOZ-TIF2 silences expression of the CDKN2A locus (p16(INK4a) and p19(ARF)), inhibits the triggering of senescence and enhances proliferation, providing conditions favorable to the development of leukemia. Furthermore, we describe that abolishing the MOZ HAT activity of the fusion protein leads to a significant increase in expression of the CDKN2A locus and the number of hematopoietic progenitors undergoing senescence. Finally, we report that inhibition of senescence by MOZ-TIF2 is associated with increased apoptosis, suggesting a role for the fusion protein in p53 apoptosis-versus-senescence balance. Our results underscore the importance of the HAT activity of MOZ, preserved in the fusion protein, for repression of the CDKN2A locus transcription and the subsequent block of senescence, a necessary step for the survival of leukemic cells. PMID:26854485

  12. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  13. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    International Nuclear Information System (INIS)

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy

  14. Resistance to discodermolide, a microtubule-stabilizing agent and senescence inducer, is 4E-BP1–dependent

    OpenAIRE

    Chao, Suzan K.; Lin, Juan; Brouwer-Visser, Jurriaan; Smith, Amos B.; Horwitz, Susan Band; McDaid, Hayley M.

    2010-01-01

    Discodermolide is a microtubule-stabilizing agent that induces accelerated cell senescence. A discodermolide-resistant cell line, AD32, was generated from the human lung cancer cell line A549. We hypothesize that the major resistance mechanism in these cells is escape from accelerated senescence. AD32 cells have decreased levels of 4E-BP1 mRNA and protein, relative to the parental discodermolide-sensitive A549 cells. Lentiviral-mediated re-expression of wild-type 4E-BP1 in AD32 cells increase...

  15. Human Dermal Stem/Progenitor Cell-Derived Conditioned Medium Improves Senescent Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ji-Yong Jung

    2015-08-01

    Full Text Available Adult skin stem cells are recognized as potential therapeutics to rejuvenate aged skin. We previously demonstrated that human dermal stem/progenitor cells (hDSPCs with multipotent capacity could be enriched from human dermal fibroblasts using collagen type IV. However, the effects of hDSPCs on cellular senescence remain to be elucidated. In the present study, we investigated whether conditioned medium (CM collected from hDSPC cultures (hDSPC-CM exhibits beneficial effects on senescent fibroblasts. We found that hDSPC-CM promoted proliferation and decreased the expression level of senescence-associated β-galactosidase in senescent fibroblasts. In addition, p53 phosphorylation and p21 expression were significantly reduced in senescent fibroblasts treated with hDSPC-CM. hDSPC-CM restored the expression levels of collagen type I, collagen type III, and tissue inhibitor of metalloproteinase, and antagonized the increase of matrix metalloproteinase 1 expression. Finally, we demonstrated that hDSPC-CM significantly reduced reactive oxygen species levels by specifically up-regulating the expression level of superoxide dismutase 2. Taken together, these data suggest that hDSPC-CM can be applied as a potential therapeutic agent for improving human aged skin.

  16. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice

    Science.gov (United States)

    Liu, Juhong; Shen, Jianqiang; Xu, Yan; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2016-01-01

    CONSTANS (CO)-like genes have been intensively investigated for their roles in the regulation of photoperiodic flowering, but very limited information has been reported on their functions in other biological processes. Here, we found that a CO-like gene, Ghd2 (Grain number, plant height, and heading date2), which can increase the yield potential under normal growth condition just like its homologue Ghd7, is involved in the regulation of leaf senescence and drought resistance. Ghd2 is expressed mainly in the rice (Oryza sativa) leaf with the highest level detected at the grain-filling stage, and it is down-regulated by drought stress conditions. Overexpression of Ghd2 resulted in significantly reduced drought resistance, while its knockout mutant showed the opposite phenotype. The earlier senescence symptoms and the transcript up-regulation of many senescence-associated genes (SAGs) in Ghd2-overexpressing transgenic rice plants under drought stress conditions indicate that Ghd2 plays essential roles in accelerating drought-induced leaf senescence in rice. Moreover, developmental and dark-induced leaf senescence was accelerated in the Ghd2-overexpressing rice and delayed in the ghd2 mutant. Several SAGs were confirmed to be regulated by Ghd2 using a transient expression system in rice protoplasts. Ghd2 interacted with several regulatory proteins, including OsARID3, OsPURα, and three 14-3-3 proteins. OsARID3 and OsPURα showed expression patterns similar to Ghd2 in rice leaves, with the highest levels at the grain-filling stage, whereas OsARID3 and the 14-3-3 genes responded differently to drought stress conditions. These results indicate that Ghd2 functions as a regulator by integrating environmental signals with the senescence process into a developmental programme through interaction with different proteins. PMID:27638689

  17. Premature aging and immune senescence in HIV-infected children

    Science.gov (United States)

    Gianesin, Ketty; Noguera-Julian, Antoni; Zanchetta, Marisa; Del Bianco, Paola; Petrara, Maria Raffaella; Freguja, Riccardo; Rampon, Osvalda; Fortuny, Clàudia; Camós, Mireia; Mozzo, Elena; Giaquinto, Carlo; De Rossi, Anita

    2016-01-01

    Objective: Several pieces of evidence indicate that HIV-infected adults undergo premature aging. The effect of HIV and antiretroviral therapy (ART) exposure on the aging process of HIV-infected children may be more deleterious since their immune system coevolves from birth with HIV. Design: Seventy-one HIV-infected (HIV+), 65 HIV-exposed-uninfected (HEU), and 56 HIV-unexposed-uninfected (HUU) children, all aged 0–5 years, were studied for biological aging and immune senescence. Methods: Telomere length and T-cell receptor rearrangement excision circle levels were quantified in peripheral blood cells by real-time PCR. CD4+ and CD8+ cells were analysed for differentiation, senescence, and activation/exhaustion markers by flow cytometry. Results: Telomere lengths were significantly shorter in HIV+ than in HEU and HUU children (overall, P < 0.001 adjusted for age); HIV+ ART-naive (42%) children had shorter telomere length compared with children on ART (P = 0.003 adjusted for age). T-cell receptor rearrangement excision circle levels and CD8+ recent thymic emigrant cells (CD45RA+CD31+) were significantly lower in the HIV+ than in control groups (overall, P = 0.025 and P = 0.005, respectively). Percentages of senescent (CD28−CD57+), activated (CD38+HLA-DR+), and exhausted (PD1+) CD8+ cells were significantly higher in HIV+ than in HEU and HUU children (P = 0.004, P < 0.001, and P < 0.001, respectively). Within the CD4+ cell subset, the percentage of senescent cells did not differ between HIV+ and controls, but programmed cell death receptor-1 expression was upregulated in the former. Conclusions: HIV-infected children exhibit premature biological aging with accelerated immune senescence, which particularly affects the CD8+ cell subset. HIV infection per se seems to influence the aging process, rather than exposure to ART for prophylaxis or treatment. PMID:26990630

  18. Daily Feeding of Fructooligosaccharide or Glucomannan Delays Onset of Senescence in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Sadako Nakamura

    2014-01-01

    Full Text Available We hypothesized that daily intake of nondigestible saccharides delays senescence onset through the improvement of intestinal microflora. Here, we raised senescence accelerated mice prone 8 (SAMP8 on the AIN93 diet (CONT, with sucrose being substituted for 5% of fructooligosaccharide (FOS or 5% of glucomannan (GM, 15 mice per group. Ten SAMR1 were raised as reference of normal aging with control diet. Grading of senescence was conducted using the method developed by Hosokawa, and body weight, dietary intake, and drinking water intake were measured on alternate days. Following 38 weeks of these diets we evaluated learning and memory abilities using a passive avoidance apparatus and investigated effects on the intestinal microflora, measured oxidative stress markers, and inflammatory cytokines. Continuous intake of FOS and GM significantly enhanced learning and memory ability and decelerated senescence development when compared with the CONT group. Bifidobacterium levels were significantly increased in FOS and GM-fed mice. Urinary 8OHdG, 15-isoprostane, serum TNF-α, and IL-6 were also lower in FOS-fed mice, while IL-10 in FOS and GM groups was higher than in CONT group. These findings suggest that daily intake of nondigestible saccharides delays the onset of senescence via improvement of intestinal microflora.

  19. Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers.

    Science.gov (United States)

    Shibuya, K; Yoshioka, T; Hashiba, T; Satoh, S

    2000-12-01

    Although the role of the gynoecium in natural senescence of the carnation flower has long been suggested, it has remained a matter of dispute because petal senescence in the cut carnation flower was not delayed by the removal of gynoecium. In this study, the gynoecium was snapped off by hand, in contrast to previous investigations where removal was achieved by forceps or scissors. The removal of the gynoecium by hand prevented the onset of ethylene production and prolonged the vase life of the flower, demonstrating a decisive role of the gynoecium in controlling natural senescence of the carnation flower. Abscisic acid (ABA) and indole-3-acetic acid (IAA), which induced ethylene production and accelerated petal senescence in carnation flowers, did not stimulate ethylene production in the flowers with gynoecia removed (-Gyn flowers). Application of 1-aminocyclopropane-1-carboxylate (ACC), the ethylene precursor, induced substantial ethylene production and petal wilting in the flowers with gynoecia left intact, but was less effective at stimulating ethylene production in the -Gyn flowers and negligible petal in-rolling was observed. Exogenous ethylene induced autocatalytic production of the gas and petal wilting in the -Gyn flowers. These results indicated that ethylene generated in the gynoecium triggers the onset of ethylene production in the petals of carnation during natural senescence.

  20. Suppressed Expression of T-Box Transcription Factors is Involved in Senescence in Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Acquaah-Mensah, George; Malhotra, Deepti; Vulimiri, Madhulika; McDermott, Jason E.; Biswal, Shyam

    2012-06-19

    Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD, as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between senescence

  1. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    Science.gov (United States)

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  2. Recovery of the pubic symphysis on primiparous young and multiparous senescent mice at postpartum.

    Science.gov (United States)

    Consonni, Silvio Roberto; Rosa, Renata Giardini; Nascimento, Maria Amália Cavinato; Vinagre, Cristiane Mendes; Toledo, Olga Maria Szymanski; Joazeiro, Paulo Pinto

    2012-07-01

    It has been observed that parturition has a significant effect on female skeletal architecture and that age alters musculoskeletal tissues and their functions. We therefore hypothesized that multiparity affects the recovery of the pubic symphysis in senescent mice at postpartum and the morphology of the interpubic tissues. The pubic symphysis of primiparous young, virgin senescent (VS) and multiparous senescent (MS) Swiss mice was examined by light microscopy, transmission electron microscopy, morphometric analysis and immunohistochemistry. The mouse pubic symphysis was remodeled during the first pregnancy: the cellular phenotype and morphology changed to ensure a structurally safe birth canal, followed by recovery of the interpubic articulation after birth. The morphology of the pubic symphysis in the VS group was maintained in a state similar to that observed in virgin young mice. In contrast, MS mice exhibited an interpubic ligament characterized by extended fibrocyte-like cells, an opened interpubic articulation gap, compacted and thin collagen fibrils and scarce galectin-3-positive cells. Thus, we found that the cellular and extracellular characteristics of the pubic symphysis were altered by multiparity in senescent mice. These particular tissue characteristics of the MS group might be associated with an impaired recovery process at postpartum. Thus, a better understanding of the alterations that occur in the birth canal, including the pubic symphysis, due to multiparity in reproductively aged mice may contribute to our comprehension of the biological mechanisms that modify the skeleton and pelvic ligaments and even play a role in the murine model of pelvic organ prolapse. PMID:22648544

  3. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

    Directory of Open Access Journals (Sweden)

    Conor Lawless

    Full Text Available Increases in cellular Reactive Oxygen Species (ROS concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage. However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS. We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.

  4. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells

    Science.gov (United States)

    Legzdina, Diana; Romanauska, Anete; Nikulshin, Sergey; Kozlovska, Tatjana; Berzins, Uldis

    2016-01-01

    Background and Objectives Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates in regenerative medicine. The need for in vitro propagation to obtain therapeutic quantities of the cells imposes a risk of impaired functionality due to cellular senescence. The aim of the study was to analyze in vitro senescence of previously cryopreserved human ADSCs subjected to serial passages in cell culture. Methods and Results ADSC cultures from 8 donors were cultivated until proliferation arrest was reached. A gradual decline of ADSC fitness was observed by altered cell morphology, loss of proliferative, clonogenic and differentiation abilities and increased β-galactosidase expression all of which occurred in a donor-specific manner. Relative telomere length (RTL) analysis revealed that only three tested cultures encountered replicative senescence. The presence of two ADSC subsets with significantly different RTL and cell size was discovered. The heterogeneity of ADSC cultures was supported by the intermittent nature of aging seen in tested samples. Conclusions We conclude that the onset of in vitro senescence of ADSCs is a strongly donor-specific process which is complicated by the intricate dynamics of cell subsets present in ADSC population. This complexity needs to be carefully considered when elaborating protocols for personalized cellular therapy. PMID:27426094

  5. A Nampt inhibitor FK866 mimics vitamin B3 deficiency by causing senescence of human fibroblastic Hs68 cells via attenuation of NAD(+)-SIRT1 signaling.

    Science.gov (United States)

    Song, Tuzz-Ying; Yeh, Shu-Lan; Hu, Miao-Lin; Chen, Mei-Yau; Yang, Nae-Cherng

    2015-12-01

    Vitamin B3 (niacin) deficiency can cause pellagra with symptoms of dermatitis, diarrhea and dementia. However, it is unclear whether the vitamin B3 deficiency causes human aging. FK866 (a Nampt inhibitor) can reduce intracellular NAD(+) level and induce senescence of human Hs68 cells. However, the mechanisms underlying FK866-induced senescence of Hs68 cells are unclear. In this study, we used FK866 to mimic the effects of vitamin B3 deficiency to reduce the NAD(+) level and investigated the mechanisms of FK866-induced senescence of Hs68 cells. We hypothesized that FK866 induced the senescence of Hs68 cells via an attenuation of NAD(+)-silent information regulator T1 (SIRT1) signaling. We found that FK866 induced cell senescence and diminished cellular NAD(+) levels and SIRT1 activity (detected by acetylation of p53), and these effects were dramatically antagonized by co-treatment with nicotinic acid, nicotinamide, or NAD(+). In contrast, the protein expression of SIRT1, AMP-activated protein kinase, mammalian target of rapamycin, and nicotinamide phosphoribosyltransferase (Nampt) was not affected by FK866. In addition, the role of GSH in the FK866-induced cells senescence may be limited, as N-acetylcysteine did not antagonize FK866-induced cell senescence. These results suggest that FK866 induces cell senescence via attenuation of NAD(+)-SIRT1 signaling. The effects of vitamin B3 deficiency on human aging warrant further investigation. PMID:26330291

  6. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4

    Science.gov (United States)

    Lang, Alexander; Grether-Beck, Susanne; Singh, Madhurendra; Kuck, Fabian; Jakob, Sascha; Kefalas, Andreas; Altinoluk-Hambüchen, Simone; Graffmann, Nina; Schneider, Maren; Lindecke, Antje; Brenden, Heidi; Felsner, Ingo; Ezzahoini, Hakima; Marini, Alessandra; Weinhold, Sandra; Vierkötter, Andrea; Tigges, Julia; Schmidt, Stephan; Stühler, Kai; Köhrer, Karl; Uhrberg, Markus; Haendeler, Judith; Krutmann, Jean; Piekorz, Roland P.

    2016-01-01

    Mammalian sirtuins are involved in the control of metabolism and life-span regulation. Here, we link the mitochondrial sirtuin SIRT4 with cellular senescence, skin aging, and mitochondrial dysfunction. SIRT4 expression significantly increased in human dermal fibroblasts undergoing replicative or stress-induced senescence triggered by UVB or gamma-irradiation. In-vivo, SIRT4 mRNA levels were upregulated in photoaged vs. non-photoaged human skin. Interestingly, in all models of cellular senescence and in photoaged skin, upregulation of SIRT4 expression was associated with decreased levels of miR-15b. The latter was causally linked to increased SIRT4 expression because miR-15b targets a functional binding site in the SIRT4 gene and transfection of oligonucleotides mimicking miR-15b function prevented SIRT4 upregulation in senescent cells. Importantly, increased SIRT4 negatively impacted on mitochondrial functions and contributed to the development of a senescent phenotype. Accordingly, we observed that inhibition of miR-15b, in a SIRT4-dependent manner, increased generation of mitochondrial reactive oxygen species, decreased mitochondrial membrane potential, and modulated mRNA levels of nuclear encoded mitochondrial genes and components of the senescence-associated secretory phenotype (SASP). Thus, miR-15b is a negative regulator of stress-induced SIRT4 expression thereby counteracting senescence associated mitochondrial dysfunction and regulating the SASP and possibly organ aging, such as photoaging of human skin. PMID:26959556

  7. Oncogene-induced senescence in melanocytes

    OpenAIRE

    Leikam, Claudia

    2013-01-01

    Melanoma is the most aggressive skin cancer with very limited treatment options. Upon appearance of metastases chemotherapeutics are used to either kill or slow down the growth of cancer cells by inducing apoptosis or senescence, respectively. With melanomas originating from melanocytes, it is vital to elucidate the mechanisms that distinguish senescence induction from proliferation and tumourigenicity. Xmrk (Xiphophorus melanoma receptor kinase), the fish orthologue of the human epidermal gr...

  8. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype.

    Science.gov (United States)

    Mosieniak, Grażyna; Sliwinska, Małgorzata A; Przybylska, Dorota; Grabowska, Wioleta; Sunderland, Piotr; Bielak-Zmijewska, Anna; Sikora, Ewa

    2016-05-01

    Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin. PMID:26916504

  9. A Micro-RNA Connection in BRafV600E-Mediated Premature Senescence of Human Melanocytes

    Directory of Open Access Journals (Sweden)

    Gang Ren

    2012-01-01

    Full Text Available Recent high-throughput-sequencing of the cancer genome has identified oncogenic mutations in BRaf genetic locus as one of the critical events in melanomagenesis. In normal cells, the activity of BRaf is tightly regulated. Gain-of-function mutations like those identified in melanoma frequently lead to enhanced cell-survival and unrestrained growth. The activating mutation of BRaf will also induce the cells to senesce. However, the mechanism by which the oncogenic BRaf induces the senescent barrier remains poorly defined. microRNAs have regulatory functions toward the expression of genes that are important in carcinogenesis. Here we show that expression of several microRNAs is altered when the oncogenic version of BRaf is introduced in cultured primary melanocytes and these cells undergo premature cellular senescence. These include eight microRNAs whose expression rates are significantly stimulated and three that are repressed. While most of the induced microRNAs have documented negative effects on cell cycle progression, one of the repressed microRNAs has proven oncogenic functions. Ectopic expression of some of these induced microRNAs increased the expression of senescence markers and induced growth arrest and senescence in primary melanocytes. Taken together, our results suggest that the change in microRNA expression rates may play a vital role in senescence induced by the oncogenic BRaf.

  10. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Kleine-Kohlbrecher, Daniela; Dietrich, Nikolaj;

    2007-01-01

    The p16INK4A and p14ARF proteins, encoded by the INK4A-ARF locus, are key regulators of cellular senescence, yet the mechanisms triggering their up-regulation are not well understood. Here, we show that the ability of the oncogene BMI1 to repress the INK4A-ARF locus requires its direct associatio...

  11. Preventive Effects of Epigallocatechin-3-O-Gallate against Replicative Senescence Associated with p53 Acetylation in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Wook Han

    2012-01-01

    Full Text Available Considering the various pharmacological activities of epigallocatechin-3-O-gallate (EGCG including anticancer, and anti-inflammatory, antidiabetic, and so forth, relatively less attention has been paid to the antiaging effect of EGCG on primary cells. In this study, the preventive effects of EGCG against serial passage-induced senescence were investigated in primary cells including rat vascular smooth muscle cells (RVSMCs, human dermal fibroblasts (HDFs, and human articular chondrocytes (HACs. The involvement of Sirt1 and acetylated p53 was examined as an underlying mechanism for the senescence preventive activity of EGCG in HDFs. All cells were employed with the initial passage number (PN between 3 and 7. For inducing senescence, the cells were serially passaged at the predetermined times and intervals in the absence or presence of EGCG (50 or 100 μM. Serial passage-induced senescence in RVSMCs and HACs was able to be significantly prevented at 50 μM EGCG, while in HDFs, 100 μM EGCG could significantly prevent senescence and recover their cell cycle progression close to the normal level. Furthermore, EGCG was found to prevent serial passage- and H2O2-induced senescence in HDFs by suppressing p53 acetylation, but the Sirt1 activity was unaffected. In addition, proliferating HDFs showed similar cellular uptake of FITC-conjugated EGCG into the cytoplasm with their senescent counterparts but different nuclear translocation of it from them, which would partly account for the differential responses to EGCG in proliferating versus senescent cells. Taking these results into consideration, it is suggested that EGCG may be exploited to craft strategies for the development of an antiaging or age-delaying agent.

  12. p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts.

    Science.gov (United States)

    Chen, Wenqi; Kang, Jian; Xia, Jiping; Li, Yanhua; Yang, Bo; Chen, Bin; Sun, Weiling; Song, Xiuzu; Xiang, Wenzhong; Wang, Xiaoyong; Wang, Fei; Wan, Yinsheng; Bi, Zhigang

    2008-05-01

    Chronic exposure to solar UV irradiation leads to photoaging, immunosuppression, and ultimately carcinogenesis. Cellular senescence is thought to play an important role in tumor suppression and apoptosis resistance. However, the relationships among stress-induced premature senescence (SIPS), tumorigenesis and apoptosis induced by UVB remain unknown. We developed a model of UVB-induced premature senescence in human skin fibroblasts (HSFs). After five repeated subcytotoxic UVB exposures at a dose of 10 mJ/cm2, the following biomarkers of senescence were markedly present: senescence-associated beta-galactosidase (SA beta-gal) activity, growth arrest, and the overexpression of senescence-associated genes. Firstly, there was an increase in the proportion of cells positive for SA beta-gal activity. Secondly, there was a loss of replicative potential as assessed by MTT assay. FACS analysis showed that UVB-stressed HSFs were blocked mostly in the G1 phase of the cell cycle, and replicative senescence, and protein expression of p53, p21(WAF-1) and p16(INK-4a) increased significantly. Thirdly, the mRNA levels of three senescence-associated genes, fibronectin, osteonectin and SM22, also increased. A real time PCR array to investigate the mRNA expression of p53-related genes involved in growth arrest, apoptosis and tumorigenesis indicated that p53, p21, p19, Hdm2, and Bax were up-regulated, and bcl, HIF-1alpha and VEGF were down-regulated. Collectively, our data suggest that UVB-induced SIPS plays an important role in p53-related apoptosis resistance and tumor suppression activity. PMID:18425358

  13. Tocotrienol-Rich Fraction Prevents Cell Cycle Arrest and Elongates Telomere Length in Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2011-01-01

    Full Text Available This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF in preventing cellular senescence of human diploid fibroblasts (HDFs. Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G0/G1 phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA-β-gal, damaged DNA, and cells in G0/G1 phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.

  14. Epigenetic Regulation of Myocardial Homeostasis, Self-Regeneration and Senescence.

    Science.gov (United States)

    Matteucci, Marco; Papini, Gaia; Ciofini, Enrica; Barile, Lucio; Lionetti, Vincenzo

    2015-01-01

    The adult myocardium has limited capacity to preserve, renew or rejuvenate itself. The local microenvironment may induce epigenetic changes affecting the survival, proliferation, function and senescence of cardiac cells at rest and following the exposure to different stressors. The cellular response to microenvironment is characterized by the release of ions, oxygen free radicals, auto/paracrine factors and RNAs that drive the magnitude of gene reprogramming through the interaction with specific promoters. The epigenetic alterations may act at transcriptional and post-transcriptional level and change cardiac physiological traits. The abnormal DNA methylation underlies the progressive decay of contractile function and the angiogenic ability; while, the histone acetylation promotes the survival, function and proliferation of cardiac cells in the presence of ischemic microenvironment. At least, the expression and secretion of microRNAs and long noncoding RNAs may regulate the threshold to stress tolerance of adult cardiac cells and induce the matrix turnover as well. Natural or synthetic active compounds effectively modulate the epigenetic state of cardiac cells. Plant foods contain many active compounds with epigenetic properties and might assume a clinical significance as natural cardiac regenerators or rejuvenators. Our review describes novel epigenetic mechanisms that underpin myocardial remodeling, repair/ regeneration or senescence in order to support the development of most effective and reproducible rescue therapy of adult heart. PMID:26122032

  15. Gene Network Analysis and Functional Studies of Senescence-associated Genes Reveal Novel Regulators of Arabidopsis Leaf Senescence

    Institute of Scientific and Technical Information of China (English)

    Zhonghai Li; Jinying Peng; Xing Wen; Hongwei Guo

    2012-01-01

    Plant leaf senescence has been recognized as the last phase of plant development,a highly ordered process regulated by genes known as senescence associated genes (SAGs).However,the function of most of SAGs in regulating leaf senescence as well as regulators of those functionally known SAGs are still unclear.We have previously developed a curated database of genes potentially associated with leaf senescence,the Leaf Senescence Database (LSD).In this study,we built gene networks to identify common regulators of leaf senescence in Arabidopsis thaliana using promoting or delaying senescence genes in LSD.Our results demonstrated that plant hormones cytokinin,auxin,nitric oxide as well as small molecules,such as Ca2+,delay leaf senescence.By contrast,ethylene,ABA,SA and JA as well as small molecules,such as oxygen,promote leaf senescence,altogether supporting the idea that phytohormones play a critical role in regulating leaf senescence.Functional analysis of candidate SAGs in LSD revealed that a WRKY transcription factor WRKY75 and a Cys2/His2-type transcription factor AZF2 are positive regulators of leaf senescence and loss-of-function of WRKY75 or AZF2 delayed leaf senescence.We also found that silencing of a protein phosphatase,AtMKP2,promoted early senescence.Collectively,LSD can serve as a comprehensive resource for systematic study of the molecular mechanism of leaf senescence as well as offer candidate genes for functional analyses.

  16. Characterisation of Lipid Changes in Ethylene-Promoted Senescence and its Retardation by Suppression of Phospholipase Dδ in Arabidopsis Leaves

    Directory of Open Access Journals (Sweden)

    Yanxia eJia

    2015-11-01

    Full Text Available Ethylene and abscisic acid (ABA both accelerate senescence of detached Arabidopsis leaves. We previously showed that suppression of Phospholipase Dδ (PLDδ retarded ABA-promoted senescence. Here, we report that ethylene-promoted senescence is retarded in detached leaves lacking PLDδ. We further used lipidomics to comparatively profile the molecular species of membrane lipids between wild-type and PLDδ-knockout (PLDδ-KO Arabidopsis during ethylene-promoted senescence. Lipid profiling revealed that ethylene caused a decrease in all lipids levels, except phosphatidic acid (PA, caused increases in the ratios of digalactosyl diglyceride /monogalactosyl diglyceride (MGDG and phosphatidylcholine (PC/phosphatidylethanolamine (PE, and caused degradation of plastidic lipids before that of extraplastidic lipids in wild-type plants. The accelerated degradation of plastidic lipids during ethylene-promoted senescence in wild-type plants was attenuated in PLDδ-KO plants. No obvious differences in substrate and product of PLDδ-catalysed phospholipid hydrolysis were detected between wild-type and PLDδ-KO plants, which indicated that the retardation of ethylene-promoted senescence by suppressing PLDδ might not be related to the role of PLDδ in catalysing phospholipid degradation. In contrast, higher plastidic lipid content, especially of MGDG, in PLDδ-KO plants was crucial for maintaining photosynthetic activity. The lower relative content of PA and higher PC/PE ratio in PLDδ-KO plants might contribute to maintaining cell membrane integrity. The integrity of the cell membrane in PLDδ-KO plants facilitated maintenance of the membrane function and of the proteins associated with the membrane. Taking these findings together, higher plastidic lipid content and the integrity of the cell membrane in PLDδ-KO plants might contribute to the retardation of ethylene-promoted senescence by the suppression of PLDδ.

  17. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts.

    Directory of Open Access Journals (Sweden)

    Shy Cian Khor

    Full Text Available Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF and α-tocopherol (ATF in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal expression, myogenic differentiation and myogenic regulatory factors (MRFs expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.

  18. Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise

    OpenAIRE

    Marta eCosín-Tomás; Alvarez-López, María J; Sandra eSanchez-Roige; Jaume F Lalanza; Sergi eBayod; Coral eSanfeliu; Merce ePallas; Rosa María Escorihuela; Perla eKaliman

    2014-01-01

    The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of vo...

  19. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration

    Science.gov (United States)

    Marazita, Mariela C.; Dugour, Andrea; Marquioni-Ramella, Melisa D.; Figueroa, Juan M.; Suburo, Angela M.

    2015-01-01

    Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this condition. In this study, we hypothesized that oxidative damage, promoted by endogenous or exogenous sources, could elicit a senescence response in RPE cells, which would in turn dysregulate the expression of major players in AMD pathogenic mechanisms. We showed that exposure of a human RPE cell line (ARPE-19) to a cigarette smoke concentrate (CSC), not only enhanced Reactive Oxygen Species (ROS) levels, but also induced 8-Hydroxydeoxyguanosine-immunoreactive (8-OHdG) DNA lesions and phosphorylated-Histone 2AX-immunoreactive (p-H2AX) nuclear foci. CSC-nuclear damage was followed by premature senescence as shown by positive senescence associated-β-galactosidase (SA-β-Gal) staining, and p16INK4a and p21Waf-Cip1 protein upregulation. N-acetylcysteine (NAC) treatment, a ROS scavenger, decreased senescence markers, thus supporting the role of oxidative damage in CSC-induced senescence activation. ARPE-19 senescent cultures were also established by exposure to hydrogen peroxide (H2O2), which is an endogenous stress source produced in the retina under photo-oxidation conditions. Senescent cells upregulated the proinflammatory cytokines IL-6 and IL-8, the main markers of the senescence-associated secretory phenotype (SASP). Most important, we show for the first time that senescent ARPE-19 cells upregulated vascular endothelial growth factor (VEGF) and simultaneously downregulated complement factor H (CFH) expression. Since both phenomena are involved in AMD pathogenesis, our results support the hypothesis that SIPS could be a principal player in the induction and progression of AMD. Moreover, they would also explain the striking association of this disease

  20. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Mariela C. Marazita

    2016-04-01

    Full Text Available Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD, a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS is postulated to contribute to this condition. In this study, we hypothesized that oxidative damage, promoted by endogenous or exogenous sources, could elicit a senescence response in RPE cells, which would in turn dysregulate the expression of major players in AMD pathogenic mechanisms. We showed that exposure of a human RPE cell line (ARPE-19 to a cigarette smoke concentrate (CSC, not only enhanced Reactive Oxygen Species (ROS levels, but also induced 8-Hydroxydeoxyguanosine-immunoreactive (8-OHdG DNA lesions and phosphorylated-Histone 2AX-immunoreactive (p-H2AX nuclear foci. CSC-nuclear damage was followed by premature senescence as shown by positive senescence associated-β-galactosidase (SA-β-Gal staining, and p16INK4a and p21Waf-Cip1 protein upregulation. N-acetylcysteine (NAC treatment, a ROS scavenger, decreased senescence markers, thus supporting the role of oxidative damage in CSC-induced senescence activation. ARPE-19 senescent cultures were also established by exposure to hydrogen peroxide (H2O2, which is an endogenous stress source produced in the retina under photo-oxidation conditions. Senescent cells upregulated the proinflammatory cytokines IL-6 and IL-8, the main markers of the senescence-associated secretory phenotype (SASP. Most important, we show for the first time that senescent ARPE-19 cells upregulated vascular endothelial growth factor (VEGF and simultaneously downregulated complement factor H (CFH expression. Since both phenomena are involved in AMD pathogenesis, our results support the hypothesis that SIPS could be a principal player in the induction and progression of AMD. Moreover, they would also explain the striking association of this

  1. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis.

    Science.gov (United States)

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-10-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction.

  2. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  3. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Chuang

    Full Text Available TP53 is the most commonly mutated gene in head and neck cancer (HNSCC, with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis, a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1 inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  4. Cardiac Senescence, Heart Failure, and Frailty: A Triangle in Elderly People.

    Science.gov (United States)

    Shinmura, Ken

    2016-06-25

    Cardiovascular disease (CVD) is a common problem in the elderly. In particular, the morbidity and mortality of patients with heart failure (HF) increase with age. The poor outcomes of elderly patients with HF can be explained partly by cardiac aging at the cellular and organ levels. Moreover, recent evidence has demonstrated that functional evaluation, which may reflect the status of individual aging, predicts mortality in patients with HF. Age-related changes occur throughout the body and in virtually all organ systems. Thus, we should pay more attention to geriatric conditions when treating patients with HF. Frailty represents a complex clinical syndrome that results from multiple impairments across different organs and is characterized by decreased physiological reserves and increased vulnerability to stressors. Frail patients with CVD have a worse prognosis than non-frail patients. Evidence demonstrates that frailty is an independent risk factor for incident HF among older people. The ways in which cellular senescence promotes age-related CVD and frailty remain an important issue in the biology of aging and clinical geriatrics. Senescent cells that have acquired a senescence-associated secretory phenotype (SASP) can cause local and potentially systemic inflammation. SASP might be a key phenomenon in the association between cellular senescence and the development of age-related CVD and frailty. Frailty is a dynamic and potentially reversible state; therefore, translational research efforts are focused on obtaining mechanistic insights into the pathobiology of frailty, the development of novel therapeutics, and the identification of biomarkers for frailty. This is particularly important in developed countries that are confronted with an aging society. PMID:27170235

  5. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially the...

  6. Liposomal Doxorubicin Increases Radiofrequency Ablation–induced Tumor Destruction by Increasing Cellular Oxidative and Nitrative Stress and Accelerating Apoptotic Pathways1

    Science.gov (United States)

    Solazzo, Stephanie A.; Ahmed, Muneeb; Schor-Bardach, Rachel; Yang, Wei; Girnun, Geoffrey D.; Rahmanuddin, Syed; Levchenko, Tatyana; Signoretti, Sabina; Spitz, Douglas R.; Torchilin, Vladimir

    2010-01-01

    comparisons). Conclusion: Combining RF ablation with liposomal doxorubicin increases cell injury and apoptosis in the zone of increased coagulation by using a mechanism that involves oxidative and nitrative stress that leads to accelerated apoptosis. © RSNA, 2010 PMID:20160000

  7. Resveratrol Induced Premature Senescence Is Associated with DNA Damage Mediated SIRT1 and SIRT2 Down-Regulation.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available The natural polyphenolic compound resveratrol (3,4,5-trihydroxy-trans-stilbene has broad spectrum health beneficial activities including antioxidant, anti-inflammatory, anti-aging, anti-cancer, cardioprotective, and neuroprotective effects. Remarkably, resveratrol also induces apoptosis and cellular senescence in primary and cancer cells. Resveratrol's anti-aging effects both in vitro and in vivo attributed to activation of a (NAD-dependent histone deacetylase family member sirtuin-1 (SIRT1 protein. In mammals seven members (SIRT1-7 of sirtuin family have been identified. Among those, SIRT1 is the most extensively studied with perceptive effects on mammalian physiology and suppression of the diseases of aging. Yet no data has specified the role of sirtuins, under conditions where resveratrol treatment induces senescence. Current study was undertaken to investigate the effects of resveratrol in human primary dermal fibroblasts (BJ and to clarify the role of sirtuin family members in particular SIRT1 and SIRT2 that are known to be involved in cellular stress responses and cell cycle, respectively. Here, we show that resveratrol decreases proliferation of BJ cells in a time and dose dependent manner. In addition the increase in senescence associated β-galactosidase (SA-β-gal activity and methylated H3K9-me indicate the induction of premature senescence. A significant increase in phosphorylation of γ-H2AX, a surrogate of DNA double strand breaks, as well as in levels of p53, p21CIP1 and p16INK4A is also detected. Interestingly, at concentrations where resveratrol induced premature senescence we show a significant decrease in SIRT1 and SIRT2 levels by Western Blot and quantitative RT-PCR analysis. Conversely inhibition of SIRT1 and SIRT2 via siRNA or sirtinol treatment also induced senescence in BJ fibroblasts associated with increased SA-β-gal activity, γ-H2AX phosphorylation and p53, p21CIP1 and p16INK4A levels. Interestingly DNA damaging

  8. Disruptive chemicals, senescence and immortality.

    Science.gov (United States)

    Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E; Martinez-Leal, Juan Fernando; Mondello, Chiara; Scovassi, A Ivana; Bisson, William H; Amedei, Amedeo; Roy, Rabindra; Woodrick, Jordan; Colacci, Annamaria; Vaccari, Monica; Raju, Jayadev; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Salem, Hosni K; Memeo, Lorenzo; Forte, Stefano; Singh, Neetu; Hamid, Roslida A; Ryan, Elizabeth P; Brown, Dustin G; Wise, John Pierce; Wise, Sandra S; Yasaei, Hemad

    2015-06-01

    Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes. PMID:26106138

  9. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.

  10. Resistance to discodermolide, a microtubule-stabilizing agent and senescence inducer, is 4E-BP1-dependent.

    Science.gov (United States)

    Chao, Suzan K; Lin, Juan; Brouwer-Visser, Jurriaan; Smith, Amos B; Horwitz, Susan Band; McDaid, Hayley M

    2011-01-01

    Discodermolide is a microtubule-stabilizing agent that induces accelerated cell senescence. A discodermolide-resistant cell line, AD32, was generated from the human lung cancer cell line A549. We hypothesize that the major resistance mechanism in these cells is escape from accelerated senescence. AD32 cells have decreased levels of 4E-BP1 mRNA and protein, relative to the parental discodermolide-sensitive A549 cells. Lentiviral-mediated re-expression of wild-type 4E-BP1 in AD32 cells increased the proliferation rate and reverted resistance to discodermolide via restoration of discodermolide-induced accelerated senescence. Consistent with this, cell growth and response to discodermolide was confirmed in vivo using tumor xenograft models. Furthermore, reintroduction of a nonphosphorylatable mutant (Thr-37/46 Ala) of 4E-BP1 was able to partially restore sensitivity and enhance proliferation in AD32 cells, suggesting that these effects are independent of phosphorylation by mTORC1. Microarray profiling of AD32-resistant cells versus sensitive A549 cells, and subsequent unbiased gene ontology analysis, identified molecular pathways and functional groupings of differentially expressed mRNAs implicated in overcoming discodermolide-induced senescence. The most statistically significant classes of differentially expressed genes included p53 signaling, G2/M checkpoint regulation, and genes involved in the role of BRCA1 in the DNA damage response. Consistent with this, p53 protein expression was up-regulated and had increased nuclear localization in AD32 cells relative to parental A549 cells. Furthermore, the stability of p53 was enhanced in AD32 cells. Our studies propose a role for 4E-BP1 as a regulator of discodermolide-induced accelerated senescence.

  11. The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4.

    Science.gov (United States)

    Du, William W; Li, Xianmin; Li, Tianbi; Li, Haoran; Khorshidi, Azam; Liu, Fengqiong; Yang, Burton B

    2015-01-15

    The microRNA miR-17-92 cluster plays a fundamental role in heart development. The aim of this study was to investigate the effect of a member of this cluster, miR-17, on cardiac senescence. We examined the roles of miR-17 in senescence and demonstrated that miR-17-3p attenuates cardiac aging in the myocardium by targeting Par4 (also known as PAWR). This upregulates the downstream proteins CEBPB, FAK, N-cadherin, vimentin, Oct4 and Sca-1 (also known as stem cell antigen-1), and downregulates E-cadherin. Par4 has been reported as a tumor suppressor gene that induces apoptosis in cancer cells, but not in normal cells. Repression of Par4 by miR-17-3p enhances the transcription of CEBPB and FAK, which promotes mouse cardiac fibroblast (MCF) epithelial-to-mesenchymal transition (EMT) and self-renewal, resulting in cellular senescence and apoptosis resistance. We conclude that Par4 can bind to the CEBPB promoter and inhibit its transcription. Decreased Par4 expression increases the amount of CEBPB, which binds to the FAK promoter and enhances FAK transcription. Par4, CEBPB and FAK form a senescence signaling pathway, playing roles in modulating cell survival, growth, apoptosis, EMT and self-renewal. Through this novel senescence signaling axis, miR-17-3p represses Par4 expression, acting pleiotropically as a negative modulator of cardiac aging and cardiac fibroblast cellular senescence. PMID:25472717

  12. Senescence rates in patients with end-stage renal disease: a critical appraisal of the Gompertz model.

    Science.gov (United States)

    Koopman, J J E; Rozing, M P; Kramer, A; de Jager, D J; Ansell, D; De Meester, J M J; Prütz, K G; Finne, P; Heaf, J G; Palsson, R; Kramar, R; Jager, K J; Dekker, F W; Westendorp, R G J

    2011-04-01

    The most frequently used model to describe the exponential increase in mortality rate over age is the Gompertz equation. Logarithmically transformed, the equation conforms to a straight line, of which the slope has been interpreted as the rate of senescence. Earlier, we proposed the derivative function of the Gompertz equation as a superior descriptor of senescence rate. Here, we tested both measures of the rate of senescence in a population of patients with end-stage renal disease. It is clinical dogma that patients on dialysis experience accelerated senescence, whereas those with a functional kidney transplant have mortality rates comparable to the general population. Therefore, we calculated the age-specific mortality rates for European patients on dialysis (n=274 221; follow-up=594 767 person-years), for European patients with a functioning kidney transplant (n=61 286; follow-up=345 024 person-years), and for the general European population. We found higher mortality rates, but a smaller slope of logarithmic mortality curve for patients on dialysis compared with both patients with a functioning kidney transplant and the general population (PGompertz model would imply that the rate of senescence in patients on dialysis is lower than in patients with a functioning transplant and lower than in the general population. In contrast, the derivative function of the Gompertz equation yielded the highest senescence rates for patients on dialysis, whereas the rate was similar in patients with a functioning transplant and the general population. We conclude that the rate of senescence is better described by the derivative function of the Gompertz equation.

  13. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-bin; ZHU Li; HUANG Jun; YIN Yi-gang; KONG Xiang-qing; RONG Qi-fei; SHI Ai-wu; CAO Ke-jiang

    2011-01-01

    Background Previous studies have shown that resveratrol increases endothelial progenitor cell (EPC) numbers and functional activity.Increased EPC numbers and activity are associated with the inhibition of EPC senescence.In this study,we investigated the effect of resveratrol on the senescence of EPCs,leading to potentiation of cellular function.Methods EPCs were isolated from human peripheral blood and identified immunocytochemically.EPCs were incubated with resveratrol (1,10,and 50 μmol/L) or control for specified times.After in vitro cultivation,acidic β-galactosidase staining revealed the extent of senescence in the cells.To gain further insight into the underlying mechanism of the effect of resveratrol,we measured telomerase activity using a polymerase chain reaction (PCR)-enzyme-linked immunosorbent assay (ELISA) technique.Furthermore,we measured the expression of human telomerase reverse transcriptase (hTERT) and the phosphorylation of Akt by immunoblotting.Results Resveratrol dose-dependently inhibited the onset of EPC senescence in culture.Resveratrol also significantly increased telomerase activity.Interestingly,quantitative real-time PCR analysis demonstrated that resveratrol dose-dependently increased the expression of the catalytic subunit,hTERT,an effect that was significantly inhibited by pharmacological phosphatidylinositol 3-kinase (PI3-K) blockers (wortmannin).The expression of hTERT is regulated by the PI3-K/Akt pathway; therefore,we examined the effect of resveratrol on Akt activity in EPCs.Immunoblotting analysis revealed that resveratrol led to dose-dependent phosphorylation and activation of Akt in EPCs.Conclusion Resveratrol delayed EPCs senescence in vitro,which may be dependent on telomerase activation.

  14. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  15. T cell senescence and cardiovascular diseases.

    Science.gov (United States)

    Yu, Hee Tae; Park, Sungha; Shin, Eui-Cheol; Lee, Won-Woo

    2016-08-01

    Age-related changes in the immune system, commonly termed "immunosenescence," contribute to deterioration of the immune response and fundamentally impact the health and survival of elderly individuals. Immunosenescence affects both the innate and adaptive immune systems; however, the most notable changes are in T cell immunity and include thymic involution, the collapse of T cell receptor (TCR) diversity, an imbalance in T cell populations, and the clonal expansion of senescent T cells. Senescent T cells have the ability to produce large quantities of proinflammatory cytokines and cytotoxic mediators; thus, they have been implicated in the pathogenesis of many chronic inflammatory diseases. Recently, an increasing body of evidence has suggested that senescent T cells also have pathogenic potential in cardiovascular diseases, such as hypertension, atherosclerosis, and myocardial infarction, underscoring the detrimental roles of these cells in various chronic inflammatory responses. Given that cardiovascular disease is the number one cause of death worldwide, there is great interest in understanding the contribution of age-related immunological changes to its pathogenesis. In this review, we discuss general features of age-related alterations in T cell immunity and the possible roles of senescent T cells in the pathogenesis of cardiovascular disease. PMID:26188489

  16. Change and aging senescence as an adaptation.

    Directory of Open Access Journals (Sweden)

    André C R Martins

    Full Text Available Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i competition is between individuals; ii there is some degree of locality, so quite often competition will be between parents and their progeny; iii optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.

  17. Mitochondria change dynamics and morphology during grapevine leaf senescence.

    Directory of Open Access Journals (Sweden)

    Cristina Ruberti

    Full Text Available Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera, by stably expressing a GFP (green fluorescent protein reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.

  18. Use of NAP gene to manipulate leaf senescence in plants

    Science.gov (United States)

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  19. Effect of icariin on learning and memory abilities and activity of cholinergic system of senescence-accelerated mice SAMP10%淫羊藿苷对快速老化小鼠SAMP10学习记忆能力以及胆碱能系统活性的影响

    Institute of Scientific and Technical Information of China (English)

    高琳娜; 唐千淇; 贺晓丽; 毕明刚

    2012-01-01

    Objective: To investigate the effect of icariin(ICA) on learning and memory abilities and cholinergic system in se-nescence-accelerated mice SAMP10. Method: The 8-month-old senescence-accelerated mice were randomly divided into the model SAMP10 group and the positive Donepezil group (1 mg · kg-1 ) and ICA groups (50, 100, 200 mg · kg-1 ) , with 12 mice in each group. Another 12 8-month-old mice SAMR1 were selected as the normal control group. After 30 days of oral administration, Morris water maze, SMG-2 water maze and experimental platform were used to test the effects of ICA on learning and memory abilities of SAMP10 groups. By colorimetric determination of AChE activity in the cortex, enzyme-linked immunosorbent assay detection of ACh, ChAT, MCBC of the cerebral cortex, the effect of ICA on the cholinergic system of SAMP10 was observed. Result: ICA could improve the abilities of space exploration and positioning navigation of SAMP10, shorten the latency in SMG-2 water maze, enhance their jumping ability in response to the passive test, and increase levels of ACh, ChAT, MCBC in the cerebral cortex of SAMP10. But its active effect on AChE in SAMP10 cortex was not obvious. Conclusion: Different doses of icariin can improve learning and memory abilities of SAMP10 to varying degrees, which may be related to its effect on the cholinergic system.%目的:探讨淫羊藿苷(ICA)对快速老化小鼠SAMP10的学习记忆能力以及胆碱能系统的影响.方法:采取8月龄快速老化小鼠SAMP10为实验对象,随机分为模型SAMP10组,阳性药多奈哌齐组(1 mg· kg-1),ICA低、中、高剂量(50,100,200 mg·kg-1)组,每组12只,以12只同月龄抗快速老化小鼠SAMR1为正常对照.灌胃给药30 d,通过Morris水迷宫、SMG-2迷宫、小鼠跳台仪检测ICA对SAMP10学习记忆能力的影响,通过比色法测定皮层中乙酰胆碱酯酶(AChE)的活力,采用酶联免疫吸附测定法检测乙酰胆碱(ACh)、乙酰胆碱转移酶(ChAT)以及M-

  20. Photochemical Production and Behavior of Hydroperoxyacids in Heterotrophic Bacteria Attached to Senescent Phytoplanktonic Cells

    Directory of Open Access Journals (Sweden)

    Frédéric Vaultier

    2013-06-01

    Full Text Available The photooxidation of cellular monounsaturated fatty acids was investigated in senescent phytoplanktonic cells (Emiliania huxleyi and in their attached bacteria under laboratory controlled conditions. Our results indicated that UV-visible irradiation of phytodetritus induced the photooxidation of oleic (produced by phytoplankton and bacteria and cis-vaccenic (specifically produced by bacteria acids. These experiments confirmed the involvement of a substantial singlet oxygen transfer from senescent phytoplanktonic cells to attached bacteria, and revealed a significant correlation between the concentration of chlorophyll, a photosensitizer, in the phytodetritus and the photodegradation state of bacteria. Hydroperoxyacids (fatty acid photoproducts appeared to be quickly degraded to ketoacids and hydroxyacids in bacteria and in phytoplanktonic cells. This degradation involves homolytic cleavage (most likely induced by UV and/or transition metal ions and peroxygenase activity (yielding epoxy acids.

  1. The PML domain of PML-RARα blocks senescence to promote leukemia.

    Science.gov (United States)

    Korf, Katharina; Wodrich, Harald; Haschke, Alexander; Ocampo, Corinne; Harder, Lena; Gieseke, Friederike; Pollmann, Annika; Dierck, Kevin; Prall, Sebastian; Staege, Hannah; Ma, Hui; Horstmann, Martin A; Evans, Ronald M; Sternsdorf, Thomas

    2014-08-19

    In most acute promyelocytic leukemia (APL) cases, translocons produce a promyelocytic leukemia protein-retinoic acid receptor α (PML-RARα) fusion gene. Although expression of the human PML fusion in mice promotes leukemia, its efficiency is rather low. Unexpectedly, we find that simply replacing the human PML fusion with its mouse counterpart results in a murine PML-RARα (mPR) hybrid protein that is transformed into a significantly more leukemogenic oncoprotein. Using this more potent isoform, we show that mPR promotes immortalization by preventing cellular senescence, impeding up-regulation of both the p21 and p19(ARF) cell-cycle regulators. This induction coincides with a loss of the cancer-associated ATRX/Daxx-histone H3.3 predisposition complex and suggests inhibition of senescence as a targetable mechanism in APL therapy. PMID:25092303

  2. The PML domain of PML–RARα blocks senescence to promote leukemia

    Science.gov (United States)

    Korf, Katharina; Wodrich, Harald; Haschke, Alexander; Ocampo, Corinne; Harder, Lena; Gieseke, Friederike; Pollmann, Annika; Dierck, Kevin; Prall, Sebastian; Staege, Hannah; Ma, Hui; Horstmann, Martin A.; Evans, Ronald M.; Sternsdorf, Thomas

    2014-01-01

    In most acute promyelocytic leukemia (APL) cases, translocons produce a promyelocytic leukemia protein–retinoic acid receptor α (PML–RARα) fusion gene. Although expression of the human PML fusion in mice promotes leukemia, its efficiency is rather low. Unexpectedly, we find that simply replacing the human PML fusion with its mouse counterpart results in a murine PML–RARα (mPR) hybrid protein that is transformed into a significantly more leukemogenic oncoprotein. Using this more potent isoform, we show that mPR promotes immortalization by preventing cellular senescence, impeding up-regulation of both the p21 and p19ARF cell-cycle regulators. This induction coincides with a loss of the cancer-associated ATRX/Daxx–histone H3.3 predisposition complex and suggests inhibition of senescence as a targetable mechanism in APL therapy. PMID:25092303

  3. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Kassem, Moustapha; Rattan, Suresh

    2012-01-01

    -immortalised mesenchymal stem cell line hMSC-TERT we have observed that an exposure of cells to 0.75 mM and 1 mM GO induces irreversible cellular senescence within 3 days. Induction of senescence in hMSC-TERT was demonstrated by a variety of markers, including characteristic cell morphology and enlargement, vacuolisation......). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose...... metabolism can reduce the functioning ability of stem cells in vivo both during ageing and during stem cell-based therapeutic interventions....

  4. The ability to generate senescent progeny as a mechanism underlying breast cancer cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Mine Mumcuoglu

    Full Text Available BACKGROUND: Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, "normal-like", and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity. METHODOLOGY/PRINCIPAL FINDINGS: A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP and immortal cell progenitor (ICP subtypes. All SCP cell lines expressed estrogen receptor (ER. Loss of ER expression combined with the accumulation of p21(Cip1 correlated with senescence in these cell lines. p21(Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and "normal-like" tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice. CONCLUSIONS/SIGNIFICANCE: Luminal A and "normal-like" breast cancer cell lines were able to generate luminal-like and

  5. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    Science.gov (United States)

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells. PMID:25280667

  6. Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass.

    Science.gov (United States)

    Zhang, Jing; Yu, Guohui; Wen, Wuwu; Ma, Xiqing; Xu, Bin; Huang, Bingru

    2016-02-01

    Chlorophyll (Chl) degradation occurs naturally during leaf maturation and senescence, and can be induced by stresses, both processes involving the regulation of plant hormones. The objective of this study was to determine the functional roles and hormonal regulation of a gene encoding pheophytin pheophorbide hydrolyase (PPH) that catabolizes Chl degradation during leaf senescence in perennial grass species. A PPH gene, LpPPH, was cloned from perennial ryegrass (Lolium perenne L.). LpPPH was localized in the chloroplast. Overexpressing LpPPH accelerated Chl degradation in wild tobacco, and rescued the stay-green phenotype of the Arabidopsis pph null mutant. The expression level of LpPPH was positively related to the extent of leaf senescence. Exogenous application of abscisic acid (ABA) and ethephon (an ethylene-releasing agent) accelerated the decline in Chl content in leaves of perennial ryegrass, whereas cytokinin (CK) and aminoethoxyvinylglycine (AVG; an ethylene biosynthesis inhibitor) treatments suppressed leaf senescence, corresponding to the up- or down-regulation of LpPPH expression. The promoters of five orthologous PPH genes were predicted to share conserved cis-elements potentially recognized by transcription factors in the ABA and CK pathways. Taken together, the results suggested that LpPPH-mediated Chl breakdown could be regulated positively by ABA and ethylene, and negatively by CK, and LpPPH could be a direct downstream target gene of transcription factors in the ABA and CK signaling pathways. PMID:26643195

  7. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation.

    Science.gov (United States)

    Yentrapalli, Ramesh; Azimzadeh, Omid; Sriharshan, Arundhathi; Malinowsky, Katharina; Merl, Juliane; Wojcik, Andrzej; Harms-Ringdahl, Mats; Atkinson, Michael J; Becker, Karl-Friedrich; Haghdoost, Siamak; Tapio, Soile

    2013-01-01

    The etiology of radiation-induced cardiovascular disease (CVD) after chronic exposure to low doses of ionizing radiation is only marginally understood. We have previously shown that a chronic low-dose rate exposure (4.1 mGy/h) causes human umbilical vein endothelial cells (HUVECs) to prematurely senesce. We now show that a dose rate of 2.4 mGy/h is also able to trigger premature senescence in HUVECs, primarily indicated by a loss of growth potential and the appearance of the senescence-associated markers ß-galactosidase (SA-ß-gal) and p21. In contrast, a lower dose rate of 1.4 mGy/h was not sufficient to inhibit cellular growth or increase SA-ß-gal-staining despite an increased expression of p21. We used reverse phase protein arrays and triplex Isotope Coded Protein Labeling with LC-ESI-MS/MS to study the proteomic changes associated with chronic radiation-induced senescence. Both technologies identified inactivation of the PI3K/Akt/mTOR pathway accompanying premature senescence. In addition, expression of proteins involved in cytoskeletal structure and EIF2 signaling was reduced. Age-related diseases such as CVD have been previously associated with increased endothelial cell senescence. We postulate that a similar endothelial aging may contribute to the increased rate of CVD seen in populations chronically exposed to low-dose-rate radiation.

  8. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation.

    Directory of Open Access Journals (Sweden)

    Ramesh Yentrapalli

    Full Text Available The etiology of radiation-induced cardiovascular disease (CVD after chronic exposure to low doses of ionizing radiation is only marginally understood. We have previously shown that a chronic low-dose rate exposure (4.1 mGy/h causes human umbilical vein endothelial cells (HUVECs to prematurely senesce. We now show that a dose rate of 2.4 mGy/h is also able to trigger premature senescence in HUVECs, primarily indicated by a loss of growth potential and the appearance of the senescence-associated markers ß-galactosidase (SA-ß-gal and p21. In contrast, a lower dose rate of 1.4 mGy/h was not sufficient to inhibit cellular growth or increase SA-ß-gal-staining despite an increased expression of p21. We used reverse phase protein arrays and triplex Isotope Coded Protein Labeling with LC-ESI-MS/MS to study the proteomic changes associated with chronic radiation-induced senescence. Both technologies identified inactivation of the PI3K/Akt/mTOR pathway accompanying premature senescence. In addition, expression of proteins involved in cytoskeletal structure and EIF2 signaling was reduced. Age-related diseases such as CVD have been previously associated with increased endothelial cell senescence. We postulate that a similar endothelial aging may contribute to the increased rate of CVD seen in populations chronically exposed to low-dose-rate radiation.

  9. 衰老在慢性阻塞性肺疾病发病中的作用%Research progress in chronic obstructive pulmonary disease caused by senescence

    Institute of Scientific and Technical Information of China (English)

    汪琦; 王桦; 吴晓玲

    2016-01-01

    Chronic obstruction pulmonary disease (COPD) is a major global public health problem,which has a serious impact on the quality of life of patients.Senescence involves cellular senescence,oxidative stress,inflammatory aging,telomere shortening,out-of-balance between senescence and anti-senescence,ect.More and more studies have indicated that senescence is considered as an important contributing factor in driving COPD.Here is to make a review of the effect of senescence in COPD.%COPD是全球主要的公共卫生问题,严重影响患者的生活质量.衰老涉及细胞衰老氧化应激、炎性衰老、端粒缩短、衰老与抗衰老失衡等方面.越来越多的研究表明,衰老是驱使COPD 的一个重要因素.该文就衰老在COPD发生、发展中的作用进行综述.

  10. Anti-Ageing Effects of Sonchus oleraceus L. (pūhā Leaf Extracts on H2O2-Induced Cell Senescence

    Directory of Open Access Journals (Sweden)

    Zong-Quan Ou

    2015-03-01

    Full Text Available Antioxidants protect against damage from free radicals and are believed to slow the ageing process. Previously, we have reported the high antioxidant activity of 70% methanolic Sonchus oleraceus L. (Asteraceae leaf extracts. We hypothesize that S. oleraceus extracts protect cells against H2O2-induced senescence by mediating oxidative stress. Premature senescence of young WI-38 cells was induced by application of H2O2. Cells were treated with S. oleraceus extracts before or after H2O2 stress. The senescence- associated β-galactosidase (SA-β-gal activity was used to indicate cell senescence. S. oleraceus extracts showed higher cellular antioxidant activity than chlorogenic acid in WI-38 cells. S. oleraceus extracts suppressed H2O2 stress-induced premature senescence in a concentration-dependent manner. At 5 and 20 mg/mL, S. oleraceus extracts showed better or equivalent effects of reducing stress-induced premature senescence than the corresponding ascorbic acid treatments. These findings indicate the potential of S. oleraceus extracts to be formulated as an anti-ageing agent.

  11. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells

    International Nuclear Information System (INIS)

    We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H2O2, rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.

  12. Evolutionary genetic bases of longevity and senescence.

    Science.gov (United States)

    Govindaraju, Diddahally R

    2015-01-01

    Senescence, as a time-dependent developmental process, affects all organisms at every stage in their development and growth. During this process, genetic, epigenetic and environmental factors are known to introduce a wide range of variation for longevity among individuals. As an important life-history trait, longevity shows ontogenetic relationships with other complex traits, and hence may be viewed as a composite trait. Factors that influence the origin and maintenance of diversity of life are ultimately governed by Darwinian processes. Here we review evolutionary genetic mechanisms underlying longevity and senescence in humans from a life-history and genotype-epigenetic-phenotype (G-E-P) map prospective. We suggest that synergistic and cascading effects of cis-ruptive mechanisms in the genome, and epigenetic disruptive processes in relation to environmental factors may lead to sequential slippage in the G-E-P space. These mechanisms accompany age, stage and individual specific senescent processes, influenced by positive pleiotropy of certain genes, superior genome integrity, negative-frequency dependent selection and other factors that universally regulate rarity in nature. Finally we interpret life span as an inherent property of self-organizing systems that, accordingly, maintain species-specific limits for the entire complex of fitness traits. We conclude that Darwinian approaches provide unique opportunities to discover the biological bases of longevity as well as devise individual specific medical or other interventions toward improving health span.

  13. Arrhythmogenicity of the hypertrophied and senescent heart and relationship to membrane proteins involved in the altered calcium handling.

    Science.gov (United States)

    Carré, F; Rannou, F; Sainte Beuve, C; Chevalier, B; Moalic, J M; Swynghedauw, B; Charlemagne, D

    1993-10-01

    The high incidence of arrhythmias in human left ventricular hypertrophy has been well established but the mechanisms of arrhythmias are not well defined. In attempt to clarify these mechanisms, we tried to determine if a relationship might exist in the hypertrophied or senescent hearts between the incidence of arrhythmias and alterations in the gene expression of the main membrane proteins involved in the regulation of calcium movements. Holter monitoring was used in young and senescent rats where hypertrophy had been induced by aortic stenosis and hyperthyroidism (young rats) or by DOCA-salt treatment (senescent rats). Different types of spontaneous arrhythmias were detected. In the aortic stenosis group, the heart rate and the number of supraventricular premature beats were increased significantly, whereas the number of ventricular premature beats was increased in some animals but not in all. In senescent rats, the numbers of ventricular and supraventricular premature beats and the incidence of atrioventricular block were very high. At the cellular level, the density of calcium channels from the sarcolemma and of the alpha 1 subunit of the Na+/K(+)-ATPase were unchanged in the hypertrophied and senescent hearts but most of the proteins involved in the regulation of calcium movements (calcium release channel and Ca(2+)-ATPase from the sarcoplasmic reticulum, Na+/Ca2+ exchange, and beta adrenergic and muscarinic receptors from the sarcolemma) have a decreased density or activity. These changes might account for the slowing of the maximum shortening velocity and the impaired contractility of the hypertrophied and senescent hearts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8275524

  14. Long-term Neuroglial Cocultures as a Brain Aging Model: Hallmarks of Senescence, MicroRNA Expression Profiles, and Comparison With In Vivo Models.

    Science.gov (United States)

    Bigagli, Elisabetta; Luceri, Cristina; Scartabelli, Tania; Dolara, Piero; Casamenti, Fiorella; Pellegrini-Giampietro, Domenico E; Giovannelli, Lisa

    2016-01-01

    Our purpose was to evaluate long-term neuroglial cocultures as a model for investigating senescence in the nervous system and to assess its similarities with in vivo models. To this aim, we maintained the cultures from 15 days in vitro (mature cultures) up to 27 days in vitro (senescent cultures), measuring senescence-associated, neuronal, dendritic, and astrocytic markers. Whole microRNA expression profiles were compared with those measured in the cortex of 18- and 24-month-old C57Bl/6J aged mice and of transgenic TgCRND8 mice, a model of amyloid-β deposition. Neuroglial cocultures displayed features of cellular senescence (increased senescence-associated-β-galactosidase activity, oxidative stress, γ-H2AX expression, IL-6 production, astrogliosis) that were concentration dependently counteracted by the antiaging compound resveratrol (1-5 µM). Among the 1,080 microRNAs analyzed, 335 were downregulated or absent in 27 compared with 15 days in vitro and resveratrol reversed this effect. A substantial overlapping was found between age-associated changes in microRNA expression profiles in vitro and in TgCRND8 mice but not in physiologically aged mice, indicating that this culture model displays more similarities with pathological than physiological brain aging. Our results demonstrate that neuroglial cocultures aged in vitro can be useful for investigating the cellular and molecular mechanisms of brain aging and for preliminary testing of protective compounds. PMID:25568096

  15. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  16. Long-term Neuroglial Cocultures as a Brain Aging Model: Hallmarks of Senescence, MicroRNA Expression Profiles, and Comparison With In Vivo Models.

    Science.gov (United States)

    Bigagli, Elisabetta; Luceri, Cristina; Scartabelli, Tania; Dolara, Piero; Casamenti, Fiorella; Pellegrini-Giampietro, Domenico E; Giovannelli, Lisa

    2016-01-01

    Our purpose was to evaluate long-term neuroglial cocultures as a model for investigating senescence in the nervous system and to assess its similarities with in vivo models. To this aim, we maintained the cultures from 15 days in vitro (mature cultures) up to 27 days in vitro (senescent cultures), measuring senescence-associated, neuronal, dendritic, and astrocytic markers. Whole microRNA expression profiles were compared with those measured in the cortex of 18- and 24-month-old C57Bl/6J aged mice and of transgenic TgCRND8 mice, a model of amyloid-β deposition. Neuroglial cocultures displayed features of cellular senescence (increased senescence-associated-β-galactosidase activity, oxidative stress, γ-H2AX expression, IL-6 production, astrogliosis) that were concentration dependently counteracted by the antiaging compound resveratrol (1-5 µM). Among the 1,080 microRNAs analyzed, 335 were downregulated or absent in 27 compared with 15 days in vitro and resveratrol reversed this effect. A substantial overlapping was found between age-associated changes in microRNA expression profiles in vitro and in TgCRND8 mice but not in physiologically aged mice, indicating that this culture model displays more similarities with pathological than physiological brain aging. Our results demonstrate that neuroglial cocultures aged in vitro can be useful for investigating the cellular and molecular mechanisms of brain aging and for preliminary testing of protective compounds.

  17. Mutation accumulation and the catastrophic senescence of Pacific salmon

    CERN Document Server

    Penna, T J P; Stauffer, D; Stauffer, Dietrich

    1995-01-01

    The bit-string model of biological aging is used to simulate the catastrophic senescence of Pacific Salmon. We have shown that reproduction occuring only once and at a fixed age is the only ingredient needed to explain the catastrophic senescence according the mutation accumulation theory. Several results are presented, some of them with up to 10^8 fishes, showing how the survival rates in catastrophic senescence are affected by changes in the parameters of the model.

  18. Possible role of metal ionophore against zinc induced cognitive dysfunction in D-galactose senescent mice.

    Science.gov (United States)

    Bharti, Kanchan; Majeed, Abu Bakar Abdul; Prakash, Atish

    2016-06-01

    Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer's disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing. PMID:26923568

  19. Status of mTOR Activity May Phenotypically Differentiate Senescence and Quiescence

    OpenAIRE

    Cho, Sohee; Hwang, Eun Seong

    2012-01-01

    SA β-Gal activity is a key marker of cellular senescence. The origin of this activity is the lysosomal β-galactosidase, whose activity has increased high enough to be detected at suboptimal pH. SA β-Gal is also expressed in the cells in quiescence driven by serum-starvation or a high confluency, and it has been hypothesized that SA β-Gal positivity is rather a surrogate marker of high lysosome content or activity. In this study, it was determined how SA β-Gal activity is expressed in quiescen...

  20. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    Science.gov (United States)

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  1. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway.

    Directory of Open Access Journals (Sweden)

    Erli Zhang

    Full Text Available Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV and metformin (MET, two potent SIRT1 activators, during the occurrence of "metabolic memory" of cellular senescence (senescent "memory". Human umbilical vascular endothelial cells (HUVECs were cultured in either normal glucose (NG/high glucose (HG media for 6 days, or 3 days of HG followed by 3 days of NG (HN, with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382 and activation of p53, and subsequent p53/p21-mediated senescent "memory." In contrast, senescent "memory" was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53, and eventually the occurrence of "metabolic memory." Furthermore, we found that RSV or MET treatment prevented senescent "memory" by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent "memory." In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT1/p300/p53/p21 pathway

  2. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    Science.gov (United States)

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  3. 丰富环境对快速老化小鼠SAMP8轻度认知功能障碍阶段认知状况的影响%Effects of enriched environment on cognitive situation in senescence accelerated mouse prone/8 with mild cognitive impairment

    Institute of Scientific and Technical Information of China (English)

    李建忠; 郝兴华; 崔慧先; 李明; 吴海平; 武志兵; 刘学敏; 李富德

    2015-01-01

    Objective To investigate the effects of enriched environment on cognitive situation in senescence accelerated mouse prone/8 (SAMP8) with mild cognitive impairment (MCI) and the possible regulatory mechanisms.Methods A total of 20 healthy male SAMP8 mice in MCI (5-month-old) were randomly divided into enriched environment group (short for P8 EE group) and standard environment group (short for P8 SE group)with 10 in each group.Two groups of SAMP8 mice were subjected to the two different environments for 60 days.10 5-month-old healthy male SAMR1 mice were selected as normal control group (short for R1 SE group) and subjected to the standard environment for 60 days.The cognitive situation of mice in each group before and after intervention was examined by the Morris water maze (MWM) test.The deposition of amyloid protein beta(A3) and expression of glial fibrillary acidic protein(GFAP) in hippocampal CA1 of mice in each group after intervention were determined by immunohistochemical staining and image analysis system.Results In the MWM test,there were statistical differences of latency and times of crossing the platform before and after intervention in each group(all P <0.05).The average latency ((81.22±11.82) s,(76.59± 13.36) s,(70.74±8.73) s,(66.40±7.79) s) of P8 EE group after intervention were significantly shorter than that of P8 SE group on four consecutive days (P<0.01),while the times of crossing platform in P8 EE group after intervention (9.31±1.33) were more than that in P8 SE group after intervention (P<0.01).There were significant differences of escape latency and crossing times between P8 EE group and R1 SE group after intervention (all P<0.01).By immunohistochemical staining,the average absorbance of Aβ and GFAP((0.26±0.02),(0.26±0.03)) in P8 EE group after intervention were significantly less than that in P8 SE group after intervention (P<0.01).There were significant differences of A3 and GFAP levels between P8 EE group and R1 SE group

  4. Overexpression of the DEC1 protein induces senescence in vitro and is related to better survival in esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Qing Xu

    Full Text Available Esophageal squamous cell carcinoma (ESCC is a leading cause of cancer-related death in China and has limited effective therapeutic options except for early surgery, since the underlying molecular mechanism driving its precursor lesions towards invasive ESCC is not fully understood. Cellular senescence is the state of the permanent growth arrest of a cell, and is considered as the initial barrier of tumor development. Human differentiated embryo chondrocyte expressed gene 1 (Dec1 is an important transcription factor that related to senescence. In this study, DEC1 immunohistochemical analysis was performed on tissue microarray blocks constructed from ESCC combined with adjacent precursor tissues of 241 patients. Compared with normal epithelia, DEC1 expression was significantly increased in intraepithelial neoplasia and DEC1 expression was significantly decreased in ESCC in comparison with intraepithelial neoplasia. In vitro, DEC1 overexpression induced cellular senescence, and it inhibited cell growth and colony formation in ESCC cell line EC9706. Fresh esophagectomy tissue sections from five ESCC patients were detected by immunohistochemistry of DEC1 and senescence-associated β-galactosidase (SA-β-Gal activity, and strongly positive expression of DEC1 was correlated to more senescent cells in these fresh tissue sections. Kaplan-Meier method analysis of the 241 patients revealed that DEC1 expression levels were significantly correlated with the survival of ESCC patients after surgery. The expression levels of DEC1 were also correlated with age, tumor embolus, depth of invasion of ESCC, lymph metastasis status and pTNMs. These results suggest that DEC1 overexpression in precursor lesions of ESCC is a protective mechanism by inducing cellular senescence in ESCC initiation, and DEC1 may be a potential prognostic marker of ESCC.

  5. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging.

    Science.gov (United States)

    Lindqvist, Daniel; Epel, Elissa S; Mellon, Synthia H; Penninx, Brenda W; Révész, Dóra; Verhoeven, Josine E; Reus, Victor I; Lin, Jue; Mahan, Laura; Hough, Christina M; Rosser, Rebecca; Bersani, F Saverio; Blackburn, Elizabeth H; Wolkowitz, Owen M

    2015-08-01

    Many psychiatric illnesses are associated with early mortality and with an increased risk of developing physical diseases that are more typically seen in the elderly. Moreover, certain psychiatric illnesses may be associated with accelerated cellular aging, evidenced by shortened leukocyte telomere length (LTL), which could underlie this association. Shortened LTL reflects a cell's mitotic history and cumulative exposure to inflammation and oxidation as well as the availability of telomerase, a telomere-lengthening enzyme. Critically short telomeres can cause cells to undergo senescence, apoptosis or genomic instability, and shorter LTL correlates with poorer health and predicts mortality. Emerging data suggest that LTL may be reduced in certain psychiatric illnesses, perhaps in proportion to exposure to the psychiatric illnesses, although conflicting data exist. Telomerase has been less well characterized in psychiatric illnesses, but a role in depression and in antidepressant and neurotrophic effects has been suggested by preclinical and clinical studies. In this article, studies on LTL and telomerase activity in psychiatric illnesses are critically reviewed, potential mediators are discussed, and future directions are suggested. A deeper understanding of cellular aging in psychiatric illnesses could lead to re-conceptualizing them as systemic illnesses with manifestations inside and outside the brain and could identify new treatment targets. PMID:25999120

  6. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    Science.gov (United States)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-03-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species (Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  7. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  8. Senescent profile of angiogenic T cells from systemic lupus erythematosus patients.

    Science.gov (United States)

    López, Patricia; Rodríguez-Carrio, Javier; Martínez-Zapico, Aleida; Caminal-Montero, Luis; Suarez, Ana

    2016-03-01

    The chronic inflammatory environment associated with systemic lupus erythematosus can lead to an accelerated immunosenescence responsible for the endothelial damage and increased cardiovascular risk observed in these patients. The present study analyzed two populations with opposite effects on vascular endothelium, angiogenic T cells and the senescent CD4(+)CD28(null) subset, in 84 systemic lupus erythematosus patients and 46 healthy controls. Also, 48 rheumatoid arthritis patients and 72 individuals with traditional cardiovascular risk factors participated as disease controls. Phenotypic characterization of CD28(+) and CD28(null) cells was performed by analyzing markers of senescence (CCR7, CD27, CD57) and cytotoxicity (CD56, perforin, granzyme B, IFN-γ). IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17A, IFN-α, IFN-γ, TNF-α, B lymphocyte stimulator, and GM-CSF serum levels were analyzed in systemic lupus erythematosus patients and healthy controls. CD4(+)CD28(null) cells were notably increased in the systemic lupus erythematosus patients and disease controls compared with healthy controls. In contrast, angiogenic T cells were only reduced in the disease controls (those with rheumatoid arthritis or traditional cardiovascular risk factors). Nevertheless, an anomalous presence of CD28(null)-angiogenic T cells, with cytotoxic and senescent characteristics, was noted in systemic lupus erythematosus patients in association with anti-dsDNA titer, anti-SSA/Ro antibodies and circulating TNF-α, IL-8, IFN-α, and B lymphocyte stimulator amounts. This subset was also detected in those with traditional cardiovascular risk factors but not in the rheumatoid arthritis patients. In contrast, CD28(+)-angiogenic T cells were reduced in the systemic lupus erythematosus patients with cardiovascular disorders. In conclusion, CD28 expression must be used to redefine the angiogenic T cell population, because in pathologic conditions, a senescent CD28(null)-angiogenic T cell subset with

  9. Aberrant anaplastic lymphoma kinase activity induces a p53 and Rb-dependent senescence-like arrest in the absence of detectable p53 stabilization.

    Directory of Open Access Journals (Sweden)

    Fiona Kate Elizabeth McDuff

    Full Text Available Anaplastic Lymphoma Kinase (ALK is a receptor tyrosine kinase aberrantly expressed in a variety of tumor types, most notably in Anaplastic Large Cell Lymphoma (ALCL where a chromosomal translocation generates the oncogenic fusion protein, Nucleophosmin-ALK (NPM-ALK. Whilst much is known regarding the mechanism of transformation by NPM-ALK, the existence of cellular defence pathways to prevent this pathological process has not been investigated. Employing the highly tractable primary murine embryonic fibroblast (MEF system we show that cellular transformation is not an inevitable consequence of NPM-ALK activity but is combated by p53 and Rb. Activation of p53 and/or Rb by NPM-ALK triggers a potent proliferative block with features reminiscent of senescence. While loss of p53 alone is sufficient to circumvent NPM-ALK-induced senescence and permit cellular transformation, sole loss of Rb permits continued proliferation but not transformation due to p53-imposed restraints. Furthermore, NPM-ALK attenuates p53 activity in an Rb and MDM2 dependent manner but this activity is not sufficient to bypass senescence. These data indicate that senescence may constitute an effective barrier to ALK-induced malignancies that ultimately must be overcome for tumor development.

  10. Senescence and programmed cell death : substance or semantics?

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2004-01-01

    The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show

  11. Calculating the Rate of Senescence From Mortality Data

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Rozing, Maarten P; Kramer, Anneke;

    2016-01-01

    -European Dialysis and Transplant Association Registry, including patients with end-stage renal disease on dialysis, who are known to suffer from increased senescence rates (n = 302,455), and patients with a functioning kidney transplant (n = 74,490). From age 20 to 70, senescence rates were comparable when...

  12. A role for p53 in selenium-induced senescence

    Science.gov (United States)

    The tumor suppressor p53 and the ataxia-telangiectasia mutated (ATM) kinase play important roles in the senescence response to oncogene activation and DNA damage. We have previously shown that selenium-containing compounds can activate an ATM-dependent senescence response in MRC-5 normal fibroblasts...

  13. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging.

  14. Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice

    OpenAIRE

    Currais, Antonio; Prior, Marguerite; Lo, David; Jolivalt, Corinne; Schubert, David; Maher, Pamela

    2012-01-01

    Mounting evidence supports a link between diabetes, cognitive dysfunction and aging. However, the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. To determine how diabetes contributes to cognitive dysfunction and age-associated pathology, we used streptozotocin to induce type 1 diabetes (T1D) in senescence-accelerated prone 8 (SAMP8) and senescence-resistant 1 (SAMR1) mice. Contextual fear conditioning demonstrated that T1D resulted in...

  15. Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol

    International Nuclear Information System (INIS)

    Highlights: • AOH induces autophagy, lamellar bodies and senescence in RAW264.7 macrophages. • DNA damage is suggested as a triggering signal. • The Sestrin2-AMPK-mTOR-S6K pathway is proposed to link DNA damage to autophagy. - Abstract: The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway

  16. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Anderson, Lisa; Sturre, Marcel J. G.; Hille, Jacques; Dijkwel, Paul P.

    2007-01-01

    Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence Hai-Chun Jing1,2, Lisa Anderson3, Marcel J.G. Sturre1, Jacques Hille1 and Paul P. Dijkwel1,* 1Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnolo

  17. Knocking down p53 with siRNA does not affect the overexpression of p21WAF-1 after exposure of IMR-90 hTERT fibroblasts to a sublethal concentration of H2O2 leading to premature senescence.

    Science.gov (United States)

    Zdanov, Stephanie; Debacq-Chainiaux, Florence; Toussaint, Olivier

    2007-04-01

    Premature senescence of IMR-90 human diploid fibroblasts (HDFs) expressing telomerase was induced by exposure to sublethal concentration of H(2)O(2), with appearance of several biomarkers of cellular senescence like enlarged cell shape, senescence-associated beta-galactosidase (SA ss-gal) activity, and cell cycle arrest. The induction of stress-induced premature senescence (SIPS) was associated with a transient increase in DNA-binding activity of p53 and an increased expression of p21(WAF-1). p53 small interferent RNA (siRNA) affected the basal level of p21(WAF-1) mRNA but did not affect the overexpression of p21(WAF-1) after stress. This siRNA approach confirms previous results obtained with other methods. PMID:17460194

  18. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2012-01-01

    satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential......The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle...... and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content...

  19. Gamma-Tocotrienol Modulated Gene Expression in Senescent Human Diploid Fibroblasts as Revealed by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2013-01-01

    Full Text Available The effect of γ-tocotrienol, a vitamin E isomer, in modulating gene expression in cellular aging of human diploid fibroblasts was studied. Senescent cells at passage 30 were incubated with 70 μM of γ-tocotrienol for 24 h. Gene expression patterns were evaluated using Sentrix HumanRef-8 Expression BeadChip from Illumina, analysed using GeneSpring GX10 software, and validated using quantitative RT-PCR. A total of 100 genes were differentially expressed (P<0.001 by at least 1.5 fold in response to γ-tocotrienol treatment. Amongst the genes were IRAK3, SelS, HSPA5, HERPUD1, DNAJB9, SEPR1, C18orf55, ARF4, RINT1, NXT1, CADPS2, COG6, and GLRX5. Significant gene list was further analysed by Gene Set Enrichment Analysis (GSEA, and the Normalized Enrichment Score (NES showed that biological processes such as inflammation, protein transport, apoptosis, and cell redox homeostasis were modulated in senescent fibroblasts treated with γ-tocotrienol. These findings revealed that γ-tocotrienol may prevent cellular aging of human diploid fibroblasts by modulating gene expression.

  20. Effects of ageing and senescence on pancreatic β-cell function.

    Science.gov (United States)

    Helman, A; Avrahami, D; Klochendler, A; Glaser, B; Kaestner, K H; Ben-Porath, I; Dor, Y

    2016-09-01

    Ageing is generally associated with deterioration of organ function and regenerative potential. In the case of pancreatic β-cells, an age-related decline in proliferative potential is well documented, and was proposed to contribute to the increased prevalence of type 2 diabetes in the elderly. The effects of ageing on β-cell function, namely glucose-stimulated insulin secretion (GSIS), have not been studied as extensively. Recent work revealed that, surprisingly, β-cells of mature mice and humans secrete more insulin than young β-cells in response to high glucose concentrations, potentially serving to counteract age-related peripheral insulin resistance. This functional change appears to be orchestrated by p16(Ink4A) -driven cellular senescence and downstream remodelling of chromatin structure and DNA methylation, enhancing the expression of genes controlling β-cell function. We propose that activation of the cellular senescence program drives life-long functional maturation of β-cells, due to β-cell hypertrophy, enhanced glucose uptake and more efficient mitochondrial metabolism, in parallel to locking these cells in a non-replicative state. We speculate that the beneficial aspects of this process can be harnessed to enhance GSIS. Other age-related mechanisms, which are currently poorly understood, act to increase basal insulin secretion levels also in low glucose conditions. This leads to an overall reduction in the amplitude of insulin secretion between low and high glucose at old age, which may contribute to a deterioration in metabolic control. PMID:27615132

  1. Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2.

    Science.gov (United States)

    Lee, Yun Yeong; Ryu, Min Sook; Kim, Hong Seok; Suganuma, Masami; Song, Kye Yong; Lim, In Kyoung

    2016-03-01

    The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) α and PKCβ1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKCα accompanied pErk1/2 to the nucleus after freeing it from PEA-15pS(104) via PKCβ1 and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of PKCα were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated PKCα expression and increased epidermal and hair follicle cell proliferation. Thus, PKCα downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear PKCα degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of PKCα expression following TPA treatment reduces pErk1/2-activated SP1 biding to the p21(WAF1) gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

  2. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  3. DNA损伤监测及修复相关酶与细胞衰老%Cell Senescence and the Enzyme System for Surveillanceand Repair of DNA Damage

    Institute of Scientific and Technical Information of China (English)

    罗瑛; 隋建丽; 铁轶

    2001-01-01

    衰老是细胞的重要生命现象之一,衰老假说之一认为细胞中残留DNA损伤的积累可加速细胞的衰老.因 此,细胞内DNA损伤监测及修复系统的正常运行与细胞衰老调控密切相关,DNA损伤监测及修复相关酶如 PARP、DNA-PK、ATM、p53等在细胞衰老中的调控作用日益受到广泛关注.研究这些蛋白质分子间的相互作 用及其在细胞衰老过程中的调控功能,有利于揭示DNA损伤应激、损伤修复调控与细胞衰老之间的内在联系, 为抗衰老研究及从衰老角度治疗肿瘤提供新的思路.%Senescence is one of the most important phenomena in cells' life. It is hold by one of hypothesis for cell senescence that residue DNA damages of a cell will accelerate its senescence. The normal function of surveillance and repair system for DNA damage is highly related with the senescence regulation of a cell. As a result, research of senescence regulation role of enzymes related for surveillance and repair of DNA damage, such as PARP, DNA-PK, ATM, p53, etc., will discover the inner relation between stress response of cell to DNA damage, regulation of DNA damage repair and cell senescence. That may be helpful for research of anti-aging and treatment of tumor by regulation of senescence of tumor cells.

  4. Sites of ethylene production in the pollinated and unpollinated senescing carnation (Dianthus caryophyllus) inflorescence.

    Science.gov (United States)

    Nichols, R

    1977-01-01

    Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2-3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.

  5. Role of the beta catenin destruction complex in mediating chemotherapy-induced senescence-associated secretory phenotype.

    Directory of Open Access Journals (Sweden)

    Dipanjan Basu

    Full Text Available Cellular senescence is considered as a tumor suppressive mechanism. Recent evidence indicates however that senescent cells secrete various growth factors and cytokines, some of which may paradoxically promote cancer progression. This phenomenon termed senescence-associated secretory phenotype (SASP must be inhibited in order for anti-proliferative agents to be effective. The present study was designed to determine whether the β-catenin destruction complex (BCDC, known to integrate the action of various growth factors and cytokines, would represent a suitable target to inhibit the activity of SASP components. For this, we carried out experiments to determine the effect of drug-induced senescence on secretion of SASP, β-catenin transactivation, and the relationship between these processes. Moreover, genetic and pharmacological approaches were used to define the implication of BCDC in mediating the effects of SASP components on cell migration and resistance to drugs. The findings indicate that drug-induced senescence was associated with expression of various Wnt ligands in addition to previously known SASP components. Beta catenin transactivation and expression of genes implicated in epithelial-mesenchymal transition (EMT also increased in response to drug-induced SASP. These effects were prevented by Pyrvinium, a recently described activator of BCDC. Pyrvinium also suppressed the effects of SASP on cell migration and resistance to doxorubicin. Together, these findings provide insights on the potential role of BCDC in mediating the effects of drug-induced SASP on cancer cell invasion and resistance to therapy, and suggest that targeting this pathway may represent an effective approach to enhance the activity of current and prospective anti-cancer therapeutics.

  6. ORS1,an H2O2-Responsive NAC Transcription Factor,Controls Senescence in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Salma Balazadeh; Miroslaw Kwasniewski; Camila Caldana; Mohammad Mehrnia; María Inés Zanor; Gang-Ping Xue; Bernd Mueller-Roeber

    2011-01-01

    We report here that ORS1,a previously uncharacterized member of the NAC transcription factor family,controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants,whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR fusion protein. Of the 42 up-regulated genes,30 (~70%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (~76%) of the ORS1-de-pendent genes were induced by long-term (4 d),but not short-term (6 h) salinity stress (150 mM NaCI). Furthermore,expression of 16 and 24 genes,respectively,was induced after 1 and 5 h of treatment with hydrogen peroxide (H2O2),a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H2O2 treatment in both leaves and roots. Using in vitro binding site selection,we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1 -dependent genes. ORS1 is a paralog of ORE1/ ANAC092/AtNAC2,a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species,indicating strong positive selection acting on both genes. We conclude that ORS1,similarly to ORE1,triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H2O2-dependent signaling pathways.

  7. Regulation of Leaf Senescence and Crop Genetic Improvement

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Wu; Ben-Ke Kuai; Ji-Zeng Jia; Hai-Chun Jing

    2012-01-01

    Leaf senescence can impact crop production by either changing photosynthesis duration,or by modifying the nutrient remobilization efficiency and harvest index.The doubling of the grain yield in major cereals in the last 50 years was primarily achieved through the extension of photosynthesis duration and the increase in crop biomass partitioning,two things that are intrinsically coupled with leaf senescence.In this review,we consider the functionality of a leaf as a function of leaf age,and divide a leaf's life into three phases:the functionality increasing phase at the early growth stage,the full functionality phase,and the senescence and functionality decreasing phase.A genetic framework is proposed to describe gene actions at various checkpoints to regulate leaf development and senescence.Four categories of genes contribute to crop production:those which regulate (Ⅰ) the speed and transition of early leaf growth,(Ⅱ) photosynthesis rate,(Ⅲ) the onset and (Ⅳ) the progression of leaf senescence.Current advances in isolating and characterizing senescence regulatory genes are discussed in the leaf aging and crop production context.We argue that the breeding of crops with leaf senescence ideotypes should be an essential part of further crop genetic improvement.

  8. Senescence-specific Alteration of Hydrogen Peroxide Levels in Arabidopsis thaliana and Oilseed Rape Spring Variety Brassica napus L.cv.Mozart

    Institute of Scientific and Technical Information of China (English)

    Stefan Bieker; Lena Riester; Mark Stahl; Jürgen Franzaring; Ulrike Zentgraf

    2012-01-01

    In order to analyze the signaling function of hydrogen peroxide (H2O2) production in senescence in more detail,we manipulated intracellular H2O2 levels in Arabidopsis thaliala (L.) Heynh by using the hydrogenperoxide-sensitive part of the Escherichia coli transcription regulator OxyR,which was directed to the cytoplasm as well as into the peroxisomes.H2O2 levels were lowered and senescence was delayed in both transgenic lines,but OxyR was found to be more effective in the cytoplasm.To transfer this knowledge to crop plants,we analyzed oilseed rape plants Brassica napus L.cv.Mozart for H2O2 and its scavenging enzymes catalase (CAT) and ascorbate peroxidase (APX) during leaf and plant development.H2O2 levels were found to increase during bolting and flowering time,but no increase could be observed in the very late stages of senescence.With increasing H2O2 levels,CAT and APX activities declined,so it is likely that similar mechanisms are used in oilseed rape and Arabidopsis to control H2O2 levels.Under elevated CO2 conditions,oilseed rape senescence was accelerated and coincided with an earlier increase in H2O2 levels,indicating that H2O2 may be one of the signals to inducing senescence in a broader range of Brassicaceae.

  9. Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart.

    Science.gov (United States)

    Bieker, Stefan; Riester, Lena; Stahl, Mark; Franzaring, Jürgen; Zentgraf, Ulrike

    2012-08-01

    In order to analyze the signaling function of hydrogen peroxide (H(2)O(2)) production in senescence in more detail, we manipulated intracellular H(2)O(2) levels in Arabidopsis thaliala (L.) Heynh by using the hydrogen-peroxide-sensitive part of the Escherichia coli transcription regulator OxyR, which was directed to the cytoplasm as well as into the peroxisomes. H(2)O(2) levels were lowered and senescence was delayed in both transgenic lines, but OxyR was found to be more effective in the cytoplasm. To transfer this knowledge to crop plants, we analyzed oilseed rape plants Brassica napus L. cv. Mozart for H(2)O(2) and its scavenging enzymes catalase (CAT) and ascorbate peroxidase (APX) during leaf and plant development. H(2)O(2) levels were found to increase during bolting and flowering time, but no increase could be observed in the very late stages of senescence. With increasing H(2)O(2) levels, CAT and APX activities declined, so it is likely that similar mechanisms are used in oilseed rape and Arabidopsis to control H(2)O(2) levels. Under elevated CO(2) conditions, oilseed rape senescence was accelerated and coincided with an earlier increase in H(2)O(2) levels, indicating that H(2)O(2) may be one of the signals to inducing senescence in a broader range of Brassicaceae.

  10. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    Science.gov (United States)

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  11. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    Science.gov (United States)

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. PMID:26831097

  12. The Advancement on Leaf Senescence in Crops%作物叶片衰老研究进展

    Institute of Scientific and Technical Information of China (English)

    孙玉莹; 毕京翠; 赵志超; 程治军; 万建民

    2013-01-01

    叶片衰老是叶片发育末期的一个自然发育过程.在叶片衰老过程中,叶绿素和其他大分子被降解,叶片光合能力降低,衰老组织中的营养物质被运输到幼嫩组织和生殖器官中.叶片衰老受生长发育时期和环境胁迫的诱导,如黑暗、干旱、营养缺乏、高盐、低温、臭氧和病原菌感染等.这些过程常伴随着活性氧(ROS)的积累,以及细胞中抗氧化酶(SOD、CAT和APX)活性的降低.对作物生长不利的因素能够引起早衰,衰老进程加速,衰老相关基因(SAG)表达量上调,最终引起整个植株的过早成熟.田间管理和栽培措施,如氮素的施用水平、种植密度和化学调节剂,都能影响作物的衰老进程,最终影响作物产量,但是涉及的分子生物学机制仍不清楚.就作物叶片衰老研究方面的有关进展进行了综述,以期为相关的研究提供借鉴.%Leaf senescence happen in the late stage of leaf development.During the process of leaf senescence,chlorophyll and other macromolecules are degraded,photosynthetic capacity declines and nutrients of the degraded products tissues are transferred from senescing to young tissues and reproductive organs.Leaf senescence is influenced by the leaf developmental stage and environmental stresses,like dark,drought,salinity,low temperature,ozone,nutrient deficiency and pathogen infection,etc.Reactive oxygen species (ROS) accumulates during leaf senescence with reduced antioxidase activities (SOD,CAT and APX).Unfavorable conditions might accelerate and lead to a premature senescence,inducing expression of senescence associated genes (SAGs),speeding up the plant maturation and decreasing the crop yield.The measures utilized in production practice,i.e.nitrogen management,plant intensity,and chemical regulator are involved in the process.In this review,we summarized the advancement in this field.

  13. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    Science.gov (United States)

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  14. Senescent vs. non-senescent cells in the human annulus in vivo: Cell harvest with laser capture microdissection and gene expression studies with microarray analysis

    Directory of Open Access Journals (Sweden)

    Ingram Jane A

    2010-01-01

    Full Text Available Abstract Background Senescent cells are well-recognized in the aging/degenerating human disc. Senescent cells are viable, cannot divide, remain metabolically active and accumulate within the disc over time. Molecular analysis of senescent cells in tissue offers a special challenge since there are no cell surface markers for senescence which would let one use fluorescence-activated cell sorting as a method for separating out senescent cells. Methods We employed a novel laser capture microdissection (LCM design to selectively harvest senescent and non-senescent annulus cells in paraffin-embedded tissue, and compared their gene expression with microarray analysis. LCM was used to separately harvest senescent and non-senescent cells from 11 human annulus specimens. Results Microarray analysis revealed significant differences in expression levels in senescent cells vs non-senescent cells: 292 genes were upregulated, and 321 downregulated. Genes with established relationships to senescence were found to be significantly upregulated in senescent cells vs. non-senescent cells: p38 (MPAK14, RB-Associated KRAB zinc finger, Discoidin, CUB and LCCL domain, growth arrest and DNA-damage inducible beta, p28ING5, sphingosine-1-phosphate receptor 2 and somatostatin receptor 3; cyclin-dependent kinase 8 showed significant downregulation in senescent cells. Nitric oxidase synthase 1, and heat shock 70 kDa protein 6, both of which were significantly down-regulated in senescent cells, also showed significant changes. Additional genes related to cytokines, cell proliferation, and other processes were also identified. Conclusions Our LCM-microarray analyses identified a set of genes associated with senescence which were significantly upregulated in senescent vs non-senescent cells in the human annulus. These genes include p38 MAP kinase, discoidin, inhibitor of growth family member 5, and growth arrest and DNA-damage-inducible beta. Other genes, including genes

  15. Assessing senescence patterns in populations of large mammals

    Directory of Open Access Journals (Sweden)

    Gaillard, J.-M.

    2004-06-01

    Full Text Available Theoretical models such as those of Gompertz and Weibull are commonly used to study senescence in survival for humans and laboratory or captive animals. For wild populations of vertebrates, senescence in survival has more commonly been assessed by fitting simple linear or quadratic relationships between survival and age. By using appropriate constraints on survival parameters in Capture-Mark-Recapture (CMR models, we propose a first analysis of the suitability of the Gompertz and the two-parameter Weibull models for describing aging-related mortality in free-ranging populations of ungulates. We first show how to handle the Gompertz and the two-parameter Weibull models in the context of CMR analyses. Then we perform a comparative analysis of senescence patterns in both sexes of two ungulate species highly contrasted according to the intensity of sexual selection. Our analyses provide support to the Gompertz model for describing senescence patterns in ungulates. Evolutionary implications of our results are discussed

  16. Interaction Mortality: Senescence May Have Evolved because It Increases Lifespan

    DEFF Research Database (Denmark)

    Wensink, M. J.; Wrycza, T. F.; Baudisch, A.

    2014-01-01

    Given an extrinsic challenge, an organism may die or not depending on how the threat interacts with the organism's physiological state. To date, such interaction mortality has been only a minor factor in theoretical modeling of senescence. We describe a model of interaction mortality that does...... not involve specific functions, making only modest assumptions. Our model distinguishes explicitly between the physiological state of an organism and potential extrinsic, age-independent threats. The resulting mortality may change with age, depending on whether the organism's state changes with age. We find...... that depending on the physiological constraints, any outcome, be it 'no senescence' or 'high rate of senescence', can be found in any environment; that the highest optimal rate of senescence emerges for an intermediate physiological constraint, i.e. intermediate strength of trade-off; and that the optimal rate...

  17. Identification of a senescence-related protease in coriander leaves

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Senescence-related protease may play an important role in leaf senescence. By improved SDS-Gela- tin-PAGE assay, a 63 ku senescence-related protease (63 SRP) in coriander leaves was identified. Activity of 63 SRP was increased in parallel to the advance of coriander leaf senescence, and inhibited by treating the leaf with gibberellic acid, and enhanced by ethylene treatment. The 63 SRP was suggested to be a serine protease based on the fact that its activity was inhibited by the protease inhibitor PMSF. The optimal temperature for the activity of the 70 ku protease was 50℃. The maximal activity was observed at pH 6-9, some activity could be observed on the gel slices incubated at pH 5 or 11. The 63 SRP was partly purified by the way of ammonium sulfate precipitation and then gel slicing after gel electrophoresis.

  18. Senescent cells harbour features of the cancer epigenome

    OpenAIRE

    Cruickshanks, Hazel A; McBryan, Tony; Nelson, David M.; VanderKraats, Nathan D.; Shah, Parisha P.; van Tuyn, John; Rai, Taranjit Singh; Brock, Claire; Donahue, Greg; Dunican, Donncha S; Drotar, Mark E.; Meehan, Richard R.; Edwards, John R.; Berger, Shelley L.; Adams, Peter D.

    2013-01-01

    Altered DNA methylation and associated destabilization of genome integrity and function is a hallmark of cancer. Replicative senescence is a tumour suppressor process that imposes a limit on the proliferative potential of normal cells that all cancer cells must bypass. Here we show by whole-genome single-nucleotide bisulfite sequencing that replicative senescent human cells exhibit widespread DNA hypomethylation and focal hypermethylation. Hypomethylation occurs preferentially at gene-poor, l...

  19. ABA receptor PYL9 promotes drought resistance and leaf senescence

    OpenAIRE

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng

    2016-01-01

    We identified transgenic plants that are extremely resistant to drought from a large-scale screening of transgenic plants overexpressing the pyrabactin resistance 1-like (PYL) family of abscisic acid (ABA) receptors. We explored how these plants resist drought by examining both short-term responses, such as stomatal closure, and long-term responses, such as senescence. The physiological roles of ABA-induced senescence under stress conditions and the underlying molecular mechanism are unclear....

  20. Leaf senescence in alstroemeria: regulation by phytochrome gibberellins and cytokinins.

    OpenAIRE

    Kappers, I

    1998-01-01

    Leaf senescence in plants is a regulated process influenced by light as well as phytohormones. In the present study the putative role of the phytohormones cytokinins and gibberellins as mediators for the light signal on leaf senescence in alstroemeria was studied. It was found that low photon fluences of red light ensured maximal delay of chlorophyll and protein breakdown. This effect of red light could be completely counteracted by a subsequent far red irradiation, indicating phytochrome inv...

  1. Five dysfunctional telomeres predict onset of senescence in human cells

    OpenAIRE

    Kaul, Zeenia; Cesare, Anthony J.; Huschtscha, Lily I.; Neumann, Axel A.; Reddel, Roger R

    2011-01-01

    Replicative senescence is accompanied by a telomere-specific DNA damage response (DDR). We found that DDR+ telomeres occur spontaneously in early-passage normal human cells and increase in number with increasing cumulative cell divisions. DDR+ telomeres at replicative senescence retain TRF2 and RAP1 proteins, are not associated with end-to-end fusions and mostly result from strand-independent, postreplicative dysfunction. On the basis of the calculated number of DDR+ telomeres in G1-phase cel...

  2. Increased expression of senescence markers in cystic fibrosis airways

    OpenAIRE

    Fischer, Bernard M.; Wong, Jessica K.; Degan, Simone; Kummarapurugu, Apparao B.; Zheng, Shuo; Haridass, Prashamsha; Voynow, Judith A.

    2013-01-01

    Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF an...

  3. Structural and mechanistic insights into the regulation of cellular quiescence by Rb and p130

    OpenAIRE

    Hirschi, Alexander

    2013-01-01

    The ability of a single cell to grow, replicate its genetic material, and divide into two identical daughter cells is a vital process to ensure the propagation of all life. This process is known as the cell division cycle (cell cycle) and is one of the most highly spatially and temporally regulated cellular processes. Misregulation of the cell cycle, particularly in ways that confer both a proliferative advantage and escape from ultimate growth control mechanisms like cellular senescence or a...

  4. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues

    Science.gov (United States)

    Gietl, C.; Schmid, M.

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  5. Gene pathways that delay Caenorhabditis elegans reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Meng C Wang

    2014-12-01

    Full Text Available Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene inactivations interact with insulin/IGF-1 and/or TGF-β endocrine signaling pathways to regulate reproductive senescence, except nhx-2 and sgk-1 that modulate sodium reabsorption. Of these 32 gene inactivations, we also found that 19 increase reproductive lifespan through their effects on oocyte activities, 8 of them coordinate oocyte and sperm functions to extend reproductive lifespan, and 5 of them can induce sperm humoral response to promote reproductive longevity. Furthermore, we examined the effects of these reproductive aging regulators on somatic aging. We found that 5 of these gene inactivations prolong organismal lifespan, and 20 of them increase healthy life expectancy of an organism without altering total life span. These studies provide a systemic view on the genetic regulation of reproductive senescence and its intersection with organism longevity. The majority of these newly identified genes are conserved, and may provide new insights into age-associated reproductive senescence during human aging.

  6. Effect of autophagy induced by dexamethasone on senescence in chondrocytes

    Science.gov (United States)

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-01-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague-Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein-red fluorescent protein-light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway-associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence-associated (SA)-β-galactosidase (β-gal) staining. A dose-dependent increase in the number of autophagic vacuoles was observed in the DXM-treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose-dependent increase in autophagosome formation was observed in the DXM-treated chondrocytes. Expression of LC3-II and beclin-1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA-β-gal staining indicated that DXM increased cell senescence. Notably, DXM-induced cell senescence was exacerbated by the autophagic inhibitor 3-MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM-induced autophagy. PMID:27572674

  7. Onset of Phloem Export from Senescent Petals of Daylily.

    Science.gov (United States)

    Bieleski, R. L.

    1995-10-01

    During senescence, petals of attached daylily (Hemerocallis hybrid cv Cradle Song) flowers lost 95% sugar and 65% dry weight over the first 24 h, with 30% of dry weight loss coming from nonsugar components. Detaching flowers did not delay senescence, but halted loss of carbohydrate and amino acid, suggesting that loss in the intact state was due to phloem export. Petal autolysis occurred mainly in the interveinal parenchyma, causing vascular strands to begin separating from the petal mass. Such vascular strands still stained with tetrazolium and accumulated sucrose, indicating a retained viability. Their sucrose accumulation rates were high in comparison with those of other plant tissues, and the accumulated product was mainly sucrose. Sucrose synthesis took place in the senescent petal, and sucrose was the principal sugar in phloem exudate, whereas hydroxyproline and glutamine were the main transport amino acids. [14C]Sucrose applied to attached senescent flowers was rapidly translocated to other parts of the plant, particularly developing flower buds. Thus, onset of phloem export allowed most of the soluble carbohydrate and amino acid in the senescing flower to be retrieved by the plant. Additional salvaged material came from proteins and possibly from structural carbohydrate. Over a 12-h period, the flower switched from acting as a strong carbohydrate sink during expansion to become a strong source during senescence. This rapid reversal offers potential for phloem transport studies. PMID:12228612

  8. Interaction mortality: senescence may have evolved because it increases lifespan.

    Directory of Open Access Journals (Sweden)

    Maarten J Wensink

    Full Text Available Given an extrinsic challenge, an organism may die or not depending on how the threat interacts with the organism's physiological state. To date, such interaction mortality has been only a minor factor in theoretical modeling of senescence. We describe a model of interaction mortality that does not involve specific functions, making only modest assumptions. Our model distinguishes explicitly between the physiological state of an organism and potential extrinsic, age-independent threats. The resulting mortality may change with age, depending on whether the organism's state changes with age. We find that depending on the physiological constraints, any outcome, be it 'no senescence' or 'high rate of senescence', can be found in any environment; that the highest optimal rate of senescence emerges for an intermediate physiological constraint, i.e. intermediate strength of trade-off; and that the optimal rate of senescence as a function of the environment is driven by the way the environment changes the effect of the organism's state on mortality. We conclude that knowledge about the environment, physiology and their interaction is necessary before reasonable predictions about the evolution of senescence can be made.

  9. Increased expression of senescence markers in cystic fibrosis airways.

    Science.gov (United States)

    Fischer, Bernard M; Wong, Jessica K; Degan, Simone; Kummarapurugu, Apparao B; Zheng, Shuo; Haridass, Prashamsha; Voynow, Judith A

    2013-03-15

    Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16(INK4a) (p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells. PMID:23316069

  10. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  11. Stress factor – dependent differences in molecular mechanisms of premature cell senescence

    Directory of Open Access Journals (Sweden)

    Petrova N. V.

    2015-10-01

    Full Text Available Cell senescence is an established cell stress response in the form of a permanent proliferation arrest accompanied by a complex phenotype. Senescent cells share several crucial features, such as lack of DNA synthesis, increased senescence-associated β-galactosidase activity and upregulation of cyclin-dependent kinase inhibitors. Most of these universal senescence markers are indicative not only for cell senescence but for other types of growth arrest as well. Along with ubiquitous markers, cell senescence has accessory characteristics, which mostly depend on senescence-inducing stimulus and/or cell type. Here, we review main markers and mechanisms involved in the induction of cell senescence with a focus on stress factor-dependent differences in signaling pathways activated in senescence.

  12. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence

    DEFF Research Database (Denmark)

    Agger, Karl; Cloos, Paul A C; Rudkjaer, Lise;

    2009-01-01

    The tumor suppressor proteins p16INK4A and p14ARF, encoded by the INK4A-ARF locus, are key regulators of cellular senescence. The locus is epigenetically silenced by the repressive H3K27me3 mark in normally growing cells, but becomes activated in response to oncogenic stress. Here, we show...

  13. Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum.

    Science.gov (United States)

    Dutot, Mélody; Fagon, Roxane; Hemon, Marc; Rat, Patrice

    2012-08-01

    Aging at the cellular level is characterized by oxidative stress, inflammation, and cell senescence. An extract of the brown seaweed Ascophyllum nodosum rich in phlorotannins has been studied for its inhibitory activity against oxidative stress, inflammation, and senescence. A. nodosum extract at 0.2 % prevented tBHP-induced reactive oxygen species production (evaluated using the H2DCF-DA test in cytofluorometry) in epithelial cells and LPS-induced TNF-α and IL-6 release (evaluated using ELISA technique) in macrophages. A. nodosum extract also increased nuclear SIRT1 activity in epithelial cells. Altogether, these beneficial cellular effects of phlorotannin-rich A. nodosum extract could be used in topical therapeutic formulations against aging. PMID:22692848

  14. Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein.

    Science.gov (United States)

    Choi, Ok Ran; Ryu, Min Sook; Lim, In Kyoung

    2016-09-01

    Cellular senescence and apoptosis can be regulated by p53 activity, although the underlying mechanism of the switch between the two events remains largely unknown. Cells exposed to cancer chemotherapy can escape to senescence phenotype rather than undergoing apoptosis. By employing adenoviral transduction of p53 or TIS21 genes, we observed shifting of p53 induced-senescence to apoptosis in EJ bladder cancer cells, which express H-RasV12 and mutant p53; transduction of p53 increased H-RasV12 expression along with senescence phenotypes, whereas coexpression with TIS21 (p53+TIS21) induced cell death rather than senescence. The TIS21-mediated switch of senescence to apoptosis was accompanied by nuclear translocation of p53 protein and its modifications on Ser-15 and Ser-46 phosphorylation and acetylations on Lys-120, -320, -373 and -382 residues. Mechanistically, TIS21(/BTG2) regulated posttranslational modification of p53 via enhancing miR34a and Bax expressions as opposed to inhibiting SIRT1 and Bcl2 expression. At the same time, TIS21 increased APAF-1 and p53AIP1 expressions, but inhibited the interaction of p53 with iASPP. In vitro tumorigenicity was significantly reduced in the p53+TIS21 expresser through inhibiting micro-colony proliferation by TIS21. Effect of TIS21 on the regulation of p53 activity was confirmed by knockdown of TIS21 expression by RNA interference. Therefore, we suggest TIS21 expression as an endogenous cell death inducer at the downstream of p53 gene, which might be useful for intractable cancer chemotherapy. PMID:27208501

  15. Reversibility of cellular aging by reprogramming through an embryonic-like state : a new paradigm for human cell rejuvenation

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lemaitre

    2014-01-01

    Full Text Available Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs provides a unique opportunity to derive patient-specific stem cells with potential application in autologous tissue replacement therapies and without the ethical concerns of Embryonic Stem Cells (hESC. However, this strategy still suffers from several hurdles that need to be overcome before clinical applications. Among them, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. This suggests that aging might be an important limitation for therapeutic purposes for elderly individuals. Senescence is characterized by an irreversible cell cycle arrest in response to various forms of stress, including activation of oncogenes, shortened telomeres, DNA damage, oxidative stress, and mitochondrial dysfunction. To overcome this barrier, we developed an optimized 6-factor-based reprogramming protocol that is able to cause efficient reversing of cellular senescence and reprogramming into iPSCs. We demonstrated that iPSCs derived from senescent and centenarian fibroblasts have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESC. Finally, we demonstrate that re-differentiation led to rejuvenated cells with a reset cellular physiology, defining a new paradigm for human cell rejuvenation. We discuss the molecular mechanisms involved in cell reprogramming of senescent cells. 

  16. Concurrence of replicative senescence and elevated expression of p16(INK4A) with subculture-induced but not calcium-induced differentiation in normal human oral keratinocytes.

    Science.gov (United States)

    Lee, G; Park, B S; Han, S E; Oh, J E; You, Y O; Baek, J H; Kim, G S; Min, B M

    2000-10-01

    Primary normal human oral keratinocytes (NHOKs) undergo differentiation in the presence of calcium concentrations higher than 0.15 mM in vitro, which is useful in investigating the mechanisms involved in the differentiation of epithelial cells. Serial subculture of NHOKs to the postmitotic stage also induces terminal differentiation. However, the detailed mechanisms of both differentiation processes remain substantially unknown. To investigate the molecular differences in these processes, NHOKs were induced to differentiate by exposure to 1.2 mM of calcium and by serial subculture to the postmitotic stage. To study whether the cells were induced to differentiate and to undergo replicative senescence, the amount of cellular involucrin and the expression of senescence-associated beta-galactosidase (SA-beta-gal) were measured respectively. The expression of replicative senescence-associated genes and the activity of telomerase from the differentiated cells were also determined. Both calcium treatment and serial subculture to the postmitotic stage notably elevated the cellular involucrin. The percentage of SA-beta-gal-positive cells was significantly elevated by the continued subculture, but such changes were not observed in keratinocytes exposed to calcium. The concentration of cellular p16(INK4A) protein was progressively increased by the continued subculture but was not changed by calcium treatment. On the other hand, the concentrations of cellular p53 were similar in both differentiation processes. However, telomerase activity was lost in NHOKs that had undergone differentiation by both calcium treatment and serial subculture. The results indicate that calcium-induced differentiation of NHOKs has similar characteristics to their serial subculture-induced differentiation, but that the differentiation processes are not identical, because calcium-induced differentiation does not concur with either replicative senescence or the gradually increased concentration of p16

  17. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available BACKGROUND: Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied. METHODOLOGY AND PRINCIPAL FINDINGS: In this report, we show that feeding a high quality diet supplemented with blueberries (BB to pre-pubertal rats throughout development or only between postnatal day 20 (PND20 and PND34 prevented ovariectomy (OVX-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation. CONCLUSIONS/SIGNIFICANCE: These results indicate: 1 a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2 the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.

  18. Tetraploidization or autophagy: The ultimate fate of senescent human endometrial stem cells under ATM or p53 inhibition.

    Science.gov (United States)

    Borodkina, Aleksandra V; Shatrova, Alla N; Deryabin, Pavel I; Grukova, Anastasiya A; Nikolsky, Nikolay N; Burova, Elena B

    2016-01-01

    Previously we demonstrated that endometrium-derived human mesenchymal stem cells (hMESCs) via activation of the ATM/p53/p21/Rb pathway enter the premature senescence in response to oxidative stress. Down regulation effects of the key components of this signaling pathway, particularly ATM and p53, on a fate of stressed hMESCs have not yet been investigated. In the present study by using the specific inhibitors Ku55933 and Pifithrin-α, we confirmed implication of both ATM and p53 in H(2)O(2)-induced senescence of hMESCs. ATM or p53 down regulation was shown to modulate differently the cellular fate of H(2)O(2)-treated hMESCs. ATM inhibition allowed H(2)O(2)-stimulated hMESCs to escape the permanent cell cycle arrest due to loss of the functional ATM/p53/p21/Rb pathway, and induced bypass of mitosis and re-entry into S phase, resulting in tetraploid cells. On the contrary, suppression of the p53 transcriptional activity caused a pronounced cell death of H(2)O(2)-treated hMESCs via autophagy induction. The obtained data clearly demonstrate that down regulation of ATM or p53 shifts senescence of human endometrial stem cells toward tetraploidization or autophagy.

  19. Mechanisms tagging senescent red blood cells for clearance in healthy humans

    Directory of Open Access Journals (Sweden)

    Anna eBogdanova

    2013-12-01

    Full Text Available This review focuses on the analysis and evaluation of the diverse senescence markers suggested to prime red blood cells (RBC for clearance in humans. These tags develop in the course of biochemical and structural alterations accompanying RBC aging, as the decrease of activities of multiple enzymes, the gradual accumulation of oxidative damage, the loss of membrane in form of microvesicles, the redistribution of ions and alterations in cell volume, density and deformability. The actual tags represent the penultimate galactosyl residues, revealed by desialylation of glycophorins, or the aggregates of the anion exchanger (band 3 protein to which anti-galactose antibodies bind in the first and anti-band 3 naturally occurring antibodies (NAbs in the second case. While anti-band 3 NAbs bind to the carbohydrate-free portion of band 3 aggreates in healthy humans, induced anti-lactoferrin antibodies bind to the carbohydrate-containing portion of band 3 and along with anti-band 3 NAbs may accelerated clearance of senescent RBC in patients with anti-neutrophil cytoplasmic antibodies. Exoplasmically accessible phosphatidylserine and the alterations in the interplay between CD47 on RBC and its receptor on macrophages, signal regulatory protein alpha (SIRPalpha protein, were also reported to induce erythrocyte clearance. We discuss the relevance of each mechanism and analyze the strength of the data.

  20. Global characteristics of CSIG-associated gene expression changes in human HEK293 cells and the implications for CSIG regulating cell proliferation and senescence

    Directory of Open Access Journals (Sweden)

    Liwei eMa

    2015-05-01

    Full Text Available Cellular senescence-inhibited gene (CSIG, also named ribosomal_L1 domain-containing 1 (RSL1D1, is implicated in various processes including cell cycle regulation, cellular senescence, apoptosis, and tumor metastasis. However, little is known about the regulatory mechanism underlying its functions. To screen important targets and signaling pathways modulated by CSIG, we compared the gene expression profiles in CSIG-silencing and control HEK293 cells using Affymetrix microarray Human Genome U133 Plus 2.0 GeneChips. A total of 590 genes displayed statistically significant expression changes, with 279 genes up-regulated and 311 down-regulated, respectively. These genes are involved in a broad array of biological processes, mainly in transcriptional regulation, cell cycle, signal transduction, oxidation reduction, development, and cell adhesion. The differential expression of genes such as ZNF616, KPNA5, MAP3K3 were further validated by real-time PCR and western blot analysis. Furthermore, we investigated the correlated expression patterns of ESCO1, KPNA5, MAP3K3 and CSIG during cell cycle and senescence progression, which imply the important pathways CSIG regulating cell cycle and senescence. The mechanism study showed that CSIG modulated the mRNA half-life of Cdc14B, CASP7 and CREBL2. This study shows that expression profiling can be used to identify genes that are transcriptionally or post-transcriptionally modified following CSIG knockdown and to reveal the molecular mechanism of cell proliferation and senescence regulated by CSIG.

  1. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Directory of Open Access Journals (Sweden)

    Akira Shimamoto

    Full Text Available Werner syndrome (WS is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  2. Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages.

    Science.gov (United States)

    Ma, Denglei; Zhu, Yanqiu; Li, Yanzheng; Yang, Cuicui; Zhang, Li; Li, Yali; Li, Lin; Zhang, Lan

    2016-10-01

    The aim of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on behavioral changes and senescent status in senescence-accelerated mouse-prone 8 (SAMP8) mice at different ages (6, 10, and 14 months old). The learning and memory ability, the motor function and the aging conditions of SAMP8 mice were evaluated after CIG treatment in this study. Results showed that intragastrical administration of CIG (100 and 200mg/kg) for two months obviously improved the impaired cognitive ability of SAMP8 mice at the age of 6 months and 10 months, respectively. The treatment with CIG significantly increased the motor function of SAMP8 mice at 10 months and 14 months of age, respectively. CIG also evidently decreased the high grading score of senescence and increased the low surviving rate of SAMP8 mice at the age of 14 months. In addition, CIG treatment inhibited tau hyperphosphorylation in the hippocampus and striatum of SAMP8 mice at different ages. Together, these results indicate that CIG represent a potentially useful treatment for ameliorating the impaired cognitive ability, the motor dysfunction, aging conditions and hyperphosphorylation of tau in aging and age-related neurodegenerative diseases, such as Alzheimer's disease. PMID:27283974

  3. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Park YJ

    2012-09-01

    Full Text Available Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,21Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Human dental pulp stem cells (DPSCs have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1 was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP, and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.Keywords: superoxide

  4. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  5. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kacoli Banerjee

    2015-08-01

    Full Text Available Recent studies involving phytochemical polyphenolic compounds have suggested flavones often exert pro-oxidative effect in vitro against wide array of cancer cell lines. The aim of this study was to evaluate the in-vitro pro-oxidative activity of apigenin, a plant based flavone against colorectal cancer cell lines and investigate cumulative effect on long term exposure. In the present study, treatment of colorectal cell lines HT-29 and HCT-15 with apigenin resulted in anti-proliferative and apoptotic effects characterized by biochemical and morphological changes, including loss of mitochondrial membrane potential which aided in reversing the impaired apoptotic machinery leading to negative implications in cancer pathogenesis. Apigenin induces rapid free radical species production and the level of oxidative damage was assessed by qualitative and quantitative estimation of biochemical markers of oxidative stress. Increased level of mitochondrial superoxide suggested dose dependent mitochondrial oxidative damage which was generated by disruption in anti-apoptotic and pro-apoptotic protein balance. Continuous and persistent oxidative stress induced by apigenin at growth suppressive doses over extended treatment time period was observed to induce senescence which is a natural cellular mechanism to attenuate tumor formation. Senescence phenotype inducted by apigenin was attributed to changes in key molecules involved in p16-Rb and p53 independent p21 signaling pathways. Phosphorylation of retinoblastoma was inhibited and significant up-regulation of p21 led to simultaneous suppression of cyclins D1 and E which indicated the onset of senescence. Pro-oxidative stress induced premature senescence mediated by apigenin makes this treatment regimen a potential chemopreventive strategy and an in vitro model for aging research.

  6. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts

    DEFF Research Database (Denmark)

    Ahmed, Emad K; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter;

    2010-01-01

    methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age-related build-up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during......Summary Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins...... proteins. 37 proteins targeted for either one of these modifications were identified by mass spectrometry and are involved in different cellular functions such as protein quality control, energy metabolism and cytoskeleton. Almost half of the identified proteins were found to be mitochondrial, which...

  7. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Kyla A. Stigter

    2015-12-01

    Full Text Available Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P, are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi, the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.

  8. Apoptosis during embryonic tissue remodeling is accompanied by cell senescence

    Science.gov (United States)

    Lorda-Diez, Carlos I.; Garcia-Riart, Beatriz; Montero, Juan A.; Rodriguez-León, Joaquín; Garcia-Porrero, Juan A; Hurle, Juan M.

    2015-01-01

    This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of β-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals. PMID:26568417

  9. Connecting proline metabolism and signaling pathways in plant senescence

    Directory of Open Access Journals (Sweden)

    Lu eZhang

    2015-07-01

    Full Text Available The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products.

  10. Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Changguang Shi

    Full Text Available Plant senescence is a critical life history process accompanied by chlorophyll degradation and has large implications for nutrient resorption and carbohydrate storage. Although photoperiod governs much of seasonal leaf senescence in many plant species, temperature has also been shown to modulate this process. Therefore, we hypothesized that climate warming would significantly impact the length of the plant growing season and ultimate productivity. To test this assumption, we measured the effects of simulated autumn climate warming paradigms on four native herbaceous species that represent distinct life forms of alpine meadow plants on the Tibetan Plateau. Conditions were simulated in open-top chambers (OTCs and the effects on the degradation of chlorophyll, nitrogen (N concentration in leaves and culms, total non-structural carbohydrate (TNC in roots, growth and phenology were assessed during one year following treatment. The results showed that climate warming in autumn changed the senescence process only for perennials by slowing chlorophyll degradation at the beginning of senescence and accelerating it in the following phases. Warming also increased root TNC storage as a result of higher N concentrations retained in leaves; however, this effect was species dependent and did not alter the growing and flowering phenology in the following seasons. Our results indicated that autumn warming increases carbohydrate accumulation, not only by enhancing activities of photosynthetic enzymes (a mechanism proposed in previous studies, but also by affecting chlorophyll degradation and preferential allocation of resources to different plant compartments. The different responses to warming can be explained by inherently different growth and phenology patterns observed among the studied species. The results implied that warming leads to changes in the competitive balance among life forms, an effect that can subsequently shift vegetation distribution and

  11. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  12. Lung fibroblasts from patients with emphysema show markers of senescence in vitro

    Directory of Open Access Journals (Sweden)

    Nakashima M

    2006-02-01

    Full Text Available Abstract Background The loss of alveolar walls is a hallmark of emphysema. As fibroblasts play an important role in the maintenance of alveolar structure, a change in fibroblast phenotype could be involved in the pathogenesis of this disease. In a previous study we found a reduced in vitro proliferation rate and number of population doublings of parenchymal lung fibroblasts from patients with emphysema and we hypothesized that these findings could be related to a premature cellular aging of these cells. In this study, we therefore compared cellular senescence markers and expression of respective genes between lung fibroblasts from patients with emphysema and control patients without COPD. Methods Primary lung fibroblasts were obtained from 13 patients with moderate to severe lung emphysema (E and 15 controls (C undergoing surgery for lung tumor resection or volume reduction (n = 2. Fibroblasts (8E/9C were stained for senescence-associated β-galactosidase (SA-β-Gal. In independent cultures, DNA from lung fibroblasts (7E/8C was assessed for mean telomere length. Two exploratory 12 k cDNA microarrays were used to assess gene expression in pooled fibroblasts (3E/3C. Subsequently, expression of selected genes was evaluated by quantitative PCR (qPCR in fibroblasts of individual patients (10E/9C and protein concentration was analyzed in the cell culture supernatant. Results The median (quartiles percentage of fibroblasts positive for SA-β-Gal was 4.4 (3.2;4.7 % in controls and 16.0 (10.0;24.8 % in emphysema (p = 0.001, while telomere length was not different. Among the candidates for differentially expressed genes in the array (factor ≥ 3, 15 were upregulated and 121 downregulated in emphysema. qPCR confirmed the upregulation of insulin-like growth factor-binding protein (IGFBP-3 and IGFBP-rP1 (p = 0.029, p = 0.0002, while expression of IGFBP-5, -rP2 (CTGF, -rP4 (Cyr61, FOSL1, LOXL2, OAZ1 and CDK4 was not different between groups. In line with the

  13. Cellular and molecular mechanisms in kidney fibrosis

    OpenAIRE

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progressi...

  14. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis;

    2006-01-01

    , whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks...... and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression....

  15. Cell Senescence in Myxoid/Round Cell Liposarcoma

    Directory of Open Access Journals (Sweden)

    Christina Kåbjörn Gustafsson

    2014-01-01

    Full Text Available Myxoid/round cell liposarcoma (MLS/RCLS is the second most common liposarcoma type and characterized by the fusion oncogenes FUS-DDIT3 or EWSR1-DDIT3. Previous analysis of cell cycle regulatory proteins revealed a prominent expression of G1-cyclins, cyclin dependent kinases, and their inhibitors but very few cells progressing through the G1/S boundary. Here, we extend the investigation to proteins involved in cell senescence in an immunohistochemistry based study of 17 MLS/RCLS cases. Large subpopulations of tumor cells expressed the RBL2 pocket protein and senescence associated heterochromatin 1γ and IL8 receptor β. We conclude that MLS/RCLS tissues contain major populations of senescent tumor cells and this may explain the slow growth rate of this tumor type.

  16. Catastrophic senescence and semelparity in the Penna aging model

    CERN Document Server

    Pinol, C M N

    2010-01-01

    The catastrophic senescence of the Pacific salmon is among the initial tests used to validate the Penna aging model. Based on the mutation accumulation theory, the sudden decrease in fitness following reproduction may be solely attributed to the semelparity of the species. In this work, we report other consequences of mutation accumulation. Contrary to earlier findings, such dramatic manifestation of aging depends not only on the choice of breeding strategy but also on the value of the reproduction age, R, and the mutation threshold, T. Senescence is catastrophic when T\\leq R. As the organism's tolerance for harmful genetic mutations increases, the aging process becomes more gradual. We observe senescence that is threshold dependent whenever T>R. That is, the sudden drop in survival rate occurs at age equal to the mutation threshold value.

  17. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence

    OpenAIRE

    Ramachandran, I; Ganapathy, V.; Gillies, E; Fonseca, I.; Sureban, S M; Houchen, C.W.; A. Reis; Queimado, L

    2014-01-01

    Hyperactivation of the Wingless-type (Wnt)/β-catenin pathway promotes tumor initiation, tumor growth and metastasis in various tissues. Although there is evidence for the involvement of Wnt/β-catenin pathway activation in salivary gland tumors, the precise mechanisms are unknown. Here we report for the first time that downregulation of the Wnt inhibitory factor 1 (WIF1) is a widespread event in salivary gland carcinoma ex-pleomorphic adenoma (CaExPA). We also show that WIF1 downregulation occ...

  18. miR-125b induces cellular senescence in malignant melanoma

    DEFF Research Database (Denmark)

    Nyholm, Anne Marie; Lerche, Catharina M; Manfé, Valentina;

    2014-01-01

    BACKGROUND: Micro RNAs (miRs) have emerged as key regulators during oncogenesis. They have been found to regulate cell proliferation, differentiation, and apoptosis. Mir-125b has been identified as an oncomir in various forms of tumours, but we have previously proposed that miR-125b is a suppressor...... of lymph node metastasis in cutaneous malignant melanoma. Our goal was therefore to further examine this theory. METHODS: We used in-situ-hybridization to visualise miR-125b expression in primary tumours and in lymph node metastasis. Then using a miRVector plasmid containing a miR-125b-1 insert we...... transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and β-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further...

  19. Cellular and molecular mechanisms of negligible senescence: insight from the sea urchin

    OpenAIRE

    Bodnar, Andrea G.

    2014-01-01

    Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100 years, thus providing ...

  20. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  1. Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes

    Indian Academy of Sciences (India)

    Finny Monickaraj; Sankaramoorthy Aravind; Pichamoorthy Nandhini; Paramasivam Prabu; Chandrakumar Sathishkumar; Viswanathan Mohan; Muthuswamy Balasubramanyam

    2013-03-01

    Telomere shortening is emerging as a biological indicator of accelerated aging and aging-related diseases including type 2 diabetes. While telomere length measurements were largely done in white blood cells, there is lack of studies on telomere length in relation to oxidative stress in target tissues affected in diabetes. Therefore, the aim of this study is to induct oxidative stress in adipocytes and to test whether these adipocytes exhibit shortened telomeres, senescence and functional impairment. 3T3-L1 adipocytes were subjected to oxidative stress and senescence induction by a variety of means for 2 weeks (exogenous application of H2O2, glucose oxidase, asymmetric dimethylarginine (ADMA) and glucose oscillations). Cells were probed for reactive oxygen species generation (ROS), DNA damage, mRNA and protein expression of senescent and pro-inflammatory markers, telomere length and glucose uptake. Compared to untreated cells, both ROS generation and DNA damage w