WorldWideScience

Sample records for accelerated wound healing

  1. Acceleration of cutaneous wound healing by brassinosteroids.

    Science.gov (United States)

    Esposito, Debora; Rathinasabapathy, Thirumurugan; Schmidt, Barbara; Shakarjian, Michael P; Komarnytsky, Slavko; Raskin, Ilya

    2013-01-01

    Brassinosteroids are plant growth hormones involved in cell growth, division, and differentiation. Their effects in animals are largely unknown, although recent studies showed that the anabolic properties of brassinosteroids are possibly mediated through the phosphoinositide 3-kinase/protein kinase B signaling pathway. Here, we examined biological activity of homobrassinolide (HB) and its synthetic analogues in in vitro proliferation and migration assays in murine fibroblast and primary keratinocyte cell culture. HB stimulated fibroblast proliferation and migration and weakly induced keratinocyte proliferation in vitro. The effects of topical HB administration on progression of wound closure were further tested in the mouse model of cutaneous wound healing. C57BL/6J mice were given a full-thickness dermal wound, and the rate of wound closure was assessed daily for 10 days, with adenosine receptor agonist CGS-21680 as a positive control. Topical application of brassinosteroid significantly reduced wound size and accelerated wound healing in treated animals. mRNA levels of transforming growth factor beta and intercellular adhesion molecule 1 were significantly lower, while tumor necrosis factor alpha was nearly suppressed in the wounds from treated mice. Our data suggest that topical application of brassinosteroids accelerates wound healing by positively modulating inflammatory and reepithelialization phases of the wound repair process, in part by enhancing Akt signaling in the skin at the edges of the wound and enhancing migration of fibroblasts in the wounded area. Targeting this signaling pathway with brassinosteroids may represent a promising approach to the therapy of delayed wound healing.

  2. Chitosan-alginate membranes accelerate wound healing.

    Science.gov (United States)

    Caetano, Guilherme Ferreira; Frade, Marco Andrey Cipriani; Andrade, Thiago Antônio Moretti; Leite, Marcel Nani; Bueno, Cecilia Zorzi; Moraes, Ângela Maria; Ribeiro-Paes, João Tadeu

    2015-07-01

    The purpose of this study was to evaluate the efficacy of chitosan-alginate membrane to accelerate wound healing in experimental cutaneous wounds. Two wounds were performed in Wistar rats by punching (1.5 cm diameter), treated with membranes moistened with saline solution (CAM group) or with saline only (SL group). After 2, 7, 14, and 21 days of surgery, five rats of each group were euthanized and reepithelialization was evaluated. The wounds/scars were harvested for histological, flow cytometry, neutrophil infiltrate, and hydroxyproline analysis. CAM group presented higher inflammatory cells recruitment as compared to SL group on 2(nd) day. On the 7(th) day, CAM group showed higher CD11b(+) level and lower of neutrophils than SL group. The CAM group presented higher CD4(+) cells influx than SL group on 2(nd) day, but it decreased during the follow up and became lower on 14(th) and 21(st) days. Higher fibroplasia was noticed on days 7 and 14 as well as higher collagenesis on 21(st) in the CAM group in comparison to SL group. CAM group showed faster reepithelialization on 7(th) day than SL group, although similar in other days. In conclusion, chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats.

  3. A short peptide from frog skin accelerates diabetic wound healing.

    Science.gov (United States)

    Liu, Han; Duan, Zilei; Tang, Jing; Lv, Qiumin; Rong, Mingqiang; Lai, Ren

    2014-10-01

    Delayed wound healing will result in the development of chronic wounds in some diseases, such as diabetes. Amphibian skins possess excellent wound-healing ability and represent a resource for prospective wound-healing promoting compounds. A potential wound-healing promoting peptide (CW49; amino acid sequence APFRMGICTTN) was identified from the frog skin of Odorrana grahami. It promotes wound healing in a murine model with a full-thickness dermal wound in both normal and diabetic animals. In addition to its strong angiogenic ability with respect to the upregulation of some angiogenic proteins, CW49 also showed a significant anti-inflammatory effect in diabetic wounds, which was very important for healing chronic wounds. CW49 had little effect on re-epithelialization, resulting in no significant effect on wound closure rate compared to a vehicle control. Altogether, this indicated that CW49 might accelerate diabetic wound healing by promoting angiogenesis and preventing any excessive inflammatory response. Considering its favorable traits as a small peptide that significantly promotes angiogenesis, CW49 might be an excellent candidate or template for the development of a drug for use in the treatment of diabetic wounds.

  4. α-Gal Nanoparticles in Wound and Burn Healing Acceleration

    Science.gov (United States)

    Galili, Uri

    2017-01-01

    Significance: Rapid recruitment and activation of macrophages may accelerate wound healing. Such accelerated healing was observed in wounds and burns of experimental animals treated with α-gal nanoparticles. Recent Advances: α-Gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R). α-Gal nanoparticles applied to wounds bind anti-Gal (the most abundant antibody in humans) and generate chemotactic complement peptides, which rapidly recruit macrophages. Fc/Fc receptor interaction between anti-Gal coating the α-gal nanoparticles and recruited macrophages activates macrophages to produce cytokines that accelerate healing. α-Gal nanoparticles applied to burns and wounds in mice and pigs producing anti-Gal, decreased healing time by 40–60%. In mice, this accelerated healing avoided scar formation. α-Gal nanoparticle-treated wounds, in diabetic mice producing anti-Gal, healed within 12 days, whereas saline-treated wounds became chronic wounds. α-Gal nanoparticles are stable for years and may be applied dried, in suspension, aerosol, ointments, or within biodegradable materials. Critical Issues: α-Gal nanoparticle therapy can be evaluated only in mammalian models producing anti-Gal, including α1,3-galactosyltransferase knockout mice and pigs or Old World primates. Traditional experimental animal models synthesize α-gal epitopes and lack anti-Gal. Future Directions: Since anti-Gal is naturally produced in all humans, it is of interest to determine safety and efficacy of α-gal nanoparticles in accelerating wound and burn healing in healthy individuals and in patients with impaired wound healing such as diabetic patients and elderly individuals. In addition, efficacy of α-gal nanoparticle therapy should be studied in healing and regeneration of internal injuries such as surgical incisions, ischemic myocardium following myocardial infarction, and injured nerves. PMID:28289553

  5. Accelerated endothelial wound healing on microstructured substrates under flow.

    Science.gov (United States)

    Franco, Davide; Milde, Florian; Klingauf, Mirko; Orsenigo, Fabrizio; Dejana, Elisabetta; Poulikakos, Dimos; Cecchini, Marco; Koumoutsakos, Petros; Ferrari, Aldo; Kurtcuoglu, Vartan

    2013-02-01

    Understanding and accelerating the mechanisms of endothelial wound healing is of fundamental interest for biotechnology and of significant medical utility in repairing pathologic changes to the vasculature induced by invasive medical interventions. We report the fundamental mechanisms that determine the influence of substrate topography and flow on the efficiency of endothelial regeneration. We exposed endothelial monolayers, grown on topographically engineered substrates (gratings), to controlled levels of flow-induced shear stress. The wound healing dynamics were recorded and analyzed in various configurations, defined by the relative orientation of an inflicted wound, the topography and the flow direction. Under flow perpendicular to the wound, the speed of endothelial regeneration was significantly increased on substrates with gratings oriented in the direction of the flow when compared to flat substrates. This behavior is linked to the dynamic state of cell-to-cell adhesions in the monolayer. In particular, interactions with the substrate topography counteract Vascular Endothelial Cadherin phosphorylation induced by the flow and the wounding. This effect contributes to modulating the mechanical connection between migrating cells to an optimal level, increasing their coordination and resulting in coherent cell motility and preservation of the monolayer integrity, thus accelerating wound healing. We further demonstrate that the reduction of vascular endothelial cadherin phosphorylation, through specific inhibition of Src activity, enhances endothelial wound healing in flows over flat substrates.

  6. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.

  7. Thyrotropin-releasing hormone and its analogs accelerate wound healing.

    Science.gov (United States)

    Nie, Chunlei; Yang, Daping; Liu, Nan; Dong, Deli; Xu, Jin; Zhang, Jiewu

    2014-06-15

    Thyrotropin-releasing hormone (TRH) is a classical hormone that controls thyroid hormone production in the anterior pituitary gland. However, recent evidence suggested that TRH is expressed in nonhypothalamic tissues such as epidermal keratinocytes and dermal fibroblasts, but its function is not clear. This study aimed to investigate the effects of TRH and its analogs on wound healing and explore the underlying mechanisms. A stented excisional wound model was established, and the wound healing among vehicle control, TRH, and TRH analog taltirelin treatment groups was evaluated by macroscopic and histologic analyses. Primary fibroblasts were isolated from rat dermis and treated with vehicle control, TRH or taltirelin, cell migration, and proliferation were examined by scratch migration assay, MTT, and 5-ethynyl-2'- deoxyuridine (EdU) assay. The expression of α-Smooth muscle actin in fibroblasts was detected by Western blot and immunocytochemical analysis. TRH or taltirelin-treated wounds exhibited accelerated wound healing with enhanced granulation tissue formation and increased re-epithelialization and tissue formation. Furthermore, TRH or taltirelin promoted the migration and proliferation of fibroblasts and induced the expression of α-Smooth muscle actin in fibroblasts. TRH is important in upregulating the phenotypes of dermal fibroblasts and plays a role in accelerating wound healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Modulation of inflammation by Cicaderma ointment accelerates skin wound healing.

    Science.gov (United States)

    Morin, Christophe; Roumegous, Audrey; Carpentier, Gilles; Barbier-Chassefière, Véronique; Garrigue-Antar, Laure; Caredda, Stéphane; Courty, José

    2012-10-01

    Skin wound healing is a natural and intricate process that takes place after injury, involving different sequential phases such as hemostasis, inflammatory phase, proliferative phase, and remodeling that are associated with complex biochemical events. The interruption or failure of wound healing leads to chronic nonhealing wounds or fibrosis-associated diseases constituting a major health problem where, unfortunately, medicines are not very effective. The objective of this study was to evaluate the capacity of Cicaderma ointment (Boiron, Lyon, France) to accelerate ulcer closure without fibrosis and investigate wound healing dynamic processes. We used a necrotic ulcer model in mice induced by intradermal doxorubicin injection, and after 11 days, when the ulcer area was maximal, we applied Vaseline petroleum jelly or Cicaderma every 2 days. Topical application of Cicaderma allowed a rapid recovery of mature epidermal structure, a more compact and organized dermis and collagen bundles compared with the Vaseline group. Furthermore, the expression of numerous cytokines/molecules in the ulcer was increased 11 days after doxorubicin injection compared with healthy skin. Cicaderma rapidly reduced the level of proinflammatory cytokines, mainly tumor necrosis factor (TNF)-α and others of the TNF pathway, which can be correlated to a decrease of polymorphonuclear recruitment. It is noteworthy that the modulation of inflammation through TNF-α, macrophage inflammatory protein-1α, interleukin (IL)-12, IL-4, and macrophage-colony-stimulating factor was maintained 9 days after the first ointment application, facilitating the wound closure without affecting angiogenesis. These cytokines seem to be potential targets for therapeutic approaches in chronic wounds. Our results confirm the use of Cicaderma for accelerating skin wound healing and open new avenues for sequential treatments to improve healing.

  9. Acacia honey accelerates in vitro corneal ulcer wound healing model.

    Science.gov (United States)

    Abd Ghafar, Norzana; Ker-Woon, Choy; Hui, Chua Kien; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah

    2016-07-29

    The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts. Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively. Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses. These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing.

  10. Self-assembling peptide nanofiber scaffolds accelerate wound healing.

    Directory of Open Access Journals (Sweden)

    Aurore Schneider

    Full Text Available Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP nanofiber scaffold and Epidermal Growth Factor (EGF. This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair.

  11. Potential of oncostatin M to accelerate diabetic wound healing.

    Science.gov (United States)

    Shin, Soo Hye; Han, Seung-Kyu; Jeong, Seong-Ho; Kim, Woo-Kyung

    2014-08-01

    Oncostatin M (OSM) is a multifunctional cytokine found in a variety of pathologic conditions, which leads to excessive collagen deposition. Current studies demonstrate that OSM is also a mitogen for fibroblasts and has an anti-inflammatory action. It was therefore hypothesised that OSM may play an important role in healing of chronic wounds that usually involve decreased fibroblast function and persist in the inflammatory stage for a long time. In a previous in vitro study, the authors showed that OSM increased wound healing activities of diabetic dermal fibroblasts. However, wound healing in vivo is a complex process involving multiple factors. Thus, the purpose of this study was to evaluate the effect of OSM on diabetic wound healing in vivo. Five diabetic mice were used in this study. Four full-thickness round wounds were created on the back of each mouse (total 20 wounds). OSM was applied on the two left-side wounds (n = 10) and phosphate-buffered saline was applied on the two right-side wounds (n = 10). After 10 days, unhealed wound areas of the OSM and control groups were compared using the stereoimage optical topometer system. Also, epithelialisation, wound contraction and reduction in wound volume in each group were compared. The OSM-treated group showed superior results in all of the tested parameters. In particular, the unhealed wound area and the reduction in wound volume demonstrated statistically significant differences (P healing of diabetic wounds. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  12. Inhibition of indoleamine 2,3-dioxygenase activity accelerates skin wound healing.

    Science.gov (United States)

    Ito, Hiroyasu; Ando, Tatsuya; Ogiso, Hideyuki; Arioka, Yuko; Saito, Kuniaki; Seishima, Mitsuru

    2015-06-01

    Skin wound healing is a complex process involving several stages that include inflammation, proliferation, and remodeling. In the inflammatory phase, pro-inflammatory cytokines and chemokines are induced at the wound site and, they contribute to the development of wound healing. These cytokines also induce indoleamine 2,3-dioxygenase (IDO1) activity; this is the rate-limiting and first enzyme in the l-tryptophan (TRP)-l-kynurenine (KYN) pathway. This study examined the effect of IDO1 on the process of skin wound healing. The expression of the Ido1 mRNA was enhanced after creating a wound in wild-type (WT) mice. TRP concentration was simultaneously reduced at the wound site. The rate of wound healing in IDO1 knockout (IDO-KO) mice was significantly higher than that in WT mice. 1-Methyl-dl-tryptophan (1-MT), a potent inhibitor of IDO1, increased the rate of wound healing in WT mice. The administration of TRP accelerated wound healing in vivo and in an in vitro experimental model, whereas the rate of wound healing was not affected by the administration of KYN. The present study identifies the role of IDO1 in skin wound healing, and indicates that the local administration of 1-MT or TRP may provide an effective strategy for accelerating wound healing.

  13. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy.

    Science.gov (United States)

    Gao, Ming; Nguyen, Trung T; Suckow, Mark A; Wolter, William R; Gooyit, Major; Mobashery, Shahriar; Chang, Mayland

    2015-12-01

    Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice. We argued that the former might play a role in the body's response to wound healing and that the latter is the pathological consequence of the disease with detrimental effects. Here we demonstrate that the use of compound ND-336, a novel highly selective inhibitor of gelatinases (MMP-2 and MMP-9) and MMP-14, accelerates diabetic wound healing by lowering inflammation and by enhancing angiogenesis and re-epithelialization of the wound, thereby reversing the pathological condition. The detrimental role of MMP-9 in the pathology of diabetic wounds was confirmed further by the study of diabetic MMP-9-knockout mice, which exhibited wounds more prone to healing. Furthermore, topical administration of active recombinant MMP-8 also accelerated diabetic wound healing as a consequence of complete re-epithelialization, diminished inflammation, and enhanced angiogenesis. The combined topical application of ND-336 (a small molecule) and the active recombinant MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds.

  14. Acceleration of diabetic wound healing using a novel protease–anti-protease combination therapy

    Science.gov (United States)

    Gao, Ming; Nguyen, Trung T.; Suckow, Mark A.; Wolter, William R.; Gooyit, Major; Mobashery, Shahriar; Chang, Mayland

    2015-01-01

    Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice. We argued that the former might play a role in the body’s response to wound healing and that the latter is the pathological consequence of the disease with detrimental effects. Here we demonstrate that the use of compound ND-336, a novel highly selective inhibitor of gelatinases (MMP-2 and MMP-9) and MMP-14, accelerates diabetic wound healing by lowering inflammation and by enhancing angiogenesis and re-epithelialization of the wound, thereby reversing the pathological condition. The detrimental role of MMP-9 in the pathology of diabetic wounds was confirmed further by the study of diabetic MMP-9–knockout mice, which exhibited wounds more prone to healing. Furthermore, topical administration of active recombinant MMP-8 also accelerated diabetic wound healing as a consequence of complete re-epithelialization, diminished inflammation, and enhanced angiogenesis. The combined topical application of ND-336 (a small molecule) and the active recombinant MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds. PMID:26598687

  15. Biafine topical emulsion accelerates excisional and burn wound healing in mice.

    Science.gov (United States)

    Krausz, Aimee E; Adler, Brandon L; Landriscina, Angelo; Rosen, Jamie M; Musaev, Tagai; Nosanchuk, Joshua D; Friedman, Adam J

    2015-09-01

    Macrophages play a fundamental role in wound healing; therefore, employing a strategy that enhances macrophage recruitment would be ideal. It was previously suggested that the mechanism by which Biafine topical emulsion improves wound healing is via enhanced macrophage infiltration into the wound bed. The purpose of this study was to confirm this observation through gross and histologic assessments of wound healing using murine full-thickness excisional and burn wound models, and compare to common standards, Vaseline and silver sulfadiazine (SSD). Full-thickness excisional and burn wounds were created on two groups of 60 mice. In the excisional arm, mice were divided into untreated control, Biafine, and Vaseline groups. In the burn arm, mice were divided into untreated control, Biafine, and SSD groups. Daily treatments were administered and healing was measured over time. Wound tissue was excised and stained to appropriately visualize morphology, collagen, macrophages, and neutrophils. Collagen deposition was measured and cell counts were performed. Biafine enhanced wound healing in murine full-thickness excisional and burn wounds compared to control, and surpassed Vaseline and SSD in respective wound types. Biafine treatment accelerated wound closure clinically, with greater epidermal/dermal maturity, granulation tissue formation, and collagen quality and arrangement compared to other groups histologically. Biafine application was associated with greater macrophage and lower neutrophil infiltration at earlier stages of healing when compared to other study groups. In conclusion, Biafine can be considered an alternative topical therapy for full-thickness excisional and burn wounds, owing to its advantageous biologically based wound healing properties.

  16. Arginine Silicate Inositol Complex Accelerates Cutaneous Wound Healing.

    Science.gov (United States)

    Durmus, Ali Said; Tuzcu, Mehmet; Ozdemir, Oguzhan; Orhan, Cemal; Sahin, Nurhan; Ozercan, Ibrahim Hanifi; Komorowski, James Richard; Ali, Shakir; Sahin, Kazim

    2016-10-14

    Arginine silicate inositol (ASI) complex is a composition of arginine, silicon, and inositol that has been shown to have beneficial effects on vascular health. This study reports the effects of an ASI ointment on wound healing in rats. A full-thickness excision wound was created by using a disposable 5 mm diameter skin punch biopsy tool. In this placebo-controlled study, the treatment group's wound areas were covered by 4 or 10 % ASI ointments twice a day for 5, 10, or 15 days. The rats were sacrificed either 5, 10, or 15 days after the wounds were created, and biopsy samples were taken for biochemical and histopathological analysis. Granulation tissue appeared significantly faster in the ASI-treated groups than in the control groups (P B cells (NF-κB), and various cytokines (TNF-α and IL-1β) measured in this study showed a significant fall in expression level in ASI-treated wounds. The results suggest that topical application of ASI ointment (especially 4 % concentration) has beneficial effects on the healing response of an excisional wound.

  17. Accelerated wound healing with combined NPWT and IPC: a case series.

    Science.gov (United States)

    Arvesen, Kristian; Nielsen, Camilla Bak; Fogh, Karsten

    2017-03-01

    Negative pressure wound therapy (NPWT) and intermittent pneumatic compression (IPC) have traditionally been used in patients with chronic complicated non-healing wounds. The aim of this study (retrospective case series) was to describe the use of NPWT in combination with IPC in patients with a relatively short history (2-6 months) of ulcers. All wounds showed improved healing during the treatment period with marked or moderate reduction in ulcer size, and granulation tissue formation was markedly stimulated. Oedema was markedly reduced due to IPC. Treatment was generally well tolerated. The results of this study indicate that combined NPWT and IPC can accelerate wound healing and reduce oedema, thus shortening the treatment period. Therefore, patients may have a shorter healing period and may avoid entering a chronic wound phase. However, controlled studies of longer duration are needed in order to show the long-term effect of a more accelerated treatment course.

  18. Alginate-hyaluronan composite hydrogels accelerate wound healing process.

    Science.gov (United States)

    Catanzano, O; D'Esposito, V; Acierno, S; Ambrosio, M R; De Caro, C; Avagliano, C; Russo, P; Russo, R; Miro, A; Ungaro, F; Calignano, A; Formisano, P; Quaglia, F

    2015-10-20

    In this paper we propose polysaccharide hydrogels combining alginate (ALG) and hyaluronan (HA) as biofunctional platform for dermal wound repair. Hydrogels produced by internal gelation were homogeneous and easy to handle. Rheological evaluation of gelation kinetics of ALG/HA mixtures at different ratios allowed understanding the HA effect on ALG cross-linking process. Disk-shaped hydrogels, at different ALG/HA ratio, were characterized for morphology, homogeneity and mechanical properties. Results suggest that, although the presence of HA does significantly slow down gelation kinetics, the concentration of cross-links reached at the end of gelation is scarcely affected. The in vitro activity of ALG/HA dressings was tested on adipose derived multipotent adult stem cells (Ad-MSC) and an immortalized keratinocyte cell line (HaCaT). Hydrogels did not interfere with cell viability in both cells lines, but significantly promoted gap closure in a scratch assay at early (1 day) and late (5 days) stages as compared to hydrogels made of ALG alone (p<0.01 and 0.001 for Ad-MSC and HaCaT, respectively). In vivo wound healing studies, conducted on a rat model of excised wound indicated that after 5 days ALG/HA hydrogels significantly promoted wound closure as compared to ALG ones (p<0.001). Overall results demonstrate that the integration of HA in a physically cross-linked ALG hydrogel can be a versatile strategy to promote wound healing that can be easily translated in a clinical setting.

  19. A synthetic uric acid analog accelerates cutaneous wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Srinivasulu Chigurupati

    Full Text Available Wound healing is a complex process involving intrinsic dermal and epidermal cells, and infiltrating macrophages and leukocytes. Excessive oxidative stress and associated inflammatory processes can impair wound healing, and antioxidants have been reported to improve wound healing in animal models and human subjects. Uric acid (UA is an efficient free radical scavenger, but has a very low solubility and poor tissue penetrability. We recently developed novel UA analogs with increased solubility and excellent free radical-scavenging properties and demonstrated their ability to protect neural cells against oxidative damage. Here we show that the uric acid analog (6, 8 dithio-UA, but not equimolar concentrations of UA or 1, 7 dimethyl-UA modified the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in ways consistent with enhancement of the wound healing functions of all three cell types. We further show that 6, 8 dithio-UA significantly accelerates the wound healing process when applied topically (once daily to full-thickness wounds in mice. Levels of Cu/Zn superoxide dismutase were increased in wound tissue from mice treated with 6, 8 dithio-UA compared to vehicle-treated mice, suggesting that the UA analog enhances endogenous cellular antioxidant defenses. These results support an adverse role for oxidative stress in wound healing and tissue repair, and provide a rationale for the development of UA analogs in the treatment of wounds and for modulation of angiogenesis in other pathological conditions.

  20. A bioengineered drug-Eluting scaffold accelerated cutaneous wound healing In diabetic mice.

    Science.gov (United States)

    Yin, Hao; Ding, Guoshan; Shi, Xiaoming; Guo, Wenyuan; Ni, Zhijia; Fu, Hong; Fu, Zhiren

    2016-09-01

    Hyperglycemia in diabetic patients can greatly hinder the wound healing process. In this study we investigated if the engagement of F4/80(+) murine macrophages could accelerate the cutaneous wound healing in streptozotocin induced diabetic mice. To facilitate the engagement of macrophages, we engineered a drug-eluting electrospun scaffold with a payload of monocyte chemoattractant protein-1 (MCP-1). MCP-1 could be readily released from the scaffold within 3 days. The electrospun scaffold showed no cytotoxic effects on human keratinocytes in vitro. Full-thickness excisional cutaneous wound was created in diabetic mice. The wound fully recovered within 10 days in mice treated with the drug-eluting scaffold. In contrast, the wound took 14 days to fully recover in control groups. The use of drug-eluting scaffold also improved the re-epithelialization. Furthermore, we observed a larger population of F4/80(+) macrophages in the wound bed of mice treated with drug-eluting scaffolds on day 3. This marked increase of macrophages in the wound bed could have contributed to the accelerated wound healing. Our study shed new light on an immuno-engineering solution for wound healing management in diabetic patients.

  1. Skin wound healing is accelerated and scarless in the absence of commensal microbiota.

    Science.gov (United States)

    Canesso, Maria C C; Vieira, Angélica T; Castro, Tiago B R; Schirmer, Brígida G A; Cisalpino, Daniel; Martins, Flaviano S; Rachid, Milene A; Nicoli, Jacques R; Teixeira, Mauro M; Barcelos, Lucíola S

    2014-11-15

    The commensal microbiota has a high impact on health and disease by modulating the development and homeostasis of host immune system. Immune cells are involved in virtually every aspect of the wound repair process; however, the impact of commensal microbiota on skin wound healing is largely unknown. In this study, we evaluated the influence of commensal microbiota on tissue repair of excisional skin wounds by using germ-free (GF) Swiss mice. We observed that macroscopic wound closure rate is accelerated in the absence of commensal microbiota. Accordantly, histologically assessed wound epithelization was accelerated in GF in comparison with conventional (CV) Swiss mice. The wounds of GF mice presented a significant decrease in neutrophil accumulation and an increase in mast cell and macrophage infiltration into wounds. Interestingly, alternatively activated healing macrophage-related genes were highly expressed in the wound tissue of GF mice. Moreover, levels of the anti-inflammatory cytokine IL-10, the angiogenic growth factor VEGF and angiogenesis were higher in the wound tissue of those mice. Conversely, scarring and levels of the profibrogenic factor TGF-β1 were greatly reduced in GF mice wounded skin when compared with CV mice. Of note, conventionalization of GF mice with CV microbiota restored wound closure rate, neutrophil and macrophage accumulation, cytokine production, and scarring to the same extent as CV mice. Overall, our findings suggest that, in the absence of any contact with microbiota, skin wound healing is accelerated and scarless, partially because of reduced accumulation of neutrophils, increased accumulation of alternatively activated healing macrophages, and better angiogenesis at wound sites.

  2. IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages.

    Science.gov (United States)

    Yin, Hui; Li, Xiangyong; Hu, Shilian; Liu, Tao; Yuan, Baohong; Gu, Hongbiao; Ni, Qian; Zhang, Xiaofan; Zheng, Fang

    2013-12-01

    IL-33 is a recently recognized member of the IL-1 family and has been best identified as a potent inducer of Th2-type immune responses. Increasing evidence, however, indicates that IL-33 also represents an important mediator of mucosal healing and epithelial restoration and repair. In this study, we further explore the potential effect of IL-33 in cutaneous wound healing. A full-thickness skin wound was generated on the back of mice and treated with IL-33 or vehicle intraperitoneally. Our results revealed that the levels of IL-33 mRNA and protein were significantly enhanced in incisional wound skin. Meantime, administration of IL-33 obviously accelerated wound healing with wounds gaping narrower and exhibiting enhanced reepithelialization. IL-33 upregulation also promoted the collagen deposition and the expression of extracellular matrix (ECM)-associated genes such as fibronectin and collagen IIIa, which implies a direct effect of IL-33 on matrix synthesis. Furthermore, IL-33 facilitated the development of alternatively activated macrophages (AAM) in incisional wound tissue, which closely related to resolution of inflammation and promotion of wound repair. Taken together, these findings suggest that IL-33 may play a pivotal role in maintenance of cutaneous homeostasis and acceleration of normal wound healing.

  3. Topical simvastatin accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis.

    Science.gov (United States)

    Asai, Jun; Takenaka, Hideya; Hirakawa, Satoshi; Sakabe, Jun-ichi; Hagura, Asami; Kishimoto, Saburo; Maruyama, Kazuichi; Kajiya, Kentaro; Kinoshita, Shigeru; Tokura, Yoshiki; Katoh, Norito

    2012-12-01

    Impaired wound healing is a major complication of diabetes. Recent studies have reported reduced lymphangiogenesis and angiogenesis during diabetic wound healing, which are thought to be new therapeutic targets. Statins have effects beyond cholesterol reduction and can stimulate angiogenesis when used systemically. However, the effects of topically applied statins on wound healing have not been well investigated. The present study tested the hypothesis that topical application of simvastatin would promote lymphangiogenesis and angiogenesis during wound healing in genetically diabetic mice. A full-thickness skin wound was generated on the back of the diabetic mice and treated with simvastatin or vehicle topically. Simvastatin administration resulted in significant acceleration of wound recovery, which was notable for increases in both angiogenesis and lymphangiogenesis. Furthermore, simvastatin promoted infiltration of macrophages, which produced vascular endothelial growth factor C in granulation tissues. In vitro, simvastatin directly promoted capillary morphogenesis and exerted an antiapoptotic effect on lymphatic endothelial cells. These results suggest that the favorable effects of simvastatin on lymphangiogenesis are due to both a direct influence on lymphatics and indirect effects via macrophages homing to the wound. In conclusion, a simple strategy of topically applied simvastatin may have significant therapeutic potential for enhanced wound healing in patients with impaired microcirculation such as that in diabetes.

  4. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression.

    Science.gov (United States)

    Hussan, F; Teoh, S Lin; Muhamad, N; Mazlan, M; Latiff, A A

    2014-08-01

    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract. Fifty-six male Sprague-Dawley rats were divided into a normal control group and five diabetic groups of ten rats each. Intravenous streptozotocin (50mg/kg) was given to induce diabetes in the diabetic groups. Full thickness excision wounds were created on the thoracodorsal region of the animals, and these wounds were then treated with vehicle, MC powder, MC ointment and povidone ointment or ointment base for ten days. Wound healing was determined by the rate of wound closure, total protein content and TGF-β expression in the wounds, and histological observation. Diabetic groups showed delayed wound closure rates compared to the control group. The wound closure rate in the MC ointment group was significantly faster than that of the untreated diabetic group (p<0.05). The MC ointment group also showed intense TGF-β expression and a high level of total protein content. MC ointment has a promising potential for use as an alternative topical medication for diabetic wounds. This work has shown that it accelerates wound healing in diabetic rats, and it is suggested here that this occurs by enhancing TGF-β expression. Further work is recommended to explore this effect.

  5. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    Directory of Open Access Journals (Sweden)

    Michael J Smout

    2015-10-01

    Full Text Available Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA. Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world.

  6. Acceleration of wound healing by growth hormone-releasing hormone and its agonists.

    Science.gov (United States)

    Dioufa, Nikolina; Schally, Andrew V; Chatzistamou, Ioulia; Moustou, Evi; Block, Norman L; Owens, Gary K; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2010-10-26

    Despite the well-documented action of growth hormone-releasing hormone (GHRH) on the stimulation of production and release of growth hormone (GH), the effects of GHRH in peripheral tissues are incompletely explored. In this study, we show that GHRH plays a role in wound healing and tissue repair by acting primarily on wound-associated fibroblasts. Mouse embryonic fibroblasts (MEFs) in culture and wound-associated fibroblasts in mice expressed a splice variant of the receptors for GHRH (SV1). Exposure of MEFs to 100 nM and 500 nM GHRH or the GHRH agonist JI-38 stimulated the expression of α-smooth muscle actin (αSMA) based on immunoblot analyses as well as the expression of an αSMA-β-galactosidase reporter transgene in primary cultures of fibroblasts isolated from transgenic mice. Consistent with this induction of αSMA expression, results of transwell-based migration assays and in vitro wound healing (scratch) assays showed that both GHRH and GHRH agonist JI-38 stimulated the migration of MEFs in vitro. In vivo, local application of GHRH or JI-38 accelerated healing in skin wounds of mice. Histological evaluation of skin biopsies showed that wounds treated with GHRH and JI-38 were both characterized by increased abundance of fibroblasts during the early stages of wound healing and accelerated reformation of the covering epithelium at later stages. These results identify another function of GHRH in promoting skin tissue wound healing and repair. Our findings suggest that GHRH may have clinical utility for augmenting healing of skin wounds resulting from trauma, surgery, or disease.

  7. Accelerated healing of full-thickness wounds by genipin-crosslinked silk sericin/PVA scaffolds.

    Science.gov (United States)

    Aramwit, Pornanong; Siritienthong, Tippawan; Srichana, Teerapol; Ratanavaraporn, Juthamas

    2013-01-01

    Silk sericin has recently been studied for its advantageous biological properties, including its ability to promote wound healing. This study developed a delivery system to accelerate the healing of full-thickness wounds. Three-dimensional scaffolds were fabricated from poly(vinyl alcohol) (PVA), glycerin (as a plasticizer) and genipin (as a crosslinking agent), with or without sericin. The physical and biological properties of the genipin-crosslinked sericin/PVA scaffolds were investigated and compared with those of scaffolds without sericin. The genipin-crosslinked sericin/PVA scaffolds exhibited a higher compressive modulus and greater swelling in water than the scaffolds without sericin. Sericin also exhibited controlled release from the scaffolds. The genipin-crosslinked sericin/PVA scaffolds promoted the attachment and proliferation of L929 mouse fibroblasts. After application to full-thickness rat wounds, the wounds treated with genipin-crosslinked sericin/PVA scaffolds showed a significantly greater reduction in wound size, collagen formation and epithelialization compared with the control scaffolds without sericin but lower numbers of macrophages and multinucleated giant cells. These results indicate that the delivery of sericin from the novel genipin-crosslinked scaffolds efficiently healed the wound. Therefore, these genipin-crosslinked sericin/PVA scaffolds represent a promising candidate for the accelerated healing of full-thickness wounds.

  8. Saliva and wound healing.

    Science.gov (United States)

    Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.

  9. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    Science.gov (United States)

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.

    2011-01-01

    Purpose. The PI3K/Akt pathway is required for cell polarization and migration, whereas the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has inhibitory effects on the PI3K/Akt pathway. The authors therefore hypothesized that wounding would downregulate PTEN and that this downregulation would enhance wound healing. Methods. In human corneal epithelial (HCE) cell monolayer and rat cornea scratch wound models, the authors investigated PTEN and Akt expression using Western blot and immunofluorescence analyses. The effects of PTEN and PI3K inhibitors dipotassium bisperoxo (picolinato) oxovanadate (bpv(pic)) and LY294002 on cell migration and wound closure were investigated using time-lapse imaging. Finally, the authors investigated the effect of PTEN inhibition on wound healing in whole rat eyes. Results. In HCE cell monolayer and rat cornea, PTEN was downregulated at the wound edges within 30 minutes of wounding. The downregulation of PTEN was causal in a simultaneous increase in Akt activation, which was responsible for a significant increase in individual cell migration rate from 8.8 μm/h to 17.3 μm/h. An increased migration rate was maintained for 20 hours. PTEN inhibition significantly enhanced the wound healing rate in the HCE cell monolayer from 10 minutes onward after treatment and reduced the healing time in eye organ culture from 30 to 20 hours. Conclusions. Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury. PMID:21212174

  10. An electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing

    Directory of Open Access Journals (Sweden)

    Cassandra Chong

    2013-09-01

    Full Text Available Current dermal regenerative scaffolds provide wound coverage, and structural support and guidance for tissue repair, but usually lack enough bio-signals needed for speeding up skin cell growth, migration, wound closure, and skin regeneration. In this study, an androgen receptor (AR inhibitor called ASC-J9 is used to demonstrate the concept and feasibility of fabricating drug-loaded scaffolds via electrospinning. Inhibition of androgen is known to promote skin wound healing. The novel ASC-J9 - loaded porous scaffold was fabricated for skin wound repair using electrospun fibers of collagen and polycaprolactone (PCL blend. Our preliminary results indicated that ASC-J9 - loaded scaffolds facilitated more efficient attachment and ingrowth of dermal fibroblasts, compared to the control collagen-PCL scaffold. A significant increase of cell proliferation was observed with the drug-loaded scaffold over a 28-day period. The drug-loaded scaffold also accelerated keratinocyte migration and wound closure in a contraction-inhibited mouse wound model over 21 days. The data indicated a sustained release of ASC-J9 from the scaffold and its potential to accelerate wound healing by promoting cell proliferation and migration over an extended period of time. More importantly, our results proved the concept and feasibility of fabricating drug-releasing or bioactive dermal scaffolds for more effective wound healing.

  11. Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds.

    Science.gov (United States)

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin-based coacervate delivery system that provides controlled release of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB-EGF coacervate to overcome the deficiencies of diabetic wound healing. In full-thickness excisional wounds on NONcNZO10 diabetic mice, HB-EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB-EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB-EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.

  12. Acemannan accelerates cell proliferation and skin wound healing through AKT/mTOR signaling pathway.

    Science.gov (United States)

    Xing, Wei; Guo, Wei; Zou, Cun-Hua; Fu, Ting-Ting; Li, Xiang-Yun; Zhu, Ming; Qi, Jun-Hua; Song, Jiao; Dong, Chen-Hui; Li, Zhuang; Xiao, Yong; Yuan, Pei-Song; Huang, Hong; Xu, Xiang

    2015-08-01

    Acemannan is a bioactive polysaccharides promoting tissue repair. However, the roles of acemannan in skin wound healing and the underlying molecular mechanisms are largely unclear. The goal of this study is to investigate the positive role of acemannan in cutaneous wound healing and its mechanism. Mouse skin wound model and skin primary fibroblasts were used to demonstrate the positive effect of acemannan on cutaneous wound healing. The expressions of cell proliferation nuclear antigen ki-67, cyclin D1 and activity of AKT/mTOR signaling were analyzed in acemannan-treated fibroblasts and mice. Rapamycin and AKT inhibitor VIII were used to determine the key role of AKT/mTOR signaling in acemannan-promoting cutaneous wound healing. We found that acemannan significantly accelerated skin wound closure and cell proliferation. Acemannan promoted the expression of cyclin D1 in cultured fibroblasts, which was mediated by AKT/mTOR signal pathway leading to enhanced activity of the eukaryotic translation initiation factor-4F (eIF4F) and increased translation of cyclin D1. In contrast, pharmaceutical blockade of AKT/mTOR signaling by mTOR inhibitor rapamycin or AKT inhibitor VIII abolished acemannan-induced cyclin D1 translation and cell proliferation. In vivo studies confirmed that the activation of AKT/mTOR by acemannan played a key role in wound healing, which could be reversed by rapamycin. Acemannan promoted skin wound healing partly through activating AKT/mTOR-mediated protein translation mechanism, which may represent an alternative therapy approach for cutaneous wound. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds.

    Science.gov (United States)

    Bankoti, Kamakshi; Rameshbabu, Arun Prabhu; Datta, Sayanti; Maity, Priti Prasanna; Goswami, Piyali; Datta, Pallab; Ghosh, Sudip Kumar; Mitra, Analava; Dhara, Santanu

    2017-12-01

    Wound healing is a dynamic process wherein cells, and macromolecules work in consonance to facilitate tissue regeneration and restore tissue integrity. In the case of full-thickness (FT) wounds, healing requires additional support from native or synthetic matrices to aid tissue regeneration. In particular, a matrix with optimum hydrophilic-hydrophobic balance which will undergo adequate swelling as well as reduce bacterial adhesion has remained elusive. In the present study, polyurethane diol dispersion (PUD) and the anti-bacterial chitosan (Chn) were blended in different ratios which self-organized to form macroporous hydrogel scaffolds (MHS) at room temperature on drying. SEM and AFM micrographs revealed the macroporosity on top and fracture surfaces of the MHS. FTIR spectra revealed the intermolecular as well as intra-molecular hydrogen bonding interactions between the two polymers responsible for phase separation, which was also observed by micrographs of blend solutions during the drying process. The effect of phase separation on mechanical properties and in vitro degradation (hydrolytic, enzymatic and pH dependent) of MHS were studied and found to be suitable for wound healing. In vitro cytocompatibility was demonstrated by the proliferation of primary rat fibroblast cells on MHS. Selected MHS was subjected to in vivo FT wound healing study in Wistar rats and compared with an analogous polyurethane containing commercial dressing i.e. Tegaderm™. The MHS-treated wounds demonstrated accelerated healing with increased wound contraction, higher collagen synthesis, and vascularization in wound area compared to Tegaderm™. Thus, it is concluded that the developed MHS is a promising candidate for application as FT wound healing dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds.

    Science.gov (United States)

    Schmidt, Anke; Bekeschus, Sander; Wende, Kristian; Vollmar, Brigitte; von Woedtke, Thomas

    2017-02-01

    Cold plasma has been successfully applied in several fields of medicine that require, for example, pathogen inactivation, implant functionalization or alteration of cellular activity. Previous studies have provided evidence that plasma supports the healing of wounds owing to its beneficial mixtures of reactive species and modulation of inflammation in cells and tissues. To investigate the wound healing activity of an atmospheric pressure plasma jet in vivo, we examined the cold plasma's efficacy on dermal regeneration in a murine model of dermal full-thickness ear wound. Over 14 days, female mice received daily plasma treatment. Quantitative analysis by transmitted light microscopy demonstrated a significantly accelerated wound re-epithelialization at days 3-9 in comparison with untreated controls. In vitro, cold plasma altered keratinocyte and fibroblast migration, while both cell types showed significant stimulation resulting in accelerated closure of gaps in scratch assays. This plasma effect correlated with the downregulation of the gap junctional protein connexin 43 which is thought to be important in the regulation of wound healing. In addition, plasma induced profound changes in adherence junctions and cytoskeletal dynamics as shown by downregulation of E-cadherin and several integrins as well as actin reorganization. Our results theorize cold plasma to be a beneficial treatment option supplementing existing wound therapies.

  15. Combination of adrenomedullin with its binding protein accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Juan-Pablo Idrovo

    Full Text Available Cutaneous wound continues to cause significant morbidity and mortality in the setting of diseases such as diabetes and cardiovascular diseases. Despite advances in wound care management, there is still an unmet medical need exists for efficient therapy for cutaneous wound. Combined treatment of adrenomedullin (AM and its binding protein-1 (AMBP-1 is protective in various disease conditions. To examine the effect of the combination treatment of AM and AMBP-1 on cutaneous wound healing, full-thickness 2.0-cm diameter circular excision wounds were surgically created on the dorsum of rats, saline (vehicle or AM/AMBP-1 (96/320 μg kg BW was topically applied to the wound daily and wound size measured. At days 3, 7, and 14, skin samples were collected from the wound sites. AM/AMBP-1 treated group had significantly smaller wound surface area than the vehicle group over the 14-day time course. At day 3, AM/AMBP-1 promoted neutrophil infiltration (MPO, increased cytokine levels (IL-6 and TNF-α, angiogenesis (CD31, VEGF and TGFβ-1 and cell proliferation (Ki67. By day 7 and 14, AM/AMBP-1 treatment decreased MPO, followed by a rapid resolution of inflammation characterized by a decrease in cytokines. At the matured stage, AM/AMBP-1 treatment increased the alpha smooth muscle actin expression (mature blood vessels and Masson-Trichrome staining (collagen deposition along the granulation area, and increased MMP-9 and decreased MMP-2 mRNA expressions. TGFβ-1 mRNA levels in AM/AMBP-1 group were 5.3 times lower than those in the vehicle group. AM/AMBP-1 accelerated wound healing by promoting angiogenesis, collagen deposition and remodeling. Treatment also shortened the days to reach plateau for wound closure. Thus, AM/AMBP-1 may be further developed as a therapeutic for cutaneous wound healing.

  16. Accelerated wound healing phenotype in Interleukin 12/23 deficient mice

    Directory of Open Access Journals (Sweden)

    Matias Marie AT

    2011-12-01

    Full Text Available Abstract Background The concept that a strong inflammatory response involving the full complement of cytokines and other mediators is critical for unimpaired healing has been challenged by wound healing studies using transgenic and knockout (KO mice. The present study explored the effect of abrogation of the p40 subunit, which is shared by the pro-inflammatory cytokines interleukin (IL-12 and IL-23, on wound closure of excisional oral mucosal wounds. Methods Double IL-12 and IL-23 KO mice and C57BL ⁄ 6J wildtype mice were wounded on the dorsal surface of the tongue using a 2 mm biopsy punch. The degree of epithelialization was examined histologically. At specific timepoints wounds were examined for cellular and molecular markers for inflammation and angiogenesis using 1 immunohistochemistry; 2 analysis of RNA expression; and 3 flow cytometric analysis. Results Compared to wild type controls, KO mice displayed enhanced healing, which was driven by a greater influx of neutrophils and macrophages during the early stages of wound healing, and increased induction of messenger RNA (mRNA for endothelial derived neutrophil attractant (ENA78 chemokine and macrophage inflammatory protein-2 alpha (MIP-2α. Increased mRNA for monocyte-attracting chemokines including monocyte chemoattractant protein (MCP-1 and MCP-3 was seen from day 1, together with higher levels of IL-1β and IL-6 within 24 hours after wounding. In addition, mRNA for vascular endothelial growth factor (VEGF-A was upregulated in KO mice within 2 hours after injury, and higher expression of this mediator was confirmed by immunohistochemistry. Conclusion Overall, the accelerated oral mucosal wound healing seen in IL-12/IL-23p40 KO compared to wildtype mice was associated with the early establishment of an inflammatory response and vascularization.

  17. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring.

    Science.gov (United States)

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2014-09-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Umbilical Cord Mesenchymal Stem Cells Combined With a Collagenfibrin Double-layered Membrane Accelerates Wound Healing.

    Science.gov (United States)

    Nan, Wenbin; Liu, Rui; Chen, Hongli; Xu, Zhihao; Chen, Jiannan; Wang, Manman; Yuan, Zhiqing

    2015-05-01

    The aim of this study was to examine the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) in combination with a collagen-fibrin double-layered membrane on wound healing in mice. A collagen-fibrin double-layered membrane was prepared, and the surface properties of the support material were investigated using a scanning electron microscope. Twenty-four mice were prepared for use as full-thickness skin wound models and randomly divided into 3 groups: group A, a control group in which the wounds were bound using a conventional method; group B, a group treated with hUCMSCs combined with a collagen membrane; and group C, a group treated with hUCMSCs combined with a collagen-fibrin double-layered membrane. The postoperative concrescence of the wounds was observed daily to evaluate the effects of the different treatments. Scanning electron microscope observation showed the collagen-fibrin scaffolds exhibited a highly porous and interconnected structure, and wound healing in the double-layered membrane group was better than in groups A or B. Treatment with hUCMSCs combined with a collagen-fibrin double-layered membrane accelerated wound healing.

  19. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  20. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    Directory of Open Access Journals (Sweden)

    Toshiki Yoneda

    2014-12-01

    Full Text Available Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10, may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old (n = 27 received topical application of ointment containing 5% rCoQ10 (experimental group or control ointment (control group to the sockets for 3 or 8 days (n = 6–7/group. At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05. Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05. At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  1. Preparation and characterization of N-chitosan as a wound healing accelerator.

    Science.gov (United States)

    Tang, Fengling; Lv, Lingmei; Lu, Fei; Rong, Bao; Li, Zhiquan; Lu, Bitao; Yu, Kun; Liu, Jiawei; Dai, Fangying; Wu, Dayang; Lan, Guangqian

    2016-12-01

    Chitosan is insoluble in water due to its rigid crystalline structure, which has significantly restricted its application in wound healing. The objective of this study was to synthesize a water-soluble chitosan derivative, N-succinyl-chitosan (NSC), and evaluate its ability to accelerate the wound healing process. NSC was synthesized with succinic anhydride, hydrochloric acid, and alkaline chitosan under optimized conditions, and characterized using Fourier transform infrared, proton nuclear magnetic resonance, and X-ray diffraction spectroscopy; thermal gravimetric analysis; and a solubility test. The cytotoxicity of NSC was investigated in L929 cells, and its antibacterial activity was evaluated by the inhibition zone method and bacterial growth curves analysis. The results showed that the solubility of NSC was substantially improved compared to chitosan, and NSC was non-toxic with good antibacterial properties. An animal wound healing test indicated that NSC could significantly reduce the healing time compared to chitosan. Histopathological examination suggested that the underlying mechanisms of these effects were related to NSC's ability to promote the formation of granulation tissue and enhance epithelialization. Collectively, these results demonstrate the good potential for NSC to be applied as a wound dressing material. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-12-10

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  3. Young coconut juice can accelerate the healing process of cutaneous wounds

    Directory of Open Access Journals (Sweden)

    Radenahmad Nisaudah

    2012-12-01

    Full Text Available Abstract Background Estrogen has been reported to accelerate cutaneous wound healing. This research studies the effect of young coconut juice (YCJ, presumably containing estrogen-like substances, on cutaneous wound healing in ovairectomized rats. Methods Four groups of female rats (6 in each group were included in this study. These included sham-operated, ovariectomized (ovx, ovx receiving estradiol benzoate (EB injections intraperitoneally, and ovx receiving YCJ orally. Two equidistant 1-cm full-thickness skin incisional wounds were made two weeks after ovariectomy. The rats were sacrificed at the end of the third and the fourth week of the study, and their serum estradiol (E2 level was measured by chemiluminescent immunoassay. The skin was excised and examined in histological sections stained with H&E, and immunostained using anti-estrogen receptor (ER-α an ER-β antibodies. Results Wound healing was accelerated in ovx rats receiving YCJ, as compared to controls. This was associated with significantly higher density of immunostaining for ER-α an ER-β in keratinocytes, fibroblasts, white blood cells, fat cells, sebaceous gland, skeletal muscles, and hair shafts and follicles. This was also associated with thicker epidermis and dermis, but with thinner hypodermis. In addition, the number and size of immunoreactive hair follicles for both ER-α and ER-β were the highest in the ovx+YCJ group, as compared to the ovx+EB group. Conclusions This study demonstrates that YCJ has estrogen-like characteristics, which in turn seem to have beneficial effects on cutaneous wound healing.

  4. Boric Acid Reduces the Formation of DNA Double Strand Breaks and Accelerates Wound Healing Process.

    Science.gov (United States)

    Tepedelen, Burcu Erbaykent; Soya, Elif; Korkmaz, Mehmet

    2016-12-01

    Boron is absorbed by the digestive and respiratory system, and it was considered that it is converted to boric acid (BA), which was distributed to all tissues above 90 %. The biochemical essentiality of boron element is caused by boric acid because it affects the activity of several enzymes involved in the metabolism. DNA damage repair mechanisms and oxidative stress regulation is quite important in the transition stage from normal to cancerous cells; thus, this study was conducted to investigate the protective effect of boric acid on DNA damage and wound healing in human epithelial cell line. For this purpose, the amount of DNA damage occurred with irinotecan (CPT-11), etoposide (ETP), doxorubicin (Doxo), and H2O2 was determined by immunofluorescence through phosphorylation of H2AX((Ser139)) and pATM((Ser1981)) in the absence and presence of BA. Moreover, the effect of BA on wound healing has been investigated in epithelial cells treated with these agents. Our results demonstrated that H2AX((Ser139)) foci numbers were significantly decreased in the presence of BA while wound healing was accelerated by BA compared to that in the control and only drug-treated cells. Eventually, the results indicate that BA reduced the formation of DNA double strand breaks caused by agents as well as improving the wound healing process. Therefore, we suggest that boric acid has important therapeutical effectiveness and may be used in the treatment of inflammatory diseases where oxidative stress and wound healing process plays an important role.

  5. Sliver nanoparticles accelerate skin wound healing in mice (Mus musculus through suppression of innate immune system

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Heydarnejad

    2013-09-01

    Full Text Available   Objective(s: This study aimed to find the effects of silver nanoparticles (Ag-NPs (40 nm on skin wound healing in mice Mus musculus when innate immune system has been suppressed.   Materials and Methods: A group of 50 BALB/c mice of about 8 weeks (weighting 24.2±3.0 g were randomly divided into two groups: Ag-NPs and control group, each with 25 mice. Once a day at the same time, a volume of 50 microliters from the nanosilver solution (10ppm was applied to the wound bed in the Ag-NPs group while in the untreated (control group no nanosilver solution was used but the wound area was washed by a physiological solution. The experiment lasted for 14. Transforming growth factor beta (TGF-β, complement component C3, and two other immune system factors involving in inflammation, namely C-reactive protein (CRP and rheumatoid factor (RF in sera of both groups were assessed and then confirmed by complement CH50 level of the blood. Results: The results show that wound healing is a complex process involving coordinated interactions between diverse immunological and biological systems and that Ag-NPs significantly accelerated wound healing and reduce scar appearance through suppression of immune system as indicated by decreasing levels of all inflammatory factors measured in this study. Conclusion: Exposure of mice to Ag-NPs can result in significant changes in innate immune function at the molecular levels. The study improves our understanding of nanoparticle interaction with components of the immune system and suggests that Ag-NPs have strong anti-inflammatory effects on skin wound healing and reduce scarring.

  6. Novel locally active estrogens accelerate cutaneous wound healing. A preliminary study.

    Science.gov (United States)

    Brufani, Mario; Ceccacci, Francesca; Filocamo, Luigi; Garofalo, Barbara; Joudioux, Roberta; La Bella, Angela; Leonelli, Francesca; Migneco, Luisa M; Bettolo, Rinaldo Marini; Farina, Paolo M; Ashcroft, Gillian S; Routley, Claire; Hardman, Matthew; Meda, Clara; Rando, Gianpaolo; Maggi, Adriana

    2009-01-01

    New 17beta-estradiol (E2) derivatives 1-11 were synthesized from an estrone derivative by addition of organometallic reagents prepared from protected alpha,omega-alkynols and further elaboration of the addition products. The estrogenic activity of these novel compounds was determined using in vitro binding competition assay and transactivation analysis. Among the E2 derivatives synthesized, compound 2 showed the highest transactivation potency and was therefore tested for its ability to modulate cutaneous wound healing in vivo. Compound 2's ability to accelerate wound healing in ovariectomized mice and decrease the production of inflammatory molecules was comparable to that of E2. However, the activity of compound 2 was not superimposable to E2 with regard to the cells involved in the wound repairing process. When locally administered, compound 2 did not show any systemic activity on ER. This class of compounds with clear beneficial effects on wound healing and suitable for topical administration may lead to the generation of innovative drugs for an area of unmet clinical need.

  7. Expectation-induced placebo responses fail to accelerate wound healing in healthy volunteers: results from a prospective controlled experimental trial.

    Science.gov (United States)

    Vits, Sabine; Dissemond, Joachim; Schadendorf, Dirk; Kriegler, Lisa; Körber, Andreas; Schedlowski, Manfred; Cesko, Elvir

    2015-12-01

    Placebo responses have been shown to affect the symptomatology of skin diseases. However, expectation-induced placebo effects on wound healing processes have not been investigated yet. We analysed whether subjects' expectation of receiving an active drug accelerates the healing process of experimentally induced wounds. In 22 healthy men (experimental group, n = 11; control group, n = 11) wounds were induced by ablative laser on both thighs. Using a deceptive paradigm, participants in the experimental group were informed that an innovative 'wound gel' was applied on one of the two wounds, whereas a 'non-active gel' was applied on the wound of the other thigh. In fact, both gels were identical hydrogels without any active components. A control group was informed to receive a non-active gel on both wounds. Progress in wound healing was documented via planimetry on days 1, 4 and 7 after wound induction. From day 9 onwards wound inspections were performed daily accompanied by a change of the dressing and a new application of the gel. No significant differences could be observed with regard to duration or process of wound healing, either by intraindividual or by interindividual comparisons. These data document no expectation-induced placebo effect on the healing process of experimentally induced wounds in healthy volunteers.

  8. Saliva and wound healing

    NARCIS (Netherlands)

    Brand, H.S.; Ligtenberg, A.J.M.; Veerman, E.C.I.; Ligtenberg, A.J.M.; Veerman, E.C.I.

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In

  9. Saliva and wound healing

    NARCIS (Netherlands)

    Brand, H.S.; Ligtenberg, A.J.M.; Veerman, E.C.I.; Ligtenberg, A.J.M.; Veerman, E.C.I.

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In

  10. Antioxidant potential of bilirubin-accelerated wound healing in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Ram, Mahendra; Singh, Vishakha; Kumar, Dhirendra; Kumawat, Sanjay; Gopalakrishnan, Anu; Lingaraju, Madhu C; Gupta, Priyanka; Tandan, Surendra Kumar; Kumar, Dinesh

    2014-10-01

    Oxidative injury is markedly responsible for wound complications in diabetes mellitus. The biological actions of bilirubin may be relevant to prevent oxidant-mediated cell death, as bilirubin application at a low concentration scavenges reactive oxygen species. Hence, we hypothesized that topical bilirubin application might improve wound healing in diabetic rats. Diabetes was induced in adult male Wistar rats, which were divided into two groups, i.e., diabetic control and diabetic treated. Non-diabetic healthy rats were also taken as healthy control group. Wound area was measured on days 3, 7, 14, and 19 post-wounding. The levels of malondialdehyde (MDA) and reduced glutathione (GSH) and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were estimated in the granulation tissue. There was a significant increase in percent wound closure in healthy control and diabetic treated rats on days 7, 14, and 19, as compared to diabetic control rats on days 7, 14, and 19. There was significant decrease in MDA levels on days 7, 14, and 19 in diabetic treated rats, as compared to diabetic control rats. Levels of GSH were significantly increased on days 3, 7, 14, and 19 in diabetic treated rats, as compared to diabetic control rats. GPx, SOD, and CAT activities were significantly higher on days 3, 7, and 14 in diabetic treated rats, as compared to diabetic control rats. The findings indicate that bilirubin is effective in reducing the oxidant status in wounds of diabetic rats which might have accelerated wound healing in these rats.

  11. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Adolf, E-mail: ageiger@dreirosen-pharma.com; Walker, Audrey, E-mail: awalker@dreirosen-pharma.com; Nissen, Erwin, E-mail: enissen@dreirosen-pharma.com

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. - Highlights: • Fibrocytes have shown potent wound healing properties in vitro and in vivo. • Their clinical use is precluded by low numbers and antigen-presenting function. • We isolated exosomes with no immunogenicity potential from human fibrocytes. • Their cargo included microRNAs and proteins that are known healing promoters. • They accelerated wound closure in diabetic mice in a dose-dependent manner.

  12. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation.

    Science.gov (United States)

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2016-07-01

    The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.

  13. Acceleration of wound healing by α-gal nanoparticles interacting with the natural anti-Gal antibody.

    Science.gov (United States)

    Galili, Uri

    2015-01-01

    Application of α-gal nanoparticles to wounds and burns induces accelerated healing by harnessing the natural anti-Gal antibody which constitutes ~1% of human immunoglobulins. α-gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R), the carbohydrate ligand of anti-Gal. Studied α-gal nanoparticles were comprised of glycolipids with α-gal epitopes, phospholipids, and cholesterol. Binding of anti-Gal to α-gal nanoparticles in wounds activates the complement cascade, resulting in formation of chemotactic complement cleavage peptides that induce rapid recruitment of many macrophages. The Fc/Fcγ receptors interaction between anti-Gal coating α-gal nanoparticles and the recruited macrophages activates macrophages to produce cytokines/growth factors that promote wound healing and recruit stem cells. Studies of wound healing by α-gal nanoparticles were feasible in α1,3galactosyltransferase knockout mice and pigs. In contrast to other nonprimate mammals, these mice and pigs lack the α-gal epitope, and thus they are not immunotolerant to it and produce anti-Gal. Treatment of skin wounds and burns with α-gal nanoparticles resulted in 40-60% decrease in healing time in comparison with control wounds treated with saline. This accelerated healing is associated with increased recruitment of macrophages and extensive angiogenesis in wounds, faster regrowth of epidermis, and regeneration of the dermis. The accelerated healing further decreases and may completely eliminate fibrosis and scar formation in wounds. Since healing of internal injuries is mediated by mechanisms similar to those in external wound healing, it is suggested that α-gal nanoparticles treatment may also improve regeneration and restoration of biological function following internal injuries such as surgical incisions, myocardial ischemia following infarction, and nerve injuries.

  14. Acceleration of Wound Healing by α-gal Nanoparticles Interacting with the Natural Anti-Gal Antibody

    Directory of Open Access Journals (Sweden)

    Uri Galili

    2015-01-01

    Full Text Available Application of α-gal nanoparticles to wounds and burns induces accelerated healing by harnessing the natural anti-Gal antibody which constitutes ~1% of human immunoglobulins. α-gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R, the carbohydrate ligand of anti-Gal. Studied α-gal nanoparticles were comprised of glycolipids with α-gal epitopes, phospholipids, and cholesterol. Binding of anti-Gal to α-gal nanoparticles in wounds activates the complement cascade, resulting in formation of chemotactic complement cleavage peptides that induce rapid recruitment of many macrophages. The Fc/Fcγ receptors interaction between anti-Gal coating α-gal nanoparticles and the recruited macrophages activates macrophages to produce cytokines/growth factors that promote wound healing and recruit stem cells. Studies of wound healing by α-gal nanoparticles were feasible in α1,3galactosyltransferase knockout mice and pigs. In contrast to other nonprimate mammals, these mice and pigs lack the α-gal epitope, and thus they are not immunotolerant to it and produce anti-Gal. Treatment of skin wounds and burns with α-gal nanoparticles resulted in 40–60% decrease in healing time in comparison with control wounds treated with saline. This accelerated healing is associated with increased recruitment of macrophages and extensive angiogenesis in wounds, faster regrowth of epidermis, and regeneration of the dermis. The accelerated healing further decreases and may completely eliminate fibrosis and scar formation in wounds. Since healing of internal injuries is mediated by mechanisms similar to those in external wound healing, it is suggested that α-gal nanoparticles treatment may also improve regeneration and restoration of biological function following internal injuries such as surgical incisions, myocardial ischemia following infarction, and nerve injuries.

  15. Wound Healing and Care

    Science.gov (United States)

    ... Right Sport for You Healthy School Lunch Planner Wound Healing and Care KidsHealth > For Teens > Wound Healing and Care Print A A A What's in ... mouth, or sunken eyes. There's good news about wound healing when you're a teen: Age is on ...

  16. Bmx tyrosine kinase transgene induces skin hyperplasia, inflammatory angiogenesis, and accelerated wound healing.

    Science.gov (United States)

    Paavonen, Karri; Ekman, Niklas; Wirzenius, Maria; Rajantie, Iiro; Poutanen, Matti; Alitalo, Kari

    2004-09-01

    The Bmx gene, a member of the Tec family of nonreceptor protein tyrosine kinases, is expressed in arterial endothelium and in certain hematopoietic and epithelial cells. Previous in vitro studies have implicated Bmx signaling in cell migration and survival and suggested that it contributes to the progression of prostate carcinomas. However, the function of Bmx in normal tissues in vivo is unknown. We show here that Bmx expression is induced in skin keratinocytes during wound healing. To analyze the role of Bmx in epidermal keratinocytes in vivo, we generated transgenic mice overexpressing Bmx in the skin. We show that Bmx overexpression accelerates keratinocyte proliferation and wound reepithelialization. Bmx expression also induces chronic inflammation and angiogenesis in the skin, and gene expression profiling suggests that this occurs via cytokine-mediated recruitment of inflammatory cells. Our studies provide the first data on Bmx function in vivo and form the basis of evaluation of its role in epithelial neoplasia.

  17. Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo.

    Science.gov (United States)

    Fushimi, Tomohiro; Inui, Shigeki; Nakajima, Takeshi; Ogasawara, Masahiro; Hosokawa, Ko; Itami, Satoshi

    2012-01-01

    Because light-emitting diodes (LEDs) are low-coherent, quasimonochromatic, and nonthermal, they are an alternative for low level laser therapy, and have photobiostimulative effects on tissue repair. However, the molecular mechanism(s) are unclear, and potential effects of blue and/or green LEDs on wound healing are still unknown. Here, we investigated the effects of red (638 nm), blue (456 nm), and green (518 nm) LEDs on wound healing. In an in vivo study, wound sizes in the skin of ob/ob mice were significantly decreased on day 7 following exposure to green LEDs, and complete reepithelialization was accelerated by red and green LEDs compared with the control mice. To better understand the molecular mechanism(s) involved, we investigated the effects of LEDs on human fibroblasts in vitro by measuring mRNA and protein levels of cytokines secreted by fibroblasts during the process of wound healing and on the migration of HaCat keratinocytes. The results suggest that some cytokines are significantly increased by exposure to LEDs, especially leptin, IL-8, and VEGF, but only by green LEDs. The migration of HaCat keratinocytes was significantly promoted by red or green LEDs. In conclusion, we demonstrate that green LEDs promote wound healing by inducing migratory and proliferative mediators, which suggests that not only red LEDs but also green LEDs can be a new powerful therapeutic strategy for wound healing. © 2012 by the Wound Healing Society.

  18. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing.

    Science.gov (United States)

    Rabbani, Piul S; Zhou, Anna; Borab, Zachary M; Frezzo, Joseph A; Srivastava, Nikita; More, Haresh T; Rifkin, William J; David, Joshua A; Berens, Samuel J; Chen, Raymond; Hameedi, Sophia; Junejo, Muhammad H; Kim, Camille; Sartor, Rita A; Liu, Che F; Saadeh, Pierre B; Montclare, Jin K; Ceradini, Daniel J

    2017-04-03

    Therapeutics utilizing siRNA are currently limited by the availability of safe and effective delivery systems. Cutaneous diseases, specifically ones with significant genetic components are ideal candidates for topical siRNA based therapy but the anatomical structure of skin presents a considerable hurdle. Here, we optimized a novel liposome and protein hybrid nanoparticle delivery system for the topical treatment of diabetic wounds with severe oxidative stress. We utilized a cationic lipid nanoparticle (CLN) composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the edge activator sodium cholate (NaChol), in a 6:1 ratio of DOTAP:NaChol (DNC). Addition of a cationic engineered supercharged coiled-coil protein (CSP) in a 10:1:1 ratio of DNC:CSP:siRNA produced a stable lipoproteoplex (LPP) nanoparticle, with optimal siRNA complexation, minimal cytotoxicity, and increased transfection efficacy. In a humanized murine diabetic wound healing model, our optimized LPP formulation successfully delivered siRNA targeted against Keap1, key repressor of Nrf2 which is a central regulator of redox mechanisms. Application of LPP complexing siKeap1 restored Nrf2 antioxidant function, accelerated diabetic tissue regeneration, and augmented reduction-oxidation homeostasis in the wound environment. Our topical LPP delivery system can readily be translated into clinical use for the treatment of diabetic wounds and can be extended to other cutaneous diseases with genetic components.

  19. Topical Aloe Vera (Aloe barbadensis Miller) Extract Does Not Accelerate the Oral Wound Healing in Rats.

    Science.gov (United States)

    Coelho, Fernanda Hack; Salvadori, Gabriela; Rados, Pantelis Varvaki; Magnusson, Alessandra; Danilevicz, Chris Krebs; Meurer, Luise; Martins, Manoela Domingues

    2015-07-01

    The effect of topical application of Aloe Vera (Aloe barbadensis Miller) extract was assessed on the healing of rat oral wounds in an in vivo model using 72 male Wistar rats divided into three groups (n = 24): control, placebo and Aloe Vera (0.5% extract hydroalcoholic). Traumatic ulcers were caused in the dorsum of the tongue using a 3-mm punch tool. The Aloe Vera and placebo group received two daily applications. The animals were sacrificed after 1, 5, 10 and 14 days. Clinical analysis (ulcer area and percentage of repair) and histopathological analysis (degree of re-epithelialization and inflammation) were performed. The comparison of the differences between scores based on group and experimental period, both in quantitative and semi-quantitative analyses, was performed using the Kruskal-Wallis test. The significance level was 5%. On day 1, all groups showed predominantly acute inflammatory infiltrate. On day 5, there was partial epithelialization and chronic inflammatory infiltrate. On the days 10 and 14 total repair of ulcers was observed. There was no significant difference between groups in the repair of mouth ulcers. It is concluded that treatment using Aloe Vera as an herbal formulation did not accelerate oral wound healing in rats.

  20. Saliva and wound healing

    NARCIS (Netherlands)

    Brand, H.S.; Veerman, E.C.I.

    2013-01-01

    Wounds in the oral cavity heal faster and with less scarring than wounds in other parts of the body. One of the factors implicated in this phenomenon is the presence of saliva, which promotes the healing of oral wounds in several ways. Saliva creates a humid environment, which improves the survival

  1. Saliva and wound healing

    NARCIS (Netherlands)

    Brand, H.S.; Veerman, E.C.I.

    2013-01-01

    Wounds in the oral cavity heal faster and with less scarring than wounds in other parts of the body. One of the factors implicated in this phenomenon is the presence of saliva, which promotes the healing of oral wounds in several ways. Saliva creates a humid environment, which improves the survival

  2. Rapid recruitment and activation of macrophages by anti-Gal/α-Gal liposome interaction accelerates wound healing.

    Science.gov (United States)

    Wigglesworth, Kim M; Racki, Waldemar J; Mishra, Rabinarayan; Szomolanyi-Tsuda, Eva; Greiner, Dale L; Galili, Uri

    2011-04-01

    Macrophages are pivotal in promoting wound healing. We hypothesized that topical application of liposomes with glycolipids that carry Galα1-3Galβ1-4GlcNAc-R epitopes (α-gal liposomes) on wounds may accelerate the healing process by rapid recruitment and activation of macrophages in wounds. Immune complexes of the natural anti-Gal Ab (constituting ∼1% of Ig in humans) bound to its ligand, the α-gal epitope on α-gal liposomes would induce local activation of complement and generation of complement chemotactic factors that rapidly recruit macrophages. Subsequent binding of the Fc portion of anti-Gal coating α-gal liposomes to FcγRs on recruited macrophages may activate macrophage genes encoding cytokines that mediate wound healing. We documented the efficacy of this treatment in α1,3galactosyltrasferase knockout mice. In contrast to wild-type mice, these knockout mice lack α-gal epitopes and can produce the anti-Gal Ab. The healing time of excisional skin wounds treated with α-gal liposomes in these mice is twice as fast as that of control wounds. Moreover, scar formation in α-gal liposome-treated wounds is much lower than in physiologic healing. Additional sonication of α-gal liposomes resulted in their conversion into submicroscopic α-gal nanoparticles. These α-gal nanoparticles diffused more efficiently in wounds and further increased the efficacy of the treatment, resulting in 95-100% regeneration of the epidermis in wounds within 6 d. The study suggests that α-gal liposome and α-gal nanoparticle treatment may enhance wound healing in the clinic because of the presence of high complement activity and high anti-Gal Ab titers in humans.

  3. [Wound healing and wound dressing].

    Science.gov (United States)

    Eitel, F; Sklarek, J

    1988-01-01

    This review article intends to discuss the clinical management of wounds in respect to a pathophysiological background. Recent results of research in the field of wound healing are demonstrated. Wound healing can be seen as aseptic inflammatory response to a traumatic stimulus. The activation of the clotting cascade by the trauma induces a sequence of humoral and cellular reactions. Platelets, granulocytes and macrophages are activated stepwisely. In the first phase of wound healing the wounded tissue area will be prepared for phagocytosis by enzymatic degradation of ground substance and depolymerisation of protein macromolecules (wound edema). Following the phagocytic microdebridement mesenchymal cells proliferate and produce matrix substance. Microcirculation within the traumatized area will be restored by angiogenesis, macroscopically observed as new formed granulation tissue. This leads to the wound healing phase of scar tissue formation. In this complexity of reactions naturally many possibilities of impairment are given. The most common complication during wound healing is the infection. It can be seen as self reinforcing process. The therapy of the impairment of wound healing consists in the disruption of the specific vicious circle, in the case of an osseus infection that would be a macrodebridement (that is necrectomy) and biomechanical stabilization. The surgical management of wounds principally consists in ensuring an undisturbed sequence of the healing process. This can be done by the wound excision that supports the phagocytic microdebridement. A further possibility is to avoid overwhelming formation of edema by eliminating the traumatic stimulus, by immobilization of the injured region and by ensuring a physiological microenvironment with a primary suture if possible. There are up to the present no drugs available to enhance cell proliferation and to regulate wound healing but it seems that experimental research is successful in characterizing

  4. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats.

    Science.gov (United States)

    Gopal, Anu; Kant, Vinay; Gopalakrishnan, Anu; Tandan, Surendra K; Kumar, Dinesh

    2014-05-15

    Copper possesses efficacy in wound healing which is a complex phenomenon involving various cells, cytokines and growth factors. Copper nanoparticles modulate cells, cytokines and growth factors involved in wound healing in a better way than copper ions. Chitosan has been shown to be beneficial in healing because of its antibacterial, antifungal, biocompatible and biodegradable polymeric nature. In the present study, chitosan-based copper nanocomposite (CCNC) was prepared by mixing chitosan and copper nanoparticles. CCNC was applied topically to evaluate its wound healing potential and to study its effects on some important components of healing process in open excision wound model in adult Wistar rats. Significant increase in wound contraction was observed in the CCNC-treated rats. The up-regulation of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1(TGF-β1) by CCNC-treatment revealed its role in facilitating angiogenesis, fibroblast proliferation and collagen deposition. The tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were significantly decreased and increased, respectively, in CCNC-treated rats. Histological evaluation showed more fibroblast proliferation, collagen deposition and intact re-epithelialization in CCNC-treated rats. Immunohistochemistry of CD31 revealed marked increase in angiogenesis. Thus, we concluded that chitosan-based copper nanocomposite efficiently enhanced cutaneous wound healing by modulation of various cells, cytokines and growth factors during different phases of healing process.

  5. Topical Application of Sadat-Habdan Mesenchymal Stimulating Peptide (SHMSP Accelerates Wound Healing in Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Abdulmohsen H. Al-Elq

    2012-01-01

    Full Text Available Objective. Diminished wound healing is a common problem in diabetic patients due to diminished angiogenesis. SHMSP was found to promote angiogenesis. The present study was carried out to examine the effect of this peptide in healing of wounds in diabetic rabbits. Materials and Methods. Twenty male New Zealand rabbits were used in this study. Diabetes mellitus was induced and the rabbits were randomly divided into two equal groups: control group and peptide group. A-full thickness punch biopsy was made to create a wound of about 10 mm on the right ears of all rabbits. Every day, the wound was cleaned with saline in control groups. In the peptide group, 15 mg of SHMSP was applied after cleaning. On day 15th, all animals were sacrificed, and the wounds were excised with a rim of 5 mm of normal surrounding tissue. Histo-pathological assessment of wound healing, inflammatory cell infiltration, blood vessel proliferation, and collagen deposition was performed. Results. There were no deaths among the groups. There was significant increase in wound healing, blood vessel proliferation and collagen deposition, and significant decrease in inflammatory cell infiltration in the peptide group compared to the control group. Conclusion. Topical application of SHMSP improves wound healing in diabetic rabbits.

  6. PATOPHYSIOLOGY OF WOUND HEALING

    OpenAIRE

    NOVINŠČAK, TOMISLAV; FILIPOVIĆ, MARINKO

    2015-01-01

    Wound healing is a basic, highly complex, logical and well orchestrated physiologic process of interaction of various speciic molecules and cells in normal tissue function and structure restoration. In essence, genetically deined and by reined physical and chemical forces driven process, in most living beings wound healing leads to imperfect but suficient tissue repair. Some rare exceptions in wound healing, like salamander or human fetus, that can achieve complete and perfect regeneration pr...

  7. Factors Affecting Wound Healing

    OpenAIRE

    Guo, S.; DiPietro, L A

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  8. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing.

    Science.gov (United States)

    Chouhan, Dimple; Chakraborty, Bijayshree; Nandi, Samit K; Mandal, Biman B

    2017-01-15

    Bombyx mori silk fibroin (BMSF) as biopolymer has been extensively explored in wound healing applications. However, limited study is available on the potential of silk fibroin (SF) from non-mulberry (Antheraea assama and Philosamia ricini) silk variety. Herein, we have developed non-mulberry SF (NMSF) based electrospun mats functionalized with epidermal growth factor (EGF) and ciprofloxacin HCl as potential wound dressing. The NMSF based mats exhibited essential properties of wound dressing like biocompatibility, high water retention capacity (440%), water vapor transmission rate (∼2330gm(-2)day(-1)), high elasticity (∼2.6MPa), sustained drug release and antibacterial activity. Functionalized NMSF mats enhanced the proliferation of human dermal fibroblasts and HaCaT cells in vitro as compared to non-functionalized mats (p⩽0.01) showing effective delivery of EGF. Extensive in vivo wound healing assesment demonstrated accelerated wound healing, enhanced re-epithelialization, highly vascularized granulation tissue and higher wound maturity as compared to BMSF based mats. NMSF mats treated wounds showed regulated deposition of mature elastin, collagen and reticulin fibers in the extracellular matrix of skin. Presence of skin appendages and isotropic collagen fibers in the regenerated skin also demonstrated scar-less healing and aesthetic wound repair. A facile fabrication of a ready-to-use bioactive wound dressing capable of concomitantly accelerating the healing process as well as deposition of the extracellular matrix (ECM) to circumvent further scarring complicacies has become a focal point of research. In this backdrop, our present work is based on non-mulberry silk fibroin (NMSF) electrospun antibiotic loaded semi-occlusive mats, mimicking the ECM of skin in terms of morphology, topology, microporous structure and mechanical stiffness. Regulation of ECM deposition and isotropic orientation evinced the potential of the mat as an instructive platform for skin

  9. Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model

    Directory of Open Access Journals (Sweden)

    Yu Gil Park

    2017-05-01

    Full Text Available BackgroundPlatelet-rich plasma (PRP contains high concentrations of growth factors involved in wound healing. Hydrogel is a 3-dimensional, hydrophilic, high-molecular, reticular substance generally used as a dressing formulation to accelerate wound healing, and also used as a bio-applicable scaffold or vehicle. This study aimed to investigate the effects of PRP and hydrogel on wound healing, in combination and separately, in an animal wound model.MethodsA total of 64 wounds, with 2 wounds on the back of each nude mouse, were classified into 4 groups: a control group, a hydrogel-only group, a PRP-only group, and a combined-treatment group. All mice were assessed for changes in wound size and photographed on scheduled dates. The number of blood vessels was measured in all specimens. Immunohistochemical staining was used for the analysis of vascular endothelial growth factor (VEGF expression.ResultsDifferences in the decrease and change in wound size in the combined-treatment group were more significant than those in the single-treatment groups on days 3, 5, 7, and 10. Analysis of the number of blood vessels through histological examination showed a pattern of increase over time that occurred in all groups, but the combined-treatment group exhibited the greatest increase on days 7 and 14. Immunohistochemical staining showed that VEGF expression in the combined-treatment group exhibited its highest value on day 7.ConclusionsThis experiment demonstrated improved wound healing using a PRP–hydrogel combined treatment compared to either treatment individually, resulting in a decrease in wound size and a shortening of the healing period.

  10. Acceleration of wound healing by growth hormone-releasing hormone and its agonists

    OpenAIRE

    Dioufa, Nikolina; Schally, Andrew V.; Chatzistamou, Ioulia; Moustou, Evi; Block, Norman L.; Owens, Gary K.; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2010-01-01

    Despite the well-documented action of growth hormone-releasing hormone (GHRH) on the stimulation of production and release of growth hormone (GH), the effects of GHRH in peripheral tissues are incompletely explored. In this study, we show that GHRH plays a role in wound healing and tissue repair by acting primarily on wound-associated fibroblasts. Mouse embryonic fibroblasts (MEFs) in culture and wound-associated fibroblasts in mice expressed a splice variant of the receptors for GHRH (SV1). ...

  11. Factors Affecting Wound Healing

    Science.gov (United States)

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  12. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation.

    Science.gov (United States)

    Zhao, Bin; Zhang, Yijie; Han, Shichao; Zhang, Wei; Zhou, Qin; Guan, Hao; Liu, Jiaqi; Shi, Jihong; Su, Linlin; Hu, Dahai

    2017-04-01

    Wound healing is a highly orchestrated physiological process consisting of a complex events, and scarless wound healing is highly desired for the development and application in clinical medicine. Recently, we have demonstrated that human amniotic epithelial cells (hAECs) promoted wound healing and inhibited scar formation through a paracrine mechanism. However, exosomes (Exo) are one of the most important paracrine factors. Whether exosomes derived from human amniotic epithelial cells (hAECs-Exo) have positive effects on scarless wound healing have not been reported yet. In this study, we examined the role of hAECs-Exo on wound healing in a rat model. We found that hAECs, which exhibit characteristics of both embryonic and mesenchymal stem cells, have the potential to differentiate into all three germ layers. hAECs-Exo ranged from 50 to 150 nm in diameter, and positive for exosomal markers CD9, CD63, CD81, Alix, TSG101 and HLA-G. Internalization of hAECs-Exo promoted the migration and proliferation of fibroblasts. Moreover, the deposition of extracellular matrix (ECM) were partly abolished by the treatment of high concentration of hAECs-Exo (100 μg/mL), which may be through stimulating the expression of matrix metalloproteinase-1 (MMP-1). In vivo animal experiments showed that hAECs-Exo improved the skin wound healing with well-organized collagen fibers. Taken together, These findings represent that hAECs-Exo can be used as a novel hope in cell-free therapy for scarless wound healing.

  13. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-09-12

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair.

  14. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  15. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice.

    Science.gov (United States)

    Geiger, Adolf; Walker, Audrey; Nissen, Erwin

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers.

  16. Topical Application of Aloe vera Accelerated Wound Healing, Modeling, and Remodeling: An Experimental Study.

    Science.gov (United States)

    Oryan, Ahmad; Mohammadalipour, Adel; Moshiri, Ali; Tabandeh, Mohammad Reza

    2016-01-01

    Treatment of large wounds is technically demanding and several attempts have been taken to improve wound healing. Aloe vera has been shown to have some beneficial roles on wound healing but its mechanism on various stages of the healing process is not clear. This study was designed to investigate the effect of topical application of A. vera on cutaneous wound healing in rats. A rectangular 2 × 2-cm cutaneous wound was created in the dorsum back of rats. The animals were randomly divided into 3 groups of control (n = 20), low-dose (n = 20), and high-dose (n = 20) A. vera. The control and treated animals were treated daily with topical application of saline, low-dose (25 mg/mL), and high-dose (50 mg/mL) A. vera gel, up to 10 days, respectively. The wound surface, wound contraction, and epithelialization were monitored. In each group, the animals were euthanized at 10 (n = 5), 20 (n = 5), and 30 (n = 10) days post injury (DPI). At 10, 20, and 30 DPI, the skin samples were used for histopathological and biochemical investigations; and at 30 DPI, the skin samples were also subjected for biomechanical studies. Aloe vera modulated the inflammation, increased wound contraction and epithelialization, decreased scar tissue size, and increased alignment and organization of the regenerated scar tissue. A dose-dependent increase in the tissue level of dry matter, collagen, and glycosaminoglycans' content was seen in the treated lesions, compared to the controls. The treated lesions also demonstrated greater maximum load, ultimate strength, and modulus of elasticity compared to the control ones (P vera improved the biochemical, morphological, and biomechanical characteristics of the healing cutaneous wounds in rats. This treatment option may be valuable in clinical practice.

  17. Effectiveness of combined laser-puncture and conventional wound care to accelerate diabetic foot ulcer healing

    Directory of Open Access Journals (Sweden)

    Adiningsih Srilestari

    2017-05-01

    Full Text Available Background: Impaired wound healing is a common complication of diabetes. It has complex pathophysiologic mechanisms and often necessitates amputation. Our study aimed to evaluate the effectiveness of combined laser-puncture and conventional wound care in the treatment of diabetic foot ulcers.Methods: This was a double-blind controlled randomized clinical trial on 36 patients, conducted at the Metabolic Endocrine Outpatient Clinic, Cipto Mangunkusumo Hospital, Jakarta, between May and August 2015. Stimulation by laser-puncture (the treatment group or sham stimulation (the control group were performed on top of the standard wound care. Laser-puncture or sham were done on several acupuncture points i.e. LI4 Hegu, ST36 Zusanli, SP6 Sanyinjiao and KI3 Taixi bilaterally, combined with irradiation on the ulcers itself twice a week for four weeks. The mean reduction in ulcer sizes (week 2–1, week 3–1, week 4–1 were measured every week and compared between the two groups and analyzed by Mann-Whitney test.Results: The initial median ulcer size were 4.75 (0.10–9.94 cm2 and 2.33 (0.90–9.88 cm2 in laser-puncture and sham groups, respectively (p=0.027. The median reduction of ulcer size at week 2–1 was -1.079 (-3.25 to -0.09 vs -0.36 (-0.81 to -1.47 cm2, (p=0.000; at week 3–1 was -1.70 (-3.15 to -0.01 vs -0.36 (-0.80 to -0.28 cm2, (p=0.000; and at week 4–1 was -1.22 (-2.72 to 0.00 vs -0.38 (-0.74 to -0.57 cm2, (p=0.012.Conclusion: Combined laser-puncture and conventional wound care treatment are effective in accelerating the healing of diabetic foot ulcer.

  18. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    Science.gov (United States)

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Purpose Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Materials and methods Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Results Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. Conclusion These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis

  19. The accelerating effect of chitosan-silica hybrid dressing materials on the early phase of wound healing.

    Science.gov (United States)

    Park, Ji-Ung; Jung, Hyun-Do; Song, Eun-Ho; Choi, Tae-Hyun; Kim, Hyoun-Ee; Song, Juha; Kim, Sukwha

    2017-10-01

    Commercialized dressing materials with or without silver have played a passive role in early-phase wound healing, protecting the skin defects from infections, absorbing exudate, and preventing dehydration. Chitosan (CTS)-based sponges have been developed in pure or hybrid forms for accelerating wound healing, but their wound-healing capabilities have not been extensively compared with widely used commercial dressing materials, providing limited information in a practical aspect. In this study, we have developed CTS-silica (CTS-Si) hybrid sponges with water absorption, flexibility, and mechanical behavior similar to those of CTS sponges. In vitro and in vivo tests were performed to compare the CTS-Si sponges with three commercial dressing materials [gauze, polyurethane (PU), and silver-containing hydrofiber (HF-Ag)] in addition to CTS sponges. Both in vitro and in vivo tests showed that CTS-Si sponges promoted fibroblast proliferation, leading to accelerated collagen synthesis, whereas the CTS sponges did not exhibit significant differences in fibroblast proliferation and collagen synthesis from gauze, PU, and HF-Ag sponges. In case of CTS-Si, the inflammatory cells were actively recruited to the wound by the influence of the released silicon ions from CTS-Si sponges, which, in return, led to an enhanced secretion of growth factors, particularly TGF-β during the early stage. The higher level of TGF-β likely improved the proliferation of fibroblasts, and as a result, collagen synthesis by fibroblasts became remarkably productive, thereby increasing collagen density at the wound site. Therefore, the CTS-Si hybrid sponges have considerable potential as a wound-dressing material for accelerating wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1828-1839, 2017. © 2016 Wiley Periodicals, Inc.

  20. A deficiency in cold-inducible RNA-binding protein accelerates the inflammation phase and improves wound healing.

    Science.gov (United States)

    Idrovo, Juan Pablo; Jacob, Asha; Yang, Weng Lang; Wang, Zhimin; Yen, Hao Ting; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2016-02-01

    Chronic or non-healing wounds are a major concern in clinical practice and these wounds are mostly associated with diabetes, and venous and pressure ulcers. Wound healing is a complex process involving overlapping phases and the primary phase in this complex cascade is the inflammatory state. While inflammation is necessary for wound healing, a prolonged inflammatory phase leads to impaired healing. Cold-inducible RNA-binding protein (CIRP) belongs to a family of cold-shock proteins that are expressed in high levels under stress conditions. Recently, we demonstrated that a deficiency in CIRP led to decreased inflammation and mortality in an experimental model of hemorrhagic shock. Thus, we hypothesized that a deficiency in CIRP would accelerate the inflammatory phase and lead to an improvement in cutaneous wound healing. In this study, to examine this hypothesis, a full-thickness wound was created on the dorsum of wild-type (WT) and CIRP-/- mice. The wound size was measured every other day for 14 days. The wound area was significantly decreased in the CIRP-/- mice by day 9 and continued to decrease until day 14 compared to the WT mice. In a separate cohort, mice were sacrificed on days 3 and 7 after wounding and the skin tissues were harvested for histological analysis and RNA measurements. On day 3, the mRNA expression of tumor necrossis factor (TNF)-α in the skin tissues was increased by 16-fold in the WT mice, whereas these levels were increased by 65-fold in the CIRP-/- mice. Of note on day 7, while the levels of TNF-α remained high in the WT mice, these levels were significantly decreased in the CIRP-/- mice. The histological analysis of the wounded skin tissue indicated an improvement as early as day 3 in the CIRP-/- mice, whereas in the WT mice, infiltrated immune cells were still present on day 7. On day 7 in the CIRP-/- mice, Gr-1 expression was low and CD31 expression was high, whereas in the WT mice, Gr-1 expression was high and CD31 expression was low

  1. Diabetes and wound healing

    OpenAIRE

    Svendsen, Rikke; Irakunda, Gloire; Knudsen List, Karoline Cecilie; Sønderstup-Jensen, Marie; Hölmich Rosca, Mette Maria

    2014-01-01

    Diabetes is a disease where the glucose level in the blood is high, due to either insulin resistance, impaired insulin sensitivity or no insulin production. The high glucose level causes several complications, one of them being an impaired wound healing process, which might lead to chronic wounds, ulcers. Several factors play a role in the development of ulcers, and recent research indicates that microRNA might play a significant role in skin development and wound healing. The purpose of this...

  2. Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute.

    Science.gov (United States)

    Gupta, Sonam; Raghuwanshi, Navdeep; Varshney, Ritu; Banat, I M; Srivastava, Amit Kumar; Pruthi, Parul A; Pruthi, Vikas

    2017-10-01

    A potent biosurfactant (BS) producing Bacillus licheniformis SV1 (NCBI GenBank Accession No. KX130852) was isolated from oil contaminated soil sample. Physicochemical investigations (TLC, HPLC, FTIR, GC-MS and NMR) revealed it to be glycolipid in nature. Fibroblast culture assay showed cytocompatibility and increased cell proliferation of 3T3/NIH fibroblast cells treated with this biosurfactant when checked using MTT assay and DAPI fluorescent staining. To evaluate the wound healing potential, BS ointment was formulated and checked for its spreadability and viscosity consistency. In vivo wound healing examination of full thickness skin excision wound rat model demonstrated the prompt re-epithelialization and fibroblast cell proliferation in the early phase while quicker collagen deposition in later phases of wound healing when BS ointment was used. These results validated the potential usage of BS ointment as a transdermal substitute for faster healing of impaired skin wound. Biochemical evaluation also substantiated the highest concentration of hydroxyproline (32.18±0.46, p<0.001) in the BS ointment treated animal tissue samples compared to the control. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining validated the presence of increased amount of collagen fibers and blood vessels in the test animals treated with BS ointment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Acarbose Accelerates Wound Healing via Akt/eNOS Signaling in db/db Mice

    Directory of Open Access Journals (Sweden)

    Xue Han

    2017-01-01

    Full Text Available Refractory wound is a dreaded complication of diabetes and is highly correlated with EPC dysfunction caused by hyperglycemia. Acarbose is a widely used oral glucose-lowering drug exclusively for T2DM. Previous studies have suggested the beneficial effect of acarbose on improving endothelial dysfunction in patients with T2DM. However, no data have been reported on the beneficial efficacy of acarbose in wound healing impairment caused by diabetes. We herein investigated whether acarbose could improve wound healing in T2DM db/db mice and the possible mechanisms involved. Acarbose hastened wound healing and enhanced angiogenesis, accompanied by increased circulating EPC number in db/db mice. In vitro, a reversed BM-EPC dysfunction was observed after the administration of acarbose in db/db mice, as reflected by tube formation assay. In addition, a significantly increased NO production was also witnessed in BM-EPCs from acarbose treated db/db mice, with decreased O2 levels. Akt inhibitor could abolish the beneficial effect of acarbose on high glucose induced EPC dysfunction in vitro, accompanied by reduced eNOS activation. Acarbose displayed potential effect in promoting wound healing and improving angiogenesis in T2DM mice, which was possibly related to the Akt/eNOS signaling pathway.

  4. Wound healing in urology.

    Science.gov (United States)

    Ninan, Neethu; Thomas, Sabu; Grohens, Yves

    2015-03-01

    Wound healing is a dynamic and complex phenomenon of replacing devitalized tissues in the body. Urethral healing takes place in four phases namely inflammation, proliferation, maturation and remodelling, similar to dermal healing. However, the duration of each phase of wound healing in urology is extended for a longer period when compared to that of dermatology. An ideal wound dressing material removes exudate, creates a moist environment, offers protection from foreign substances and promotes tissue regeneration. A single wound dressing material shall not be sufficient to treat all kinds of wounds as each wound is distinct. This review includes the recent attempts to explore the hidden potential of growth factors, stem cells, siRNA, miRNA and drugs for promoting wound healing in urology. The review also discusses the different technologies used in hospitals to treat wounds in urology, which make use of innovative biomaterials synthesised in regenerative medicines like hydrogels, hydrocolloids, foams, films etc., incorporated with growth factors, drug molecules or nanoparticles. These include surgical zippers, laser tissue welding, negative pressure wound therapy, and hyperbaric oxygen treatment.

  5. Microdeformation in wound healing.

    Science.gov (United States)

    Wiegand, Cornelia; White, Richard

    2013-01-01

    Mechanical forces greatly influence cellular organization and behavior. Cells respond to applied stress by changes in form and composition until a suitable state is reestablished. However, without any mechanical stimuli cells stop proliferating, discontinue migration, go into cell-cycle arrest, and eventually die. Hence, one can assume that pathologies closely depending on cell migration like cancer or atherosclerosis might be governed by biophysical parameters. Moreover, mechanical cues will have fundamental effects in wound healing. Especially negative pressure wound therapy has the potential to endorse wound healing by induction of both macrodeformation (wound contraction) and microdeformation (tissue reactions at microscopic level). So far, the capacity for researchers to study the link between mechanical stimulation and biological response has been limited by the lack of instrumentation capable of stimulating the tissue in an appropriate manner. However, first reports on application of micromechanical forces to wounds elucidate the roles of cell stretch, substrate stiffness, and tissue deformation during cell proliferation and differentiation. This review deals with their findings and tries to establish a link between the current knowledge and the questions that are essential to clinicians in the field: What is the significance of mirodeformations for wound healing? Does "dead space" impede propagation of mechanical cues? How can microdeformations induce cell proliferation? What role do fibroblasts, myofibroblasts, and mesenchymal stem cells play in chronic wounds with regard to micromechanical forces? © 2013 by the Wound Healing Society.

  6. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  7. Inhibition of Prostaglandin Transporter (PGT Promotes Perfusion and Vascularization and Accelerates Wound Healing in Non-Diabetic and Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Zhongbo Liu

    Full Text Available Peripheral ischemia, resulting from diminished arterial flow and defective local vascularization, is one of the main causes of impaired wound healing in diabetes. Vasodilatory prostaglandins (PGs, including PGE2 and PGI2, regulate blood flow in peripheral tissues. PGs also stimulate angiogenesis by inducing vascular endothelial growth factor. However, PG levels are reduced in diabetes mainly due to enhanced degradation. We hypothesized that inhibition of the prostaglandin transporter (PGT (SLCO2A1, which mediates the degradation of PGs, would increase blood flow and stimulate vascularization, thereby mitigating peripheral ischemia and accelerating wound healing in diabetes. Here we report that inhibiting PGT with intravenously injected PGT inhibitor, T26A, increased blood flow in ischemic hind limbs created in non-diabetic rats and streptozotocin induced diabetic rats. Systemic, or combined with topical, T26A accelerated closure of cutaneous wounds. Immunohistochemical examination revealed that inhibition of PGT enhanced vascularization (marked by larger numbers of vessels formed by CD34+ cells, and accelerated re-epithelialization of cutaneous wounds. In cultured primary human bone marrow CD34+ cells and human epidermal keratinocytes (HEKs either inhibiting or silencing PGT increased migration in both cell lines. Thus PGT directly regulates mobilization of endothelial progenitor cells (EPCs and HEKs, which could contribute to PGT-mediated vascularization and re-epithelialization. At the molecular level, systemic inhibition of PGT raised circulating PGE2. Taken together, our data demonstrate that PGT modulates arterial blood flow, mobilization of EPCs and HEKs, and vascularization and epithelialization in wound healing by regulating vasodilatory and pro-angiogenic PGs.

  8. Allogeneic Transplantation of an Adipose-Derived Stem Cell Sheet Combined With Artificial Skin Accelerates Wound Healing in a Rat Wound Model of Type 2 Diabetes and Obesity.

    Science.gov (United States)

    Kato, Yuka; Iwata, Takanori; Morikawa, Shunichi; Yamato, Masayuki; Okano, Teruo; Uchigata, Yasuko

    2015-08-01

    One of the most common complications of diabetes is diabetic foot ulcer. Diabetic ulcers do not heal easily due to diabetic neuropathy and reduced blood flow, and nonhealing ulcers may progress to gangrene, which necessitates amputation of the patient's foot. This study attempted to develop a new cell-based therapy for nonhealing diabetic ulcers using a full-thickness skin defect in a rat model of type 2 diabetes and obesity. Allogeneic adipose-derived stem cells (ASCs) were harvested from the inguinal fat of normal rats, and ASC sheets were created using cell sheet technology and transplanted into full-thickness skin defects in Zucker diabetic fatty rats. The results indicate that the transplantation of ASC sheets combined with artificial skin accelerated wound healing and vascularization, with significant differences observed 2 weeks after treatment. The ASC sheets secreted large amounts of several angiogenic growth factors in vitro, and transplanted ASCs were observed in perivascular regions and incorporated into the newly constructed vessel structures in vivo. These results suggest that ASC sheets accelerate wound healing both directly and indirectly in this diabetic wound-healing model. In conclusion, allogeneic ASC sheets exhibit potential as a new therapeutic strategy for the treatment of diabetic ulcers.

  9. Propranolol attenuates hemorrhage and accelerates wound healing in severely burned adults

    OpenAIRE

    Ali, Arham; Herndon, David N.; Mamachen, Ashish; Hasan, Samir; Andersen, Clark R; Grogans, Ro-Jon; Brewer, Jordan L.; Lee, Jong O.; Heffernan, Jamie; Suman, Oscar E.; Finnerty, Celeste C

    2015-01-01

    Introduction Propranolol, a nonselective β-blocker, exerts an indirect effect on the vasculature by leaving α-adrenergic receptors unopposed, resulting in peripheral vasoconstriction. We have previously shown that propranolol diminishes peripheral blood following burn injury by increasing vascular resistance. The purpose of this study was to investigate whether wound healing and perioperative hemodynamics are affected by propranolol administration in severely burned adults. Methods Sixty-nine...

  10. Bmx Tyrosine Kinase Transgene Induces Skin Hyperplasia, Inflammatory Angiogenesis, and Accelerated Wound Healing

    OpenAIRE

    2004-01-01

    The Bmx gene, a member of the Tec family of nonreceptor protein tyrosine kinases, is expressed in arterial endothelium and in certain hematopoietic and epithelial cells. Previous in vitro studies have implicated Bmx signaling in cell migration and survival and suggested that it contributes to the progression of prostate carcinomas. However, the function of Bmx in normal tissues in vivo is unknown. We show here that Bmx expression is induced in skin keratinocytes during wound healing. To analy...

  11. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang

    2016-09-07

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  12. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    Science.gov (United States)

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-09-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  13. Innovation and wound healing.

    Science.gov (United States)

    Harding, Keith

    2015-04-01

    Innovation in medicine requires unique partnerships between academic research, biotech or pharmaceutical companies, and health-care providers. While innovation in medicine has greatly increased over the past 100 years, innovation in wound care has been slow, despite the fact that chronic wounds are a global health challenge where there is a need for technical, process and social innovation. While novel partnerships between research and the health-care system have been created, we still have much to learn about wound care and the wound-healing processes.

  14. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.N.M. [Institute for Science and Technology in Medicine, Keele University RJAH Orthopaedic Hospital, Oswestry, SY10 7AG (United Kingdom); School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ (United Kingdom); Wright, K.T.; Fuller, H.R. [Institute for Science and Technology in Medicine, Keele University RJAH Orthopaedic Hospital, Oswestry, SY10 7AG (United Kingdom); MacNeil, S. [Kroto Research Institute and Centre for Nanoscience and Technology, Sheffield University, Sheffield, S1 2UE (United Kingdom); Johnson, W.E.B., E-mail: w.e.johnson@aston.ac.uk [School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ (United Kingdom)

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  15. G-CSF Administration after the Intraosseous Infusion of Hypertonic Hydroxyethyl Starches Accelerating Wound Healing Combined with Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    Hong Huang

    2016-01-01

    Full Text Available Objective. To evaluate the therapeutic effects of G-CSF administration after intraosseous (IO resuscitation in hemorrhagic shock (HS combined with cutaneous injury rats. Methods. The rats were randomly divided into four groups: (1 HS with resuscitation (blank, (2 HS with resuscitation + G-CSF (G-CSF, 200 μg/kg body weight, subcutaneous injection, (3 HS with resuscitation + normal saline solution injection (normal saline, and (4 HS + G-CSF injection without resuscitation (Unres/G-CSF. To estimate the treatment effects, the vital signs of alteration were first evaluated, and then wound closure rates and homing of MSCs and EPCs to the wound skins and vasculogenesis were measured. Besides, inflammation and vasculogenesis related mRNA expressions were also examined. Results. IO infusion hypertonic hydroxyethyl starch (HHES exhibited beneficial volume expansion roles and G-CSF administration accelerated wound healing 3 days ahead of other groups under hemorrhagic shock. Circulating and the homing of MSCs and EPCs at wound skins were significantly elevated at 6 h after G-CSF treatment. Inflammation was declined since 3 d while angiogenesis was more obvious in G-CSF treated group on day 9. Conclusions. These results suggested that the synergistical application of HHES and G-CSF has life-saving effects and is beneficial for improving wound healing in HS combined with cutaneous injury rats.

  16. Fibronectin and wound healing.

    Science.gov (United States)

    Grinnell, F

    1984-01-01

    I have tried to briefly review the evidence (summarized in Table II) indicating that fibronectin is important in cutaneous wound healing. Fibronectin appears to be an important factor throughout this process. It promotes the spreading of platelets at the site of injury, the adhesion and migration of neutrophils, monocytes, fibroblasts, and endothelial cells into the wound region, and the migration of epidermal cells through the granulation tissue. At the level of matrix synthesis, fibronectin appears to be involved both in the organization of the granulation tissue and basement membrane. In terms of tissue remodeling, fibronectin functions as a nonimmune opsonin for phagocytosis of debris by fibroblasts, keratinocytes, and under some circumstances, macrophages. Fibronectin also enhances the phagocytosis of immune-opsonized particles by monocytes, but whether this includes phagocytosis of bacteria remains to be determined. In general, phagocytosis of bacteria has not appeared to involve fibronectin. On the contrary, the presence of fibronectin in the wound bed may promote bacterial attachment and infection. Because of the ease of experimental manipulations, wound healing experiments have been carried out on skin more frequently than other tissues. As a result, the possible role of fibronectin has not been investigated thoroughly in the repair of internal organs and tissues. Nevertheless, it seems reasonable to speculate that fibronectin plays a central role in all wound healing situations. Finally, the wound healing problems of patients with severe factor XIII deficiencies may occur because of their inability to incorporate fibronectin into blood clots.

  17. Progress in corneal wound healing.

    Science.gov (United States)

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  18. Progress in corneal wound healing

    Science.gov (United States)

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  19. Deletion of the α2A/α2C-adrenoceptors accelerates cutaneous wound healing in mice.

    Science.gov (United States)

    Romana-Souza, Bruna; Nascimento, Adriana P; Brum, Patricia C; Monte-Alto-Costa, Andréa

    2014-10-01

    The α2-adrenoceptors regulate the sympathetic nervous system, controlling presynaptic catecholamine release. However, the role of the α2-adrenoceptors in cutaneous wound healing is poorly understood. Mice lacking both the α2A/α2C-adrenoceptors were used to evaluate the participation of the α2-adrenoceptor during cutaneous wound healing. A full-thickness excisional lesion was performed on the dorsal skin of the α2A/α2C-adrenoceptor knockout and wild-type mice. Seven or fourteen days later, the animals were euthanized and the lesions were formalin-fixed and paraffin-embedded or frozen. Murine skin fibroblasts were also isolated from α2A/α2C-adrenoceptor knockout and wild-type mice, and fibroblast activity was evaluated. The in vivo study demonstrated that α2A/α2C-adrenoceptor depletion accelerated wound contraction and re-epithelialization. A reduction in the number of neutrophils and macrophages was observed in the α2A/α2C-adrenoceptor knockout mice compared with wild-type mice. In addition, α2A/α2C-adrenoceptor depletion enhanced the levels of nitrite and hydroxyproline, and the protein expression of transforming growth factor-β and vascular endothelial growth factor. Furthermore, α2A/α2C-adrenoceptor depletion accelerated blood vessel formation and myofibroblast differentiation. The in vitro study demonstrated that skin fibroblasts isolated from α2A/α2C-adrenoceptor knockout mice exhibited enhanced cell migration, α-smooth muscle actin _protein expression and collagen deposition compared with wild-type skin fibroblasts. In conclusion, α2A/α2C-adrenoceptor deletion accelerates cutaneous wound healing in mice.

  20. Endothelium-specific GTP cyclohydrolase I overexpression accelerates refractory wound healing by suppressing oxidative stress in diabetes.

    Science.gov (United States)

    Tie, Lu; Li, Xue-Jun; Wang, Xian; Channon, Keith M; Chen, Alex F

    2009-06-01

    Refractory wound is a severe complication that leads to limb amputation in diabetes. Endothelial nitric oxide synthase (eNOS) plays a key role in normal wound repair but is uncoupled in streptozotocin (STZ)-induced type 1 diabetes because of reduced cofactor tetrahydrobiopterin (BH(4)). We tested the hypothesis that overexpression of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for de novo BH(4) synthesis, retards NOS uncoupling and accelerates wound healing in STZ mice. Blood glucose levels were significantly increased in both male endothelium-specific GTPCH I transgenic mice (Tg-GCH; via a tie-2 promoter) and wild-type (WT) littermates 5 days after STZ regimen. A full-thickness excisional wound was created on mouse dorsal skin by a 4-mm punch biopsy. Wound closure was delayed in STZ mice, which was rescued in STZ Tg-GCH mice. Cutaneous BH(4) level was significantly reduced in STZ mice vs. WT mice, which was maintained in STZ Tg-GCH mice. In STZ mice, constitutive NOS (cNOS) activity and nitrite levels were decreased compared with WT mice, paralleled by increased superoxide anion (O(2)(-)) level and inducible NOS (iNOS) activity. In STZ Tg-GCH mice, nitrite level and cNOS activity were potentiated and O(2)(-) level and iNOS activity were suppressed compared with STZ mice. Thus endothelium-specific BH(4) overexpression accelerates wound healing in type 1 diabetic mice by enhancing cNOS activity and suppressing oxidative stress.

  1. The effects of glycyrrhizic acid and glabridin in the regulation of CXCL5 inflammation gene on acceleration of wound healing

    Institute of Scientific and Technical Information of China (English)

    Hong Yung Yip; Melissa Su Wei Poh; Yoke Yin Chia

    2016-01-01

    Objective: To evaluate the anti-inflammatory property of both glycyrrhizic acid(GA)and glabridin in reducing inflammation to accelerate wound regeneration on 3T3-L1 and NIH-3T3 fibroblast cell lines.Methods: Cell proliferation and viability assay(MTT assay), scratch wound healing assays,and quantitative real-time PCR were conducted to investigate the effects on cell proliferation,cell migration, and expression of CXC chemokine ligand 5 inflammation gene respectively.Results: Results showed that at a low concentration of 1 × 10-8mol/L, glabridin down regulated cell proliferation in NIH-3T3 significantly, suggesting its involvement in ERK1/2 signaling pathway. GA and glabridin significantly accelerated cell migration through wound healing in both 3T3-L1 and NIH-3T3 and significantly down regulated the expression of CXC chemokine ligand 5 in 3T3-L1 at concentration 1 × 10-8mol/L,indicating the possible involvement of nuclear factor-k B and cyclooxygenase 2 transcriptions modulation.Conclusions: Both GA and glabridin can serve as potential treatment for chronic inflammatory disease, and glabridin as an oncogenic inhibitor due to its anti-proliferative property.

  2. Topical treatment with the opioid antagonist naltrexone accelerates the remodeling phase of full-thickness wound healing in type 1 diabetic rats.

    Science.gov (United States)

    Immonen, Jessica A; Zagon, Ian S; Lewis, Gregory S; McLaughlin, Patricia J

    2013-10-01

    Wound repair involves a series of overlapping phases that include inflammation, proliferation, and tissue remodeling, with the latter phase requiring months for proper healing. Delays in any of these processes can result in infection, chronic ulceration, and possible amputation. Diabetes is a major risk factor for improper wound repair, and impaired wound healing is a major complication for more than 26 million people in the US diagnosed with diabetes. Previous studies have demonstrated that the opioid antagonist naltrexone (NTX) dissolved in moisturizing cream reverses delays in wound closure in streptozotocin-induced type 1 diabetic (T1D) rats. NTX accelerated DNA synthesis and increased the number of epithelial and mast cells, as well as new blood vessel formation. In this study, remodeling was evaluated in T1D rats up to eight weeks after initial wounding. Twenty days following wounding, diabetic rats treated with vehicle had elevated numbers of MMP-2+ fibroblasts, suggesting delayed healing processes; birefringence of granulation tissue stained with Sirius red revealed diminished collagen formation and maturation. Wound tissue from NTX-treated T1D rats had comparable numbers of MMP-2+ fibroblasts to control specimens, as well as accelerated maturation of granulation tissue. The integrity of wounded skin was evaluated by tensile strength measurements. T1D resulted in delayed wound healing, and wounded skin that displayed reduced tensile strength relative to normal rats. Topical NTX applied to wounds in T1D rats resulted in enhanced collagen formation and maturation over a 60-day period of time. Moreover, the force required to tear skin of NTX-treated T1D rats was elevated relative to the force necessary to tear the skin of vehicle-treated T1D rats, and comparable to that for normal rats. These data reveal that complications in wound healing associated with T1D involve the novel OGF-OGFr pathway, and that topical NTX is an effective treatment to enhance wound

  3. 6-Formylindolo[3,2-b]Carbazole Accelerates Skin Wound Healing via Activation of ERK, but Not Aryl Hydrocarbon Receptor.

    Science.gov (United States)

    Morino-Koga, Saori; Uchi, Hiroshi; Mitoma, Chikage; Wu, Zhouwei; Kiyomatsu, Mari; Fuyuno, Yoko; Nagae, Konosuke; Yasumatsu, Mao; Suico, Mary Ann; Kai, Hirofumi; Furue, Masutaka

    2017-10-01

    Wound healing is an elaborate process composed of overlapping phases, such as proliferation and remodeling, and is delayed in several circumstances, including diabetes. Although several treatment strategies for chronic wounds, such as growth factors, have been applied, further alternatives are required. The skin, especially keratinocytes, is continually exposed to UV rays, which impairs wound healing. 6-Formylindolo[3,2-b]carbazole (FICZ) is a tryptophan photoproduct formed by UV exposure, indicating that FICZ might be one of the effectors of UV radiation. In contrast, treatment with tryptophan, the precursor for FICZ, promoted wound closure in keratinocytes. Therefore, the aim of our study was to determine the role of FICZ in wound healing. Here we showed that FICZ enhanced keratinocyte migration through mitogen-activated protein kinase/extracellular signal-regulated kinase activation, and promoted wound healing in various mouse models, including db/db mice, which exhibit wound healing impairments because of type 2 diabetes. Moreover, FICZ, the endogenous ligand of an aryl hydrocarbon receptor, accelerated migration even in the aryl hydrocarbon receptor knockdown condition and also promoted wound healing in DBA/2 mice, bearing a low-affinity aryl hydrocarbon receptor, suggesting that FICZ enhanced keratinocyte migration in a mitogen-activated protein kinase/extracellular signal-regulated kinase-dependent, but aryl hydrocarbon receptor-independent, manner. The function of FICZ might indicate the possibility of its clinical use for intractable chronic wounds. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Acceleration of diabetic-wound healing with PEGylated rhaFGF in healing-impaired streptozocin diabetic rats.

    Science.gov (United States)

    Huang, Zhifeng; Lu, Meifei; Zhu, Guanghui; Gao, Hongchang; Xie, Liyun; Zhang, Xiaoqin; Ye, Chaohui; Wang, Yan; Sun, Chuanchuan; Li, Xiaokun

    2011-01-01

    Molecular modification with polyethylene glycol (PEGylation) is an effective approach to improve protein biostability, in vivo lifetime and therapeutic potency. In the present study, the recombinant human acid fibroblast growth factor (rhaFGF) was site-selectively PEGylated with 20 kDa mPEG-butyraldehyde. Mono-PEGylated rhaFGF was purified to near homogeneity by Sephadex G 25-gel filtration followed by a Heparin Sepharose TM CL-6B affinity chromatography. PEGylated rhaFGF has less effect than the native rhaFGF on the stimulation of 3T3 cell proliferation in vitro; however, its relative thermal stability at normal physiological temperature and structural stability were significantly enhanced, and its half-life time in vivo was significantly extended. Then, the physiological function of PEGylated rhaFGF on diabetic-wound healing was evaluated in type 1 diabetic Sprague Dawley rats. The results showed that, compared with the group of animal treated with native rhaFGF, the group treated with PEGylated rhaFGF exhibited better therapeutic efficacy with shorter healing time, quicker tissue collagen generation, earlier and higher transforming growth factor (TGF)-β expression, and dermal cell proliferation. In addition, in vivo analysis showed that both native and PEGylated rhaFGF were more effective in the wound healing in the diabetic group compared with the nondiabetic one. Taken together, these results suggest that PEGylation of rhaFGF could be a more effective approach to the pharmacological and therapeutic application of native rhaFGF.

  5. Healing Invisible Wounds

    Science.gov (United States)

    Adams, Erica J.

    2010-01-01

    As many as 9 in 10 justice-involved youth are affected by traumatic childhood experiences. According to "Healing Invisible Wounds: Why Investing in Trauma-Informed Care for Children Makes Sense," between 75 and 93 percent of youth currently incarcerated in the justice system have had at least one traumatic experience, including sexual…

  6. Phytochemicals in Wound Healing

    OpenAIRE

    Thangapazham, Rajesh L.; Sharad, Shashwat; Radha K Maheshwari

    2016-01-01

    Significance: Traditional therapies, including the use of dietary components for wound healing and skin regeneration, are very common in Asian countries such as China and India. The increasing evidence of health-protective benefits of phytochemicals, components derived from plants is generating a lot of interest, warranting further scientific evaluation and mechanistic studies.

  7. Healing Invisible Wounds

    Science.gov (United States)

    Adams, Erica J.

    2010-01-01

    As many as 9 in 10 justice-involved youth are affected by traumatic childhood experiences. According to "Healing Invisible Wounds: Why Investing in Trauma-Informed Care for Children Makes Sense," between 75 and 93 percent of youth currently incarcerated in the justice system have had at least one traumatic experience, including sexual…

  8. Effect of astaxanthin on cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Meephansan J

    2017-07-01

    Full Text Available Jitlada Meephansan,1 Atiya Rungjang,1 Werayut Yingmema,2 Raksawan Deenonpoe,3 Saranyoo Ponnikorn3 1Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; 2Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand; 3Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand Abstract: Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing. Keywords: astaxanthin, wound healing, reactive oxygen species, antioxidant 

  9. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats.

    Science.gov (United States)

    Sankar, Renu; Baskaran, Athmanathan; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-07-01

    An impaired wound healing is one of the major health related problem in diabetic and non-diabetic patients around the globe. The pathogenic bacteria play a predominant role in delayed wound healing, owing to interaction in the wound area. In our previous work we developed green chemistry mediated copper oxide nanoparticles using Ficus religiosa leaf extract. In the present study we make an attempt to evaluate the anti-bacterial, and wound healing activity of green synthesized copper oxide nanoparticles in male Wistar Albino rats. The agar well diffusion assay revealed copper oxide nanoparticles have substantial inhibition activity against human pathogenic strains such as Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli, which were responsible for delayed wound healing process. Furthermore, the analyses results of wound closure, histopathology and protein profiling confirmed that the F. religiosa leaf extract tailored copper oxide nanoparticles have enhanced wound healing activity in Wistar Albino rats.

  10. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Directory of Open Access Journals (Sweden)

    Naofumi Tamaki

    2016-01-01

    Full Text Available The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  11. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model.

    Science.gov (United States)

    Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  12. The acceleration of garlic (Allium sativum L ethanolic extract on gingival wound healing process in Wistar rats

    Directory of Open Access Journals (Sweden)

    Indra Bramanti Ngatidjan Setyo Purwono

    2014-04-01

    Full Text Available Garlic (Allium sativum L is a medicinal plant traditionally used to relieve pain. Garlic’s active constituents, allicin and triacremonone, have been proven to have antibacterial and antiinflammatory activity. The aim of this study was to investigate the effect of garlic ethanolic extract gel in gingival wound healing process of rats. Thirty male Wistar rats aged 10 weeks with with body weight 200-250 g were subjected in this study. Rats were divided randomly into five groups with six rats in each group. Group I as negative control was given sodium carboxymethyl cellulose (Na CMC base gel. Group II as positive control was given Benzydamine® gel and Group IV-V were given garlic ethanolic extract gel at dose of 20, 40 and 80%, respectively. Each group was subdivided into two sub groups of three rats according to the decapitation period which were 5th (D-5 and 7th (D-7 day after the garlic extract gel application. Excisional wounds using punch biopsy, 2.5 mm in diameter, were created at the mandibular labial gingiva between right and left incisor teeth of the rats. The garlic extract gel of each preparation dose was then applied on the wound three times a day, starting at 0 day until 7th day. The decapitation was conducted on the D-5 and D-7. Histological slides of wounded tissue were prepared. Epithelial thickness, new blood vessel, and number of fibroblast were examined. The results showed that the epithelial thickness of garlic ethanolic extract gel groups was significantly higher than control group (p<0.05, especially after 5thday application. However, the number of new blood vessels and the amount of fibroblast of those groups were not significantly higher than control group (p>0.05. In conclusion, topical application of garlic ethanolic extract gel accelerates the gingival wound healing process in rats by increasing epithelial thickness.     Keywords: garlic ethanolic extract - gingival wound healing - epithelium thickness

  13. Physics of Wound Healing I: Energy Considerations

    CERN Document Server

    Apell, S Peter; Papazoglou, Elisabeth S; Pizziconi, Vincent

    2012-01-01

    Wound healing is a complex process with many components and interrelated processes on a microscopic level. This paper addresses a macroscopic view on wound healing based on an energy conservation argument coupled with a general scaling of the metabolic rate with body mass M as M^{\\gamma} where 0 <{\\gamma}<1. Our three main findings are 1) the wound healing rate peaks at a value determined by {\\gamma} alone, suggesting a concept of wound acceleration to monitor the status of a wound. 2) We find that the time-scale for wound healing is a factor 1/(1 -{\\gamma}) longer than the average internal timescale for producing new material filling the wound cavity in corresondence with that it usually takes weeks rather than days to heal a wound. 3) The model gives a prediction for the maximum wound mass which can be generated in terms of measurable quantities related to wound status. We compare our model predictions to experimental results for a range of different wound conditions (healthy, lean, diabetic and obses...

  14. Social facilitation of wound healing.

    Science.gov (United States)

    Detillion, Courtney E; Craft, Tara K S; Glasper, Erica R; Prendergast, Brian J; DeVries, A Courtney

    2004-09-01

    It is well documented that psychological stress impairs wound healing in humans and rodents. However, most research effort into influences on wound healing has focused on factors that compromise, rather than promote, healing. In the present study, we determined if positive social interaction, which influences hypothalamic-pituitary-adrenal (HPA) axis activity in social rodents, promotes wound healing. Siberian hamsters received a cutaneous wound and then were exposed to immobilization stress. Stress increased cortisol concentrations and impaired wound healing in isolated, but not socially housed, hamsters. Removal of endogenous cortisol via adrenalectomy eliminated the effects of stress on wound healing in isolated hamsters. Treatment of isolated hamsters with oxytocin (OT), a hormone released during social contact and associated with social bonding, also blocked stress-induced increases in cortisol concentrations and facilitated wound healing. In contrast, treating socially housed hamsters with an OT antagonist delayed wound healing. Taken together, these data suggest that social interactions buffer against stress and promote wound healing through a mechanism that involves OT-induced suppression of the HPA axis. The data imply that social isolation impairs wound healing, whereas OT treatment may ameliorate some effects of social isolation on health.

  15. Cell therapy for wound healing.

    Science.gov (United States)

    You, Hi-Jin; Han, Seung-Kyu

    2014-03-01

    In covering wounds, efforts should include utilization of the safest and least invasive methods with goals of achieving optimal functional and cosmetic outcome. The recent development of advanced wound healing technology has triggered the use of cells to improve wound healing conditions. The purpose of this review is to provide information on clinically available cell-based treatment options for healing of acute and chronic wounds. Compared with a variety of conventional methods, such as skin grafts and local flaps, the cell therapy technique is simple, less time-consuming, and reduces the surgical burden for patients in the repair of acute wounds. Cell therapy has also been developed for chronic wound healing. By transplanting cells with an excellent wound healing capacity profile to chronic wounds, in which wound healing cannot be achieved successfully, attempts are made to convert the wound bed into the environment where maximum wound healing can be achieved. Fibroblasts, keratinocytes, adipose-derived stromal vascular fraction cells, bone marrow stem cells, and platelets have been used for wound healing in clinical practice. Some formulations are commercially available. To establish the cell therapy as a standard treatment, however, further research is needed.

  16. Wound Healing Effect of Curcumin: A Review.

    Science.gov (United States)

    Tejada, Silvia; Manayi, Azadeh; Daglia, Maria; Nabavi, Seyed Fazel; Sureda, Antoni; Hajheydari, Zohreh; Gortzi, Olga; Pazoki-Toroudi, Hamidreza; Nabavi, Seyed Mohammad

    2016-07-21

    Wound healing is a complex process that consists of several phases that range from coagulation, inflammation, accumulation of radical substances, to proliferation, formation of fibrous tissues and collagen, contraction of wound with formation of granulation tissue and scar. Since antiquity, vegetable substances have been used as phytotherapeutic agents for wound healing, and more recently natural substances of vegetable origin have been studied with the attempt to show their beneficial effect on wound treatment. Curcumin, the most active component of rhizome of Curcuma longa L. (common name: turmeric), has been studied for many years due to its bio-functional properties, especially antioxidant, radical scavenger, antimicrobial and anti-inflammatory activities, which play a crucial role in the wound healing process. Moreover, curcumin stimulated the production of the growth factors involved in the wound healing process, and so curcumin also accelerated the management of wound restoration. The aim of the present review is collecting and evaluating the literature data regarding curcumin properties potentially relevant for wound healing. Moreover, the investigations on the wound healing effects of curcumin are reported. In order to produce a more complete picture, the chemistry and sources of curcumin are also discussed.

  17. Effect of astaxanthin on cutaneous wound healing.

    Science.gov (United States)

    Meephansan, Jitlada; Rungjang, Atiya; Yingmema, Werayut; Deenonpoe, Raksawan; Ponnikorn, Saranyoo

    2017-01-01

    Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.

  18. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kant, Vinay; Gopal, Anu; Pathak, Nitya N; Kumar, Pawan; Tandan, Surendra K; Kumar, Dinesh

    2014-06-01

    Prolonged inflammation and increased oxidative stress impairs healing in diabetics and application of curcumin, a well known antioxidant and anti-inflammatory agent, could be an important strategy in improving impaired healing in diabetics. So, the present study was conducted to evaluate the cutaneous wound healing potential of topically applied curcumin in diabetic rats. Open excision skin wound was created in streptozotocin induced diabetic rats and wounded rats were divided into three groups; i) control, ii) gel-treated and iii) curcumin-treated. Pluronic F-127 gel (25%) and curcumin (0.3%) in pluronic gel were topically applied in the gel- and curcumin-treated groups, respectively, once daily for 19 days. Curcumin application increased the wound contraction and decreased the expressions of inflammatory cytokines/enzymes i.e. tumor necrosis factor-alpha, interleukin (IL)-1beta and matrix metalloproteinase-9. Curcumin also increased the levels of anti-inflammatory cytokine i.e. IL-10 and antioxidant enzymes i.e. superoxide dismutase, catalase and glutathione peroxidase. Histopathologically, the curcumin-treated wounds showed better granulation tissue dominated by marked fibroblast proliferation and collagen deposition, and wounds were covered by thick regenerated epithelial layer. These findings reveal that the anti-inflammatory and antioxidant potential of curcumin caused faster and better wound healing in diabetic rats and curcumin could be an additional novel therapeutic agent in the management of impaired wound healing in diabetics.

  19. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing

    Science.gov (United States)

    Xu, He; Lv, Fang; Zhang, Yali; Yi, Zhengfang; Ke, Qinfei; Wu, Chengtie; Liu, Mingyao; Chang, Jiang

    2015-11-01

    A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing.A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04802h

  20. Molecular pathology of wound healing.

    Science.gov (United States)

    Kondo, Toshikazu; Ishida, Yuko

    2010-12-15

    Skin-wound healing is an orchestrated biological phenomena consisting of three sequential phases, inflammation, proliferation, and maturation. Many biological substances are involved in the process of wound repair, and this short and simplified overview of wound healing can be adopted to determine wound vitality or wound age in forensic medicine. With the development of genetically engineered animals, essential molecules for skin-wound healing have been identified. Especially, cytokines, and growth factors are useful candidates and markers for the determination of wound vitality or age. Moreover, bone marrow-derived progenitor cells would give significant information to wound age determination. In this review article, some interesting observations are presented, possibly contributing to the future practice of forensic pathologists. Copyright © 2010. Published by Elsevier Ireland Ltd.

  1. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  2. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.

    Science.gov (United States)

    Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou

    2017-05-15

    Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Murine models of human wound healing.

    Science.gov (United States)

    Chen, Jerry S; Longaker, Michael T; Gurtner, Geoffrey C

    2013-01-01

    In vivo wound healing experiments remain the most predictive models for studying human wound healing, allowing an accurate representation of the complete wound healing environment including various cell types, environmental cues, and paracrine interactions. Small animals are economical, easy to maintain, and allow researchers to take advantage of the numerous transgenic strains that have been developed to investigate the specific mechanisms involved in wound healing and regeneration. Here we describe three reproducible murine wound healing models that recapitulate the human wound healing process.

  4. Honey: an immunomodulator in wound healing.

    Science.gov (United States)

    Majtan, Juraj

    2014-01-01

    Honey is a popular natural product that is used in the treatment of burns and a broad spectrum of injuries, in particular chronic wounds. The antibacterial potential of honey has been considered the exclusive criterion for its wound healing properties. The antibacterial activity of honey has recently been fully characterized in medical-grade honeys. Recently, the multifunctional immunomodulatory properties of honey have attracted much attention. The aim of this review is to provide closer insight into the potential immunomodulatory effects of honey in wound healing. Honey and its components are able to either stimulate or inhibit the release of certain cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) from human monocytes and macrophages, depending on wound condition. Similarly, honey seems to either reduce or activate the production of reactive oxygen species from neutrophils, also depending on the wound microenvironment. The honey-induced activation of both types of immune cells could promote debridement of a wound and speed up the repair process. Similarly, human keratinocytes, fibroblasts, and endothelial cell responses (e.g., cell migration and proliferation, collagen matrix production, chemotaxis) are positively affected in the presence of honey; thus, honey may accelerate reepithelization and wound closure. The immunomodulatory activity of honey is highly complex because of the involvement of multiple quantitatively variable compounds among honeys of different origins. The identification of these individual compounds and their contributions to wound healing is crucial for a better understanding of the mechanisms behind honey-mediated healing of chronic wounds.

  5. Hyperforin/HP-β-Cyclodextrin Enhances Mechanosensitive Ca2+ Signaling in HaCaT Keratinocytes and in Atopic Skin Ex Vivo Which Accelerates Wound Healing

    Science.gov (United States)

    Takada, Hiroya; Yonekawa, Jun; Matsumoto, Masami; Sokabe, Masahiro

    2017-01-01

    Cutaneous wound healing is accelerated by mechanical stretching, and treatment with hyperforin, a major component of a traditional herbal medicine and a known TRPC6 activator, further enhances the acceleration. We recently revealed that this was due to the enhancement of ATP-Ca2+ signaling in keratinocytes by hyperforin treatment. However, the low aqueous solubility and easy photodegradation impede the topical application of hyperforin for therapeutic purposes. We designed a compound hydroxypropyl-β-cyclodextrin- (HP-β-CD-) tetracapped hyperforin, which had increased aqueous solubility and improved photoprotection. We assessed the physiological effects of hyperforin/HP-β-CD on wound healing in HaCaT keratinocytes using live imaging to observe the ATP release and the intracellular Ca2+ increase. In response to stretching (20%), ATP was released only from the foremost cells at the wound edge; it then diffused to the cells behind the wound edge and activated the P2Y receptors, which caused propagating Ca2+ waves via TRPC6. This process might facilitate wound closure, because the Ca2+ response and wound healing were inhibited in parallel by various inhibitors of ATP-Ca2+ signaling. We also applied hyperforin/HP-β-CD on an ex vivo skin model of atopic dermatitis and found that hyperforin/HP-β-CD treatment for 24 h improved the stretch-induced Ca2+ responses and oscillations which failed in atopic skin. PMID:28210627

  6. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea.

    Science.gov (United States)

    Chen, Jialin; Lan, Jie; Liu, Dongle; Backman, Ludvig J; Zhang, Wei; Zhou, Qingjun; Danielson, Patrik

    2017-03-09

    High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved. © Stem Cells Translational Medicine 2017.

  7. Wound Healing Devices Brief Vignettes

    OpenAIRE

    Anderson, Caesar A.; Hare, Marc A.; Perdrizet, George A.

    2016-01-01

    Significance: The demand for wound care therapies is increasing. New wound care products and devices are marketed at a dizzying rate. Practitioners must make informed decisions about the use of medical devices for wound healing therapy. This paper provides updated evidence and recommendations based on a review of recent publications.

  8. Local release of pioglitazone (a peroxisome proliferator-activated receptor γ agonist) accelerates proliferation and remodeling phases of wound healing.

    Science.gov (United States)

    Sakai, Shigeki; Sato, Keisuke; Tabata, Yasuhiko; Kishi, Kazuo

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily known for its anti-inflammatory and macrophage differentiation effects, as well as its ability to promote fat cell differentiation and reduce insulin resistance. Pioglitazone (Pio) is a PPARγ agonist used clinically as an anti-diabetic agent for improving insulin sensitivity in patients with diabetes. The objective of this study was to develop a drug delivery system (DDS) for the local release of Pio to promote wound healing. Pio of low aqueous solubility was water-solubilized by micelles formed from gelatin grafted with L-lactic acid oligomers, and incorporated into a biodegradable gelatin hydrogel. An 8-mm punch biopsy tool was used to prepare two skin wounds on either side of the midline of 8-week-old mice. Wounds were treated by the hydrogels with (Pio-hydrogel group) or without (control group) Pio, and the wound area were observed 1, 4, 7, and 14 days after treatment. In addition, a protein assay and immunohistological stain were performed to determine the effects of the Pio-hydrogel on inflammation and macrophage differentiation. The Pio-hydrogels promote wound healing. Moreover, Western blotting analysis demonstrated that treatment with Pio-hydrogels resulted in decreased levels of the cytokines MIP-2 and TGF-β, and increased levels of glucose-regulating adiponectin. It is concluded that Pio-incorporated hydrogels promote the proliferation and remodeling phases of wound healing, and may prove to be effective as wound dressings.

  9. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats.

    Science.gov (United States)

    Zeng, Zhi; Zhu, Bang-Hao

    2014-07-03

    Zicao is a traditional wound healing herbal medicine that has been used for several hundred years in China. A survey of the published literatures revealed that arnebin-1, one of the naphthoquinone derivatives, played the most important role in wound healing property of this plant. However, whether arnebin-1 affects angiogenesis in vitro and has an effect on wound healing process in diabetic rats remains enigmatic. To investigate the effect of arnebin-1 with or without VEGF on proliferation, migration and tube formation of HUVECs in vitro and the effect of its topical application in the form of ointment on wound healing in a cutaneous punch wound model of alloxan-induced diabetic rats in vivo. The pro-angiogenic functions of arnebin-1 on HUVECs including proliferation, migration and angiogenesis were evaluated through MTT assay, wound healing assay, transwell assay and tube formation assay in vitro. Male Sprague-Dawley rats were injected intraperitoneally with alloxan to induce type І diabetic rats. Three wounds were created in each rat on the dorsal surface, and then divided to be basement treated, arnebin-1 ointment treated and untreated group correspondingly. The indicators including wound closure rate and histological evaluation were investigated on day 4 and 7 post-wounding. Without VEGF, arnebin-1 did not affect the proliferation of HUVECs significantly, but had a positive effect on cell migration and tube formation. However, in the presence of minimal VEGF, Arnebin-1 could increase the proliferation, enhance the migration and promote the tube formation of HUVECs significantly. The wound closure rate was increased significantly in arnebin-1 treated group compared to that of untreated and basement treated groups in diabetic rats, and the histological evaluation also showed well organized dermal layer, reduced number of macrophages, increased number of fibroblasts, remarkable degree of neovascularization and epithelization in arnebin-1 treated group. These

  10. Wound healing: a new approach to the topical wound care.

    Science.gov (United States)

    Öztürk, Ferdi; Ermertcan, Aylin Türel

    2011-06-01

    Cutaneous wound healing is a complex and well-coordinated interaction between inflammatory cells and mediators, establishing significant overlap between the phases of wound healing. Wound healing is divided into three major phases: inflammatory phase, proliferative phase, and remodeling phase. Unlike the acute wound, the nonhealing wound is arrested in one of the phases of healing, typically the inflammatory phase. A systematic approach to the management of the chronic nonhealing wound emphasizes three important elements of wound bed preparation in chronic wounds: debridement, moisture, and countering bacterial colonization and infection. In this article, wound-healing process and new approaches to the topical wound care have been reviewed.

  11. The Effect of Oral Medication on Wound Healing.

    Science.gov (United States)

    Levine, Jeffrey M

    2017-03-01

    The purpose of this learning activity is to provide information about the effects of oral medications on wound healing. This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Identify oral medications that aid in wound healing.2. Recognize oral medications that interfere with wound healing. Given the accelerated medical discoveries of recent decades, there is a surprising lack of oral medications that directly improve wound healing. Of the oral medications available, most target ancillary aspects of wound care such as pain management, infection mitigation, and nutrition. This article describes oral pharmacologic agents intended to build new tissue and aid in wound healing, as well as an introduction to oral medications that interfere with wound healing. This review will not discuss the pharmacology of pain management or treatment of infection, nor will it address nutritional supplements.

  12. Comparison of laser and diode sources for acceleration of in vitro wound healing by low-level light therapy.

    Science.gov (United States)

    Spitler, Ryan; Berns, Michael W

    2014-03-01

    Low-level light therapy has been shown to improve in vitro wound healing. However, well-defined parameters of different light sources for this therapy are lacking. The goal of this study was (1) to determine if the wavelengths tested are effective for in vitro wound healing and (2) to compare a laser and a light-emitting diode (LED) source at similar wavelengths. We show four wavelengths, delivered by either a laser or LED array, improved in vitro wound healing in A549, U2OS, and PtK2 cells. Improved wound healing occurred through increased cell migration demonstrated through scratch wound and transwell assays. Cell proliferation was tested by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-car-boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay and was found generally not to be involved in the wound healing process. The laser and LED sources were found to be comparable when equal doses of light were applied. The biological response measured was similar in most cases. We conclude that the laser at 652 (5.57  mW/cm2, 10.02  J/cm2) and 806 nm (1.30  mW/cm2, 2.334  J/cm2) (full bandwidth 5 nm), and LED at 637 (5.57  mW/cm2, 10.02  J/cm2) and 901 nm (1.30  mW/cm2, 2.334  J/cm2) (full bandwidth 17 and 69 nm respectively) induce comparable levels of cell migration and wound closure.

  13. The Four-Herb Chinese Medicine Formula Tuo-Li-Xiao-Du-San Accelerates Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats through Reducing Inflammation and Increasing Angiogenesis.

    Science.gov (United States)

    Zhang, Xiao-Na; Ma, Ze-Jun; Wang, Ying; Li, Yu-Zhu; Sun, Bei; Guo, Xin; Pan, Cong-Qing; Chen, Li-Ming

    2016-01-01

    Impaired wound healing in diabetic patients is a serious complication that often leads to amputation or even death with limited effective treatments. Tuo-Li-Xiao-Du-San (TLXDS), a traditional Chinese medicine formula for refractory wounds, has been prescribed for nearly 400 years in China and shows good efficacy in promoting healing. In this study, we explored the effect of TLXDS on healing of diabetic wounds and investigated underlying mechanisms. Four weeks after intravenous injection of streptozotocin, two full-thickness excisional wounds were created with a 10 mm diameter sterile biopsy punch on the back of rats. The ethanol extract of TLXDS was given once daily by oral gavage. Wound area, histological change, inflammation, angiogenesis, and collagen synthesis were evaluated. TLXDS treatment significantly accelerated healing of diabetic rats and improved the healing quality. These effects were associated with reduced neutrophil infiltration and macrophage accumulation, enhanced angiogenesis, and increased collagen deposition. This study shows that TLXDS improves diabetes-impaired wound healing.

  14. Wound healing: part II. Clinical applications.

    Science.gov (United States)

    Janis, Jeffrey; Harrison, Bridget

    2014-03-01

    Treatment of all wounds requires adequate wound bed preparation, beginning with irrigation and débridement. Complicated or chronic wounds may also require treatment adjuncts or specialized wound healing products. An extensive body of research and development has introduced novel wound healing therapies and scar management options. In this second of a two-part continuing medical education series on wound healing, the reader is offered an update on current wound healing technologies and recommendations for obtaining optimal outcomes.

  15. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    OpenAIRE

    Li Hu; Juan Wang; Xin Zhou; Zehuan Xiong; Jiajia Zhao; Ran Yu; Fang Huang; Handong Zhang; Lili Chen

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell mi...

  16. Polysaccharides-Rich Extract of Ganoderma lucidum (M.A. Curtis:Fr. P. Karst Accelerates Wound Healing in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Poh-Guat Cheng

    2013-01-01

    Full Text Available Ganoderma lucidum (M.A. Curtis:Fr. P. Karst is a popular medicinal mushroom. Scientific reports had shown that the wound healing effects of G. lucidum were partly attributed to its rich polysaccharides. However, little attention has been paid to its potential effects on wounds associated with diabetes mellitus. In this study, we evaluated the wound healing activity of the hot aqueous extract of G. lucidum in streptozotocin-induced diabetic rats. The extract of G. lucidum was standardised based on chemical contents (w/w of total polysaccharides (25.1%, ganoderic acid A (0.45%, and adenosine (0.069%. Six groups of six rats were experimentally wounded in the posterior neck region. Intrasite gel was used as a positive control and aqueous cream as the placebo. Topical application with 10% (w/w of mushroom extract-incorporated aqueous cream was more effective than that with Intrasite gel in terms of wound closure. The antioxidant activity in serum of rats treated with aqueous extract of G. lucidum was significantly higher; whereas the oxidative protein products and lipid damage were lower when compared to those of the controls. These findings strongly support the beneficial effects of standardised aqueous extract of G. lucidum in accelerating wound healing in streptozotocin-induced diabetic rats.

  17. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  18. Synthetic Decapeptide Enhances Bacterial Clearance and Accelerates Healing in the Wounds of Restraint-Stressed Mice

    Science.gov (United States)

    2012-02-06

    full thickness wounds were created, just below the shoulder blades , using a sterile 3.5 mm biopsy punch (Miltex Inc., York, PA). 2.4. Synthesis of... Runner , R.R., McPherson, J.C., Van Dyke, T.E., 2000. Pluronic polyol effects on human gingival fibroblast attachment and growth. J. Periodontol. 71 (5

  19. Complement deficiency promotes cutaneous wound healing in mice.

    Science.gov (United States)

    Rafail, Stavros; Kourtzelis, Ioannis; Foukas, Periklis G; Markiewski, Maciej M; DeAngelis, Robert A; Guariento, Mara; Ricklin, Daniel; Grice, Elizabeth A; Lambris, John D

    2015-02-01

    Wound healing is a complex homeostatic response to injury that engages numerous cellular activities, processes, and cell-to-cell interactions. The complement system, an intricate network of proteins with important roles in immune surveillance and homeostasis, has been implicated in many physiological processes; however, its role in wound healing remains largely unexplored. In this study, we employ a murine model of excisional cutaneous wound healing and show that C3(-/-) mice exhibit accelerated early stages of wound healing. Reconstitution of C3(-/-) mice with serum from C3(+/+) mice or purified human C3 abrogated the accelerated wound-healing phenotype. Wound histology of C3(-/-) mice revealed a reduction in inflammatory infiltrate compared with C3(+/+) mice. C3 deficiency also resulted in increased accumulation of mast cells and advanced angiogenesis. We further show that mice deficient in the downstream complement effector C5 exhibit a similar wound-healing phenotype, which is recapitulated in C5aR1(-/-) mice, but not C3aR(-/-) or C5aR2(-/-) mice. Taken together, these data suggest that C5a signaling through C5aR may in part play a pivotal role in recruitment and activation of inflammatory cells to the wound environment, which in turn could delay the early stages of cutaneous wound healing. These findings also suggest a previously underappreciated role for complement in wound healing, and may have therapeutic implications for conditions of delayed wound healing.

  20. Evaluation of an Oxygen-Diffusion Dressing for Accelerated Healing of Donor-Site Wounds

    Science.gov (United States)

    2014-06-01

    wounds in humans,8 but requires visits to facilities with trained personnel and is limited by oxygen toxicity issues. Compared with hyperbaric oxygen...therapy, the benefits of topical oxygen would include lower cost, lack of systemic oxygen toxicity , and the ability to receive treatment at home...an inconsistent scar or a pseudo- tattoo . To further investigate this concern, a separate animal study was conducted before enrollment of patients in

  1. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment

    Directory of Open Access Journals (Sweden)

    Sreenivasan Sasidharan

    2011-12-01

    Full Text Available Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.

  2. Wound healing activity of Elaeis guineensis leaf extract ointment.

    Science.gov (United States)

    Sasidharan, Sreenivasan; Logeswaran, Selvarasoo; Latha, Lachimanan Yoga

    2012-01-01

    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.

  3. What is New in Wound Healing?

    OpenAIRE

    Kumar, Senthil; WONG, Peng Foo; LEAPER, David John

    2004-01-01

    Wound biology is complex. Wounds which were until recently seen only as defects in tissues are now increasingly interpreted in cellular and molecular terms. Growth factors, cytokines, proteases and adhesion molecules which participate in wound healing are discussed in this article. From a clinical perspective, conceptual shifts of importance, including moist wound healing, wound bed preparation and wound assessment, are presented. The frontiers of therapeutics employed in wound healing contin...

  4. [Specificities in children wound healing].

    Science.gov (United States)

    Sanchez, J; Antonicelli, F; Tuton, D; Mazouz Dorval, S; François, C

    2016-10-01

    Children have specific characteristics of wound healing. The aim of this study was to describe the specific clinical characteristics of wounds healing in children and to present the current knowledge on the specific mechanisms with regard to infant age. The tissue insult or injury in fetus can heal without scar, mainly due to reduced granulation tissue associated to diminished or even no inflammatory phase, modified extracellular matrix such as the concentration of hyaluronic acid in amniotic liquid, expression and arrangement of collagen and tenascin. Thickness of children skin is a serious negative factor in case of trauma, whereas poor co-morbidities and efficient growth tissue mechanisms are beneficial to good evolution, even in cases of extensive damage and loss of tissue. The subsequent tissue mechanical forces, wound healing during childhood, spanning from the age of 2 until the end of puberty, is associated with more hypertrophic scars, both in duration and in intensity. Consequently, unnecessary surgery has to be avoided during this period when possible, and children with abnormal or pathologic wound healing should benefit from complementary treatments (hydration, massage, brace, silicone, hydrotherapy…), which represent efficient factors to minimize tissue scarring. After wound healing, the growth body rate can be responsible for specific complications, such as contractures, alopecia, and scar intussusceptions. Its evolutionary character implies the need of an attentive follow-up until adult age. Psychologic repercussions, as a consequence of pathologic scars, must be prevented and investigated by the surgeon.

  5. Acceleration of fibroblast number and FGF-2 expression using Channa striata extract induction during wound healing process: in vivo studies in wistar rats

    Directory of Open Access Journals (Sweden)

    Gunawan Oentaryo

    2017-03-01

    Full Text Available Background: Wound healing is a biological process associated with tissue growth and regeneration. Wound healing process, is important to repair damaged tissue. Wound healing process consists of coagulation and hemostasis, inflammation, proliferation, as well as remodeling phases. The process can be accelerated by taking synthetic or non synthetic drugs. One of them is Channa striata extract. The extract contains albumin, copper, and zinc, which can be assumed to increase inflammatory cell infiltration, fibroblast proliferation, and collagen secretion. Purpose: This study aimed to reveal the effects of Channa striata extracts on fibroblast number and FGF-2 expression in mucosal wound healing process of the Wistar rats’ lower lip. Method: This research was a true laboratory experimental research with randomized post test only control group design. Samples of experiment were devided to experiment and control group that consist five samples each. Experimental group was treted with Channa striata extract and ethanol at concentration of 25%, 50%, and 100%. The fibroblast number and FGF-2 expresion were examined. Result: The number of fibroblasts in the treatment groups receiving Channa striata extract at concentrations of 25%, 50%, and 100% was higher than in the control group. The highest number of fibroblasts was found on day 3 at the concentration of 100% (p<0.05. Similarly, FGF-2 expression in the treatment groups receiving Channa striata at concentrations of 25%, 50%, and 100% was higher than in the control group. The highest expression of FGF-2 was found on day 3 at the concentration of 50% (p<0.05. Conclusion: Channa striata extract increased fibroblast number and FGF-2 expression in mucosa wound healing process.

  6. Vasculogenic Cytokines in Wound Healing

    Directory of Open Access Journals (Sweden)

    Victor W. Wong

    2013-01-01

    Full Text Available Chronic wounds represent a growing healthcare burden that particularly afflicts aged, diabetic, vasculopathic, and obese patients. Studies have shown that nonhealing wounds are characterized by dysregulated cytokine networks that impair blood vessel formation. Two distinct forms of neovascularization have been described: vasculogenesis (driven by bone-marrow-derived circulating endothelial progenitor cells and angiogenesis (local endothelial cell sprouting from existing vasculature. Researchers have traditionally focused on angiogenesis but defects in vasculogenesis are increasingly recognized to impact diseases including wound healing. A more comprehensive understanding of vasculogenic cytokine networks may facilitate the development of novel strategies to treat recalcitrant wounds. Further, the clinical success of endothelial progenitor cell-based therapies will depend not only on the delivery of the cells themselves but also on the appropriate cytokine milieu to promote tissue regeneration. This paper will highlight major cytokines involved in vasculogenesis within the context of cutaneous wound healing.

  7. A potential wound-healing-promoting peptide from salamander skin.

    Science.gov (United States)

    Mu, Lixian; Tang, Jing; Liu, Han; Shen, Chuanbin; Rong, Mingqiang; Zhang, Zhiye; Lai, Ren

    2014-09-01

    Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 μg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor β1 (TGF-β1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.

  8. WOUND HEALING IN DIABETIC ULCER

    Directory of Open Access Journals (Sweden)

    Ida Bagus Putra Pramana

    2013-03-01

    Full Text Available The mechanism of wound healing is a complex mechanism and involves a variety of cells. Injury is defined as a disruption of normal structure and function. Various types of growth factors and cytokines such as platelet derived growth factor and transforming growth factor beta involved in the mechanism of wound healing. There are four phases of wound healing mechanisms : hemostasis, inflammatory, proliferative, and remodeling. Diabetic ulcers is one major complication, occurring in 15% of patients with diabetes mellitus (DM and as much as 84% of patients with diabetic ulcers require amputation action. In DM patients there is a failure in normal wound healing mechanisms. Various histopathological studies showed elongation phase of inflammation in patients with diabetes mellitus, thus inhibiting the formation of granulation tissue. Increased blood sugar levels will lower the expressin of perlecan, increased advanced glycation endproducts, decreased the formation of nitric oxide (by ± 67%, changes in the structure and function of fibroblasts and increased activity of matrix metalolproteinases, it will cause distruption of the normal wound healing mechanisms. (MEDICINA 2012;43:49-53.

  9. An Immunomodulatory Protein (Ling Zhi-8 from a Ganoderma lucidum Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery

    Directory of Open Access Journals (Sweden)

    Hao-Jan Lin

    2014-01-01

    Full Text Available The purpose of this study was to investigate the effect of an immunomodulatory protein (Ling Zhi-8, LZ-8 on wound healing in rat liver tissues after monopolar electrosurgery. Animals were sacrificed for evaluations at 0, 3, 7, and 28 days postoperatively. It was found that the wound with the LZ-8 treatment significantly increases wound healing. Western blot analysis clearly indicated that the expression of NF-κB was decreased at 3, 7, and 28 days when liver tissues were treated with LZ-8. Moreover, caspase-3 activity of the liver tissue also significantly decreases at 7 and 28 days, respectively. DAPI staining and TUNEL assays revealed that only a minimal dispersion of NF-κB was found on the liver tissue treated with LZ-8 at day 7 as compared with day 3 and tissues without LZ-8 treatment. Similarly, apoptosis was decreased on liver tissues treated with LZ-8 at 7 days when compared to the control (monopolar electrosurgery tissues. Therefore, the analytical results demonstrated that LZ-8 induced acceleration of wound healing in rat liver tissues after monopolar electrosurgery.

  10. Current concepts in wound management and wound healing products.

    Science.gov (United States)

    Davidson, Jacqueline R

    2015-05-01

    Current concepts in wound management are summarized. The emphasis is on selection of the contact layer of the bandage to promote a moist wound environment. Selection of an appropriate contact layer is based on the stage of wound healing and the amount of wound exudate. The contact layer can be used to promote autolytic debridement and enhance wound healing.

  11. Photobiomodulation in promoting wound healing: a review.

    Science.gov (United States)

    Kuffler, Damien P

    2016-01-01

    Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action.

  12. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Directory of Open Access Journals (Sweden)

    Badr Gamal

    2012-06-01

    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  13. How wounds heal

    Science.gov (United States)

    ... chronic wounds. Poor blood flow due to clogged arteries ( arteriosclerosis ) or conditions such as varicose veins. Obesity increases the risk of infection after surgery. Being overweight can also put tension on stitches, which can make them break open. ...

  14. Chemokine Regulation of Angiogenesis During Wound Healing

    OpenAIRE

    Bodnar, Richard J.

    2015-01-01

    Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds.

  15. The Presence of Oxygen in Wound Healing.

    Science.gov (United States)

    Kimmel, Howard M; Grant, Anthony; Ditata, James

    2016-08-01

    Oxygen must be tightly governed in all phases of wound healing to produce viable granulation tissue. This idea of tight regulation has yet to be disputed; however, the role of oxygen at the cellular and molecular levels still is not fully understood as it pertains to its place in healing wounds. In an attempt to better understand the dynamics of oxygen on living tissue and its potential role as a therapy in wound healing, a substantial literature review of the role of oxygen in wound healing was performed and the following key points were extrapolated: 1) During energy metabolism, oxygen is needed for mitochondrial cytochrome oxidase as it produces high-energy phosphates that are needed for many cellular functions, 2) oxygen is also involved in the hydroxylation of proline and lysine into procollagen, which leads to collagen maturation, 3) in angiogenesis, hypoxia is required to start the process of wound healing, but it has been shown that if oxygen is administered it can accelerate and sustain vessel growth, 4) the antimicrobial action of oxygen occurs when nicotinamide adenine dinucleotide phosphate (NADPH)-linked oxygenase acts as a catalyst for the production of reactive oxygen species (ROS), a superoxide ion which kills bacteria, and 5) the level of evidence is moderate for the use of hyperbaric oxygen therapy (HBOT) for diabetic foot ulcers, crush injuries, and soft-tissue infections. The authors hypothesized that HBOT would be beneficial to arterial insufficiency wounds and other ailments, but at this time further study is needed before HBOT would be indicated.

  16. Plasma Proteins and Wound Healing

    Science.gov (United States)

    1981-11-01

    an iron donor for proline hydroxylase synthesis. Hapto- globin also may prevent retardation of wound healing caused by infection by reducing the...dans le syndrome degression et la croissance tissulaire. Expos. Annu. Biochim. Med., 1970, 30: 149. JEEEAY, H. The metabolism of scrum proteins—III

  17. alpha-Lipoic acid supplementation inhibits oxidative damage, accelerating chronic wound healing in patients undergoing hyperbaric oxygen therapy.

    Science.gov (United States)

    Alleva, Renata; Nasole, Emanuele; Di Donato, Ferruccio; Borghi, Battista; Neuzil, Jiri; Tomasetti, Marco

    2005-07-29

    Hyperbaric oxygen (HBO) therapy is successfully used for the treatment of a variety of conditions. However, prolonged exposure to high concentrations of oxygen induces production of reactive oxygen species, causing damage to the cells. Thus, antioxidant supplementation has been proposed as an adjuvant to attenuate such deleterious secondary effects. We evaluated the effects of alpha-lipoic acid (LA) in patients affected by chronic wounds undergoing HBO treatment. LA supplementation efficiently reduces both the lipid and DNA oxidation induced by oxygen exposure. LA exerted its antioxidant activity by directly interacting with free radicals or by recycling vitamin E. An inhibitory effect of LA on the pro-inflammatory cytokine interleukin-6 was observed. Taken together, we demonstrated an adjuvant effect of LA in HBO therapy used for impaired wound healing treatment. We propose that LA may be used to further promote the beneficial effects of HBO therapy.

  18. Adult stem cells in small animal wound healing models.

    Science.gov (United States)

    Nauta, Allison C; Gurtner, Geoffrey C; Longaker, Michael T

    2013-01-01

    This chapter broadly reviews the use of stem cells as a means to accelerate wound healing, focusing first on the properties of stem cells that make them attractive agents to influence repair, both alone and as vehicles for growth factor delivery. Major stem cell reservoirs are described, including adult, embryonic, and induced pluripotent cell sources, outlining the advantages and limitations of each source as wound healing agents, as well as the possible mechanisms responsible for wound healing acceleration. Finally, the chapter includes a materials and methods section that provides an in-depth description of adult tissue harvest techniques.

  19. [Physiology and pathophysiology of wound healing of wound defects].

    Science.gov (United States)

    Mutschler, W

    2012-09-01

    Understanding wound healing involves more than simply stating that there are the three phases of inflammation, proliferation and maturation. Wound healing is a complex series of actions, reactions and interactions among cells and mediators in a sequential and simultaneously ongoing temporal process within a spatial frame. At first this article will attempt to provide a concise summary of the events, cellular components and main influential mediators of wound healing over time. Secondly, the pathophysiology of chronic non-healing wounds is described where an imbalance of stimulating and inhibiting factors causes failure of healing. The most relevant extrinsic and intrinsic determinants are described and related to the cellular and molecular level of disturbed wound healing. A basic understanding of wound healing is a prerequisite for any prophylactic or therapeutic maneuver to maintain or re-establish wound equilibrium to give a satisfactory healing trajectory.

  20. Wound Healing and Care

    Science.gov (United States)

    ... wounds can be so different, your doctor will give you instructions on how to take care of yourself after you go home from the hospital. In most cases, doctors will ask patients to do the following ... A doctor or nurse will give you instructions on how to change your dressing ...

  1. Hyperbaric oxygen and wound healing

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  2. Effects of Dermal Multipotent Cell Transplantation on Skin Wound Healing

    Institute of Scientific and Technical Information of China (English)

    ShiChunmeng; ChengTianmin; SuYongping; RanXinze; MaiYue; QuJifu; LouShufen; XuHui; LuoChengji

    2005-01-01

    There is increasing evidence that dermis contains adult multipotent stem cells. To investigate the effects of dermis-derived multipotent cells on wound healing, we transplanted a clonal population of dermis-derived multipotent cells (termed as DMCs) by topical and systemic application into the skin wound of rats with simple wounds and rats with combined wound and radiation injury. Our results suggest that both topical and systemic transplantation of DMCs accelerate the healing process in rats with a simple wound; the promoting effect by topical transplantation occurs earlier than systemic transplantation. However, systemic transplantation of DMCs promotes the healing process in irradiated rats, while topical transplantation of DMCs fails. Further studies on the mechanisms of DMCs to promote wound healing indicate that the supernatant of DMCs could promote the proliferation of fibroblasts and epidermal cells; DMCs expressed transcripts of a serics of cytokincs and cxtraccllular matrix molecules, including VEGF, PDGF, HGF, TGF-β, ICAM-1, VCAM-1, and Fibronectin, which were closely related to the wound healing by DNA microarray analysis. The implanted DMCs can engraft into recipient skin wounded tissues after transplantation by the FISH analysis with Y-chromosome-specific probe. Systemic transplantation of DMCs also promotes the recovery of peripheral white blood cells in irradiated rats. These results demonstrate the different effects of DMCs on wound healing in nonirradiated and irradiated rats and illustrate the importance of optimizing wound healing via the topical or systemic transplantation of stem cells.

  3. Principles of Wound Management and Wound Healing in Exotic Pets.

    Science.gov (United States)

    Mickelson, Megan A; Mans, Christoph; Colopy, Sara A

    2016-01-01

    The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regard to the animal's temperament and behavior, unique anatomy and small size, and tendency toward secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately affect wound healing. This article summarizes the general phases of wound healing, factors that affect healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. EFFECT OF TASPINE ON WOUND HEALING AND FIBROBLAST PROLIFERATION

    Institute of Scientific and Technical Information of China (English)

    Dong Yalin; He Langchong; Chen Fang

    2005-01-01

    Objective To study the effect and mechanism of taspine on wound healing and fibroblast proliferation. Methods The effect of taspine on skin wound was observed in vivo. The different concentration of taspine hydrochloride was added to L929 fibroblast cultivated in vitro, and lactate dehydrogenase was detected and MTT method was applied to observe effect of taspine on fibroblast proliferation. Results The local application of taspine 3 mg/Ml and 1.5 mg/mL accelerated the healing of skin wounded. In vitro, 0.01~0.5 μg/mL of taspine hydrochloride showed no effect on the change of lactate dehydrogenase activity and fibroblast proliferation. Conclusion Taspine is a kind of active alkaloid from leontice robustum which can enhance wound healing, its mechanism on wound healing is not by means of accelerating the proliferation of fibroblast, other mechanisms are necessary for being further studied.

  5. Influence of oxygen on wound healing.

    Science.gov (United States)

    Yip, Wai Lam

    2015-12-01

    Oxygen has an important role in normal wound healing. This article reviews the evidence concerning the role of oxygen in wound healing and its influence on the different stages of wound healing. The evidence reviewed has demonstrated that improving oxygenation may be helpful in limiting wound infection, although there is a lack of good quality studies on the role of oxygen in the proliferative phase and in reepithelialisation. Overall, the relationship between oxygen and wound healing is complex. Knowledge of this aspect is important as many treatment modalities for refractory wounds are based on these principles.

  6. Acceleration of wound healing in acute full-thickness skin wounds using a collagen-binding peptide with an affinity for MSCs

    Directory of Open Access Journals (Sweden)

    Huili Wang

    2014-10-01

    Full Text Available Mesenchymal stem cells (MSCs have been accepted as a promising cell source in tissue repair and regeneration. However, the inability to enrich MSCs in target areas limits their wide application. As a result, it has been a major goal to induce MSCs to be abundantly and specifically recruited to the injury site. In this study, a peptide with a specific affinity for MSCs (E7 peptide was immobilized to a collagen scaffold via a collagen-binding domain (CBD to construct a functional collagen scaffold. In addition, the hypothesis that this method could recruit MSCs specifically was evaluated in a porcine model. In vivo investigations indicated that due to the immunoreaction, the CBD-MSC-peptide collagen scaffold enhanced MSC adhesion and infiltration and promoted wound healing. At day 7 after surgery, we found more infiltrating cells and capillaries in the Collagen/CBD-E7 peptide group compared to the Scaffold group. At day 14, 21 and 28, a faster healing process was observed in the Collagen/CBD-E7 peptide group, with significant differences compared with the other groups (P < 0.05, P < 0.01. The results demonstrate the potential use of targeted therapy to rapidly heal skin wounds.

  7. Effects of glutamine on wound healing.

    Science.gov (United States)

    Kesici, Ugur; Kesici, Sevgi; Ulusoy, Hulya; Yucesan, Fulya; Turkmen, Aygen U; Besir, Ahmet; Tuna, Verda

    2015-06-01

    Studies reporting the need for replacing amino acids such as glutamine (Gln), hydroxymethyl butyrate (HMB) and arginine (Arg) to accelerate wound healing are available in the literature. The primary objective of this study was to present the effects of Gln on tissue hydroxyproline (OHP) levels in wound healing. This study was conducted on 30 female Sprague Dawley rats with a mean weight of 230 ± 20 g. Secondary wounds were formed by excising 2 × 1 cm skin subcutaneous tissue on the back of the rats. The rats were divided into three equal groups. Group C (Control): the group received 1 ml/day isotonic solution by gastric gavage after secondary wound was formed. Group A (Abound): the group received 0·3 g/kg/day/ml Gln, 0·052 g/kg/day/ml HMB and 0·3 g/kg/day/ml Arg by gastric gavage after secondary wound was formed. Group R (Resource): the group received 0·3 g/kg/day/ml Gln by gastric gavage after secondary wound was formed. The OHP levels of the tissues obtained from the upper half region on the 8th day and the lower half region on the 21st day from the same rats in the groups were examined. Statistical analysis was performed using the statistics program SPSS version 17.0. No statistically significant differences were reported with regard to the OHP measurements on the 8th and 21st days (8th day: F = 0·068, P = 0·935 > 0·05; 21st day: F = 0·018, P = 0·983 > 0·05). The increase in mean OHP levels on the 8th and 21st days within each group was found to be statistically significant (F = 1146·34, P = 0·000 wound healing negatively and who do not have large tissue loss at critical level, Gln, Arg and HMB support would not be required to accelerate secondary wound healing. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Combined effect of PLGA and curcumin on wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Coco, Régis; Memvanga, Patrick B; Ucakar, Bernard; des Rieux, Anne; Vandermeulen, Gaëlle; Préat, Véronique

    2013-10-28

    Wound healing is a complex process involving many interdependent and overlapping sequences of physiological actions. The application of exogenous lactate released from poly (lactic-co-glycolic acid) (PLGA) polymer accelerated angiogenesis and wound healing processes. Curcumin is a well-known topical wound healing agent for both normal and diabetic-impaired wounds. Hence, we hypothesized that the PLGA nanoparticles encapsulating curcumin could much potentially accelerate the wound healing. In a full thickness excisional wound healing mouse model, PLGA-curcumin nanoparticles showed a twofold higher wound healing activity compared to that of PLGA or curcumin. Histology and RT-PCR studies confirmed that PLGA-curcumin nanoparticles exhibited higher re-epithelialization, granulation tissue formation and anti-inflammatory potential. PLGA nanoparticles offered various benefits for the encapsulated curcumin like protection from light degradation, enhanced water solubility and showed a sustained release of curcumin over a period of 8 days. In conclusion, we demonstrated the additive effect of lactic acid from PLGA and encapsulated curcumin for the active healing of wounds.

  9. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro &in vivo.

    Science.gov (United States)

    Zhang, Chen-Zhen; Niu, Jie; Chong, Yee-Song; Huang, Yan-Fen; Chu, Yang; Xie, Sheng-Yang; Jiang, Zhi-Hong; Peng, Li-Hua

    2016-12-01

    Asiaticoside is a natural compound possessing diverse pharmacological effects with great potential for clinical use. However, the low solubility and oil-water partition coefficient of asiaticoside lead to reduced effect and limited application. This study aims to construct a porous microsphere for the sustained release of asiaticoside to improve its absorption and enhance the therapeutic effects. Parameters of the formulations, including the drug to polymer ratio, solvent amounts of the inner and external phases, the stirring speed for preparation, and the drug entrapment efficiency were investigated and optimized. Particle size, morphology, pores structure, and Fourier transform infrared spectrum of the microsphere were characterized. The release kinetics and cellular uptake profiles of the asiaticoside-microspheres were examined. The therapeutic effects of asiaticoside-microspheres on wound healing and skin appendages regeneration were investigated in vitro & in vivo. Results showed that the optimized asiaticoside-microspheres possess spherical spongy structure with cylindrical holes. Asiaticoside can be loaded in the microsphere with high efficiency and released with sustained manner. The cellular uptake of asiaticoside from the microspheres was increased with 9.1 folds higher than that of free solution. Asiaticoside-microspheres expressed the strong promotion in the proliferation, migration of keratinocytes and wound scratching healing in vitro. More importantly, they significantly accelerated the re-epithelization, collagen synthesis and pro-angiogenesis in the rat full-skin wound healing. Porous microsphere was shown a novel carrier for the sustained delivery of poorly soluble asiaticoside, with absorption and therapeutic effects improved. Asiaticoside-microsphere is a promising topical preparation with excellent regenerative effects for the wound therapy.

  10. [Advances in the effects of pH value of micro-environment on wound healing].

    Science.gov (United States)

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  11. Current management of wound healing

    DEFF Research Database (Denmark)

    Gottrup, F; Karlsmark, T

    2009-01-01

    in the next decade. It is the hope that increasing parts of the new knowledge from basic wound healing research will be implemented in daily clinical practice. The development of new treatment products will also continue, and especially new technologies with combined types of dressing materials or dressing......While the understanding of wound pathophysiology has progressed considerably over the past decades the improvements in clinical treatment has occurred to a minor degree. During the last years, however, new trends and initiatives have been launched, and we will continue to attain new information...

  12. Phases of the wound healing process.

    Science.gov (United States)

    Brown, Annemarie

    This is the first in a six-part series on wound management. It describes the stages of the wound healing process and explains how they relate to nursing practice. Nurses need to know how to recognise and understand the different phases so they can identify whether wounds are healing normally and apply the appropriate treatments to remove the barriers to healing. Part 2 (page 14) focuses on wound assessment.

  13. Engineered Biopolymeric Scaffolds for Chronic Wound Healing

    OpenAIRE

    Dickinson, Laura E.; Sharon Gerecht

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, whic...

  14. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection

    DEFF Research Database (Denmark)

    Steinstraesser, Lars; Hirsch, Tobias; Schulte, Matthias

    2012-01-01

    . Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR......-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL......-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However...

  15. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing

    Directory of Open Access Journals (Sweden)

    Sabrina Valente

    2016-01-01

    Full Text Available Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs. hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki–67 assay, migration (scratch and transwell assays, and angiogenesis (Matrigel were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR. The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.

  16. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing.

    Science.gov (United States)

    Valente, Sabrina; Ciavarella, Carmen; Pasanisi, Emanuela; Ricci, Francesca; Stella, Andrea; Pasquinelli, Gianandrea

    2016-01-01

    Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs). hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL) from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki-67 assay), migration (scratch and transwell assays), and angiogenesis (Matrigel) were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR). The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.

  17. Wound healing properties of Indian propolis studied on excision wound-induced rats.

    Science.gov (United States)

    Iyyam Pillai, S; Palsamy, P; Subramanian, S; Kandaswamy, M

    2010-11-01

    In traditional medicine propolis is widely used for the treatment of various ailments including ulcer and wound healing. The phytochemical screening of Indian propolis indicates the presence of biologically active ingredients in appreciable amounts. In the absence of systematic evaluation of wound healing properties of Indian propolis in the literature, the present study was undertaken. The aim of this study was to evaluate the wound healing potential of Indian propolis on excision wounds induced in experimental rats. Excision wounds were created in male Wistar rats and were treated with Indian propolis ointment (nitrofurazone was used as a reference drug - widely used for wound healing) for a period of 14 days. Control rats were treated with petroleum jelly. The parameters analyzed include wound contraction, hydroxyproline, hexosamine, uronic acid, total protein, DNA, and RNA. Topical application of propolis ointment for 14 days significantly improved the wound contraction when compared to the control group of rats. The determination of hydroxyproline, hexosamine, uronic acid, DNA, RNA and protein levels in the wound matrix revealed the pro-healing effects of propolis. The results obtained were comparable with nitrofurazone. It appears that the ethanol extract of Indian propolis possesses significant pro-healing activity by accelerating the healing process at various phases of tissue repair. The presence of biologically active ingredients such as flavonoids, phenolic acids, terpenes, benzoic acids, amino acids and vitamins, etc. in Indian propolis may readily account for the observed prophylactic action of propolis in wound healing.

  18. Wound healing and treating wounds: Chronic wound care and management.

    Science.gov (United States)

    Powers, Jennifer G; Higham, Catherine; Broussard, Karen; Phillips, Tania J

    2016-04-01

    In the United States, chronic ulcers--including decubitus, vascular, inflammatory, and rheumatologic subtypes--affect >6 million people, with increasing numbers anticipated in our growing elderly and diabetic populations. These wounds cause significant morbidity and mortality and lead to significant medical costs. Preventative and treatment measures include disease-specific approaches and the use of moisture retentive dressings and adjunctive topical therapies to promote healing. In this article, we discuss recent advances in wound care technology and current management guidelines for the treatment of wounds and ulcers. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Wound healing in Mac-1 deficient mice.

    Science.gov (United States)

    Chen, Lin; Nagaraja, Sridevi; Zhou, Jian; Zhao, Yan; Fine, David; Mitrophanov, Alexander Y; Reifman, Jaques; DiPietro, Luisa A

    2017-05-01

    Mac-1 (CD11b/CD18) is a macrophage receptor that plays several critical roles in macrophage recruitment and activation. Because macrophages are essential for proper wound healing, the impact of Mac-1 deficiency on wound healing is of significant interest. Prior studies have shown that Mac-1(-/-) mice exhibit deficits in healing, including delayed wound closure in scalp and ear wounds. This study examined whether Mac-1 deficiency influences wound healing in small excisional and incisional skin wounds. Three millimeter diameter full thickness excisional wounds and incisional wounds were prepared on the dorsal skin of Mac-1 deficient (Mac-1(-/-) ) and wild type (WT) mice, and wound healing outcomes were examined. Mac-1 deficient mice exhibited a normal rate of wound closure, generally normal levels of total collagen, and nearly normal synthesis and distribution of collagens I and III. In incisional wounds, wound breaking strength was similar for Mac-1(-/-) and WT mice. Wounds of Mac-1 deficient mice displayed normal total macrophage content, although macrophage phenotype markers were skewed as compared to WT. Interestingly, amounts of TGF-β1 and its downstream signaling molecules, SMAD2 and SMAD3, were significantly decreased in the wounds of Mac-1 deficient mice compared to WT. The results suggest that Mac-1 deficiency has little impact on the healing of small excisional and incisional wounds. Moreover, the findings demonstrate that the effect of single genetic deficiencies on wound healing may markedly differ among wound models. These conclusions have implications for the interpretation of the many prior studies that utilize a single model system to examine wound healing outcomes in genetically deficient mice. © 2017 by the Wound Healing Society.

  20. Current management of wound healing

    DEFF Research Database (Denmark)

    Gottrup, F; Karlsmark, T

    2009-01-01

    in the next decade. It is the hope that increasing parts of the new knowledge from basic wound healing research will be implemented in daily clinical practice. The development of new treatment products will also continue, and especially new technologies with combined types of dressing materials or dressing...... containing active substances will be accentuated. Further developments in the management structure and education will also continue and consensus of treatment guidelines, recommendations and organization models will hopefully be achieved....

  1. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial.

    Directory of Open Access Journals (Sweden)

    Maria H M Lima

    Full Text Available BACKGROUND: Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. OBJECTIVE: The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. RESEARCH DESIGN AND METHODS: We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177 of wound healing. RESULTS AND CONCLUSIONS: Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow, VEGF, and SDF-1α in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT01295177.

  2. BURN WOUND HEALING ACTIVITY OF Euphorbia hirta

    OpenAIRE

    Jaiprakash, B.; Chandramohan,; Reddy, D. Narishma

    2006-01-01

    The Ethanolic extract of whole plant of Euphorbia hirta was screened for burn wound healing activity in rats as 2% W/W cream. The study was carried out based on the assessment of percentage reduction in original wound. It showed significant burn wound healing activity.

  3. Wound healing and the role of fibroblasts.

    Science.gov (United States)

    Bainbridge, P

    2013-08-01

    Fibroblasts are critical in supporting normal wound healing, involved in key processes such as breaking down the fibrin clot, creating new extra cellular matrix (ECM) and collagen structures to support the other cells associated with effective wound healing, as well as contracting the wound. This article explores and summarises the research evidence on the role of fibroblasts, their origins and activation, and how they navigate the wound bed, as well as how their activity leads to wound contraction. This article also explores the local conditions at the wound site, which activate, regulate and ultimately reduce the fibroblast activity as the skin's integrity returns on healing.

  4. Wound Healing Effects of Curcumin: A Short Review.

    Science.gov (United States)

    Tejada, Silvia; Manayi, Azadeh; Daglia, Maria; Nabavi, Seyed F; Sureda, Antoni; Hajheydari, Zohreh; Gortzi, Olga; Pazoki-Toroudi, Hamidreza; Nabavi, Seyed M

    Wound healing is a complex process that consists of several phases that range from coagulation, inflammation, accumulation of radical substances, to proliferation, formation of fibrous tissues and collagen, contraction of wound with formation of granulation tissue and scar. Since antiquity, vegetable substances have been used as phytotherapeutic agents for wound healing, and more recently natural substances of vegetable origin have been studied with the attempt to show their beneficial effect on wound treatment. Curcumin, the most active component of rhizome of Curcuma longa L. (common name: turmeric), has been studied for many years due to its bio-functional properties, especially antioxidant, radical scavenger, antimicrobial and anti-inflammatory activities, which play a crucial role in the wound healing process. Moreover, curcumin stimulated the production of the growth factors involved in the wound healing process, and so curcumin also accelerated the management of wound restoration. The aim of the present review is collecting and evaluating the literature data regarding curcumin properties potentially relevant for wound healing. Moreover, the investigations on the wound healing effects of curcumin are reported. In order to produce a more complete picture, the chemistry and sources of curcumin are also discussed.

  5. Chitosan as a starting material for wound healing applications

    OpenAIRE

    Patrulea,Viorica; Ostafe, V.; Borchard, Gerrit; Jordan, Olivier

    2015-01-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo a...

  6. Enhancement of wound healing by shikonin analogue 93/637 in normal and impaired healing.

    Science.gov (United States)

    Mani, H; Sidhu, G S; Singh, A K; Gaddipati, J; Banaudha, K K; Raj, K; Maheshwari, R K

    2004-01-01

    Wound healing is a complicated biological process, which involves interactions of multiple cell types, various growth factors, their mediators and the extracellular matrix proteins. In this study, we evaluated the effects of shikonin analogue 93/637 (SA), derived from the plant Arnebia nobilis, on normal and hydrocortisone-induced impaired healing in full thickness cutaneous punch wounds in rats. SA (0.1%) was applied topically daily as an ointment in polyethylene glycol base on wounds. SA treatment significantly accelerated healing of wounds, as measured by wound contraction compared to controls in hydrocortisone-impaired animals. SA treatment promoted formation of granulation tissue including cell migration and neovascularization, collagenization and reepithelialization. The expression of basic fibroblast growth factor (bFGF) was higher as revealed by immunohistochemistry in treated wounds compared to controls. However, the expression of transforming growth factor-beta(1) was not affected by SA treatment. Since bFGF is known to accelerate wound healing, the increased expression of bFGF by SA may be partly responsible for the enhancement of wound healing. These studies suggest that SA could be further studied for clinical use to enhance wound healing.

  7. The Four-Herb Chinese Medicine Formula Tuo-Li-Xiao-Du-San Accelerates Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats through Reducing Inflammation and Increasing Angiogenesis

    Directory of Open Access Journals (Sweden)

    Xiao-na Zhang

    2016-01-01

    Full Text Available Impaired wound healing in diabetic patients is a serious complication that often leads to amputation or even death with limited effective treatments. Tuo-Li-Xiao-Du-San (TLXDS, a traditional Chinese medicine formula for refractory wounds, has been prescribed for nearly 400 years in China and shows good efficacy in promoting healing. In this study, we explored the effect of TLXDS on healing of diabetic wounds and investigated underlying mechanisms. Four weeks after intravenous injection of streptozotocin, two full-thickness excisional wounds were created with a 10 mm diameter sterile biopsy punch on the back of rats. The ethanol extract of TLXDS was given once daily by oral gavage. Wound area, histological change, inflammation, angiogenesis, and collagen synthesis were evaluated. TLXDS treatment significantly accelerated healing of diabetic rats and improved the healing quality. These effects were associated with reduced neutrophil infiltration and macrophage accumulation, enhanced angiogenesis, and increased collagen deposition. This study shows that TLXDS improves diabetes-impaired wound healing.

  8. Basics in nutrition and wound healing.

    Science.gov (United States)

    Wild, Thomas; Rahbarnia, Arastoo; Kellner, Martina; Sobotka, Lubos; Eberlein, Thomas

    2010-09-01

    Wound healing is a process that can be divided into three different phases (inflammatory, proliferative, and maturation). Each is characterized by certain events that require specific components. However, wound healing is not always a linear process; it can progress forward and backward through the phases depending on various intrinsic and extrinsic factors. If the wound-healing process is affected negatively, this can result in chronic wounds. Chronic wounds demand many resources in the clinical daily routine. Therefore, local wound management and good documentation of the wound is essential for non-delayed wound healing and prevention of the development of chronic wounds. During the wound-healing process much energy is needed. The energy for the building of new cells is usually released from body energy stores and protein reserves. This can be very challenging for undernourished and malnourished patients. Malnutrition is very common in geriatric patients and patients in catabolic phases of stress such as after injury or surgery. For that reason a close survey of the nutritional status of patients is necessary to start supplementation quickly, if applicable. Wound healing is indeed a very complex process that deserves special notice. There are some approaches to develop guidelines but thus far no golden standard has evolved. Because wounds, especially chronic wounds, cause also an increasing economic burden, the development of guidelines should be advanced.

  9. Human ex vivo wound healing model.

    Science.gov (United States)

    Stojadinovic, Olivera; Tomic-Canic, Marjana

    2013-01-01

    Wound healing is a spatially and temporally regulated process that progresses through sequential, yet overlapping phases and aims to restore barrier breach. To study this complex process scientists use various in vivo and in vitro models. Here we provide step-by-step instructions on how to perform and employ an ex vivo wound healing model to assess epithelization during wound healing in human skin.

  10. [Signal transduction mechanism in burn wound healing].

    Science.gov (United States)

    Luo, Xiang-dong

    2008-10-01

    After 50 years of development in science of burns care in China, we have basically solved coverage of deep wounds of burn trauma, as well as role of multiple growth factors and stem cell in wound healing, making great contribution to improving the treatment of patients with large area of deep burns. Surgeons are paying close attention to problems of wound healing, especially in the fields of scarless healing and rehabilitation. To solve these problems, we need to do further investigation on multiple growth factors as well as proliferation/differentiation of stem cells in regulation of cell growth and differentiation in wound healing. Therefore, we are facing a even more serious challenge.

  11. Engineered biopolymeric scaffolds for chronic wound healing

    Directory of Open Access Journals (Sweden)

    Laura E Dickinson

    2016-08-01

    Full Text Available Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves towards precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.

  12. Engineered Biopolymeric Scaffolds for Chronic Wound Healing.

    Science.gov (United States)

    Dickinson, Laura E; Gerecht, Sharon

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.

  13. Nutritional Aspects of Gastrointestinal Wound Healing

    OpenAIRE

    Mukherjee, Kaushik; Sandra L Kavalukas; Barbul, Adrian

    2016-01-01

    Significance: Although the wound healing cascade is similar in many tissues, in the gastrointestinal tract mucosal healing is critical for processes such as inflammatory bowel disease and ulcers and healing of the mucosa, submucosa, and serosal layers is needed for surgical anastomoses and for enterocutaneous fistula. Failure of wound healing can result in complications including infection, prolonged hospitalization, critical illness, organ failure, readmission, new or worsening enterocutaneo...

  14. Overview of Wound Healing and Management.

    Science.gov (United States)

    Childs, Dylan R; Murthy, Ananth S

    2017-02-01

    Wound healing is a highly complex chain of events, and although it may never be possible to eliminate the risk of experiencing a wound, clinicians' armamentarium continues to expand with methods to manage it. The phases of wound healing are the inflammatory phase, the proliferative phase, and the maturation phase. The pathway of healing is determined by characteristics of the wound on initial presentation, and it is vital to select the appropriate method to treat the wound based on its ability to avoid hypoxia, infection, excessive edema, and foreign bodies.

  15. The external microenvironment of healing skin wounds.

    Science.gov (United States)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron C Y; Kiwanuka, Elizabeth; Singh, Mansher; Caterson, Edward J; Eriksson, Elof; Sørensen, Jens A

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen and carbon dioxide), pH, and anti-microbial treatment on the wound. These factors are well described in the literature and can be modified with treatment methods available in the clinic. Understanding the roles of these factors in wound pathophysiology is of central importance in wound treatment. © 2015 by the Wound Healing Society.

  16. WOUND HEALING ACTIVITY OF ETHANOL EXTRACT OF PSEUDARTHRIA VISCIDA LINN

    Directory of Open Access Journals (Sweden)

    M. Vijayabaskaran

    2011-04-01

    Full Text Available The wound healing activity of topically applied ethanol extract of Pseudarthria viscida was evaluated in wistar rat by excision wound model for a period of 12 days. The extract was prepared as ointment form (5 and 10% w/w and applied on Wistar rats. Neomycin ointment 0.5%w/w was used as standard drug. The healing of the wound was assessed by the rate of wound contraction, period of epithelialisation, skin breaking strength. Both the ointments (5% and 10% w/w of Pseudarthria viscida extract promoted the wound-healing activity significantly when compared to the standard drug. High rate of wound contraction, decrease the period for epithelialisation, high skin breaking strength were observed in animals treated with 10% w/w extract ointment when compared to the control group of animals. So ethanol extract of Pseudarthria viscida in the form of 10% ointment promote wound-healing activity better than the former concentration, 5%. The result obtained from this study indicates that ethanol extract of Pseudarthria viscida accelerates the wound healing process by decreasing the surface area of the wound.

  17. Wound healing in the 21st century.

    Science.gov (United States)

    Schreml, Stephan; Szeimies, Rolf-Markus; Prantl, Lukas; Landthaler, Michael; Babilas, Philipp

    2010-11-01

    Delayed wound healing is one of the major therapeutic and economic issues in medicine today. Cutaneous wound healing is an extremely well-regulated and complex process basically divided into 3 phases: inflammation, proliferation, and tissue remodeling. Unfortunately, we still do not understand this process precisely enough to give direction effectively to impaired healing processes. There have been many new developments in wound healing that provide fascinating insights and may improve our ability to manage clinical problems. Our goal is to acquaint the reader with selected major novel findings about cutaneous wound healing that have been published since the beginning of the new millennium. We discuss advances in areas such as genetics, proteases, cytokines, chemokines, and regulatory peptides, as well as therapeutic strategies, all set in the framework of the different phases of wound healing.

  18. STRESS PROLONGS WOUND HEALING POST CESAREAN SECTION

    Directory of Open Access Journals (Sweden)

    Ah. Yusuf

    2017-07-01

    Full Text Available Introduction: Decision for cesarean section may lead to the stress for women in delivery. Stress response requires longer recovery time in post cesarean section patients. Most of patients who experience stress before and after surgical is associated with wound healing delay. When this condition continues, the wound will have a higher risk of infection. The objective of this study was to analyze correlation between stress and wound healing phase in post cesarean section patients. Method: A cross sectional design was used in this study. The population were women with cesarean section, both elective or emergency, in Delivery Room I RSU Dr. Soetomo Surabaya. Samples were recruited by using purposive sampling, with 28 samples who met to the inclusion criterias. The observed variables were stress and wound healing phase in post cesarean section patient. Stress data were collected by interview and wound healing measurement done by observation on the 3rd day post cesarean section. Result: The result showed that women with stress experience wound healing delay. The characteristic of wound healing delay was prolonged on inflammation phase, nevertheless there was presence of granulation tissue. Spearman’s rho correlation showed that correlation value r=0.675 with p=0.000. Discussion: It can be concluded that there was strong significant correlation between stress and wound healing phase in post cesarean section patients. It is important to give this information to the patients with cesarean section in order to prevent stress and delay in wound healing phase.

  19. Current wound healing procedures and potential care.

    Science.gov (United States)

    Dreifke, Michael B; Jayasuriya, Amil A; Jayasuriya, Ambalangodage C

    2015-03-01

    In this review, we describe current and future potential wound healing treatments for acute and chronic wounds. The current wound healing approaches are based on autografts, allografts, and cultured epithelial autografts, and wound dressings based on biocompatible and biodegradable polymers. The Food and Drug Administration approved wound healing dressings based on several polymers including collagen, silicon, chitosan, and hyaluronic acid. The new potential therapeutic intervention for wound healing includes sustained delivery of growth factors, and siRNA delivery, targeting microRNA, and stem cell therapy. In addition, environment sensors can also potentially utilize to monitor and manage microenvironment at wound site. Sensors use optical, odor, pH, and hydration sensors to detect such characteristics as uric acid level, pH, protease level, and infection - all in the hopes of early detection of complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Rapid identification of slow healing wounds.

    Science.gov (United States)

    Jung, Kenneth; Covington, Scott; Sen, Chandan K; Januszyk, Michael; Kirsner, Robert S; Gurtner, Geoffrey C; Shah, Nigam H

    2016-01-01

    Chronic nonhealing wounds have a prevalence of 2% in the United States, and cost an estimated $50 billion annually. Accurate stratification of wounds for risk of slow healing may help guide treatment and referral decisions. We have applied modern machine learning methods and feature engineering to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers. Patient and wound data was collected at 68 outpatient wound care centers operated by Healogics Inc. in 26 states between 2009 and 2013. The dataset included basic demographic information on 59,953 patients, as well as both quantitative and categorical information on 180,696 wounds. Wounds were split into training and test sets by randomly assigning patients to training and test sets. Wounds were considered delayed with respect to healing time if they took more than 15 weeks to heal after presentation at a wound care center. Eleven percent of wounds in this dataset met this criterion. Prognostic models were developed on training data available in the first week of care to predict delayed healing wounds. A held out subset of the training set was used for model selection, and the final model was evaluated on the test set to evaluate discriminative power and calibration. The model achieved an area under the curve of 0.842 (95% confidence interval 0.834-0.847) for the delayed healing outcome and a Brier reliability score of 0.00018. Early, accurate prediction of delayed healing wounds can improve patient care by allowing clinicians to increase the aggressiveness of intervention in patients most at risk. © 2015 by the Wound Healing Society.

  1. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Science.gov (United States)

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  2. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors

    Science.gov (United States)

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W.; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D.; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J.; Modlin, Robert L.; Herschman, Harvey R.; Lo, Roger S.; McBride, William H.; Segura, Tatiana; Ribas, Antoni

    2016-01-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAFV600-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. PMID:27476449

  3. G-CSF Administration after the Intraosseous Infusion of Hypertonic Hydroxyethyl Starches Accelerating Wound Healing Combined with Hemorrhagic Shock

    National Research Council Canada - National Science Library

    Huang, Hong; Liu, Jiejie; Hao, Haojie; Tong, Chuan; Ti, Dongdong; Liu, Huiling; Song, Haijing; Jiang, Chaoguang; Fu, Xiaobing; Han, Weidong

    2016-01-01

    ... (Unres/G-CSF). To estimate the treatment effects, the vital signs of alteration were first evaluated, and then wound closure rates and homing of MSCs and EPCs to the wound skins and vasculogenesis were measured...

  4. Angiopoietin-like 4 Stimulates STAT3-mediated iNOS Expression and Enhances Angiogenesis to Accelerate Wound Healing in Diabetic Mice

    NARCIS (Netherlands)

    Chong, H.C.; Goh, C.Q.; Gounko, N.V.; Luo, B.; Wang, X.; Kersten, A.H.

    2014-01-01

    Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking.

  5. Angiopoietin-like 4 Stimulates STAT3-mediated iNOS Expression and Enhances Angiogenesis to Accelerate Wound Healing in Diabetic Mice

    NARCIS (Netherlands)

    Chong, H.C.; Goh, C.Q.; Gounko, N.V.; Luo, B.; Wang, X.; Kersten, A.H.

    2014-01-01

    Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking.

  6. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  7. Wound healing and infection in surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    : The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved.......: The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved....

  8. Assessment and nutritional aspects of wound healing.

    Science.gov (United States)

    Campos, Antonio C L; Groth, Anne K; Branco, Alessandra B

    2008-05-01

    The aim of this study is to review the physiopathology and the nutritional aspects of wound healing. Wound healing consists of a perfect and coordinated cascade of events that result in tissue reconstitution. The healing process is common to all wounds, independent of the agent that has caused it. It is divided didactically into three phases: inflammation, proliferation, and remodeling or maturation. Collagen is the most abundant protein in the human body and is also the main component of the wound matrix. It is organized in a thick and dynamic net, resulting from constant collagen deposition and reabsorption. Wound scar is the result of the interaction between collagen synthesis, degradation, and remodeling. There are several ways to evaluate wound healing: tensiometry, collagen morphometry, immunohistochemistry, and, more recently, the dosage of growth factors. Malnutrition adversely affects wound healing. On the contrary, the healing process can be stimulated by preoperative feeding and by certain nutrients such as glutamine, arginine, butyrate, and antioxidants. Wound healing is a complex process that started to be fully understood only in recent years. Recent research has been directed to act in the nutrition modulation of the healing process.

  9. Accelerated Wound Healing Device Using Light Emitting Diodes (LEDs) Biostimulation to Support Long Term Human Exploration of Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Several cases of minor cuts in microgravity have been reported not being able to heal until return to Earth. While the exact cause for the slow healing in space...

  10. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing.

  11. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...... methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen...

  12. Carnosine enhances diabetic wound healing in the db/db mouse model of type 2 diabetes.

    Science.gov (United States)

    Ansurudeen, Ishrath; Sunkari, Vivekananda Gupta; Grünler, Jacob; Peters, Verena; Schmitt, Claus Peter; Catrina, Sergiu-Bogdan; Brismar, Kerstin; Forsberg, Elisabete Alcantara

    2012-07-01

    Diabetes mellitus (DM) is a progressive disorder with severe late complications. Normal wound healing involves a series of complex and well-orchestrated molecular events dictated by multiple factors. In diabetes, wound healing is grossly impaired due to defective, and dysregulated cellular and molecular events at all phases of wound healing resulting in chronic wounds that fail to heal. Carnosine, a dipeptide of alanine and histidine and an endogenous antioxidant is documented to accelerate healing of wounds and ulcers. However, not much is known about its role in wound healing in diabetes. Therefore, we studied the effect of carnosine in wound healing in db/db mice, a mice model of Type 2 DM. Six millimeter circular wounds were made in db/db mice and analyzed for wound healing every other day. Carnosine (100 mg/kg) was injected (I.P.) every day and also applied locally. Treatment with carnosine enhanced wound healing significantly, and wound tissue analysis showed increased expression of growth factors and cytokines genes involved in wound healing. In vitro studies with human dermal fibroblasts and microvascular-endothelial cells showed that carnosine increases cell viability in presence of high glucose. These effects, in addition to its known role as an antioxidant and a precursor for histamine synthesis, provide evidence for a possible therapeutic use of carnosine in diabetic wound healing.

  13. Biomarkers for wound healing and their evaluation.

    Science.gov (United States)

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing.

  14. News in wound healing and management

    DEFF Research Database (Denmark)

    Gottrup, Finn; Jørgensen, Bo; Karlsmark, Tonny

    2009-01-01

    -TNFalpha) and Lactobacillus plantarum cultures have also been successfully used in hard to heal, atypical wounds. Knowledge on influencing factors as smoking and biofilm on the healing process has also been improved. Smoking results in delayed healing and increased risk of postoperative infection, whereas the role of biofilm...

  15. Ephrin-B2 is differentially expressed in the intestinal epithelium in Crohn's disease and contributes to accelerated epithelial wound healing in vitro

    Institute of Scientific and Technical Information of China (English)

    Christian Hafner; Michael Landthaler; Thomas Vogt; Stefanie Meyer; Thomas Langmann; Gerd Schmitz; Frauke Bataille; Ilja Hagen; Bernd Becker; Alexander Roesch; Gerhard Rogler

    2005-01-01

    AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD).METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model.RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1,we found abundantly co-expressed EphB2 and ephrin-B1/2.Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrinB1/2 expressing rat IEC-6-cells with recombinant EphB1Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge.CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD.

  16. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.

    Science.gov (United States)

    Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S

    2015-01-01

    Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds.

  17. NeutroPhase(®) in chronic non-healing wounds.

    Science.gov (United States)

    Crew, John; Varilla, Randell; Rocas, Thomas Allandale; Debabov, Dmitri; Wang, Lu; Najafi, Azar; Rani, Suriani Abdul; Najafi, Ramin Ron; Anderson, Mark

    2012-01-01

    Chronic non-healing wounds, such as venous stasis ulcers, diabetic ulcers, and pressure ulcers are serious unmet medical needs that affect a patient's morbidity and mortality. Common pathogens observed in chronic non-healing wounds are Staphylococcus including MRSA, Pseudomonas, Enterobacter, Stenotrophomonas, and Serratia spp. Topical and systemically administered antibiotics do not adequately decrease the level of bacteria or the associated biofilm in chronic granulating wounds and the use of sub-lethal concentrations of antibiotics can lead to resistant phenotypes. Furthermore, topical antiseptics may not be fully effective and can actually impede wound healing. We show 5 representative examples from our more than 30 clinical case studies using NeutroPhase(®) as an irrigation solution with chronic non-healing wounds with and without the technique of negative pressure wound therapy (NPWT). NeutroPhase(®) is pure 0.01% hypochlorous acid (i.e. >97% relative molar distribution of active chlorine species as HOCl) in a 0.9% saline solution at pH 4-5 and is stored in glass containers. NovaBay has three FDA cleared 510(k)s. Patients showed a profound improvement and marked accelerated rates of wound healing using NeutroPhase(®) with and without NPWT. NeutroPhase(®) was non-toxic to living tissues.

  18. NeutroPhase® in chronic non-healing wounds

    Science.gov (United States)

    Crew, John; Varilla, Randell; Rocas, Thomas Allandale; Debabov, Dmitri; Wang, Lu; Najafi, Azar; Rani, Suriani Abdul; Najafi, Ramin (Ron); Anderson, Mark

    2012-01-01

    Chronic non-healing wounds, such as venous stasis ulcers, diabetic ulcers, and pressure ulcers are serious unmet medical needs that affect a patient’s morbidity and mortality. Common pathogens observed in chronic non-healing wounds are Staphylococcus including MRSA, Pseudomonas, Enterobacter, Stenotrophomonas, and Serratia spp. Topical and systemically administered antibiotics do not adequately decrease the level of bacteria or the associated biofilm in chronic granulating wounds and the use of sub-lethal concentrations of antibiotics can lead to resistant phenotypes. Furthermore, topical antiseptics may not be fully effective and can actually impede wound healing. We show 5 representative examples from our more than 30 clinical case studies using NeutroPhase® as an irrigation solution with chronic non-healing wounds with and without the technique of negative pressure wound therapy (NPWT). NeutroPhase® is pure 0.01% hypochlorous acid (i.e. >97% relative molar distribution of active chlorine species as HOCl) in a 0.9% saline solution at pH 4-5 and is stored in glass containers. NovaBay has three FDA cleared 510(k)s. Patients showed a profound improvement and marked accelerated rates of wound healing using NeutroPhase® with and without NPWT. NeutroPhase® was non-toxic to living tissues. PMID:23272294

  19. Skin wound healing modulation by macrophages.

    Science.gov (United States)

    Rodero, Mathieu P; Khosrotehrani, Kiarash

    2010-07-25

    Skin wound healing is a multi stage phenomenon that requires the activation, recruitment or activity of numerous cell types as keratinocytes, endothelial cells, fibroblast and inflammatory cells. Among the latter, macrophages appear to be central to this process. They colonize the wound at its very early stage and in addition to their protective immune role seem to organize the activity of other cell types at the following stages of the healing. Their benefit to this process is however controversial, as macrophages are described to promote the speed of healing but may also favour the fibrosis resulting from it in scars. Moreover wound healing defects are associated with abnormalities in the inflammatory phase. In this review, we summarise our knowledge on what are the Wound Associated Macrophages, and how they interact with the other cell types to control the reepithelisation, angiogenesis and the extracellular matrix remodelling. We believe this knowledge may open new avenues for therapeutic intervention on skin wounds.

  20. Sugar-coating wound repair: a review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds.

    Science.gov (United States)

    Plichta, Jennifer K; Radek, Katherine A

    2012-01-01

    Thousands of patients suffer from burn injuries each year, yet few therapies have been developed to accelerate the wound healing process. Most fibroblast growth factors (FGFs) have been extensively evaluated but only a few have been found to participate in the wound healing process. In particular, FGF-10 is robustly increased in the wound microenvironment after injury and has demonstrated some ability to promote wound healing in vitro and in vivo. Glycosaminoglycans are linear carbohydrates that participate in wound repair by influencing cytokine/growth factor localization and interaction with cognate receptors. Dermatan sulfate (DS) is the most abundant glycosaminoglycan in human wound fluid and has been postulated to be directly involved in the healing process. Recently, the combination of FGF-10 and DS demonstrated the potential to accelerate wound healing via increased keratinocyte proliferation and migration. Based on these preliminary studies, DS may serve as a cofactor for FGF-10, and together they are likely to expedite the healing process by stimulating keratinocyte activity. As a specific subtype of wounds, the overall healing process of burn injuries does not significantly differ from other types of wounds, where optimal repair results in matrix regeneration and complete reepithelialization. At present, standard burn treatment primarily involves topical application of antimicrobial agents, while no routine therapies target acceleration of reepithelialization, the key to wound closure. Thus, this novel therapeutic combination could be used in conjunction with some of the current therapies, but it would have the unique ability to initiate wound healing by stimulating keratinocyte epithelialization.

  1. General concept of wound healing, revisited

    Directory of Open Access Journals (Sweden)

    Theddeus O.H. Prasetyono

    2009-09-01

    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  2. Topical application of Acalypha indica accelerates rat cutaneous wound healing by up-regulating the expression of Type I and III collagen.

    Science.gov (United States)

    Ganeshkumar, Moorthy; Ponrasu, Thangavel; Krithika, Rajesh; Iyappan, Kuttalam; Gayathri, Vinaya Subramani; Suguna, Lonchin

    2012-06-26

    Acalypha indica Linn. (Acalypha indica) vernacularly called Kuppaimeni in Tamil, has been used as a folklore medicine since ages for the treatment of wounds by tribal people of Tamil Nadu, Southern India. The present study investigates the biochemical and molecular rationale behind the healing potential of Acalypha indica on dermal wounds in rats. Acalypha indica extract (40 mg/kg body weight) was applied topically once a day on full-thickness excision wounds created on rats. The wound tissue was removed and used for estimation of various biochemical and biophysical analyses and to observe histopathological changes with and with-out extract treatment. The serum levels of pro-inflammatory cytokine tumor necrosis factor (TNF-α) was measured at 12 h, 24 h, 48 h and 72 h post-wounding using ELISA. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to study the expression pattern of transforming growth factor [TGF-β1], collagen 1 α (I) [Col 1 α (I)] and collagen 3 α (I) [Col 3 α (I)]. Likewise, linear incision wounds were created and treated with the extract and used for tensile strength measurements. Wound healing in control rats was characterized by less inflammatory cell infiltration, lack of granulation tissue formation, deficit of collagen and significant decrease in biomechanical strength of wounds. Acalypha indica treatment mitigated the oxidative stress and decreased lipid peroxidation with concomitant increase in ascorbic acid levels. It also improved cellular proliferation, increased TNF-α levels during early stages of wound healing, up-regulated TGF-β1 and elevated collagen synthesis by markedly increasing the expression of Col 1 α (I) and Col 3 α (I). Increased rates of wound contraction, epithelialization, enhanced shrinkage temperature and high tensile strength were observed in the extract treated rats. Acalypha indica extract was shown to augment the process of dermal wound healing by its ability to increase collagen

  3. Hypoxic Conditioned Medium from Human Amniotic Fluid-Derived Mesenchymal Stem Cells Accelerates Skin Wound Healing through TGF-β/SMAD2 and PI3K/Akt Pathways

    Directory of Open Access Journals (Sweden)

    Eun Kyoung Jun

    2014-01-01

    Full Text Available In a previous study, we isolated human amniotic fluid (AF-derived mesenchymal stem cells (AF-MSCs and utilized normoxic conditioned medium (AF-MSC-norCM which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM, it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials. Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways.

  4. Improved Transplanted Stem Cell Survival in a Polymer Gel Supplemented With Tenascin C Accelerates Healing and Reduces Scarring of Murine Skin Wounds.

    Science.gov (United States)

    Yates, Cecelia C; Nuschke, Austin; Rodrigues, Melanie; Whaley, Diana; Dechant, Jason J; Taylor, Donald P; Wells, Alan

    2017-01-24

    Mesenchymal stem cells (MSCs) remain of great interest in regenerative medicine because of their ability to home to sites of injury, differentiate into a variety of relevant lineages, and modulate inflammation and angiogenesis through paracrine activity. Many studies have found that despite the promise of MSC therapy, cell survival upon implant is highly limited and greatly reduces the therapeutic utility of MSCs. The matrikine tenascin C, a protein expressed often at the edges of a healing wound, contains unique EGF-like repeats that are able to bind EGFR at low affinities and induce downstream prosurvival signaling without inducing receptor internalization. In this study, we utilized tenascin C in a collagen/GAG-based polymer (TPolymer) that has been shown to be beneficial for skin wound healing, incorporating human MSCs into the polymer prior to application to mouse punch biopsy wound beds. We found that the TPolymer was able to promote MSC survival for 21 days in vivo, leading to associated improvements in wound healing such as dermal maturation and collagen content. This was most marked in a model of hypertrophic scarring, in which the scar formation was limited. This approach also reduced the inflammatory response in the wound bed, limiting CD3e+ cell invasion by approximately 50% in the early wound-healing process, while increasing the numbers of endothelial cells during the first week of wound healing as well. Ultimately, this matrikine-based approach to improving MSC survival may be of great use across a variety of cell therapies utilizing matrices as delivery vehicles for cells.

  5. Involvement of notch signaling in wound healing.

    Directory of Open Access Journals (Sweden)

    Srinivasulu Chigurupati

    Full Text Available The Notch signaling pathway is critically involved in cell fate decisions during development of many tissues and organs. In the present study we employed in vivo and cell culture models to elucidate the role of Notch signaling in wound healing. The healing of full-thickness dermal wounds was significantly delayed in Notch antisense transgenic mice and in normal mice treated with gamma-secretase inhibitors that block proteolytic cleavage and activation of Notch. In contrast, mice treated with a Notch ligand Jagged peptide showed significantly enhanced wound healing compared to controls. Activation or inhibition of Notch signaling altered the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in a scratch wound healing model in ways consistent with roles for Notch signaling in wound healing functions all three cell types. These results suggest that Notch signaling plays important roles in wound healing and tissue repair, and that targeting the Notch pathway might provide a novel strategy for treatment of wounds and for modulation of angiogenesis in other pathological conditions.

  6. Wound healing activity of ethanolic extract of Shorea robusta Gaertn. f. resin.

    Science.gov (United States)

    Wani, T A; Chandrashekara, H H; Kumar, D; Prasad, R; Gopal, A; Sardar, K K; Tandan, S K; Kumar, D

    2012-04-01

    The ethanolic extract of S. robusta resin (10 and 30 % w/w applied locally in excised and incised wounds) produced a dose-dependent acceleration in wound contraction and increased hydroxyproline content and tensile strength of wounds in rats. The results demonstrate wound healing activity of ethanolic extract of S. robusta resin.

  7. Wound healing of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Masahiro Iizuka; Shiho Konno

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events;restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  8. Cellular events and biomarkers of wound healing

    Directory of Open Access Journals (Sweden)

    Shah Jumaat Mohd. Yussof

    2012-01-01

    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  9. DIABETIC WOUND HEALING MANAGEMENT- A PEER REVIEW

    Directory of Open Access Journals (Sweden)

    Harshavardhan Pathapati

    2014-10-01

    Full Text Available Objectives: Diabetes is a metabolic disorder mainly impairs the body glucose utilization capacity due to this perforcely repressing the immuno-dysfunction (decreases chemotaxis, phagocytosis and intracellular killing actions and collagen synthesis which are essential in wound debridement management of diabetic patients. Delayed wound healing is considered as one of the most repulsive disabling and costly complication of diabetes. People with diabetes have extenuated circulation, poor resistance to infection and mitigate local nutrition, thus their wounds are meticulously susceptible to infection. Moreover diabetes agonizes the equilibrium exists between accumulation of extra-cellular matrix components and their re-modeling by matrix metallo-proteinases (meltrin, due to this extenuated proliferation action of fibroblasts and finally freezes the progress of wound healing frequency in hyper glycemics. However in diabetic persons the nervous system becomes numb and all feasible actions of neurons are skipped, that condition is called as diabetic neuropathy. In that situation patient body features elevated a glucose level which stiffens the arteries and lack of pain sensation in foot resulting in commencement of new wounds. Conclusion: Consider all problems associated with wound healing in diabetic persons, a proper wound healing management which includes controlling measures like optimized systemic and local factors as well as implement suitable wound dressing for necessary wound in diabeties patients.

  10. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Directory of Open Access Journals (Sweden)

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  11. Regeneration: the ultimate example of wound healing.

    Science.gov (United States)

    Murawala, Prayag; Tanaka, Elly M; Currie, Joshua D

    2012-12-01

    The outcome of wound repair in mammals is often characterized by fibrotic scaring. Vertebrates such as zebrafish, frogs, and salamanders not only heal scarlessly, but also can regenerate lost appendages. Decades of study on the process of animal regeneration has produced key insights into the mechanisms of how complex tissue is restored. By examining our current knowledge of regeneration, we can draw parallels with mammalian wound healing to identify the molecular determinants that produce such differing outcomes.

  12. Trehalose lyophilized platelets for wound healing.

    Science.gov (United States)

    Pietramaggiori, Giorgio; Kaipainen, Arja; Ho, David; Orser, Cindy; Pebley, Walter; Rudolph, Alan; Orgill, Dennis P

    2007-01-01

    Fresh platelet preparations are utilized to treat a wide variety of wounds, although storage limitations and mixed results have hampered their clinical use. We hypothesized that concentrated lyophilized and reconstituted platelet preparations, preserved with trehalose, maintain and possibly enhance fresh platelets' ability to improve wound healing. We studied the ability of a single dose of trehalose lyophilized and reconstituted platelets to enhance wound healing when topically applied on full-thickness wounds in the genetically diabetic mouse. We compared these results with the application of multiple doses of fresh platelet preparations and trehalose lyophilized and reconstituted platelets as well as multiple doses of vascular endothelial growth factor (VEGF) and wounds left untreated. Trehalose lyophilized and reconstituted platelets, in single and multiple applications, multiple applications of fresh platelets and multiple applications of VEGF increased granulation tissue deposition, vascularity, and proliferation when compared with untreated wounds, as assessed by histology and immunohistochemistry. Wounds treated with multiple doses of VEGF and a single dose of freeze-dried platelets reached 90% closure faster than wounds left untreated. A single administration of trehalose lyophilized and reconstituted platelet preparations enhanced diabetic wound healing, therefore representing a promising strategy for the treatment of nonhealing wounds.

  13. Hydroethanolic Extract of Strychnos pseudoquina Accelerates Skin Wound Healing by Modulating the Oxidative Status and Microstructural Reorganization of Scar Tissue in Experimental Type I Diabetes

    Directory of Open Access Journals (Sweden)

    Mariáurea M. Sarandy

    2017-01-01

    Full Text Available The effect of topical application of ointment based on Strychnos pseudoquina hydroethanolic extract in the cutaneous wounds healing in diabetic rats was evaluated. Samples of S. pseudoquina were submitted to phytochemical prospection and in vitro antioxidant assay. Thirty Wistar rats were divided into 5 groups: Sal-wounds treated with 0.9% saline solution; VH-wounds treated with 0.6 g of lanolin cream (vehicle; SS-wounds treated with silver sulfadiazine cream (10 mg/g; ES5- and ES10-wounds treated with an ointment of S. pseudoquina extract, 5% and 10%, respectively. Fragments of wounds were removed for histological and biochemical analysis every 7 days during 21 days. ES showed equivalent levels per gram of extract of total phenols and flavonoids equal to 122.04 mg for TAE and 0.60 mg for RE. The chlorogenic acid was one of the major constituents. S. pseudoquina extract presented high antioxidant potential in vitro. ES5 and ES10 showed higher wound healing rate and higher amount of cells, blood vessels, and type III and I collagen. The oxidative stress markers were lower in the ES5 and ES10 groups, while the antioxidants enzymes levels were higher. Ointment based on S. pseudoquina extract promotes a fast and efficient cutaneous repair in diabetic rats.

  14. Using behavior modification to promote wound healing.

    Science.gov (United States)

    Rivera, E; Walsh, A; Bradley, M

    2000-10-01

    Successfully caring for patients with wounds under PPS demands that current practice approaches must change. Instead of focusing on dressings and techniques alone, this article describes how first addressing patients' psychological readiness for change can move them quickly to self-care and enhance wound healing, which results in cost savings and better outcomes.

  15. Use of Oxygen Therapies in Wound Healing

    DEFF Research Database (Denmark)

    Gottrup, Finn; Dissemond, Joachim; Baines, Carol

    2017-01-01

    Among other things wound healing requires restoration of macro-And microcirculation as essential conditions for healing.1,2 One of the most 'immediate' requirements is oxygen, which is critically important for reconstruction of new vessels and connective tissue and to enable competent resistance...

  16. Antioxidant therapies for wound healing: a clinical guide to currently commercially available products.

    Science.gov (United States)

    Fitzmaurice, S D; Sivamani, R K; Isseroff, R R

    2011-01-01

    Many facets of wound healing under redox control require a delicate balance between oxidative stress and antioxidants. While the normal physiology of wound healing depends on low levels of reactive oxygen species and oxidative stress, an overexposure to oxidative stress leads to impaired wound healing. Antioxidants are postulated to help control wound oxidative stress and thereby accelerate wound healing. Many antioxidants are available over the counter or by prescription, but only one, Medihoney®, has been specifically FDA approved for wound healing. Here we review the existing evidence for the use of antioxidants for wound healing, with a review of the pertinent animal and clinical studies. Natural products and naturally derived antioxidants are becoming more popular, and we specifically review the evidence for the use of naturally derived antioxidants in wound healing. Antioxidant therapy for wound healing is promising, but only few animal studies and even fewer clinical studies are available. Because only few products have undergone FDA approval, the consumer is advised to scrutinize them for purity and contaminants prior to use, and this may require direct contact with the companies that sell them. As a field of science, the use of antioxidants for wound healing is in its infancy, and future studies will better elucidate the role of antioxidants in wound healing.

  17. Healing of chronic cutaneous wounds by topical treatment with basic fibroblast growth factor.

    Science.gov (United States)

    Fu, Xiaobing; Shen, Zuyao; Guo, Zhenrong; Zhang, Mingliang; Sheng, Zhiyong

    2002-03-01

    To evaluate the safety and efficacy of topical application of recombinant bovine basic fibroblast growth factor (rbFGF) on the healing of chronic cutaneous wounds. Twenty-eight patients with thirty-three chronic cutaneous wounds resulting from trauma, diabetes mellitus, pressure sore and radiation injuries were enrolled in this prospective, open-label crossover trial. Prior to treatment with rbFGF, all wounds failed to heal with conventional therapies within 4 weeks. All wounds were locally treated with rbFGF at a dose of 150 AU/cm(2). Healing time and the quality of wounds were used to evaluate the efficacy of the treatment. Healing of all chronic wounds was expedited. During the study, eighteen wounds completely healed within 2 weeks, four healed within 3 weeks, and another eight completely healed within 4 weeks. Only three wounds failed to heal within 4 weeks, but healed at 30, 40 and 42 days after treatment with rbFGF. Thus, compared with conventional therapies, the effective rate of rbFGF treatment within 4 weeks was 90.9%. Histological assessment showed more abundant capillary sprouts or tubes and that fibroblasts were differentiated in wounds treated with rbFGF. No adverse side effects related to basic fibroblast growth factor were observed. Our results indicate that rbFGF could be used to accelerate healing in chronic wounds. It is our belief that this may be a more effective method of chronic wound management.

  18. Effect of St. Johns Wort (Hypericum Perforatum on Wound Healing

    Directory of Open Access Journals (Sweden)

    Ahmet Altan

    2015-12-01

    Full Text Available Since ancient times, plants used for various purposes have an important role in the improvement of human health. People rely on plants for their therapeutic and preventive purposes and their natural origin, and utilize herbal products for this reason. One of these plants is Hypericum perforatum, which has medical importance and is conventionally used. This plant, which is commonly used by people in order to accelerate the healing of burns and wounds, has been proven by studies to have a positive effect on wound healing. The purpose of this review is to present the current literature covering the effect of Hypericum perforatum on wound healing. [Archives Medical Review Journal 2015; 24(4.000: 578-591

  19. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    Science.gov (United States)

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-07-08

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  20. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions

    Directory of Open Access Journals (Sweden)

    Dong Joo Yang

    2016-07-01

    Full Text Available Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK, c-Jun N-terminal kinases (JNK, and extracellular signal-regulated kinases (Erk, underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  1. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  2. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  3. Scarless wound healing: chasing the holy grail.

    Science.gov (United States)

    Walmsley, Graham G; Maan, Zeshaan N; Wong, Victor W; Duscher, Dominik; Hu, Michael S; Zielins, Elizabeth R; Wearda, Taylor; Muhonen, Ethan; McArdle, Adrian; Tevlin, Ruth; Atashroo, David A; Senarath-Yapa, Kshemendra; Lorenz, H Peter; Gurtner, Geoffrey C; Longaker, Michael T

    2015-03-01

    Over 100 million patients acquire scars in the industrialized world each year, primarily as a result of elective operations. Although undefined, the global incidence of scarring is even larger, extending to significant numbers of burn and other trauma-related wounds. Scars have the potential to exert a profound psychological and physical impact on the individual. Beyond aesthetic considerations and potential disfigurement, scarring can result in restriction of movement and reduced quality of life. The formation of a scar following skin injury is a consequence of wound healing occurring through reparative rather than regenerative mechanisms. In this article, the authors review the basic stages of wound healing; differences between adult and fetal wound healing; various mechanical, genetic, and pharmacologic strategies to reduce scarring; and the biology of skin stem/progenitor cells that may hold the key to scarless regeneration.

  4. Efficacy of frog skin lipids in wound healing

    Directory of Open Access Journals (Sweden)

    Rajaram Rama

    2010-07-01

    Full Text Available Abstract Background Frog skin has been sequentially and scientifically evaluated by our group for its wound healing efficiency. Owing to the complex structure of skin, attempts were being made to analyse the role of individual constituents in different phases of healing. Our earlier papers have shown the significance of frog skin not only in wound healing but also enhancing the proliferating activity of the epidermal and dermal cells which are instrumental for normal healing process. We also have identified for the first time novel antimicrobial peptides from the skin of Rana tigerina and thereby reduce the complications involved in the sepsis. Purpose of the study and Results The current study envisages the role of frog skin lipids in the inflammatory phase of wound healing. The lipid moiety of the frog skin dominated by phospholipids exhibited a dose dependent acceleration of healing irrespective of the mode of application. The efficiency of the extract is attributed partially to the anti-inflammatory activity as observed by the histochemical and immunostimulatory together with plethysmographic studies. Conclusions Thus, frog skin for the first time has been demonstrated to possess lipid components with pharmaceutical and therapeutic potential. The identification and characterization of such natural healing molecules and evaluating their mechanism of action would therefore provide basis for understanding the cues of Nature and hence can be used for application in medicine.

  5. YAP and TAZ regulate skin wound healing.

    Science.gov (United States)

    Lee, Min-Jung; Ran Byun, Mi; Furutani-Seiki, Makoto; Hong, Jeong-Ho; Jung, Han-Sung

    2014-02-01

    The Hippo signaling pathway regulates organ size, tissue regeneration, and stem cell self-renewal. The two key downstream transcription coactivators in this pathway, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), mediate the major gene regulation and biological functions of the Hippo pathway. The biological functions of YAP and TAZ in many tissues are known; however, their roles in skin wound healing remain unclear. To analyze whether YAP and/or TAZ are required for cutaneous wound healing, we performed small interfering RNA (siRNA)-mediated knockdown of YAP/TAZ in full-thickness skin wounds. YAP is strongly expressed in the nucleus and cytoplasm in the epidermis and hair follicle. Interestingly, YAP is expressed in the nucleus in the dermis at 2 and 7 days after wounding. TAZ normally localizes to the cytoplasm in the dermis but is distributed in both the nucleus and cytoplasm at 1 day after wounding. The knockdown of YAP and TAZ markedly delayed the rate of wound closure and reduced the transforming growth factor-β1 (TGF-β1) expression in the wound. YAP and TAZ also modulate the expression of TGF-β1 signaling pathway components such as Smad-2, p21, and Smad-7. These results suggest that YAP and TAZ localization to the nucleus is required for skin wound healing.

  6. Aging-dependent reduction in glyoxalase 1 delays wound healing.

    Science.gov (United States)

    Fleming, Thomas H; Theilen, Till-Martin; Masania, Jinit; Wunderle, Marius; Karimi, Jamshid; Vittas, Spiros; Bernauer, Rainer; Bierhaus, Angelika; Rabbani, Naila; Thornalley, Paul J; Kroll, Jens; Tyedmers, Jens; Nawrotzki, Ralph; Herzig, Stephan; Brownlee, Michael; Nawroth, Peter P

    2013-01-01

    Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice. Copyright © 2013 S. Karger AG, Basel.

  7. Effects of erythropoietin in skin wound healing are dose related.

    Science.gov (United States)

    Sorg, Heiko; Krueger, Christian; Schulz, Torsten; Menger, Michael D; Schmitz, Frank; Vollmar, Brigitte

    2009-09-01

    The hematopoietic growth factor erythropoietin (EPO) attracts attention due to its all-tissue-protective pleiotropic properties. We studied the effect of EPO on dermal regeneration using intravital microscopy in a model of full dermal thickness wounds in the skin-fold chamber of hairless mice. Animals received repetitive low doses or high doses of EPO (RLD-EPO or RHD-EPO) or a single high dose of EPO (SHD-EPO). SHD-EPO accelerated wound epithelialization, reduced wound cellularity, and induced maturation of newly formed microvascular networks. In contrast, RHD-EPO impaired the healing process, as indicated by delayed epithelialization, high wound cellularity, and lack of maturation of microvascular networks. Also, RHD-EPO caused an excessive erythrocyte mass and rheological malfunction, further deteriorating vessel and tissue maturation. Moreover, RHD-EPO altered fibroblast and keratinocyte migration in vitro, while both cell types exposed to RLD-EPO, and, in particular, to SHD-EPO showed accelerated wound scratch closure. In summary, our data show that a single application of a high dose of EPO accelerates and improves skin wound healing.

  8. Effects of the Four-Herb Compound ANBP on Wound Healing Promotion in Diabetic Mice.

    Science.gov (United States)

    Hou, Qian; He, Wen-Jun; Chen, Li; Hao, Hao-Jie; Liu, Jie-Jie; Dong, Liang; Tong, Chuan; Li, Mei-Rong; Zhou, Zhong-Zhi; Han, Wei-Dong; Fu, Xiao-Bing

    2015-12-01

    Wound healing is a troublesome problem in diabetic patients. Besides, there is also an increased risk of postsurgical wound complications for diabetic patient. It has been revealed that traditional Chinese medicine may promote healing and inhibit scar formation, while the changes of morphology and physiology of wounds on such medicine treatment still remain elusive. In this study, we first used the ultralow temperature preparation method to produce mixed superfine powder from Agrimonia pilosa (A), Nelumbo nucifera (N), Boswellia carteri (B), and Pollen typhae (P), named as ANBP. Applying ANBP on 40 streptozotocin (STZ)-induced diabetic C57BL/6 mice (4-6 weeks, 20 ± 2 g), we observed that the wound healing process was accelerated and the wound healing time was shortened (14 days, P wound healing, promote vascularization, and inhibit inflammation, suggesting the potential clinic application of ANBP for diabetes mellitus and refractory wounds.

  9. “Sugar-coating wound repair: A review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds”

    OpenAIRE

    Plichta, Jennifer K.; Radek, Katherine A.

    2012-01-01

    Thousands of patients suffer from burn injuries each year, yet few therapies have been developed to accelerate the wound healing process. Most fibroblast growth factors (FGFs) have been extensively evaluated, but only a few have been found to participate in wound healing. In particular, FGF-10 is robustly increased in the wound microenvironment following injury and has demonstrated some ability to promote wound healing in vitro and in vivo. Glycosaminoglycans (GAGs) are linear carbohydrates t...

  10. Nutritional Aspects of Gastrointestinal Wound Healing

    Science.gov (United States)

    Mukherjee, Kaushik; Kavalukas, Sandra L.; Barbul, Adrian

    2016-01-01

    Significance: Although the wound healing cascade is similar in many tissues, in the gastrointestinal tract mucosal healing is critical for processes such as inflammatory bowel disease and ulcers and healing of the mucosa, submucosa, and serosal layers is needed for surgical anastomoses and for enterocutaneous fistula. Failure of wound healing can result in complications including infection, prolonged hospitalization, critical illness, organ failure, readmission, new or worsening enterocutaneous fistula, and even death. Recent Advances: Recent advances are relevant for the role of specific micronutrients, such as vitamin D, trace elements, and the interplay between molecules with pro- and antioxidant properties. Our understanding of the role of other small molecules, genes, proteins, and macronutrients is also rapidly changing. Recent work has elucidated relationships between oxidative stress, nutritional supplementation, and glucose metabolism. Thresholds have also been established to define adequate preoperative nutritional status. Critical Issues: Further work is needed to establish standards and definitions for measuring the extent of wound healing, particularly for inflammatory bowel disease and ulcers. In addition, a mounting body of evidence has determined the need for adequate preoperative nutritional supplementation for elective surgical procedures. Future Directions: A large portion of current work is restricted to model systems in rodents. Therefore, additional clinical and translational research is needed in this area to promote gastrointestinal wound healing in humans, particularly those suffering from critical illness, patients with enterocutaneous fistula, inflammatory bowel disease, and ulcers, and those undergoing surgical procedures. PMID:27867755

  11. A wound healing model with sonographic monitoring.

    Science.gov (United States)

    Hoffmann, K; Winkler, K; el-Gammal, S; Altmeyer, P

    1993-05-01

    The methods used hitherto for quantification of skin repair processes only allow an examiner a two-dimensional assessment of superficial wound healing. With the recent advent of high frequency B-scan ultrasonography in dermatology it has become possible to follow the course of healing and evaluate the healing processes in deeper layers of the skin. In this investigation 80 patients received cryosurgery for treatment of basal cell carcinomas on the face or neck region. As the size of cryosurgical defects can be precisely controlled they are potentially useful as standardized wound healing models. The course of wound healing after cryosurgery using a digital ultrasound scanner (DUB 20, Taberna pro medicum, Lüneburg, Germany) was monitored. The usable depth of penetration of the echo signal is approximately 7 mm. The lateral resolution is approximately 200 microns, the axial resolution approximately 80 microns. The cryolesion and the repair processes were examined ultrasonographically and clinically over a period of at least 3 weeks or until the wound had completely healed. The depth of invasion and lateral extent of the basal cell carcinoma as well as the size of the induced cryolesion can be determined by ultrasound. The exudative phase after cryosurgery, with developing oedema and necrosis, can be quantified on the basis of the reduced reflectivity in the corium. The repair processes taking place in the region of necrosis can be visualized in the ultrasound scan. The ultrasonically monitored wound healing model which we have demonstrated is particularly suitable for investigating the efficacy of drugs which promote healing.

  12. Evaluation of wound healing effects between Salvadora persica ointment and Solcoseryl jelly in animal model.

    Science.gov (United States)

    Imran, Hina; Ahmad, Mansoor; Rahman, Atiqur; Yaqeen, Zahra; Sohail, Tehmina; Fatima, Nudrat; Iqbal, Wasif; Yaqeen, Syed Shafay

    2015-09-01

    In this research study very first time a herbal ointment contain 10% Salvadora persica extract was compared with Solcosseryl jelly 10% and blank Vaseline to evaluate wound healing effects using excision wound healing model in animals. Three groups of rats (n-6) were experimentally wounded on the back of their neck. Group I was dressed with Vaseline containing 10% test drug, Group II was treated with thin layer of Solcoseryl jelly 10% as reference drug while Group III was dressed with thin layer of blank Vaseline as control group. The effect of vehicle on rate of wound healing were assessed and in all cases there were progressive decreased in wound area with time but wound dress with Vaseline containing S. persica extract and wound treated with Solcosseryl jelly significantly healed earlier than those treated with Vaseline. It is concluded that S. persica extract significantly enhance the acceleration rate of wound enclosure in rats.

  13. Wound healing: a new perspective on glucosylated tetrahydrocurcumin

    Directory of Open Access Journals (Sweden)

    Bhaskar Rao A

    2015-07-01

    Full Text Available Adari Bhaskar Rao,1 Ernala Prasad,1 Seelam Siva Deepthi,1 Vennapusa Haritha,1 Sistla Ramakrishna,1 Kuncha Madhusudan,1 Mullapudi Venkata Surekha,2 Yerramilli Sri Rama Venkata Rao3 1Medicinal Chemistry and Pharmacology Division, Council of Scientific and Industrial Research – Indian Institute of Chemical Technology, 2Pathology Division, National Institute of Nutrition, 3Ashian Herbex Ltd, Hyderabad, AP, India Abstract: Wound healing represents a dynamic set of coordinated physiological processes observed in response to tissue injury. Several natural products are known to accelerate the process of wound healing. Tetrahydrocurcumin (THC, an in vivo biotransformed product/metabolite of curcumin, is known to exhibit a wide spectrum of biological activities similar to those of native curcuminoids. The poor bioavailability of these curcuminoids limits their clinical applications. The present study highlights the percutaneous absorption and wound healing activity of glucosyl-conjugated THC (glucosyl-THC in male Wistar rats. A high plasma concentration of glucosyl-THC (4.35 µg/mL was found in rats 3 hours after application. A significant enhanced wound healing activity and reduced epithelialization time were observed in rats that received glucosyl-THC. This may have been due to the improved bioavailability of the glucosyl compound. The nonstaining and lack of skin-sensitive side effects render the bioconjugated glucosyl-THC a promising therapeutic compound in the management of excision wounds and in cosmetic applications, in the near future. Keywords: glucosylation, epithelialization, granulation tissue, cosmetic, therapeutic

  14. Trends in Surgical Wound Healing

    DEFF Research Database (Denmark)

    Gottrup, F.

    2008-01-01

    The understanding of acute and chronic wound pathophysiology has progressed considerably over the past decades. Unfortunately, improvement in clinical practice has not followed suit, although new trends and developments have improved the outcome of wound treatment in many ways. This review focuses...

  15. The effects of autologous platelet gel on wound healing.

    Science.gov (United States)

    Henderson, Jenifer L; Cupp, Craig L; Ross, E Victor; Shick, Paul C; Keefe, Michael A; Wester, Derin C; Hannon, Timothy; McConnell, Devin

    2003-08-01

    Laser resurfacing techniques have become a popular means of achieving rejuvenation of damaged skin. Interest is great in attempting to speed re-epithelialization and healing so that patients can return to their normal activities as quickly as possible. Previous studies have demonstrated that wounds heal more quickly when they are covered and kept moist than when they are left open to the air. Until now, no study has been conducted to investigate whether the healing process of a superficial skin burn might be accelerated by the use of an autologous platelet gel as a biologic dressing. Our study of five pigs showed that autologous platelet gel can influence wound healing by stimulating an intense inflammatory process that leads to highly significant increases in the production of extracellular matrices and granulation tissue. The platelet gel accelerated vascular ingrowth, increased fibroblastic proliferation, and accelerated collagen production. However, the gel did not appear to accelerate re-epithelialization. The aggressive production of granulation tissue and the acceleration of collagen production might mean that autologous platelet gel will have a future role in the treatment of burns because the highly vascularized bed it helps create should promote the success of skin grafting in patients with deep partial-thickness and full-thickness burns.

  16. The effects of caffeine on wound healing.

    Science.gov (United States)

    Ojeh, Nkemcho; Stojadinovic, Olivera; Pastar, Irena; Sawaya, Andrew; Yin, Natalie; Tomic-Canic, Marjana

    2016-10-01

    The purine alkaloid caffeine is a major component of many beverages such as coffee and tea. Caffeine and its metabolites theobromine and xanthine have been shown to have antioxidant properties. Caffeine can also act as adenosine-receptor antagonist. Although it has been shown that adenosine and antioxidants promote wound healing, the effect of caffeine on wound healing is currently unknown. To investigate the effects of caffeine on processes involved in epithelialisation, we used primary human keratinocytes, HaCaT cell line and ex vivo model of human skin. First, we tested the effects of caffeine on cell proliferation, differentiation, adhesion and migration, processes essential for normal wound epithelialisation and closure. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) proliferation assay to test the effects of seven different caffeine doses ranging from 0·1 to 5 mM. We found that caffeine restricted cell proliferation of keratinocytes in a dose-dependent manner. Furthermore, scratch wound assays performed on keratinocyte monolayers indicated dose-dependent delays in cell migration. Interestingly, adhesion and differentiation remained unaffected in monolayer cultures treated with various doses of caffeine. Using a human ex vivo wound healing model, we tested topical application of caffeine and found that it impedes epithelialisation, confirming in vitro data. We conclude that caffeine, which is known to have antioxidant properties, impedes keratinocyte proliferation and migration, suggesting that it may have an inhibitory effect on wound healing and epithelialisation. Therefore, our findings are more in support of a role for caffeine as adenosine-receptor antagonist that would negate the effect of adenosine in promoting wound healing.

  17. Forces driving epithelial wound healing

    Science.gov (United States)

    Brugués, Agustí; Anon, Ester; Conte, Vito; Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2014-09-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and `purse-string’ contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

  18. Microgravity and the implications for wound healing.

    Science.gov (United States)

    Farahani, Ramin Mostofizadeh; DiPietro, Luisa A

    2008-10-01

    Wound healing is a sophisticated response ubiquitous to various traumatic stimuli leading to an anatomical/functional disruption. The aim of present article was to review the current evidence regarding the effects of microgravity on wound healing dynamics. Modulation of haemostatic phase because of alteration of platelet quantity and function seems probable. Furthermore, production of growth factors that are released from activated platelets and infiltration/function of inflammatory cells seem to be impaired by microgravity. Proliferation of damaged structures is dependent on orchestrated function of various growth factors, for example transforming growth factors, platelet-derived growth factor and epidermal growth factor, all of which are affected by microgravitational status. Moreover, gravity-induced alterations of gap junction, neural inputs, and cell populations have been reported. It may be concluded that different cellular and extracellular element involved in the healing response are modified through effect of microgravity which may lead to impairment in healing dynamics.

  19. Cold Temperature Delays Wound Healing in Postharvest Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Karen Klotz Fugate

    2016-04-01

    Full Text Available Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L. roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots stored at 6 and 12 °C for 28 d. Surface abrasions are common injuries of stored roots, and the storage temperatures used are typical of freshly harvested or rapidly cooled roots. Transpiration rate from the wounded surface and root weight loss were used to quantify wound healing. At 12 °C, transpiration rate from the wounded surface declined within 14 d and wounded roots lost weight at a rate similar to unwounded controls. At 6 °C, transpiration rate from the wounded surface did not decline in the 28 d after injury, and wounded roots lost 44% more weight than controls after 28 d storage. Melanin formation, lignification, and suberization occurred more rapidly at 12 °C than at 6 °C, and a continuous layer of lignified and suberized cells developed at 12 °C, but not at 6 °C. Examination of enzyme activities involved in melanin, lignin, and suberin formation indicated that differences in melanin formation at 6 and 12 °C were related to differences in polyphenol oxidase activity, although no relationships between suberin or lignin formation and phenylalanine ammonia lyase or peroxidase activity were evident. Wound-induced respiration was initially greater at 12 °C than at 6 °C. However, with continued storage, respiration rate of wounded roots declined more rapidly at 12 °C, and over 28 d, the increase in respiration due to injury was 52% greater in roots stored at 6 °C than in roots stored at 12 °C. The data indicate that storage at 6 °C severely slowed and impaired wound-healing of surface-abraded sugarbeet roots relative to roots stored at 12 °C and suggest that postharvest losses may be accelerated if freshly harvested roots are cooled

  20. Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats.

    Science.gov (United States)

    Chaturvedi, Adya P; Kumar, Mohan; Tripathi, Yamini B

    2013-12-01

    Wound healing is a fundamental response to tissue injury and natural products accelerate the healing process. Here, we have explored the efficacy of topical administration of an ointment, prepared by methanolic extract of Jasminum grandiflorum L. (Oleaceae) leaves, on cutaneous wound healing in rats. The topical application of the Jasminum ointment on full thickness excision wounds accelerated the healing process. Tissue growth and collagen synthesis were significantly higher determined by total hydroxyl proline, hexosamine, protein and DNA content. The response was concentration- and time-dependent, when observed on days 4, 8 and 12 after wound creation. The rate of wound healing was faster as determined by wound contraction, tensile strength and other histopathological changes. In addition, this ointment also raised the activity of superoxide dismutase (SOD) and catalase (CAT) with high GSH content and low lipid peroxidation products in wound tissue. Thus, it could be suggested that the ointment from the methanolic extract of J. grandiflorum leaf improves the rate of wound healing by enhancing the rate of collagen synthesis and also by improving the antioxidant status in the newly synthesised healing wound tissue. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  1. Low-intensity vibration improves angiogenesis and wound healing in diabetic mice.

    Science.gov (United States)

    Weinheimer-Haus, Eileen M; Judex, Stefan; Ennis, William J; Koh, Timothy J

    2014-01-01

    Chronic wounds represent a significant health problem, especially in diabetic patients. In the current study, we investigated a novel therapeutic approach to wound healing--whole body low-intensity vibration (LIV). LIV is anabolic for bone, by stimulating the release of growth factors, and modulating stem cell proliferation and differentiation. We hypothesized that LIV improves the delayed wound healing in diabetic mice by promoting a pro-healing wound environment. Diabetic db/db mice received excisional cutaneous wounds and were subjected to LIV (0.4 g at 45 Hz) for 30 min/d or a non-vibrated sham treatment (controls). Wound tissue was collected at 7 and 15 d post-wounding and wound healing, angiogenesis, growth factor levels and wound cell phenotypes were assessed. LIV increased angiogenesis and granulation tissue formation at day 7, and accelerated wound closure and re-epithelialization over days 7 and 15. LIV also reduced neutrophil accumulation and increased macrophage accumulation. In addition, LIV increased expression of pro-healing growth factors and chemokines (insulin-like growth factor-1, vascular endothelial growth factor and monocyte chemotactic protein-1) in wounds. Despite no evidence of a change in the phenotype of CD11b+ macrophages in wounds, LIV resulted in trends towards a less inflammatory phenotype in the CD11b- cells. Our findings indicate that LIV may exert beneficial effects on wound healing by enhancing angiogenesis and granulation tissue formation, and these changes are associated with increases in pro-angiogenic growth factors.

  2. Epithelialization in Wound Healing: A Comprehensive Review

    Science.gov (United States)

    Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana

    2014-01-01

    Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064

  3. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge;

    2013-01-01

    functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...... in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound...

  4. Cutaneous wound healing: Current concepts and advances in wound care

    Science.gov (United States)

    Klein, Kenneth C; Guha, Somes Chandra

    2014-01-01

    A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care.[1] It is a snapshot of a patient's total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors.[2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT), as used at our institution (CAMC), and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society) may vary widely from country to country and payment system.[3] In the USA, CMS (Centers for Medicare and Medicaid Services) approved indications for HBOT vary from that of the UHMS for logistical reasons.[1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise. PMID:25593414

  5. Cutaneous wound healing: Current concepts and advances in wound care

    Directory of Open Access Journals (Sweden)

    Kenneth C Klein

    2014-01-01

    Full Text Available A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT, as used at our institution (CAMC, and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society may vary widely from country to country and payment system. [3] In the USA, CMS (Centers for Medicare and Medicaid Services approved indications for HBOT vary from that of the UHMS for logistical reasons. [1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise.

  6. Wound healing: time to look for intelligent, 'natural' immunological approaches?

    Science.gov (United States)

    Garraud, Olivier; Hozzein, Wael N; Badr, Gamal

    2017-06-21

    There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.' We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.

  7. Kinin receptors in skin wound healing.

    Science.gov (United States)

    Soley, Bruna da Silva; Morais, Rafael Leite Tavares de; Pesquero, João Bosco; Bader, Michael; Otuki, Michel Fleith; Cabrini, Daniela Almeida

    2016-05-01

    Wound healing is a complex and dynamic process that includes 3 different phases: inflammation, proliferation, and remodeling. Kinins are vasoactive peptides released after tissue injury, and are directly involved in the development and maintenance of inflammatory processes, and their actions are mediated by the activation of receptors called B1 and B2. We aimed to evaluate the involvement of kinin receptors in the skin healing process. Knockout mice for kinin receptors (KOB1, KOB2 and KOB1B2) and wild type controls (WT) were subjected to a skin excision model, and tissue repair process was evaluated during different phases of wound healing. In knockout animals for kinin receptors differences were observed in the resolution period of injury exceeding 17 days for the total closure of wounds. The absence of kinin receptors promotes a significant reduction in infiltration of polymorphonuclear cells on day 2 of the inflammatory phase. Already at the late stage of this phase (3 days) there was a negative influence on the infiltration of polymorphonuclear and mononuclear cells at the site of injury in comparison to WT. Collagen was significantly diminished in tissue of KOB1, KOB2 and KOB1B2 from day two to the end of the healing process. Moreover, wound tissue from KOB2 and KOB1B2, but not KOB1, presented impaired parameters of re-epitheliazation, reduced proliferation of cells (PCNA immunostaining), and a lower number of myofibroblasts (α-SMA immunostaining). These data reveal the involvement of kinin receptors in processes of skin repair. Both kinin receptors participate especially during the inflammatory phase, while B2 receptors seem to be more relevant in the quality of the wound scar. Thus, a better understanding of the contribution of kinins to skin wound healing may reveal novel options for therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  9. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Science.gov (United States)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  10. ROLE OF VACUUM ASSISTED CLOSURE (VAC - IN WOUND HEALING

    Directory of Open Access Journals (Sweden)

    L. Lokanadha Rao

    2016-09-01

    Full Text Available BACKGROUND Large, complicated wounds pose a significant surgical problem. Negative pressure wound therapy is one of several methods enabling to obtain better treatment results in case of open infected wounds.1,2 The use of negative pressure therapy enables to obtain a reduction in the number of bacteria which significantly reduces the number of complications.3,4,5 AIMS AND OBJECTIVES: To review the Role of VAC in wound healing in Orthopaedics. MATERIALS AND METHODS The cases presented in this study are those who were admitted in King George Hospital in the time period from January 2014 to August 2015. This is a prospective interventional study. In this study, 15 patients were assigned to the study group (Negative Pressure Wound Therapy- NPWT based on their willingness for undergoing treatment. OBSERVATIONS AND RESULTS 12 males and 3 females are involved in the study. There is decrease in the mean wound area from 64 cm2 to 38 cm2 . There is decrease in the duration of hospital stay. Finally, wound is closed by SSG or secondary suturing. DISCUSSION NPWT is known to reduce bacterial counts, although they remain colonised with organisms. Wounds covered with NPW dressing are completely isolated from the environment, thereby reduces cross infection. In our series, we had 73.3% (11 cases excellent results and 26.7% (4 cases good results and no poor results. As interpretation with results, VAC therapy is effective mode of adjuvant therapy for the management of infected wounds. CONCLUSION VAC has been proven to be a reliable method of treating a variety of infected wounds. It greatly increases the rate of granulation tissue formation and lowers bacterial counts to accelerate wound healing. It can be used as a temporary dressing to prepare wounds optimally prior to closure or as a definitive treatment for nonsurgical and surgical wounds. VAC is now being used in a multitude of clinical settings, including the treatment of surgical wounds, infected wounds

  11. Cold temperature delays wound healing in postharvest sugarbeet roots

    Science.gov (United States)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  12. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.

    Science.gov (United States)

    Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai

    2016-03-01

    Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.

  13. The effects of Ankaferd, a hemostatic agent, on wound healing

    Directory of Open Access Journals (Sweden)

    Sevgi Özbaysar Sezgin

    2015-09-01

    Full Text Available Background and Design: There have been a lot of topical and systemic agents to provide an ideal scar formation and to decrease the periods of wound healing process by affecting the factors of healing (inflammatory cells, thrombocytes, extracellular matrix etc.. In this study, we investigated the effects of Ankaferd on wound healing. Materials and Methods: Wounds were created with 8 mm punch biopsy knots on the back of 32 rats which were separated into 4 groups of 9 rats. No treatment was done in group D which was the control group while group A received topical Ankaferd treatment twice a day; group B treated with silver sulfadiazine twice a day, and group C put on base cream, which did not include any active agent, twice a day. The rats were followed for 15 days macroscopically and examined histopathologically on days 0., 3., 7., and 15. by taking biopsy specimens. Result: At the end of our study, it was detected that Ankaferd accelerated the healing process in comparison to control and base cream groups according to the macroscopic and histopathologic results. Additionally, similar to this situation, it was observed that the healing process in silver sulfadiazine group was faster than in control and base cream groups. Conclusion: More experimental and clinical studies in larger populations are needed to prove and confirm its efficacy.

  14. Skin wound healing and phytomedicine: a review.

    Science.gov (United States)

    Pazyar, Nader; Yaghoobi, Reza; Rafiee, Esmail; Mehrabian, Abolfath; Feily, Amir

    2014-01-01

    Skin integrity is restored by a physiological process aimed at repairing the damaged tissues. The healing process proceeds in four phases: hemostasis, inflammation, proliferation and remodeling. Phytomedicine presents remedies, which possess significant pharmacological effects. It is popular amongst the general population in regions all over the world. Phytotherapeutic agents have been largely used for cutaneous wound healing. These include Aloe vera, mimosa, grape vine, Echinacea, chamomile, ginseng, green tea, jojoba, tea tree oil, rosemary, lemon, soybean, comfrey, papaya, oat, garlic, ginkgo, olive oil and ocimum. Phytotherapy may open new avenues for therapeutic intervention on cutaneous wounds. This article provides a review of the common beneficial medicinal plants in the management of skin wounds with an attempt to explain their mechanisms.

  15. Wound healing: an overview of acute, fibrotic and delayed healing.

    Science.gov (United States)

    Diegelmann, Robert F; Evans, Melissa C

    2004-01-01

    Acute wounds normally heal in a very orderly and efficient manner characterized by four distinct, but overlapping phases: hemostasis, inflammation, proliferation and remodeling. Specific biological markers characterize healing of acute wounds. Likewise, unique biologic markers also characterize pathologic responses resulting in fibrosis and chronic non-healing ulcers. This review describes the major biological processes associated with both normal and pathologic healing. The normal healing response begins the moment the tissue is injured. As the blood components spill into the site of injury, the platelets come into contact with exposed collagen and other elements of the extracellular matrix. This contact triggers the platelets to release clotting factors as well as essential growth factors and cytokines such as platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-beta). Following hemostasis, the neutrophils then enter the wound site and begin the critical task of phagocytosis to remove foreign materials, bacteria and damaged tissue. As part of this inflammatory phase, the macrophages appear and continue the process of phagocytosis as well as releasing more PDGF and TGF beta. Once the wound site is cleaned out, fibroblasts migrate in to begin the proliferative phase and deposit new extracellular matrix. The new collagen matrix then becomes cross-linked and organized during the final remodeling phase. In order for this efficient and highly controlled repair process to take place, there are numerous cell-signaling events that are required. In pathologic conditions such as non-healing pressure ulcers, this efficient and orderly process is lost and the ulcers are locked into a state of chronic inflammation characterized by abundant neutrophil infiltration with associated reactive oxygen species and destructive enzymes. Healing proceeds only after the inflammation is controlled. On the opposite end of the spectrum, fibrosis is characterized by

  16. The Role of Neuromediators and Innervation in Cutaneous Wound Healing.

    Science.gov (United States)

    Ashrafi, Mohammed; Baguneid, Mohamed; Bayat, Ardeshir

    2016-06-15

    The skin is densely innervated with an intricate network of cutaneous nerves, neuromediators and specific receptors which influence a variety of physiological and disease processes. There is emerging evidence that cutaneous innervation may play an important role in mediating wound healing. This review aims to comprehensively examine the evidence that signifies the role of innervation during the overlapping stages of cutaneous wound healing. Numerous neuropeptides that are secreted by the sensory and autonomic nerve fibres play an essential part during the distinct phases of wound healing. Delayed wound healing in diabetes and fetal cutaneous regeneration following wounding further highlights the pivotal role skin innervation and its associated neuromediators play in wound healing. Understanding the mechanisms via which cutaneous innervation modulates wound healing in both the adult and fetus will provide opportunities to develop therapeutic devices which could manipulate skin innervation to aid wound healing.

  17. Emerging drugs for the treatment of wound healing.

    Science.gov (United States)

    Zielins, Elizabeth R; Brett, Elizabeth A; Luan, Anna; Hu, Michael S; Walmsley, Graham G; Paik, Kevin; Senarath-Yapa, Kshemendra; Atashroo, David A; Wearda, Taylor; Lorenz, H Peter; Wan, Derrick C; Longaker, Michael T

    2015-06-01

    Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.

  18. 龙血竭提取物促进创面愈合的实验研究%Application of Resina Draconis Extract on Accelerating Animal Wound Healing

    Institute of Scientific and Technical Information of China (English)

    刘辉辉; 肖丹; 郑晓; 顾岩; 郭善禹

    2013-01-01

    Objective To investigate the effects of ethanolic extract of Resina Draconis (RDEE) in animal wound healing. Methods Forty-eight SD rats were randomly divided into three groups: control group, MEBO group (treated with MEBO) and RDEE group (treated with RDEE). Wound healing rates and healing time were calculated 3, 7, 11 and 15 days after treatment, and tissues were harvested at the same time for histological, immunohistochemical analysis and MVD calculation. The expression of VEGF was determined by real-time PCR and western blot. Results Wound healing time in RDEE group was shorter than in control group (P<0.05). There was no difference of would healing time between RDEE group and MEBO group. Wound healing rates, MVD number (3, 7, 11 days after treatment) and the expression of VEGF were significantly higher in RDEE group and MEBO group than in control group (P<0.05). Histological results showed more well-organized bands of collagen, more fibrob-lasts and less inflammatory cells in RDEE group compared with control group. Conclusion The extract from Resina Draconis possesses wound healing activity, and is worthy of clinical application.%目的探讨龙血竭乙醇提取物(Ethanolic extract of Resina Draconis, RDEE)促进创面愈合的疗效。方法将48只SD大鼠随机分为对照组、湿润烧伤膏组(MEBO组)和龙血竭乙醇提取物组(RDEE组)。测量和计算伤后第3、7、11和15天创面面积,计算创面愈合率和愈合时间;采用HE、Masson染色和CD31免疫组织化学染色,观察创面肉芽组织结构改变、胶原分布,并计算微血管密度(Microvessel density,MVD);采用荧光定量PCR和Western Blot,检测创面肉芽组织中VEGF表达的变化。结果 RDEE组创面愈合时间明显比对照组短(P<0.05),MEBO组和RDEE组之间无显著性差异;RDEE组、MEBO组创面愈合率和伤后第3、7、11天的MVD、VEGF 表达量均高于对照组,差异显著(P<0.05);RDEE组创面

  19. Grand challenge in Biomaterials-wound healing

    Science.gov (United States)

    Salamone, Joseph C.; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E.

    2016-01-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  20. A comprehensive review of advanced biopolymeric wound healing systems.

    Science.gov (United States)

    Mayet, Naeema; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Tyagi, Charu; Du Toit, Lisa C; Pillay, Viness

    2014-08-01

    Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications.

  1. Aloe Gel Enhances Angiogenesis in Healing of Diabetic Wound

    Directory of Open Access Journals (Sweden)

    Djanggan Sargowo

    2011-12-01

    Full Text Available BACKGROUND: Diabetic micro and macroangiophathy lead to the incident of diabetic foot ulcers characterized by an increased number of circulating endothelial cells (CECs and decreased function of endothelial progenitor cells (EPCs. This fact is correlated with ischemia and diabetic wound healing failure. Aloe vera gel is known to be able to stimulate vascular endothelial growth factor (VEGF expression and activity by enhancing nitric oxide (NO production as a result of nitric oxide synthase (NOS enzyme activity. Aloe vera is a potential target to enhancing angiogenesis in wound healing. OBJECTIVE: The objective of this study was to explore the major role of Aloe vera gel in wound healing of diabetic ulcers by increasing the level of EPCs, VEGF, and endothelial nitric oxide synthase (eNOS, as well as by reducing the level of CECs involved in angiogenesis process of diabetic ulcers healing. METHODS: The experimental groups was divided into five subgroups consisting of non diabetic wistar rats, diabetic rats without oral administration of aloe gel, and treatment subgroup (diabetic rats with 30, 60 and 120 mg/day of aloe gel doses for 14 days. All subgroups were wounded and daily observation was done on the wounds areas. Measurement of the number of EPCs (CD34, and CECs (CD45 and CD146 was done by flow cytometry, followed by measurement of VEGF and eNOS expression on dermal tissue by immunohistochemical method on day 0 and day 14 after treatment. The quantitative data were analyzed by One-Way ANOVA and Linear Regression, with a confidence interval 5% and significance level (p<0.05 using SPSS 16 software to compare the difference and correlation between wound diameters, number of EPCs and CECs as well as the levels of VEGF and eNOS. RESULTS: The results of this study showed that aloe gel oral treatment in diabetic wistar rats was able to accelerate the wound healing process. It was shown by significant reduction of wound diameter (0.27±0.02; the

  2. Differences in cutaneous wound healing between dogs and cats.

    Science.gov (United States)

    Bohling, Mark W; Henderson, Ralph A

    2006-07-01

    Regardless of the species involved, wound healing follows a predictable course of overlapping phases. In spite of these commonalities, significant species differences in cutaneous wound healing have been uncovered in the Equidae and, more recently, between the dog and cat. It has also recently been shown that the subcutaneous tissues play an important supporting role in cutaneous wound healing, which may help to ex-plain healing differences between cats and dogs. These discoveries may improve veterinarians' understanding of problem wound healing in the cat and, hopefully, lead to better strategies for wound management in this sometimes troublesome species.

  3. Wound healing Agents from Medicinal Plants:A Review

    Institute of Scientific and Technical Information of China (English)

    ShivaniRawat; Ramandeep Singh; Preeti Thakur; SatinderKaur; AlokSemwal

    2012-01-01

    This paper presents a review of plants identified from various ethno botanical surveys and folklore medicinal survey with Wound healing activity. Wound is defined as the disruption of the cellular and anatomic continuity of a tissue. Wound may be produced by physical, chemical, thermal, microbial or immunological insult to the tissues. The process of wound healing consists of integrated cellular and biochemical events leading to re-establishment of structural and functional integrity with regain of strength in injured tissues.This review discuss about Wound healing potential of plants, its botanicalname, Common name, family, part used and references, which are helpful for researcher to development new Wound healing formulations for human use.

  4. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing

    Science.gov (United States)

    Reid, Brian; Zhao, Min

    2014-01-01

    Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358

  5. Effect of Dietary Conjugated Linoleic Acid Supplementation on Early Inflammatory Responses during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Na-Young Park

    2010-01-01

    Full Text Available Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA, a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage. We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.

  6. Cellular and Molecular Characteristics of Scarless versus Fibrotic Wound Healing

    Directory of Open Access Journals (Sweden)

    Latha Satish

    2010-01-01

    Full Text Available The purpose of this paper is to compare and contrast the discrete biology differentiating fetal wound repair from its adult counterpart. Integumentary wound healing in mammalian fetuses is essentially different from wound healing in adult skin. Adult (postnatal skin wound healing is a complex and well-orchestrated process spurred by attendant inflammation that leads to wound closure with scar formation. In contrast, fetal wound repair occurs with minimal inflammation, faster re-epithelialization, and without the accumulation of scar. Although research into scarless healing began decades ago, the critical molecular mechanisms driving the process of regenerative fetal healing remain uncertain. Understanding the molecular and cellular events during regenerative healing may provide clues that one day enable us to modulate adult wound healing and consequently reduce scarring.

  7. Topical insulin application improves healing by regulating the wound inflammatory response.

    Science.gov (United States)

    Chen, Xuelian; Liu, Yan; Zhang, Xiong

    2012-01-01

    Inflammation, the initiating stage of wound healing, is characterized by increased endothelial permeability, infiltration of inflammatory cells, and secretion of numerous growth factors and chemokines. By controlling wound contamination and infection, as well as inducing the repairing process, inflammatory response plays an irreplaceable role during wound healing. We utilized a variety of approaches to observe the effect of insulin on wound inflammatory response, specifically the effect of insulin on the function of wound macrophages. We also investigated whether insulin-regulated inflammatory response contributed to insulin-induced healing. Mice excisional wounds treated with insulin showed advanced infiltration and resolution of macrophages, which correlated with the expression of monocyte chemotactic protein-1, a potent chemotactic factor for macrophages. Blockage of monocyte chemotactic protein-1 resulted in reduced macrophages infiltration and impaired wound healing despite the presence of insulin. In vitro studies showed insulin-facilitated monocytes/macrophages chemotaxis, pinocytosis/phagocytosis, and secretion of inflammatory mediators as well. Our study strongly suggests that insulin is a potent healing accelerant. Regulating wound inflammatory response, especially the quantity and function of macrophages, is one of the mechanisms explaining insulin-induced accelerated wound healing.

  8. Elements affecting wound healing time: An evidence based analysis.

    Science.gov (United States)

    Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi

    2015-01-01

    The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society. © 2015 by the Wound Healing Society.

  9. Eicosanoids: Emerging contributors in stem cell-mediated wound healing.

    Science.gov (United States)

    Berry, Elizabeth; Liu, Yanzhou; Chen, Li; Guo, Austin M

    2016-11-05

    Eicosanoids are bioactive lipid products primarily derived from the oxidation of arachidonic acid (AA). The individual contributions of eicosanoids and stem cells to wound healing have been of great interest. This review focuses on how stem cells work in concert with eicosanoids to create a beneficial environment in the wound bed and in the promotion of wound healing. Stem cells contribute to wound healing through modulating inflammation, differentiating into skin cells or endothelial cells, and exerting paracrine effects by releasing various potent growth factors. Eicosanoids have been shown to stimulate proliferation, migration, homing, and differentiation of stem cells, all of which contribute to the process of wound healing. Increasing evidence has shown that eicosanoids improve wound healing through increasing stem cell densities, stimulating differentiation, and enhancing the angiogenic properties of stem cells. Chronic wounds have become a major problem in health care. Therefore, research regarding the effects of stem cells and eicosanoids in the promotion wound healing is of great importance.

  10. Identification of a transcriptional signature for the wound healing continuum.

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  11. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  12. Using Light to Treat Mucositis and Help Wounds Heal

    Science.gov (United States)

    Ignatius, Robert W.; Martin, Todd S.; Kirk, Charles

    2008-01-01

    A continuing program of research and development is focusing on the use of controlled illumination by light-emitting diodes (LEDs) to treat mucositis and to accelerate healing of wounds. The basic idea is to illuminate the affected area of a patient with light of an intensity, duration, and wavelength (or combination of wavelengths) chosen to produce a therapeutic effect while generating only a minimal amount of heat. This method of treatment was originally intended for treating the mucositis that is a common complication of chemotherapy and radiation therapy for cancer. It is now also under consideration as a means to accelerate the healing of wounds and possibly also to treat exposure to chemical and radioactive warfare agents. Radiation therapy and many chemotherapeutic drugs often damage the mucosal linings of the mouth and gastrointestinal tract, leading to mouth ulcers (oral mucositis), nausea, and diarrhea. Hyperbaric-oxygen therapy is currently the standard of care for ischemic, hypoxic, infected, and otherwise slowlyhealing problem wounds, including those of oral mucositis. Hyperbaric-oxygen therapy increases such cellular activities as collagen production and angiogenesis, leading to an increased rate of healing. Biostimulation by use of laser light has also been found to be effective in treating mucositis. For hyperbaricoxygen treatment, a patient must remain inside a hyperbaric chamber for an extended time. Laser treatment is limited by laser-wavelength capabilities and by narrowness of laser beams, and usually entails the generation of significant amounts of heat.

  13. Stem Cell Therapy to Improve Burn Wound Healing

    Science.gov (United States)

    2017-03-01

    Award Number: W81XWH-13-2-0024 TITLE: Stem Cell Therapy to Improve Burn Wound Healing PRINCIPAL INVESTIGATOR: Carl Schulman, MD, PhD, MSPH...NUMBER Stem Cell Therapy to Improve Burn Wound Healing 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Carl Schulman, MD, PhD, MSPH...chronic wounds with significant improvement in healing and scarring. Application of mesenchymal stem cell (MSC) therapy to severe burn wounds

  14. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats.

    Science.gov (United States)

    Liu, Cong; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Hao, Yuhui; Li, Rong

    2016-06-07

    The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways.

  15. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model.

    Science.gov (United States)

    Mohanty, Chandana; Das, Manasi; Sahoo, Sanjeeb K

    2012-10-01

    Wound healing is an intricate multistage process that includes inflammation, cell proliferation, matrix deposition and remodeling phases. It is often associated with oxidative stress and consequent prolonged inflammation, resulting in impaired wound healing. Curcumin has been reported to improve wound healing in different animal models. In order to increase the efficacy of curcumin in the healing arena a curcumin loaded oleic acid based polymeric (COP) bandage was formulated. The in vivo wound healing potency was compared with void bandage and control (cotton gauze treatment) in a rat model. Biochemical parameters and histological analysis revealed increased wound reduction and enhanced cell proliferation in COP bandage treated groups due to its efficient free radical scavenging properties. Comparative acceleration in wound healing was due to early implementation of fibroblasts and its differentiation (increased level of α-smooth muscle actin). Western blotting and semiquantitative PCR analysis clearly indicate that COP bandage can efficiently quench free radicals leading to reduced antioxidative enzyme activity. Further evidence at mRNA and protein level indicates that our system is potent enough to reduce the inflammatory response mediated by the NFκB pathway during wound healing. With this background, we anticipate that such a versatile approach may seed new arena for topical wound healing in the near future.

  16. Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds.

    Science.gov (United States)

    Morton, Laurel M; Phillips, Tania J

    2016-04-01

    Wounds are an excellent example of how the field of dermatology represents a cross-section of many medical disciplines. For instance, wounds may be caused by trauma, vascular insufficiency, and underlying medical conditions, such as diabetes, hypertension, and rheumatologic and inflammatory disease. This continuing medical education article provides an overview of wound healing and the pathophysiology of chronic wounds and reviews the broad differential diagnosis of chronic wounds. It also describes the initial steps necessary in evaluating a chronic wound and determining its underlying etiology. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  17. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus.

    Science.gov (United States)

    Wang, Jie-Mei; Tao, Jun; Chen, Dan-Dan; Cai, Jing-Jing; Irani, Kaikobad; Wang, Qinde; Yuan, Hong; Chen, Alex F

    2014-01-01

    Vascular precursor cells with angiogenic potentials are important for tissue repair, which is impaired in diabetes mellitus. MicroRNAs are recently discovered key regulators of gene expression, but their role in vascular precursor cell-mediated angiogenesis in diabetes mellitus is unknown. We tested the hypothesis that the microRNA miR-27b rescues impaired bone marrow-derived angiogenic cell (BMAC) function in vitro and in vivo in type 2 diabetic mice. BMACs from adult male type 2 diabetic db/db and from normal littermate db/+ mice were used. miR-27b expression was decreased in db/db BMACs. miR-27b mimic improved db/db BMAC function, including proliferation, adhesion, tube formation, and delayed apoptosis, but it did not affect migration. Elevated thrombospondin-1 (TSP-1) protein in db/db BMACs was suppressed on miR-27b mimic transfection. Inhibition of miR-27b in db/+ BMACs reduced angiogenesis, which was reversed by TSP-1 small interfering RNA (siRNA). miR-27b suppressed the pro-oxidant protein p66(shc) and mitochondrial oxidative stress, contributing to its protection of BMAC function. miR-27b also suppressed semaphorin 6A to improve BMAC function in diabetes mellitus. Luciferase binding assay suggested that miR-27b directly targeted TSP-1, TSP-2, p66(shc), and semaphorin 6A. miR-27b improved topical cell therapy of diabetic BMACs on diabetic skin wound closure, with a concomitant augmentation of wound perfusion and capillary formation. Normal BMAC therapy with miR-27b inhibition demonstrated reduced efficacy in wound closure, perfusion, and capillary formation. Local miR-27b delivery partly improved wound healing in diabetic mice. miR-27b rescues impaired BMAC angiogenesis via TSP-1 suppression, semaphorin 6A expression, and p66shc-dependent mitochondrial oxidative stress and improves BMAC therapy in wound healing in type 2 diabetic mice.

  18. Allium stipitatum Extract Exhibits In Vivo Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus and Accelerates Burn Wound Healing in a Full-Thickness Murine Burn Model

    Science.gov (United States)

    Karunanidhi, Arunkumar; Jeevajothi Nathan, Jayakayatri; van Belkum, Alex

    2017-01-01

    The in vivo antibacterial and burn wound healing potency of Persian shallot bulbs (Allium stipitatum) were explored in a mice burn model infected with methicillin-resistant Staphylococcus aureus (MRSA). Hexane (ASHE) and dichloromethane (ASDE) extracts were tested. Female BALB/c mice were inflicted with third-degree thermal injury followed by infection with MRSA. ASHE and ASDE formulated with simple ointment base (SOB) at concentrations of 1%, 2%, and 5% (w/w) were topically applied to burn wounds twice a day for 20 days. Silver sulfadiazine (1%) served as drug positive control. Microbiological analysis was carried out on 1, 2, 3, 4, and 5 days postwounding (dpw) and histopathological analysis at the end of the experiment (20 dpw). Both ointments demonstrated strong antibacterial activity with complete elimination of MRSA at 48–72 h after infection. The rate of wound contraction was higher (95–100%) in mice groups treated with ASHE and ASDE ointments after 15 dpw. Histological analysis revealed significant increase (p antibacterial as well as promising alternatives in managing thermal injuries. PMID:28321262

  19. Wound healing - A literature review*

    Science.gov (United States)

    Gonzalez, Ana Cristina de Oliveira; Costa, Tila Fortuna; Andrade, Zilton de Araújo; Medrado, Alena Ribeiro Alves Peixoto

    2016-01-01

    Regeneration and tissue repair processes consist of a sequence of molecular and cellular events which occur after the onset of a tissue lesion in order to restore the damaged tissue. The exsudative, proliferative, and extracellular matrix remodeling phases are sequential events that occur through the integration of dynamic processes involving soluble mediators, blood cells, and parenchymal cells. Exsudative phenomena that take place after injury contribute to the development of tissue edema. The proliferative stage seeks to reduce the area of tissue injury by contracting myofibroblasts and fibroplasia. At this stage, angiogenesis and reepithelialization processes can still be observed. Endothelial cells are able to differentiate into mesenchymal components, and this difference appears to be finely orchestrated by a set of signaling proteins that have been studied in the literature. This pathway is known as Hedgehog. The purpose of this review is to describe the various cellular and molecular aspects involved in the skin healing process. PMID:27828635

  20. Delayed wound healing due to increased interleukin-10 expression in mice with lymphatic dysfunction.

    Science.gov (United States)

    Kimura, Takayuki; Sugaya, Makoto; Blauvelt, Andrew; Okochi, Hitoshi; Sato, Shinichi

    2013-07-01

    Skin wound healing is an interactive process involving soluble mediators, ECM, resident cells, and infiltrating cells. Little is known about wound healing in the presence of lymphedema. In this study, we investigated wound healing using kCYC⁺/⁻ mice, which demonstrate severe lymphatic dysfunction. Wound healing was delayed significantly in kCYC⁺/⁻ mice when compared with WT mice. In wounded skin of kCYC⁺/⁻ mice, mast cell numbers were increased compared with WT mice, whereas macrophage numbers were decreased. Moreover, IL-10 expression by mast cells was increased, and expression of bFGF, mainly produced by macrophages, was decreased in wounded skin of kCYC⁺/⁻ mice compared with WT mice. We next crossed kCYC⁺/⁻ mice with IL-10⁻/⁻ mice, which were reported to show accelerated wound closure. In kCYC⁺/⁻ IL-10⁺/⁻ mice, time course of wound healing, numbers of macrophages, and IL-10 mRNA expression levels in wounded skin were comparable with WT IL-10⁺/⁻ mice. Similar results were obtained using a different lymphedema model, in which circumferential skin excision was performed on the tails of mice to remove the superficial lymphatics. In summary, these findings suggest that IL-10 plays an important role in delayed wound healing in the setting of lymphatic dysfunction.

  1. Matrix metalloproteinases in impaired wound healing

    OpenAIRE

    auf dem Keller, Ulrich; Sabino,Fabio

    2015-01-01

    Fabio Sabino, Ulrich auf dem Keller Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland Abstract: Cutaneous wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to finally re-establish the skin's barrier function upon injury. Proteolytic enzymes and in particular matrix metalloproteinases (MMPs) contribute to all phas...

  2. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  3. Burn Wound Mucormycosis: A Case Study on Poor Wound Healing.

    Science.gov (United States)

    Stanistreet, Bryan; Bell, Derek

    Mucormycosis is a rare, rapidly progressive and often fatal fungal infection. The rarity of the condition lends itself to unfamiliarity, delayed treatment, and poor outcomes. Diagnosis of fungal infections early enough to enable appropriate treatment occurs in less than half of affected patients. A 56-year-old male with a history of diabetes mellitus II, hepatitis C, and intravenous drug abuse was involved in a rollover motor vehicle accident. He sustained circumferential partial and full-thickness burns to his lower extremities with 20% BSA burns. He ultimately required a below-knee amputation of his right lower extremity due to poor wound healing and nonviability of the soft tissue and foot. Debridement found muscle fibers that were necrotic and purulent. Pathology revealed Mucor species with extensive vascular invasion. This case and discussion highlights the importance of maintaining vigilance for mycotic infections and acting appropriately when there are concerning signs and symptoms of serious wound complications. Caretakers of severe trauma patients should have a high level of suspicion for complications and be cognizant of the American Burn Association's guidelines for systemic inflammatory response syndrome and sepsis. Progressive necrosis outside the confines of the original burn wound should raise concern for impaired wound healing, an immunocompromised state or an underlying infection.

  4. A Bilayer Engineered Skin Substitute for Wound Repair in an Irradiation-Impeded Healing Model on Rat

    OpenAIRE

    2015-01-01

    Objective: An engineered skin substitute is produced to accelerate wound healing by increasing the mechanical strength of the skin wound via high production of collagen bundles. During the remodeling stage of wound healing, collagen deposition is the most important event. The collagen deposition process may be altered by nutritional deficiency, diabetes mellitus, microbial infection, or radiation exposure, leading to impaired healing. This study describes the fabrication of an engineered bila...

  5. Effect of fibroblast-seeded artificial dermis on wound healing.

    Science.gov (United States)

    Jang, Joon Chul; Choi, Rak-Jun; Han, Seung-Kyu; Jeong, Seong-Ho; Kim, Woo-Kyung

    2015-04-01

    In covering wounds, efforts should include use of the safest and least invasive methods with a goal of achieving optimal functional and cosmetic outcome. The recent development of advanced technology in wound healing has triggered the use of cells and/or biological dermis to improve wound healing conditions. The purpose of the study was to evaluate the effects of fibroblast-seeded artificial dermis on wound healing efficacy.Ten nude mice were used in this study. Four full-thickness 6-mm punch wounds were created on the dorsal surface of each mouse (total, 40 wounds). The wounds were randomly assigned to one of the following 4 treatments: topical application of Dulbecco phosphate-buffered saline (control), human fibroblasts (FB), artificial dermis (AD), and human fibroblast-seeded artificial dermis (AD with FB). On the 14th day after treatment, wound healing rate and wound contraction, which are the 2 main factors determining wound healing efficacy, were evaluated using a stereoimage optical topometer system, histomorphological analysis, and immunohistochemistry.The results of the stereoimage optical topometer system demonstrated that the FB group did not have significant influence on wound healing rate and wound contraction. The AD group showed reduced wound contraction, but wound healing was delayed. The AD with FB group showed decreased wound contraction without significantly delayed wound healing. Histomorphological analysis exhibited that more normal skin structure was regenerated in the AD with FB group. Immunohistochemistry demonstrated that the AD group and the AD with FB group produced less α-smooth muscle actin than the control group, but this was not shown in the FB group.Fibroblast-seeded artificial dermis may minimize wound contraction without significantly delaying wound healing in the treatment of skin and soft tissue defects.

  6. Evaluation of wound healing activity of Tecomaria capensis leaves

    Institute of Scientific and Technical Information of China (English)

    Saini NK; Singhal M; Srivastava B

    2012-01-01

    The aim of the present study was to evaluate the potential wound healing activity of Tecomaria capensis leaves extract (TCLE) using different models in rats.(a) Excision wound model,(b) Incision wound model and (c) Dead space wound model.TCLE (100,300,1 000 and 2 000 mg.kg-1) was given to rats to observe acute toxicity.No toxicity was found in animals till 14 days.TCLE 5% and 10% ointment were applied topically in excision wound model and incision wound model.TCLE 200 and 400 mg·kg-1 were given orally in dead space wound model.It improved healing in excision wound model,increased breaking strength of tissue in incision wound model,and increased granuloma breaking strength and hydroxyproline content in dead space wound model.These results showed that TCLE presents significant wound healing activity.

  7. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process

    OpenAIRE

    Sun, Yung-Shin; Peng, Shih-Wei; Cheng, Ji-Yen

    2012-01-01

    The wound-healing assay is an easy and economical way to quantify cell migration under diverse stimuli. Traditional assays such as scratch assays and barrier assays are widely and commonly used, but neither of them can represent the complicated condition when a wound occurs. It has been suggested that wound-healing is related to electric fields, which were found to regulate wound re-epithelialization. As a wound occurs, the disruption of epithelial barrier short-circuits the trans-epithelial ...

  8. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice.

    Science.gov (United States)

    Demyanenko, Ilya A; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Fedorov, Artem V; Manskikh, Vasily N; Zinovkin, Roman A; Pletjushkina, Olga Yu; Chernyak, Boris V; Skulachev, Vladimir P; Popova, Ekaterina N

    2017-01-01

    Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db(-)/db(-) mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.

  9. [Stem cells and growth factors in wound healing].

    Science.gov (United States)

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  10. Stem cells and growth factors in wound healing

    Directory of Open Access Journals (Sweden)

    Michał Pikuła

    2015-01-01

    Full Text Available Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF, fibroblast growth factor (FGF, platelet-derived growth factor (PDGF, transforming growth factor (TGF, vascular endothelial growth factor (VEGF. Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  11. Effects of genistein on early-stage cutaneous wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: jjhkim@cau.ac.kr [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  12. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing.

    Science.gov (United States)

    Kimball, Andrew S; Joshi, Amrita D; Boniakowski, Anna E; Schaller, Matthew; Chung, Jooho; Allen, Ronald; Bermick, Jennifer; Carson, William F; Henke, Peter K; Maillard, Ivan; Kunkel, Steve L; Gallagher, Katherine A

    2017-01-01

    Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAML(floxed)Lyz2(Cre+) ) demonstrated delayed early healing (days 1-3) and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D), Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAML(floxed)Lyz2(Cre+) on a high-fat diet), improved wound healing was seen at late time points (days 6-7). These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  13. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing

    Directory of Open Access Journals (Sweden)

    Andrew S. Kimball

    2017-06-01

    Full Text Available Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAMLfloxedLyz2Cre+ demonstrated delayed early healing (days 1–3 and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D, Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAMLfloxedLyz2Cre+ on a high-fat diet, improved wound healing was seen at late time points (days 6–7. These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  14. Principles of Wound Management and Wound Healing in the Exotic Pets

    Science.gov (United States)

    Mickelson, Megan A.; Mans, Christoph; Colopy, Sara A.

    2015-01-01

    Synopsis The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regards to the animal’s temperament and behavior, unique anatomy and small size, and tendency towards secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately impact wound healing. This article summarizes the general phases of wound healing, factors that impact healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing. PMID:26611923

  15. Copper-taurine (CT): a potential organic compound to facilitate infected wound healing.

    Science.gov (United States)

    Tian, Xiliang; Zhang, Zhen; Wang, Shouyu; Diao, Yunpeng; Zhao, Zexu; Lv, Decheng

    2009-12-01

    Taurine plays various important roles in a large number of physiological and pathological conditions in human body, such as the cytoprotective functions, antioxidant, anti-inflammatory and anti-apoptosis effects. Copper demonstrates a critical effect in the processes of wound healing, including induction of endothelial growth factor, angiogenesis, antimicrobial potency and expression and stabilization of extracellular matrix. Both copper and taurine are effective in accelerating wound healing, but it was rarely reported about the formation of copper complexes of taurine and the effect of the compound in wound healing. Generally speaking, to human body, organic compound could provide a better bioavailability than the inorganic ones. We thus hypothesize that taurine combined with copper would be a new therapeutic candidate for infected wound healing. We name the new compound copper-taurine (CT). Copper-taurine (CT) added into the wound dressings would not only reduce the risk of wound infection, but, more importantly, would stimulate wound repair directly. The sustained release of copper and taurine from the wound dressings into the wound site would together facilitate the wound healing more potently.

  16. Complements and the Wound Healing Cascade: An Updated Review

    Directory of Open Access Journals (Sweden)

    Hani Sinno

    2013-01-01

    Full Text Available Wound healing is a complex pathway of regulated reactions and cellular infiltrates. The mechanisms at play have been thoroughly studied but there is much still to learn. The health care system in the USA alone spends on average 9 billion dollars annually on treating of wounds. To help reduce patient morbidity and mortality related to abnormal or prolonged skin healing, an updated review and understanding of wound healing is essential. Recent works have helped shape the multistep process in wound healing and introduced various growth factors that can augment this process. The complement cascade has been shown to have a role in inflammation and has only recently been shown to augment wound healing. In this review, we have outlined the biology of wound healing and discussed the use of growth factors and the role of complements in this intricate pathway.

  17. New insights into microRNAs in skin wound healing.

    Science.gov (United States)

    Fahs, Fatima; Bi, Xinling; Yu, Fu-Shin; Zhou, Li; Mi, Qing-Sheng

    2015-12-01

    Chronic wounds are a major burden to overall healthcare cost and patient morbidity. Chronic wounds affect a large portion of the US, and billions of healthcare dollars are spent in their treatment and management. microRNAs (miRNAs) are small, noncoding double-stranded RNAs that post-transcriptionally downregulate the expression of protein-coding genes. Studies have identified miRNAs involved in all three phases of wound healing including inflammation, proliferation, and remodeling. Some miRNAs have been demonstrated in vitro with primary keratinocyte wound healing model and in vivo with mouse wound healing model through regulation of miRNA expression to affect the wound healing process. This review updates the current miRNAs involved in wound healing and discusses the future therapeutic implications and research directions. © 2015 International Union of Biochemistry and Molecular Biology.

  18. Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing.

    Science.gov (United States)

    Boniakowski, Anna E; Kimball, Andrew S; Jacobs, Benjamin N; Kunkel, Steven L; Gallagher, Katherine A

    2017-07-01

    The healing of cutaneous wounds is dependent on the progression through distinct, yet overlapping phases of wound healing, including hemostasis, inflammation, proliferation, and resolution/remodeling. The failure of these phases to occur in a timely, progressive fashion promotes pathologic wound healing. The macrophage (MΦ) has been demonstrated to play a critical role in the inflammatory phase of tissue repair, where its dynamic plasticity allows this cell to mediate both tissue-destructive and -reparative functions. The ability to understand and control both the initiation and the resolution of inflammation is critical for treating pathologic wound healing. There are now a host of studies demonstrating that metabolic and epigenetic regulation of gene transcription can influence MΦ plasticity in wounds. In this review, we highlight the molecular and epigenetic factors that influence MΦ polarization in both physiologic and pathologic wound healing, with particular attention to diabetic wounds. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-09-01

    Full Text Available To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT and activated partial thromboplastin time (APTT blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds.

  20. Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing

    OpenAIRE

    Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D.; Frank W LoGerfo; Veves, Aristidis

    2009-01-01

    This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization ...

  1. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  2. Haematological changes and wound healing effects of sildenafil ...

    African Journals Online (AJOL)

    ADEYEYE

    2016-12-07

    Dec 7, 2016 ... Sokoto Journal of Veterinary Sciences, Volume 15 (Number 1). April ... and Biochemistry, Faculty of Veterinary Medicine, University .... citrate could potentiate wound healing process in ..... late inflammatory response to wound ...

  3. Investigation on the wound healing activity of oleo-resin from Copaifera langsdorffi in rats.

    Science.gov (United States)

    Paiva, L A F; de Alencar Cunha, K M; Santos, F A; Gramosa, N V; Silveira, E R; Rao, V S N

    2002-12-01

    The wound healing activity of oleo-resin from Copaifera langsdorffii Desf. (Leguminaceae) bark was evaluated in rats on experimental wounds. The oleo-resin was tested by monitoring wound contraction in excised wounds and by measuring tensile strength in healing incision wounds. The topical application of oleo-resin at a concentration of 4% accelerated wound contraction in open wounds. The mean values of wound contraction in oleo-resin treated rats on day 9 was 84.05% +/- 2.37% as against 51.29% +/- 9.54% seen in controls and the difference was statistically significant (p contraction were observed on days 12, 15, 18 and 21. Also, the tensile strength in healing incised wounds was found to be significantly higher in the group of animals treated with 4% oleo-resin on day 5 but not on days 7 and 12 (controls: 35.95 +/- 7.44 g/cm; oleo-resin: 71.48 +/- 5.77 g/cm; p resin on wound healing and justify its traditional use for the treatment of wounds.

  4. DYNAMICS OF WOUND HEALING AFTER SURGICAL INTERFERENCE ON PERIODONTAL TISSUES BY USING TRANSCRANIAL STIMULATION IN POSTOPERATIVE PERIOD

    OpenAIRE

    Kondrateva, A.

    2011-01-01

    Results of morphological research of marginal gingival tissues before surgical treatment and in process of wound healing in patients with traditional postoperative period and application of transcranial stimulation are presented. It is shown that transcranial stimulation accelerates wound healing and is an effective method of non-drug treatment of periodontal patients after surgery.

  5. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  6. Biologic therapeutics and molecular profiling to optimize wound healing.

    Science.gov (United States)

    Menke, Marie N; Menke, Nathan B; Boardman, Cecelia H; Diegelmann, Robert F

    2008-11-01

    Non-healing wounds represent a significant cause of morbidity and mortality for a large portion of the adult population. Wounds that fail to heal are entrapped in a self-sustaining cycle of chronic inflammation leading to the destruction of the extracellular matrix. Among cancer patients, malnutrition, radiation, physical dehabilitation, chemotherapy, and the malignancy itself increase the likelihood of chronic wound formation, and these co-morbidity factors inhibit the normal wound healing process. Current wound treatments are aimed at some, but not all, of the underlying causes responsible for delayed healing of wounds. These impediments block the normal processes that allow normal progression through the specific stages of wound healing. This review summarizes the current information regarding the management and treatment of complex wounds that fail to heal normally and offers some insights into novel future therapies [Menke N, Ward KR, Diegelmann R. Non-healing wounds. Emerg Med Rep 2007; 28(4).,Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007;25:19-25].

  7. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effects of isoniazid and niacin on experimental wound-healing

    DEFF Research Database (Denmark)

    Weinreich, Jürgen; Ågren, Sven Per Magnus; Bilali, Erol

    2010-01-01

    There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues.......There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues....

  9. Stem cells and growth factors in wound healing

    OpenAIRE

    Michał Pikuła; Paulina Langa; Paulina Kosikowska; Piotr Trzonkowski

    2015-01-01

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound...

  10. Wound Healing Potential of Elaeis guineensis Jacq Leaves in an Infected Albino Rat Model

    Directory of Open Access Journals (Sweden)

    Sreenivasan Sasidharan

    2010-04-01

    Full Text Available Ethnopharmacological relevance:Elaeis guineensisJacq (Arecaceae is one of the plants that are central to the lives of traditional societies in West Africa. It has been reported as a traditional folkloric medicine for a variety of ailments. The plant leaves are also used in some parts of Africa for wound healing, but there are no scientific reports on any wound healing activity of the plant. Aim of the study:To investigate the effects of E. guineensis leaf on wound healing activity in rats. Methods: A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w. Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups. Results: Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count. Conclusions: E. guineensis accelerated wound healing in rats, thus supporting this traditional use.

  11. Wound healing potential of Elaeis guineensis Jacq leaves in an infected albino rat model.

    Science.gov (United States)

    Sasidharan, Sreenivasan; Nilawatyi, Rajoo; Xavier, Rathinam; Latha, Lachimanan Yoga; Amala, Rajoo

    2010-04-30

    Elaeis guineensis Jacq (Arecaceae) is one of the plants that are central to the lives of traditional societies in West Africa. It has been reported as a traditional folkloric medicine for a variety of ailments. The plant leaves are also used in some parts of Africa for wound healing, but there are no scientific reports on any wound healing activity of the plant. To investigate the effects of E. guineensis leaf on wound healing activity in rats. A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w). Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups. Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count. E. guineensis accelerated wound healing in rats, thus supporting this traditional use.

  12. Assessment of circular wound healing in rats after exposure to 808-nm laser pulses during specific healing phases.

    Science.gov (United States)

    Tabakoglu, Hasim O; Sani, Musbahu M; Uba, Abdullahi I; Abdullahi, Umar A

    2016-04-01

    Low-level laser therapy (LLLT), is an important application modality for the advancement of wound healing processes. In this study, histological and morphometric analyses have been made to understand and compare effects of high-power 808-nm pulses on circular skin wounds among groups irradiated immediately after wounding and groups irradiated at specific stages of the healing period. Experimental groups were as follows: Laser Therapy (LT) was received as three sessions of laser irradiation (6.38 J/cm2, 1.276 W/cm2, 808 nm) immediately after wounding (Inflammatory group, n = 12), 24 hours post-wounding (Proliferative group, n = 12), and 72 hours post-wounding (Remodeling group, n = 12); the Control group (n = 12) received no irradiation. Histological analyses were performed on the 3rd, 7th, and 14th days post-wounding. Mean wound diameters were 5 mm for all groups. On Day 7, wound diameters were measured as 2.99 ± 0.17, 2.95 ± 0.3, 2.52 ± 0.11, and 2.41 ± 0.34 mm for the Control, Inflammatory, Proliferative, and Remodeling groups, respectively. At 2 weeks post-wounding, dermal tissue in the Inflammatory and Proliferative groups closed superficially, while 1.30 ± 0.1 mm and 1.30 ± 0.06 mm openings remained in the Control and Remodeling groups, respectively. Mean wound healing rates (WHR) for all treatment groups were found to differ significantly from the control group (P wounding (late inflammatory, early proliferative stage) as demonstrated by increases in granulation tissue, fibroblasts and collagen deposition, which lead to faster rates of wound contraction and thus accelerated healing. © 2015 Wiley Periodicals, Inc.

  13. Wound healing and all-cause mortality in 958 wound patients treated in home care.

    Science.gov (United States)

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B E

    2015-09-01

    Skin wounds are associated with significant morbidity and mortality. Data are, however, not readily available for benchmarking, to allow prognostic evaluation, and to suggest when involvement of wound-healing experts is indicated. We, therefore, conducted an observational cohort study to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died. During the first 3 weeks of therapy, healing was most likely to occur in surgical wounds (surgical vs. other wounds: adjusted hazard ratio [AHR] 2.21, 95% confidence interval 1.50-3.23), while from 3 weeks to 3 months of therapy, cancer wounds, and pressure ulcers were least likely to heal (cancer vs. other wounds: AHR 0.12, 0.03-0.50; pressure vs. other wounds: AHR 0.44, 0.27-0.74). Cancer wounds and pressure ulcers were further associated with a three times increased probability of mortality compared with other wounds (cancer vs. other wounds: AHR 3.19, 1.35-7.50; pressure vs. other wounds: AHR 2.91, 1.56-5.42). In summary, the wound type was found to be a significant predictor of healing and mortality with cancer wounds and pressure ulcers being associated with poor prognosis. © 2015 by the Wound Healing Society.

  14. Laser Biostimulation Of Wound Healing In Arteriopatic Patients

    Science.gov (United States)

    Tallarida, G.; Baldoni, F.; Raimondi, G.; Massaro, M.; Peruzzi, G.; Bertolotti, M.; Ferrari, A.; Scudieri, F.

    1981-05-01

    Low-power laser irradiation has been employed in the attempt to accelerate the wound-healing of ischemic cutaneous ulcerations with threatening or manifest gangrene due to arteriosclerosis obliterans of the lower limbs. Irradiation was performed by using a low-power He-Ne gas laser of 6328 Å wavelength and was concentrated at the peripheral zone of the lesions. The preliminary results of the study indicate that laser stimulation might be new approach in the conservative menagement of the ischemic ulcers in patients with severe peripheral obstructive arteriopaties not suited for arterial reconstruction.

  15. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression.

    Science.gov (United States)

    Lai, Jiann-Jyh; Lai, Kuo-Pao; Chuang, Kuang-Hsiang; Chang, Philip; Yu, I-Chen; Lin, Wen-Jye; Chang, Chawnshang

    2009-12-01

    Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.

  16. Topical application of dressing with amino acids improves cutaneous wound healing in aged rats.

    Science.gov (United States)

    Corsetti, Giovanni; D'Antona, Giuseppe; Dioguardi, Francesco Saverio; Rezzani, Rita

    2010-09-01

    The principal goal in treating surgical and non-surgical wounds, in particular for aged skin, is the need for rapid closure of the lesion. Cutaneous wound healing processes involve four phases including an inflammatory response with the induction of pro-inflammatory cytokines. If inflammation develops in response to bacterial infection, it can create a problem for wound closure. Reduced inflammation accelerates wound closure with subsequent increased fibroblast function and collagen synthesis. On the contrary, prolonged chronic inflammation results in very limited wound healing. Using histological and immunohistochemical techniques, we investigated the effects of a new wound dressing called Vulnamin that contains four essential amino acids for collagen and elastin synthesis plus sodium ialuronate (Na-Ial), compared with Na-Ial alone, in closure of experimental cutaneous wounds of aged rats. Our results showed that the application of Vulnamin dressings modulated the inflammatory response with a reduction in the number of inflammatory cells and inducible nitric oxide synthase (iNOS) immunolocalisation, while increasing endothelial nitric oxide synthase (eNOS) and transforming growth factor-beta1 (TGF-beta1) immunolocalisation. Furthermore, the dressing increased the distribution density of fibroblasts and aided the synthesis of thin collagen fibers resulting in a reduction in healing time. The nutritive approach using this new wound dressing can provide an efficacious and safe strategy to accelerate wound healing in elderly subjects, simplifying therapeutic procedures and leading to an improved quality of life. 2009 Elsevier GmbH. All rights reserved.

  17. Platelet gel for healing cutaneous chronic wounds.

    Science.gov (United States)

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  18. The contribution of interleukin-2 to effective wound healing.

    Science.gov (United States)

    Doersch, Karen M; DelloStritto, Daniel J; Newell-Rogers, M Karen

    2017-02-01

    Ineffective skin wound healing is a significant source of morbidity and mortality. Roughly 6.5 million Americans experience chronically open wounds and the cost of treating these wounds numbers in the billions of dollars annually. In contrast, robust wound healing can lead to the development of either hypertrophic scarring or keloidosis, both of which can cause discomfort and can be cosmetically undesirable. Appropriate wound healing requires the interplay of a variety of factors, including the skin, the local microenvironment, the immune system, and the external environment. When these interactions are perturbed, wounds can be a nidus for infection, which can cause them to remain open an extended period of time, or can scar excessively. Interleukin-2, a cytokine that directs T-cell expansion and phenotypic development, appears to play an important role in wound healing. The best-studied role for Interleukin-2 is in influencing T-cell development. However, other cell types, including fibroblasts, the skin cells responsible for closing wounds, express the Interleukin-2 receptor, and therefore may respond to Interleukin-2. Studies have shown that treatment with Interleukin-2 can improve the strength of healed skin, which implicates Interleukin-2 in the wound healing process. Furthermore, diseases that involve impaired wound healing, such as diabetes and systemic lupus erythematosus, have been linked to deficiencies in Interleukin-2 or defects Interleukin-2-receptor signaling. The focus of this review is to summarize the current understanding of the role of Interleukin-2 in wound healing, to highlight diseases in which Interleukin-2 and its receptor may contribute to impaired wound healing, and to assess Interleukin-2-modulating approaches as potential therapies to improve wound healing.

  19. Antimycotic ciclopirox olamine in the diabetic environment promotes angiogenesis and enhances wound healing.

    Directory of Open Access Journals (Sweden)

    Sae Hee Ko

    Full Text Available Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1α. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.

  20. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    Science.gov (United States)

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase.

  1. Muscle wound healing in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Schmidt, Jacob Günther; Andersen, Elisabeth Wreford; Ersbøll, Bjarne Kjær

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post......-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3......, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least...

  2. Wound healing potential of Pterocarpus santalinus linn: a pharmacological evaluation.

    Science.gov (United States)

    Biswas, Tuhin Kanti; Maity, Lakshmi Narayan; Mukherjee, Biswapati

    2004-09-01

    The need for new therapeutics for wound healing has encouraged the drive to examine the nature and value of plant products. Ayurveda, the Indian traditional system of medicine, mentions the values of medicinal plants for wound healing. One of these is Pterocarpus santalinus. This article describes a pharmacological study to evaluate its toxicity as well as wound-healing potential in animal studies. Powder made from the wood of the P. santalinus tree was used to make up an ointment in a petroleum jelly base. No toxic effects were observed in 72 hours. Studies were done on punch and burn wound models on normal and diabetic rats using the test ointment, untreated and vehicle controls, and standard therapy. Physical and biochemical measurements were made. The test ointment-treated wounds healed significantly faster. On healing, collagenesis and biochemical measurements yielded supportive data. These studies permit the conclusion that the P. santalinus ointment is safe and effective in treating acute wounds in animal models.

  3. Human skin transcriptome during superficial cutaneous wound healing.

    Science.gov (United States)

    Nuutila, Kristo; Siltanen, Antti; Peura, Matti; Bizik, Jozef; Kaartinen, Ilkka; Kuokkanen, Hannu; Nieminen, Tapio; Harjula, Ari; Aarnio, Pertti; Vuola, Jyrki; Kankuri, Esko

    2012-01-01

    Healing of the epidermis is a crucial process for maintaining the skin's defense integrity and its resistance to environmental threats. Compromised wound healing renders the individual readily vulnerable to infections and loss of body homeostasis. To clarify the human response of reepithelialization, we biopsied split-thickness skin graft donor site wounds immediately before and after harvesting, as well as during the healing process 3 and 7 days thereafter. In all, 25 biopsies from eight patients qualified for the study. All samples were analyzed by genome-wide microarrays. Here, we identified the genes associated with normal skin reepithelialization over time and organized them by similarities according to their induction or suppression patterns during wound healing. Our results provide the first elaborate insight into the transcriptome during normal human epidermal wound healing. The data not only reveal novel genes associated with epidermal wound healing but also provide a fundamental basis for the translational interpretation of data acquired from experimental models.

  4. Traditional Therapies for Skin Wound Healing.

    Science.gov (United States)

    Pereira, Rúben F; Bártolo, Paulo J

    2016-05-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  5. Traditional Therapies for Skin Wound Healing

    Science.gov (United States)

    Pereira, Rúben F.; Bártolo, Paulo J.

    2016-01-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  6. Wound healing properties and kill kinetics of Clerodendron splendens G. Don, a Ghanaian wound healing plant

    Directory of Open Access Journals (Sweden)

    Stephen Y Gbedema

    2010-01-01

    Full Text Available As part of our general objective of investigating indigenous plants used in wound healing in Ghana, we hereby report our findings from some in vitro and in vivo studies related to wound healing activities of Clerodendron splendens G. Don (Verbanaceae. Methanolic extract of the aerial parts of the plant was tested for antimicrobial activity against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Micrococcus flavus, as well as resistant strains of Staph. aureus SA1199B, RN4220 and XU212, Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteous mirabilis, Klebsiella pneumoniae and Candida albicans using the micro-well dilution method. Survivor-time studies of the microorganisms, radical scavenging activity using 2,2′-diphenylpicrylhydrazyl (DPPH and various in vivo wound healing activity studies were also conducted on the extract. The extract exhibited biostatic action against all the test microorganisms with a Minimum Inhibition Concentration (MIC ranging between 64 and 512 μg/ml and a free radical scavenging property with an IC 50 value of 103.2 μg/ml. The results of the in vivo wound healing tests showed that upon application of C. splendens ointment, there was a reduction in the epithelization period from 26.7 days (control to 13.6 days along with a marked decrease in the scar area from 54.2 mm 2 (control to 25.2 mm 2 . Significant increase in the tensile strength and hydroxyproline content were also observed as compared to the control and was comparable to nitrofurazone. The above results appear to justify the traditional use of C. splendens in wound healing and treatment of skin infections in Ghana.

  7. Plasminogen is a critical regulator of cutaneous wound healing.

    Science.gov (United States)

    Sulniute, Rima; Shen, Yue; Guo, Yong-Zhi; Fallah, Mahsa; Ahlskog, Nina; Ny, Lina; Rakhimova, Olena; Broden, Jessica; Boija, Hege; Moghaddam, Aliyeh; Li, Jinan; Wilczynska, Malgorzata; Ny, Tor

    2016-05-02

    Wound healing is a complicated biological process that consist of partially overlapping inflammatory, proliferation and tissue remodelling phases. A successful wound healing depends on a proper activation and subsequent termination of the inflammatory phase. The failure to terminate the inflammation halts the completion of wound healing and is a known reason for formation of chronic wounds. Previous studies have shown that wound closure is delayed in plasminogen-deficient mice, and a role for plasminogen in dissection of extracellular matrix was suggested. However, our finding that plasminogen is transported to the wound by inflammatory cells early during the healing process, where it potentiates inflammation, indicates that plasminogen may also have other roles in the wound healing process. Here we report that plasminogen-deficient mice have extensive fibrin and neutrophil depositions in the wounded area long after re-epithelialisation, indicating inefficient debridement and chronic inflammation. Delayed formation of granulation tissue suggests that fibroblast function is impaired in the absence of plasminogen. Therefore, in addition to its role in the activation of inflammation, plasminogen is also crucial for subsequent steps, including resolution of inflammation and activation of the proliferation phase. Importantly, supplementation of plasminogen-deficient mice with human plasminogen leads to a restored healing process that is comparable to that in wild-type mice. Besides of being an activator of the inflammatory phase during wound healing, plasminogen is also required for the subsequent termination of inflammation. Based on these results, we propose that plasminogen may be an important future therapeutic agent for wound treatment.

  8. A small peptide with potential ability to promote wound healing.

    Science.gov (United States)

    Tang, Jing; Liu, Han; Gao, Chen; Mu, Lixian; Yang, Shilong; Rong, Mingqiang; Zhang, Zhiye; Liu, Jie; Ding, Qiang; Lai, Ren

    2014-01-01

    Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β) are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2]) containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1) the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2) the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3) tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6) in murine macrophages and activating mitogen-activated protein kinases (MAPK) signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β), tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  9. A small peptide with potential ability to promote wound healing.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  10. Connexins in wound healing; perspectives in diabetic patients.

    Science.gov (United States)

    Becker, David L; Thrasivoulou, Christopher; Phillips, Anthony R J

    2012-08-01

    Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  11. The effects of topical application of sunflower-seed oil on open wound healing in lambs

    Directory of Open Access Journals (Sweden)

    Marques Silvio Romero

    2004-01-01

    Full Text Available PURPOSE: To demonstrate the effects of the use of sunflower seed oil on the treatment of skin wounds. METHODS: Eighteen male Saint Inês lambs were divided in 3 groups according to the pos-operative (7, 14 and 21 days. After antisepsis and local anestesia, two 4cm² wounds on each side of the thoracic region, close to the scapule were surgically produced. The experimental wounds were treated with sunflower seed oil, with high concentration of linoleic acid (LA, and the control ones with sterilized Vaseline. Biopsies of the pos-operative wounds tissue were performed on the 7th, 14th, 21st days and histologically evaluated. RESULTS: Topic application of sunflower seed oil accelerated healing process at the 7th and 21st days, reducing wound area and increasing wound contraction. Granulation tissue increased faster on treated wounds. The epidermis of the treated wounds was completely recovered when compared to control wounds. CONCLUSION: The topic use of sunflower seed oil accelerated the healing process, and it can be used as an alternative therapy on second intention wound healing.

  12. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing.

    Science.gov (United States)

    Zhou, Xin; Wang, He; Zhang, Jimin; Li, Xuemei; Wu, Yifan; Wei, Yongzhen; Ji, Shenglu; Kong, Deling; Zhao, Qiang

    2017-03-09

    Wound healing dressings are increasingly needed clinically due to the large number of skin damage annually. Nitric oxide (NO) plays a key role in promoting wound healing, thus biomaterials with NO-releasing property receive increasing attention as ideal wound dressing. In present study, we prepared a novel functional wound dressing by combining electrospun poly(ε-caprolactone) (PCL) nonwoven mat with chitosan-based NO-releasing biomaterials (CS-NO). As-prepared PCL/CS-NO dressing released NO sustainably under the physiological conditions, which was controlled by the catalysis of β-galactosidase. In vivo wound healing characteristics were further evaluated on full-thickness cutaneous wounds in mice. Results showed that PCL/CS-NO wound dressings remarkably accelerated wound healing process through enhancing re-epithelialization and granulation formation and effectively improved the organization of regenerated tissues including epidermal-dermal junction, which could be ascribed to the pro-angiogenesis, immunomodulation, and enhanced collagen synthesis provided by the sustained release of NO. Therefore, PCL/CS-NO may be a promising candidate for wound dressings, especially for the chronic wound caused by the ischemia.

  13. Influence of Helium-Neon Laser Photostimulation on Excision Wound Healing in Wistar Rats

    Directory of Open Access Journals (Sweden)

    B. S. Nayak

    2007-01-01

    Full Text Available The importance of laser photostimulation is now accepted generally but the laser light facilitates wound healing and tissue repair remains poorly understood. So we have examined the hypothesis that the laser photo stimulation can enhances the collagen production in excision wounds using excision wound model in Wister rat model. The circular wounds were created on the dorsum of the back of the animals. The animals were divided into two groups. The experimental group (n = 12 wound was treated with 632.8 nm He-Ne laser at a dose of 2.1J cm-2 for five days a week until the complete healing. The control group was sham irradiated. The parameters studied were wound area, period of epithelization and hydroxyproline. Significant increase in the hydroxyproline content (p<0.001 and reduction in the wound size (p<0.001 was observed in study group when compared to controls. The significant epithelization (p<0.001 was noticed. The experimental wounds were, on average, fully healed by the 15th day, whereas the control group healed, on average by 22nd day. Wound contraction together with the hydroxyproline and experimental observations suggested that low intensity Helium-Neon laser photo stimulation facilitates the tissue repair process by accelerating collagen production in chronic wounds.

  14. Advanced Therapeutic Dressings for Effective Wound Healing--A Review.

    Science.gov (United States)

    Boateng, Joshua; Catanzano, Ovidio

    2015-11-01

    Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care.

  15. Effects of Autologous Platelets Rich Plasma on Full-thickness Cutaneous Wounds Healing in Goats

    Directory of Open Access Journals (Sweden)

    A.H. AL-Bayati

    2013-12-01

    Full Text Available This investigation was designed to evaluate the role of Platelet-Rich Plasma (PRP on healing of experimentally wounded skin in ten adult bucks, aged 2-3 years and weighing 25-30 kg. The animals divided randomly and equally into (control and treatment groups. Four of 3×3 cm of full-thickness square cutaneous wounds was induced on both sides of the lateral thoracic region of each animal under the effect of local anesthetic proceeding by xylazine hydrochloride as a sedative. A pair of left wounds was treated by injection with 5 mL of autonomous PRP (treatment group, 2 mm lateral to the wound edges and in the wound center. While, the right wound were injected by 5 mL of sterile saline by the same procedure (control group. Each group was divided into five subgroups (four wounds of each, for morph metrical and histopathological evaluations of wound healing process represented by percent of wound contraction, epithelialization and total healing at 3, 7, 14, 21 and 28 days post-wounding. The morphometrical appearance of the wounds which treated with PRP, showed that the contraction, re-epithelialization and healing percent were statically significant (p<0.05 in comparison with control wounds during four weeks study. Based on histopathological results, there was re-epithelialization of epidermis, with highly cellular granulation tissue, well differentiated keratinocytes of epidermis with scar formation in the dermis of the sectioned skin. We conclude that local injection of PRP leads to accelerate and improvement of wound healing in comparison to control wounds.

  16. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

    Science.gov (United States)

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang; Choi, Kang-Yell

    2015-06-29

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. © 2015 Lee et al.

  17. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing

    Science.gov (United States)

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang

    2015-01-01

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  18. Topical formulations and wound healing applications of chitosan.

    Science.gov (United States)

    Ueno, H; Mori, T; Fujinaga, T

    2001-11-05

    Chitosan is being used as a wound-healing accelerator in veterinary medicine. To our knowledge, chitosan enhances the functions of inflammatory cells such as polymorphonuclear leukocytes (PMN) (phagocytosis, production of osteopontin and leukotriene B4), macrophages (phagocytosis, production of interleukin (IL)-1, transforming growth factor beta 1 and platelet derived growth factor), and fibroblasts (production of IL-8). As a result, chitosan promotes granulation and organization, therefore chitosan is beneficial for the large open wounds of animals. However, there are some reported complications of chitosan application. Firstly, chitosan causes lethal pneumonia in dogs which are given a high dose of chitosan. In spite of application of chitosan to various species, this finding is observed only in dogs. Secondly, intratumor injection of chitosan on mice bearing tumor increases the rate of metastasis and tumor growth. Therefore, it is important to consider these effects of chitosan, prior to drug delivery.

  19. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment.

    Science.gov (United States)

    Park, Shin Ae; Teixeira, Leandro B C; Raghunathan, Vijay Krishna; Covert, Jill; Dubielzig, Richard R; Isseroff, Roslyn Rivkah; Schurr, Michael; Abbott, Nicholas L; McAnulty, Jonathan; Murphy, Christopher J

    2014-01-01

    The excisional dorsal full-thickness skin wound model with or without splinting is widely utilized in wound healing studies using diabetic or normal mice. However, the effects of splinting on dermal wound healing have not been fully characterized, and there are limited data on the direct comparison of wound parameters in the splinted model between diabetic and normal mice. We compared full-thickness excisional dermal wound healing in db/db and heterozygous mice by investigating the effects of splinting, semi-occlusive dressing, and poly(ethylene glycol) treatment. Two 8-mm full-thickness wounds were made with or without splinting in db/db and heterozygous mice. Body weights, splint maintenance, wound contraction, wound closure, and histopathological parameters including reepithelialization, wound bed collagen deposition, and inflammation were compared between groups. Our results show that silicone splint application effectively reduced wound contraction in heterozygous and db/db mice. Splinted wounds, as opposed to nonsplinted wounds, exhibited no significant differences in wound closure between heterozygous and db/db mice. Finally, polyethylene glycol and the noncontact dressing had no significant effect on wound healing in heterozygous or db/db mice. We believe these findings will help investigators in selection of the appropriate wound model and data interpretation with fully defined parameters.

  20. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    Science.gov (United States)

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity

  1. Wound healing and all-cause mortality in 958 wound patients treated in home care

    DEFF Research Database (Denmark)

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B. E.

    2015-01-01

    Skin wounds are associated with significant morbidity and mortality. Data are, however, not readily available for benchmarking, to allow prognostic evaluation, and to suggest when involvement of wound-healing experts is indicated. We, therefore, conducted an observational cohort study...... to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound...... healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died...

  2. Evaluation of anti-bacterial and wound healing activity of the fruits of ...

    African Journals Online (AJOL)

    Evaluation of anti-bacterial and wound healing activity of the fruits of ... the functional roles of the fruits of Amorpha fruticosa L. during wound healing progress. ... fibroblasts proliferation and migration, leading to promotion of wound healing.

  3. Effects of low-level laser therapy on wound healing

    Directory of Open Access Journals (Sweden)

    Fabiana do Socorro da Silva Dias Andrade

    Full Text Available OBJECTIVE: To gather and clarify the actual effects of low-level laser therapy on wound healing and its most effective ways of application in human and veterinary medicine.METHODS: We searched original articles published in journals between the years 2000 and 2011, in Spanish, English, French and Portuguese languages, belonging to the following databases: Lilacs, Medline, PubMed and Bireme; Tey should contain the methodological description of the experimental design and parameters used.RESULTS: doses ranging from 3 to 6 J/cm2 appear to be more effective and doses 10 above J/cm2 are associated with deleterious effects. The wavelengths ranging from 632.8 to 1000 nm remain as those that provide more satisfactory results in the wound healing process.CONCLUSION: Low-level laser can be safely applied to accelerate the resolution of cutaneous wounds, although this fact is closely related to the election of parameters such as dose, time of exposure and wavelength.

  4. Effects of Copaiba Oil Topical Administration on Oral Wound Healing.

    Science.gov (United States)

    Wagner, Vivian Petersen; Webber, Liana Preto; Ortiz, Lisley; Rados, Pantelis Varvaki; Meurer, Luise; Lameira, Osmar Alves; Lima, Rafael Rodrigues; Martins, Manoela Domingues

    2017-08-01

    The effects of topical copaiba oil extract and topical corticosteroid were assessed on oral wound healing in an in vivo model using 96 male Wistar rats. Traumatic ulcers were caused in the dorsum of the tongue using a 3-mm punch tool. The animals were divided into: Control; Corticosteroid; Placebo and Copaiba oil Group. The animals received two daily applications of the products. The control group received only daily handling. Six rats in each group were euthanized at days 3, 5, 10 and 14. The animals were monitored daily to determine wound status. The weigh was assessed at day 0 and euthanasia day. The percentage of repair was calculated, and histopathological aspects were analyzed. The Kruskal-Wallis test was used to compare the results between groups and times of evaluation. Closing time was assessed through the log-rank test. The corticosteroid group lost more weight at days 10 and 14 than the control group (p oil group and the control group. We concluded that topical copaiba oil, in spite of being safe, did not accelerate the process of oral wound healing. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Otostegia persica extraction on healing process of burn wounds

    Directory of Open Access Journals (Sweden)

    Amin Ganjali

    2013-06-01

    Full Text Available PURPOSE: To investigate if the methanolic extract of the Otostegia persica can accelerating healing process of burn wound because of its anti-inflammatory and antioxidant effects. METHODS:Forty eight male Wistar rats were randomized into three study groups of 16 rats each. Burn wounds were created on dorsal part of shaved rats using a metal rod. In group I the burn wound was left without any treatment. Group was treated with topical silver sulfadiazine pomade. In group III, ointment containing the OP extract was administered. Skin biopsies were harvested from burn area on the 3rd, 5th, 14th and 21st days after burn and examined histologically. RESULTS: Re-epithelialization in the control group and in group II was lower than in group III. Re-epithelialization in groups II and III was significantly different from that in the control group. On the 5th day of the experiment, we assessed lower inflammation in the burn area compared to control group. This means that the inflammation was suppressed by methanolic extract of OP. From day 5 to 14; the fibroblast proliferation peaked and was associated with increased collagen accumulation. It was obvious that angiogenesis improved more in the groups II and III, which facilitated re-epithelialisation. CONCLUSION:Methanolic extract of Otostegia persica exhibited significant healing activity when topically applied on rats. OP is an effective treatment for saving the burn site.

  6. The mobilization and recruitment of c-kit+ cells contribute to wound healing after surgery.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Takemoto

    Full Text Available Delayed wound healing is a serious clinical problem in patients after surgery. A recent study has demonstrated that bone marrow-derived c-kit-positive (c-kit(+ cells play important roles in repairing and regenerating various tissues and organs. To examine the hypothesis that surgical injury induces the mobilization and recruitment of c-kit+ cells to accelerate wound healing. Mice were subjected to a left pneumonectomy. The mobilization of c-kit+ cells was monitored after surgery. Using green fluorescent protein (GFP(+ bone marrow-transplanted chimera mice, we investigated further whether the mobilized c-kit+ cells were recruited to effect wound healing in a skin puncture model. The group with left pneumonectomies increased the c-kit(+ and CD34(+ stem cells in peripheral blood 24 h after surgery. At 3 days after surgery, the skin wound size was observed to be significantly smaller, and the number of bone marrow-derived GFP(+ cells and GFP(+/c-kit+ cells in the wound tissue was significantly greater in mice that had received pneumonectomies, as compared with those that had received a sham operation. Furthermore, some of these GFP(+ cells were positively expressed specific markers of macrophages (F4/80, endothelial cells (CD31, and myofibroblasts (αSMA. The administration of AMD3100, an antagonist of a stromal-cell derived factor (SDF-1/CXCR4 signaling pathway, reduced the number of GFP(+ cells in wound tissue and completely negated the accelerated wound healing. Surgical injury induces the mobilization and recruitment of c-kit+ cells to contribute to wound healing. Regulating c-kit+ cells may provide a new approach that accelerates wound healing after surgery.

  7. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing.

    Directory of Open Access Journals (Sweden)

    Liwen Chen

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.

  8. Wound healing activity of Curcuma zedoaroides

    Directory of Open Access Journals (Sweden)

    Pattreeya Tungcharoen

    2016-12-01

    Full Text Available Curcuma zedoaroides rhizomes have been used in Thai folk medicine as antidote and wound care for king cobra bite wound. The inhibitory effect of C. zedoaroides extract and its fractions on inflammation were detected by reduction of nitric oxide release using RAW264.7 cells. The improvement capabilities on wound healing were determined on fibroblast L929 cells proliferation and migration assays. The results showed that crude EtOH extract, CHCl3 and hexane fractions inhibited NO release with IC50 values of 14.0, 12.4 and 14.6 μg/ml, respectively. The CHCl3 and EtOAc fractions significantly increased L929 cells proliferation, enhanced fibroblast cells migration (100% on day 3 and scavenged DPPH with IC50 of 40.9 and 7.2 μg/ml, respectively. Only the CHCl3 fraction showed marked effect against carrageenan-induced rat paw edema (IC50 = 272.4 mg/kg. From the present study, both in vitro and in vivo models support the traditional use of C. zedoaroides

  9. Cutaneous wound healing in aging small mammals: a systematic review.

    Science.gov (United States)

    Kim, Dong Joo; Mustoe, Thomas; Clark, Richard A F

    2015-01-01

    As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.

  10. Diabetes medications: Impact on inflammation and wound healing.

    Science.gov (United States)

    Salazar, Jay J; Ennis, William J; Koh, Timothy J

    2016-01-01

    Chronic wounds are a common complication in patients with diabetes that often lead to amputation. These non-healing wounds are described as being stuck in a persistent inflammatory state characterized by accumulation of pro-inflammatory macrophages, cytokines and proteases. Some medications approved for management of type 2 diabetes have demonstrated anti-inflammatory properties independent of their marketed insulinotropic effects and thus have underappreciated potential to promote wound healing. In this review, the potential for insulin, metformin, specific sulfonylureas, thiazolidinediones, and dipeptidyl peptidase-4 inhibitors to promote healing is evaluated by reviewing human and animal studies on inflammation and wound healing. The available evidence indicates that diabetic medications have potential to prevent wounds from becoming arrested in the inflammatory stage of healing and to promote wound healing by downregulating pro-inflammatory cytokines, upregulating growth factors, lowering matrix metalloproteinases, stimulating angiogenesis, and increasing epithelization. However, no clinical recommendations currently exist on the potential for specific diabetic medications to impact healing of chronic wounds. Thus, we encourage further research that may guide physicians on providing personalized diabetes treatments that achieve glycemic goals while promoting healing in patients with chronic wounds.

  11. [To ponder the key issues in achieving wound healing].

    Science.gov (United States)

    Lu, Shuliang

    2014-04-01

    The understanding of the mechanism of wound healing is deepening. Key issues in the process of wound healing need to be seriously considered, i.e. how to establish the concept of application of phasic and selective means to promote wound healing according to the characteristics of a network and sequential process; to correctly assess the function and status of macrophages in wound healing and to explore the conditions of regulating timely infiltration of macrophages, as well as the phasic and orderly expression of type Iand type II macrophages; to properly understand the role and status of extracellular matrix components or the three-dimensional structure and morphology in wound healing; to elucidate the effects of wound microenvironment on the proliferation and differentiation of stem cells; to find out the intrinsic mechanism of negative pressure in the process of wound healing. The understanding of the above problems are of great value for us to grasp the intrinsic mechanism of wound healing in order to establish a more effective and rational treatment of wound.

  12. Retracted: Exosomes secreted by human urine-derived stem cells accelerate skin wound healing by promoting angiogenesis in rat by Yuan H, Guan J, Zhang J, Zhang R, Li M.

    Science.gov (United States)

    2017-08-01

    The above article, published online on 21 April 2016 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1002/cbin.10615/full), has been retracted by agreement between the authors, the journal Editor, Sergio Schenkman, and John Wiley & Sons Ltd. The retraction has been agreed because the authors discovered inconsistent results in repeated tests. The authors and publisher apologise for any inconvenience. Reference Yuan H, Guan J, Zhang J, Zhang R, LiM(2016) Exosomes secreted by human urine-derived stem cells accelerate skin wound healing by promoting angiogenesis in rat. Cell Biol Int, Accepted Author Manuscript. https://doi.org/10.1002/cbin.10615. © 2017 International Federation for Cell Biology.

  13. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Science.gov (United States)

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; pwound healing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  14. In vivo antibacterial and wound healing activities of Roman chamomile (Chamaemelum nobile).

    Science.gov (United States)

    Kazemian, Hossein; Ghafourian, Sobhan; Sadeghifard, Nourkhoda; Badakhsh, Behzad; Heidari, Hamid; Taji, Asieh; Shavalipour, Aref; Mohebi, Reza; Ebrahim-Saraie, Hadi Sedigh; Houri, Hamidreza; Houshmandfar, Reza

    2016-12-30

    Today considerable number of drugs are produced from plants. Several plants with antibacterial and healing applications are used in medicine such as Roman chamomile (Chamaemelum nobile L.). Wound infection is one of the most prevalent infections among infectious disease around the world. Due to appearance of drug resistance, researchers are now paying attention to medicinal plants. Therefore, this study was designed to investigate the antimicrobial and wound healing properties of C. nobile against Pseudomonas aeruginosa using in vivo conditions. Ethanolic extract of C. nobile was provided using standard method. The 5% C. nobile ointment was prepared by dissolving lyophilized extract in eucerin. Forty five male rats were obtained from Ilam university. After anesthetization and wound creation, wounds were infected by P. aeruginosa. The rats were divided into three groups, group I was treated with C. nobile ointment, group II was treated with tetracycline ointment and the third group was treated with base gel as control group. Antibacterial and wound healing activities of C. nobile ointment was more than tetracycline ointment significantly. Our results indicated that extract of C. nobile had effective antibacterial activity and accelerates the progression of wound healing. Our study indicated that antibacterial and wound healing activities of C. nobile ointment was notable. C. nobile therapy in combination with antibiotics can also be useful because medicinal plants contents operate in synergy with antibiotics. These results revealed the value of plant extracts to control antibiotic resistant bacteria in wound infection.

  15. Effect of virgin fatty oil of Pistacia lentiscus on experimental burn wound's healing in rabbits.

    Science.gov (United States)

    Djerrou, Zouhir; Maameri, Z; Hamdi-Pacha, Y; Serakta, M; Riachi, F; Djaalab, H; Boukeloua, A

    2010-04-03

    This study aimed to assess the efficiency of the virgin fatty oil of Pistacia lentiscus (PLVFO) for burn wounds healing. It was carried out on 6 adult male New Zealand rabbits. Four burn wounds of deep third degree were made on the back of each animal. The first was not treated and served as control (CRL group); the others were covered immediately after burning procedure by 0.5g of one of the following products: Vaseline gel (VAS group), Madecassol(®) cream 1% (MAD group) or 1ml of PLVFO (PLVFO group). The treatments were repeated once daily until complete healing. For four days post burns, the percentage of wound contraction was assessed. Also, the different healing times were noted. The results showed that both PLVFO and Madecassol(®) significantly accelerated wound healing activity compared to wounds dressed with Vaseline and the untreated wounds. However, the level of wound contraction was significantly higher and the healing time was faster in PLVFO group than those of the MAD group, VAS group and CRL group. The different epithelization periods obtained in days were respectively: 30±3.94 (PLVFO group), 33.5±3.78 (MAD group), 34.66±3.88 (VAS group) and 37.16±3.54 (CRL group). We conclude that Pistacia lentiscus virgin fatty oil promotes significantly (p< 0.05) wound contraction and reduces epithelization period in rabbit model.

  16. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model.

    Science.gov (United States)

    Marti, G; Ferguson, M; Wang, J; Byrnes, C; Dieb, R; Qaiser, R; Bonde, P; Duncan, M D; Harmon, J W

    2004-12-01

    We recently demonstrated that electroporation enhances transfection in a mouse wound-healing model. Keratinocyte growth factor (KGF) is an inducer of epithelial cell proliferation and differentiation and has been shown to be under expressed in the wounds of diabetic individuals. We hypothesized that KGF delivered into an excisional wound via naked DNA injection with subsequent electroporation would be a novel and potentially effective method to enhance wound closure in a diabetic mouse model. ELISA assays confirmed production of KGF protein in cultured mouse cells and RT-PCR assays confirmed KGF mRNA in skin samples taken from mice. In all, 32 genetically diabetic mice were given two identical excisional wounds of their dorsum and split into two groups with one group receiving KGF DNA injection and electroporation with the other group receiving no treatment. Over 90% of wounds healed in the presence of KGF and electroporation versus 40% in the untreated group by day 12. Histological analysis of the wounds demonstrated that untreated wounds contained microulcers with thin or incomplete epithelium with unresolved inflammation as compared to treated wounds where intact and mature epithelium was observed. Taken together these findings suggest that a single injection of KGF DNA encoded on a plasmid coupled with electroporation improves and accelerates wound closure in a delayed wound-healing model.

  17. Effect of Propolis on Experimental Cutaneous Wound Healing in Dogs

    Science.gov (United States)

    2015-01-01

    This study evaluates clinically the effect of propolis paste on healing of cutaneous wound in dogs. Under general anesthesia and complete aseptic conditions, two full thickness skin wounds (3 cm diameter) were created in each side of the chest in five dogs, one dorsal and one ventral, with 10 cm between them. These wounds were randomly allocated into two groups, control group (10 wounds) and propolis group (10 wounds). Both groups were represented in each dog. The wounds were cleaned with normal saline solution and dressed with macrogol ointment in control group and propolis paste in propolis group, twice daily till complete wound healing. Measurement of the wound area (cm2) was monitored planimetrically at 0, 7, 14, 21, 28, and 35 days after injury. The data were analyzed statistically. The results revealed a significant reduction in the wound surface area in the propolis group after 14 and 21 days compared to control group. The wound reepithelization, contraction, and total wound healing were faster in propolis group than in control group during five weeks of study. In conclusion, propolis paste has a positive impact on cutaneous wound healing and it may be suggested for treating various types of wounds in animals. PMID:26783495

  18. CEACAM1 deficiency delays important wound healing processes.

    Science.gov (United States)

    LeBlanc, Sarah; Arabzadeh, Azadeh; Benlolo, Samantha; Breton, Valérie; Turbide, Claire; Beauchemin, Nicole; Nouvion, Anne-Laure

    2011-11-01

    Cutaneous wound healing is a complex process that requires the coordination of many cell types to achieve proper tissue repair. Four major overlapping processes have been identified in wound healing: hemostasis, inflammation, reepithelialization and granulation tissue formation, and tissue remodeling. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein expressed in epithelial, endothelial, lymphoid, and myeloid cells. Given its known roles in angiogenesis, cell migration, and immune functions, we hypothesized that CEACAM1 might also be involved in cutaneous wound healing and that a number of relevant CEACAM1-positive cell types might contribute to wound healing. To evaluate the role of CEACAM1 in these processes, 6-mm-diameter skin wounds were inflicted on Ceacam1(-/-) and wild-type mice. Herein, we demonstrate that CEACAM1 deletion indeed affects wound healing in three key ways. Infiltration of F4/80(+) macrophages was decreased in Ceacam1(-/-) wounds, altering inflammatory processes. Reepithelialization in Ceacam1(-/-) wounds was delayed. Furthermore, the vascular density of the granulation tissue in Ceacam1(-/-) wounds was significantly diminished. These results confirm CEACAM1's role as an important regulator of key processes in cutaneous wound healing, although whether this works via a specific cell type or alterations in the functioning of multiple processes remains to be determined.

  19. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  20. Models of wound healing: an emphasis on clinical studies.

    Science.gov (United States)

    Wilhelm, K-P; Wilhelm, D; Bielfeldt, S

    2017-02-01

    The healing of wounds has always provided challenges for the medical community whether chronic or acute. Understanding the processes which enable wounds to heal is primarily carried out by the use of models, in vitro, animal and human. It is generally accepted that the use of human models offers the best opportunity to understand the factors that influence wound healing as well as to evaluate efficacy of treatments applied to wounds. The objective of this article is to provide an overview of the different methodologies that are currently used to experimentally induce wounds of various depths in human volunteers and examines the information that may be gained from them. There is a number of human volunteer healing models available varying in their invasiveness to reflect the different possible depth levels of wounds. Currently available wound healing models include sequential tape stripping, suction blister, abrasion, laser, dermatome, and biopsy techniques. The various techniques can be utilized to induce wounds of variable depth, from removing solely the stratum corneum barrier, the epidermis to even split-thickness or full thickness wounds. Depending on the study objective, a number of models exist to study wound healing in humans. These models provide efficient and reliable results to evaluate treatment modalities. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. In vivo wound-healing effects of novel benzalkonium chloride-loaded hydrocolloid wound dressing.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Jang, Sun Woo; Son, Mi-Won; Kim, Kyung Soo; Kim, Dong-Wuk; Li, Dong Xun; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-05-01

    The purpose of this study was to evaluate the wound-healing effects of a novel benzalkonium chloride (BC)-loaded hydrocolloid wound dressing (HCD). A BC-loaded HCD was prepared with various constituents using a hot melting method, and its mechanical properties and antimicrobial activities were assessed. The in vivo wound healings of the BC-loaded HCD in various would models were evaluated in rats compared with a commercial wound dressing, Duoderm™. This BC-loaded HCD gave better skin adhesion, swelling, mechanical strength, and flexibility compared with the commercial wound dressing. It showed excellent antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In addition, as compared with the commercial wound dressing, it showed more improved wound healings and tissue restoration effect on the excision, infection, and abrasion wounds in rats. Thus, this novel BC-loaded HCD would be an excellent alternative to the commercial wound dressing for treatment of various wounds.

  2. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  3. Development of a wound healing index for patients with chronic wounds.

    Science.gov (United States)

    Horn, Susan D; Fife, Caroline E; Smout, Randall J; Barrett, Ryan S; Thomson, Brett

    2013-01-01

    Randomized controlled trials in wound care generalize poorly because they exclude patients with significant comorbid conditions. Research using real-world wound care patients is hindered by lack of validated methods to stratify patients according to severity of underlying illnesses. We developed a comprehensive stratification system for patients with wounds that predicts healing likelihood. Complete medical record data on 50,967 wounds from the United States Wound Registry were assigned a clear outcome (healed, amputated, etc.). Factors known to be associated with healing were evaluated using logistic regression models. Significant variables (p healing for each wound type. Some variables predicted significantly in nearly all models: wound size, wound age, number of wounds, evidence of bioburden, tissue type exposed (Wagner grade or stage), being nonambulatory, and requiring hospitalization during the course of care. Variables significant in some models included renal failure, renal transplant, malnutrition, autoimmune disease, and cardiovascular disease. All models validated well when applied to the holdout sample. The "Wound Healing Index" can validly predict likelihood of wound healing among real-world patients and can facilitate comparative effectiveness research to identify patients needing advanced therapeutics. © 2013 by the Wound Healing Society.

  4. Wound healing activity of the inflorescence of Typha elephantina (Cattail).

    Science.gov (United States)

    Panda, Vandana; Thakur, Tejas

    2014-03-01

    Methanolic extracts of Typha elephantina inflorescence (TE) and its bandage were screened for wound healing by incision and excision wound models in Wistar rats. In the incision wound model, incision wounds were topically treated with TE gel (2.0% [w/w], 3.0% [w/w], and 5.0% [w/w]), Typha elephantina inflorescence bandage, and the reference standard 5.0% w/w povidone iodine for a period of 10 days. When the wounds healed thoroughly, sutures were removed on the 8th postwounding day, and the tensile strength of the skin was measured on the 10th day. In the excision wound model, excision wounds were treated with TE gel (3.0% [w/w] and 5.0% [w/w]), inflorescence bandage, and 5.0% w/w povidone iodine till the wounds completely healed. Epithelization time, wound contraction, hydroxyproline and hexosamine content of the scab, and ascorbic acid and malondialdehyde content of the plasma were determined in this model. In the incision wound model, high tensile strength of the skin of the healed wound was observed in rats treated with the TE gels and the inflorescence bandage when compared with wounded control rats. The increase in tensile strength indicates a promotion of collagen fibers and a firm knitting of the disrupted wound surfaces by collagen. In the excision wound model, higher rate of wound contraction, decreased period of epithelization, elevated hydroxyproline, hexosamine, and ascorbic acid levels, and a significant decrease in malondialdehyde content was observed in treated groups when compared with the wounded control animals. It may be concluded that the inflorescence of Typha elephantina possesses a potent wound healing activity, which may be due to an underlying antioxidant mechanism.

  5. Comparative wound healing--are the small animal veterinarian's clinical patients an improved translational model for human wound healing research?

    Science.gov (United States)

    Volk, Susan W; Bohling, Mark W

    2013-01-01

    Despite intensive research efforts into understanding the pathophysiology of both chronic wounds and scar formation, and the development of wound care strategies to target both healing extremes, problematic wounds in human health care remain a formidable challenge. Although valuable fundamental information regarding the pathophysiology of problematic wounds can be gained from in vitro investigations and in vivo studies performed in laboratory animal models, the lack of concordance with human pathophysiology has been cited as a major impediment to translational research in human wound care. Therefore, the identification of superior clinical models for both chronic wounds and scarring disorders should be a high priority for scientists who work in the field of human wound healing research. To be successful, translational wound healing research should function as an intellectual ecosystem in which information flows from basic science researchers using in vitro and in vivo models to clinicians and back again from the clinical investigators to the basic scientists. Integral to the efficiency of this process is the incorporation of models which can accurately predict clinical success. The aim of this review is to describe the potential advantages and limitations of using clinical companion animals (primarily dogs and cats) as translational models for cutaneous wound healing research by describing comparative aspects of wound healing in these species, common acute and chronic cutaneous wounds in clinical canine and feline patients, and the infrastructure that currently exists in veterinary medicine which may facilitate translational studies and simultaneously benefit both veterinary and human wound care patients.

  6. Antioxidant and wound healing potential of Pistia stratiotes L.

    Directory of Open Access Journals (Sweden)

    Megha Jha

    2012-10-01

    Full Text Available Objective: To investigate the effects of Pistia stratiotes on wound healing activity in Swiss albino mice by excision wound healing model and its antioxidant study was performed to understand the mechanism of wound healing potency.Methods: Mice were topically treated with extract formulated in ointment by using simple ointment vaseline as base. 5% and 10% (w/w ointment was applied once daily. A standard group was treated with Povidone iodine ointment topically. The area of wound was measured on 4, 6, 8, 10, 12, 14, 16 post-wounding days. The scar area on complete epithelization was measured. The parameters observed were wound contraction (mm2, epithelization period and tensile strength including histopathological studies. Antioxidant activity was determined by in vitro method-H2O2 radical scavenging. Results: Treatment of wound with ointment containing 5% and 10% (w/w extract of Pistia stratiotes exhibited significant (P < 0.001 wound healing activity when compared with control group. All parameters such as wound contraction (mm2, epithelization period and tensile strength and histopathological studies showed significant changes when compared to control. Extracts possess significant antioxidant activity compared to control group. Ascorbic acid was used as reference standard for antioxidant activity (P<0.001 vs Ascorbic acid. Conclusion: The results conclude that Pistia stratiotes has antioxidant properties, which may be responsible and favorable for faster wound healing and this plant extract may be useful in the management of wounds, it also supports its traditional use.

  7. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Sara Ud-Din

    2014-10-01

    Full Text Available Electrical stimulation (ES has been shown to have beneficial effects in wound healing. It is important to assess the effects of ES on cutaneous wound healing in order to ensure optimization for clinical practice. Several different applications as well as modalities of ES have been described, including direct current (DC, alternating current (AC, high-voltage pulsed current (HVPC, low-intensity direct current (LIDC and electrobiofeedback ES. However, no one method has been advocated as the most optimal for the treatment of cutaneous wound healing. Therefore, this review aims to examine the level of evidence (LOE for the application of different types of ES to enhance cutaneous wound healing in the skin. An extensive search was conducted to identify relevant clinical studies utilising ES for cutaneous wound healing since 1980 using PubMed, Medline and EMBASE. A total of 48 studies were evaluated and assigned LOE. All types of ES demonstrated positive effects on cutaneous wound healing in the majority of studies. However, the reported studies demonstrate contrasting differences in the parameters and types of ES application, leading to an inability to generate sufficient evidence to support any one standard therapeutic approach. Despite variations in the type of current, duration, and dosing of ES, the majority of studies showed a significant improvement in wound area reduction or accelerated wound healing compared to the standard of care or sham therapy as well as improved local perfusion. The limited number of LOE-1 trials for investigating the effects of ES in wound healing make critical evaluation and assessment somewhat difficult. Further, better-designed clinical trials are needed to improve our understanding of the optimal dosing, timing and type of ES to be used.

  8. Effect of aqueous extract of Elaeagnus angustifolia fruit on experimental cutaneous wound healing in rats.

    Science.gov (United States)

    Mehrabani Natanzi, Mahboobeh; Pasalar, Parvin; Kamalinejad, Mohammad; Dehpour, Ahmad Reza; Tavangar, Seyed Mohammad; Sharifi, Roya; Ghanadian, Naghmeh; Rahimi-Balaei, Maryam; Gerayesh-Nejad, Siavash

    2012-01-01

    The present study was conducted to investigate the histological changes and wound healing effect of aqueous extract of Elaeagnus angustifolia. After creating full-thickness skin wounds on the back of 45 male Sprague-Dawley rats they were randomly divided into three groups. Treated group received the extract, positive control group were treated with mupirocin ointment 2% and control group did not receive any treatment. Wound healing rates were calculated on days 3, 5, 8, 10, 12 and 15 post-wounding and the wound tissues were harvested at 5, 10, and 15 days for histological analysis and hydroxyproline content measurement. The results indicated a significant increase in the percentage of wound contraction and hydroxyproline content in the treated group comparing to the control and positive control groups. A significant increase in the assigned histological scores was observed at 10 and 15 days in the treated and positive control groups compared to the control group. The results demonstrate that aqueous extract of Elaeagnus angustifolia accelerates cutaneous wound healing, and its effect may be due to the increased re-epithelialization and collagen deposition in wound and so it can be considered as a therapeutic agent for wound healing.

  9. Effect of Aqueous Extract of Elaeagnus angustifolia Fruit on Experimental Cutaneous Wound Healing in Rats

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi-Balaei

    2012-09-01

    Full Text Available The present study was conducted to investigate the histological changes and wound healing effect of aqueous extract of Elaeagnus angustifolia. After creating full-thickness skin wounds on the back of 45 male Sprague-Dawley rats they were randomly divided into three groups. Treated group received the extract, positive control group were treated with mupirocin ointment 2% and control group did not receive any treatment. Wound healing rates were calculated on days 3, 5, 8, 10, 12 and 15 post-wounding and the wound tissues were harvested at 5, 10, and 15 days for histological analysis and hydroxyproline content measurement. The results indicated a significant increase in the percentage of wound contraction and hydroxyproline content in the treated group comparing to the control and positive control groups. A significant increase in the assigned histological scores was observed at 10 and 15 days in the treated and positive control groups compared to the control group. The results demonstrate that aqueous extract of Elaeagnus angustifolia accelerates cutaneous wound healing, and its effect may be due to the increased re-epithelialization and collagen deposition in wound and so it can be considered as a therapeutic agent for wound healing.

  10. The Effect of Magnetic Fields on Wound Healing

    OpenAIRE

    Henry, Steven L.; Concannon, Matthew J; Yee, Gloria J

    2008-01-01

    Objective: Magnets are purported to aid wound healing despite a paucity of scientific evidence. The purpose of this study was to evaluate the effect of static magnetic fields on cutaneous wound healing in an animal model. The literature was reviewed to explore the historical and scientific basis of magnet therapy and to define its current role in the evidence-based practice of plastic surgery. Methods: Standardized wounds were created on the backs of 33 Sprague-Dawley rats, which were divided...

  11. Curcumin: a novel therapeutic for burn pain and wound healing

    Science.gov (United States)

    2013-08-01

    for controlling pain and wound healing. Several reports clearly demonstrate that cur- cumin can directly act on nociceptive neurons and inhibit...bioavailability 5. Curcumin delivery vehicles 6. Conclusion 7. Expert opinion Review Curcumin: a novel therapeutic for burn pain and wound healing Bopaiah...Surgical Research, Battlefield Pain Management Research Task Area, Fort Sam Houston, TX, USA Introduction: Managing burn injury-associated pain and wounds

  12. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study.

    Science.gov (United States)

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-10-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we determined which patient- and wound-related characteristics best predict time to complete wound healing and derived a prediction formula to estimate how long this may take. We selected 563 patients with acute wounds, documented in the WEC registry between 2007 and 2012. Wounds had existed for a median of 19 days (range 6-46 days). The majority of these were located on the leg (52%). Five significant independent predictors of prolonged wound healing were identified: wound location on the trunk [hazard ratio (HR) 0·565, 95% confidence interval (CI) 0·405-0·788; P = 0·001], wound infection (HR 0·728, 95% CI 0·534-0·991; P = 0·044), wound size (HR 0·993, 95% CI 0·988-0·997; P = 0·001), wound duration (HR 0·998, 95% CI 0·996-0·999; P = 0·005) and patient's age (HR 1·009, 95% CI 1·001-1·018; P = 0·020), but not diabetes. Awareness of the five factors predicting the healing of complex acute wounds, particularly wound infection and location on the trunk, may help caregivers to predict wound healing time and to detect, refer and focus on patients who need additional attention.

  13. Effect of Ampelopsis Radix on wound healing in scalded rats.

    Science.gov (United States)

    Lee, Kyungjin; Lee, Byonghee; Lee, Mi-Hwa; Kim, Bumjung; Chinannai, Khanita Suman; Ham, Inhye; Choi, Ho-Young

    2015-07-08

    serum of scald inflicted SD rat model. These results suggest that AJE possesses scald wound healing activity via accelerating the scald wound repair during the inflammation and proliferative phases of the healing process.

  14. Promising role of ANGPTL4 gene in diabetic wound healing.

    Science.gov (United States)

    Arya, Awadhesh K; Tripathi, Kamlakar; Das, Parimal

    2014-03-01

    Diabetes mellitus (DM) is one of the severe metabolic disorders of carbohydrate metabolism worldwide. Developing countries are at higher risk of DM, and there is significant evidence that it is epidemic in many economically developing and newly industrialized countries. Among all other complications associated with DM, delayed wound healing is a major concern in diabetic patients. Wound healing is a natural healing process that starts immediately after injury. This involves interaction of a complex cascade of cellular events that generates resurfacing, reconstitution, and restoration of the tensile strength of injured skin. There are multiple factors responsible for delayed wound healing among which the contribution of DM has been well documented. The wound healing process is also delayed by the metabolic, vascular, neurological, and inflammatory alterations, which are well known in both type 1 and type 2 diabetes. Keratinocytes are crucial for wound re-epithelialization, and defects in directed migration of keratinocytes due to DM are associated with the delayed wound healing process. Many factors responsible for re-epithelialization have been identified, characterized, and well described; however, the genes responsible for the healing process have only partially been illustrated. This article will therefore focus on the efficacy of ANGPTL4 (angiopoietin-like 4) gene, which plays a novel role in keratinocyte migration during wound healing.

  15. TOPICAL ESTROGEN IN WOUND HEALING: A DOUBLE BLIND RANDOMIZED CLINICAL TRIAL ON YOUNG HEALTHY PEOPLE

    Directory of Open Access Journals (Sweden)

    A ASILIAN

    2001-03-01

    Full Text Available Introduction: Acceleration of wounf healing is intrested because of decreasing the risk of wound complication and infections as well as reducing the cost of treatment. In animal models, it has been proved that estrogen can accelerate wound healing. It has been also suggested that topical estrogen can eliminate effect of aging on wound healing and can increase the speed of wound healing in old people. Methods: We selected 16 young healthy people who developed symmetrical and ulcers (regarding size and depths after dermabrasion, shave and electrocoagulouzon and CO2 laser. Primary lesions of patients were benign and noninfective. Identical and symmetrical lesions of each patient were randomly divided into two groups (A and B. Topical estrogen with concentration of 0.625 mg/g in the base of silver sulfadiazine cream was applied to A ulcers and silver sulfadiazine cream alone was applied on B ulcers. Ulcers were dressed by Telfa gauzes. The A ulcers of each patients were compared to counterpart B ulcers in regard of redness, size, depth, general appearance of ulcers and wound healing duration at three days intervals by a physician. Results: Average time of healing was 10.8 days and 8.5 days for B (n=29 and A (n=29 ulcers, respectively (P < 0.001. In 78 percent of cases, the A ulcers were judged better than B ulcers by physician (P < 0.01. Discussion: It seems that estrogen not only accelerate healing of acute ulcers but also it is efficient in young healthy people who don"t have any hormonal or wound healing problems.

  16. Cutaneous Wound Healing After Treatment with Plant-Derived Human Recombinant Collagen Flowable Gel

    Science.gov (United States)

    Roth, Sigal; Amzel, Tal; Harel-Adar, Tamar; Tamir, Eran; Grynspan, Frida; Shoseyov, Oded

    2013-01-01

    Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potential allergic and infectious risks. The purpose of this study was to test the performance of a flowable gel made of human recombinant type I collagen (rhCollagen) produced in transgenic tobacco plants, indicated for the treatment of acute, chronic, and tunneled wounds. The performance of the rhCollagen flowable gel was tested in an acute full-thickness cutaneous wound-healing rat model and compared to saline treatment and two commercial flowable gel control products made of bovine collagen and cadaver human skin collagen. When compared to the three control groups, the rhCollagen-based gel accelerated wound closure and triggered a significant jumpstart to the healing process, accompanied by enhanced re-epithelialization. In a cutaneous full-thickness wound pig model, the rhCollagen-based flowable gel induced accelerated wound healing compared to a commercial product made of bovine tendon collagen. By day 21 post-treatment, 95% wound closure was observed with the rhCollagen product compared to 68% closure in wounds treated with the reference product. Moreover, rhCollagen treatment induced an early angiogenic response and induced a significantly lower inflammatory response than in the control group. In summary, rhCollagen flowable gel proved to be efficacious in animal wound models and is expected to be capable of reducing the healing time of human wounds. PMID:23259631

  17. Kruppel-like factor KLF4 facilitates cutaneous wound healing by promoting fibrocyte generation from myeloid-derived suppressor cells.

    Science.gov (United States)

    Ou, Lingling; Shi, Ying; Dong, Wenqi; Liu, Chunming; Schmidt, Thomas J; Nagarkatti, Prakash; Nagarkatti, Mitzi; Fan, Daping; Ai, Walden

    2015-05-01

    Pressure ulcers (PUs) are serious skin injuries whereby the wound healing process is frequently stalled in the inflammatory phase. Myeloid-derived suppressor cells (MDSCs) accumulate as a result of inflammation and promote cutaneous wound healing by mechanisms that are not fully understood. Recently, MDSCs have been shown to differentiate into fibrocytes, which serve as emerging effector cells that enhance cell proliferation in wound healing. We postulate that in wound healing MDSCs not only execute their immunosuppressive function to regulate inflammation but also stimulate cell proliferation once they differentiate into fibrocytes. In the current study, by using full-thickness and PU mouse models, we found that Kruppel-like factor 4 (KLF4) deficiency resulted in decreased accumulation of MDSCs and fibrocytes, and wound healing was significantly delayed. Conversely, KLF4 activation by the plant-derived product Mexicanin I increased the number of MDSCs and fibrocytes and accelerated the wound healing. Collectively, our study revealed a previously unreported function of MDSCs in cutaneous wound healing and identified Mexicanin I as a potential agent to accelerate PU wound healing.

  18. Wound healing and antiinflammatory potential of madhu ghrita

    Directory of Open Access Journals (Sweden)

    Charde M

    2006-01-01

    Full Text Available Madhu ghrita is a herbal formulation containing honey and ghee (clarified butterfat as its constituents. The aim of present study is to verify the wound healing and antiinflammatory claims of Madhu ghrita . Incision and excision wound models were used for evaluation of wound healing activity followed by histopathological study in which healing markers like keratinization, epithelization, fibrosis, neovascularisation and collagenation were evaluated in male Wistar rats. The results of Madhu ghrita were compared with the results of untreated control group and results of framycetine sulphate cream, considered as a positive control. The formulation was also tested for antiinflammatory activity, using carrageenan-induced paw oedema in male Wistar rats. The test formulation Madhu ghrita enhanced the tensile strength, which significantly improved over untreated wounds. The tensile strength of untreated control wound was 281±5.82, while with the Madhu ghrita and framycetine sulphate cream 1% w/w, it was 328±8.9 and 398±6.32, respectively. Treatment with Madhu ghrita alone promoted wound contraction and reduced the wound closure time, so increase in tensile strength and wound contraction shows the wound healing potential of Madhu ghrita . Histopathological study shows that proliferation of epithelial tissue promotes angiogenesis, multiplication of fibrous connective tissue due to treatment with Madhu ghrita . The test formulation Madhu ghrita also shows significant antiinflammatory activity when the results are compared with the activity of ibuprofen gel as reference standard. The present study demonstrates the wound healing and antiinflammatory potential of Madhu ghrita .

  19. Effects of genistein on early-stage cutaneous wound healing.

    Science.gov (United States)

    Park, Eunkyo; Lee, Seung Min; Jung, In-Kyung; Lim, Yunsook; Kim, Jung-Hyun

    2011-07-08

    Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-κB and TNF-α expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results suggest that genistein supplementation reduces oxidative stress by increasing antioxidant capacity and modulating proinflammatory cytokine expression during the early stage of wound healing.

  20. Evaluation of ghee based formulation for wound healing activity.

    Science.gov (United States)

    Prasad, Vure; Dorle, Avinash Kumar

    2006-08-11

    Formulation containing neomycin and ghee was evaluated for wound-healing potential on different experimental models of wounds in rats. The rats were divided into six groups of group 1 as control, group 2 as treated with neomycin only, group 3 as treated only with ghee, group 4 treated with F-1 formulation containing ghee 40% and neomycin 0.5%, group 5 treated with F-2 formulation containing ghee 50% and neomycin 0.5% and group 6 treated with F-3 formulation containing ghee and ointment base in all two wound models, each group consisting of six rats. Wound contraction ability in excision wound model was measured at different time intervals and study was continued until wound is completely healed. Tensile strength was measured in 10-day-old incision wound and quantitative estimation of hydroxy proline content in the healed tissue was determined in 10-day-old excision wound. Histological studies were done on 10-day-old sections of regenerated tissue of incision wound. F-2 formulation containing ghee 50% and neomycin 0.5% showed statistically significant response, in terms of wound contracting ability, wound closure time, period of epithelization, tensile strength of the wound, regeneration of tissues at wound site when compared with the control group and these results were comparable to those of a reference neomycin ointment.

  1. Review: African medicinal plants with wound healing properties.

    Science.gov (United States)

    Agyare, Christian; Boakye, Yaw Duah; Bekoe, Emelia Oppong; Hensel, Andreas; Dapaah, Susana Oteng; Appiah, Theresa

    2016-01-11

    Wounds of various types including injuries, cuts, pressure, burns, diabetic, gastric and duodenal ulcers continue to have severe socio-economic impact on the cost of health care to patients, family and health care institutions in both developing and developed countries. However, most people in the developing countries, especially Africa, depend on herbal remedies for effective treatment of wounds. Various in vitro and in vivo parameters are used for the evaluation of the functional activity of medicinal plants by using extracts, fractions and isolated compounds. The aim of the review is to identify African medicinal plants with wound healing properties within the last two decades. Electronic databases such as PubMed, Scifinder(®) and Google Scholar were used to search and filter for African medicinal plants with wound healing activity. The methods employed in the evaluation of wound healing activity of these African medicinal plants comprise both in vivo and in vitro models. In vivo wound models such as excision, incision, dead space and burn wound model are commonly employed in assessing the rate of wound closure (contraction), tensile strength or breaking strength determination, antioxidant and antimicrobial activities, hydroxyproline content assay and histological investigations including epithelialisation, collagen synthesis, and granulation tissue formation. In in vitro studies, single cell systems are mostly used to study proliferation and differentiation of dermal fibroblasts and keratinocytes by monitoring typical differentiation markers like collagen and keratin. In this study, 61 plants belonging to 36 families with scientifically demonstrated or reported wound healing properties were reviewed. Various plant parts including leaves, fruits, stem bark and root extracts of the plants are used in the evaluation of plants for wound healing activities. Although, a variety of medicinal plants for wound healing can be found in literature, there is a need for the

  2. Application of Antrodia camphorata Promotes Rat’s Wound Healing In Vivo and Facilitates Fibroblast Cell Proliferation In Vitro

    Directory of Open Access Journals (Sweden)

    Zahra A. Amin

    2015-01-01

    Full Text Available Antrodia camphorata is a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential of Antrodia camphorata ethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety of Antrodia camphorata was determined in vivo by the acute toxicity test and in vitro by fibroblast cell proliferation assay. The scratch assay was used to evaluate the in vitro wound healing in fibroblast cells and the excision model of wound healing was tested in vivo using four groups of adult Sprague Dawley rats. Our results showed that wound treated with Antrodia camphorata extract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed with Antrodia camphorata extract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson’s trichrom stain showed granulation tissue containing more collagen and less inflammatory cell in Antrodia camphorata treated wounds. In conclusion, Antrodia camphorata extract significantly enhanced the rate of the wound enclosure in rats and promotes the in vitro healing through fibroblast cell proliferation.

  3. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing

    Science.gov (United States)

    Schmidt, Barbara A.; Horsley, Valerie

    2013-01-01

    Acute wound healing in the skin involves the communication of multiple cell types to coordinate keratinocyte and fibroblast proliferation and migration for epidermal and dermal repair. Many studies have focused on the interplay between hematopoietic cells, keratinocytes and fibroblasts during skin wound healing, yet the possible roles for other cell types within the skin, such as intradermal adipocytes, have not been investigated during this process. Here, we identify that adipocyte lineage cells are activated and function during acute skin wound healing. We find that adipocyte precursor cells proliferate and mature adipocytes repopulate skin wounds following inflammation and in parallel with fibroblast migration. Functional analysis of mice with defects in adipogenesis demonstrates that adipocytes are necessary for fibroblast recruitment and dermal reconstruction. These data implicate adipocytes as a key component of the intercellular communication that mediates fibroblast function during skin wound healing. PMID:23482487

  4. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  5. Effect of topical application of chlorogenic acid on excision wound healing in rats.

    Science.gov (United States)

    Chen, Wei-Cheng; Liou, Shorong-Shii; Tzeng, Thing-Fong; Lee, Shiow-Ling; Liu, I-Min

    2013-05-01

    This study was undertaken to evaluate the therapeutic effects of topical chlorogenic acid on excision wounds in Wistar rats. A 1 % (w/w) chlorogenic acid or silver sulfadiazine ointment was applied topically once a day for 15 days on full-thickness excision wounds created on rats. The 1 % (w/w) chlorogenic acid ointment had potent wound healing capacity as evident from the wound contraction on the 15th post-surgery day, which was similar to that produced by 1 % (w/w) silver sulfadiazine ointment. Increased rates of epithelialization were observed in the treated rats. It also improved cellular proliferation, increased tumor necrosis factor-α levels during the inflammatory phase (12 h, 24 h, 48 h, and 72 h post-wounding) of wound healing, upregulated transforming growth factor-β1 and elevated collagen IV synthesis in the chlorogenic acid-treated group. The results also indicated that chlorogenic acid possesses potent antioxidant activity by increasing superoxide dismutase, catalase, and glutathione, and decreasing lipid peroxidation. In conclusion, these results demonstrate that topical application of chlorogenic acid can accelerate the process of excision wound healing by its ability to increase collagen synthesis through upregulation of key players such as tumor necrosis factor-α and transforming growth factor-β1 in different phases of wound healing as well as by its antioxidant potential.

  6. Dermal Wound Healing Effect of Pistacia Lentiscus Fruit′s Fatty Oil.

    Directory of Open Access Journals (Sweden)

    N Boulebda

    2009-01-01

    Full Text Available Several natural products have been shown to accelerate wound healing process. The present study was undertaken to evaluate the effect of Pistacia lentiscus fruits fatty oil on cutaneous wound healing in rat, and to compare this effect to that of saponifiable and unsaponifiable oily fractions. Full-thickness excision wounds were made on the back of anesthetised rats. The fruit′s oil and the two fractions were assessed together with a conventional drug, i.e. Madecassol® . Preparations were topically applied on the area of excised wounded once a day and assessed for a period of 26 days. During this period, wound area was measured and photographically documented. Wound contraction, expressed as percentage, was significantly (P< 0.05 enhanced in the presence of Pistacia lentiscus oil, unsaponifiable oily fraction and Madecassol® treatments compared to the control, untreated animals. Furthermore, wound healing potentially effect was more pronounced in case of the oily unsaponifiable fraction-treated group compared to the others groups. Results clearly substantiate the healing potential effect on wound of a topic application of the Pistacia lentiscus fruits fatty oil and its unsaponifiable fraction.

  7. Macrophage PPARγ and impaired wound healing in type 2 diabetes.

    Science.gov (United States)

    Mirza, Rita E; Fang, Milie M; Novak, Margaret L; Urao, Norifumi; Sui, Audrey; Ennis, William J; Koh, Timothy J

    2015-08-01

    Macrophages undergo a transition from pro-inflammatory to healing-associated phenotypes that is critical for efficient wound healing. However, the regulation of this transition during normal and impaired healing remains to be elucidated. In our studies, the switch in macrophage phenotypes during skin wound healing was associated with up-regulation of the peroxisome proliferator-activated receptor (PPAR)γ and its downstream targets, along with increased mitochondrial content. In the setting of diabetes, up-regulation of PPARγ activity was impaired by sustained expression of IL-1β in both mouse and human wounds. In addition, experiments with myeloid-specific PPARγ knockout mice indicated that loss of PPARγ in macrophages is sufficient to prolong wound inflammation and delay healing. Furthermore, PPARγ agonists promoted a healing-associated macrophage phenotype both in vitro and in vivo, even in the diabetic wound environment. Importantly, topical administration of PPARγ agonists improved healing in diabetic mice, suggesting an appealing strategy for down-regulating inflammation and improving the healing of chronic wounds.

  8. Nitric oxide-releasing polymer incorporated ointment for cutaneous wound healing.

    Science.gov (United States)

    Kang, Youngnam; Kim, Jihoon; Lee, Yeong Mi; Im, Sooseok; Park, Hansoo; Kim, Won Jong

    2015-12-28

    This work demonstrates the development of nitric oxide-releasing ointment and its potential on efficient wound healing. Nitric oxide-releasing polymer was successfully synthesized, which is composed of biocompatible Pluronic F127, branched polyethylenimine and 1-substituted diazen-1-ium-1,2-diolates. The synthesized nitric oxide-releasing polymer was incorporated into the PEG-based ointment which not only facilitated nitric oxide release in a slow manner, but also served as a moisturizer to enhance the wound healing. As compared to control groups, the nitric oxide-releasing ointment showed the accelerated wound closure with enhanced re-epithelialization, collagen deposition, and blood vessel formation in vivo. Therefore, this nitric oxide-based ointment presents the promising potential for the efficient strategy to heal the cutaneous wound.

  9. A potential wound healing-promoting peptide from frog skin.

    Science.gov (United States)

    Liu, Han; Mu, Lixian; Tang, Jing; Shen, Chuanbin; Gao, Chen; Rong, Mingqiang; Zhang, Zhiye; Liu, Jie; Wu, Xiaoyang; Yu, Haining; Lai, Ren

    2014-04-01

    Cutaneous wound healing is a dynamic, complex, and well-organized process that requires the orchestration of many different cell types and cellular processes. Transforming growth factor β1 is an important factor that plays a key role during wound healing. Amphibian skin has been proven to possess excellent wound healing ability, whilst no bioactive substrate related to it has ever been identified. Here, a potential wound healing-promoting peptide (AH90, ATAWDFGPHGLLPIRPIRIRPLCG) was identified from the frog skin of Odorrana grahami. It showed potential wound healing-promoting activity in a murine model with full thickness dermal wound. AH90 promoted release of transforming growth factor β1 through activation of nuclear factor-κB and c-Jun NH2-terminal kinase mitogen-activated protein kinases signaling pathways, while inhibitors of nuclear factor-κB and c-Jun NH2-terminal kinase inhibited the process. In addition, the effects of AH90 on Smads family proteins, key regulators in transforming growth factor β1 signaling pathways, could also be inhibited by transforming growth factor β1 antibody. Altogether, this indicated that AH90 promoted wound healing by inducing the release of transforming growth factor β1. This current study may facilitate the understanding of effective factors involved in the wound repair of amphibians and the underlying mechanisms as well. Considering its favorable traits as a small peptide that greatly promoting generation of endogenous wound healing agents (transforming growth factor β1) without mitogenic effects, AH90 might be an excellent template for the future development of novel wound-healing agents.

  10. Effects of Rat's Licking Behavior on Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Abolghasem Esmaeili

    2010-01-01

    Full Text Available Objective(sWound licking has been shown to advance wound healing among humans and many other animals. The present study evaluates the licking effects on healing of skin wound in rats. Materials and MethodsTwenty four rats were assigned to 4 different groups randomly and two 3 cm longitudinal full thickness incisions were made on each dorsal and ventral side of rats. The ventral incisions were considered as treated wounds because of contact to saliva as rats lick them easily and dorsal incisions as control wounds. Clinical changes and histopathological effects of rat saliva on wound healing were evaluated every day and on 3, 7, 14 and 21 days post-operation respectively. ResultsHistologic and clinical evaluation of treated wounds showed better healing than control wounds. ConclusionThis study showed that licking behavior can promote wound healing. Thus salivary compounds could be isolated, be mass produced and may have potential to become as common as antibiotic cream.

  11. Evaluation of wound healing activity of root of Mimosa pudica.

    Science.gov (United States)

    Kokane, Dnyaneshwar D; More, Rahul Y; Kale, Mandar B; Nehete, Minakshi N; Mehendale, Prachi C; Gadgoli, Chhaya H

    2009-07-15

    Mimosa pudica, commonly known as touch-me-not, is used in folklore medicine in arresting bleeding and in skin diseases. There was no scientific evidence justifying the use of Mimosa pudica, therefore the present study was aimed at evaluation of wound healing activity of the plant. In the present study the roots of Mimosa pudica were studied for wound healing activity by incorporating the methanolic and the total aqueous extract in simple ointment base B.P. in concentration of 0.5% (w/w), 1% (w/w) and 2% (w/w). Wound healing activity was studied in three types of model in rats viz. excision, incision and estimation of biochemical parameter. In case of the excision wound model wound contraction and period of epithelization was studied while in incision wound model was evaluated by determining tensile strength and hydroxyproline content in the scab. Treatment of wound with ointment containing 2% (w/w) the methanolic and 2% (w/w) the total aqueous extract exhibited significant (P<0.001) wound healing activity. The methanolic and total aqueous extracts were analyzed for total phenols content equivalent to Gallic acid. The content of total phenols was 11% (w/w) and 17% (w/w) in methanolic and total aqueous extract respectively. The methanolic extract exhibited good wound healing activity probably due to phenols constituents.

  12. Wound healing and wound location in critical limb ischemia following endovascular treatment.

    Science.gov (United States)

    Kobayashi, Norihiro; Hirano, Keisuke; Nakano, Masatsugu; Muramatsu, Toshiya; Tsukahara, Reiko; Ito, Yoshiaki; Ishimori, Hiroshi

    2014-01-01

    The differences in wound healing according to wound location remain unclear. Between April 2007 and October 2011, 138 patients (166 limbs) with critical limb ischemia with tissue loss were treated with endovascular treatment. On these limbs, 177 individual wounds were identified on the foot and were evaluated for wound healing rates and time to healing according to their locations. Wound locations were divided into 3 groups: group T (Toe wounds, n=112), group H (Heel wounds, n=25), and group E (Extensive wounds extending onto the fore- or mid-foot along with dorsum or plantar surfaces, n=40). The mean follow-up period was 23±19 months. At 3, 6, 9, and 12 months, wound healing rates were 51%, 64%, 75%, and 75%, respectively, in group T; 12%, 36%, 36%, and 52%, respectively, in group H; and 0%, 5%, 8%, and 13%, respectively, in group E. The median time to healing was 64 days (interquartile range 25-156 days) in group T, 168 days (interquartile range 123-316 days) in group H, and 267 days (interquartile range 177-316 days) in group E (P=0.038). Extensive wounds extending onto the fore- or mid-foot along with dorsum or plantar surfaces were the most difficult type of wound to heal.

  13. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    Science.gov (United States)

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc.

  14. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  15. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds

    Science.gov (United States)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography–mass spectroscopy (GC–MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC–MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined

  16. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds.

    Science.gov (United States)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography-mass spectroscopy (GC-MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC-MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined levels of

  17. Therapeutic potential of bone marrow-derived mesenchymal stem cells in cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Jerry S Chen

    2012-07-01

    Full Text Available Despite advances in wound care, many wounds never heal and become chronic problems that result in significant morbidity and mortality to the patient. Cellular therapy for cutaneous wounds has recently come under investigation as a potential treatment modality for impaired wound healing. Bone marrow-derived mesenchymal stem cells (MSCs are a promising source of adult progenitor cells for cytotherapy as they are easy to isolate and expand and have been shown to differentiate into various cell lineages. Early studies have demonstrated that MSCs may enhance epithelialization, granulation tissue formation, and neovascularization resulting in accelerated wound closure. It is currently unclear if these effects are mediated through cellular differentiation or by secretion of cytokines and growth factors. This review discusses the proposed biological contributions of MSCs to cutaneous repair and their clinical potential in cell-based therapies.

  18. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    Science.gov (United States)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  19. Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration

    Directory of Open Access Journals (Sweden)

    Dwi Liliek Kusindarta

    2016-06-01

    Full Text Available Aim: This research was conducted to clarify the capability of human umbilical mesenchymal stem cells conditioned medium (HU-MSCM to promote regenerations of primary wound healing on the incision skin injury. Materials and Methods: In this study, two approaches in vitro and in vivo already done. On in vitro analysis, tube formation was performed using HU vein endothelial cells in the presence of HU-MSCM, in some experiments cells line was incubated prior the presence of lipopolysaccharide and HU-MSCM then apoptosis assay was performed. Furthermore, in vivo experiments 12 female rats (Rattus norvegicus were used after rats anesthetized, 7 mm wound was made by incision on the left side of the body. The wound was treated with HU-MSCM containing cream, povidone iodine was run as a control. Wound healing regenerations on the skin samples were visualized by hematoxylin-eosin staining. Results: In vitro models elucidate HU-MSCM may decreasing inflammation at the beginning of wound healing, promote cell migration and angiogenesis. In addition in vivo models show that the incision length on the skin is decreasing and more smaller, HE staining describe decreasing of inflammation phase, increasing of angiogenesis, accelerate fibroplasia, and maturation phase. Conclusions: Taken together our observation indicates that HU-MSCM could promote the acceleration of skin tissue regenerations in primary wound healing process.

  20. Acellular Hydrogels for Regenerative Burn Wound Healing: Translation from a Porcine Model.

    Science.gov (United States)

    Shen, Yu-I; Song, Hyun-Ho G; Papa, Arianne E; Burke, Jacqueline A; Volk, Susan W; Gerecht, Sharon

    2015-10-01

    Currently available skin grafts and skin substitutes for healing following third-degree burn injuries are fraught with complications, often resulting in long-term physical and psychological sequelae. Synthetic treatment that can promote wound healing in a regenerative manner would provide an off-the-shelf, non-immunogenic strategy to improve clinical care of severe burn wounds. Here, we demonstrate the vulnerary efficacy and accelerated healing mechanism of a dextran-based hydrogel in a third-degree porcine burn model. The model was optimized to allow examination of the hydrogel treatment for clinical translation and its regenerative response mechanisms. Hydrogel treatment accelerated third-degree burn wound healing by rapid wound closure, improved re-epithelialization, enhanced extracellular matrix remodeling, and greater nerve reinnervation, compared with the dressing-treated group. These effects appear to be mediated through the ability of the hydrogel to facilitate a rapid but brief initial inflammatory response that coherently stimulates neovascularization within the granulation tissue during the first week of treatment, followed by an efficient vascular regression to promote a regenerative healing process. Our results suggest that the dextran-based hydrogels may substantially improve healing quality and reduce skin grafting incidents and thus pave the way for clinical studies to improve the care of severe burn injury patients.

  1. Advances in the effects of pH value of micro-environment on wound healing%微环境pH值对创面愈合的作用研究进展

    Institute of Scientific and Technical Information of China (English)

    田瑞瑞; 李娜; 魏力

    2016-01-01

    Wound healing is a complex regeneration process,which is affected by lots of endogenous and exogenous factors.Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation,promoting oxygen release,affecting keratinocyte proliferation and migration,etc.In this article,we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing,and summarize the clinical application of variation of pH value of micro-environment in wound healing,thereby to provide new treatment strategy for wound healing.

  2. Fibroblast-specific upregulation of Flightless I impairs wound healing.

    Science.gov (United States)

    Turner, Christopher T; Waters, James M; Jackson, Jessica E; Arkell, Ruth M; Cowin, Allison J

    2015-09-01

    The cytoskeletal protein Flightless (Flii) is a negative regulator of wound healing. Upregulation of Flii is associated with impaired migration, proliferation and adhesion of both fibroblasts and keratinocytes. Importantly, Flii translocates from the cytoplasm to the nucleus in response to wounding in fibroblasts but not keratinocytes. This cell-specific nuclear translocation of Flii suggests that Flii may directly regulate gene expression in fibroblasts, providing one potential mechanism of action for Flii in the wound healing response. To determine whether the tissue-specific upregulation of Flii in fibroblasts was important for the observed inhibitory effects of Flii on wound healing, an inducible fibroblast-specific Flii overexpressing mouse model was generated. The inducible ROSA26 system allowed the overexpression of Flii in a temporal and tissue-specific manner in response to tamoxifen treatment. Wound healing in the inducible mice was impaired, with wounds at day 7 postwounding significantly larger than those from non-inducible controls. There was also reduced collagen maturation, increased myofibroblast infiltration and elevated inflammation. The impaired healing response was similar in magnitude to that observed in mice with non-tissue-specific upregulation of Flii suggesting that fibroblast-derived Flii may have an important role in the wound healing response. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. MicroRNA as Therapeutic Targets for Chronic Wound Healing

    Directory of Open Access Journals (Sweden)

    Eoghan J. Mulholland

    2017-09-01

    Full Text Available Wound healing is a highly complex biological process composed of three overlapping phases: inflammation, proliferation, and remodeling. Impairments at any one or more of these stages can lead to compromised healing. MicroRNAs (miRs are non-coding RNAs that act as post-transcriptional regulators of multiple proteins and associated pathways. Thus, identification of the appropriate miR involved in the different phases of wound healing could reveal an effective third-generation genetic therapy in chronic wound care. Several miRs have been shown to be upregulated or downregulated during the wound healing process. This article examines the biological processes involved in wound healing, the miR involved at each stage, and how expression levels are modulated in the chronic wound environment. Key miRs are highlighted as possible therapeutic targets, either through underexpression or overexpression, and the healing benefits are interrogated. These are prime miR candidates that could be considered as a gene therapy option for patients suffering from chronic wounds. The success of miR as a gene therapy, however, is reliant on the development of an appropriate delivery system that must be designed to overcome both extracellular and intracellular barriers.

  4. MicroRNA as Therapeutic Targets for Chronic Wound Healing.

    Science.gov (United States)

    Mulholland, Eoghan J; Dunne, Nicholas; McCarthy, Helen O

    2017-09-15

    Wound healing is a highly complex biological process composed of three overlapping phases: inflammation, proliferation, and remodeling. Impairments at any one or more of these stages can lead to compromised healing. MicroRNAs (miRs) are non-coding RNAs that act as post-transcriptional regulators of multiple proteins and associated pathways. Thus, identification of the appropriate miR involved in the different phases of wound healing could reveal an effective third-generation genetic therapy in chronic wound care. Several miRs have been shown to be upregulated or downregulated during the wound healing process. This article examines the biological processes involved in wound healing, the miR involved at each stage, and how expression levels are modulated in the chronic wound environment. Key miRs are highlighted as possible therapeutic targets, either through underexpression or overexpression, and the healing benefits are interrogated. These are prime miR candidates that could be considered as a gene therapy option for patients suffering from chronic wounds. The success of miR as a gene therapy, however, is reliant on the development of an appropriate delivery system that must be designed to overcome both extracellular and intracellular barriers. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The Potential of Honey to Promote Wound Healing in Periodontology: a Pilot Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Seyed-Mohammad Fereshtehnejad

    2011-12-01

    Full Text Available Background & Objectives: Honey has been used as a nutraceutical in many traditional and ancient remedies. Considering well documented benefits of honey to accelerate wound healing, for the first time we aimed to assess intra oral surgical wound healing process with honey. Methods: We designed a pilot randomized placebo controlled cross-over clinical trial. Patients who required bilateral Modified Widman Flap (MWF surgery randomly assigned to receive either 15 cc topical Persian Thymus Vulgaris concentrated honey three times a day or normal saline as placebo with the same amount at the site of the surgery for seven consecutive days. After a 35-day wash-out period the study groups were crossed. The primary efficacy outcome was changes in healing index (Landry index and the secondary efficacy outcome were changes in gingival and plaque indices (Loe & Sillness, Sillness & Loe indices. It also includes safety issues consisting of any allergic reaction, delayed healing or wound dehiscence. Results: Ten patients enrolled with the mean age of 36 (±1.5 ranged between 35-40 yrs. There was a significant improvement in wound healing considering time and treatment effects in both groups, although faster wound healing observed in honey treated patients (P<0.001. In both groups gingival indices were noticed to be improved by the time during the first phase of the study. Both groups displayed aggravated Plaque formation; nevertheless it was merely statistically significant in the control group [F (3, 27 =12.88, P value < 0.001]. All wounds healed normally and no adverse events recorded. Conclusion: Our study established the safety, efficacy and feasibility of topical honey to promote periodontal surgical wound healing.

  6. Wound healing activity of Sida cordifolia Linn. in rats.

    Science.gov (United States)

    Pawar, Rajesh S; Chaurasiya, Pradeep K; Rajak, Harish; Singour, Pradeep K; Toppo, Fedelic Ashish; Jain, Ankit

    2013-01-01

    The present study provides a scientific evaluation for the wound healing potential of ethanolic (EtOH) extract of Sida cordifolia Linn. (SCL) plant. Excision, incision and burn wounds were inflicted upon three groups of six rats each. Group I was assigned as control (ointment base). Group II was treated with 10% EtOH extract ointment. Group III was treated with standard silver sulfadiazine (0.01%) cream. The parameters observed were percentage of wound contraction, epithelialization period, hydroxyproline content, tensile strength including histopathological studies. It was noted that the effect produced by the ethanolic extract of SCL ointment showed significant (P < 0.01) healing in all wound models when compared with the control group. All parameters such as wound contraction, epithelialization period, hydroxyproline content, tensile strength and histopathological studies showed significant (P < 0.01) changes when compared with the control. The ethanolic extract ointment of SCL effectively stimulates wound contraction; increases tensile strength of excision, incision and burn wounds.

  7. Burn wound healing: present concepts, treatment strategies and future directions.

    Science.gov (United States)

    Oryan, A; Alemzadeh, E; Moshiri, A

    2017-01-02

    Burns are the most extensive forms of soft tissue injuries occasionally resulting in extensive and deep wounds and death. Burns can lead to severe mental and emotional distress, because of excessive scarring and skin contractures. Treatment of burns has always been a difficult medical problem and many different methods have been used to treat such injuries, locally. Biofilms are a collection of microorganisms that delay wound healing. One of the new methods of prevention and treatment of burn wound infections is application of antimicrobials, which act on biofilms and prevent the wound infection. Biofilm initiates a persistent, low-grade, inflammatory response, impairing both the epithelialisation and granulation tissue formation. Skin grafts have been shown to dramatically reduce deaths from infection. However, grafting has considerable limitations. Such injuries are long-lasting and many patients suffer from chronic pain for a long time. Tissue engineering is a new approach in reducing the limitations of conventional treatments and producing a supply of immunologically tolerant artificial tissue, leading to a permanent solution for damaged tissues; such criteria make it a cost-effective and reliable treatment modality. To overcome the present limitations of burn wound healing, knowledge about the latest findings regarding healing mechanisms is important. Here the authors discuss the most important events regarding burn wound healing and review the latest treatment strategies that have been used for burn wounds from in vitro to clinical levels. Finally, we discuss the role of tissue engineering and regenerative medicine in the future of burn wound healing, modelling and remodelling.

  8. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  9. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Ilya A. Demyanenko

    2017-01-01

    Full Text Available Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6′-plastoquinonyldecyltriphenylphosphonium (SkQ1 to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db−/db− mice was significantly enhanced after long-term (12 weeks administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts, reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.

  10. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  11. Non-Coding RNAs: New Players in Skin Wound Healing.

    Science.gov (United States)

    Herter, Eva K; Xu Landén, Ning

    2017-03-01

    Significance: Wound healing is a basic physiological process that is utilized to keep the integrity of the skin. Impaired wound repair, such as chronic wounds and pathological scars, presents a major health and economic burden worldwide. To date, efficient targeted treatment for these wound disorders is still lacking, which is largely due to our limited understanding of the biological mechanisms underlying these diseases. Research driven around discovering new therapies for these complications is, therefore, an urgent need. Recent Advances: The vast majority of the human genome is transcribed to RNAs that lack protein-coding capacity. Intensive research in the recent decade has revealed that these non-coding RNAs (ncRNAs) function as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. Critical Issues: A class of short ncRNAs, microRNAs, has been found to be indispensable for all the phases of skin wound healing and plays important roles in the pathogenesis of wound complications. The role of long ncRNAs (lncRNA) in skin wound healing remains largely unexplored. Recent studies revealed the essential role of lncRNAs in epidermal differentiation and stress response, indicating their potential importance for skin wound healing, which warrants future research. Future Directions: An investigation of ncRNAs will add new layers of complexity to our understanding of normal skin wound healing as well as to the pathogenesis of wound disorders. Development of ncRNA-based biomarkers and treatments is an interesting and important avenue for future research on wound healing.

  12. Wound healing activity of Abroma augusta in Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Shanbhag T; Dattachaudhuri A; Shenoy S; Bairy KL

    2009-01-01

    Objective:The study was undertaken to evaluate the wound healing profile of alcoholic extract of Abroma au-gusta and its effect on dexamethasone suppressed wound healing in Wistar rats.Methods:An alcoholic extract of Abroma augusta was prepared.Three models were used -incision,excision and dead space wound models. Four groups of animals were used for each model.They were administered 2% gum acacia (orally),alcoholic extract of Abroma augusta (orally),dexamethasone (intramuscularly)and combination of Abroma augusta (o-rally)with dexamethasone (intramuscularly)respectively.The parameters studied included breaking strength of incision wound,period of epithelization and wound contraction rate in the excision wound,breaking strength,dry weight and hydroxyproline content of granulation tissue in dead space wound.Results:The breaking strength of incision wound of Abroma augusta treated group was significantly increased (P <0.001) while that of dexamethasone treated animals was significantly decreased (P <0.001)as compared to control. Coadministration of dexamethasone and Abroma augusta significantly reversed the dexamethasone suppressed wound healing in incision wound model (P <0.001).Animals treated with both dexamethasone and Abroma augusta also showed significant (P <0.004)increase in the breaking strength of granulation tissue in the dead space wound and a significant (P <0.011)reduction in the period of epithelization in the excision wound as compared to rats treated with dexamethasone alone.The rate of wound contraction was not significantly altered in any of the groups.Conclusion:The alcoholic extract of Abroma augusta was found to reverse dexametha-sone suppressed wound healing.

  13. The effect of red, green and blue lasers on healing of oral wounds in diabetic rats.

    Science.gov (United States)

    Fekrazad, Reza; Mirmoezzi, Amir; Kalhori, Katayoun Am; Arany, Praveen

    2015-07-01

    Many studies have demonstrated that low-level laser therapy (LLLT) can improve wound healing in non-diabetic and diabetic animals. We compared the effects of red, green, and blue lasers in terms of accelerating oral wound healing in diabetic rats. Diabetes was successfully induced in 32 male Wistar rats using intraperitoneal injection of Streptozotocin (150 mg/kg). After intraperitoneal injection of the anesthetic agent, a full-thickness oral wound (10 mm × 2 mm) was created aseptically with a scalpel on hard palate of the diabetic rats. The study was performed using red (630 nm), green (532 nm), and blue (425 nm) lasers and a control group. We used an energy density of 2J/cm2 and a treatment schedule of 3 times/week for 10 days. The area of wounds was measured and recorded on a chart for all rats. On the 10th day, the samples were then sacrificed and a full-thickness sample of wound area was prepared for pathological study. We observed a significant difference (plaser and two other lasers - blue and green (plaser and green laser (p=0.777). The results of the present study provide evidence that wound healing is slower in control rats compared to the treatment groups. Moreover, the findings suggest that wound healing occurs faster with red laser compared to blue and green lasers. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Role of nitric oxide, nitroxidative and oxidative stress in wound healing.

    Science.gov (United States)

    Soneja, Amit; Drews, Magdalena; Malinski, Tadeusz

    2005-01-01

    Redox-regulated processes are relevant to wound healing. A balance between bioavailable nitric oxide (NO) concentration and a level of oxidative and nitroxidative stress in wounds may be crucial in wound repair. The highly beneficial effect of bioavailable NO is attributed to scavenging of superoxide, which is the main component of oxidative stress. Also, the high level of NO can influence angiogenesis and endothelial/skeletal muscle cell remodeling and proliferation. However, under conditions of excessive and prolonged production of O(2)(-) in wounds, the supplementation of NO can be evolved in significant increase in nitroxidative stress due to production of peroxynitrite (ONOO(-)) and peroxynitrous acid (ONOOH). ONOOH can trigger a cascade of events leading to the generation of highly reactive and damaging radicals and oxidative species. These species (mainly CO(3)(.-), NO(2)(+), NO(2), N(2)O(3), OH(.)) can impose significant damage in biological milieu and impair the process of wound healing. Therefore, a general strategy for an acceleration of the wound healing process may include an intervention(s) leading to the decrease in oxidative stress (treatment with antioxidants and/or prevention of O(2)(-) generation by uncoupled constitutive nitric oxide synthase, cNOS) and delivery of NO (treatment with NO donors, cNOS gene therapy). Here we briefly review the role of NO, and focus on O(2)(-) and ONOOH (major components of oxidative and nitroxidative stress respectively) in the normal and impaired process of wound healing.

  15. The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models.

    Science.gov (United States)

    Yates, Cecelia C; Whaley, Diana; Babu, Ranjith; Zhang, Jianying; Krishna, Priya; Beckman, Eric; Pasculle, A William; Wells, Alan

    2007-09-01

    We determined whether a two-part space-conforming polyethylene glycol/dopa polymer-based gel promoted healing of contaminated wounds in mice. This silver-catalysed gel was previously developed to be broadly microbiocidal in vitro while being biocompatible with human wound cell functioning. Full-thickness wounds were created on the backs of mice. The wounds were inoculated with 10(4) CFU of each of four common skin wound contaminants, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanii and Clostridium perfringens. The wounds were then treated with our multifunctional polymer-based gel, the commercially available NewSkin product, or left to heal untreated. The untreated wounds were overtly infected, and presented detectable bacterial loads over the entire 21-day healing period, while the gel and NewSkin groups presented significantly smaller rises in bacterial levels and were cleared of detectable colonies by the third week, with the gel group clearing the bacteria earlier. While all three groups healed their wounds, the polymer-based gel-treated group demonstrated significantly earlier re-epithelialization and dermal maturation (Phealing wound. These preclinical studies show that the anti-microbial polymer gel not only supports but also accelerates healing of bacterially contaminated wounds.

  16. Wound-healing potential of the fruit extract of Phaleria macrocarpa

    Directory of Open Access Journals (Sweden)

    Walaa Najm Abood

    2015-05-01

    Full Text Available The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson’s trichrome stain. Superoxide dismutase (SOD and catalase (CAT activities, along with malondialdehyde (MDA level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1 and tumor necrosis factor alpha (TNF-α were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.

  17. Wound-healing potential of the fruit extract of Phaleria macrocarpa.

    Science.gov (United States)

    Abood, Walaa Najm; Al-Henhena, Nawal Ahmed; Najim Abood, Ammar; Al-Obaidi, Mazen M Jamil; Ismail, Salmah; Abdulla, Mahmood Ameen; Al Bartan, Rami

    2015-01-01

    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.

  18. Appraisal on the wound healing activity of different extracts obtained ...

    African Journals Online (AJOL)

    2015-12-02

    Dec 2, 2015 ... All extracts obtained from AM and MP facilitated the wound healing process in all experimental models. ... [4] The fibroblast is the connective tissue ...... of ethanolic extract of leaves of Hyptis suaveolens with supportive role of.

  19. Evaluation of lymphatic regeneration in rat incisional wound healing ...

    African Journals Online (AJOL)

    Nevine M.F. El Deeb

    2014-06-20

    Jun 20, 2014 ... Abstract Objective: During the wound healing process, lymphatic regeneration in the injured skin has not .... posed of newly-formed blood vessels and fibroblasts .... age plays a role in connection with traumatic deaths due to.

  20. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound

    OpenAIRE

    Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.

    2016-01-01

    Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronecti