WorldWideScience

Sample records for accelerated wound healing

  1. Low level diode laser accelerates wound healing.

    Science.gov (United States)

    Dawood, Munqith S; Salman, Saif Dawood

    2013-05-01

    The effect of wound illumination time by pulsed diode laser on the wound healing process was studied in this paper. For this purpose, the original electronic drive circuit of a 650-nm wavelength CW diode laser was reconstructed to give pulsed output laser of 50 % duty cycle and 1 MHz pulse repetition frequency. Twenty male mice, 3 months old were used to follow up the laser photobiostimulation effect on the wound healing progress. They were subdivided into two groups and then the wounds were made on the bilateral back sides of each mouse. Two sessions of pulsed laser therapy were carried along 15 days. Each mice group wounds were illuminated by this pulsed laser for 12 or 18 min per session during these 12 days. The results of this study were compared with the results of our previous wound healing therapy study by using the same type of laser. The mice wounds in that study received only 5 min of illumination time therapy in the first and second days of healing process. In this study, we found that the wounds, which were illuminated for 12 min/session healed in about 3 days earlier than those which were illuminated for 18 min/session. Both of them were healed earlier in about 10-11 days than the control group did.

  2. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.

  3. Hydrogen sulfide accelerates wound healing in diabetic rats.

    Science.gov (United States)

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF).

  4. Acceleration of wound healing with stem cell-derived growth factors.

    Science.gov (United States)

    Tamari, Masayuki; Nishino, Yudai; Yamamoto, Noriyuki; Ueda, Minoru

    2013-01-01

    Recently, it has been revealed that bone marrow-derived mesenchymal stem cells (MSCs) accelerate the healing of skin wounds. Although the proliferative capacity of MSCs decreases with age, MSCs secrete many growth factors. The present study examined the effect of mesenchymal stem cell-conditioned medium (MSC-CM) on wound healing. The wound-healing process was observed macroscopically and histologically using an excisional wound-splinting mouse model, and the expression level of hyaluronic acid related to the wound healing process was observed to evaluate the wound-healing effects of MSC, MSC-CM, and control (phosphate-buffered saline). The MSC and MSC-CM treatments accelerated wound healing versus the control group. At 7 days after administration, epithelialization was accelerated, thick connective tissue had formed in the skin defect area, and the wound area was reduced in the MSC and MSC-CM groups versus the control group. At 14 days, infiltration of inflammatory cells was decreased versus 7 days, and the wounds were closed in the MSC and MSC-CM groups, while a portion of epithelium was observed in the control group. At 7 and 14 days, the MSC and MSC-CM groups expressed significantly higher levels of hyaluronic acid versus the control group (P wound healing versus the control group to a similar degree. Accordingly, it is suggested that the MSC-CM contains growth factor derived from stem cells, is able to accelerate wound healing as well as stem cell transplantation, and may become a new therapeutic method for wound healing in the future.

  5. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    Science.gov (United States)

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  6. Atrial Natriuretic Peptide Accelerates Human Endothelial Progenitor Cell-Stimulated Cutaneous Wound Healing and Angiogenesis.

    Science.gov (United States)

    Lee, Tae Wook; Kwon, Yang Woo; Park, Gyu Tae; Do, Eun Kyoung; Yoon, Jung Won; Kim, Seung-Chul; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Jae Ho

    2018-05-26

    Atrial natriuretic peptide (ANP) is a powerful vasodilating peptide secreted by cardiac muscle cells, and endothelial progenitor cells (EPCs) have been reported to stimulate cutaneous wound healing by mediating angiogenesis. To determine whether ANP can promote the EPC-mediated repair of injured tissues, we examined the effects of ANP on the angiogenic properties of EPCs and on cutaneous wound healing. In vitro, ANP treatment enhanced the migration, proliferation, and endothelial tube-forming abilities of EPCs. Furthermore, small interfering RNA-mediated silencing of natriuretic peptide receptor-1, which is a receptor for ANP, abrogated ANP-induced migration, tube formation, and proliferation of EPCs. In a murine cutaneous wound model, administration of either ANP or EPCs had no significant effect on cutaneous wound healing or angiogenesis in vivo, whereas the co-administration of ANP and EPCs synergistically potentiated wound healing and angiogenesis. In addition, ANP promoted the survival and incorporation of transplanted EPCs into newly formed blood vessels in wounds. These results suggest ANP accelerates EPC-mediated cutaneous wound healing by promoting the angiogenic properties and survival of transplanted EPCs. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  7. Saliva and wound healing.

    Science.gov (United States)

    Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.

  8. Acceleration of skin wound healing with tragacanth (Astragalus preparation: an experimental pilot study in rats.

    Directory of Open Access Journals (Sweden)

    Ehsan Fayazzadeh

    2014-01-01

    Full Text Available Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, P<0.001. The majority of wounds in the test group were completely closed by the 10th day of the study. The difference in wound healing index measured by histological examination on day 10 of the study was also statistically meaningful between the two groups (0.624±0.097 vs. 0.255±0.063, P<0.05. The results of this study clearly showed the useful effects of topical application of gum tragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  9. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression.

    Science.gov (United States)

    Hussan, F; Teoh, S Lin; Muhamad, N; Mazlan, M; Latiff, A A

    2014-08-01

    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract. Fifty-six male Sprague-Dawley rats were divided into a normal control group and five diabetic groups of ten rats each. Intravenous streptozotocin (50mg/kg) was given to induce diabetes in the diabetic groups. Full thickness excision wounds were created on the thoracodorsal region of the animals, and these wounds were then treated with vehicle, MC powder, MC ointment and povidone ointment or ointment base for ten days. Wound healing was determined by the rate of wound closure, total protein content and TGF-β expression in the wounds, and histological observation. Diabetic groups showed delayed wound closure rates compared to the control group. The wound closure rate in the MC ointment group was significantly faster than that of the untreated diabetic group (p<0.05). The MC ointment group also showed intense TGF-β expression and a high level of total protein content. MC ointment has a promising potential for use as an alternative topical medication for diabetic wounds. This work has shown that it accelerates wound healing in diabetic rats, and it is suggested here that this occurs by enhancing TGF-β expression. Further work is recommended to explore this effect.

  10. Wound Healing and Care

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Wound Healing and Care KidsHealth / For Teens / Wound Healing and ... open to heal through natural scar formation. The Healing Process Before healing begins, the body gears up ...

  11. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kawabata, Yuya; Ekuni, Daisuke; Azuma, Tetsuji; Kataoka, Kota; Kunitomo, Muneyoshi; Morita, Manabu

    2014-12-10

    Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10), may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old) (n = 27) received topical application of ointment containing 5% rCoQ10 (experimental group) or control ointment (control group) to the sockets for 3 or 8 days (n = 6-7/group). At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  12. Promotion of accelerated repair in a radiation impaired wound healing model in murine skin

    International Nuclear Information System (INIS)

    Walker, M.D.

    2000-02-01

    therapeutic modalities investigated were unable to counteract any radiation damage and promote acceleration of repair in this impaired wound healing model. (author)

  13. How wounds heal

    Science.gov (United States)

    ... How puncture wounds heal; How burns heal; How pressure sores heal; How lacerations heal ... bleed. For example, burns, some puncture wounds, and pressure sores do not bleed. Once the scab forms, your ...

  14. Acceleration of skin wound healing with tragacanth (Astragalus) preparation: an experimental pilot study in rats.

    Science.gov (United States)

    Fayazzadeh, Ehsan; Rahimpour, Sina; Ahmadi, Seyed Mohsen; Farzampour, Shahrokh; Sotoudeh Anvari, Maryam; Boroumand, Mohammad Ali; Ahmadi, Seyed Hossein

    2014-01-01

    Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples) were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, Ptragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  15. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring.

    Science.gov (United States)

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2014-09-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria.

    Science.gov (United States)

    Vågesjö, Evelina; Öhnstedt, Emelie; Mortier, Anneleen; Lofton, Hava; Huss, Fredrik; Proost, Paul; Roos, Stefan; Phillipson, Mia

    2018-02-20

    Impaired wound closure is a growing medical problem associated with metabolic diseases and aging. Immune cells play important roles in wound healing by following instructions from the microenvironment. Here, we developed a technology to bioengineer the wound microenvironment and enhance healing abilities of the immune cells. This resulted in strongly accelerated wound healing and was achieved by transforming Lactobacilli with a plasmid encoding CXCL12. CXCL12-delivering bacteria administrated topically to wounds in mice efficiently enhanced wound closure by increasing proliferation of dermal cells and macrophages, and led to increased TGF-β expression in macrophages. Bacteria-produced lactic acid reduced the local pH, which inhibited the peptidase CD26 and consequently enhanced the availability of bioactive CXCL12. Importantly, treatment with CXCL12-delivering Lactobacilli also improved wound closure in mice with hyperglycemia or peripheral ischemia, conditions associated with chronic wounds, and in a human skin wound model. Further, initial safety studies demonstrated that the topically applied transformed bacteria exerted effects restricted to the wound, as neither bacteria nor the chemokine produced could be detected in systemic circulation. Development of drugs accelerating wound healing is limited by the proteolytic nature of wounds. Our technology overcomes this by on-site chemokine production and reduced degradation, which together ensure prolonged chemokine bioavailability that instructed local immune cells and enhanced wound healing. Copyright © 2018 the Author(s). Published by PNAS.

  17. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  18. Application of Coenzyme Q10 for Accelerating Soft Tissue Wound Healing after Tooth Extraction in Rats

    Directory of Open Access Journals (Sweden)

    Toshiki Yoneda

    2014-12-01

    Full Text Available Accelerating wound healing after tooth extraction is beneficial in dental treatment. Application of antioxidants, such as reduced coenzyme Q10 (rCoQ10, may promote wound healing after tooth extraction. In this study, we examined the effects of topical application of rCoQ10 on wound healing after tooth extraction in rats. After maxillary first molars were extracted, male Fischer 344 rats (8 weeks old (n = 27 received topical application of ointment containing 5% rCoQ10 (experimental group or control ointment (control group to the sockets for 3 or 8 days (n = 6–7/group. At 3 days after extraction, the experimental group showed higher collagen density and lower numbers of polymorphonuclear leukocytes in the upper part of socket, as compared to the control group (p < 0.05. Gene expression of interleukin-1β, tumor necrosis factor-α and nuclear factor-κB were also lower in the experimental group than in the control group (p < 0.05. At 8 days after tooth extraction, there were no significant differences in collagen density, number of polymorphonuclear leukocytes and bone fill between the groups. Our results suggest that topical application of rCoQ10 promotes wound healing in the soft tissue of the alveolar socket, but that rCoQ10 has a limited effect on bone remodeling in rats.

  19. Topical application of Acheflan on rat skin injury accelerates wound healing: a histopathological, immunohistochemical and biochemical study.

    Science.gov (United States)

    Perini, Jamila Alessandra; Angeli-Gamba, Thais; Alessandra-Perini, Jessica; Ferreira, Luiz Claudio; Nasciutti, Luiz Eurico; Machado, Daniel Escorsim

    2015-06-30

    Dermal wound healing involves a cascade of complex events including angiogenesis and extracellular matrix remodeling. Several groups have focused in the study of the skin wound healing activity of natural products. The phytomedicine Acheflan®, and its main active constituent is the oil from Cordia verbenacea which has known anti-inflammatory, analgesic and antimicrobial activities. To our knowledge, no investigation has evaluated the effect of Acheflan® in an experimental model of skin wound healing. The present study has explored the wound healing property of Acheflan® and has compared it with topical effectiveness of collagenase and fibrinolysin by using Wistar rat cutaneous excision wound model. Animals were divided into four groups: untreated animals are negative control (NC), wounds were treated topically every day with Collagenase ointment (TC), with Fibrinolysin ointment (TF) and with cream Acheflan (TAc). Skin samples were collected on zero, 8th and 15th days after wounding. The healing was assessed by hematoxylin-eosin (HE), picrosirius red, hydoxyproline content and immunohistochemical analysis of the vascular endothelial growth factor (VEGF) and matrix metalloprotease-9 (MMP-9). Statistical analysis was done by ANOVA and Student t-test (p Cordia verbenacea) and TC possess higher therapeutic properties for wound healing compared with TF. These ointments seem to accelerate wound healing, probably due to their involvement with the increase of angiogenesis and dermal remodeling.

  20. Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells.

    Science.gov (United States)

    Shen, Lei; Zeng, Wen; Wu, Yang-Xiao; Hou, Chun-Li; Chen, Wen; Yang, Ming-Can; Li, Li; Zhang, Ya-Fang; Zhu, Chu-Hong

    2013-01-01

    Angiogenesis is a major obstacle for wound healing in patients with diabetic foot wounds. Mesenchymal stem cells (MSCs) have an important function in wound repair, and neurotrophin-3 (NT-3) can promote nerve regeneration and angiogenesis. We investigated the effect of NT-3 on accelerating wound healing in the diabetic foot by improving human bone marrow MSC (hMSC) activation. In vitro, NT-3 significantly promoted VEGF, NGF, and BDNF secretion in hMSCs. NT-3 improved activation of the hMSC conditioned medium, promoted human umbilical vein endothelial cell (HUVEC) proliferation and migration, and significantly improved the closure rate of HUVEC scratches. In addition, we produced nanofiber mesh biological tissue materials through the electrospinning technique using polylactic acid, mixed silk, and collagen. The hMSCs stimulated by NT-3 were implanted into the material. Compared with the control group, the NT-3-stimulated hMSCs in the biological tissue material significantly promoted angiogenesis in the feet of diabetic C57BL/6J mice and accelerated diabetic foot wound healing. These results suggest that NT-3 significantly promotes hMSC secretion of VEGF, NGF, and other vasoactive factors and that it accelerates wound healing by inducing angiogenesis through improved activation of vascular endothelial cells. The hMSCs stimulated by NT-3 can produce materials that accelerate wound healing in the diabetic foot and other ischemic ulcers.

  1. Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling.

    Science.gov (United States)

    Zhao, Ruizhe; Wang, Xingjie; Jiang, Chenyi; Shi, Fei; Zhu, Yiping; Yang, Boyu; Zhuo, Jian; Jing, Yifeng; Luo, Guangheng; Xia, Shujie; Han, Bangmin

    2018-06-01

    Urinary tract infection, urinary frequency, urgency, urodynia and haemorrhage are common post-operative complications of thulium laser resection of the prostate (TmLRP). Our study mainly focuses on the role of finasteride in prostate wound healing through AR signalling. TmLRP beagles were randomly distributed into different treatment groups. Serum and intra-prostatic testosterone and DHT level were determined. Histological analysis was conducted to study the re-epithelialization and inflammatory response of the prostatic urethra in each group. We investigated the role of androgen in proliferation and inflammatory response in prostate. In addition, the effects of TNF-α on prostate epithelium and stromal cells were also investigated. Testosterone and DHT level increased in testosterone group and DHT decreased in finasteride group. Accelerated wound healing of prostatic urethra was observed in the finasteride group. DHT suppressed proliferation of prostate epithelium and enhanced inflammatory response in prostate. We confirmed that DHT enhanced macrophages TNF-α secretion through AR signalling. TNF-α suppressed proliferation of prostate epithelial cells and retarded cell migration. TNF-α also played a pivotal role in suppressing fibroblasts activation and contraction. Testosterone treatment repressed re-epithelialization and wound healing of prostatic urethra. Finasteride treatment may be an effective way to promote prostate re-epithelialization. © 2017 John Wiley & Sons Ltd.

  2. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Adolf, E-mail: ageiger@dreirosen-pharma.com; Walker, Audrey, E-mail: awalker@dreirosen-pharma.com; Nissen, Erwin, E-mail: enissen@dreirosen-pharma.com

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. - Highlights: • Fibrocytes have shown potent wound healing properties in vitro and in vivo. • Their clinical use is precluded by low numbers and antigen-presenting function. • We isolated exosomes with no immunogenicity potential from human fibrocytes. • Their cargo included microRNAs and proteins that are known healing promoters. • They accelerated wound closure in diabetic mice in a dose-dependent manner.

  3. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    Science.gov (United States)

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  4. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2017-08-01

    Full Text Available A recent hypothesis has revealed that low-dose irradiation (LDI with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam and indirect (gamma-ray low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG–I and IG–II and respectively exposed to electron and gamma-radiations (75 cGy immediately after the surgical procedure. The third group was considered as the control (CG and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing.

  5. Factors Affecting Wound Healing

    OpenAIRE

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  6. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation.

    Science.gov (United States)

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2016-07-01

    The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Topical Aloe Vera (Aloe barbadensis Miller) Extract Does Not Accelerate the Oral Wound Healing in Rats.

    Science.gov (United States)

    Coelho, Fernanda Hack; Salvadori, Gabriela; Rados, Pantelis Varvaki; Magnusson, Alessandra; Danilevicz, Chris Krebs; Meurer, Luise; Martins, Manoela Domingues

    2015-07-01

    The effect of topical application of Aloe Vera (Aloe barbadensis Miller) extract was assessed on the healing of rat oral wounds in an in vivo model using 72 male Wistar rats divided into three groups (n = 24): control, placebo and Aloe Vera (0.5% extract hydroalcoholic). Traumatic ulcers were caused in the dorsum of the tongue using a 3-mm punch tool. The Aloe Vera and placebo group received two daily applications. The animals were sacrificed after 1, 5, 10 and 14 days. Clinical analysis (ulcer area and percentage of repair) and histopathological analysis (degree of re-epithelialization and inflammation) were performed. The comparison of the differences between scores based on group and experimental period, both in quantitative and semi-quantitative analyses, was performed using the Kruskal-Wallis test. The significance level was 5%. On day 1, all groups showed predominantly acute inflammatory infiltrate. On day 5, there was partial epithelialization and chronic inflammatory infiltrate. On the days 10 and 14 total repair of ulcers was observed. There was no significant difference between groups in the repair of mouth ulcers. It is concluded that treatment using Aloe Vera as an herbal formulation did not accelerate oral wound healing in rats. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Targeted treatment of invasive fungal infections accelerates healing of foot wounds in patients with Type 2 diabetes.

    Science.gov (United States)

    Chellan, G; Neethu, K; Varma, A K; Mangalanandan, T S; Shashikala, S; Dinesh, K R; Sundaram, K R; Varma, N; Jayakumar, R V; Bal, A; Kumar, H

    2012-09-01

    To test the hypothesis that fluconazole plus standard care is superior to the standard care for diabetic foot wounds infected with deep-seated fungal infections. We carried out a randomized, controlled, open-label, parallel-arm study in 75 patients with both fungal and bacterial infections in deep tissues of diabetic foot wounds. Thirty-seven patients (control group) were given standard care (surgical debridement + culture-specific antibiotics + offloading + glycaemic control) and 38 patients (treatment group) were given fluconazole 150 mg daily plus standard care. Wound surface area was measured every 2 weeks until the endpoints (complete epithelialization or skin grafting) were met. By week 4, the mean wound surface area reduced to 27.3 from 111.5 cm(2) in the treatment group, as opposed to 67.1 from 87.3 cm(2) in the control group. Subsequently, the mean wound surface areas were remarkably smaller in the treatment group compared with the control group, and statistically significant differences (P ≤ 0.05) in mean wound surface area were observed between the treatment group and the control group at week 6. However, no statistically significant (P ≤ 0.47) difference in complete healing was observed between the treatment group and the control group, 20 vs. 24. The mean wound healing time for the treatment group was 7.3 weeks, whereas for the control group it was 11.3 weeks (P ≤ 0.022). Similarly, the probability of wound healing in the treatment group was 50 vs. 20% in the control group at week 10. Fluconazole plus standard care was superior to standard care alone in accelerating wound reduction among patients with diabetes with deep-seated fungal infections in diabetic foot wounds. Those in the treatment group who did heal, healed more quickly (P ≤ 0.022), but overall healing was not different. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  9. Factors Affecting Wound Healing

    Science.gov (United States)

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  10. Exercise accelerates wound healing among healthy older adults: a preliminary investigation.

    Science.gov (United States)

    Emery, Charles F; Kiecolt-Glaser, Janice K; Glaser, Ronald; Malarkey, William B; Frid, David J

    2005-11-01

    Older adults are likely to experience delayed rates of wound healing, impaired neuroendocrine responsiveness, and increased daily stress. Exercise activity has been shown to have a positive effect on physiological functioning and psychological functioning among older adults. This study evaluated the effect of a 3-month exercise program on wound healing, neuroendocrine function, and perceived stress among healthy older adults. Twenty-eight healthy older adults (mean age 61.0 +/- 5.5 years) were assigned randomly to an exercise activity group (n = 13) or to a nonexercise control group (n = 15). One month following baseline randomization, after exercise participants had acclimated to the exercise routine, all participants underwent an experimental wound procedure. Wounds were measured 3 times per week until healed to calculate rate of wound healing. All participants completed assessments of exercise endurance, salivary cortisol, and self-reported stress prior to randomization and at the conclusion of the intervention. Exercise participants achieved significant improvements in cardiorespiratory fitness, as reflected by increased oxygen consumption (VO(2)max) and exercise duration. Wound healing occurred at a significantly faster rate in the exercise group [mean = 29.2 (9.0) days] than in the nonexercise group [38.9 (7.4) days; p =.012]. Exercise participants also experienced increased cortisol secretion during stress testing following the intervention. Group differences in wound healing and neuroendocrine responsiveness were found despite low levels of self-reported stress. A relatively short-term exercise intervention is associated with enhanced rates of wound healing among healthy older adults. Thus, exercise activity may be an important component of health care to promote wound healing.

  11. Topical Application of Sadat-Habdan Mesenchymal Stimulating Peptide (SHMSP Accelerates Wound Healing in Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Abdulmohsen H. Al-Elq

    2012-01-01

    Full Text Available Objective. Diminished wound healing is a common problem in diabetic patients due to diminished angiogenesis. SHMSP was found to promote angiogenesis. The present study was carried out to examine the effect of this peptide in healing of wounds in diabetic rabbits. Materials and Methods. Twenty male New Zealand rabbits were used in this study. Diabetes mellitus was induced and the rabbits were randomly divided into two equal groups: control group and peptide group. A-full thickness punch biopsy was made to create a wound of about 10 mm on the right ears of all rabbits. Every day, the wound was cleaned with saline in control groups. In the peptide group, 15 mg of SHMSP was applied after cleaning. On day 15th, all animals were sacrificed, and the wounds were excised with a rim of 5 mm of normal surrounding tissue. Histo-pathological assessment of wound healing, inflammatory cell infiltration, blood vessel proliferation, and collagen deposition was performed. Results. There were no deaths among the groups. There was significant increase in wound healing, blood vessel proliferation and collagen deposition, and significant decrease in inflammatory cell infiltration in the peptide group compared to the control group. Conclusion. Topical application of SHMSP improves wound healing in diabetic rabbits.

  12. Lipid Emulsion Enriched in Omega-3 PUFA Accelerates Wound Healing: A Placebo-Controlled Animal Study.

    Science.gov (United States)

    Peng, Yi-Chi; Yang, Fwu-Lin; Subeq, Yi-Maun; Tien, Chin-Chieh; Chao, Yann-Fen C; Lee, Ru-Ping

    2018-06-01

    The Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) generate bioactive lipid mediators that reduce inflammation. The present study evaluated the effect of SMOFlipid containing ω-3 PUFAs on wound healing. Rats were divided into a SMOFlipid (SMOF) group and a 0.9% saline (placebo) group, with eight rats in each group. Wound excision was performed on the dorsal surface of each rat. In the SMOF group, 1 gm/kg SMOFlipid was dissolved in 3 mL saline as a treatment; in the placebo group, 3 mL saline was prepared as a treatment. The treatments were administered intravenously at an initial rate of 0.2 mL/kg body weight/h immediately after wounding, for 72 h. Blood samples were collected for white blood cell, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 measurements at the baseline and at 1, 6, 12, 24, 48, and 72 h after intervention. Wound areas were measured over a 2-week period after excision, and a histological examination was performed. Compared with the placebo group, SMOFlipid supplementation engendered significant decreases in the wound area on day 3 (78.28 ± 5.25 vs. 105.86 ± 8.89%), day 5 (72.20 ± 4.31 vs. 96.39 ± 4.72%), day 10 (20.78 ± 1.28 vs. 39.80 ± 10.38%), and day 14 (7.56 ± 0.61 vs. 15.10 ± 2.42%). The placebo group had a higher TNF-α level than the SMOF group at 72 h. The IL-10 level was higher in the SMOF group than in the placebo group at 48 h. Histological analysis revealed a higher rate of fibroblast distribution and collagen fiber organization in the SMOF group (P = 0.01). SMOFlipid enriched in ω-3 PUFA accelerates wound healing.

  13. Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model

    Directory of Open Access Journals (Sweden)

    Yu Gil Park

    2017-05-01

    Full Text Available BackgroundPlatelet-rich plasma (PRP contains high concentrations of growth factors involved in wound healing. Hydrogel is a 3-dimensional, hydrophilic, high-molecular, reticular substance generally used as a dressing formulation to accelerate wound healing, and also used as a bio-applicable scaffold or vehicle. This study aimed to investigate the effects of PRP and hydrogel on wound healing, in combination and separately, in an animal wound model.MethodsA total of 64 wounds, with 2 wounds on the back of each nude mouse, were classified into 4 groups: a control group, a hydrogel-only group, a PRP-only group, and a combined-treatment group. All mice were assessed for changes in wound size and photographed on scheduled dates. The number of blood vessels was measured in all specimens. Immunohistochemical staining was used for the analysis of vascular endothelial growth factor (VEGF expression.ResultsDifferences in the decrease and change in wound size in the combined-treatment group were more significant than those in the single-treatment groups on days 3, 5, 7, and 10. Analysis of the number of blood vessels through histological examination showed a pattern of increase over time that occurred in all groups, but the combined-treatment group exhibited the greatest increase on days 7 and 14. Immunohistochemical staining showed that VEGF expression in the combined-treatment group exhibited its highest value on day 7.ConclusionsThis experiment demonstrated improved wound healing using a PRP–hydrogel combined treatment compared to either treatment individually, resulting in a decrease in wound size and a shortening of the healing period.

  14. Topical Application of Aloe vera Accelerated Wound Healing, Modeling, and Remodeling: An Experimental Study.

    Science.gov (United States)

    Oryan, Ahmad; Mohammadalipour, Adel; Moshiri, Ali; Tabandeh, Mohammad Reza

    2016-01-01

    Treatment of large wounds is technically demanding and several attempts have been taken to improve wound healing. Aloe vera has been shown to have some beneficial roles on wound healing but its mechanism on various stages of the healing process is not clear. This study was designed to investigate the effect of topical application of A. vera on cutaneous wound healing in rats. A rectangular 2 × 2-cm cutaneous wound was created in the dorsum back of rats. The animals were randomly divided into 3 groups of control (n = 20), low-dose (n = 20), and high-dose (n = 20) A. vera. The control and treated animals were treated daily with topical application of saline, low-dose (25 mg/mL), and high-dose (50 mg/mL) A. vera gel, up to 10 days, respectively. The wound surface, wound contraction, and epithelialization were monitored. In each group, the animals were euthanized at 10 (n = 5), 20 (n = 5), and 30 (n = 10) days post injury (DPI). At 10, 20, and 30 DPI, the skin samples were used for histopathological and biochemical investigations; and at 30 DPI, the skin samples were also subjected for biomechanical studies. Aloe vera modulated the inflammation, increased wound contraction and epithelialization, decreased scar tissue size, and increased alignment and organization of the regenerated scar tissue. A dose-dependent increase in the tissue level of dry matter, collagen, and glycosaminoglycans' content was seen in the treated lesions, compared to the controls. The treated lesions also demonstrated greater maximum load, ultimate strength, and modulus of elasticity compared to the control ones (P vera improved the biochemical, morphological, and biomechanical characteristics of the healing cutaneous wounds in rats. This treatment option may be valuable in clinical practice.

  15. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    Science.gov (United States)

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Purpose Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Materials and methods Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Results Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. Conclusion These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis

  16. Effectiveness of combined laser-puncture and conventional wound care to accelerate diabetic foot ulcer healing

    Directory of Open Access Journals (Sweden)

    Adiningsih Srilestari

    2017-05-01

    Full Text Available Background: Impaired wound healing is a common complication of diabetes. It has complex pathophysiologic mechanisms and often necessitates amputation. Our study aimed to evaluate the effectiveness of combined laser-puncture and conventional wound care in the treatment of diabetic foot ulcers.Methods: This was a double-blind controlled randomized clinical trial on 36 patients, conducted at the Metabolic Endocrine Outpatient Clinic, Cipto Mangunkusumo Hospital, Jakarta, between May and August 2015. Stimulation by laser-puncture (the treatment group or sham stimulation (the control group were performed on top of the standard wound care. Laser-puncture or sham were done on several acupuncture points i.e. LI4 Hegu, ST36 Zusanli, SP6 Sanyinjiao and KI3 Taixi bilaterally, combined with irradiation on the ulcers itself twice a week for four weeks. The mean reduction in ulcer sizes (week 2–1, week 3–1, week 4–1 were measured every week and compared between the two groups and analyzed by Mann-Whitney test.Results: The initial median ulcer size were 4.75 (0.10–9.94 cm2 and 2.33 (0.90–9.88 cm2 in laser-puncture and sham groups, respectively (p=0.027. The median reduction of ulcer size at week 2–1 was -1.079 (-3.25 to -0.09 vs -0.36 (-0.81 to -1.47 cm2, (p=0.000; at week 3–1 was -1.70 (-3.15 to -0.01 vs -0.36 (-0.80 to -0.28 cm2, (p=0.000; and at week 4–1 was -1.22 (-2.72 to 0.00 vs -0.38 (-0.74 to -0.57 cm2, (p=0.012.Conclusion: Combined laser-puncture and conventional wound care treatment are effective in accelerating the healing of diabetic foot ulcer.

  17. Topical Erythropoietin Treatment Accelerates the Healing of Cutaneous Burn Wounds in Diabetic Pigs Through an Aquaporin-3-Dependent Mechanism.

    Science.gov (United States)

    Hamed, Saher; Ullmann, Yehuda; Egozi, Dana; Keren, Aviad; Daod, Essam; Anis, Omer; Kabha, Hoda; Belokopytov, Mark; Ashkar, Manal; Shofti, Rona; Zaretsky, Asaph; Schlesinger, Michal; Teot, Luc; Liu, Paul Y

    2017-08-01

    We have previously reported that the topical application of erythropoietin (EPO) to cutaneous wounds in rats and mice with experimentally induced diabetes accelerates their healing by stimulating angiogenesis, reepithelialization, and collagen deposition, and by suppressing the inflammatory response and apoptosis. Aquaporins (AQPs) are integral membrane proteins whose function is to regulate intracellular fluid hemostasis by enabling the transport of water and glycerol. AQP3 is the AQP that is expressed in the skin where it facilitates cell migration and proliferation and re-epithelialization during wound healing. In this report, we provide the results of an investigation that examined the contribution of AQP3 to the mechanism of EPO action on the healing of burn wounds in the skin of pigs with experimentally induced type 1 diabetes. We found that topical EPO treatment of the burns accelerated their healing through an AQP3-dependent mechanism that activates angiogenesis, triggers collagen and hyaluronic acid synthesis and the formation of the extracellular matrix (ECM), and stimulates reepithelialization by keratinocytes. We also found that incorporating fibronectin, a crucial constituent of the ECM, into the topical EPO-containing gel, can potentiate the accelerating action of EPO on the healing of the burn injury. © 2017 by the American Diabetes Association.

  18. The accelerating effect of chitosan-silica hybrid dressing materials on the early phase of wound healing.

    Science.gov (United States)

    Park, Ji-Ung; Jung, Hyun-Do; Song, Eun-Ho; Choi, Tae-Hyun; Kim, Hyoun-Ee; Song, Juha; Kim, Sukwha

    2017-10-01

    Commercialized dressing materials with or without silver have played a passive role in early-phase wound healing, protecting the skin defects from infections, absorbing exudate, and preventing dehydration. Chitosan (CTS)-based sponges have been developed in pure or hybrid forms for accelerating wound healing, but their wound-healing capabilities have not been extensively compared with widely used commercial dressing materials, providing limited information in a practical aspect. In this study, we have developed CTS-silica (CTS-Si) hybrid sponges with water absorption, flexibility, and mechanical behavior similar to those of CTS sponges. In vitro and in vivo tests were performed to compare the CTS-Si sponges with three commercial dressing materials [gauze, polyurethane (PU), and silver-containing hydrofiber (HF-Ag)] in addition to CTS sponges. Both in vitro and in vivo tests showed that CTS-Si sponges promoted fibroblast proliferation, leading to accelerated collagen synthesis, whereas the CTS sponges did not exhibit significant differences in fibroblast proliferation and collagen synthesis from gauze, PU, and HF-Ag sponges. In case of CTS-Si, the inflammatory cells were actively recruited to the wound by the influence of the released silicon ions from CTS-Si sponges, which, in return, led to an enhanced secretion of growth factors, particularly TGF-β during the early stage. The higher level of TGF-β likely improved the proliferation of fibroblasts, and as a result, collagen synthesis by fibroblasts became remarkably productive, thereby increasing collagen density at the wound site. Therefore, the CTS-Si hybrid sponges have considerable potential as a wound-dressing material for accelerating wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1828-1839, 2017. © 2016 Wiley Periodicals, Inc.

  19. Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute.

    Science.gov (United States)

    Gupta, Sonam; Raghuwanshi, Navdeep; Varshney, Ritu; Banat, I M; Srivastava, Amit Kumar; Pruthi, Parul A; Pruthi, Vikas

    2017-10-01

    A potent biosurfactant (BS) producing Bacillus licheniformis SV1 (NCBI GenBank Accession No. KX130852) was isolated from oil contaminated soil sample. Physicochemical investigations (TLC, HPLC, FTIR, GC-MS and NMR) revealed it to be glycolipid in nature. Fibroblast culture assay showed cytocompatibility and increased cell proliferation of 3T3/NIH fibroblast cells treated with this biosurfactant when checked using MTT assay and DAPI fluorescent staining. To evaluate the wound healing potential, BS ointment was formulated and checked for its spreadability and viscosity consistency. In vivo wound healing examination of full thickness skin excision wound rat model demonstrated the prompt re-epithelialization and fibroblast cell proliferation in the early phase while quicker collagen deposition in later phases of wound healing when BS ointment was used. These results validated the potential usage of BS ointment as a transdermal substitute for faster healing of impaired skin wound. Biochemical evaluation also substantiated the highest concentration of hydroxyproline (32.18±0.46, ptreated animal tissue samples compared to the control. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining validated the presence of increased amount of collagen fibers and blood vessels in the test animals treated with BS ointment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing.

    Science.gov (United States)

    Zheng, Zhifang; Liu, Yishu; Huang, Wenhua; Mo, Yunfei; Lan, Yong; Guo, Rui; Cheng, Biao

    2018-04-13

    Diabetic foot ulcers (DFUs) are a threat to human health and can lead to amputation and even death. Recently neurotensin (NT), an inflammatory modulator in wound healing, was found to be beneficial for diabetic wound healing. As we demonstrated previously, polylactide-polyglycolide (PLGA) and cellulose nanocrystals (CNCs) (PLGA/CNC) nanofiber membranes show good cytocompatibility and facilitate fibroblast adhesion, spreading and proliferation. PLGA/CNC nanofiber membranes are novel materials that have not been used previously as NT carriers in diabetic wounds. This study aims to explore the therapeutic efficacy and possible mechanisms of NT-loaded PLGA/CNC nanofiber membranes in full-thickness skin wounds in spontaneously diabetic mice. The results showed that NT could be sustained released from NT-loaded PLGA/CNC composite nanofiber membranes for 2 weeks. NT-loaded PLGA/CNC composite nanofiber membranes induced more rapid healing than other control groups. After NT exposure, the histological scores of the epidermal and dermal regeneration and the ratios of the fibrotic area to the whole area were increased. NT-loaded PLGA/CNC composite nanofiber membranes also decreased the expressions of the inflammatory cytokines IL-1β and IL-6. These results suggest that NT-loaded PLGA/CNC composite nanofiber membranes for sustained delivery of NT should effectively promote tissue regeneration for the treatment of DFUs.

  1. A unique combination of infrared and microwave radiation accelerates wound healing.

    Science.gov (United States)

    Schramm, J Mark; Warner, Dave; Hardesty, Robert A; Oberg, Kerby C

    2003-01-01

    Light or electromagnetic radiation has been reported to enhance wound healing. The use of selected spectra, including infrared and microwave, has been described; however, no studies to date have examined the potential benefit of combining these spectra. In this study, a device that emits electromagnetic radiation across both the infrared and microwave ranges was used. To test the effects of this unique electromagnetic radiation spectrum on wound healing, two clinically relevant wound-healing models (i.e., tensile strength of simple incisions and survival of McFarlane flaps) were selected. After the creation of a simple full-thickness incision (n = 35 rats) or a caudally based McFarlane flap (n = 33 rats), animals were randomly assigned to one of three treatment groups: untreated control, infrared, or combined electromagnetic radiation. Treatment was administered for 30 minutes, twice daily for 18 days in animals with simple incisions, and 15 days in animals with McFarlane flaps. The wound area or flap was harvested and analyzed, blinded to the treatment regimens. A p value of less than 0.05 obtained by analysis of variance was considered to be statistically significant. Animals receiving combined electromagnetic radiation demonstrated increased tensile strength (2.62 N/mm2) compared with animals receiving infrared radiation (2.36 N/mm2) or untreated controls (1.73 N/mm2, p radiation had increased flap survival (78.0 percent) compared with animals receiving infrared radiation (69.7 percent) and untreated controls (63.1 percent, p radiation provided a distinct advantage in wound healing that might augment current treatment regimens.

  2. Progress in corneal wound healing

    Science.gov (United States)

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  3. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  4. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds

    Science.gov (United States)

    Skardal, Aleksander; Mack, David; Kapetanovic, Edi; Atala, Anthony; Jackson, John D.; Yoo, James

    2012-01-01

    Stem cells obtained from amniotic fluid show high proliferative capacity in culture and multilineage differentiation potential. Because of the lack of significant immunogenicity and the ability of the amniotic fluid-derived stem (AFS) cells to modulate the inflammatory response, we investigated whether they could augment wound healing in a mouse model of skin regeneration. We used bioprinting technology to treat full-thickness skin wounds in nu/nu mice. AFS cells and bone marrow-derived mesenchymal stem cells (MSCs) were resuspended in fibrin-collagen gel and “printed” over the wound site. At days 0, 7, and 14, AFS cell- and MSC-driven wound closure and re-epithelialization were significantly greater than closure and re-epithelialization in wounds treated by fibrin-collagen gel only. Histological examination showed increased microvessel density and capillary diameters in the AFS cell-treated wounds compared with the MSC-treated wounds, whereas the skin treated only with gel showed the lowest amount of microvessels. However, tracking of fluorescently labeled AFS cells and MSCs revealed that the cells remained transiently and did not permanently integrate in the tissue. These observations suggest that the increased wound closure rates and angiogenesis may be due to delivery of secreted trophic factors, rather than direct cell-cell interactions. Accordingly, we performed proteomic analysis, which showed that AFS cells secreted a number of growth factors at concentrations higher than those of MSCs. In parallel, we showed that AFS cell-conditioned media induced endothelial cell migration in vitro. Taken together, our results indicate that bioprinting AFS cells could be an effective treatment for large-scale wounds and burns. PMID:23197691

  5. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang

    2016-09-07

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  6. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    International Nuclear Information System (INIS)

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-01-01

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  7. THE UTILIZATION OF ACHATINA FULICA MUCUS IN ALGINATE MEMBRANE AS WOUND HEALING ACCELERATOR AND ANTI- INFECTION MATERIAL

    Directory of Open Access Journals (Sweden)

    Fatkhunisa Rahmawati

    2014-01-01

    Full Text Available Wound should be covered with bandage that is called wound dressing. Most people use synthetic materials such as gauze dressing. Gauze has high absorption of NaCl, which is often used to cleanse the wound. However, discomfort and pain arise since the gauze becomes sticky on the wound. Therefore, we need other alternatives instead of gauze to cover wound. One such alternative is the alginate membrane. This study used alginate membrane with mixture of mucous of the snail Achatina fulica, which contain proteins such as proline, serine asparagine, glycosaminoglycan, hydroxylysine, trionin and so forth, to activate the growth factor. Alginate powder and carboxymethl cellulose (CMC was dissolved in distilled water mixed with mucus of the snail Achatina fulica in four variations (4:0; 4:1, 4:2, 4:3 through a magnetic stirrer, and casted on a baking sheet covered with sterile gauze. High Performance Liquid Chromatography (HPLC test showed that the glycosaminoglycan content was found on the mucous of Achatina fulica. This was indicated by the appearance of peak at 325–350 second. The most optimum alginate and mucus composition was in ratio of 4:2. This ratio resulted in a wound dressing that was still able to absorb the exudate and optimally accelerated wound healing.

  8. The molecular biology in wound healing & non-healing wound.

    Science.gov (United States)

    Qing, Chun

    2017-08-01

    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  9. Effect of astaxanthin on cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Meephansan J

    2017-07-01

    Full Text Available Jitlada Meephansan,1 Atiya Rungjang,1 Werayut Yingmema,2 Raksawan Deenonpoe,3 Saranyoo Ponnikorn3 1Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; 2Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand; 3Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand Abstract: Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing. Keywords: astaxanthin, wound healing, reactive oxygen species, antioxidant 

  10. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After

  11. Propranolol attenuates hemorrhage and accelerates wound healing in severely burned adults.

    Science.gov (United States)

    Ali, Arham; Herndon, David N; Mamachen, Ashish; Hasan, Samir; Andersen, Clark R; Grogans, Ro-Jon; Brewer, Jordan L; Lee, Jong O; Heffernan, Jamie; Suman, Oscar E; Finnerty, Celeste C

    2015-05-04

    Propranolol, a nonselective β-blocker, exerts an indirect effect on the vasculature by leaving α-adrenergic receptors unopposed, resulting in peripheral vasoconstriction. We have previously shown that propranolol diminishes peripheral blood following burn injury by increasing vascular resistance. The purpose of this study was to investigate whether wound healing and perioperative hemodynamics are affected by propranolol administration in severely burned adults. Sixty-nine adult patients with burns covering ≥ 30% of the total body surface area (TBSA) were enrolled in this IRB-approved study. Patients received standard burn care with (n = 35) or without (control, n = 34) propranolol. Propranolol was administered within 48 hours of burns and given throughout hospital discharge to decrease heart rate by approximately 20% from admission levels. Wound healing was determined by comparing the time between grafting procedures. Blood loss was determined by comparing pre- and postoperative hematocrit while factoring in operative graft area. Data were collected between first admission and first discharge. Demographics, burn size, and mortality were comparable in the control and propranolol groups. Patients in the propranolol group received an average propranolol dose of 3.3 ± 3.0 mg/kg/day. Daily average heart rate over the first 30 days was significantly lower in the propranolol group (P operative intervention is optimal.

  12. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Science.gov (United States)

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  13. Effect of astaxanthin on cutaneous wound healing.

    Science.gov (United States)

    Meephansan, Jitlada; Rungjang, Atiya; Yingmema, Werayut; Deenonpoe, Raksawan; Ponnikorn, Saranyoo

    2017-01-01

    Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.

  14. Dendritic cells modulate burn wound healing by enhancing early proliferation.

    Science.gov (United States)

    Vinish, Monika; Cui, Weihua; Stafford, Eboni; Bae, Leon; Hawkins, Hal; Cox, Robert; Toliver-Kinsky, Tracy

    2016-01-01

    Adequate wound healing is vital for burn patients to reduce the risk of infections and prolonged hospitalization. Dendritic cells (DCs) are antigen presenting cells that release cytokines and are central for the activation of innate and acquired immune responses. Studies have showed their presence in human burn wounds; however, their role in burn wound healing remains to be determined. This study investigated the role of DCs in modulating healing responses within the burn wound. A murine model of full-thickness contact burns was used to study wound healing in the absence of DCs (CD11c promoter-driven diphtheria toxin receptor transgenic mice) and in a DC-rich environment (using fms-like tyrosine kinase-3 ligand, FL- a DC growth factor). Wound closure was significantly delayed in DC-deficient mice and was associated with significant suppression of early cellular proliferation, granulation tissue formation, wound levels of TGFβ1 and formation of CD31+ vessels in healing wounds. In contrast, DC enhancement significantly accelerated early wound closure, associated with increased and accelerated cellular proliferation, granulation tissue formation, and increased TGFβ1 levels and CD31+ vessels in healing wounds. We conclude that DCs play an important role in the acceleration of early wound healing events, likely by secreting factors that trigger the proliferation of cells that mediate wound healing. Therefore, pharmacological enhancement of DCs may provide a therapeutic intervention to facilitate healing of burn wounds. © 2016 by the Wound Healing Society.

  15. Bone marrow mesenchymal stem cells accelerate the hyperglycemic refractory wound healing by inhibiting an excessive inflammatory response.

    Science.gov (United States)

    Nan, Wenbin; Xu, Zhihao; Chen, Zhibin; Yuan, Xin; Lin, Juntang; Feng, Huigen; Lian, Jie; Chen, Hongli

    2017-05-01

    The aim of the present study was to evaluate the healing effect of bone marrow-derived mesenchymal stem cells administered to hyperglycemia model mice with skin wounds, and to explore the underlying mechanism contributing to their effects in promoting refractory wound healing. A full‑thickness skin wound mouse model was established, and refers to a wound of the skin and subcutaneous tissue. The mice were randomly divided into three groups: Blank control group, hyperglycemic group and a hyperglycemic group treated with stem cells. Wound healing was monitored and the wound‑healing rate was determined at 3, 6, 9, and 12 days following trauma. The structure of the organization of new skin tissue was observed by hematoxylin and eosin staining, and expression levels of the inflammatory cytokines interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α were determined from 1 to 6 days following trauma. The wound healing of the hyperglycemic group was slower than that of the blank group, and the hyperglycemic mice treated with stem cells presented faster healing than the hyperglycemia group. The horny layer and granular layer of the skin were thinner and incomplete in the new skin tissue of the hyperglycemic group, whereas the new skin wound tissue basal layer was flat and demonstrated better fusion with the wound edge in the other two groups. The expression of inflammatory cytokines (IL‑6 and TNF‑α) was significantly increased in all three groups, with continuously higher expression in the hyperglycemic group and decreased expression in the other two groups over time. Hyperglycemia refractory wounds are likely related to the excessive expression of inflammatory cytokines surrounding the wound area. Stem cells may be able to alleviate the excessive inflammatory reaction in the wound tissue of hyperglycemic mice, so as to promote wound healing.

  16. Wound Healing in Older Adults.

    Science.gov (United States)

    Gould, Lisa J; Fulton, Ana Tuya

    2016-02-01

    Impaired wound healing in the elderly represents a major clinical problem that is growing as our population ages. Wound healing is affected by age and by co-morbid conditions, particularly diabetes and obesity. This is particularly important in Rhode Island as the state has a very high percentage of vulnerable older adults. A multi- disciplinary approach that incorporates the skills of a comprehensive wound center with specialized nursing, geriatric medicine and palliative care will facilitate rapid wound healing, reduce costs and improve outcomes for our older adults that suffer from 'problem wounds'.

  17. Molecular pathology of wound healing.

    Science.gov (United States)

    Kondo, Toshikazu; Ishida, Yuko

    2010-12-15

    Skin-wound healing is an orchestrated biological phenomena consisting of three sequential phases, inflammation, proliferation, and maturation. Many biological substances are involved in the process of wound repair, and this short and simplified overview of wound healing can be adopted to determine wound vitality or wound age in forensic medicine. With the development of genetically engineered animals, essential molecules for skin-wound healing have been identified. Especially, cytokines, and growth factors are useful candidates and markers for the determination of wound vitality or age. Moreover, bone marrow-derived progenitor cells would give significant information to wound age determination. In this review article, some interesting observations are presented, possibly contributing to the future practice of forensic pathologists. Copyright © 2010. Published by Elsevier Ireland Ltd.

  18. Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production.

    Science.gov (United States)

    Atiba, Ayman; Nishimura, Mayumi; Kakinuma, Shizuko; Hiraoka, Takeshi; Goryo, Masanobu; Shimada, Yoshiya; Ueno, Hiroshi; Uzuka, Yuji

    2011-06-01

    Delayed wound healing is a significant clinical problem in patients who have had previous irradiation. This study investigated the effectiveness of Aloe vera (Av) on acute radiation-delayed wound healing. The effect of Av was studied in radiation-exposed rats compared with radiation-only and control rats. Skin wounds were excised on the back of rats after 3 days of local radiation. Wound size was measured on days 0, 3, 6, 9, and 12 after wounding. Wound tissues were examined histologically and the expressions of transforming growth factor β-1 (TGF-β-1) and basic fibroblast growth factor (bFGF) were examined by immunohistochemistry and reverse-transcription polymerase chain reaction. Wound contraction was accelerated significantly by Av on days 6 and 12 after wounding. Furthermore, the inflammatory cell infiltration, fibroblast proliferation, collagen deposition, angiogenesis, and the expression levels of TGF-β-1 and bFGF were significantly higher in the radiation plus Av group compared with the radiation-only group. These data showed the potential application of Av to improve the acute radiation-delayed wound healing by increasing TGF-β-1 and bFGF production. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Leptin promotes wound healing in the skin.

    Directory of Open Access Journals (Sweden)

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  20. Evaluation of the wound healing potential of Protea madiensis Oliv ...

    African Journals Online (AJOL)

    Ijeoma

    2012-11-08

    Nov 8, 2012 ... In medical practice, the treat- ment of full ... wounds, burns and ulcers by indigenous West Africans ... wound healing activity, no scientific study has been car- ..... that the leaf extract of P. madiensis accelerated fibroblast.

  1. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  2. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.

    Science.gov (United States)

    Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou

    2017-05-15

    Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice.

    Science.gov (United States)

    Devalliere, Julie; Dooley, Kevin; Hu, Yong; Kelangi, Sarah S; Uygun, Basak E; Yarmush, Martin L

    2017-10-01

    Growth factor therapy is a promising approach for chronic diabetic wounds, but strategies to efficiently and cost-effectively deliver active molecules to the highly proteolytic wound environment remain as major obstacles. Here, we re-engineered keratinocyte growth factor (KGF) and the cellular protective peptide ARA290 into a protein polymer suspension with the purpose of increasing their proteolytic resistance, thus their activity in vivo. KGF and ARA290 were fused with elastin-like peptide (ELP), a protein polymer derived from tropoelastin, that confers the ability to separate into a colloidal suspension of liquid-like coacervates. ELP fusion did not diminish peptides activities as demonstrated by ability of KGF-ELP to accelerate keratinocyte proliferation and migration, and ARA290-ELP to protect cells from apoptosis. We examined the healing effect of ARA290-ELP and KGF-ELP alone or in combination, in a full-thickness diabetic wound model. In this model, ARA290-ELP was found to accelerate healing, notably by increasing angiogenesis in the wound bed. We further showed that co-delivery of ARA290 and KGF, with the 1:4 KGF-ELP to ARA290-ELP ratio, was the most effective wound treatment with the fastest healing rate, the thicker granulation tissue and regenerated epidermis after 28 days. Overall, this study shows that ARA290-ELP and KGF-ELP constitute promising new therapeutics for treatment of chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model.

    Science.gov (United States)

    Irons, Robin F; Cahill, Kevin W; Rattigan, Deviney A; Marcotte, Joseph H; Fromer, Marc W; Chang, Shaohua; Zhang, Ping; Behling, Eric M; Behling, Kathryn C; Caputo, Francis J

    2018-05-09

    The purpose of our study was to investigate the effect of adipose-derived stem cells (ASCs), endothelial-differentiated ASCs (EC/ASCs), and various conditioned media (CM) on wound healing in a diabetic swine model. We hypothesized that ASC-based therapies would accelerate wound healing. Diabetes was induced in four Yorkshire swine through intravenous injection of streptozotocin. ASCs were harvested from flank fat and cultured in either M199 or EGM-2 medium. A duplicate series of seven full-thickness dorsal wounds were surgically created on each swine. The wounds in the cellular treatment group underwent injection of low-dose or high-dose ASCs or EC/ASCs on day 0, with a repeat injection of one half of the initial dose on day 15. Wounds assigned to the topical CM therapy were covered with 2 mL of either serum-free M199 primed by ASCs or human umbilical vein endothelial cells every 3 days. Wounds were assessed at day 0, 10, 15, 20, and 28. The swine were sacrificed on day 28. ImageJ software was used to evaluate the percentage of wound healing. The wounded skin underwent histologic, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay examinations to evaluate markers of angiogenesis and inflammation. We found an increase in the percentage of wound closure rates in cell-based treatments and topical therapies at various points compared with the untreated control wounds (P swine model. Enhanced angiogenesis and immunomodulation might be key contributors to this process. The purpose of the present study was to translate the known beneficial effects of adipose-derived stem cells and associated conditioned medium therapy on diabetic wound healing to a large animal model. We demonstrated that stem cell and conditioned medium therapy significantly accelerate gross wound healing in diabetic swine, with data suggesting this might result from a decreased inflammatory response and increased angiogenesis. Copyright © 2018 Society for

  5. Stem Cells for Cutaneous Wound Healing.

    Science.gov (United States)

    Kirby, Giles T S; Mills, Stuart J; Cowin, Allison J; Smith, Louise E

    2015-01-01

    Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  6. Stem Cells for Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Giles T. S. Kirby

    2015-01-01

    Full Text Available Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  7. Honey: an immunomodulator in wound healing.

    Science.gov (United States)

    Majtan, Juraj

    2014-01-01

    Honey is a popular natural product that is used in the treatment of burns and a broad spectrum of injuries, in particular chronic wounds. The antibacterial potential of honey has been considered the exclusive criterion for its wound healing properties. The antibacterial activity of honey has recently been fully characterized in medical-grade honeys. Recently, the multifunctional immunomodulatory properties of honey have attracted much attention. The aim of this review is to provide closer insight into the potential immunomodulatory effects of honey in wound healing. Honey and its components are able to either stimulate or inhibit the release of certain cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) from human monocytes and macrophages, depending on wound condition. Similarly, honey seems to either reduce or activate the production of reactive oxygen species from neutrophils, also depending on the wound microenvironment. The honey-induced activation of both types of immune cells could promote debridement of a wound and speed up the repair process. Similarly, human keratinocytes, fibroblasts, and endothelial cell responses (e.g., cell migration and proliferation, collagen matrix production, chemotaxis) are positively affected in the presence of honey; thus, honey may accelerate reepithelization and wound closure. The immunomodulatory activity of honey is highly complex because of the involvement of multiple quantitatively variable compounds among honeys of different origins. The identification of these individual compounds and their contributions to wound healing is crucial for a better understanding of the mechanisms behind honey-mediated healing of chronic wounds. © 2014 by the Wound Healing Society.

  8. Synthetic Decapeptide Enhances Bacterial Clearance and Accelerates Healing in the Wounds of Restraint-Stressed Mice

    Science.gov (United States)

    2012-02-06

    reverse phase HPLC (series 1100; Hewlett Packard) on a Vydac C18 column. Peptide purity was con firmed by MALDI TOF (matrix assisted laser desorption...tissue surrounding the wounds, with the help of Micro Fine IV syringes 28G1/2 (Becton Dickinson). Careful wound manipulation ensured no direct ...Sheep blood agar plates. All bacterial assays were performed in triplicate. 2.12. Release kinetics of KSLW peptide in Pluronic F68 Measurements of

  9. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  10. Androgen receptor–mediated inhibition of cutaneous wound healing

    OpenAIRE

    Ashcroft, Gillian S.; Mills, Stuart J.

    2002-01-01

    Impaired wound healing states in the elderly lead to substantial morbidity, mortality, and a cost to the USHealth Services of over $9 billion per annum. In addition to intrinsic aging per se causing delayed healing, studies have suggested marked sex-differences in wound repair. We report that castration of male mice results in a striking acceleration of local cutaneous wound healing, and is associated with a reduced inflammatory response and increased hair growth. Using a hairless mouse model...

  11. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  12. Adenosine Receptors and Wound Healing

    Directory of Open Access Journals (Sweden)

    Bruce N. Cronstein

    2004-01-01

    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  13. [Wound healing in the elderly].

    Science.gov (United States)

    Eming, S A; Wlaschek, M; Scharffetter-Kochanek, K

    2016-02-01

    Restoration of tissue integrity is essential for host defense and protection of the organism. The efficacy and quality of skin repair varies significantly over a person's lifetime. Whereas prenatal wound healing is characterized by regeneration and scarless healing, scarring, fibrosis, and loss of function are features of postnatal repair. In fact, aging is the prominent risk factor for chronic wounds, skin fragility, infections, comorbidities, and decreased quality of life. Current strategies for restoration of tissue integrity and wound therapy are not sufficient and require further investigation of the underlying pathomechanisms and the development of causal-based concepts.

  14. [Specificities in children wound healing].

    Science.gov (United States)

    Sanchez, J; Antonicelli, F; Tuton, D; Mazouz Dorval, S; François, C

    2016-10-01

    Children have specific characteristics of wound healing. The aim of this study was to describe the specific clinical characteristics of wounds healing in children and to present the current knowledge on the specific mechanisms with regard to infant age. The tissue insult or injury in fetus can heal without scar, mainly due to reduced granulation tissue associated to diminished or even no inflammatory phase, modified extracellular matrix such as the concentration of hyaluronic acid in amniotic liquid, expression and arrangement of collagen and tenascin. Thickness of children skin is a serious negative factor in case of trauma, whereas poor co-morbidities and efficient growth tissue mechanisms are beneficial to good evolution, even in cases of extensive damage and loss of tissue. The subsequent tissue mechanical forces, wound healing during childhood, spanning from the age of 2 until the end of puberty, is associated with more hypertrophic scars, both in duration and in intensity. Consequently, unnecessary surgery has to be avoided during this period when possible, and children with abnormal or pathologic wound healing should benefit from complementary treatments (hydration, massage, brace, silicone, hydrotherapy…), which represent efficient factors to minimize tissue scarring. After wound healing, the growth body rate can be responsible for specific complications, such as contractures, alopecia, and scar intussusceptions. Its evolutionary character implies the need of an attentive follow-up until adult age. Psychologic repercussions, as a consequence of pathologic scars, must be prevented and investigated by the surgeon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis.

    Science.gov (United States)

    Ren, Xiaozhi; Han, Yiming; Wang, Jie; Jiang, Yuqi; Yi, Zhengfang; Xu, He; Ke, Qinfei

    2018-04-01

    A chronic wound in diabetic patients is usually characterized by poor angiogenesis and delayed wound closure. The exploration of efficient strategy to significantly improve angiogenesis in the diabetic wound bed and thereby accelerate wound healing is still a significant challenge. Herein, we reported a kind of aligned porous poly (l-lactic acid) (PlLA) electrospun fibrous membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS) for diabetic wound healing. The PlLA electrospun fibers aligned in a single direction and there were ellipse-shaped nano-pores in situ generated onto the surface of fibers, while the DS were well distributed in the fibers and the DMOG as well as Si ion could be controlled released from the nanopores on the fibers. The in vitro results revealed that the aligned porous composite membranes (DS-PL) could stimulate the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) compared with the pure PlLA membranes. The in vivo study further demonstrated that the prepared DS-PL membranes significantly improved neo-vascularization, re-epithelialization and collagen formation as well as inhibited inflammatory reaction in the diabetic wound bed, which eventually stimulated the healing of the diabetic wound. Collectively, these results suggest that the combination of hierarchical structures (nanopores on the aligned fibers) with the controllable released DMOG drugs as well as Si ions from the membranes, which could create a synergetic effect on the rapid stimulation of angiogenesis in the diabetic wound bed, is a potential novel therapeutic strategy for highly efficient diabetic wound healing. A chronic wound in diabetic patients is usually characterized by the poor angiogenesis and the delayed wound closure. The main innovation of this study is to design a new kind of skin tissue engineered scaffold, aligned porous poly (l-lactic acid) (PlLA) electrospun

  16. Evaluation of an Oxygen-Diffusion Dressing for Accelerated Healing of Donor-Site Wounds

    Science.gov (United States)

    2014-06-01

    wounds in humans,8 but requires visits to facilities with trained personnel and is limited by oxygen toxicity issues. Compared with hyperbaric oxygen...open-label study to compare the effectiveness of OxyBand and Xeroform dress- ings used as dressings for autogenous skin donor sites in burn patients...donor sites. Epinephrine in lactated Ringer’s solu- tion at a concentration of 1:106 was injected subcu- taneously to prepare both donor sites for

  17. Modeling of anisotropic wound healing

    Science.gov (United States)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  18. Interaction of low-intensity linearly polarized laser radiation with living tissues: effects on tissular acceleration of skin wound healing

    International Nuclear Information System (INIS)

    Ribeiro, Martha Simoes

    2000-01-01

    According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N 2 on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm 2 . Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)

  19. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats

    Directory of Open Access Journals (Sweden)

    Deepak Dwivedi

    2017-01-01

    Conclusion: Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata. Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.

  20. Pirfenidone Accelerates Wound Healing in Chronic Diabetic Foot Ulcers: A Randomized, Double-Blind Controlled Trial

    Directory of Open Access Journals (Sweden)

    Luz E. Gasca-Lozano

    2017-01-01

    Full Text Available Background. Diabetic foot ulcers are one disabling complication of diabetes mellitus. Pirfenidone (PFD is a potent modulator of extracellular matrix. Modified diallyl disulfide oxide (M-DDO is an antimicrobial and antiseptic agent. Aim. To evaluate efficacy of topical PFD + M-DDO in a randomized, double-blind trial versus ketanserin in the treatment of noninfected chronic DFU. Methods. Patients received PFD + M-DDO or ketanserin for 6 months. Relative ulcer volume (RUV was measured every month; biopsies were taken at baseline and months 1 and 2 for histopathology and gene expression analysis for COL-1α, COL-4, KGF, VEGF, ACTA2 (α-SMA, elastin, fibronectin, TGF-β1, TGF-β3, HIF-1α, and HIF-1β. Results. Reduction of median RUV in the PFD + M-DDO group was 62%, 89.8%, and 99.7% at months 1–3 and 100% from months 4 to 6. Ketanserin reduced RUV in 38.4%, 56%, 60.8%, 94%, 94.8%, and 100% from the first to the sixth month, respectively. Healing score improved 4.5 points with PFD + M-DDO and 1.5 points with ketanserin compared to basal value. Histology analysis revealed few inflammatory cells and organized/ordered collagen fiber bundles in PFD + M-DDO. Expression of most genes was increased with PFD + M-DDO; 43.8% of ulcers were resolved using PFD + M-DDO and 23.5% with ketanserin. Conclusion. PFD + M-DDO was more effective than ketanserin in RUV reduction.

  1. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management

    Directory of Open Access Journals (Sweden)

    Deborah Chicharro-Alcántara

    2018-01-01

    Full Text Available The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process.

  2. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management

    Science.gov (United States)

    Chicharro-Alcántara, Deborah; Damiá-Giménez, Elena; Carrillo-Poveda, José M.; Peláez-Gorrea, Pau

    2018-01-01

    The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process. PMID:29346333

  3. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Directory of Open Access Journals (Sweden)

    Badr Gamal

    2012-06-01

    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  4. Healing incisional surgical wounds using Rose Hip oil in rats

    Directory of Open Access Journals (Sweden)

    Lainy Carollyne da Costa Cavalcante

    2017-03-01

    Full Text Available Purpose: To evaluate incisional surgical wound healing in rats by using Rose Hip (Rosa rubiginosa L. oil. Methods: Twenty-one days after the oophorectomy procedure, twenty-seven female, adult, Wistar rats were distributed into three groups: Control group (wound treatment with distilled water; Collagenase group (treatment with collagenase ointment; and Rose Hip group (wound treatment with Rose Hip oil. Each group was distributed according to the date of euthanasia: 7, 14 and 21 days. The wound was evaluated considering the macroscopic and microscopic parameters. Results: The results indicated differences in the healing of incisional wounds between treatments when compared to control group. Accelerated wound healing was observed in the group treated with Rose Hip oil in comparison to the control and collagenase, especially after the 14th day. Morphometric data confirmed the structural findings. Conclusion: There was significant effect in topical application of Rose Hip oil on incisional surgical wound healing.

  5. Molecular biology of wound healing

    Directory of Open Access Journals (Sweden)

    Nalliappan Ganapathy

    2012-01-01

    Full Text Available Wound healing is a dynamic process that involves the integrated action of a number of cell types, the extra cellular matrix, and soluble mediators termed cytokines.In recent years considerable advances have been made in the research, knowledge, and understanding of growth factors. Growth factors are, in essence, proteins that communicate activities to cells. Their function is dependent on the receptor site they attach to. Growth factors were initially named for the type of response generated by them, but newer research has shown that many of these cells may accomplish many different types of response. A growth factor′s role in wound repair is a critical component of the successful resolution of a wound. Growth factors help regulate many of the activities involved in healing. The role and function of growth factor is an evolving area of science and offers the potential for treatment alternatives in the future.

  6. Hyperbaric oxygen and wound healing

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  7. Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain.

    Science.gov (United States)

    Zhu, Qi; Mangukiya, Hitesh Bhagavanbhai; Mashausi, Dhahiri Saidi; Guo, Hao; Negi, Hema; Merugu, Siva Bharath; Wu, Zhenghua; Li, Dawei

    2017-09-01

    Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds. © 2017 Federation of European Biochemical Societies.

  8. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  9. Wound healing in animal models: review article

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2017-10-01

    Full Text Available Wound healing and reduction of its recovery time is one of the most important issues in medicine. Wound is defined as disruption of anatomy and function of normal skin. This injury could be the result of physical elements such as  surgical incision, hit or pressure cut of the skin and gunshot wound. Chemical or caustic burn is another category of wound causes that can be induced by acid or base contact irritation. Healing is a process of cellular and extracellular matrix interactions that occur in the damaged tissue. Wound healing consists of several stages including hemostasis, inflammatory phase, proliferative phase and new tissue formation which reconstructs by new collagen formation. Wounds are divided into acute and chronic types based on their healing time. Acute wounds have sudden onset and in normal individuals usually have healing process of less than 4 weeks without any residual side effects. In contrast, chronic wounds have gradual onset. Their inflammatory phase is prolonged and the healing process is stopped due to some background factors like diabetes, ischemia or local pressure. If the healing process lasts more than 4 weeks it will be classified as chronic wound. Despite major advances in the treatment of wounds, still finding effective modalities for healing wounds in the shortest possible time with the fewest side effects is a current challenge. In this review different phases of wound healing and clinical types of wound such as venous leg ulcer, diabetic foot ulcer and pressure ulcer are discussed. Also acute wound models (i.e burn wounds or incisional wound and chronic wound models (such as venous leg ulcers, diabetic foot ulcer, pressure ulcers or bedsore in laboratory animals are presented. This summary can be considered as a preliminary step to facilitate designing of more targeted and applied research in this area.

  10. Bioimpedance measurement based evaluation of wound healing.

    Science.gov (United States)

    Kekonen, Atte; Bergelin, Mikael; Eriksson, Jan-Erik; Vaalasti, Annikki; Ylänen, Heimo; Viik, Jari

    2017-06-22

    Our group has developed a bipolar bioimpedance measurement-based method for determining the state of wound healing. The objective of this study was to assess the capability of the method. To assess the performance of the method, we arranged a follow-up study of four acute wounds. The wounds were measured using the method and photographed throughout the healing process. Initially the bioimpedance of the wounds was significantly lower than the impedance of the undamaged skin, used as a baseline. Gradually, as healing progressed, the wound impedance increased and finally reached the impedance of the undamaged skin. The clinical appearance of the wounds examined in this study corresponded well with the parameters derived from the bioimpedance data. Hard-to-heal wounds are a significant and growing socioeconomic burden, especially in the developed countries, due to aging populations and to the increasing prevalence of various lifestyle related diseases. The assessment and the monitoring of chronic wounds are mainly based on visual inspection by medical professionals. The dressings covering the wound must be removed before assessment; this may disturb the wound healing process and significantly increases the work effort of the medical staff. There is a need for an objective and quantitative method for determining the status of a wound without removing the wound dressings. This study provided evidence of the capability of the bioimpedance based method for assessing the wound status. In the future measurements with the method should be extended to concern hard-to-heal wounds.

  11. Wound Healing Activity of a New Formulation from Platelet Lysate

    Directory of Open Access Journals (Sweden)

    Akram Jamshidzadeh

    2016-03-01

    Full Text Available Platelet-rich plasma (PRP is an attractive preparation in regenerative medicine due to its potential role in the healing process in different experimental models. This study was designed to investigate the wound healing activity of a new formulation of PRP. Different gel-based formulations of PRP were prepared. Open excision wounds were made on the back of male Sprague-Dawley rats, and PRP gel was administered topically once daily until the wounds healed completely (12 days. The results revealed that the tested PRP formulation significantly accelerated the wound healing process by increasing the wound contraction, tissue granulization, vascularization, and collagen regeneration. Interestingly, this study showed that there were no significant differences between the PRP and its gel-based formulation in all the above mentioned parameters. Although this investigation showed that PRP formulation had significant wound healing effects, the PRP gel-based formulation also had significant wound healing properties. This might indicate the wound healing properties of the PRP gel ingredients in the current investigation.

  12. Hypoperfusion and Wound Healing: Another Dimension of Wound Assessment.

    Science.gov (United States)

    Smollock, Wendy; Montenegro, Paul; Czenis, Amy; He, Yuan

    2018-02-01

    To examine the correlation between mean arterial pressure (MAP) and wound healing indices and describe an analytical process that can be used accurately and prospectively when evaluating all types of skin ulcerations. A correlational study in a long-term-care facility.Participants (N = 230) were adults residing in a long-term-care facility with an average age of 77.8 years (range, 35-105). Assessment through both an index of wound healing and wound surface area. Signs of wound healing included a reduction of surface area and surface necrosis and increased granulation or epithelialization. Aggregate analyses for all wound locations revealed a positive correlation between the MAP and index of wound healing (r = 0.86, n = 501, P wound healing was noted for all wound locations in this data set when MAP values were 80 mm Hg or less (r = 0.95, n = 141, P wounds and MAP of less than 80 mm Hg yielded a very strong positive correlation. The data indicated that as perfusion decreased, wounds within the sample population declined (r = 0.93, n = 102, P wound healing or worsened wounds. A predictability of wounds stalling or declining related to the MAP was observed, regardless of topical treatment or standard-of-care interventions. Therefore, the data also suggest that remediating states of low perfusion should take precedence in making treatment decisions.

  13. Potential dermal wound healing agent in Blechnum orientale Linn

    Directory of Open Access Journals (Sweden)

    Lim Yau

    2011-08-01

    Full Text Available Abstract Background Blechnum orientale Linn. (Blechnaceae is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity. Methods Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control and 10% povidone-iodine (positive control respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test. Results Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group. Conclusions The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.

  14. Three-dimensional wound measurements for monitoring wound healing

    DEFF Research Database (Denmark)

    Bisgaard Jørgensen, Line; Møller Jeppesen, Sune; Halekoh, Ulrich

    Telemedicine is increasingly used for monitoring wound healing. Three-dimensional (3D) measurement methods enable clinicians to assess wound healing with respect to all dimensions. However, the currently available methods are inaccurate, costly or complicated to use. To address these issues, a 3D......-WAM camera was developed. This camera is able to measure wound size (2D area, 3D area, perimeter and volume) and to assess wound characteristics....

  15. Leptin promotes wound healing in the oral mucosa.

    Science.gov (United States)

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito

    2014-01-01

    Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.

  16. Current management of wound healing

    DEFF Research Database (Denmark)

    Gottrup, F; Karlsmark, T

    2009-01-01

    in the next decade. It is the hope that increasing parts of the new knowledge from basic wound healing research will be implemented in daily clinical practice. The development of new treatment products will also continue, and especially new technologies with combined types of dressing materials or dressing......While the understanding of wound pathophysiology has progressed considerably over the past decades the improvements in clinical treatment has occurred to a minor degree. During the last years, however, new trends and initiatives have been launched, and we will continue to attain new information...... containing active substances will be accentuated. Further developments in the management structure and education will also continue and consensus of treatment guidelines, recommendations and organization models will hopefully be achieved....

  17. Conducted healing to treat large skin wounds.

    Science.gov (United States)

    Salgado, M I; Petroianu, A; Alberti, L R; Burgarelli, G L; Barbosa, A J A

    2013-01-01

    Improvement of the healing process to provide better aesthetical and functional results continues to be a surgical challenge. This study compared the treatment of skin wounds by means of conducted healing (an original method of treatment by secondary healing) and by the use of autogenous skin grafts. Two skin segments, one on each side of the dorsum,were removed from 17 rabbits. The side that served as a graft donor site was left open as to undergo conducted healing (A)and was submitted only to debridement and local care with dressings. The skin removed from the side mentioned above was implanted as a graft (B) to cover the wound on the other side. Thus, each animal received the two types of treatment on its dorsum (A and B). The rabbits were divided into two groups according to the size of the wounds: Group 1 - A and B (4 cm2)and Group 2 - A and B (25 cm2). The healing time was 19 days for Group 1 and 35 days for Group 2. The final macro- and microscopic aspects of the healing process were analysed comparatively among all subgroups. The presence of inflammatory cells, epidermal cysts and of giant cells was evaluated. No macro- or microscopic differences were observed while comparing the wounds that underwent conducted healing and those in which grafting was employed, although the wounds submitted to conducted healing healed more rapidly. Conducted wound healing was effective for the treatment of skin wounds. Celsius.

  18. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    Directory of Open Access Journals (Sweden)

    Ayesha Bhatia

    2016-01-01

    Full Text Available Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  19. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Science.gov (United States)

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  20. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection

    DEFF Research Database (Denmark)

    Steinstraesser, Lars; Hirsch, Tobias; Schulte, Matthias

    2012-01-01

    -37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However...

  1. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  2. Wound healing and infection in surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    : The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved.......: The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved....

  3. News in wound healing and management

    DEFF Research Database (Denmark)

    Gottrup, Finn; Jørgensen, Bo; Karlsmark, Tonny

    2009-01-01

    -TNFalpha) and Lactobacillus plantarum cultures have also been successfully used in hard to heal, atypical wounds. Knowledge on influencing factors as smoking and biofilm on the healing process has also been improved. Smoking results in delayed healing and increased risk of postoperative infection, whereas the role of biofilm...... is still at an exploratory level. Organizing models for optimal wound management are constantly being developed and refined. SUMMARY: Recent knowledge on the importance of new dressing materials containing active substances, new treatments for atypical wounds, influencing factors on the healing process...

  4. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing. © 2014 The International Society of Dermatology.

  5. Wound healing properties of Artocarpus heterophyllus Lam.

    Science.gov (United States)

    Gupta, Nilesh; Jain, U K; Pathak, A K

    2009-04-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of "Artocarpus heterophyllus" ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16(th) post wounding day.

  6. Wound healing properties of Artocarpus heterophyllus Lam

    Science.gov (United States)

    Gupta, Nilesh; Jain, U.K.; Pathak, A.K.

    2009-01-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of “Artocarpus heterophyllus” ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16th post wounding day. PMID:22557331

  7. Sex hormones and mucosal wound healing.

    Science.gov (United States)

    Engeland, Christopher G; Sabzehei, Bahareh; Marucha, Phillip T

    2009-07-01

    Wound healing studies, which have chiefly examined dermal tissues, have reported a female advantage in healing rates. In contrast, our laboratory recently demonstrated women heal mucosal wounds more slowly than men. We hypothesized sex hormones influence wound healing rates, possibly through their modulating effects on inflammation. This study involved 329 younger subjects aged 18-43 (165 women, 164 men) and 93 older subjects aged 50-88 (60 women, 33 men). A 3.5mm diameter wound was created on the hard oral palate and videographed daily to assess wound closure. Blood collected at the time of wounding was used to assess circulating testosterone, progesterone and estradiol levels, and in vitro cytokine production in response to LPS. No strong associations were observed between healing times and estradiol or progesterone levels. However, in younger subjects, lower testosterone levels related to faster wound closure. Conversely, in older women higher testosterone levels related to (1) lower inflammatory responses; and (2) faster healing times. No such relationships were seen in older men, or in women taking oral contraceptives or hormone replacement therapy [HRT]. Older women (50-54 years) not yet experiencing menopause healed similarly to younger women and dissimilarly from age-matched post-menopausal women. This suggests that the deleterious effects of aging on wound healing occur secondary to the effects of menopause. Supporting this, there was evidence in post-menopausal women that HRT augmented wound closure. Overall, this study suggests that human mucosal healing rates are modulated by testosterone levels. Based upon when between-group differences were observed, testosterone may impact upon the proliferative phase of healing which involves immune processes such as re-epithelialization and angiogenesis.

  8. Accelerated Wound Healing Device Using Light Emitting Diodes (LEDs) Biostimulation to Support Long Term Human Exploration of Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Several cases of minor cuts in microgravity have been reported not being able to heal until return to Earth. While the exact cause for the slow healing in space...

  9. General concept of wound healing, revisited

    Directory of Open Access Journals (Sweden)

    Theddeus O.H. Prasetyono

    2009-09-01

    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  10. Mast Cells Regulate Wound Healing in Diabetes.

    Science.gov (United States)

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Directory of Open Access Journals (Sweden)

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  12. Nanotoxicity in Systemic Circulation and Wound Healing.

    Science.gov (United States)

    Bakshi, Mandeep Singh

    2017-06-19

    Nanotoxicity of nanomaterials is an important issue in view of their potential applications in systemic circulation and wound healing dressing. This account specifically deals with several characteristic features of different nanomaterials which induce hemolysis and how to make them hemocompatible. The shape, size, and surface functionalities of naked metallic as well as nonmetallic nanoparticles surfaces are responsible for the hemolysis. An appropriate coating of biocompatible molecules dramatically reduces hemolysis and promotes their ability as safe drug delivery vehicles. The use of coated nanomaterials in wound healing dressing opens several new strategies for rapid wound healing processes. Properly designed nanomaterials should be selected to minimize the nanotoxicity in the wound healing process. Future directions need new synthetic methods for engineered nanomaterials for their best use in nanomedicine and nanobiotechnology.

  13. Use of Oxygen Therapies in Wound Healing

    DEFF Research Database (Denmark)

    Gottrup, Finn; Dissemond, Joachim; Baines, Carol

    2017-01-01

    Among other things wound healing requires restoration of macro-And microcirculation as essential conditions for healing.1,2 One of the most 'immediate' requirements is oxygen, which is critically important for reconstruction of new vessels and connective tissue and to enable competent resistance...

  14. Wound healing stimulation in mice by low-level light

    Science.gov (United States)

    Demidova, Tatiana N.; Herman, Ira M.; Salomatina, Elena V.; Yaroslavsky, Anna N.; Hamblin, Michael R.

    2006-02-01

    It has been known for many years that low levels of laser or non-coherent light (LLLT) accelerate some phases of wound healing. LLLT can stimulate fibroblast and keratinocyte proliferation and migration. It is thought to work via light absorption by mitochondrial chromophores leading to an increase in ATP, reactive oxygen species and consequent gene transcription. However, despite many reports about the positive effects of LLLT on wound healing, its use remains controversial. Our laboratory has developed a model of a full thickness excisional wound in mice that allows quantitative and reproducible light dose healing response curves to be generated. We have found a biphasic dose response curve with a maximum positive effect at 2 J/cm2 of 635-nm light and successively lower beneficial effects from 3-25 J/cm2, the effect is diminished at doses below 2J/cm2 and gradually reaches control healing levels. At light doses above 25 J/cm2 healing is actually worse than controls. The two most effective wavelengths of light were found to be 635 and 820-nm. We found no difference between filtered 635+/-15-nm light from a lamp and 633-nm light from a HeNe laser. The strain and age of the mouse affected the magnitude of the effect. Light treated wounds start to contract after illumination while control wounds initially expand for the first 24 hours. Our hypothesis is that a single brief light exposure soon after wounding affects fibroblast cells in the margins of the wound. Cells may be induced to proliferate, migrate and assume a myofibroblast phenotype. Our future work will be focused on understanding the mechanisms underlying effects of light on wound healing processes.

  15. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).

    Science.gov (United States)

    Seo, Seung Beom; Dananjaya, S H S; Nikapitiya, Chamilani; Park, Bae Keun; Gooneratne, Ravi; Kim, Tae-Yoon; Lee, Jehee; Kim, Cheol-Hee; De Zoysa, Mahanama

    2017-09-01

    Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of Andiroba oil (Carapa guianensis on wound healing in alloxan-diabetic rats

    Directory of Open Access Journals (Sweden)

    Bruna Angelina Alves de Souza

    2017-10-01

    Full Text Available Purpose: To evaluate wound healing in diabetic rats by using topic Andiroba oil (Carapa guianensis. Methods: Six male, adult, Wistar rats were distributed into three groups: Sham group (wound treatment with distilled water; Collagenase group (treatment with collagenase ointment; and Andiroba group (wound treatment with Andiroba oil. The wound was evaluated considering the macroscopic and microscopic parameters. Results: The results indicated differences in the healing of incisional wounds between treatments when compared to control group. Accelerated wound healing was observed in the group treated with Andiroba oil and Collagenase in comparison to control group, especially after the 14th day. Morphometric data confirmed the structural findings. Conclusion: There was significant effect in topical application of Andiroba oil on wound healing in rats with induced diabetes.   Keywords: Medicinal plants. Diabetes Mellitus. Wound healing. Rats.

  17. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  18. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  19. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions

    Directory of Open Access Journals (Sweden)

    Dong Joo Yang

    2016-07-01

    Full Text Available Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK, c-Jun N-terminal kinases (JNK, and extracellular signal-regulated kinases (Erk, underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  20. Hydroethanolic Extract of Strychnos pseudoquina Accelerates Skin Wound Healing by Modulating the Oxidative Status and Microstructural Reorganization of Scar Tissue in Experimental Type I Diabetes

    Directory of Open Access Journals (Sweden)

    Mariáurea M. Sarandy

    2017-01-01

    Full Text Available The effect of topical application of ointment based on Strychnos pseudoquina hydroethanolic extract in the cutaneous wounds healing in diabetic rats was evaluated. Samples of S. pseudoquina were submitted to phytochemical prospection and in vitro antioxidant assay. Thirty Wistar rats were divided into 5 groups: Sal-wounds treated with 0.9% saline solution; VH-wounds treated with 0.6 g of lanolin cream (vehicle; SS-wounds treated with silver sulfadiazine cream (10 mg/g; ES5- and ES10-wounds treated with an ointment of S. pseudoquina extract, 5% and 10%, respectively. Fragments of wounds were removed for histological and biochemical analysis every 7 days during 21 days. ES showed equivalent levels per gram of extract of total phenols and flavonoids equal to 122.04 mg for TAE and 0.60 mg for RE. The chlorogenic acid was one of the major constituents. S. pseudoquina extract presented high antioxidant potential in vitro. ES5 and ES10 showed higher wound healing rate and higher amount of cells, blood vessels, and type III and I collagen. The oxidative stress markers were lower in the ES5 and ES10 groups, while the antioxidants enzymes levels were higher. Ointment based on S. pseudoquina extract promotes a fast and efficient cutaneous repair in diabetic rats.

  1. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  2. Alpha-Lipoic acid supplementation inhibits oxidative damage, accelerating chronic wound healing in patients undergoing hyperbaric oxygen therapy

    Czech Academy of Sciences Publication Activity Database

    Alleva, R.; Nasole, E.; Di Donato, F.; Borghi, B.; Neužil, Jiří; Tomasetti, M.

    2005-01-01

    Roč. 333, č. 2 (2005), s. 404-410 ISSN 0006-291X Institutional research plan: CEZ:AV0Z50520514 Keywords : alpha-lipoic acid * chronic wound * ROS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.000, year: 2005

  3. Wound healing properties of ointment formulations of Ocimum ...

    African Journals Online (AJOL)

    present work evaluated the phyto-constituents and wound healing properties of ointments formulated with the n-hexane crude bark extract of a plant used folklorically in wound healing, Ocimum gratissimum. The excision wound model was employed in the wound healing studies. The air-dried, size-reduced barks were ...

  4. Aging-dependent reduction in glyoxalase 1 delays wound healing.

    Science.gov (United States)

    Fleming, Thomas H; Theilen, Till-Martin; Masania, Jinit; Wunderle, Marius; Karimi, Jamshid; Vittas, Spiros; Bernauer, Rainer; Bierhaus, Angelika; Rabbani, Naila; Thornalley, Paul J; Kroll, Jens; Tyedmers, Jens; Nawrotzki, Ralph; Herzig, Stephan; Brownlee, Michael; Nawroth, Peter P

    2013-01-01

    Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice. Copyright © 2013 S. Karger AG, Basel.

  5. Red Deer Antler Extract Accelerates Hair Growth by Stimulating Expression of Insulin-like Growth Factor I in Full-thickness Wound Healing Rat Model

    Directory of Open Access Journals (Sweden)

    ZhiHong Yang

    2012-05-01

    Full Text Available In order to investigate and evaluate the effects of red deer antlers on hair growth in the full-thickness wound healing model, Sprague-Dawley rats were given incision wounds through the full thickness of their dorsal skin and deer antler was applied for 40 days. At specified intervals thereafter (4, 8, 16, 32 and 40 days, the animals were sacrificed and the wound site skins were excised, processed, and sectioned. At post-injury days 16, 32 and 40, longer and more active new hair appeared around the healing wound of antler-treated skin. Histological studies showed that the antler extract markedly increases the depth, size, and number of hair follicles. Expression of IGF-I (insulin-like growth factor mRNA was detected by RT-PCR and real time RT-PCR. The result showed that the expression of IGF-I (days 16, 32, and 40 was obviously up-regulated in antler-treated skins compared to control skins. Similar results were seen in the ELISA analysis to quantify the IGF-I expression. These results support the notion that wound healing can cause hair growth by enhancing the expression of IGF-I. Deer antler extract appears to have the potential to promote hair growth and could be used in hair growth products.

  6. Trends in Surgical Wound Healing

    DEFF Research Database (Denmark)

    Gottrup, F.

    2008-01-01

    The understanding of acute and chronic wound pathophysiology has progressed considerably over the past decades. Unfortunately, improvement in clinical practice has not followed suit, although new trends and developments have improved the outcome of wound treatment in many ways. This review focuse...

  7. [Delayed wound healing post molar extraction].

    Science.gov (United States)

    Schepers, R H; De Visscher, J G A M

    2009-02-01

    One month post extraction of the second left maxillary molar the alveolar extraction site showed no signs of healing and was painful. The patient had been using an oral bisphosphonate during 3 years. Therefore, the lesion was diagnosed as bisphosphonate-induced maxillary osteonecrosis. Treatment was conservative. Since one month later the pain had increased and the wound healing had decreased, a biopsy was carried out. Histopathologic examination revealed a non-Hodgkin lymphoma.

  8. Cutaneous wound healing: Current concepts and advances in wound care

    Directory of Open Access Journals (Sweden)

    Kenneth C Klein

    2014-01-01

    Full Text Available A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT, as used at our institution (CAMC, and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society may vary widely from country to country and payment system. [3] In the USA, CMS (Centers for Medicare and Medicaid Services approved indications for HBOT vary from that of the UHMS for logistical reasons. [1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise.

  9. Cutaneous wound healing: Current concepts and advances in wound care

    Science.gov (United States)

    Klein, Kenneth C; Guha, Somes Chandra

    2014-01-01

    A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care.[1] It is a snapshot of a patient's total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors.[2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT), as used at our institution (CAMC), and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society) may vary widely from country to country and payment system.[3] In the USA, CMS (Centers for Medicare and Medicaid Services) approved indications for HBOT vary from that of the UHMS for logistical reasons.[1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise. PMID:25593414

  10. Wound healing: time to look for intelligent, 'natural' immunological approaches?

    Science.gov (United States)

    Garraud, Olivier; Hozzein, Wael N; Badr, Gamal

    2017-06-21

    There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.' We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.

  11. Biology and Biomarkers for Wound Healing

    Science.gov (United States)

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana

    2016-01-01

    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  12. Heat enhances radiation inhibition of wound healing

    International Nuclear Information System (INIS)

    Twomey, P.; Hill, S.; Joiner, M.; Hobson, B.; Denekamp, J.

    1987-01-01

    To study the effect of hyperthermia on the inhibition of healing by radiation, the authors used 2 models of wound tensile strength in mice. In one, tensile strength of 1 cm strips of wounded skin was measured. In the other, strength was measured on 2 by 1 by .3 cm surgical prosthetic sponges of polyvinyl alcohol which has been cut, resutured, and implanted subcutaneously. Granulation tissue grows into the pores of the sponges which gradually fill with collagen. Tensile strength in both models was measured on day 14 using a constant strain extensiometer. The wounds were given graduated doses of ortho-voltage radiation with or without hyperthermia. Maximum radiation sensitivity occurred during the period of rapid neovascularization in the first 5 days after wounding, when a loss of 80% in wound strength occurred with doses less than 20 gray. For single radiation doses given 48 hours after wounding, the authors found a steep dose-response curve with half maximum reduction in strength occurring in both models at approximately 10 gray. Hyperthermia was produced in two ways. Skin wounds were heated in a circulating water bath. In the sponge model, more uniform heating occurs with an RF generator scaled to the mouse. At a dose of 43 C for 30 minutes, no inhibition of healing by heat alone was found. However the combination of heat and radiation produced definite enhancement of radiation damage, with thermal enhancement ratios of up to 1.9 being observed

  13. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe; Grigoras, Constantin

    2011-01-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  14. ROLE OF VACUUM ASSISTED CLOSURE (VAC - IN WOUND HEALING

    Directory of Open Access Journals (Sweden)

    L. Lokanadha Rao

    2016-09-01

    Full Text Available BACKGROUND Large, complicated wounds pose a significant surgical problem. Negative pressure wound therapy is one of several methods enabling to obtain better treatment results in case of open infected wounds.1,2 The use of negative pressure therapy enables to obtain a reduction in the number of bacteria which significantly reduces the number of complications.3,4,5 AIMS AND OBJECTIVES: To review the Role of VAC in wound healing in Orthopaedics. MATERIALS AND METHODS The cases presented in this study are those who were admitted in King George Hospital in the time period from January 2014 to August 2015. This is a prospective interventional study. In this study, 15 patients were assigned to the study group (Negative Pressure Wound Therapy- NPWT based on their willingness for undergoing treatment. OBSERVATIONS AND RESULTS 12 males and 3 females are involved in the study. There is decrease in the mean wound area from 64 cm2 to 38 cm2 . There is decrease in the duration of hospital stay. Finally, wound is closed by SSG or secondary suturing. DISCUSSION NPWT is known to reduce bacterial counts, although they remain colonised with organisms. Wounds covered with NPW dressing are completely isolated from the environment, thereby reduces cross infection. In our series, we had 73.3% (11 cases excellent results and 26.7% (4 cases good results and no poor results. As interpretation with results, VAC therapy is effective mode of adjuvant therapy for the management of infected wounds. CONCLUSION VAC has been proven to be a reliable method of treating a variety of infected wounds. It greatly increases the rate of granulation tissue formation and lowers bacterial counts to accelerate wound healing. It can be used as a temporary dressing to prepare wounds optimally prior to closure or as a definitive treatment for nonsurgical and surgical wounds. VAC is now being used in a multitude of clinical settings, including the treatment of surgical wounds, infected wounds

  15. PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.

    Science.gov (United States)

    Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T

    2018-01-01

    Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p cells (p cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.

  16. Effect of animal products and extracts on wound healing promotion in topical applications: a review.

    Science.gov (United States)

    Napavichayanun, Supamas; Aramwit, Pornanong

    2017-06-01

    Wound healing is a natural process of body reaction to repair itself after injury. Nonetheless, many internal and external factors such as aging, comorbidity, stress, smoking, alcohol drinking, infections, malnutrition, or wound environment significantly affect the quality and speed of wound healing. The unsuitable conditions may delay wound healing process and cause chronic wound or scar formation. Therefore, many researches have attempted to search for agents that can accelerate wound healing with safety and biocompatibility to human body. Widely studied wound healing agents are those derived from either natural sources including plants and animals or chemical synthesis. The natural products seem to be safer and more biocompatible to human tissue. This review paper demonstrated various kinds of the animal-derived products including chitosan, collagen, honey, anabolic steroids, silk sericin, peptides, and proteoglycan in term of mechanisms of action, advantages, and disadvantages when applied as wound healing accelerator. The benefits of these animal-derived products are wound healing promotion, anti-inflammatory, antimicrobial activity, moisturizing effect, biocompatibility, and safety. However, the drawbacks such as allergy, low stability, batch-to-batch variability, and high extraction and purification costs could not be avoided in some products.

  17. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study

    OpenAIRE

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we ...

  18. Aloe Gel Enhances Angiogenesis in Healing of Diabetic Wound

    Directory of Open Access Journals (Sweden)

    Djanggan Sargowo

    2011-12-01

    Full Text Available BACKGROUND: Diabetic micro and macroangiophathy lead to the incident of diabetic foot ulcers characterized by an increased number of circulating endothelial cells (CECs and decreased function of endothelial progenitor cells (EPCs. This fact is correlated with ischemia and diabetic wound healing failure. Aloe vera gel is known to be able to stimulate vascular endothelial growth factor (VEGF expression and activity by enhancing nitric oxide (NO production as a result of nitric oxide synthase (NOS enzyme activity. Aloe vera is a potential target to enhancing angiogenesis in wound healing. OBJECTIVE: The objective of this study was to explore the major role of Aloe vera gel in wound healing of diabetic ulcers by increasing the level of EPCs, VEGF, and endothelial nitric oxide synthase (eNOS, as well as by reducing the level of CECs involved in angiogenesis process of diabetic ulcers healing. METHODS: The experimental groups was divided into five subgroups consisting of non diabetic wistar rats, diabetic rats without oral administration of aloe gel, and treatment subgroup (diabetic rats with 30, 60 and 120 mg/day of aloe gel doses for 14 days. All subgroups were wounded and daily observation was done on the wounds areas. Measurement of the number of EPCs (CD34, and CECs (CD45 and CD146 was done by flow cytometry, followed by measurement of VEGF and eNOS expression on dermal tissue by immunohistochemical method on day 0 and day 14 after treatment. The quantitative data were analyzed by One-Way ANOVA and Linear Regression, with a confidence interval 5% and significance level (p<0.05 using SPSS 16 software to compare the difference and correlation between wound diameters, number of EPCs and CECs as well as the levels of VEGF and eNOS. RESULTS: The results of this study showed that aloe gel oral treatment in diabetic wistar rats was able to accelerate the wound healing process. It was shown by significant reduction of wound diameter (0.27±0.02; the

  19. Elements affecting wound healing time: An evidence based analysis.

    Science.gov (United States)

    Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi

    2015-01-01

    The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society. © 2015 by the Wound Healing Society.

  20. Identification of a transcriptional signature for the wound healing continuum.

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  1. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Science.gov (United States)

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  2. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  3. Identification of a transcriptional signature for the wound healing continuum

    OpenAIRE

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

  4. Effect of astaxanthin on cutaneous wound healing

    OpenAIRE

    Meephansan J; Rungjang A; Yingmema W; Deenonpoe R; Ponnikorn S

    2017-01-01

    Jitlada Meephansan,1 Atiya Rungjang,1 Werayut Yingmema,2 Raksawan Deenonpoe,3 Saranyoo Ponnikorn3 1Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; 2Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand; 3Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand Abstract: Wound healing consists of a complex series of convoluted processes which involve renewal of the skin afte...

  5. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study

    NARCIS (Netherlands)

    Ubbink, Dirk T.; Lindeboom, Robert; Eskes, Anne M.; Brull, Huub; Legemate, Dink A.; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We

  6. Predicting complex acute wound healing in patients from a wound expertise centre registry : a prognostic study

    NARCIS (Netherlands)

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We

  7. Detrimental dermal wound healing: What can we learn from the oral mucosa?

    NARCIS (Netherlands)

    Glim, J.E.; van Egmond, M.; Niessen, F.B.; Everts, V.; Beelen, R.H.J.

    2013-01-01

    Wounds in adults are frequently accompanied by scar formation. This scar can become fibrotic due to an imbalance between extracellular matrix (ECM) synthesis and ECM degradation. Oral mucosal wounds, however, heal in an accelerated fashion, displaying minimal scar formation. The exact mechanisms of

  8. Effects of genistein on early-stage cutaneous wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: jjhkim@cau.ac.kr [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  9. Complements and the Wound Healing Cascade: An Updated Review

    Directory of Open Access Journals (Sweden)

    Hani Sinno

    2013-01-01

    Full Text Available Wound healing is a complex pathway of regulated reactions and cellular infiltrates. The mechanisms at play have been thoroughly studied but there is much still to learn. The health care system in the USA alone spends on average 9 billion dollars annually on treating of wounds. To help reduce patient morbidity and mortality related to abnormal or prolonged skin healing, an updated review and understanding of wound healing is essential. Recent works have helped shape the multistep process in wound healing and introduced various growth factors that can augment this process. The complement cascade has been shown to have a role in inflammation and has only recently been shown to augment wound healing. In this review, we have outlined the biology of wound healing and discussed the use of growth factors and the role of complements in this intricate pathway.

  10. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  11. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    Science.gov (United States)

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic

  12. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing

    Directory of Open Access Journals (Sweden)

    Biraja C. Dash

    2018-03-01

    Full Text Available The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds.

  13. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing.

    Science.gov (United States)

    Dash, Biraja C; Xu, Zhenzhen; Lin, Lawrence; Koo, Andrew; Ndon, Sifon; Berthiaume, Francois; Dardik, Alan; Hsia, Henry

    2018-03-09

    The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds.

  14. Identification of a transcriptional signature for the wound healing continuum

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339

  15. Wound healing and all-cause mortality in 958 wound patients treated in home care

    DEFF Research Database (Denmark)

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B. E.

    2015-01-01

    to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound...... healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died...

  16. Tissue transglutaminase in normal and abnormal wound healing: review article

    OpenAIRE

    Verderio, EAM; Johnson, T; Griffin, M

    2004-01-01

    A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may al...

  17. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  18. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  19. Lumican as a multivalent effector in wound healing.

    Science.gov (United States)

    Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane

    2018-03-01

    Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.

  20. Effects of isoniazid and niacin on experimental wound-healing

    DEFF Research Database (Denmark)

    Weinreich, Jürgen; Ågren, Sven Per Magnus; Bilali, Erol

    2010-01-01

    There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues.......There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues....

  1. Cutaneous wound healing in aging small mammals: a systematic review.

    Science.gov (United States)

    Kim, Dong Joo; Mustoe, Thomas; Clark, Richard A F

    2015-01-01

    As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.

  2. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Topical application of dressing with amino acids improves cutaneous wound healing in aged rats.

    Science.gov (United States)

    Corsetti, Giovanni; D'Antona, Giuseppe; Dioguardi, Francesco Saverio; Rezzani, Rita

    2010-09-01

    The principal goal in treating surgical and non-surgical wounds, in particular for aged skin, is the need for rapid closure of the lesion. Cutaneous wound healing processes involve four phases including an inflammatory response with the induction of pro-inflammatory cytokines. If inflammation develops in response to bacterial infection, it can create a problem for wound closure. Reduced inflammation accelerates wound closure with subsequent increased fibroblast function and collagen synthesis. On the contrary, prolonged chronic inflammation results in very limited wound healing. Using histological and immunohistochemical techniques, we investigated the effects of a new wound dressing called Vulnamin that contains four essential amino acids for collagen and elastin synthesis plus sodium ialuronate (Na-Ial), compared with Na-Ial alone, in closure of experimental cutaneous wounds of aged rats. Our results showed that the application of Vulnamin dressings modulated the inflammatory response with a reduction in the number of inflammatory cells and inducible nitric oxide synthase (iNOS) immunolocalisation, while increasing endothelial nitric oxide synthase (eNOS) and transforming growth factor-beta1 (TGF-beta1) immunolocalisation. Furthermore, the dressing increased the distribution density of fibroblasts and aided the synthesis of thin collagen fibers resulting in a reduction in healing time. The nutritive approach using this new wound dressing can provide an efficacious and safe strategy to accelerate wound healing in elderly subjects, simplifying therapeutic procedures and leading to an improved quality of life. 2009 Elsevier GmbH. All rights reserved.

  4. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    Science.gov (United States)

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  5. Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Lee, Yen-Hsien; Chang, Jung-Jhih; Chien, Chiang-Ting; Yang, Ming-Chien; Chien, Hsiung-Fei

    2012-01-01

    We examined the effects of vitamin C in Pluronic F127 on diabetic wound healing. Full-thickness excision skin wounds were made in normal and diabetic Wistar rats to evaluate the effect of saline, saline plus vitamin C (antioxidant sol), Pluronic F127, or Pluronic F127 plus vitamin C (antioxidant sol-gel). The rate of wound contraction, the levels of epidermal and dermal maturation, collagen synthesis, and apoptosis production in the wound tissue were determined. In vitro data showed that after 6 hours of air exposure, the order of the scavenging abilities for HOCl, H2O2, and O2  − was antioxidant sol-gel > antioxidant saline > Pluronic F127 = saline. After 7 and 14 days of wound injury, the antioxidant sol-gel improved wound healing significantly by accelerated epidermal and dermal maturation, an increase in collagen content, and a decrease in apoptosis formation. However, the wounds of all treatments healed mostly at 3 weeks. Vitamin C in Pluronic F127 hastened cutaneous wound healing by its antioxidant and antiapoptotic mechanisms through a good drug delivery system. This study showed that Pluronic F127 plus vitamin C could potentially be employed as a novel wound-healing enhancer. PMID:22919368

  6. Effect of aging on wound healing: current concepts.

    Science.gov (United States)

    Pittman, Joyce

    2007-01-01

    The population is aging, and advanced age is commonly identified as a risk factor for delayed wound healing. Therefore, it is important for WOC nurses to be knowledgeable about how aging affects the wound healing and repair process, and strategies they can use to promote healing in the elderly population. Impaired wound healing in the aged is due partly to comorbidities common among the elderly, but evidence also suggests that inherent differences in cellular structure and function may impair tissue repair and regeneration as well. This article will address the effect of aging on wound healing, with a particular focus on processes of cellular senescence and related factors hypothesized to result in slowed or impaired wound healing in the elderly.

  7. Traditional Therapies for Skin Wound Healing.

    Science.gov (United States)

    Pereira, Rúben F; Bártolo, Paulo J

    2016-05-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  8. Muscle wound healing in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Schmidt, Jacob Günther; Andersen, Elisabeth Wreford; Ersbøll, Bjarne Kjær

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addit......We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post......-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3......, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least...

  9. A small peptide with potential ability to promote wound healing.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  10. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.

    Science.gov (United States)

    Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong

    2017-11-01

    Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM

  11. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    Science.gov (United States)

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity

  12. Wound healing activity of Curcuma zedoaroides

    Directory of Open Access Journals (Sweden)

    Pattreeya Tungcharoen

    2016-12-01

    Full Text Available Curcuma zedoaroides rhizomes have been used in Thai folk medicine as antidote and wound care for king cobra bite wound. The inhibitory effect of C. zedoaroides extract and its fractions on inflammation were detected by reduction of nitric oxide release using RAW264.7 cells. The improvement capabilities on wound healing were determined on fibroblast L929 cells proliferation and migration assays. The results showed that crude EtOH extract, CHCl3 and hexane fractions inhibited NO release with IC50 values of 14.0, 12.4 and 14.6 μg/ml, respectively. The CHCl3 and EtOAc fractions significantly increased L929 cells proliferation, enhanced fibroblast cells migration (100% on day 3 and scavenged DPPH with IC50 of 40.9 and 7.2 μg/ml, respectively. Only the CHCl3 fraction showed marked effect against carrageenan-induced rat paw edema (IC50 = 272.4 mg/kg. From the present study, both in vitro and in vivo models support the traditional use of C. zedoaroides

  13. Potato tuber wounding induces responses associated with various healing processes

    Science.gov (United States)

    Wounding induces an avalanche of biological responses involved in the healing and protection of internal tuber tissues exposed by mechanical damage and seed cutting. Collectively, our studies have framed a portrait of the mechanisms and regulation of potato tuber wound-healing, but much more is req...

  14. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study.

    Science.gov (United States)

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-10-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we determined which patient- and wound-related characteristics best predict time to complete wound healing and derived a prediction formula to estimate how long this may take. We selected 563 patients with acute wounds, documented in the WEC registry between 2007 and 2012. Wounds had existed for a median of 19 days (range 6-46 days). The majority of these were located on the leg (52%). Five significant independent predictors of prolonged wound healing were identified: wound location on the trunk [hazard ratio (HR) 0·565, 95% confidence interval (CI) 0·405-0·788; P = 0·001], wound infection (HR 0·728, 95% CI 0·534-0·991; P = 0·044), wound size (HR 0·993, 95% CI 0·988-0·997; P = 0·001), wound duration (HR 0·998, 95% CI 0·996-0·999; P = 0·005) and patient's age (HR 1·009, 95% CI 1·001-1·018; P = 0·020), but not diabetes. Awareness of the five factors predicting the healing of complex acute wounds, particularly wound infection and location on the trunk, may help caregivers to predict wound healing time and to detect, refer and focus on patients who need additional attention. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Effects of low-level laser therapy on wound healing

    Directory of Open Access Journals (Sweden)

    Fabiana do Socorro da Silva Dias Andrade

    Full Text Available OBJECTIVE: To gather and clarify the actual effects of low-level laser therapy on wound healing and its most effective ways of application in human and veterinary medicine.METHODS: We searched original articles published in journals between the years 2000 and 2011, in Spanish, English, French and Portuguese languages, belonging to the following databases: Lilacs, Medline, PubMed and Bireme; Tey should contain the methodological description of the experimental design and parameters used.RESULTS: doses ranging from 3 to 6 J/cm2 appear to be more effective and doses 10 above J/cm2 are associated with deleterious effects. The wavelengths ranging from 632.8 to 1000 nm remain as those that provide more satisfactory results in the wound healing process.CONCLUSION: Low-level laser can be safely applied to accelerate the resolution of cutaneous wounds, although this fact is closely related to the election of parameters such as dose, time of exposure and wavelength.

  16. Otostegia persica extraction on healing process of burn wounds

    Directory of Open Access Journals (Sweden)

    Amin Ganjali

    2013-06-01

    Full Text Available PURPOSE: To investigate if the methanolic extract of the Otostegia persica can accelerating healing process of burn wound because of its anti-inflammatory and antioxidant effects. METHODS:Forty eight male Wistar rats were randomized into three study groups of 16 rats each. Burn wounds were created on dorsal part of shaved rats using a metal rod. In group I the burn wound was left without any treatment. Group was treated with topical silver sulfadiazine pomade. In group III, ointment containing the OP extract was administered. Skin biopsies were harvested from burn area on the 3rd, 5th, 14th and 21st days after burn and examined histologically. RESULTS: Re-epithelialization in the control group and in group II was lower than in group III. Re-epithelialization in groups II and III was significantly different from that in the control group. On the 5th day of the experiment, we assessed lower inflammation in the burn area compared to control group. This means that the inflammation was suppressed by methanolic extract of OP. From day 5 to 14; the fibroblast proliferation peaked and was associated with increased collagen accumulation. It was obvious that angiogenesis improved more in the groups II and III, which facilitated re-epithelialisation. CONCLUSION:Methanolic extract of Otostegia persica exhibited significant healing activity when topically applied on rats. OP is an effective treatment for saving the burn site.

  17. Development of a wound healing index for patients with chronic wounds.

    Science.gov (United States)

    Horn, Susan D; Fife, Caroline E; Smout, Randall J; Barrett, Ryan S; Thomson, Brett

    2013-01-01

    Randomized controlled trials in wound care generalize poorly because they exclude patients with significant comorbid conditions. Research using real-world wound care patients is hindered by lack of validated methods to stratify patients according to severity of underlying illnesses. We developed a comprehensive stratification system for patients with wounds that predicts healing likelihood. Complete medical record data on 50,967 wounds from the United States Wound Registry were assigned a clear outcome (healed, amputated, etc.). Factors known to be associated with healing were evaluated using logistic regression models. Significant variables (p healing for each wound type. Some variables predicted significantly in nearly all models: wound size, wound age, number of wounds, evidence of bioburden, tissue type exposed (Wagner grade or stage), being nonambulatory, and requiring hospitalization during the course of care. Variables significant in some models included renal failure, renal transplant, malnutrition, autoimmune disease, and cardiovascular disease. All models validated well when applied to the holdout sample. The "Wound Healing Index" can validly predict likelihood of wound healing among real-world patients and can facilitate comparative effectiveness research to identify patients needing advanced therapeutics. © 2013 by the Wound Healing Society.

  18. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  19. Evaluation of Cynodon dactylon for wound healing activity.

    Science.gov (United States)

    Biswas, Tuhin Kanti; Pandit, Srikanta; Chakrabarti, Shrabana; Banerjee, Saheli; Poyra, Nandini; Seal, Tapan

    2017-02-02

    Research in the field of wound healing is very recent. The concept of wound healing is changing from day to day. Ayurveda is the richest source of plant drugs for management of wounds and Cynodon dactylon L. is one such. The plant is used as hemostatic and wound healing agent from ethnopharmacological point of view. Aim of the present study is scientific validation of the plant for wound healing activity in detail. Aqueous extract of the plant was prepared and phytochemical constituents were detected by HPLC analysis. Acute and dermatological toxicity study of the extract was performed. Pharmacological testing of 15% ointment (w/w) of the extract with respect to placebo control and standard comparator framycetin were done on full thickness punch wound in Wister rats and effects were evaluated based on parameters like wound contraction size (mm 2 ), tensile strength (g); tissue DNA, RNA, protein, hydroxyproline and histological examination. The ointment was applied on selected clinical cases of chronic and complicated wounds and efficacy was evaluated on basis of scoring on granulation, epithelialization, vascularity as well as routine hematological investigations. Significant results (pCynodon dactylon explores its potential wound healing activity in animal model and subsequent feasibility in human subjects. Phenolic acids and flavonoids present in c. dactylon supports its wound healing property for its anti-oxidative activity that are responsible for collagenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. VAC therapy to promote wound healing after surgical revascularisation for critical lower limb ischaemia.

    Science.gov (United States)

    De Caridi, Giovanni; Massara, Mafalda; Greco, Michele; Pipitò, Narayana; Spinelli, Francesco; Grande, Raffaele; Butrico, Lucia; de Franciscis, Stefano; Serra, Raffaele

    2016-06-01

    Vacuum-assisted closure (VAC) therapy is a new emerging non-invasive system in wound care, which speeds up wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates, and facilitating the removal of bacteria from the wound. The application of sub-atmospheric pressure on the lesions seems to alter the cytoskeleton of the cells on the wound bed, triggering a cascade of intracellular signals that increase the rate of cell division and subsequent formation of granulation tissue. The aim of this study is to analyse the results of VAC therapy used as an adjuvant therapy for the treatment of foot wounds in patients affected by critical limb ischaemia (CLI) (Rutherford 6 class) after distal surgical revascularisation, to promote and accelerate the healing of ulcers. Twenty-nine patients (20 males, 9 females; mean age 68·4) affected by CLI of Rutherford 6 class, after surgical revascularisation of the lower limb, underwent VAC therapy in order to speed up wound healing. Complete wound healing was achieved in 19 patients (65·51%), in an average period of 45·4 ± 25·6 days. VAC therapy is a valid aid, after surgical revascularisation, to achieve rapid healing of foot lesions in patients with CLI. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Effect of virgin fatty oil of Pistacia lentiscus on experimental burn wound's healing in rabbits.

    Science.gov (United States)

    Djerrou, Zouhir; Maameri, Z; Hamdi-Pacha, Y; Serakta, M; Riachi, F; Djaalab, H; Boukeloua, A

    2010-04-03

    This study aimed to assess the efficiency of the virgin fatty oil of Pistacia lentiscus (PLVFO) for burn wounds healing. It was carried out on 6 adult male New Zealand rabbits. Four burn wounds of deep third degree were made on the back of each animal. The first was not treated and served as control (CRL group); the others were covered immediately after burning procedure by 0.5g of one of the following products: Vaseline gel (VAS group), Madecassol(®) cream 1% (MAD group) or 1ml of PLVFO (PLVFO group). The treatments were repeated once daily until complete healing. For four days post burns, the percentage of wound contraction was assessed. Also, the different healing times were noted. The results showed that both PLVFO and Madecassol(®) significantly accelerated wound healing activity compared to wounds dressed with Vaseline and the untreated wounds. However, the level of wound contraction was significantly higher and the healing time was faster in PLVFO group than those of the MAD group, VAS group and CRL group. The different epithelization periods obtained in days were respectively: 30±3.94 (PLVFO group), 33.5±3.78 (MAD group), 34.66±3.88 (VAS group) and 37.16±3.54 (CRL group). We conclude that Pistacia lentiscus virgin fatty oil promotes significantly (p< 0.05) wound contraction and reduces epithelization period in rabbit model.

  2. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  3. Effect of Andrographis paniculata leaf extract on wound healing in rats.

    Science.gov (United States)

    Al-Bayaty, Fouad Hussain; Abdulla, Mahmood Ameen; Abu Hassan, Mohamed Ibrahim; Ali, Hapipah Mohd

    2012-01-01

    This work was carried out to study the effect of topical application of Andrographis paniculata on the rate of wound enclosure and its histological features. A wound was created in four groups of rat in posterior neck region. Blank placebo was applied topically to the wounds of Group 1. Groups 2 and 3 were dressed with placebo containing 5% and 10% extracts of A. paniculata, respectively. Intrasite gel was applied topically to the wounds of Group 4. Macroscopical examination revealed that the rate of wound healing was significantly accelerated in the wound dressed with A. paniculata extract compared to the blank placebo. The wounds dressed with 10% extract or Intrasite gel healed earlier compared to the wounds dressed with placebo containing 5% A. paniculata extract. Histologically, wounds dressed with A. paniculata extracts showed markedly less scar width and contained large amounts of fibroblast proliferation. More collagen and less angiogenesis with absence of inflammatory cells were seen for wounds dressed with 10% A. paniculata compared to the blank placebo. Conclusion, A. paniculata extracts significantly enhanced rate of wound healing in rats.

  4. Association of Hemoglobin A1c and Wound Healing in Diabetic Foot Ulcers.

    Science.gov (United States)

    Fesseha, Betiel K; Abularrage, Christopher J; Hines, Kathryn F; Sherman, Ronald; Frost, Priscilla; Langan, Susan; Canner, Joseph; Likes, Kendall C; Hosseini, Sayed M; Jack, Gwendolyne; Hicks, Caitlin W; Yalamanchi, Swaytha; Mathioudakis, Nestoras

    2018-04-16

    This study evaluated the association between hemoglobin A 1c (A1C) and wound outcomes in patients with diabetic foot ulcers (DFUs). We conducted a retrospective analysis of an ongoing prospective, clinic-based study of patients with DFUs treated at an academic institution during a 4.7-year period. Data from 270 participants and 584 wounds were included in the analysis. Cox proportional hazards regression was used to assess the incidence of wound healing at any follow-up time in relation to categories of baseline A1C and the incidence of long-term (≥90 days) wound healing in relation to tertiles of nadir A1C change and mean A1C change from baseline, adjusted for potential confounders. Baseline A1C was not associated with wound healing in univariate or fully adjusted models. Compared with a nadir A1C change from baseline of -0.29 to 0.0 (tertile 2), a nadir A1C change of 0.09 to 2.4 (tertile 3) was positively associated with long-term wound healing in the subset of participants with baseline A1C healing was seen with the mean A1C change from baseline in this group. Neither nadir A1C change nor mean A1C change were associated with long-term wound healing in participants with baseline A1C ≥7.5%. There does not appear to be a clinically meaningful association between baseline or prospective A1C and wound healing in patients with DFUs. The paradoxical finding of accelerated wound healing and increase in A1C in participants with better baseline glycemic control requires confirmation in further studies. © 2018 by the American Diabetes Association.

  5. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing.

    Science.gov (United States)

    Henshaw, F R; Boughton, P; Lo, L; McLennan, S V; Twigg, S M

    2015-01-01

    Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P diabetic foot ulcers.

  6. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Science.gov (United States)

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; phealing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  7. Wound healing potential of adipose tissue stem cell extract.

    Science.gov (United States)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Applications of biomaterials in corneal wound healing

    Directory of Open Access Journals (Sweden)

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  9. Wound Healing in Patients With Impaired Kidney Function.

    Science.gov (United States)

    Maroz, Natallia; Simman, Richard

    2013-04-01

    Renal impairment has long been known to affect wound healing. However, information on differences in the spectrum of wound healing depending on the type of renal insufficiency is limited. Acute kidney injury (AKI) may be observed with different wound types. On one hand, it follows acute traumatic conditions such as crush injury, burns, and post-surgical wounds, and on the other hand, it arises as simultaneous targeting of skin and kidneys by autoimmune-mediated vasculitis. Chronic kidney disease (CKD) and end-stage renal disease (ESRD) often occur in older people, who have limited physical mobility and predisposition for developing pressure-related wounds. The common risk factors for poor wound healing, generally observed in patients with CKD and ESRD, include poorly controlled diabetes mellitus, neuropathy, peripheral vascular disease, chronic venous insufficiency, and aging. ESRD patients have a unique spectrum of wounds related to impaired calcium-phosphorus metabolism, including calciphylaxis, in addition to having the risk factors presented by CKD patients. Overall, there is a wide range of uremic toxins: they may affect local mechanisms of wound healing and also adversely affect the functioning of multiple systems. In the present literature review, we discuss the association between different types of renal impairments and their effects on wound healing and examine this association from different aspects related to the management of wounds in renal impairment patients.

  10. Publicly Reported Wound Healing Rates: The Fantasy and the Reality

    Science.gov (United States)

    Fife, Caroline E.; Eckert, Kristen A.; Carter, Marissa J.

    2018-01-01

    Significance: We compare real-world data from the U.S. Wound Registry (USWR) with randomized controlled trials and publicly reported wound outcomes and develop criteria for honest reporting of wound outcomes, a requirement of the new Quality Payment Program (QPP). Recent Advances: Because no method has existed by which wounds could be stratified according to their likelihood of healing among real-world patients, practitioners have reported fantastically high healing rates. The USWR has developed several risk-stratified wound healing quality measures for diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) as part of its Qualified Clinical Data Registry (QCDR). This allows practitioners to report DFU and VLU healing rates in comparison to the likelihood of whether the wound would have healed. Critical Issues: Under the new QPP, practitioners must report at least one practice-relevant outcome measure, and it must be risk adjusted so that clinicians caring for the sickest patients do not appear to have worse outcomes than their peers. The Wound Healing Index is a validated risk-stratification method that can predict whether a DFU or VLU will heal, leveling the playing field for outcome reporting and removing the need to artificially inflate healing rates. Wound care practitioners can report the USWR DFU and VLU risk-stratified outcome measure to satisfy the quality reporting requirements of the QPP. Future Directions: Per the requirements of the QPP, the USWR will begin publicly reporting of risk-stratified healing rates once quality measure data have met the reporting standards of the Centers for Medicare and Medicaid Services. Some basic rules for data censoring are proposed for public reporting of healing rates, and others are needed, which should be decided by consensus among the wound care community. PMID:29644145

  11. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-02-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  12. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10.

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H; Dong, Tingting; Wu, Mei X

    2016-02-02

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  13. TOPICAL ESTROGEN IN WOUND HEALING: A DOUBLE BLIND RANDOMIZED CLINICAL TRIAL ON YOUNG HEALTHY PEOPLE

    Directory of Open Access Journals (Sweden)

    A ASILIAN

    2001-03-01

    Full Text Available Introduction: Acceleration of wounf healing is intrested because of decreasing the risk of wound complication and infections as well as reducing the cost of treatment. In animal models, it has been proved that estrogen can accelerate wound healing. It has been also suggested that topical estrogen can eliminate effect of aging on wound healing and can increase the speed of wound healing in old people. Methods: We selected 16 young healthy people who developed symmetrical and ulcers (regarding size and depths after dermabrasion, shave and electrocoagulouzon and CO2 laser. Primary lesions of patients were benign and noninfective. Identical and symmetrical lesions of each patient were randomly divided into two groups (A and B. Topical estrogen with concentration of 0.625 mg/g in the base of silver sulfadiazine cream was applied to A ulcers and silver sulfadiazine cream alone was applied on B ulcers. Ulcers were dressed by Telfa gauzes. The A ulcers of each patients were compared to counterpart B ulcers in regard of redness, size, depth, general appearance of ulcers and wound healing duration at three days intervals by a physician. Results: Average time of healing was 10.8 days and 8.5 days for B (n=29 and A (n=29 ulcers, respectively (P < 0.001. In 78 percent of cases, the A ulcers were judged better than B ulcers by physician (P < 0.01. Discussion: It seems that estrogen not only accelerate healing of acute ulcers but also it is efficient in young healthy people who don"t have any hormonal or wound healing problems.

  14. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.

    Science.gov (United States)

    Sarhan, Wessam A; Azzazy, Hassan Me

    2017-09-01

    Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects. Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity. Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility. The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.

  15. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing.

    Science.gov (United States)

    Kaisang, Lin; Siyu, Wang; Lijun, Fan; Daoyan, Pan; Xian, Cory J; Jie, Shen

    2017-09-01

    Chronic nonhealing wound is a multifactorial complication of diabetes that results specifically as a consequence of impaired angiogenesis and currently lacks in effective treatments. Although a stem cell-based therapy may provide a novel treatment to augment diabetic wound healing, inferior cell survival at the diabetic skin wound is one of the key causes that are responsible for the low efficacy of the stem cell therapy. In this work, we used an injectable, biocompatible, and thermosensitive hydrogel Pluronic F-127 to encapsulate allogeneic nondiabetic adipose-derived stem cells (ADSCs) and topically applied the cells to a full-thickness cutaneous wound in the streptozotocin-induced diabetic model in rats. The cells seeded in the hydrogel enhanced angiogenesis (CD31 marker) and promoted the cell proliferation (Ki67 marker) at the wound site and significantly accelerated wound closure, which was accompanied by facilitated regeneration of granulation tissue. Consistently, levels of the messenger RNA expression of key angiogenesis growth factor, vascular endothelial growth factor, and key wound healing growth factor, transforming growth factor beta 1, were also upregulated in the cell-treated wounds when compared with untreated wounds. The results indicated that the transplantation of allogeneic ADSCs via the hydrogel improves the efficiency of cell delivery and optimizes the performance of ADSCs for augmenting diabetic wound healing. In conclusion, this ADSC-based therapy may provide a novel therapeutic strategy for the treatment of nonhealing diabetic foot ulcers. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Wound healing potential of adipose tissue stem cell extract

    International Nuclear Information System (INIS)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-01-01

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.

  17. Multidisciplinary approaches to stimulate wound healing.

    Science.gov (United States)

    Businaro, Rita; Corsi, Mariangela; Di Raimo, Tania; Marasco, Sergio; Laskin, Debra L; Salvati, Bruno; Capoano, Raffaele; Ricci, Serafino; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2016-08-01

    New civil wars and waves of terrorism are causing crucial social changes, with consequences in all fields, including health care. In particular, skin injuries are evolving as an epidemic issue. From a physiological standpoint, although wound repair takes place more rapidly in the skin than in other tissues, it is still a complex organ to reconstruct. Genetic and clinical variables, such as diabetes, smoking, and inflammatory/immunological pathologies, are also important risk factors limiting the regenerative potential of many therapeutic applications. Therefore, optimization of current clinical strategies is critical. Here, we summarize the current state of the field by focusing on stem cell therapy applications in wound healing, with an emphasis on current clinical approaches being developed. These involve protocols for the ex vivo expansion of adipose tissue-derived mesenchymal stem cells by means of a patented Good Manufacturing Practice-compliant platelet lysate. Combinations of multiple strategies, including genetic modifications and stem cells, biomimetic scaffolds, and novel vehicles, such as nanoparticles, are also discussed as future approaches. © 2016 New York Academy of Sciences.

  18. Removal of the basement membrane enhances corneal wound healing.

    Science.gov (United States)

    Pal-Ghosh, Sonali; Pajoohesh-Ganji, Ahdeah; Tadvalkar, Gauri; Stepp, Mary Ann

    2011-12-01

    Recurrent corneal erosions are painful and put patients' vision at risk. Treatment typically begins with debridement of the area around the erosion site followed by more aggressive treatments. An in vivo mouse model has been developed that reproducibly induces recurrent epithelial erosions in wild-type mice spontaneously within two weeks after a single 1.5 mm corneal debridement wound created using a dulled-blade. This study was conducted to determine whether 1) inhibiting MMP9 function during healing after dulled-blade wounding impacts erosion development and 2) wounds made with a rotating-burr heal without erosions. Oral or topical inhibition of MMPs after dulled-blade wounding does not improve healing. Wounds made by rotating-burr heal with significantly fewer erosions than dulled-blade wounds. The localization of MMP9, β4 integrin and basement membrane proteins (LN332 and type VII collagen), immune cell influx, and reinnervation of the corneal nerves were compared after both wound types. Rotating-burr wounds remove the anterior basement membrane centrally but not at the periphery near the wound margin, induce more apoptosis of corneal stromal cells, and damage more stromal nerve fibers. Despite the fact that rotating-burr wounds do more damage to the cornea, fewer immune cells are recruited and significantly more wounds resolve completely. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  20. Can thermal lasers promote skin wound healing?

    Science.gov (United States)

    Capon, Alexandre; Mordon, Serge

    2003-01-01

    Lasers are now widely used for treating numerous cutaneous lesions, for scar revision (hypertrophic and keloid scars), for tissue welding, and for skin resurfacing and remodeling (wrinkle removal). In these procedures lasers are used to generate heat. The modulation of the effect (volatilization, coagulation, hyperthermia) of the laser is obtained by using different wavelengths and laser parameters. The heat source obtained by conversion of light into heat can be very superficial, yet intense, if the laser light is well absorbed (far-infrared:CO(2) or Erbium:Yttrium Aluminum Garnet [Er:YAG] lasers), or it can be much deeper and less intense if the laser light is less absorbed by the skin (visible or near-infrared). Lasers transfer energy, in the form of heat, to surrounding tissues and, regardless of the laser used, a 45-50 degrees C temperature gradient will be obtained in the surrounding skin. If a wound healing process exists, it is a result of live cells reacting to this low temperature increase. The generated supraphysiologic level of heat is able to induce a heat shock response (HSR), which can be defined as the temporary changes in cellular metabolism. These changes are rapid and transient, and are characterized by the production of a small family of proteins termed the heat shock proteins (HSP). Recent experimental studies have clearly demonstrated that HSP 70, which is over-expressed following laser irradiation, could play a role with a coordinated expression of other growth factors such as transforming growth factor (TGF)-beta. TGF-beta is known to be a key element in the inflammatory response and the fibrogenic process. In this process, the fibroblasts are the key cells since they produce collagen and extracellular matrix. In conclusion, the analysis of the literature, and the fundamental considerations concerning the healing process when using thermal lasers, are in favor of a modification of the growth factors synthesis after laser irradiation, induced

  1. Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis.

    Science.gov (United States)

    Chong, Diana C; Yu, Zhixian; Brighton, Hailey E; Bear, James E; Bautch, Victoria L

    2017-10-01

    Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention. © 2017 The Authors.

  2. Wounding the cornea to learn how it heals.

    Science.gov (United States)

    Stepp, Mary Ann; Zieske, James D; Trinkaus-Randall, Vickery; Kyne, Briana M; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Pajoohesh-Ganji, Ahdeah

    2014-04-01

    Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors' expertise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  4. Evaluation of Borrago topical effects on wound healing of cutting wounds in mice

    Directory of Open Access Journals (Sweden)

    Hossein kaboli

    2017-07-01

    Conclusion: The results show the positive effect of Borrago Officinalis extract on wound healing. In comparison, this effect is less than the phenytoin and more than iodine. More studies are needed on different doses of this plant and its comparative effect with other common treatments for wound healing.

  5. Aging influences wound healing in patients with chronic lower extremity wounds treated in a specialized Wound Care Center.

    Science.gov (United States)

    Wicke, Corinna; Bachinger, Andreas; Coerper, Stephan; Beckert, Stefan; Witte, Maria B; Königsrainer, Alfred

    2009-01-01

    With the dramatic increase in the aging population, the study and care of wounds in the elderly have become priority topics for both researchers and clinicians. The effects of aging on wound healing in humans have remained controversial. The study was a 5-year epidemiological evaluation of standardized data collected regularly during patients' visits at a specialized Wound Care Center with the aim to determine the key factors influencing the healing of chronic lower extremity wounds. In this analysis of 1,158 chronic wounds, the frequency of wound closure was statistically significantly lower in older patients compared with younger patients. The share of closed wounds decreased by nearly 25% in the elderly patients (>or=70 years). The relationship between the patient's age and the proportion of wound closure was nonlinear. The effect of aging on the frequency of wound closure of chronic wounds became clinically apparent after age 60. The chronicity of the wounds was illustrated by their recurrent nature, their long duration, the presence of multiple wounds, and the frequency of concurrent infection. Comorbidity was documented by the coprevalence of up to three underlying diseases related to impaired wound healing. The present study clearly showed that aging affects chronic wound healing negatively.

  6. Effect of systemic insulin treatment on diabetic wound healing.

    Science.gov (United States)

    Vatankhah, Nasibeh; Jahangiri, Younes; Landry, Gregory J; Moneta, Gregory L; Azarbal, Amir F

    2017-04-01

    This study investigates if different diabetic treatment regimens affect diabetic foot ulcer healing. From January 2013 to December 2014, 107 diabetic foot ulcers in 85 patients were followed until wound healing, amputation or development of a nonhealing ulcer at the last follow-up visit. Demographic data, diabetic treatment regimens, presence of peripheral vascular disease, wound characteristics, and outcome were collected. Nonhealing wound was defined as major or minor amputation or those who did not have complete healing until the last observation. Median age was 60.0 years (range: 31.1-90.1 years) and 58 cases (68.2%) were males. Twenty-four cases reached a complete healing (healing rate: 22.4%). The median follow-up period in subjects with classified as having chronic wounds was 6.0 months (range: 0.7-21.8 months). Insulin treatment was a part of diabetes management in 52 (61.2%) cases. Insulin therapy significantly increased the wound healing rate (30.3% [20/66 ulcers] vs. 9.8% [4/41 ulcers]) (p = 0.013). In multivariate random-effect logistic regression model, adjusting for age, gender, smoking status, type of diabetes, hypertension, chronic kidney disease, peripheral arterial disease, oral hypoglycemic use, wound infection, involved side, presence of Charcot's deformity, gangrene, osteomyelitis on x-ray, and serum hemoglobin A1C levels, insulin treatment was associated with a higher chance of complete healing (beta ± SE: 15.2 ± 6.1, p = 0.013). Systemic insulin treatment can improve wound healing in diabetic ulcers after adjusting for multiple confounding covariates. © 2017 by the Wound Healing Society.

  7. Wound healing activity of Sida cordifolia Linn. in rats.

    Science.gov (United States)

    Pawar, Rajesh S; Chaurasiya, Pradeep K; Rajak, Harish; Singour, Pradeep K; Toppo, Fedelic Ashish; Jain, Ankit

    2013-01-01

    The present study provides a scientific evaluation for the wound healing potential of ethanolic (EtOH) extract of Sida cordifolia Linn. (SCL) plant. Excision, incision and burn wounds were inflicted upon three groups of six rats each. Group I was assigned as control (ointment base). Group II was treated with 10% EtOH extract ointment. Group III was treated with standard silver sulfadiazine (0.01%) cream. The parameters observed were percentage of wound contraction, epithelialization period, hydroxyproline content, tensile strength including histopathological studies. It was noted that the effect produced by the ethanolic extract of SCL ointment showed significant (P < 0.01) healing in all wound models when compared with the control group. All parameters such as wound contraction, epithelialization period, hydroxyproline content, tensile strength and histopathological studies showed significant (P < 0.01) changes when compared with the control. The ethanolic extract ointment of SCL effectively stimulates wound contraction; increases tensile strength of excision, incision and burn wounds.

  8. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    Science.gov (United States)

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Healing of corneal epithelial wounds in marine and freshwater fish.

    Science.gov (United States)

    Ubels, J L; Edelhauser, H F

    The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.

  10. Effects of tretinoin on wound healing in aged skin.

    Science.gov (United States)

    de Campos Peseto, Danielle; Carmona, Erica Vilaça; Silva, Kellyn Cristina da; Guedes, Flavia Roberta Valente; Hummel Filho, Fernando; Martinez, Natalia Peres; Pereira, José Aires; Rocha, Thalita; Priolli, Denise Gonçalves

    2016-03-01

    Aged and adult populations have differences in the structural, biological, and healing properties of skin. Comparative studies of healing under the influence of retinoids in both these populations are very important and, to the best of our knowledge, have not been performed to date. The purpose of this study was to compare the activities of topical tretinoin in aged and adult animal models of wound healing by secondary intention. Male aged rats (24 months old, n = 7) and adult rats (6 months old, n = 8) were used. The rats were assigned to the following groups according to the dates on which wound samples were excised (day 14 or 21 after model creation): treated group, control group, and naive group. Topical application of tretinoin cream was used only on the proximal wound and was applied daily for 7 days. Wound healing areas were measured using metal calipers, and morphological analysis was performed. Slides were stained with Hematoxylin and Eosin, Masson's trichrome, and periodic acid-Schiff stains. Statistical analysis adopted a 5% coefficient for rejection of the null hypothesis. Although aged animals showed skin repair, complete reepithelialization was found on day 21 in some animals of both groups (treated and control). In aged rats, the wound area was significantly smaller in treated wounds than in untreated wounds, resulting in a larger scar area compared with the adult group. When treated wounds were compared, no differences were found between the wound areas in adult and aged rats. As expected, the collagen concentration was higher in normal skin from adult rats than in normal skin from aged animals, but there was no difference when aged skin was treated with tretinoin. These results indicate that tretinoin increases collagen synthesis in aged skin and returns the healing process to a normal state of skin healing. © 2016 by the Wound Healing Society.

  11. Wound Healing Properties of Selected Plants Used in Ethnoveterinary Medicine

    Directory of Open Access Journals (Sweden)

    Amos Marume

    2017-09-01

    Full Text Available Plants have arrays of phytoconstituents that have wide ranging biological effects like antioxidant, anti-inflammatory and antimicrobial properties key in wound management. In vivo wound healing properties of ointments made of crude methanolic extracts (10% extract w/w in white soft paraffin of three plant species, Cissus quadrangularis L. (whole aerial plant parts, Adenium multiflorum Klotzsch (whole aerial plant parts and Erythrina abyssinica Lam. Ex DC. (leaves and bark used in ethnoveterinary medicine were evaluated on BALB/c female mice based on wound area changes, regular observations, healing skin's percentage crude protein content and histological examinations. White soft paraffin and 3% oxytetracycline ointment were used as negative and positive controls, respectively. Wound area changes over a 15 day period for mice treated with C. quadrangularis and A. multiflorum extract ointments were comparable to those of the positive control (oxytetracycline ointment. Wounds managed with the same extract ointments exhibited high crude protein contents, similar to what was observed on animals treated with the positive control. Histological evaluations revealed that C. quadrangularis had superior wound healing properties with the wound area completely returning to normal skin structure by day 15 of the experiment. E. abyssinica leaf and bark extract ointments exhibited lower wound healing properties though the leaf extract exhibited some modest healing properties.

  12. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  13. Naturally Occurring Wound Healing Agents: An Evidence-Based Review.

    Science.gov (United States)

    Karapanagioti, E G; Assimopoulou, A N

    2016-01-01

    Nature constitutes a pool of medicines for thousands of years. Nowadays, trust in nature is increasingly growing, as many effective medicines are naturally derived. Over the last decades, the potential of plants as wound healing agents is being investigated. Wounds and ulcers affect the patients' life quality and often lead to amputations. Approximately 43,000,000 patients suffer from diabetic foot ulcers worldwide. Annually, $25 billion are expended for the treatment of chronic wounds, with the number growing due to aging population and increased incidents of diabetes and obesity. Therefore a timely, orderly and effective wound management and treatment is crucial. This paper aims to systematically review natural products, mainly plants, with scientifically well documented wound healing activity, focusing on articles based on animal and clinical studies performed worldwide and approved medicinal products. Moreover, a brief description of the wound healing mechanism is presented, to provide a better understanding. Although a plethora of natural products are in vitro and in vivo evaluated for wound healing activity, only a few go through clinical trials and even fewer launch the market as approved medicines. Most of them rely on traditional medicine, indicating that ethnopharmacology is a successful strategy for drug development. Since only 6% of plants have been systematically investigated pharmacologically, more intensified efforts and emerging advancements are needed to exploit the potentials of nature for the development of novel medicines. This paper aims to provide a reliable database and matrix for thorough further investigation towards the discovery of wound healing agents.

  14. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  15. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing.

    Science.gov (United States)

    Thorlakson, Hong Huynh; Engen, Stian Andre; Schreurs, Olav; Schenck, Karl; Blix, Inger Johanne Schytte

    2017-08-01

    Epithelial cells participate in wound healing by covering wounds, but also as important mediators of wound healing processes. Topical application of the phospholipid growth factor lysophosphatidic acid (LPA) accelerates dermal wound healing and we hypothesized that LPA can play a role in human oral wound healing through its effects on human oral keratinocytes (HOK). HOK were isolated from gingival biopsies and exposed to LPA. The LPA receptor profile, signal transduction pathways, gene expression and secretion of selected cytokines were analyzed. HOK expressed the receptors LPA 1 , LPA 5 and LPA 6 and LPA activated the ERK1/2, JNK and p38 intracellular pathways, substantiated by secretion of IL-6 and IL-8. The early (2h) and intermediate (6h) gene expression profiles of HOK after LPA treatment showed a wide array of regulated genes. The majority of the strongest upregulated genes were related to chemotaxis and inflammation, and became downregulated after 6h. At 6h, genes coding for factors involved in extracellular matrix remodeling and re-epithelialization became highly expressed. IL-36γ, not earlier known to be regulated by LPA, was strongly transcribed and translated but not secreted. After stimulation with LPA, HOK responded by regulating factors and genes that are essential in wound healing processes. As LPA is found in saliva and is released by activated cells after wounding, our results indicate that LPA has a favorable physiological role in oral wound healing. This may further point towards a beneficial role for application of LPA on oral surgical or chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Appraisal on the wound healing activity of different extracts obtained ...

    African Journals Online (AJOL)

    2015-12-02

    Dec 2, 2015 ... and required quantity of methyl paraben and propyl paraben were dissolved by heating on ... chloride (PVC) tube. Selected animals were randomly ... collagen synthesis it supports the wound healing activity of AM and MP.

  17. Myofibroblasts in palatal wound healing: prospects for the reduction of wound contraction after cleft palate repair.

    NARCIS (Netherlands)

    Beurden, H.E. van; Hoff, J.W. Von den; Torensma, R.; Maltha, J.C.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The surgical closure of orofacial clefts is considered to impair maxillary growth and dento-alveolar development. Wound contraction and subsequent scar tissue formation, during healing of these surgical wounds, contribute largely to these growth disturbances. The potential to minimize wound

  18. Wound-healing potential of the fruit extract of Phaleria macrocarpa

    Directory of Open Access Journals (Sweden)

    Walaa Najm Abood

    2015-05-01

    Full Text Available The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson’s trichrome stain. Superoxide dismutase (SOD and catalase (CAT activities, along with malondialdehyde (MDA level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1 and tumor necrosis factor alpha (TNF-α were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.

  19. miRNA delivery for skin wound healing.

    Science.gov (United States)

    Meng, Zhao; Zhou, Dezhong; Gao, Yongsheng; Zeng, Ming; Wang, Wenxin

    2017-12-19

    The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. Copyright © 2017. Published by Elsevier B.V.

  20. Enhanced Healing of Diabetic Wounds by Subcutaneous Administration of Human Umbilical Cord Derived Stem Cells and Their Conditioned Media

    Directory of Open Access Journals (Sweden)

    Chandrama Shrestha

    2013-01-01

    Full Text Available Objective. Mesenchymal stem cells (MSCs isolated from the umbilical cord and their conditioned media (CM can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds. Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n=6; P<0.05, and higher levels of VEGF, PDGF, and KGF expression in the CM- and UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-β and KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds. Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing.

  1. Enhanced Healing of Diabetic Wounds by Subcutaneous Administration of Human Umbilical Cord Derived Stem Cells and Their Conditioned Media

    Science.gov (United States)

    Shrestha, Chandrama; Zhao, Liling; Chen, Ke; He, Honghui; Mo, Zhaohui

    2013-01-01

    Objective. Mesenchymal stem cells (MSCs) isolated from the umbilical cord and their conditioned media (CM) can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds. Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n = 6; P UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-β and KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds. Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing. PMID:24089612

  2. Histomorphological evaluation of wound healing - Comparison ...

    African Journals Online (AJOL)

    Wound size was measured using a digital camera (Canon Powershot 5.0MP, Canon, Tokyo, Japan) and Adobe photoshop CS5 software. Wound tissues were removed on days 3, 5, 7 and 10 post wounding for histomorphological examinations. Average time for complete wound closure in honey (11.00 ± 0.00 days) and ...

  3. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    Science.gov (United States)

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.

  4. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Dominik Bettenworth

    Full Text Available Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.

  5. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Science.gov (United States)

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  6. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes

    Science.gov (United States)

    Krzyszczyk, Paulina; Schloss, Rene; Palmer, Andre; Berthiaume, François

    2018-01-01

    Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds. PMID:29765329

  7. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes

    Directory of Open Access Journals (Sweden)

    Paulina Krzyszczyk

    2018-05-01

    Full Text Available Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes to anti-inflammatory (M2-like phenotypes. Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1 expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds.

  8. Stem Cell Therapy to Improve Burn Wound Healing

    Science.gov (United States)

    2017-03-01

    Award Number: W81XWH-13-2-0024 TITLE: Stem Cell Therapy to Improve Burn Wound Healing PRINCIPAL INVESTIGATOR: Carl Schulman, MD, PhD, MSPH...NUMBER Stem Cell Therapy to Improve Burn Wound Healing 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Carl Schulman, MD, PhD, MSPH...treatments, steroid injections, and compression garments. Mesenchymal stem cells (MSC’s) have been used in a variety of clinical applications to repair

  9. Wound healing activity and chemical standardization of Eugenia pruniformis Cambess

    OpenAIRE

    Ricardo Diego Duarte Galhardo de Albuquerque; Jamila Alessandra Perini; Daniel Escorsim Machado; Thaís Angeli-Gamba; Ricardo dos Santos Esteves; Marcelo Guerra Santos; Adriana Passos Oliveira; Leandro Rocha

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups o...

  10. Mast cells and angiogenesis in wound healing.

    Science.gov (United States)

    Gaber, Mohamed A; Seliet, Iman A; Ehsan, Nermin A; Megahed, Mohamed A

    2014-02-01

    To investigate the role of mast cells and vascular endothelial growth factor (VEGF) as a mediator of angiogenesis to promote wound healing in surgical and pathological scars. The study was carried out on 40 patients who presented with active scar lesions. They were subdivided into 4 groups. They included granulation tissue (10 cases), surgical scar (10 cases), hypertrophic scar (10 cases), and keloid scar (10 cases). Also 10 healthy volunteers of the same age and sex were selected as a control group. Skin biopsies were taken from the patients and the control group. Skin biopsies from clinically assessed studied groups were processed for routine histology and embedded in paraffin. Four sections were prepared from each paraffin block. The first section was stained with hematoxylin and eosin for histological evaluation. The second and third sections were processed for immunostaining of mast cells that contain chymase (MCCs) and mast cells that contain tryptase (MCTs). The fourth section was processed for immunostaining of VEGF. MCCs exhibited mild expression in normal tissue, granulation tissue, and surgical, hypertrophic and keloid scars. MCTs exhibited mild expression in normal tissue, granulation tissue and keloid, whereas moderate expression was exhibited in hypertrophic and surgical scars. VEGF expression was absent in normal tissue, mild in keloid, surgical and hypertrophic scars, and moderate in keloids and granulation tissue. Mast cell expression variation among different scar types signals the pathological evolution of the lesion, and hence may guide the need for therapeutic intervention.

  11. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats

    Science.gov (United States)

    FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna

    2016-01-01

    Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258

  12. The Effects of Different Concentrations of Epinephrine Adjuvant to Levobupivacaine on Wound Healing

    Directory of Open Access Journals (Sweden)

    Suleyman Yeyen

    2013-04-01

    Conclusions: Epinephrine added to levobupivacaine in low concentrations accelerates wound healing in the early phase by stimulating fibrosis, and has no adverse effects on surgical sites. Long-term studies are needed for late effects of epinephrine adjuvant levobupivacaine. [Arch Clin Exp Surg 2013; 2(2.000: 92-96

  13. Inflammation and wound healing: The role of the macrophage

    Science.gov (United States)

    Koh, Timothy J.; DiPietro, Luisa Ann

    2013-01-01

    The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602

  14. Influence of hypoandrogenism in skin wound healing resistance in rats

    Directory of Open Access Journals (Sweden)

    Denny Fabrício Magalhães Veloso

    2009-03-01

    Full Text Available Objective: The objective of the present study is to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and postoperative times. Methods: Forty-four Wistar male rats were divided into four groups: Group 1y (n = 11 – young control, sham-operated rats (30 days-old; Group 1A (n = 10 – adult control, sham-operated rats (three to four months old; Group 2Y (n = 10 – young rats after bilateral orchiectomy; and Group 2A (n = 11 – adult rats after bilateral orchiectomy. After six months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment with a tensiometer, on the 7th and 21st postoperative days. Rresults: The wound healing resistance was higher in Group 1Y than in Group 2Y after seven days (p < 0.05. Wound healing resistance at 21 days was higher than at seven days in all groups (p < 0.05. Late wound healing resistance was not different between young and adult rats. Cconclusions: Bilateral orchiectomy decreased the wound healing resistance only in young animals at the seventh postoperative day.

  15. Hypoandrogenism related to early skin wound healing resistance in rats.

    Science.gov (United States)

    Petroianu, A; Veloso, D F M; Alberti, L R; Figueiredo, J A; Rodrigues, F H O Carmo; Carneiro, B G M Carvalho E

    2010-04-01

    The purpose of this study was to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and post-operative periods. Forty-four Wistar male rats were divided into four groups: Group 1Y (n = 11) - young control, sham-operated rats (30-day old); Group 1A (n = 10) - adult control, sham-operated rats (3 to 4-month old); Group 2Y (n = 10) - young rats after bilateral orchiectomy; and Group 2A (n = 11) - adult rats after bilateral orchiectomy. After 6 months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment using a tensiometer, on the 7th and 21st post-operative days. The wound healing resistance was higher in Group 1Y than in Group 2Y after 7 days (P Wound healing resistance at 21 days was higher than at 7 days in all groups (P wound healing resistance was not different between young and adult rats. It is concluded that bilateral orchiectomy diminished the wound healing resistance only in young animals at the 7th post-operative day.

  16. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes.

    Science.gov (United States)

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A

    2017-01-05

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.

  17. The Mechanisms of Centalla asiatica's Wound Healing Molecule ...

    African Journals Online (AJOL)

    Asiaticoside is a triterpene obtained from Centella asiatica and demonstrated to have healing potential against various wound models. Wounds are inflicted for constructive reasons even though more often they are results of accidents. This work aims at identifying molecular targets which account for the therapeutic results ...

  18. Medicinal Plants for Healing Sores and Wounds among the ...

    African Journals Online (AJOL)

    Medicinal Plants for Healing Sores and Wounds among the Communities Surrounding Ungoye Forest, Kwazulu-Natal, South Africa. ... The focus was on the medicinal plants that grow in the Ungoye forest and around the homesteads. The survey ... Keywords: Traditional medicine, documentation, Ethno-survey, wounds.

  19. Evaluation of wound healing properties of Arrabidaea chica Verlot extract.

    Science.gov (United States)

    Jorge, Michelle Pedroza; Madjarof, Cristiana; Gois Ruiz, Ana Lúcia Tasca; Fernandes, Alik Teixeira; Ferreira Rodrigues, Rodney Alexandre; de Oliveira Sousa, Ilza Maria; Foglio, Mary Ann; de Carvalho, João Ernesto

    2008-08-13

    Arrabidaea chica Verlot. (Bignoniaceae), popularly known as Crajiru, has been traditionally used as wound healing agent. Investigate in vitro and in vivo healing properties of Arrabidaea chica leaves extract (AC). AC was evaluated in vitro in fibroblast growth stimulation (0.25-250 microg/mL) and collagen production stimulation (250 microg/mL) assays. Allantoin (0.25-250 microg/mL) and vitamin C (25 microg/mL) were used as controls respectively. DPPH and Folin-Ciocalteau assays were used for antioxidant evaluation, using trolox (0.25-250 microg/mL) as reference antioxidant. To study wound healing properties in rats, AC (100mg/mL, 200 microL/wound/day) was topically administered during 10 days and wound area was evaluated every day. Allantoin (100mg/mL, 200 microL/wound/day) was used as standard drug. After treatment, wound sites were removed for histopathological analysis and total collagen determination. AC stimulated fibroblast growth in a concentration dependent way (EC50=30 microg/mL), increased in vitro collagen production and demonstrated moderate antioxidant capacity. In vivo, AC reduced wound size in 96%, whereas saline group showed only 36% wound healing. AC efficiency seems to involve fibroblast growing stimulus and collagen synthesis both in vitro and in vivo, beyond moderate scavenging activity, corroborating Crajiru folk use.

  20. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling.

    Science.gov (United States)

    Qi, Weiwei; Yang, Chuan; Dai, Zhiyu; Che, Di; Feng, Juan; Mao, Yuling; Cheng, Rui; Wang, Zhongxiao; He, Xuemin; Zhou, Ti; Gu, Xiaoqiong; Yan, Li; Yang, Xia; Ma, Jian-Xing; Gao, Guoquan

    2015-04-01

    Diabetic foot ulcer (DFU) caused by impaired wound healing is a common vascular complication of diabetes. The current study revealed that plasma levels of pigment epithelium-derived factor (PEDF) were elevated in type 2 diabetic patients with DFU and in db/db mice. To test whether elevated PEDF levels contribute to skin wound-healing delay in diabetes, endogenous PEDF was neutralized with an anti-PEDF antibody in db/db mice. Our results showed that neutralization of PEDF accelerated wound healing, increased angiogenesis in the wound skin, and improved the functions and numbers of endothelial progenitor cells (EPCs) in the diabetic mice. Further, PEDF-deficient mice showed higher baseline blood flow in the skin, higher density of cutaneous microvessels, increased skin thickness, improved numbers and functions of circulating EPCs, and accelerated wound healing compared with wild-type mice. Overexpression of PEDF suppressed the Wnt signaling pathway in the wound skin. Lithium chloride-induced Wnt signaling activation downstream of the PEDF interaction site attenuated the inhibitory effect of PEDF on EPCs and rescued the wound-healing deficiency in diabetic mice. Taken together, these results suggest that elevated circulating PEDF levels contribute to impaired wound healing in the process of angiogenesis and vasculogenesis through the inhibition of Wnt/β-catenin signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Evaluation of Healing Intervals of Incisional Skin Wounds of Goats ...

    African Journals Online (AJOL)

    The aim of this study was to compare the healing intervals among simple interrupted (SI), ford interlocking (FI) and subcuticular (SC) suture patterns in goats. We hypothesized that these common suture patterns used for closure of incisional skin wounds may have effect on the healing interval. To test this hypothesis, two ...

  2. Copaiba oil in experimental wound healing in horses

    Directory of Open Access Journals (Sweden)

    Flavia de Almeida Lucas

    Full Text Available ABSTRACT: The aim of this study was to evaluate the effects of 10% copaiba oil in experimentally induced wounds in horses. Four wounds were made in the lumbar and metacarpal regions of eight adult horses. In the treatment group, the wounds received 10% copaiba oil and in the control group 0.9% sodium chloride, in the daily dressing for 21 days. The wounds were evaluated three, 7, 14, and 21 days postoperatively. No significant differences were observed between the groups. The mean lumbar wound contraction rates were 80.54% and 69.64%, for the control and treated groups, respectively. For the wounds in the metacarpal region, these averages were 44.15% and 52.48%, respectively. Under the experimental conditions of the present study, it is concluded that 10% copaiba oil has beneficial in wound healing in the equine species and suggest that copaiba oil can be used as a therapeutic possibility in equine wound therapy.

  3. Healing incisional surgical wounds using Rose Hip oil in rats

    OpenAIRE

    Lainy Carollyne da Costa Cavalcante; Thyago Cezar Prado Pessôa; Rubens Fernando Gonçalves Ribeiro Júnior; Edson Yuzur Yasojima; Rosa Helena de Figueiredo Chaves Soares; Marcus Vinicius Henriques Brito; Eduardo Henrique Herbster Gouveia; Lucas Nascimento Galvão; Suzana Rodrigues Ramos; Adan Kristian Almeida Carneiro; Yuri Aarão Amaral Serruya; Mateus Malta de Moraes

    2017-01-01

    Purpose: To evaluate incisional surgical wound healing in rats by using Rose Hip (Rosa rubiginosa L.) oil. Methods: Twenty-one days after the oophorectomy procedure, twenty-seven female, adult, Wistar rats were distributed into three groups: Control group (wound treatment with distilled water); Collagenase group (treatment with collagenase ointment); and Rose Hip group (wound treatment with Rose Hip oil). Each group was distributed according to the date of euthanasia: 7, 14 and 21 days. ...

  4. Healing of severe polystructural limb wounds using vacuum therapy

    OpenAIRE

    Naumenko, Leonid; Horehliad, Olexii; Mametyev, Andriy; Kostrytsya, Konstantyn; Domansky, Andriy

    2017-01-01

    Vacuum-assisted wound closure has been known for the last two decades as an economically viable and effective treatment method, but the variety of patient injuries caused by severe polystructural (including combat) injuries requires further re­search into the effect of negative pressure on wound healing.Objective: to study the possibilities of vacuum-assisted wound closure therapy for the early management of patients with se­vere open polystructural injuries of limbs with fragmentation or gun...

  5. Axolotl cells and tissues enhances cutaneous wound healing in mice

    OpenAIRE

    DEMIRCAN, Turan; KESKIN, Ilknur; GUNAL, Yalcin; ILHAN, Ayse Elif; KOLBASI, Bircan; OZTURK, Gurkan

    2017-01-01

    Adult mammalian skin wound repair is defective due to loss of the regulation in balancing the complete epithelial regeneration and excessive connective tissue production, and this repair process commonly results in scar tissue formation. However, unlike mammals, adult salamanders repair the wounds by regeneration compared to scarring. To elucidate the healing capability of a salamander, Axolotl, in a different species, here we addressed this question by treating the wounds in mice with Axolot...

  6. Radiotherapy and wound healing: principles, management and prospects (review).

    Science.gov (United States)

    Gieringer, Matthias; Gosepath, Jan; Naim, Ramin

    2011-08-01

    Radiation therapy is a major therapeutic modality in the management of cancer patients. Over 60% of these patients receive radiotherapy at some point during their course of treatment and over 90% will develop skin reactions after therapy. Problematic wound healing in radiation-damaged tissue constitutes a major surgical difficulty and despite all efforts, irradiated skin remains a therapeutic challenge. This review provides an overview of the fundamental principles of radiation therapy with regards to the wound healing in normal and irradiated skin. Furthermore, it presents techniques that describe how to prevent and manage skin side effects as well as prospects that may improve cutaneous wound repair in general and in irradiated skin.

  7. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Directory of Open Access Journals (Sweden)

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.

  8. Neurolaena lobata L. promotes wound healing in Sprague Dawley rats

    OpenAIRE

    Nayak, Bijoor Shivananda; Ramlogan, Surrin; Chalapathi Rao, AV; Maharaj, Sandeep

    2014-01-01

    Background: The leaves of the Neurolaena lobata (Asteraceae) plant are used to control diabetes and heal wounds and infections. Aim: The ethanolic extract of N. lobata leaf was evaluated for its ability to heal inflicted wounds in rats using the excision wound model. Materials and Methods: Animals were divided into three groups of six each. Test group animals were treated topically with an ethanolic extract of N. lobata (1:1 with petroleum jelly, 100 mg/kg/day). Standard and control group ani...

  9. Studies on wound healing potential of polyherbal formulation using in vitro and in vivo assays

    Directory of Open Access Journals (Sweden)

    Yogesh P. Talekar

    2017-04-01

    Conclusion: Polyherbal formulation prepared from the plant extracts accelerates wound healing process by proliferation and mobilization of fibroblast and keratinocytes, and angiogenesis at the site of injury. It also shows fast contraction of wound with its beneficial improvement in tissue biochemical and antioxidant parameters.

  10. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    Science.gov (United States)

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  11. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    Science.gov (United States)

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  12. Wound Healing Potential of Formulated Extract from Hibiscus Sabdariffa Calyx

    Science.gov (United States)

    Builders, P. F.; Kabele-Toge, B.; Builders, M.; Chindo, B. A.; Anwunobi, Patricia A.; Isimi, Yetunde C.

    2013-01-01

    Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The wound healing activities of water in oil cream of the methanol extract of Hibiscus sabdariffa L. (Malvaceae) was evaluated in rats with superficial skin excision wounds. Antibacterial activities against Pseudomonas aeroginosa, Staphylococcus aureus and Echerichia coli were determined. The total flavonoid content, antioxidant properties and thin layer chromatographic fingerprints of the extract were also evaluated. The extract demonstrated antioxidant properties with a total flavonoid content of 12.30±0.09 mg/g. Six reproducible spots were obtained using methanol:water (95:5) as the mobile phase. The extract showed no antimicrobial activity on the selected microorganisms, which are known to infect and retard wound healing. Creams containing H. sabdariffa extract showed significant (Psabdariffa extract. This study, thus, provides evidence of the wound healing potentials of the formulated extract of the calyces of H. sabdariffa and synergism when co-formulated with gentamicin. PMID:23901160

  13. Skin-resident stem cells and wound healing.

    Science.gov (United States)

    Iwata, Yohei; Akamatsu, Hirohiko; Hasebe, Yuichi; Hasegawa, Seiji; Sugiura, Kazumitsu

    2017-01-01

    CD271 is common stem cell marker for the epidermis and dermis. We assessed a kinetic movement of epidermal and dermal CD271 + cells in the wound healing process to elucidate the possible involvement with chronic skin ulcers. Epidermal CD271 + cells were proliferated and migrated from 3 days after wounding. Purified epidermal CD271 + cells expressed higher TGFβ2 and VEGFα transcripts than CD271 - cells. Delayed wound healing was observed in the aged mice compared with young mice. During the wound healing process, the peak of dermal CD271 + cell accumulation was delayed in aged mice compared with young mice. The expression levels of collagen-1, -3, -5, F4-80, EGF, FGF2, TGFβ1, and IL-1α were significantly increased in young mice compared with aged mice. Furthermore, purified dermal CD271 + cells expressed higher FGF2, EGF, PDGFB, and TGFβ1 gene transcripts than CD271 - cells. These results suggested that epidermal and dermal CD271 + cells were closely associated with wound healing process by producing various growth factors. Epidermal and dermal CD271 + cells in chronic skin ulcer patients were significantly reduced compared with healthy controls. Thus, both epidermal and dermal stem cells can play an important role in wound healing process.

  14. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyu; Niu, Yuqing [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China); Chen, Kevin C. [Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063 (China); Chen, Shiguo, E-mail: csg@szu.edu.cn [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China)

    2017-02-01

    A novel rapid hemostatic and mild polyurethane-urea foam (PUUF) wound dressing was prepared by the particle leaching method and vacuum freeze-drying method using 4, 4-Methylenebis(cyclohexyl isocyanate), 4,4-diaminodicyclohexylmethane and poly (ethylene glycol) as raw materials. And X-ray diffraction (XRD), tensile test, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to its crystallinity, stress and strain behavior, and thermal properties, respectively. Platelet adhesion, fibrinogen adhesion and blood clotting were performed to evaluate its hemostatic effect. And H&E staining and Masson Trichrome staining were used to its wound healing efficacy. The results revealed the pore size of PUUF is 50–130 μm, and its porosity is 71.01%. Porous PUUF exhibited good water uptake that was benefit to adsorb abundant wound exudates to build a regional moist environment beneficial for wound healing. The PUUF wound dressing exhibit better blood coagulation effect than commercial polyurethane dressing (CaduMedi). Though both PUUF and CaduMedi facilitated wound healing generating full re-epithelialization within 13 days, PUUF was milder and lead to more slight inflammatory response than CaduMedi. In addition, PUUF wound dressing exhibited lower cytotoxicity than CaduMedi against NIH3T3 cells. Overall, porous PUUF represents a novel mild wound dressing with excellent water uptake, hemostatic effect and low toxicity, and it can promote wound healing and enhance re-epithelialization. - Highlights: • Rapid hemostatic and mild PUUF wound dressing was fabricated. • Low-toxic PUUF exhibited good water uptake that could build a regional moist environment beneficial for wound healing. • PUUF could promote wound healing and enhance re-epithelialization.

  15. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications.

    Science.gov (United States)

    Garcia-Orue, Itxaso; Gainza, Garazi; Gutierrez, Franciso Borja; Aguirre, Jose Javier; Evora, Carmen; Pedraz, Jose Luis; Hernandez, Rosa Maria; Delgado, Araceli; Igartua, Manoli

    2017-05-25

    Nanofibrous membranes produced by electrospinning possess a large surface area-to-volume ratio, which mimics the three-dimensional structure of the extracellular matrix. Thus, nanofibrous dressings are a promising alternative for chronic wound healing, since they can replace the natural ECM until it is repaired. Therefore, in this study we have developed a PLGA nanofibrous membrane that contains recombinant human Epidermal Growth Factor (rhEGF) and Aloe vera (AV) extract. Both of them promote wound healing, as EGF is a wound healing mediator and AV stimulates the proliferation and activity of fibroblast. The obtained membranes were composed of uniform and randomly oriented fibers with an average diameter of 356.03±112.05nm, they presented a porosity of 87.92±11.96% and the amount of rhEGF was 9.76±1.75μg/mg. The in vitro viability assay demonstrated that the membranes containing rhEGF and AV improved fibroblast proliferation, revealing the beneficial effect of the combination. Furthermore, these membranes accelerated significantly wound closure and reepithelisation in an in vivo full thickness wound healing assay carried out in db/db mice. Overall, these findings demonstrated the potential of PLGA nanofibers containing rhEGF and AV for the treatment of chronic wounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Scientific production on the applicability of phenytoin in wound healing

    Directory of Open Access Journals (Sweden)

    Flávia Firmino

    2014-02-01

    Full Text Available Phenytoin is an anticonvulsant that has been used in wound healing. The objectives of this study were to describe how the scientific production presents the use ofphenytoinas a healing agent and to discuss its applicability in wounds. A literature review and hierarchy analysis of evidence-based practices was performed. Eighteen articles were analyzed that tested the intervention in wounds such as leprosy ulcers, leg ulcers, diabetic foot ulcers, pressure ulcers, trophic ulcers, war wounds, burns, preparation of recipient graft area, radiodermatitis and post-extraction of melanocytic nevi. Systemic use ofphenytoinin the treatment of fistulas and the hypothesis of topical use in the treatment of vitiligo were found. In conclusion, topical use ofphenytoinis scientifically evidenced. However robust research is needed that supports a protocol for the use ofphenytoinas another option of a healing agent in clinical practice.

  17. The effects of cancer and cancer therapies on wound healing

    International Nuclear Information System (INIS)

    McCaw, D.L.

    1989-01-01

    Based on experimental evidence in rodents, most of the antineoplastic agents will affect wound healing. With most of the agents, this impairment is not sufficient to produce increased morbidity based on the clinical reports in humans. Radiation therapy appears to inhibit healing in both experimental animals and during clinical trials. In spite of this, it is reported that wounds in animals will heal when they are receiving radiation therapy after surgery. Based on the information presented here and experience at the University of Missouri, the decision to use adjuvant therapy should depend on the surgery performed. With a single incision that had no increased tension, there should be no hesitation to use adjuvant therapy. If removal of the tumor required reconstructive surgery, no radiation or chemotherapy should be used until the wound has healed. 30 references

  18. Neurolaena lobata L. promotes wound healing in Sprague Dawley rats.

    Science.gov (United States)

    Nayak, Bijoor Shivananda; Ramlogan, Surrin; Chalapathi Rao, Av; Maharaj, Sandeep

    2014-07-01

    The leaves of the Neurolaena lobata (Asteraceae) plant are used to control diabetes and heal wounds and infections. The ethanolic extract of N. lobata leaf was evaluated for its ability to heal inflicted wounds in rats using the excision wound model. Animals were divided into three groups of six each. Test group animals were treated topically with an ethanolic extract of N. lobata (1:1 with petroleum jelly, 100 mg/kg/day). Standard and control group animals were treated with mupirocin and petroleum jelly, respectively. Treatment was given for 13 days and the wound area was measured on alternate days. Parameters of healing assessed were the rate of wound contraction, period of epithelialization and hydroxyproline content. Antimicrobial activity of the extract was observed against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Phytochemical analysis of the extract showed the presence of saponins, tannins, alkaloids and flavanoids. Extract-treated animals exhibited 87% reduction in the wound area over 13 days when compared with the control (78%) and standard (83%) groups (P lobata as a pharmacotherapy for wound healing.

  19. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  20. Mesenchymal Stem Cells and Cutaneous Wound Healing: Current Evidence and Future Potential

    Directory of Open Access Journals (Sweden)

    M. Isakson

    2015-01-01

    Full Text Available Human skin is a remarkable organ that sustains insult and injury throughout life. The ability of skin to expeditiously repair wounds is paramount to survival. With an aging global population, coupled with a rise in the prevalence of conditions such as diabetes, chronic wounds represent a significant biomedical burden. Mesenchymal stem cells (MSC, a progenitor cell population of the mesoderm lineage, have been shown to be significant mediators in inflammatory environments. Preclinical studies of MSC in various animal wound healing models point towards a putative therapy. This review examines the body of evidence suggesting that MSC accelerate wound healing in both clinical and preclinical studies and also the possible mechanisms controlling its efficacy. The delivery of a cellular therapy to the masses presents many challenges from a safety, ethical, and regulatory point of view. Some of the issues surrounding the introduction of MSC as a medicinal product are also delineated in this review.

  1. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review.

    Science.gov (United States)

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.

  2. Simulation of lung alveolar epithelial wound healing in vitro.

    Science.gov (United States)

    Kim, Sean H J; Matthay, Michael A; Mostov, Keith; Hunt, C Anthony

    2010-08-06

    The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing 'cells' a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated 'cell' migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.

  3. Psoriasis and wound healing outcomes: A retrospective cohort study examining wound complications and antibiotic use.

    Science.gov (United States)

    Young, Paulina M; Parsi, Kory K; Schupp, Clayton W; Armstrong, April W

    2017-11-15

    Little is known about wound healing in psoriasis. We performed a cohort study examining differences in wound healing complications between patients with and without psoriasis. Psoriasis patients with traumatic wounds were matched 1:3 to non-psoriasis patients with traumatic wounds based on age, gender, and body mass index (BMI). We examined theincidence of wound complications including infection, necrosis, and hematoma as well as incident antibiotic use within three months following diagnosis of a traumatic wound. The study included 164 patients with traumatic wounds, comprised of 41 patients with psoriasis matched to 123 patients without psoriasis. No statistically significant differences were detected in the incidence of overall wound complications between wound patients with psoriasis and wound patients without psoriasis (14.6% versus. 13.0%, HR 1.18, CI 0.39-3.56). After adjustment for diabetes, peripheral vascular disease, and smoking, no statistically significant differences were detected in the incidence of overall wound complications between patients with and without psoriasis (HR 1.11, CI 0.34-3.58). Specifically, the adjusted rates of antibiotic use were not significantly different between those with and without psoriasis (HR 0.65, CI 0.29-1.46). The incidence of wound complications following traumatic wounds of the skin was found to be similar between patients with and without psoriasis.

  4. In vivo Antibacterial and Wound Healing Activities of Roman Chamomile (Chamaemelum nobile).

    Science.gov (United States)

    Kazemian, Hossein; Ghafourian, Sobhan; Sadeghifard, Nourkhoda; Houshmandfar, Reza; Badakhsh, Behzad; Taji, Asieh; Shavalipour, Aref; Mohebi, Reza; Ebrahim-Saraie, Hadi Sedigh; Houri, Hamidreza; Heidari, Hamid

    2018-01-01

    Today considerable number of drugs are produced from plants. Several plants with antibacterial and healing applications are used in medicine such as Roman chamomile (Chamaemelum nobile L.). Wound infection is one of the most prevalent infections among infectious diseases around the world. Due to appearance of drug resistance, researchers are now paying attention to medicinal plants. Therefore, this study was designed to investigate the antimicrobial and wound healing properties of C. nobile against Pseudomonas aeruginosa using in vivo conditions. Ethanolic extract of C. nobile was provided using standard method. The 5% C. nobile ointment was prepared by dissolving lyophilized extract in eucerin. Forty five male rats were obtained from Ilam university. After anesthetization and wound creation, wounds were infected by P. aeruginosa. The rats were divided into three groups, group I was treated with C. nobile ointment, group II was treated with tetracycline ointment and the third group was treated with base gel as control group. Antibacterial and wound healing activities of C. nobile ointment were more than tetracycline ointment significantly. Our results indicated that extract of C. nobile had effective antibacterial activity and accelerated the progression of wound healing. Our study indicated that antibacterial and wound healing activities of C. nobile ointment were notable. C. nobile therapy in combination with antibiotics can also be useful because medicinal plants contents operate in synergy with antibiotics. These results revealed the value of plant extracts to control antibiotic resistant bacteria in wound infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Peilang Yang

    Full Text Available Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD feeding regimen followed by multiple injections of streptozotocin (STZ at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.

  6. Wound healing complications in brain tumor patients on Bevacizumab.

    Science.gov (United States)

    Ladha, Harshad; Pawar, Tushar; Gilbert, Mark R; Mandel, Jacob; O-Brien, Barbara; Conrad, Charles; Fields, Margaret; Hanna, Teresa; Loch, Carolyn; Armstrong, Terri S

    2015-09-01

    Bevacizumab (BEV) is commonly used for treating recurrent glioblastoma (GBM), and wound healing is a well-established adverse event. Retrospective analysis of GBM patients with and without wound healing complications while on BEV treatment is reported. 287 patients identified, majority were males (60 %) with median age of 52.5 years. 14 cases identified with wound healing problems, related to either craniotomy (n = 8) or other soft tissue wounds (n = 6). Median duration of BEV treatment to complication was 62 days (range 6-559). Majority received 10 mg/kg (n = 11) and nine (64.3 %) were on corticosteroids, with median daily dose of 6 mg (range 1-16 mg) for median of 473 days before starting BEV. For dehisced craniotomy wounds, median time for starting BEV from last surgery was 29 days (range 27-345). Median time from starting BEV to developing wound complication was 47 days (range 16-173). Seven (87.5 %) had infected wounds requiring antibiotics, hospitalization. Four (50 %) required plastic surgery. BEV stopped and safely resumed in 6 (75 %) patients; median delay was 70 days (range 34-346). Soft tissue wounds included decubitus ulcer, dehisced striae, herpes simplex, trauma to hand and back, and abscess. Median time from starting BEV to wound issues was 72 days (range 6-559). Five (83.3 %) were infected, requiring antibiotics. While three (50 %) required hospitalization, none required plastic surgery. Treatment stopped in five (83.3 %) and restarted in two (median delay 48 days, range 26-69). Wound healing complications are uncommon but associated with significant morbidity. Identifying those at risk and contributing factors warrants further investigation.

  7. Wound healing in a fetal, adult, and scar tissue model: a comparative study

    NARCIS (Netherlands)

    Coolen, N.A.; Schouten, K.C.; Boekema, B.K.; Middelkoop, E.; Ulrich, M.

    2010-01-01

    Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to

  8. Wound healing activity of Ipomoea batatas tubers (sweet potato

    Directory of Open Access Journals (Sweden)

    Madhav Sonkamble

    2011-10-01

    Full Text Available Background: Ipomoea batatas (L. Lam. from the family Convolvulaceae is the world’s sixth largest food crop. The tubers of Ipomoea batatas commonly known as sweet potato are consumed as a vegetable globally. The tubers contain high levels of polyphenols such as anthocyanins and phenolic acids and vitamins A, B and C, which impart a potent antioxidant activity that can translate well to show wound healing effects. To check their effects on wound healing, the peels and peel bandage were tested on various injury models in rats in the present study.Methods: The methanolic extracts of the peels and peel bandage of Ipomoea batatas tubers (sweet potato were screened for wound healing by excision and incision wound models on Wistar rats. Three types of gel formulations were prepared, viz., gel containing 3.0% (w/w peel extract, gel containing 6.0% (w/w peel extract and gel containing 10% (w/w peel extract. Betadine (5% w/w povidone iodine cream was used as a reference standard. In the incision wound model, Tensile strength of the skin was measured. Epithelization time, wound contraction, hydroxyproline content of the scab, and ascorbic acid and malondialdehyde content of the plasma were determined in the excision wound model.Results: In the incision wound model, high tensile strength of the wounded skin was observed in animals treated with the peel extract gels and the peel bandage when compared with wounded control animals. The increase in tensile strength indicates the promotion of collagen fibers and that the disrupted wound surfaces are being firmly knit by collagen. In the excision wound model, significant wound closure was observed on the 4th day in rats treated with all three gel formulations when compared with the wounded control rats. A significant increase inFunctional Foods in Health and Disease 2011; 10:403-415hydroxyproline and ascorbic acid content in the gel-treated animals and a significant decrease in malondialdehyde content in the

  9. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  10. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  11. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  12. Application of Three - dimensional Wound Analyzer in the Small Wound Area Measurement during the Process of Wound Healing.

    Science.gov (United States)

    Sheng, Jiajun; Li, Haihang; Jin, Jian; Liu, Tong; Ma, Bing; Liu, Gongcheng; Zhu, Shihui

    2018-02-20

    The objective of this study was to determinate the reliability of 3-dimensional wound analyzer (3-DWMD) in the wound area measurement for animal small area in the process of wound healing. Seven Sprague-Dawley rats were used to establish the skin defect model. And the wound area and time consumption were measured on days 0, 5, 10, 15 using 3-DWMD, investigators, and planimetry method. The measurement results using 3-DWMD and investigators were analyzed comparative with that using planimetry method separately. A total 46 wounds, including 32 irregular wounds and regular 14 wounds, were measured. No matter calculating the irregular wounds or the regular wounds, there was no significant difference between 3-DWMD group and planimetry group in measuring wound area (P > 0.05). However, a statistically significant difference was found in time-consuming for measuring wound area between 3-DWMD group and planimetry group (P area, and its measurement results were consistent with planimetry method. Therefore, such measuring equipment has clinical reference value for measuring precision area of the wound in the process of wound healing.

  13. Effect of Diabetes Condition on Topical Treatment of Binahong Leaf Fraction in Wound Healing Process

    Directory of Open Access Journals (Sweden)

    Kintoko Kintoko

    2017-08-01

    Full Text Available Diabetes mellitus (DM is a metabolic disease which is becoming the first number of health problem in Indonesia, based on the results of the Basic Health Research of Ministry of Health in 2013. One of the diabetes complications affected by high levels of blood glucose is diabetic ulcers wich 85% the number of cases was overed by amputation as the result of improper handling. Herbal treatments could be an alternative treatment of diabetic ulcers, one of them is binahong plant. The results of previous studies have shown the ability of ethanolic extract of binahong leaf in accelerating wound healing in diabetic rats. This study would be a continued study to test five kinds of binahong leaf fractions (FDB with gradual solvent polarity in accelerating wound healing in diabetic ulcer. Wound healing parameters observed were percentage of wound healing from the wound diameter contraction. The test begins with ethanolic extract of binahong leaf fractionation to produce fractions of hexane (FHDB, chloroform (FKDB, ethyl acetate (FEADB, and ethanol (FEDB. Water fraction (FADB was obtained from ethanolic leaf extract residues of binahong leaf extraction. Each fraction activity was tested topically twice daily on dorsal of test animals that created wounds using a punch biopsy 5 mm diameters. Grouping of test animals were divided into 13 groups with normal control group (non diabetes, negative control (diabetes + topical application of biocream®, positive control (diabetes + topical application of madecassol, and 10 diabetes groups with topical application of 5 kinds of binahong leaf fractions with each fractions consist of a concentrations of 5% and 10% with biocream® as a vehicle. Diabetic parameters measured include blood glucose levels (KGD and weight lost percentage (PB% in day 1 and 10 during a 10-day treatment. The results showed the influence of KGD in the condition of diabetes on wound healing rats diabetic ulcers which topically treated with

  14. Profiling wound healing with wound effluent: Raman spectroscopic indicators of infection

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    The care of modern traumatic war wounds remains a significant challenge for clinicians. Many of the extremity wounds inflicted during Operation Enduring Freedom and Operation Iraqi Freedom are colonized or infected with multi-drug resistant organisms, particularly Acinetobacter baumannii. Biofilm formation and resistance to current treatments can significantly confound the wound healing process. Accurate strain identification and targeted drug administration for the treatment of wound bioburden has become a priority for combat casualty care. In this study, we use vibrational spectroscopy to examine wound exudates for bacterial load. Inherent chemical differences in different bacterial species and strains make possible the high specificity of vibrational spectroscopy.

  15. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  16. The Healing Effect of Sesame Oil, Camphor and Honey on Second Degree Burn Wounds in Rat.

    Science.gov (United States)

    Vaghardoost, Reza; Mousavi Majd, Seyed GholamReza; Tebyanian, Hamid; Babavalian, Hamid; Malaei, Leila; Niazi, Mitra; Javdani, Ali

    2018-01-01

    Many studies were carried out to improve sophisticated dressings to accelerate healing processes and reduce the microbial burden in burn wounds. This study evaluated the healing effect of herbal ointment containing extract of sesame oil, camphor and honey on second degree burn wounds in rats in comparison with daily dressing oil vaseline. Forty rats were randomly assigned to two equal groups. A deep second degree burn was formed on the back of each rat with using a standard burning technique. The burns were dressed daily with herbal ointment containing extract of sesame oil, camphor and honey in group 1, dressing oil vaseline in group 2. The response to treatment was evaluated by digital photography during the treatment on 0, 7, 14, 21, 28 days. Histological scoring was undertaken for scar tissue samples on 0, 7, 14, 21, 28 days. Considerable epithelization in the herbal ointment group vs. the control group over the study period was noted. Neovascularization was significantly higher in herbal ointment treated rats as well. In terms of difference of wound surface area, maximal healing was noticed in herbal ointment extract of sesame oil, camphor and honey group and the minimal repair in the control group. The greatest rate of healing was in the herbal ointment group containing sesame oil, camphor and honey, so the herbal ointment as a suitable substitute for dressing and healing of burn wound injuries is recommended.

  17. Wound Healing and Infection in Surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention.......To clarify the evidence on smoking and postoperative healing complications across surgical specialties and to determine the impact of perioperative smoking cessation intervention....

  18. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing.

    Science.gov (United States)

    Xian, Law Jia; Chowdhury, Shiplu Roy; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2015-03-01

    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing. Human keratinocytes and fibroblasts were harvested via co-isolation technique and separated via differential trypsinization. These cells were then indirectly co-cultured in medium supplemented with 10% or 20% PRP for 3 days without medium change for analysis of wound-healing potential. The wound-healing potential of keratinocytes and fibroblasts was evaluated in terms of growth property, migratory property, extracellular matrix gene expression and soluble factor secretion. The co-isolation technique yielded a skin cell population dominated by fibroblasts and keratinocytes, with a small amount of melanocytes. Comparison between the 10% and 20% PRP cultures showed that the 10% PRP culture exhibited higher keratinocyte apparent specific growth rate, and secretion of hepatocyte growth factor, monocyte chemoattractant protein-1, epithelial-derived neutrophil-activating protein 78 and vascular endothelial growth factor A, whereas the 20% PRP culture has significantly higher collagen type 1 and collagen type 3 expressions and produced more granulocyte-macrophage colony-stimulating factor. PRP concentration modulates keratinocyte and fibroblast wound healing potential, whereby the 10% PRP promotes wound remodeling, whereas the 20% PRP enhances inflammation and collagen deposition. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Curcumin and its topical formulations for wound healing applications.

    Science.gov (United States)

    Mohanty, Chandana; Sahoo, Sanjeeb K

    2017-10-01

    Oxidative damage and inflammation have been identified, through clinical and preclinical studies, as the main causes of nonhealing chronic wounds. Reduction of persistent chronic inflammation by application of antioxidant and anti-inflammatory agents such as curcumin has been well studied. However, low aqueous solubility, poor tissue absorption, rapid metabolism and short plasma half-life have made curcumin unsuitable for systemic administration for better wound healing. Recently, various topical formulations of curcumin such as films, fibers, emulsion, hydrogels and different nanoformulations have been developed for targeted delivery of curcumin at wounded sites. In this review, we summarize and discuss different topical formulations of curcumin with emphasis on their wound-healing properties in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Essential oil-loaded lipid nanoparticles for wound healing.

    Science.gov (United States)

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  1. Zmpste24-/- mouse model for senescent wound healing research.

    Science.gov (United States)

    Butala, Parag; Szpalski, Caroline; Soares, Marc; Davidson, Edward H; Knobel, Denis; Warren, Stephen M

    2012-12-01

    The graying of our population has motivated the authors to better understand age-related impairments in wound healing. To increase research throughput, the authors hypothesized that the Hutchinson-Gilford progeria syndrome Zmpste24-deficient (Zmpste24(-/-)) mouse could serve as a model of senescent wound healing. Using a stented excisional wound closure model, the authors tested this hypothesis on 8-week-old male Zmpste24(-/-) mice (n = 25) and age-matched male C57BL/6J wild-type mice (n = 25). Wounds were measured photogrammetrically and harvested for immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction, and circulating vasculogenic progenitor cells were measured by flow cytometry. Zmpste24(-/-) mice had a significant delay in wound closure compared with wild-type mice during the proliferative/vasculogenic phase. Zmpste24(-/-) wounds had decreased proliferation, increased 8-hydroxy-2'-deoxyguanosine levels, increased proapoptotic signaling (i.e., p53, PUMA, BAX), decreased antiapoptotic signaling (i.e., Bcl-2), and increased DNA fragmentation. These changes correlated with decreased local vasculogenic growth factor expression, decreased mobilization of bone marrow-derived vasculogenic progenitor cells, and decreased new blood vessel formation. Age-related impairments in wound closure are multifactorial. The authors' data suggest that the Hutchinson-Gilford progeria syndrome Zmpste24(-/-) progeroid syndrome shares mechanistic overlap with normal aging and therefore might provide a uniquely informative model with which to study age-associated impairments in wound closure.

  2. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition.

    Science.gov (United States)

    Kunkemoeller, Britta; Kyriakides, Themis R

    2017-10-20

    Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.

  3. Effects of topical topiramate in wound healing in mice.

    Science.gov (United States)

    Jara, Carlos Poblete; Bóbbo, Vanessa Cristina Dias; Carraro, Rodrigo Scarpari; de Araujo, Thiago Matos Ferreira; Lima, Maria H M; Velloso, Licio A; Araújo, Eliana P

    2018-02-23

    Recent studies have indicated that systemic topiramate can induce an improvement on the aesthetic appearance of skin scars. Here, we evaluated topical topiramate as an agent to improve wound healing in C57/BL6 mice. Mice were inflicted with a 6.0 mm punch to create two wounds in the skin of the dorsal region. Thereafter, mice were randomly assigned to either vehicle or topical topiramate (20 µl of 2% cream) once a day for 14 days, beginning on the same day as wound generation. We analyzed the wound samples over real-time PCR, Western blotting, and microscopy. There was no effect of the topiramate treatment on the time for complete reepithelization of the wound. However, on microscopic analysis, topiramate treatment resulted in increased granulation tissue, thicker epidermal repair, and improved deposition of type I collagen fibers. During wound healing, there were increased expressions of anti-inflammatory markers, such as IL-10, TGF-β1, and reduced expression of the active form of JNK. In addition, topiramate treatment increased the expression of active forms of two intermediaries in the insulin-signaling pathway, IRS-1 and Akt. Finally, at the end of the wound-healing process, topiramate treatment resulted in increased expression of SOX-2, a transcription factor that is essential to maintain cell self-renewal of undifferentiated embryonic stem cells. We conclude that topical topiramate can improve the overall quality of wound healing in the healthy skin of mice. This improvement is accompanied by reduced expression of markers involved in inflammation and increased expression of proteins of the insulin-signaling pathway.

  4. Ascorbic acid for the healing of skin wounds in rats

    Directory of Open Access Journals (Sweden)

    CC. Lima

    Full Text Available BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12 - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12 - skin wound cleaned daily and treated with ascorbic acid cream (10%. Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.

  5. Randomised controlled trial evaluating the efficacy of wrap therapy for wound healing acceleration in patients with NPUAP stage II and III pressure ulcer

    Science.gov (United States)

    Mizuhara, Akihiro; Oonishi, Sandai; Takeuchi, Kensuke; Suzuki, Masatsune; Akiyama, Kazuhiro; Kobayashi, Kazuyo; Matsunaga, Kayoko

    2012-01-01

    Objectives To evaluate if ‘wrap therapy’ using food wraps, which is widely used in Japanese clinical sites, is not inferior when compared to guideline adhesion treatments. Design Multicentre, prospective, randomised, open, blinded endpoint clinical trial. Setting 15 hospitals in Japan. Patients 66 older patients with new National Pressure Ulcer Advisory Panel stage II or III pressure ulcers. Interventions Of these 66 patients, 31 were divided into the conventional treatment guidelines group and 35 into the wrap therapy group. Main outcome measures The primary end point was the period until the pressure ulcers were cured. The secondary end point was a comparison of the speed of change in the Pressure Ulcer Scale for Healing score. Results 64 of the 66 patients were analysed. The estimated mean period until healing was 57.5 days (95% CI 45.2 to 69.8) in the control group as opposed to 59.8 days (95% CI 49.7 to 69.9) in the wrap therapy group. By the extent of pressure ulcer infiltration, the mean period until healing was 16.0 days (95% CI 8.1 to 23.9) in the control group as opposed to 18.8 days (95% CI 10.3 to 27.2) in the wrap therapy group with National Pressure Ulcer Advisory Panel stage II ulcers, and 71.8 days (95% CI 61.4 to 82.3) as opposed to 63.2 days (95% CI 53.0 to 73.4), respectively, with stage III ulcers. There is no statistical significance in difference in Pressure Ulcer Scale for Healing scores. Conclusions It might be possible to consider wrap therapy as an alternative choice in primary care settings as a simple and inexpensive dressing care. Clinical Trial registration UMIN Clinical Trials Registry UMIN000002658. Summary protocol is available on https://upload.umin.ac.jp/cgi-bin/ctr/ctr.cgi?function=brows&action=brows&type=detail&recptno=R000003235&admin=0&language=J PMID:22223842

  6. Do Preexisting Abdominal Scars Threaten Wound Healing in Abdominoplasty?

    OpenAIRE

    Shermak, Michele A.; Mallalieu, Jessie; Chang, David

    2010-01-01

    Purpose: Abdominal scars may impair healing after abdominoplasty. We aimed to determine whether right subcostal or upper midline scars led to increased wound healing problems. Methods and Materials: Review of all patients who had abdominoplasty from March 1998 to February 2008 was performed. Variables studied included age, gender, body mass index (BMI), medical history, and postoperative complications. Statistical analysis was performed in Stata SE, version 10. Results: Of 420 abdominoplasty ...

  7. Antioxidant and wound healing activity of Lavandula aspic L. ointment.

    Science.gov (United States)

    Ben Djemaa, Ferdaous Ghrab; Bellassoued, Khaled; Zouari, Sami; El Feki, Abdelfatteh; Ammar, Emna

    2016-11-01

    Lavandula aspic L. is a strongly aromatic shrub plant of the Lamiaceae family and traditionally used in herbal medicine for the treatment of several skin disorders, including wounds, burns, and ulcers. The present study aimed to investigate the composition and in vitro antioxidant activity of lavender essential oil. In addition, it aimed to evaluate the excision wound healing activity and antioxidant property of a Lavandula aspic L. essential oil formulated in ointment using a rat model. The rats were divided into five groups of six animals each. The test groups were topically treated with the vehicle, lavender ointment (4%) and a reference drug, while the control group was left untreated. Wound healing efficiency was determined by monitoring morphological and biochemical parameters and skin histological analysis. Wound contraction and protein synthesis were also determined. Antioxidant activity was assessed by the determination of MDA rates and antioxidant enzymes (GPx, catalase and superoxide dismutase). The treatment with lavender ointment was noted to significantly enhance wound contraction rate (98%) and protein synthesis. Overall, the results provided strong support for the effective wound healing activity of lavender ointment, making it a promising candidate for future application as a therapeutic agent in tissue repairing processes associated with skin injuries. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  8. Wound Healing: Concepts and Updates in Herbal Medicine

    Directory of Open Access Journals (Sweden)

    Meria M Dan

    2018-01-01

    Full Text Available Wound is a common injury due to internal and or external factors, which are subsequently associated with many immunological events, including necrosis, inflammation, etc. Significant amounts of tissue damage and infection are two silent features of wound along with other co-morbidities. Wound healing is a complex process where immunohistochemistry, tissue regeneration, and remodeling are predominant events. Since early human life, there are many traditional procedures are in use to treat wounds of various kind. However, the modern medical practices are rapidly growing in wound healing, traditional herbal medicine and use of medicinal plant products are showing equal ability and drawing the attention of medical practitioners. Herbal/traditional medicine is one of the oldest procedures in countries like India and China. In recent days, it has become reliable option in developed nations such as USA, UK, and other European nations for treatment of many deadly diseases including cancer. India is one of the biggest biodiversity reservoirs in the world with vast range of plant species and high access to the ancient medical practices. According to the WHO data and available sources, there more than 80% world population depends on herbal medical products. This indicates that despite the lack of clinical and scientific evidences, the herbal or traditional market is growing at rapid pace. In this literature review, we presented the role of herbal medicine in wound healing, some of the common medicinal plants, the quality, safety, and efficacy concerns of herbal medical products.

  9. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  10. Wound-healing Activity of Zanthoxylum bungeanum Maxim Seed Oil on Experimentally Burned Rats.

    Science.gov (United States)

    Li, Xiao-Qiang; Kang, Rong; Huo, Jun-Cheng; Xie, Yan-Hua; Wang, Si-Wang; Cao, Wei

    2017-01-01

    The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is considered to be rich source of fatty acids, mainly oleic and linoleic acids, and has been used for the treatment of burns in Chinese medicine. We evaluated the healing efficacy of ZBSO and explored its possible mechanism on scalded rats. Sprague-Dawley rat models with deep second-degree burns were set up, and ZBSO (500 and 1000 μl/wound) was topically applied twice daily for 7 days and then once daily until wound healing. The therapeutic effects of ZBSO were evaluated by observing wound closure time, decrustation time, wound-healing ratio, and pathological changes. Collagen type-III, matrix metalloproteinase-2 (MMP-2), MMP-9, phospho-nuclear factor-κB (p-NF-κB) p65, inhibitor of NF-κB subunit α p-IκBα, and inhibitor of NF-κB subunit α (IκBα) expression were determined using Western blotting. The ZBSO-treated group showed a higher wound-healing ratio and shorter decrustation and wound closure times than the untreated group. The topical application of ZBSO increased collagen synthesis as evidenced by an increase in hydroxyproline level and upregulated expression of collagen type-III on days 7, 14, and 21 posttreatment. A reduction in MMP-2 and MMP-9 expressions also confirmed the collagen formation efficacy of ZBSO. Furthermore, there was a significant increase in superoxide dismutase levels and a decrease in malondialdehyde levels in ZBSO-treated wounds. ZBSO also decreased tumor necrosis factor alpha, interleukin-1 (IL-1) β, and IL-6 levels in serum, upregulated IκBα, and downregulated p-NF-κB p65 and p-IκBα expression in vivo , indicating the anti-inflammatory action of ZBSO. ZBSO has significant potential to treat burn wounds by accelerating collagen synthesis and the anti-inflammatory cascade of the healing process. The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is rich of fatty acidsThe healing efficacy of ZBSO on experimentally scalded rats was evaluatedZBSO has significant potential

  11. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    Science.gov (United States)

    Felder, Marcel; Sallin, Pauline; Barbe, Laurent; Haenni, Beat; Gazdhar, Amiq; Geiser, Thomas; Guenat, Olivier

    2012-02-07

    We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).

  12. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  13. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  14. IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.

    Science.gov (United States)

    Kolumam, Ganesh; Wu, Xiumin; Lee, Wyne P; Hackney, Jason A; Zavala-Solorio, Jose; Gandham, Vineela; Danilenko, Dimitry M; Arora, Puneet; Wang, Xiaoting; Ouyang, Wenjun

    2017-01-01

    Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. Mechanistically, when compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.

  15. Diet enrichment with a specific essential free amino acid mixture improves healing of undressed wounds in aged rats.

    Science.gov (United States)

    Corsetti, Giovanni; Romano, Claudia; Pasini, Evasio; Marzetti, Emanuele; Calvani, Riccardo; Picca, Anna; Flati, Vincenzo; Dioguardi, Francesco S

    2017-10-01

    Chronic wounds are a major, often underestimated, health problem for the elderly. Standard wound care products are not usually manufactured to meet the increased demand of nutrients by skin cells in order to regenerate new tissue and accelerate healing. This work was therefore undertaken to establish whether wound healing could be accelerated by nutritional supplementation with a specific mixture tailored to human need of essential amino acids (EAAs) without topical medication. To this end, using a skin full-thickness excisional model in aged rats, we compared the closure dynamics of undressing wounds in animals fed an EAAs-enriched diet or standard diet. We assessed the degree of fibrosis and inflammation, as well as relevant signaling molecules such as COL1A1, iNOS and TGFβ1. The results showed wound healing was accelerated in EAAs-fed rats, which was accompanied by reduced inflammation and changes in TGFβ1 and COL1A1 expression. Collectively, our findings indicate that dietary supplementation with balanced EAAs diet could serve as a strategy to accelerate wound healing without inducing fibrosis and could therefore be a simple but pivotal therapeutic approach in human also. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Clinical evaluation of post-extraction site wound healing.

    Science.gov (United States)

    Adeyemo, Wasiu Lanre; Ladeinde, Akinola Ladipo; Ogunlewe, Mobolanle Olugbemiga

    2006-07-01

    The aim of this prospective study was to evaluate the clinical pattern of post-extraction wound healing with a view to identify the types, incidence, and pattern of healing complications following non-surgical tooth extraction. A total of 311 patients, who were referred for non-surgical (intra-alveolar) extractions, were included in the study. The relevant pre-operative information recorded for each patient included age and gender of the patient, indications for extraction, and tooth/teeth removed. Extractions were performed under local anesthesia with dental forceps, elevators, or both. Patients were evaluated on the third and seventh postoperative days for alveolus healing assessment. Data recorded were: biodata, day of presentation for alveolus healing assessment, day of onset of any symptoms, body temperature (degrees C) in cases of alveolus infection, and presence or absence of pain. Two hundred eighty-two patients (282) with 318 extraction sites were evaluated for alveolus healing. Healing was uneventful in 283 alveoli (89%), while 35 alveoli (11%) developed healing complications. These complications were: localized osteitis 26 (8.2%); acutely infected alveolus 5 (1.6%); and an acutely inflamed alveolus 4 (1.2%). Females developed more complications than males (p=0.003). Most complications were found in molars (60%) and premolars (37.1%). Localized osteitis caused severe pain in all cases, while infected and inflamed alveolus caused mild or no pain. Thirty patients (12%) among those without healing complications experienced mild pain. Most of the post-extraction alveoli healed uneventfully. Apart from alveolar osteitis (AO), post-extraction alveolus healing was also complicated by acutely infected alveoli and acutely inflamed alveoli. This study also demonstrated a painful alveolus is not necessarily a disturbance of post-extraction site wound healing; a thorough clinical examination must, therefore, be made to exclude any of the complications.

  17. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.

    Science.gov (United States)

    Lv, Fang; Wang, Jie; Xu, Peng; Han, Yiming; Ma, Hongshi; Xu, He; Chen, Shijie; Chang, Jiang; Ke, Qinfei; Liu, Mingyao; Yi, Zhengfang; Wu, Chengtie

    2017-09-15

    Diabetic wound is a common complication of diabetes. Biomaterials offer great promise in inducing tissue regeneration for chronic wound healing. Herein, we reported a conducive Poly (caprolactone) (PCL)/gelatin nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) for diabetic wound healing. NAGEL bioceramic particles were well distributed in the inner of PCL/gelatin nanofibers via co-electrospinning process and the Si ions maintained a sustained release from the composite scaffolds during the degradation process. The nanofibrous scaffolds significantly promoted the adhesion, proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human keratinocytes (HaCaTs) in vitro. The in vivo study demonstrated that the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization in the wound sites of diabetic mice model, as well as inhibited inflammation reaction. The mechanism for nanofibrous composite scaffolds accelerating diabetic wound healing is related to the activation of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vivo and in vitro. Our results suggest that the released Si ions and nanofibrous structure of scaffolds have a synergetic effect on the improved efficiency of diabetic wound healing, paving the way to design functional biomaterials for tissue engineering and wound healing applications. In order to stimulate tissue regeneration for chronic wound healing, a new kind of conducive nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) were prepared via co-electrospinning process. Biological assessments revealed that the NAGEL bioceramic particles could active epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vitro and in vivo. The new composite scaffold

  18. Evaluation of dermal wound healing activity of synthetic peptide SVVYGLR.

    Science.gov (United States)

    Uchinaka, Ayako; Kawaguchi, Naomasa; Ban, Tsuyoshi; Hamada, Yoshinosuke; Mori, Seiji; Maeno, Yoshitaka; Sawa, Yoshiki; Nagata, Kohzo; Yamamoto, Hirofumi

    2017-09-23

    SVVYGLR peptide (SV peptide) is a 7-amino-acid sequence with angiogenic properties that is derived from osteopontin in the extracellular matrix and promotes differentiation of fibroblasts to myofibroblast-like cells and the production of collagen type Ⅲ by cardiac fibroblasts. However, the effects of SV peptide on dermal cells and tissue are unknown. In this study, we evaluated the effects of this peptide in a rat model of dermal wound healing. The synthetic SV peptide was added to dermal fibroblasts or keratinocytes, and their cellular motility was evaluated. In an in vivo wound healing exeriment, male rats aged 8 weeks were randomly assigned to the SV peptide treatment, non-treated control, or phosphate-buffered saline (PBS) groups. Wound healing was assessed by its repair rate and histological features. Scratch assay and cell migration assays using the Chemotaxicell method showed that SV peptide significantly promoted the cell migration in both fibroblasts and keratinocytes. In contrast the proliferation potency of these cells was not affected by SV peptide. In the rat model, wound healing progressed faster in the SV peptide-treated group than in the control and PBS groups. The histopathological analyses showed that the SV peptide treatment stimulated the migration of fibroblasts to the wound area and increased the number of myofibroblasts. Immunohistochemical staining showed a marked increase of von Willebland factor-positive neomicrovessels in the SV peptide-treated group. In conclusion, SV peptide has a beneficial function to promote wound healing by stimulating granulation via stimulating angiogenesis, cell migration, and the myofibroblastic differentiation of fibroblasts. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Skin wound healing in different aged Xenopus laevis.

    Science.gov (United States)

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  20. Quantum molecular resonance technology in hard-to-heal extremity wounds: histological and clinical results.

    Science.gov (United States)

    Fraccalvieri, Marco; Salomone, Marco; Di Santo, Claudia; Ruka, Erind; Morozzo, Umberto; Bruschi, Stefano

    2017-12-01

    observed increased capillary thrombosis as well as up-regulation of vascular endothelial growth factor (VEGF) expression. The current study presents the first evidence that Rexon-age-based therapy can significantly ameliorate and accelerate the healing process of chronic wounds. Although this study analysed only a small number of patients, we could consistently observe positive effects on both the clinical aspect of the lesions, which underwent size reduction and wound reactivation, and the quality of life of our patients due to long-term pain relief. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Proliferation of Keratinocytes Induced by Adipose-Derived Stem Cells on a Chitosan Scaffold and Its Role in Wound Healing, a Review

    Directory of Open Access Journals (Sweden)

    Sankaralakshmi Gomathysankar

    2014-09-01

    Full Text Available In the field of tissue engineering and reconstruction, the development of efficient biomaterial is in high demand to achieve uncomplicated wound healing. Chronic wounds and excessive scarring are the major complications of tissue repair and, as this inadequate healing continues to increase, novel therapies and treatments for dysfunctional skin repair and reconstruction are important. This paper reviews the various aspects of the complications related to wound healing and focuses on chitosan because of its unique function in accelerating wound healing. The proliferation of keratinocytes is essential for wound closure, and adipose-derived stem cells play a significant role in wound healing. Thus, chitosan in combination with keratinocytes and adipose-derived stem cells may act as a vehicle for delivering cells, which would increase the proliferation of keratinocytes and help complete recovery from injuries.

  2. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application.

    Science.gov (United States)

    Zhao, Pan; Sui, Bing-Dong; Liu, Nu; Lv, Ya-Jie; Zheng, Chen-Xi; Lu, Yong-Bo; Huang, Wen-Tao; Zhou, Cui-Hong; Chen, Ji; Pang, Dan-Lin; Fei, Dong-Dong; Xuan, Kun; Hu, Cheng-Hu; Jin, Yan

    2017-10-01

    Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age-related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti-aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR-based anti-aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. A Clinicoepidemiological Profile of Chronic Wounds in Wound Healing Department in Shanghai.

    Science.gov (United States)

    Sun, Xiaofang; Ni, Pengwen; Wu, Minjie; Huang, Yao; Ye, Junna; Xie, Ting

    2017-03-01

    The aim of the study was to update the clinical database of chronic wounds in order to derive an evidence based understanding of the condition and hence to guide future clinical management in China. A total of 241 patients from January 1, 2011 to April 30, 2016 with chronic wounds of more than 2 weeks' duration were studied in wound healing department in Shanghai. Results revealed that among all the patients the mean age was 52.5 ± 20.2 years (range 2-92 years). The mean initial area of wounds was 30.3 ± 63.0 cm 2 (range 0.25-468 cm 2 ). The mean duration of wounds was 68.5 ± 175.2 months (range 0.5-840 months). The previously reported causes of chronic wounds were traumatic or surgical wounds (n = 82, 34.0%), followed by pressure ulcers (n = 59, 24.5%). To study the effects of age, patients were divided into 2 groups: less than 60 years (wounds etiology between the 2 age groups was analyzed, and there was significant statistical difference ( P wounds, chi-square test was used. There were significant differences in the factor of wound infection. ( P = .035, 95% CI = 0.031-0.038) Regarding therapies, 72.6% (n = 175) of the patients were treated with negative pressure wound therapy. Among all the patients, 29.9% (n = 72) of them were completely healed when discharged while 62.7% (n = 150) of them improved. The mean treatment cost was 12055.4 ± 9206.3 Chinese Yuan (range 891-63626 Chinese Yuan). In conclusion, traumatic or surgical wounds have recently become the leading cause of chronic wounds in Shanghai, China. Etiology of the 2 age groups was different. Infection could significantly influence the wound outcome.

  4. Enhanced Cutaneous Wound Healing In Vivo by Standardized Crude Extract of Poincianella pluviosa.

    Directory of Open Access Journals (Sweden)

    Fernanda Giacomini Bueno

    Full Text Available Wound healing is a complex process that involves several biological events, and a delay in this process may cause economic and social problems for the patient. The search continues for new alternative treatments to aid healing, including the use of herbal medicines. Members of the genus Caesalpinia are used in traditional medicine to treat wounds. The related species Poincianella pluviosa (DC. L.P. Queiroz increases the cell viability of keratinocytes and fibroblasts and stimulates the proliferation of keratinocytes in vitro. The crude extract (CE from bark of P. pluviosa was evaluated in the wound-healing process in vivo, to validate the traditional use and the in vitro activity. Standardized CE was incorporated into a gel and applied on cutaneous wounds (TCEG and compared with the formulation without CE (Control for 4, 7, 10, or 14 days of treatment. The effects of the CE on wound re-epithelialization; cell proliferation; permeation, using photoacoustic spectroscopy (PAS; and proteins, including vascular endothelial growth factor (VEGF, superoxide dismutase 2 (SOD-2 and cyclooxygenase 2 (COX-2 were evaluated. The TCEG stimulated the migration of keratinocytes at day 4 and proliferation on the following days, with a high concentration of cells in metaphase at 7 days. Type I collagen formed more rapidly in the TCEG. PAS showed that the CE had permeated through the skin. TCEG stimulated VEGF at day 4 and SOD-2 and COX-2 at day 7. The results suggest that the CE promoted the regulation of proteins and helped to accelerate the processes involved in healing, promoting early angiogenesis. This led to an increase in the re-epithelialized surface, with significant mitotic activity. Maturation of collagen fibers was also enhanced, which may affect the resistance of the extracellular matrix. PAS indicated a correlation between the rate of diffusion and biological events during the healing process. The CE from P. pluviosa appears promising as an aid in

  5. The effect of oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine and glutamine on wound healing: a retrospective analysis of diabetic haemodialysis patients

    OpenAIRE

    Sipahi, Savas; Gungor, Ozkan; Gunduz, Mehmet; Cilci, Mehmet; Demirci, Mustafa Cahit; Tamer, Ali

    2013-01-01

    Background Diabetes is an important reason for end-stage renal failure and diabetic foot wounds worsen the life qualities of these patients. Protein and amino acid support accelerates the wound healing. The purpose of this retrospective study is to examine the effect of beta-hydroxy-beta-methylbutyrate, arginine and glutamine (Abound?) supplementation on the wound healing. Methods A total of 11 diabetic dialysis patients were included in this retrospective study aiming to evaluate the effect ...

  6. Evaluation of effectiveness in a novel wound healing ointment ...

    African Journals Online (AJOL)

    Evaluation of effectiveness in a novel wound healing ointment-crocodile oil burn ointment. Hua-Liang Li, Yi-Tao Deng, Zi-Ran Zhang, Qi-Rui Fu, Ya-Hui Zheng, Xing-Mei Cao, Jing Nie, Li-Wen Fu, Li-Ping Chen, You-Xiong Xiong, Dong-Yan Shen, Qing-Xi Chen ...

  7. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    Science.gov (United States)

    2014-03-01

    healing process. We selected fibrin and hydrogel as delivery vehicles for our test. The rationale is that fibrin, which is a natural biopolymer of blood...E.U. Alt, IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin- chitosan scaffold enhance wound repair in a murine soft

  8. Soft tissue wound healing around teeth and dental implants.

    Science.gov (United States)

    Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D

    2014-04-01

    To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Studies on wound healing activity of some Euphorbia species on ...

    African Journals Online (AJOL)

    Background: Plants of Euphorbiaceae are used in folkloric medicines in variety of ailments and well known for chemical diversity of their isoprenoid constituents. This study was carried out to explore the preliminary wound healing potential of four Euphorbia species (E. consorbina 1, E. consorbina 2, E. inarticulata, ...

  10. Defective Wound-healing in Aging Gingival Tissue.

    Science.gov (United States)

    Cáceres, M; Oyarzun, A; Smith, P C

    2014-07-01

    Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.

  11. Gingival wound healing: an essential response disturbed by aging?

    Science.gov (United States)

    Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J

    2015-03-01

    Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.

  12. The heme-heme oxygenase system in wound healing; implications for scar formation.

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Scharstuhl, A.; Tyrrell, R.M.; Hoff, J.W. Von den; Jozkowicz, A.; Dulak, J.; Russel, F.G.M.; Kuijpers-Jagtman, A.M.

    2010-01-01

    Wound healing is an intricate process requiring the concerted action of keratinocytes, fibroblasts, endothelial cells, and macrophages. Here, we review the literature on normal wound healing and the pathological forms of wound healing, such as hypertrophic or excessive scar formation, with special

  13. Targeting connexin 43 in diabetic wound healing: Future perspectives

    Directory of Open Access Journals (Sweden)

    Bajpai S

    2009-01-01

    Full Text Available The unknown mechanisms of impaired tissue repair in diabetes mellitus are making this disease a serious clinical problem for the physicians worldwide. The lacuna in the knowledge of the etiology of diabetic wounds necessitates more focused research in order to develop new targeting tools with higher efficacy for their effective management. Gap-junction proteins, connexins, have shown some promising results in the process of diabetic wound healing. Till now the role of connexins has been implicated in peripheral neuropathy, deafness, skin disorders, cataract, germ cell development and treatment of cancer. Recent findings have revealed that gap junctions play a key role in normal as well as diabetic wound healing. The purpose of this review is to provide the information related to etiology, epidemiology, clinical presentation of diabetic wounds and to analyze the role of connexin 43 (Cx43 in the diabetic wound healing process. The current control strategies and the future research challenges have also been discussed briefly in this review.

  14. Soft-tissue wound healing by anti-advanced glycation end-products agents.

    Science.gov (United States)

    Chang, P-C; Tsai, S-C; Jheng, Y-H; Lin, Y-F; Chen, C-C

    2014-04-01

    The blocking of advanced glycation end-products (AGE) has been shown to reduce diabetic complications and control periodontitis. This study investigated the pattern of palatal wound-healing after graft harvesting under the administration of aminoguanidine (AG), an AGE inhibitor, or N-phenacylthiazolium bromide (PTB), a glycated cross-link breaker. Full-thickness palatal excisional wounds (5.0 x 1.5 mm(2)) were created in 72 Sprague-Dawley rats. The rats received daily intraperitoneal injections of normal saline (control), AG, or PTB and were euthanized after 4 to 28 days. The wound-healing pattern was assessed by histology, histochemistry for collagen matrix deposition, immunohistochemistry for AGE and the AGE receptor (RAGE), and the expression of RAGE, as well as inflammation- and recovery-associated genes. In the first 14 days following AG or PTB treatments, wound closure, re-epithelialization, and collagen matrix deposition were accelerated, whereas AGE deposition, RAGE-positive cells, and inflammation were reduced. RAGE and tumor necrosis factor-alpha were significantly down-regulated at day 7, and heme oxygenase-1 was persistently down-regulated until day 14. The levels of vascular endothelial growth factor, periostin, type I collagen, and fibronectin were all increased at day 14. In conclusion, anti-AGE agents appeared to facilitate palatal wound-healing by reducing AGE-associated inflammation and promoting the recovery process.

  15. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A rat uterine horn model of genital tract wound healing.

    Science.gov (United States)

    Schlaff, W D; Cooley, B C; Shen, W; Gittlesohn, A M; Rock, J A

    1987-11-01

    A rat uterine horn model of genital tract wound healing is described. Healing was reflected by acquisition of strength and elasticity, measured by burst strength (BS) and extensibility (EX), respectively. A tensiometer (Instron Corp., Canton, MA) was used to assess these characteristics in castrated and estrogen-supplemented or nonsupplemented animals. While the horn weights (HW), BS, and EX of contralateral horns were not significantly different, the intra-animal variation of HW was 7.2%, BS was 17.7% and EX was 38.2%. In a second experiment, one uterine horn was divided and anastomosed, and the animal given estrogen supplementation or a placebo pellet. Estrogen administration was found to increase BS and EX of anastomosed horns prior to 14 days, but had no beneficial effect at 21 or 42 days. The data suggest that estrogen may be required for optimal early healing of genital tract wounds.

  17. [Effect of insulin on burn wound healing in aging diabetes mellitus rats].

    Science.gov (United States)

    Wu, Jian; Xue, Xiaodong; Liu, Junling; Si, Xiaoqiang; Yang, Guohu

    2009-12-01

    expression: in group A, it was (+) at 7 days, (++) at 14 days, and (+++) at 21 days; in group B, it was (+) at 14 and 21 days; in group C, it was (++) at 7 days and (+++) at 14 and 21 days. Topical application of insulin can promote the synthesis of wound collagen, accelerate the wound angiogenesis, and speed up the wound healing in aging DM rats.

  18. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds.

    Directory of Open Access Journals (Sweden)

    Teddy Léguillier

    Full Text Available Calophyllum inophyllum L. (Calophyllaceae is an evergreen tree ethno-medically used along the seashores and islands of the Indian and Pacific Oceans, especially in Polynesia. Oil extracted from the seeds is traditionally used topically to treat a wide range of skin injuries from burn, scar and infected wounds to skin diseases such as dermatosis, urticaria and eczema. However, very few scientific studies reported and quantified the therapeutic properties of Calophyllum inophyllum oil (CIO. In this work, five CIO from Indonesia (CIO1, Tahiti (CIO2, 3, Fiji islands (CIO4 and New Caledonia (CIO5 were studied and their cytotoxic, wound healing, and antibacterial properties were presented in order to provide a scientific support to their traditional use and verify their safety.The safety of the five CIO was ascertained using the Alamar blue assay on human keratinocyte cells. CIO wound healing properties were determined using the scratch test assay on human keratinocyte cells. CIO-stimulated antibacterial innate immune response was evaluated using ELISA by measuring β defensin-2 release in human derivative macrophage cells. CIO antibacterial activity was tested using oilogramme against twenty aerobic Gram- bacteria species, twenty aerobic Gram+ bacteria species, including a multi-drug resistant Staphylococcus aureus strain and two anaerobic Gram+ bacteria species e.g. Propionibacterium acnes and Propionibacterium granulosum. To detect polarity profile of the components responsible of the antibacterial activity, we performed bioautography against a Staphylococcus aureus strain.Based on Alamar Blue assay, we showed that CIO can be safely used on keratinocyte cells between 2.7% and 11.2% depending on CIO origin. Concerning the healing activity, all the CIO tested accelerated in vitro wound closure, the healing factor being 1.3 to 2.1 higher compared to control when keratinocytes were incubated after scratch with CIO at 0.1%. Furthermore, our results

  19. [The comparative assessment of the wound-healing effects of the treatment with the use of Bioptron, Minitag, Orion+ apparatuses and hollow cathode lamps (experimental study)].

    Science.gov (United States)

    Sharipova, M M; Voronova, S N; Rukin, E M; Vasilenko, A M

    2011-01-01

    The objective of the present experimental study was the comparative assessment of the wound-healing effects of radiation emitted from Bioptron, Minitag, Orion+ apparatuses and hollow cathode lamps (HCL). The emitters of any type were shown to be equally efficacious in that they accelerated wound epithelization by 30% on the average compared with control. Based on the difference between spectral and power characteristics of different sources of radiation and dynamics of their wound-healing efficacy (including that of two types of HCL), the authors arrived at the conclusion that the further development of the proposed approach to wound healing is a promising line of research in the field of spectral phototherapy.

  20. Dressings and topical agents for surgical wounds healing by secondary intention

    NARCIS (Netherlands)

    Vermeulen, H.; Ubbink, D.; Goossens, A.; de Vos, R.; Legemate, D.

    2004-01-01

    BACKGROUND: Many different wound dressings and topical applications are used to cover surgical wounds healing by secondary intention. It is not known whether these dressings heal wounds at different rates. OBJECTIVES: To assess the effectiveness of dressings and topical agents on surgical wounds

  1. The use of wound healing assessment methods in psychological studies: a review and recommendations.

    Science.gov (United States)

    Koschwanez, Heidi E; Broadbent, Elizabeth

    2011-02-01

    To provide a critical review of methods used to assess human wound healing in psychological research and related disciplines, in order to guide future research into psychological influences on wound healing. Acute wound models (skin blister, tape stripping, skin biopsy, oral palate biopsy, expanded polytetrafluoroethylene tubing), surgical wound healing assessment methods (wound drains, wound scoring), and chronic wound assessment techniques (surface area, volumetric measurements, wound composition, and assessment tools/scoring systems) are summarized, including merits, limitations, and recommendations. Several dermal and mucosal tissue acute wound models have been established to assess the effects of psychological stress on the inflammatory, proliferative, and repair phases of wound healing in humans, including material-based models developed to evaluate factors influencing post-surgical recovery. There is a paucity of research published on psychological factors influencing chronic wound healing. There are many assessment techniques available to study the progression of chronic wound healing but many difficulties inherent to long-term clinical studies. Researchers need to consider several design-related issues when conducting studies into the effects of psychological stress on wound healing, including the study aims, type of wound, tissue type, setting, sample characteristics and accessibility, costs, timeframe, and facilities available. Researchers should consider combining multiple wound assessment methods to increase the reliability and validity of results and to further understand mechanisms that link stress and wound healing. ©2010 The British Psychological Society.

  2. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Science.gov (United States)

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  3. Stem cells and chronic wound healing: state of the art

    Directory of Open Access Journals (Sweden)

    Leavitt T

    2016-03-01

    Full Text Available Tripp Leavitt, Michael S Hu, Clement D Marshall, Leandra A Barnes, Michael T Longaker, H Peter Lorenz Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA Abstract: Currently available treatments for chronic wounds are inadequate. A clearly effective therapy does not exist, and treatment is often supportive. This is largely because the cellular and molecular processes underlying failure of wound repair are still poorly understood. With an increase in comorbidities, such as diabetes and vascular disease, as well as an aging population, the incidence of these intractable wounds is expected to rise. As such, chronic wounds, which are already costly, are rapidly growing as a tremendous burden to the health-care system. Stem cells have garnered much interest as a therapy for chronic wounds due to their inherent ability to differentiate into multiple lineages and promote regeneration. Herein, we discuss the types of stem cells used for chronic wound therapy, as well as the proposed means by which they do so. In particular, we highlight mesenchymal stem cells (including adipose-derived stem cells, endothelial progenitor cells, and induced pluripotent stem cells. We include the results of recent in vitro and in vivo studies in both animal models and human clinical trials. Finally, we discuss the current studies to improve stem cell therapies and the limitations of stem cell-based therapeutics. Stem cells promise improved therapies for healing chronic wounds, but further studies that are well-designed with standardized protocols are necessary for fruition. Keywords: stem cells, chronic wounds, cell therapy, wound healing

  4. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.

    Science.gov (United States)

    Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z

    2017-07-17

    Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.

  5. Drug delivery systems and materials for wound healing applications.

    Science.gov (United States)

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review

    OpenAIRE

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an...

  7. Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K

    2015-11-01

    Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing. © 2015 Anatomical Society.

  8. Effect of topically applied Saccharomyces boulardii on the healing of acute porcine wounds: a preliminary study.

    Science.gov (United States)

    Partlow, Jessica; Blikslager, Anthony; Matthews, Charles; Law, Mac; Daniels, Joshua; Baker, Rose; Labens, Raphael

    2016-04-11

    Normal wound healing progresses through a series of interdependent physiological events: inflammation, angiogenesis, re-epithelialization, granulation tissue formation and extracellular matrix remodeling. Alterations in this process as well as the bacterial type and load on a wound may alter the wound healing rate. The purpose of this study was to evaluate the effect of topical Saccharomyces boulardii on the healing of acute cutaneous wounds, using a prospective, controlled, experimental study, with six purpose bred landrace pigs. All wounds healed without apparent complications. Comparison of the mean 3D and 2D wound surface area measurements showed no significant difference between treatment groups as wounds decreased similarly in size over the duration of the study. A significant reduction in wound surface area was identified sooner using 3D assessments (by day 9) compared to 2D assessments (by day 12) (P Saccharomyces boulardii does not hasten wound healing or change the wounds' microbiome under the conditions reported in this study.

  9. Bioprinting of skin constructs for wound healing

    OpenAIRE

    He, Peng; Zhao, Junning; Zhang, Jiumeng; Li, Bo; Gou, Zhiyuan; Gou, Maling; Li, Xiaolu

    2018-01-01

    Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivale...

  10. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

    Science.gov (United States)

    Demyanenko, Ilya A; Popova, Ekaterina N; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Romashchenko, Valeria P; Fedorov, Artem V; Manskikh, Vasily N; Skulachev, Maxim V; Zinovkin, Roman A; Pletjushkina, Olga Yu; Skulachev, Vladimir P; Chernyak, Boris V

    2015-07-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.

  11. Wound Healing Effects of Rose Placenta in a Mouse Model of Full-Thickness Wounds

    Directory of Open Access Journals (Sweden)

    Yang Woo Kim

    2015-11-01

    Full Text Available BackgroundRosa damascena, a type of herb, has been used for wound healing in Eastern folk medicine. The goal of this study was to evaluate the effectiveness of rose placenta from R. damascena in a full-thickness wound model in mice.MethodsSixty six-week-old C57BL/6N mice were used. Full-thickness wounds were made with an 8-mm diameter punch. Two wounds were made on each side of the back, and wounds were assigned randomly to the control and experimental groups. Rose placenta (250 µg was injected in the experimental group, and normal saline was injected in the control group. Wound sizes were measured with digital photography, and specimens were harvested. Immunohistochemical staining was performed to assess the expression of epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and CD31. Vessel density was measured. Quantitative analysis using an enzyme-linked immunosorbent assay (ELISA for EGF was performed. All evaluations were performed on postoperative days 0, 2, 4, 7, and 10. Statistical analyses were performed using the paired t-test.Results On days 4, 7, and 10, the wounds treated with rose placenta were significantly smaller. On day 2, VEGF and EGF expression increased in the experimental group. On days 7 and 10, TGF-β1 expression decreased in the experimental group. On day 10, vessel density increased in the experimental group. The increase in EGF on day 2 was confirmed with ELISA.ConclusionsRose placenta was found to be associated with improved wound healing in a mouse full-thickness wound model via increased EGF release. Rose placenta may potentially be a novel drug candidate for enhancing wound healing.

  12. Fibroblast implantation enhances wound healing as indicated by breaking strength determinations

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W W; Goepfert, H; Romsdahl, M; Hersen, J; Withers, R H; Jesse, R H

    1978-09-01

    Irradiation of normal tissues at the dose/time factor employed in the treatment of solid tumors impairs the subsequent healing of surgical wounds made in those tissues. Irreversible radiation damage to regional fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts, harvested from tissue culture when injected into irradiated guinea pig skin at the time of wound closure, could improve wound healing. Breaking strength determinations indicate that irradiated wounds demonstrate enhanced wound healing if implanted with fibroblasts.

  13. Development of honey hydrogel dressing for enhanced wound healing

    International Nuclear Information System (INIS)

    Yusof, Norimah; Ainul Hafiza, A.H.; Zohdi, Rozaini M.; Bakar, Md Zuki A.

    2007-01-01

    Radiation at 25 and 50 kGy showed no effect on the acidic pH of the local honey, Gelam, and its antimicrobial property against Staphylococcus aureus but significantly reduced the viscosity. Honey stored up to 2 years at room temperature retained all the properties studied. Radiation sterilized Gelam honey significantly stimulated the rate of burn wound healing in Sprague-Dawley rats as demonstrated by the increased rate of wound contraction and gross appearance. Gelam honey attenuates wound inflammation; and re-epithelialization was well advanced compared to the treatment using silver sulphadiazine (SSD) cream. To enhance further the use of honey in wound treatment and for easy handling, Gelam honey was incorporated into our hydrogel dressing formulation, which was then cross-linked and sterilized using electron beam at 25 kGy. Hydrogel with 6% of honey was selected based on the physical appearance

  14. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  15. Validation of a laser-assisted wound measurement device in a wound healing model.

    Science.gov (United States)

    Constantine, Ryan S; Bills, Jessica D; Lavery, Lawrence A; Davis, Kathryn E

    2016-10-01

    In the treatment and monitoring of a diabetic or chronic wound, accurate and repeatable measurement of the wound provides indispensable data for the patient's medical record. This study aims to measure the accuracy of the laser-assisted wound measurement (LAWM) device against traditional methods in the measurement of area, depth and volume. We measured four 'healing' wounds in a Play-Doh(®) -based model over five subsequent states of wound healing progression in which the model was irregularly filled in to replicate the healing process. We evaluated the LAWM device against traditional methods including digital photograph assessment with National Institutes of Health ImageJ software, measurements of depth with a ruler and weight-to-volume assessment with dental paste. Statistical analyses included analysis of variance (ANOVA) and paired t-tests. We demonstrate that there are significantly different and nearly statistically significant differences between traditional ruler depth measurement and LAWM device measurement, but there are no statistically significant differences in area measurement. Volume measurements were found to be significantly different in two of the wounds. Rate of percentage change was analysed for volume and depth in the wound healing model, and the LAWM device was not significantly different than the traditional measurement technique. While occasionally inaccurate in its absolute measurement, the LAWM device is a useful tool in the clinician's arsenal as it reliably measures rate of percentage change in depth and volume and offers a potentially aseptic alternative to traditional measurement techniques. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  16. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    OpenAIRE

    Felder Marcel; Sallin Pauline; Barbe Laurent; Haenni Beat; Gazdhar Amiq; Geiser Thomas; Guenat Olivier

    2012-01-01

    We present a microfluidic epithelial wound healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system a technique that is reported here ...

  17. [Pathophysiological aspects of wound healing in normal and diabetic foot].

    Science.gov (United States)

    Maksimova, N V; Lyundup, A V; Lubimov, R O; Melnichenko, G A; Nikolenko, V N

    2014-01-01

    The main cause of long-term healing of ulcers in patients with diabetic foot is considered to be direct mechanical damage when walking due to reduced sensitivity to due to neuropathy, hyperglycemia, infection and peripheral artery disease. These factors determine the standard approaches to the treatment of diabeticfoot, which include: offloading, glycemic control, debridement of ulcers, antibiotic therapy and revascularization. Recently, however, disturbances in the healing process of the skin in diabetes recognized an additional factor affecting the timing of healing patients with diabetic foot. Improved understanding and correction of cellular, molecular and biochemical abnormalities in chronic wound in combination with standard of care for affords new ground for solving the problem of ulcer healing in diabetes.

  18. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    Science.gov (United States)

    Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.

    2016-01-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428

  19. NETosis Delays Diabetic Wound Healing in Mice and Humans.

    Science.gov (United States)

    Fadini, Gian Paolo; Menegazzo, Lisa; Rigato, Mauro; Scattolini, Valentina; Poncina, Nicol; Bruttocao, Andrea; Ciciliot, Stefano; Mammano, Fabio; Ciubotaru, Catalin Dacian; Brocco, Enrico; Marescotti, Maria Cristina; Cappellari, Roberta; Arrigoni, Giorgio; Millioni, Renato; Vigili de Kreutzenberg, Saula; Albiero, Mattia; Avogaro, Angelo

    2016-04-01

    Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we examined the effect of NETosis on the healing of diabetic foot ulcers (DFUs). Using proteomics, we found that NET components were enriched in nonhealing human DFUs. In an independent validation cohort, a high concentration of neutrophil elastase in the wound was associated with infection and a subsequent worsening of the ulcer. NET components (elastase, histones, neutrophil gelatinase-associated lipocalin, and proteinase-3) were elevated in the blood of patients with DFUs. Circulating elastase and proteinase-3 were associated with infection, and serum elastase predicted delayed healing. Neutrophils isolated from the blood of DFU patients showed an increased spontaneous NETosis but an impaired inducible NETosis. In mice, skin PAD4 activity was increased by diabetes, and FACS detection of histone citrullination, together with intravital microscopy, showed that NETosis occurred in the bed of excisional wounds. PAD4 inhibition by Cl-amidine reduced NETting neutrophils and rescued wound healing in diabetic mice. Cumulatively, these data suggest that NETosis delays DFU healing. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. The effects of chronic ketorolac tromethamine (toradol) on wound healing.

    Science.gov (United States)

    Haws, M J; Kucan, J O; Roth, A C; Suchy, H; Brown, R E

    1996-08-01

    Intramuscular ketorolac is a commonly used nonsteroidal anti-inflammatory (NSAI) agent for analgesia in surgical patients. Increasing numbers of surgical patients are chronically taking some form of an NSAI drug. We examined the effects of "chronic" intramuscular ketorolac on the healing of a closed linear surgical wound in the rat. Wistar rats were pretreated with 4 mg per kilogram per day ketorolac intramuscularly prior to receiving dorsal incisional wounds. The ketorolac treatment was continued and after 2 weeks the wounds were excised and separated with a tensiometer to measure mechanical properties. Breaking strength was directly measured, tensile strength was calculated, and collagen concentrations at the wound site were determined. A significant decrease in the mean breaking strength was seen in the ketorolac-treated animals when compared to controls. The ketorolac-treated animals had a mean tensile strength less than the controls, although this difference did not reach statistical significance. The mean collagen concentration of the ketorolac-treated wounds was significantly less than the untreated wounds. Use of ketorolac for just 1 week prior to surgery in rats produced a significant decrease in the breaking strength of their wounds. With the increasing use of ketorolac in surgical patients as well as the increasing use of oral NSAI drugs, more study of this effect is warranted.

  1. Preclinical Evaluation of Tegaderm™ Supported Nanofibrous Wound Matrix Dressing on Porcine Wound Healing Model.

    Science.gov (United States)

    Ong, Chee Tian; Zhang, Yanzhong; Lim, Raymond; Samsonraj, Rebekah; Masilamani, Jeyakumar; Phan, Tran Hong Ha; Ramakrishna, Seeram; Lim, Ivor; Kee, Irene; Fahamy, Mohammad; Templonuevo, Vilma; Lim, Chwee Teck; Phan, Toan Thang

    2015-02-01

    Objective: Nanofibers for tissue scaffolding and wound dressings hold great potential in realizing enhanced healing of wounds in comparison with conventional counterparts. Previously, we demonstrated good fibroblast adherence and growth on a newly developed scaffold, Tegaderm™-Nanofiber (TG-NF), made from poly ɛ-caprolactone (PCL)/gelatin nanofibers electrospun onto Tegaderm (TG). The purpose of this study is to evaluate the performance and safety of TG-NF dressings in partial-thickness wound in a pig healing model. Approach: To evaluate the rate of reepithelialization, control TG, human dermal fibroblast-seeded TG-NF(+) and -unseeded TG-NF(-) were randomly dressed onto 80 partial-thickness burns created on four female and four male pigs. Wound inspections and dressings were done after burns on day 7, 14, 21, and 28. On day 28, full-thickness biopsies were taken for histopathological evaluation by Masson-Trichrome staining for collagen and hematoxylin-eosin staining for cell counting. Results: No infection and severe inflammation were recorded. Wounds treated with TG-NF(+) reepithelialized significantly faster than TG-NF(-) and control. Wound site inflammatory responses to study groups were similar as total cell counts on granulation tissues show no significant differences. Most of the wounds completely reepithelialized by day 28, except for two wounds in control and TG-NF(-). A higher collagen coverage was also recorded in the granulation tissues treated with TG-NF(+). Innovation and Conclusion: With better reepithelialization achieved by TG-NF(+) and similar rates of wound closure by TG-NF(-) and control, and the absence of elevated inflammatory responses to TG-NF constructs, TG-NF constructs are safe and demonstrated good healing potentials that are comparable to Tegaderm.

  2. Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice.

    Science.gov (United States)

    Huang, Sha; Wu, Yan; Gao, Dongyun; Fu, Xiaobing

    2015-07-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) participate in wound healing to favor tissue regeneration and inhibit fibrotic tissue formation. However, the evidence of MSCs to suppress cutaneous scar is extremely rare, and the mechanism remains unidentified. This study aimed to demonstrate whether MSCs-as the result of their paracrine actions on damaged tissues-would accelerate wound healing and prevent cutaneous fibrosis. For efficient delivery of MSCs to skin wounds, microspheres were used to maintain MSC potency. Whether MSCs can accelerate wound healing and alleviate cutaneous fibrosis through paracrine action was investigated with the use of a Transwell co-culture system in vitro and a murine model in vivo. MSCs cultured on gelatin microspheres fully retained their cell surface marker expression profile, proliferation, differentiation and paracrine potential. Co-cultures of MSCs and fibroblasts indicated that the benefits of MSCs on suppressing fibroblast proliferation and its fibrotic behavior induced by inflammatory cytokines probably were caused by paracrine actions. Importantly, microspheres successfully delivered MSCs into wound margins and significantly accelerated wound healing and concomitantly reduced the fibrotic activities of cells within the wounds and excessive accumulation of extracellular matrix as well as the transforming growth factor-β1/transforming growth factor-β3 ratio. This study provides insight into what we believe to be a previously undescribed, multifaceted role of MSC-released protein in reducing cutaneous fibrotic formation. Paracrine action of MSCs delivered by microspheres may thus qualify as a promising strategy to enhance tissue repair and to prevent excessive fibrosis during cutaneous wound healing. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Efficacy of Carbazole Alkaloids, Essential Oil and Extract of Murraya koenigii in Enhancing Subcutaneous Wound Healing in Rats

    Directory of Open Access Journals (Sweden)

    Thilahgavani Nagappan

    2012-12-01

    Full Text Available The traditional use of Murraya koenigii as Asian folk medicine prompted us to investigate its wound healing ability. Three carbazole alkaloids (mahanine (1, mahanimbicine (2, mahanimbine (3, essential oil and ethanol extract of Murraya koenigii were investigated for their efficacy in healing subcutaneous wounds. Topical application of the three alkaloids, essential oil and crude extract on 8 mm wounds created on the dorsal skin of rats was monitored for 18 days. Wound contraction rate and epithelialization duration were calculated, while wound granulation and collagen deposition were evaluated via histological method. Wound contraction rates were obvious by day 4 for the group treated with extract (19.25% and the group treated with mahanimbicine (2 (12.60%, while complete epithelialization was achieved on day 18 for all treatment groups. Wounds treated with mahanimbicine (2 (88.54% and extract of M. koenigii (91.78% showed the highest rate of collagen deposition with well-organized collagen bands, formation of fibroblasts, hair follicle buds and with reduced inflammatory cells compared to wounds treated with mahanine (1, mahanimbine (3 and essential oil. The study revealed the potential of mahanimbicine (2 and crude extract of M. koenigii in facilitation and acceleration of wound healing.

  4. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing.

    Science.gov (United States)

    Concha, Miguel; Vidal, Alejandra; Giacaman, Annesi; Ojeda, Javier; Pavicic, Francisca; Oyarzun-Ampuero, Felipe A; Torres, César; Cabrera, Marcela; Moreno-Villoslada, Ignacio; Orellana, Sandra L

    2018-02-09

    In this study, highly neutralized, highly porous, and ultralight polymeric aerogels prepared from aqueous colloidal suspensions of chitosan (CS) and chondroitin sulfate (ChS) nanocomplexes, formulated as quasi-equimolar amounts of both, are described. These aerogels were designed as healing agents under the inspiration of minimizing the amount of matter applied to wounds, reducing the electrostatic potential of the material and avoiding covalent cross-linkers in order to decrease metabolic stress over wounds. Aerogels synthesized under these criteria are biocompatible and provide specific properties for the induction of wound healing. They do not affect neither the metabolic activity of cultured 3T3 fibroblasts nor the biochemical parameters of experimental animals, open wounds close significantly faster and, unlike control wounds, complete reepithelialization and scarring can be attained 14 days after surgery. Because of its hydration abilities, rapid adaptation to the wound bed and the early accelerator effect of wound closure, the CS/ChS aerogels appear to be functional inducers of the healing. Previous information show that CS/ChS aerogels improve wound bed quality, increase granulation tissue and have pain suppressive effect. CS/ChS aerogels are useful as safe, inexpensive and easy to handle materials for topical applications, such as skin chronic wounds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  5. Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications.

    Science.gov (United States)

    Thangavel, Ponrasu; Ramachandran, Balaji; Kannan, Ramya; Muthuvijayan, Vignesh

    2017-08-01

    The aim of this article was to develop silk protein (SF) and l-proline (LP) loaded chitosan-(CS) based hydrogels via physical cross linking for tissue engineering and wound healing applications. Silk fibroin, a biodegradable and biocompatible protein, and l-proline, an important imino acid that is required for collagen synthesis, were added to chitosan to improve the wound healing properties of the hydrogel. Characterization of these hydrogels revealed that CS/SF/LP hydrogels were blended properly and LP incorporated hydrogels showed excellent thermal stability and good surface morphology. Swelling study showed the water holding efficiency of the hydrogels to provide enough moisture at the wound surface. In vitro biodegradation results demonstrated that the hydrogels had good degradation rate in PBS with lysozyme. LP loaded hydrogels showed approximately a twofold increase in antioxidant activity. In vitro cytocompatibility studies using NIH 3T3 L1 cells showed increased cell viability (p Cell adhesion on SF and LP hydrogels were observed using SEM and compared to CS hydrogel. LP incorporation showed 74-78% of wound closure compared to 35% for CS/SF and 3% for CS hydrogels at 48 h. These results suggest that incorporation of LP can significantly accelerate wound healing process compared to pure CS and SF-loaded CS hydrogels. Hence, CS/LP hydrogels could be a potential wound dressing material for the enhanced wound tissue regeneration and repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1401-1408, 2017. © 2016 Wiley Periodicals, Inc.

  6. Relationship between Post-kidney Transplantation Antithymocyte Globulin Therapy and Wound Healing Complications

    OpenAIRE

    Pourmand, G. R.; Dehghani, S.; Saraji, A.; Khaki, S.; Mortazavi, S. H.; Mehrsai, A.; Sajadi, H.

    2012-01-01

    Background: Wound healing disorders are probably the most common post-transplantation surgical complications. It is thought that wound healing disturbance occurs due to antiproliferative effects of immunosuppressive drugs. On the other hand, success of transplantation is dependent on immunosuppressive therapies. Antihuman thymocyte globulin (ATG) has been widely used as induction therapy but the impact of this treatment on wound healing is not fully understood. Objective: To investigate wound...

  7. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo.

    Science.gov (United States)

    Tanha, Shima; Rafiee-Tehrani, Morteza; Abdollahi, Mohamad; Vakilian, Saeid; Esmaili, Zahra; Naraghi, Zahra Safaei; Seyedjafari, Ehsan; Javar, Hamid Akbari

    2017-10-01

    Sustained release of functional growth factors can be considered as a beneficial methodology for wound healing. In this study, recombinant human granulocyte colony-stimulating factor (G-CSF)-loaded chitosan nanoparticles were incorporated in Poly(ε-caprolactone) (PCL) nanofibers, followed by surface coating with collagen type I. Physical and mechanical properties of the PCL nanofibers containing G-CSF loaded chitosan nanoparticles PCL/NP(G-CSF) and in vivo performance for wound healing were investigated. G-CSF structural stability was evaluated through SDS_PAGE, reversed phase (RP) HPLC and size-exclusion chromatography, as well as circular dichroism. Nanofiber/nanoparticle composite scaffold was demonstrated to have appropriate mechanical properties as a wound dresser and a sustained release of functional G-CSF. The PCL/NP(G-CSF) scaffold showed a suitable proliferation and well-adherent morphology of stem cells. In vivo study and histopathological evaluation outcome revealed that skin regeneration was dramatically accelerated under PCL/NP(G-CSF) as compared with control groups. Superior fibroblast maturation, enhanced collagen deposition and minimum inflammatory cells were also the beneficial properties of PCL/NP(G-CSF) over the commercial dressing. The synergistic effect of extracellular matrix-mimicking nanofibrous membrane and G-CSF could develop a suitable supportive substrate in order to extensive utilization for the healing of skin wounds. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2830-2842, 2017. © 2017 Wiley Periodicals, Inc.

  8. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  9. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Science.gov (United States)

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Corneal wound healing is compromised by immunoproteasome deficiency.

    Directory of Open Access Journals (Sweden)

    Deborah A Ferrington

    Full Text Available Recent studies have revealed roles for immunoproteasome in regulating cell processes essential for maintaining homeostasis and in responding to stress and injury. The current study investigates how the absence of immunoproteasome affects the corneal epithelium under normal and stressed conditions by comparing corneas from wildtype (WT mice and those deficient in two immunoproteasome catalytic subunits (lmp7(-/-/mecl-1(-/-, L7M1. Immunoproteasome expression was confirmed in WT epithelial cells and in cells of the immune system that were present in the cornea. More apoptotic cells were found in both corneal explant cultures and uninjured corneas of L7M1 compared to WT mice. Following mechanical debridement, L7M1 corneas displayed delayed wound healing, including delayed re-epithelialization and re-establishment of the epithelial barrier, as well as altered inflammatory cytokine production compared to WT mice. These results suggest that immunoproteasome plays an important role in corneal homeostasis and wound healing.

  11. Effects of Buddleja globosa leaf and its constituents relevant to wound healing.

    Science.gov (United States)

    Mensah, A Y; Sampson, J; Houghton, P J; Hylands, P J; Westbrook, J; Dunn, M; Hughes, M A; Cherry, G W

    2001-10-01

    An aqueous extract of Buddleja globosa leaves, used traditionally in Chile for wound healing, was tested for the ability to stimulate growth of fibroblasts in vitro and for antioxidant activity in the same fibroblast cell system challenged with hydrogen peroxide. Low concentrations of the extract gave an increase in fibroblast growth which was not statistically significant but cytotoxicity was observed at concentrations greater than 50 microg/ml. The extract showed strong antioxidant effect and fractionation led to the isolation of three flavonoids and two caffeic acid derivatives, each of which was shown to contribute to the antioxidant effect at concentrations below 10 microg/ml. These activities would accelerate the healing of wounds.

  12. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties

    Czech Academy of Sciences Publication Activity Database

    Abdel-Mohsen, A. M.; Jancar, J.; Massoud, D.; Fohlerová, Z.; Elhadidy, Hassan; Spotz, Z.; Hebeish, A.

    2016-01-01

    Roč. 510, č. 1 (2016), s. 86-99 ISSN 0378-5173 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Chitin/chitosan-glucan complex * Nonwoven mat * Surgical wound healing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.649, year: 2016

  13. Wound healing activity of Ullucus tuberosus, an Andean tuber crop

    OpenAIRE

    Nathalie Heil; Karent Bravo; Andrés Montoya; Sara Robledo; Edison Osorio

    2017-01-01

    Objective: This study was designed to investigate the wound healing activity of aqueous extracts of Ullucus tuberosus (U. tuberosus) using in vitro models. Methods: Lyophilized pulp and acetone extracts of U. tuberosus were produced using ultrasound extraction. The capacity for collagenase activation was evaluated using fluorescence detection of the enzymatic activity. Then, the influence of U. tuberosus extracts on cell proliferation, cell migration and synthesis of the extracellular matr...

  14. Curcumin: a novel therapeutic for burn pain and wound healing

    Science.gov (United States)

    2013-08-01

    given as an adjuvant with the nonsteroidal antiinflammatory drug (NSAID) diclofenac, reduces spontaneous pain behaviors in a formalin-induced orofacial ...R, Hota D, Chakrabarti A. Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother Res 2009;23:507-12...bioavailability 5. Curcumin delivery vehicles 6. Conclusion 7. Expert opinion Review Curcumin: a novel therapeutic for burn pain and wound healing Bopaiah

  15. Partial-thickness burn wounds healing by topical treatment

    OpenAIRE

    Saeidinia, Amin; Keihanian, Faeze; Lashkari, Ardalan Pasdaran; Lahiji, Hossein Ghavvami; Mobayyen, Mohammadreza; Heidarzade, Abtin; Golchai, Javad

    2017-01-01

    Abstract Background: Burns are common event and associated with a high incidence of death, disability, and high costs. Centella asiatica (L.) is a medicinal herb, commonly growing in humid areas in several tropical countries that improve wound healing. On the basis of previous studies, we compared the efficacy of Centiderm versus silver sulfadiazine (SSD) in partial thickness burning patients. Methods: Study population comprised burn victims referred to Velayat Burning Hospital at Rasht, Iran...

  16. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    OpenAIRE

    Datta, Hema Sharma; Mitra, Shankar Kumar; Patwardhan, Bhushan

    2011-01-01

    The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary e...

  17. Evaluation of wound healing property of Caesalpinia mimosoides Lam.

    Science.gov (United States)

    Bhat, Pradeep Bhaskar; Hegde, Shruti; Upadhya, Vinayak; Hegde, Ganesh R; Habbu, Prasanna V; Mulgund, Gangadhar S

    2016-12-04

    Caesalpinia mimosoides Lam. is one of the important traditional folk medicinal plants in the treatment of skin diseases and wounds used by healers of Uttara Kannada district of Karnataka state (India). However scientific validation of documented traditional knowledge related to medicinal plants is an important path in current scenario to fulfill the increasing demand of herbal medicine. The study was carried out to evaluate the claimed uses of Caesalpinia mimosoides using antimicrobial, wound healing and antioxidant activities followed by detection of possible active bio-constituents. Extracts prepared by hot percolation method were subjected to preliminary phytochemical analysis followed by antimicrobial activity using MIC assay. In vivo wound healing activity was evaluated by circular excision and linear incision wound models. The extract with significant antimicrobial and wound healing activity was investigated for antioxidant capacity using DPPH, nitric oxide, antilipid peroxidation and total antioxidant activity methods. Total phenolic and flavonoid contents were also determined by Folin-Ciocalteu, Swain and Hillis methods. Possible bio-active constituents were identified by GC-MS technique. RP-UFLC-DAD analysis was carried out to quantify ethyl gallate and gallic acid in the plant extract. Preliminary phytochemical analysis showed positive results for ethanol and aqueous extracts for all the chemical constituents. The ethanol extract proved potent antimicrobial activity against both bacterial and fungal skin pathogens compared to other extracts. The efficacy of topical application of potent ethanol extract and traditionally used aqueous extracts was evidenced by the complete re-epithelization of the epidermal layer with increased percentage of wound contraction in a shorter period. However, aqueous extract failed to perform a consistent effect in the histopathological assessment. Ethanol extract showed effective scavenging activity against DPPH and nitric

  18. Impact of diabetes on gingival wound healing via oxidative stress.

    Directory of Open Access Journals (Sweden)

    Daisuke Kido

    Full Text Available The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N

  19. Studies on Wound Healing Activity of Heliotropium indicum Linn. Leaves on Rats

    OpenAIRE

    Dash, G. K.; Murthy, P. N.

    2011-01-01

    The petroleum ether, chloroform, methanol, and aqueous extracts of Heliotropium indicum Linn. (Family: Boraginaceae) were separately evaluated for their wound healing activity in rats using excision (normal and infected), incision, and dead space wound models. The effects of test samples on the rate of wound healing were assessed by the rate of wound closure, period of epithelialisation, wound breaking strength, weights of the granulation tissue, determination of hydroxyproline, super oxide d...

  20. Wound healing in pre-tibial injuries--an observation study.

    Science.gov (United States)

    McClelland, Heather M; Stephenson, John; Ousey, Karen J; Gillibrand, Warren P; Underwood, Paul

    2012-06-01

    Pre-tibial lacerations are complex wounds affecting a primarily aged population, with poor healing and a potentially significant impact on social well-being. Management of these wounds has changed little in 20 years, despite significant advances in wound care. A retrospective observational study was undertaken to observe current wound care practice and to assess the effect of various medical factors on wound healing time on 24 elderly patients throughout their wound journey. Wound length was found to be substantively and significantly associated with wound healing time, with a reduction in instantaneous healing rate of about 30% for every increase of 1 cm in wound length. Hence, longer wounds are associated with longer wound healing times. Prescription of several categories of drugs, including those for ischaemic heart disease (IHD), hypertension, respiratory disease or asthma; and the age of the patient were not significantly associated with wound healing times, although substantive significance could be inferred in the case of prescription for IHD and asthma. Despite the small sample size, this study identified a clear association between healing and length of wound. Neither the comorbidities nor prescriptions explored showed any significant association although some seem to be more prevalent in this patient group. The study also highlighted other issues that require further exploration including the social and economic impact of these wounds. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  1. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  2. Partial-thickness burn wounds healing by topical treatment

    Science.gov (United States)

    Saeidinia, Amin; Keihanian, Faeze; Lashkari, Ardalan Pasdaran; Lahiji, Hossein Ghavvami; Mobayyen, Mohammadreza; Heidarzade, Abtin; Golchai, Javad

    2017-01-01

    Abstract Background: Burns are common event and associated with a high incidence of death, disability, and high costs. Centella asiatica (L.) is a medicinal herb, commonly growing in humid areas in several tropical countries that improve wound healing. On the basis of previous studies, we compared the efficacy of Centiderm versus silver sulfadiazine (SSD) in partial thickness burning patients. Methods: Study population comprised burn victims referred to Velayat Burning Hospital at Rasht, Iran. The intervention group received Centiderm and control group SSD cream. Burn wounds were treated once daily at home. All of the wounds were evaluated till complete healing occurred and at the admission, days 3, 7, 14 objective signs; visual acuity score (VAS) and subjective signs were recorded. Re-epithelialization time and complete healing days were recorded. We used random fixed block for randomization. The randomization sequence was created using the computer. Patients and burning specialist physician were blinded. Results: Seventy-five patients randomized into 2 groups; (40 patients: Centiderm group; 35 patients: SSD group). The mean age of them was 30.67 ± 9.91 years and 19 of them were male (31.7%). Thirty patients in Centiderm and 30 patients in SSD group were analyzed. All of objective and subjective signs and mean of re-epithelialization and complete healing were significantly better in Centiderm group rather than SSD group (P < 0.05). There was no infection in Centiderm group. Conclusions: We showed that use of Centiderm ointment not only improved the objective and subjective signs in less than 3 days, but also the re-epithelialization and complete healing rather than SSD without any infection in the subjects. PMID:28248871

  3. Bioinspired porous membranes containing polymer nanoparticles for wound healing.

    Science.gov (United States)

    Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca

    2014-12-01

    Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. © 2014 Wiley Periodicals, Inc.

  4. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing.

    Science.gov (United States)

    Shen, Xian-Rong; Chen, Xiu-Li; Xie, Hai-Xia; He, Ying; Chen, Wei; Luo, Qun; Yuan, Wei-Hong; Tang, Xue; Hou, Deng-Yong; Jiang, Ding-Wen; Wang, Qing-Rong

    2017-10-27

    , sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200 μm, porosity rate of 83.57% ± 2.64%, water vapor transmission ratio (WVTR) of 4500 g/m 2 , tensile strength of 1.79 ± 0.41 N/mm, and elongation at break of 4.52% ± 0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94% ± 5.50%, 29.40% ± 1.10% and 47.24% ± 8.40%, respectively. SSCS also enhanced TGF-β and CD31 expression in the initial stage of the healing period. The SSCS + PU dressing effectively protected wounds from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS + PU dressing also enhanced expression of TGF-β and CD31. The effects of SSCS and SSCS + PU were superior to those of both the chitosan and gauze dressings. SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS + PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.

  5. Treatment with solubilized Silk-Derived Protein (SDP enhances rabbit corneal epithelial wound healing.

    Directory of Open Access Journals (Sweden)

    Waleed Abdel-Naby

    Full Text Available There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.

  6. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  7. Monitoring wound healing by multiphoton tomography/endoscopy

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  8. WOUND HEALING ACTIVITY OF UNGUENTUM DOSAGE FORM OF ETHANOLIC EXTRACTS OF Areca catechu L. NUT IN Mus musculus albinus

    Directory of Open Access Journals (Sweden)

    Azizah Vonna

    2015-10-01

    Full Text Available The activity test of ethanol extract of betel nut ointment (Areca catechu L. in wound healing on mice (Mus musculus albinus has been carried out to determine the ability of the ethanol extract of betel nut ointment in wound healing and determine the concentration which was accelerate the wound healing on mice between 2 concentrations. This experimental research method used completely randomized design (CRD using 20 mices divided into 4 treatment groups ; ointment base, povidone iodine ointment, ethanol extract of betel nut ointment (SEEBP 2% and SEEBP 4%. Each treatment groups was tested in the incision which was made along the 15 mm parallel to the spine (Os. Vetebre with the depth until subcutaneous skin layers. The ointment was applied twice a day for about 21 days and observed changes every day for during the period of observation. The results showed that the average length of time of the scab formation, the scab exfoliation, and the wound healing successively are for the ointment base was 6.6; 10.2 and 18.2 days, povidone iodine ointment was 7; 11.2 and 14.8 days, SEEBP 2% was 5.75; 7.75 and 13.25 days, SEEBP 4% was 4.2; 8.8 and 12.8 days. ANOVA and LSD results of scab formation time showed a significant difference between SEEBP 4% with base ointment and povidone iodine ointment (p <0.05. Results of the exfoliation scab showed a significance difference between SEEBP 2% with base ointment and povidone iodine ointment (p <0.05. The duration of wound healing showed that there was significance difference between SEEBP 2%, SEBP 4% and povidone iodine ointment with ointment base  (p<0.05.Thus, betel nut ointment as an effect on healing process. The concentration which can accelerate wound healing in mice is SEEBP 4%.

  9. Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats.

    Science.gov (United States)

    Reddy, J Suresh; Rao, P Rajeswara; Reddy, Mada S

    2002-02-01

    The ethanolic extracts of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica were evaluated for their wound healing activity in rats. Wound healing activity was studied using excision and incision wound models in rats following topical application. Animals were divided into four groups with six in each group. Ten percent w/v extract of each plant was prepared in saline for topical application. H. indicum possesses better wound healing activity than P. zeylanicum and A. indica. Tensile strength results indicate better activity of H. indicum on remodeling phase of wound healing.

  10. Heterotopic epithelialization presenting as a non-healing scalp wound after surgery

    DEFF Research Database (Denmark)

    Askaner, Gustav; Rasmussen, Rune; Schmidt, Grethe

    2017-01-01

    Patients undergoing cerebral revascularization surgery have a relatively high incidence of wound complications. We report a case of heterotopic epithelialization of the dura presenting as a non-healing scalp wound after an extracranial-intracranial (EC-IC) arterial bypass. The scalp wound...... was revised twice without healing. During the third revision, epithelial tissue was found growing on the dura and was removed. After the epithelial tissue was removed, the wound healed without further complications. This case illustrates the importance of thoroughly examining a non-healing wound to find...

  11. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    Directory of Open Access Journals (Sweden)

    Hema Sharma Datta

    2011-01-01

    Full Text Available The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P < .01, higher collagen content (P < .05 and better skin breaking strength (P < .01 as compared to control group; thus proposing them to be effective prospective anti-aging formulations.

  12. Matrix- and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine.

    Science.gov (United States)

    Sheets, Anthony R; Massey, Conner J; Cronk, Stephen M; Iafrati, Mark D; Herman, Ira M

    2016-07-02

    Non-healing wounds are a major global health concern and account for the majority of non-traumatic limb amputations worldwide. However, compared to standard care practices, few advanced therapeutics effectively resolve these injuries stemming from cardiovascular disease, aging, and diabetes-related vasculopathies. While matrix turnover is disrupted in these injuries, debriding enzymes may promote healing by releasing matrix fragments that induce cell migration, proliferation, and morphogenesis, and plasma products may also stimulate these processes. Thus, we created matrix- and plasma-derived peptides, Comb1 and UN3, which induce cellular injury responses in vitro, and accelerate healing in rodent models of non-healing wounds. However, the effects of these peptides in non-healing wounds in diabetes are not known. Here, we interrogated whether these peptides stimulate healing in a diabetic porcine model highly reminiscent of human healing impairments in type 1 and type 2-diabetes. After 3-6 weeks of streptozotocin-induced diabetes, full-thickness wounds were surgically created on the backs of adult female Yorkshire swine under general anesthesia. Comb1 and UN3 peptides or sterile saline (negative control) were administered to wounds daily for 3-7 days. Following sacrifice, wound tissues were harvested, and quantitative histological and immunohistochemical analyses were performed for wound closure, angiogenesis and granulation tissue deposition, along with quantitative molecular analyses of factors critical for angiogenesis, epithelialization, and dermal matrix remodeling. Comb1 and UN3 significantly increase re-epithelialization and angiogenesis in diabetic porcine wounds, compared to saline-treated controls. Additionally, fluorescein-conjugated Comb1 labels keratinocytes, fibroblasts, and vascular endothelial cells in porcine wounds, and Far western blotting reveals these cell populations express multiple fluorescein-Comb1-interacting proteins in vitro. Further

  13. Sheng-ji Hua-yu formula promotes diabetic wound healing of re-epithelization via Activin/Follistatin regulation.

    Science.gov (United States)

    Kuai, Le; Zhang, Jing-Ting; Deng, Yu; Xu, Shun; Xu, Xun-Zhe; Wu, Min-Feng; Guo, Dong-Jie; Chen, Yu; Wu, Ren-Jie; Zhao, Xing-Qiang; Nian, Hua; Li, Bin; Li, Fu-Lun

    2018-01-29

    Sheng-ji Hua-yu(SJHY) formula is one of the most useful Traditional Chinese medicine (TCM) in the treatment of the delayed diabetic wound. However, elucidating the related molecular biological mechanism of how the SJHY Formula affects excessive inflammation in the process of re-epithelialization of diabetic wound healing is a task urgently needed to be fulfilled. The objectives of this study is to evaluate the effect of antagonisic expression of pro-/anti-inflammatory factors on transforming growth factor-β(TGF-β) superfamily (activin and follistatin) in the process of re-epithelialization of diabetic wound healing in vivo, and to characterize the involvement of the activin/follistatin protein expression regulation, phospho-Smad (pSmad2), and Nuclear factor kappa B p50 (NF-kB) p50 in the diabetic wound healing effects of SJHY formula. SJHY Formula was prepared by pharmaceutical preparation room of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine. Diabetic wound healing activity was evaluated by circular excision wound models. Wound healing activity was examined by macroscopic evaluation. Activin/follistatin expression regulation, protein expression of pSmad2 and NF-kB p50 in skin tissue of wounds were analyzed by Real Time PCR, Western blot, immunohistochemistry and hematoxylin and eosin (H&E) staining. Macroscopic evaluation analysis showed that wound healing of diabetic mice was delayed, and SJHY Formula accelerated wound healing time of diabetic mice. Real Time PCR analysis showed higher mRNA expression of activin/follistatin in diabetic delayed wound versus the wound in normal mice. Western Blot immunoassay analysis showed reduction of activin/follistatin proteins levels by SJHY Formula treatment 15 days after injury. Immunohistochemistry investigated the reduction of pSmad2 and NF-kB p50 nuclear staining in the epidermis of diabetic SJHY versus diabetic control mice on day 15 after wounding. H&E staining revealed that SJHY Formula

  14. Regularity of wound healing in rats irradiated locally with different doses of soft X-rays

    International Nuclear Information System (INIS)

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping

    2002-01-01

    Objective: To study the regular patter of wound healing in rats irradiated locally with different doses of soft X-rays. Methods: Rats were locally irradiated, and wounded immediately thereafter. Gross observation, histopathology and immunohistochemistry examinations, and image analysis were used to study the wound healing process. Results: The authors found that the delayed time of wound healing induced by soft X-ray irradiation of 0.50, 1.01, 1.96, 3,26, 4.00, 5.21 Gy was 1.6, 4.2, 5.4, 6.6, 8.2 and 9.4 days, respectively. Irradiation with 7.0 and 10.0 Gy caused failure of wound healing (up to 40 days). Compared to the non-irradiated wounds, the healing rates of irradiation-impaired wounds were lower during the whole healing process. From day 3 to day 9 after irradiation, the healing rates decreased along with increasing of the radiation dose, indicating the key phase of wound healing was delayed. After irradiation, the collagen synthesis was decreased, its arrangement was disordered, and the structure of granulation tissue was irregular. Conclusion: Soft X-rays irradiation may cause a delay of wound healing in a dose-dependent manner, and irradiation with 7.0 and 10.0 Gy cause failure of wound healing

  15. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds.

    Science.gov (United States)

    Galeano, Mariarosaria; Altavilla, Domenica; Bitto, Alessandra; Minutoli, Letteria; Calò, Margherita; Lo Cascio, Patrizia; Polito, Francesca; Giugliano, Giovanni; Squadrito, Giovanni; Mioni, Chiara; Giuliani, Daniela; Venuti, Francesco S; Squadrito, Francesco

    2006-04-01

    Erythropoietin interacts with vascular endothelial growth factor (VEGF) and stimulates endothelial cell mitosis and motility; thus it may be of importance in the complex phenomenon of wound healing. The purpose of this study was to investigate the effect of recombinant human erythropoietin (rHuEPO) on experimental burn wounds. Randomized experiment. Research laboratory. C57BL/6 male mice weighing 25-30 g. Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second degree burn. Animals were randomized to receive either rHuEPO (400 units/kg/day for 14 days in 100 microL subcutaneously) or its vehicle alone (100 microl/day distilled water for 14 days subcutaneously). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of neoangiogenesis by immunohistochemistry, and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, measurement of VEGF wound content (enzyme-linked immunosorbent assay), expression (Western blot) of endothelial and inducible nitric oxide synthases, and determination of wound nitric oxide (NO) products. rHuEPO increased burn wound reepithelialization and reduced the time to final wound closure. These effects were completely abated by a passive immunization with specific antibodies against erythropoietin. rHuEPO improved healing of burn wound through increased epithelial proliferation, maturation of the extracellular matrix, and angiogenesis. The hematopoietic factor augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31. Furthermore, rHuEPO enhanced the wound content of VEGF caused a marked expression of endothelial and inducible nitric oxide synthases and increased wound content of nitric oxide products. Our study suggests that rHuEPO may be an effective therapeutic approach to improve clinical outcomes after thermal injury.

  16. The bio-positive effects of burned radioactive lantern mantle powder on the wound healing in rats

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, S.M.J.; Rahmani, M.R.; Rahnama, A.; Rashidi-Nejad, H.R.; Ahmadi, J.; Aghaiee, M.M.; Behnejad, B. [Rafsanjan Univ. of Medical Sciences, (Iran, Islamic Republic of)

    2006-07-01

    -level radioactive burned mantle accelerates wound healing in rats. However, as thorium oxide is a known human carcinogen, more research is needed to clarify if low levels of radioactive burned mantle can be utilized for accelerating the healing of human wounds. (authors)

  17. Low Intensity Laser Therapy Applied in the Healing of Wounds

    Science.gov (United States)

    Kahn, Fred; Matthews, Jeffrey

    2009-06-01

    Objective: The aim of this study was to determine the outcomes of Low Intensity Laser Therapy (LILT) on wound healing for patients presenting with pain, compromised neurological and physical function and tissue damage associated with vascular/diabetic ulcerations of the lower extremity. Methods: A retrospective case review of six patients treated with LILT (GaAlAs SLD, 660 nm, 750 mW, 3.6 J/cm2; GaAlAs SLD, 840 nm, 1,500 mW, 6.48 J/cm2; GaAlAs laser, 830 nm, 75 mW, 270 J/cm2) was conducted of clinical features including pain, measured by visual analogue scale (VAS), motor function, measured by range of motion (ROM) and visual outcome, measured by wound dimensions for six patients (n = 6; 5 males, 1 female; age = 67.83 years). Results: Significant progress with regard to alleviation of pain (ΔVAS = -5), improvements in motor function (ΔROM = +40%), epithelialization (wound closure rate = 3%/week) and complete wound closure was achieved. No recurrence of pathology at least one month post cessation of therapy was evident (x¯% reduction in wound area = 100%). Conclusions: LILT achieved consistent, effective and clear endpoints, was cost effective, created no adverse effects and ultimately led to the salvage of extremities.

  18. Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats.

    Science.gov (United States)

    Ishak, Wan Maznah Wan; Katas, Haliza; Yuen, Ng Pei; Abdullah, Maizaton Atmadini; Zulfakar, Mohd Hanif

    2018-04-17

    Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p < 0.05) being observed at day 14. EPO induced early deposition of collagen as evaluated by Masson trichrome staining that correlated well with the hydroxyproline content assay, with the highest level at days 3 and 7. Vascular endothelial growth factor (VEGF) showed greater amount of new microvasculature formed in the EPO-treated group, while moderate improvement occurs in the LO and OO groups. EPO increased both the expression of proinflammatory cytokines and growth factors in the early stage of healing and declined at the later stage of healing. LO modulates the proinflammatory cytokines and chemokine but did not affect the growth factors. In contrast, OO induced the expression of growth factors rather than proinflammatory cytokines. These data suggest that LO, EPO, and OO emulsions promote wound healing but they accomplish this by different mechanisms.

  19. Wound healing properties of jojoba liquid wax: an in vitro study.

    Science.gov (United States)

    Ranzato, Elia; Martinotti, Simona; Burlando, Bruno

    2011-03-24

    The wound healing properties of jojoba (Simmondsia chinensis) liquid wax (JLW) were studied in vitro on HaCaT keratinocytes and human dermal fibroblasts, which are involved in wounded skin repair. JLW cytotoxicity was evaluated by the crystal violet staining and the neutral red uptake endpoint. Induction of wound healing by JLW was assessed by scratch wound assay on cell monolayers. The involvement of signaling pathways was evaluated by the use of the Ca(2+) chelator BAPTA and of kinase inhibitors, and by Western blot analysis of cell lysates using anti-phospho antibodies. Collagen and gelatinase secretion by cells were assayed by in-cell ELISA and zymography analysis, respectively. Cytotoxicity assays showed that the toxic effects of JLW to these cells are extremely low. Scratch wound experiments showed that JLW notably accelerates the wound closure of both keratinocytes and fibroblasts. The use of inhibitors and Western blot revealed that the mechanism of action of JLW is strictly Ca(2+) dependent and requires the involvement of the PI3K-Akt-mTOR pathway and of the p38 and ERK1/2 MAPKs. In addition, JLW was found to stimulate collagen I synthesis in fibroblasts, while no effect was detected on the secretion of MMP-2 and MMP-9 gelatinases by HaCaT or fibroblasts. Taken together, data provide a pharmacological characterization of JLW properties on skin cells and suggest that it could be used in the treatment of wounds in clinical settings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing.

    Science.gov (United States)

    Alibolandi, Mona; Mohammadi, Marzieh; Taghdisi, Seyed Mohammad; Abnous, Khalil; Ramezani, Mohammad

    2017-10-30

    There is a clinical need for a novel, more efficient therapy for full thickness wound healing. In the current study, curcumin encapsulated PEG-PLA [poly(lactide)-block-poly(ethylene glycol)] nanomicelles were incorporated into dextran hydrogel for a full thickness dermal wound healing application. To assess the application of the hydrogel as a therapeutic wound dressing, its morphology, swelling pattern, kinetics of degradation, and capacity to control curcumin release were evaluated. It was found that the prepared hybrid hydrogel had acceptable biocompatibility, incorporation capacity of curcumin nanomicelles, and mechanical properties. An in vitro release experiment also demonstrated the sustained release of curcumin from dextran hydrogel, which was first controlled by the diffusion of curcumin from hydrogel and continued through hydrogel matrix erosion at the terminal phase. An in vivo wound healing experiment was carried out using dressing hydrogels on full thickness wounds in BALB/c mice. An histological study demonstrated that the application of curcumin nanomicelles incorporated hydrogel could significantly augment the re-epithelialization of epidermis and collagen deposition in the wound area. Expression of CD31 and vimentin in wound tissue was investigated using immunohistochemistry tests on the eighth day post wounding. The results obtained demonstrated that curcumin nanomicelles incorporated hydrogel could significantly accelerate angiogenesis, fibroblast accumulation, and the process of wound healing. Together, the data indicate that the prepared hybrid curcumin PEG-PLA nanomicelles incorporated dextran hydrogel is a promising candidate for full thickness wound treatment that increases re-epithelialization, collagen deposition, angiogenesis, and tissue granulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Wound-healing activity of a proteolytic fraction from Carica candamarcensis on experimentally induced burn.

    Science.gov (United States)

    Gomes, Flávia S L; Spínola, Cássia de V; Ribeiro, Henrique A; Lopes, Miriam T P; Cassali, Geovanni D; Salas, Carlos E

    2010-03-01

    Carica candamarcensis is a species from the Caricaceae family whose immature fruit contains latex with large amounts of cysteine proteinases. In prior studies, we isolated two of these enzymes displaying mitogenic activity when incubated with L929 fibroblastic cells. One of the fractions containing these enzymes (P1G10) was shown to enhance wound healing of skin and to accelerate healing of chemically induced gastric ulcer. In this study we evaluate the effect of P1G10 on heat-induced, third-degree burn using a rodent model. The results show that 0.1% P1G10 accelerates epithelisation while the effect of 1% or 0.01% P1G10 is not significantly different to 1% silver sulphadiazine, 2% papain or the hydrosoluble vehicle used as control. In a double-blind randomised experiment comparing the healing response of 0.1%, 1% and the vehicle alone, we confirmed the enhanced healing property of P1G10. Histological analysis of burn-tissue sections following treatment with P1G10 support these observations. These results extend the healing properties of these groups of enzymes to a different type of trauma and open the way to future clinical applications. Copyright (c) 2009 Elsevier Ltd and ISBI. All rights reserved.

  2. Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2016-12-01

    Application of natural materials in wound healing is an interest topic due to effective treatment with no side effects. In this paper, Aloe Vera extract was encapsulated into Tragacanth Gum through a sonochemical microemulsion process to prepare a wound healing product. FESEM/EDX and FT-IR proved the successfully formation of the nanocapsules with spherical shape by cross-linking aluminum ions with Tragacanth Gum. The therapeutic characteristics of the prepared wound healing product were investigated using antimicrobial, cytotoxicity and wound healing assays. Relative high antimicrobial activities with the microbial reduction of 84, 91 and 80% against E. coli, S. aureus and C. albicans, a cell viability of 98% against human fibroblast cells and a good wound healing activity with considerable migration rate of fibroblast cells are the important advantages of the new formed wound healing product. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  4. Effects of topical negative pressure therapy on tissue oxygenation and wound healing in vascular foot wounds.

    Science.gov (United States)

    Chiang, Nathaniel; Rodda, Odette A; Sleigh, Jamie; Vasudevan, Thodur

    2017-08-01

    Topical negative pressure (TNP) therapy is widely used in the treatment of acute wounds in vascular patients on the basis of proposed multifactorial benefits. However, numerous recent systematic reviews have concluded that there is inadequate evidence to support its benefits at a scientific level. This study evaluated the changes in wound volume, surface area, depth, collagen deposition, and tissue oxygenation when using TNP therapy compared with traditional dressings in patients with acute high-risk foot wounds. This study was performed with hospitalized vascular patients. Forty-eight patients were selected with an acute lower extremity wound after surgical débridement or minor amputation that had an adequate blood supply without requiring further surgical revascularization and were deemed suitable for TNP therapy. The 22 patients who completed the study were randomly allocated to a treatment group receiving TNP or to a control group receiving regular topical dressings. Wound volume and wound oxygenation were analyzed using a modern stereophotographic wound measurement system and a hyperspectral transcutaneous oxygenation measurement system, respectively. Laboratory analysis was conducted on wound biopsy samples to determine hydroxyproline levels, a surrogate marker to collagen. Differences in clinical or demographic characteristics or in the location of the foot wounds were not significant between the two groups. All patients, with the exception of two, had diabetes. The two patients who did not have diabetes had end-stage renal failure. There was no significance in the primary outcome of wound volume reduction between TNP and control patients on day 14 (44.2% and 20.9%, respectively; P = .15). Analyses of secondary outcomes showed a significant result of better healing rates in the TNP group by demonstrating a reduction in maximum wound depth at day 14 (36.0% TNP vs 17.6% control; P = .03). No significant findings were found for the other outcomes of changes

  5. Studies of the effect of grasshopper abdominal secretion on wound healing with the use of murine model.

    Science.gov (United States)

    Buszewska-Forajta, M; Siluk, D; Daghir-Wojtkowiak, E; Sejda, A; Staśkowiak, D; Biernat, W; Kaliszan, R

    2015-12-24

    Grasshopper, belonging to Chorthippus sp., is a widespread insect inhabiting Polish territory. According to folk knowledge and folk tales, the grasshopper abdominal secretion was used by villagers of Central and South-West Poland as a natural drug accelerating the wound healing process. In the reported study the hypothesis about beneficial properties of grasshopper abdominal secretion on hard to heal wounds was verified. The study was carried out with the use of a murine model (mice C57BL/6). In order to verify the beneficial properties of grasshopper abdominal secretion, the wounds of 8mm in diameter were formed on one side of each tested mouse. The influence of ethanolic extract of insects' secretion on healing process was evaluated in comparison to ethanolic solution of allantoin and 30% aqueous solution of ethanol (medium). The observation was carried out over a 14 day period. Finally the statistical analysis (ANOVA) was carried out to highlight the differences in wound healing rate between applied preparations. Moreover, qualitative composition of grasshoppers' secretion was studied with the use of GC/MS technique. During the first three days of observation, wounds treated with allantoin were healed with higher efficiency in comparison to ethanol and insect secretion preparations. The trend of healing changed from the 4th day of observation. Wounds treated with grasshoppers' abdominal secretion were closuring faster than wounds treated with allantoin or ethanol. In this part of observation, in the case of allantoin and ethanol application, the wound healing efficiency was similar. Since the 9th day of experiment the measurement of wounds size was problematic, due to crust formation. Finally at the 14th day of the study, wounds were totally healed. Morphological study enabled to observe all the phases of healing. In the 5th and 8th day, the infiltration of neutrophils and mononuclear cells in dermis was observed, which is characteristic for inflammatory phase

  6. The occurrence of biofilm in an equine experimental wound model of healing by secondary intention

    DEFF Research Database (Denmark)

    Jørgensen, Elin Lisby Kastbjerg; Bay, Lene; Bjarnsholt, Thomas

    2017-01-01

    impaired healing. Presence of biofilm in tissue biopsies was assessed by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) and confocal laser scanning microscopy (CLSM). Bandaged limb wounds developed EGT and displayed delayed healing, while shoulder and un-bandaged limb wounds healed.......009). The finding that biofilm was most prevalent in bandaged limb wounds with EGT formation suggests that biofilm may be linked to delayed wound healing in horses, as has been observed in humans. The inability to clear bacteria could be related to hypoxia and low-grade inflammation in the EGT, but the interaction......In humans, biofilm is a well-known cause of delayed healing and low-grade inflammation of chronic wounds. In horses, biofilm formation in wounds has been studied to a very limited degree. The objective of this study was thus to investigate the occurrence of biofilm in equine experimental wounds...

  7. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model.

    Science.gov (United States)

    Suzuki, Ryoichi; Takakuda, Kazuo

    2016-11-01

    This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm 2 . Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm 2 irradiation, compared to the control and 10 J/cm 2 irradiation groups (p diode laser with energy density of 1 and 5 J/cm 2 enhanced wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.

  8. [Relationship between FoxO1 Expression and Wound Age during Skin Incised Wound Healing].

    Science.gov (United States)

    Chen, Y; Ji, X Y; Fan, Y Y; Yu, L S

    2018-02-01

    To investigate FoxO1 expression and its time-dependent changes during the skin incised wound healing. After the establishment of the skin incised wound model in mice, the FoxO1 expression of skin in different time periods was detected by immunohistochemistry and Western blotting. Immunohistochemistry staining showed that FoxO1 was weakly expressed in a few fibroblasts of epidermis, hair follicles, sebaceous glands, vessel endothelium and dermis in the control group. The FoxO1 expression was enhanced in the epidermis and skin appendages around the wound during 6-12 h after injury, which could be detected in the infiltrating neutrophils and a small number of monocytes. FoxO1 was mainly expressed in monocytes during 1-3 d after injury, and in neovascular endothelial cells and fibroblasts during 5-10 d. On the 14th day after injury, the FoxO1 expression still could be detected in a few fibroblasts. The Western blotting results showed that the FoxO1 expression quantity of the tissue samples in injury group was higher than in control group. The FoxO1 expression peaked at 12 h and 7 d after injury. FoxO1 is time-dependently expressed in skin wound healing, which can be a useful marker for wound age determination. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  9. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with PRP-containing fragmin/protamine microparticles (PRP&F/P MPs).

    Science.gov (United States)

    Takikawa, Megumi; Ishihara, Masayuki; Takabayashi, Yuki; Sumi, Yuki; Takikawa, Makoto; Yoshida, Ryuichi; Nakamura, Shingo; Hattori, Hidemi; Yanagibayashi, Satoshi; Yamamoto, Naoto; Kiyosawa, Tomoharu

    2015-04-13

    The purpose of this study was to evaluate the accelerating effects of platelet-rich plasma-containing (PRP&) fragmin/protamine microparticles (F/P MPs) for repairing mitomycin C-treated healing-impaired wounds. Staining with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL-staining) showed that apoptosis of dermal fibroblast cells (DFCs) and epidermal keratinocyte cells (EKCs) were significantly induced in the skin of the mitomycin C-treated rats. Full-thickness skin defects were made on the back of rats and mitomycin C was applied on the wounds to prepare a healing-impaired wound. After washing out the mitomycin C, saline (control), F/P MPs alone, PRP alone, and PRP&F/P MPs were injected around the wounds. The rats were later euthanised and histological sections of the wounds were then prepared at indicated time periods after the treatment. These results indicated the numbers of large, medium, and small capillary lumens 7 days after injection of PRP&F/P MPs were significantly higher than those after injection of PRP or F/P MPs alone. Furthermore, epithelium and granulation tissue formations were significantly stimulated in the healing-impaired wounds treated with PRP&F/P MPs 3, 7 and 14 days after injection of PRP&F/P MPs.

  10. Poly (3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) hydrogel promotes angiogenesis and collagen deposition during cutaneous wound healing in rats.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Razaif-Mazinah, Mohd Rafais Mohd; Anis, Siti Nor Syairah; Annuar, Mohamad Suffian Mohamad

    2015-07-08

    Wound management and healing in several physiological or pathological conditions, particularly when comorbidities are involved, usually proves to be difficult. This presents complications leading to socio-economic and public health burdens. The accelerative wound healing potential of biocompatible poly(3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) (PHA-PCL) composite hydrogel is reported herein. The biosynthesized PHA-PCL macromer was cross-linked with PEGMA to give a hydrogel. Twenty-four rats weighing 200-250 g each were randomly assigned to four groups of six rats. Rats in group I (negative control) were dressed with sterilized gum acacia paste in 10% normal saline while PEGMA-alone hydrogel (PH) was used to dress group II (secondary control) rats. Group III rats were dressed with PHAs-PCL cross-linked PEGMA hydrogel (PPH). For the positive control (group IV), the rats were dressed with Intrasite(®) gel. Biochemical, histomorphometric and immunohistomorphometric analyses revealed a significant difference in area closure and re-epithelialization on days 7 and 14 in PPH or Intrasite(®) gel groups compared to gum acacia or PEGMA-alone groups. Furthermore, wounds dressed with PPH or Intrasite(®) gel showed evident collagen deposition, enhanced fibrosis and extensively organized angiogenesis on day 14 compared to the negative control group. While improvement in wound healing of the PH dressed group could be observed, there was no significant difference between the negative control group and the PH dressed group in any of the tests. The findings suggested that topical application of PPH accelerated the rats' wound healing process by improving angiogenesis attributed to the increased microvessel density (MVD) and expressions of VEGF-A in tissue samples. Thus, PPH has been demonstrated to be effective in the treatment of cutaneous wounds in rats, and could be a potential novel agent in the management and acceleration of wound healing in humans and animals.

  11. Biological studies on Brazilian plants used in wound healing.

    Science.gov (United States)

    Schmidt, C; Fronza, M; Goettert, M; Geller, F; Luik, S; Flores, E M M; Bittencourt, C F; Zanetti, G D; Heinzmann, B M; Laufer, S; Merfort, I

    2009-04-21

    n-Hexanic and ethanolic extracts from twelve plants (Brugmansia suaveolens Brecht. et Presl., Eupatorium laevigatum Lam., Galinsoga parviflora Cav., Iresine herbstii Hook., Kalanchöe tubiflora Hamet-Ahti, Petiveria alliacea L., Pluchea sagittalis (Lam.) Cabrera, Piper regnellii DC., Schinus molle L., Sedum dendroideum Moç et Sessé ex DC., Waltheria douradinha St. Hill., Xanthium cavanillesii Schouw.) used in traditional South Brazilian medicine as wound healing agents were investigated in various biological assays, targeting different aspects in this complex process. The extracts were investigated on NF-kappaB DNA binding, p38alpha MAPK, TNF-alpha release, direct elastase inhibition and its release as well as on caspase-3. Fibroblasts migration to and proliferation into the wounded monolayers were evaluated in the scratch assay, the agar diffusion test for antibacterial and the MTT assay for cytotoxic effects. The hydrophilic extracts from Galinsoga parviflora, Petiveria alliacea, Schinus molle, Waltheria douradinha and Xanthium cavanillesii as well as the lipophilic extract of Waltheria douradinha turned out to be the most active ones. These results increase our knowledge on the wound healing effects of the investigated medicinal plants. Further studies are necessary to find out the effective secondary metabolites responsible for the observed effects.

  12. Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing.

    Science.gov (United States)

    Pawar, Harshavardhan V; Boateng, Joshua S; Ayensu, Isaac; Tetteh, John

    2014-06-01

    Wafers combining weight ratios of Polyox with carrageenan (75/25) or sodium alginate (50/50) containing streptomycin and diclofenac were prepared to improve chronic wound healing. Gels were freeze-dried using a lyophilisation cycle incorporating an annealing step. Wafers were characterised for morphology, mechanical and in vitro functional (swelling, adhesion, drug release in the presence of simulated wound fluid) characteristics. Both blank (BLK) and drug-loaded (DL) wafers were soft, flexible, elegant in appearance and non-brittle in nature. Annealing helped to improve porous nature of wafers but was affected by the addition of drugs. Mechanical characterisation demonstrated that the wafers were strong enough to withstand normal stresses but also flexible to prevent damage to newly formed skin tissue. Differences in swelling, adhesion and drug release characteristics could be attributed to differences in pore size and sodium sulphate formed because of the salt forms of the two drugs. BLK wafers showed relatively higher swelling and adhesion than DL wafers with the latter showing controlled release of streptomycin and diclofenac. The optimised dressing has the potential to reduce bacterial infection and can also help to reduce swelling and pain associated with injury due to the anti-inflammatory action of diclofenac and help to achieve more rapid wound healing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Repairing effects of Iran flora on wound healing

    Directory of Open Access Journals (Sweden)

    Mohammad Afshar

    2015-04-01

    Full Text Available The skin is the largest and the heaviest organ in the human body which, in addition to its important roles in the protection, waste removal, and contribution to vitamin D synthesis. As an important sensory organ, it can play a major role in the maintenance of homeostasis in the body. Total loss of of the skin integrity can cause harms and diseases that lead to physical disability and even death. Therefore, one of the main problem faced by medical science so far, is the question of .wound healing in the shortest possible time and with minimal side effects. Increasing the wound healing rate leads to positive financial and health results. Thus, several studies on new therapeutic techniques such as use of chemical drugs, herbal medication and homeopathy have been done. Moreover, physical methods such as laser therapy and other treatmentshave been constantly improving. In recent decades, the use of herbal medicine, as an effective method, has been progressing in most countries including Iran. In the traditional medicine of Iran various methods of using plants for the treatment of diseases are common. This is actually justifiable due to the geographic diversity of the flora in Iran. In the present paper the effectivity of the cut healing properties of some medicinal herbs in Iran is discussed.

  14. Transmittance and scattering during wound healing after refractive surgery

    Science.gov (United States)

    Mar, Santiago; Martinez-Garcia, C.; Blanco, J. T.; Torres, R. M.; Gonzalez, V. R.; Najera, S.; Rodriguez, G.; Merayo, J. M.

    2004-10-01

    Photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) are frequent techniques performed to correct ametropia. Both methods have been compared in their way of healing but there is not comparison about transmittance and light scattering during this process. Scattering in corneal wound healing is due to three parameters: cellular size and density, and the size of scar. Increase in the scattering angular width implies a decrease the contrast sensitivity. During wound healing keratocytes activation is induced and these cells become into fibroblasts and myofibroblasts. Hens were operated using PRK and LASIK techniques. Animals used in this experiment were euthanized, and immediately their corneas were removed and placed carefully into a cornea camera support. All optical measurements have been done with a scatterometer constructed in our laboratory. Scattering measurements are correlated with the transmittance -- the smaller transmittance is the bigger scattering is. The aim of this work is to provide experimental data of the corneal transparency and scattering, in order to supply data that they allow generate a more complete model of the corneal transparency.

  15. Ovariectomy delays alveolar wound healing after molar extractions in rats.

    Science.gov (United States)

    Pereira, Michele Conceição; Zecchin, Karina Gottardello; Campagnoli, Eduardo Bauml; Jorge, Jacks

    2007-11-01

    This study was conducted to investigate the morphological effects of the absence of estrogen on alveolar wound healing of young female rats after tooth extraction. A total of 60 4- to 6-week-old female rats underwent bilateral ovariectomy (OVX) or sham operations. Three weeks later, the first mandibular molars were extracted. Subsequently, the animals were killed by cervical dislocation 3, 5, 7, 14, 21, or 28 days after tooth extraction. The mandibles were removed, and serial transversal sections of mesial alveolus of the first mandibular molars were obtained for histometric analysis. OVX sockets showed significant increases in fibroblasts and collagen content 3 and 5 days after the extractions, followed by significant decreases in these parameters in the subsequent periods. In accordance with the decreased collagen content in the latest period of healing, new bone formation was significantly reduced in the OVX animals. These findings suggest that the initial molecular changes observed in the absence of estrogen lead to delayed alveolar wound healing.

  16. PRFM enhance wound healing process in skin graft.

    Science.gov (United States)

    Reksodiputro, Mirta; Widodo, Dini; Bashiruddin, Jenny; Siregar, Nurjati; Malik, Safarina

    2014-12-01

    Facial plastic and reconstructive surgery often used skin graft on defects that cannot be covered primarily by a local flap. However, wound healing using skin graft is slow, most of the time the graft is contractured and the take of graft is not optimal. Platelet rich fibrin matrix (PRFM) is a new generation of concentrated platelets that produce natural fibrin and reported to speed up the healing process. Application of PRFM in the skin graft implants is expected to increase the survival of the graft. We used porcine as animal models to elucidate the effect of autologous PRFM on wound healing in full-thickness (FTSG) and split-thickness (STSG) skin grafts. Survival level of the skin graft was determined by using ImageJ software based on the formation of collagen type 1 and graft take. We observed that the use of PRFM in FTSG and STSG increased type 1 collagen formation. We also found that PRFM addition in STSG gave the best skin graft take. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Tissue repair genes: the TiRe database and its implication for skin wound healing

    OpenAIRE

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that ...

  18. Wound repair and factors influencing healing in veterinary clinical medicine I.

    OpenAIRE

    Kudrnová, Adéla

    2010-01-01

    Wound healing in both human and veterinary medicine is essential physological process important for the survival of any species. Not only the internal (nutritional status, age, tissue hypoxia, etc.) and external (infections, medication, physical - chemical external influences, etc.) factors affect each stage of wound healing and its success, but also the overall treatment and choice of covering material. Wound healing is a natural process and sometimes takes place without any problems, themse...

  19. Caveolin-1 as a Novel Indicator of Wound-Healing Capacity in Aged Human Corneal Epithelium

    OpenAIRE

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1–dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged a...

  20. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  1. [Healing of a deep skin wound using a collagen sponge as dressing in the animal experiment].

    Science.gov (United States)

    Sedlarik, K M; Schoots, C; Oosterbaan, J A; Klopper, J P

    1992-10-01

    The high number of available wound dressing materials as well as the scientific reports about the topic indicates that the problem of an ideal wound dressing is not jet solved. In the last thirty years lot of scientific reports about collagen as wound covering has been published. The positive effect of collagen by his application on a wound ist well known. We investigated the effect of a collagen sponge on healing of full thickness skin wound in guinea pig. The animals were divided in two control groups and two experimental groups. In the control group there were air exposed wounds and another wounds covered with paraffin gauze. In the experimental groups were such wounds covered with natural reconstituted collagen sponge as well as wounds covered with chemically prepared collagen sponge with hexamethyldiisocyanat. The results were compared. The air exposed wounds healed in 50 days, the wounds covered with paraffin gauze healed in 48 days. By covering the wounds with collagen sponge the healing was shortened in 24 or 27 days respectively. Not only the healing time was shortened but also the quality of the wound repair by dressing the wounds with collagen sponge was enhanced.

  2. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes

    OpenAIRE

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A.

    2016-01-01

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper io...

  3. Effects on Glycemic Control in Impaired Wound Healing in Spontaneously Diabetic Torii (SDT) Fatty Rats.

    Science.gov (United States)

    Katsuhiro, Miyajima; Hui Teoh, Soon; Yamashiro, Hideaki; Shinohara, Masami; Fatchiyah, Fatchiyah; Ohta, Takeshi; Yamada, Takahisa

    2018-02-01

    Impaired diabetic wound healing is an important issue in diabetic complications. The present study aims to evaluate the protective effect on glycemic control against impaired diabetic wound healing using a diabetic rat model. We investigated the wound healing process and effect on the impaired wound repair by glycemic control in the Spontaneously Diabetic Torii (SDT) fatty rat, which is a new animal model of obese type 2 diabetes and may be a good model for study impaired wound healing. Male SDT fatty rats at 15 weeks of age were administered orally with sodium glucose co-transporter (SGLT) 2 inhibitor for 3 weeks. Wounds were induced at 2 weeks after SGLT 2 inhibitor treatment, and the wound areas were periodically examined in morphological and histological analyses. The SDT fatty rats showed a delayed wound healing as compared with the normal rats, but a glycemic control improved the impaired wound healing. In histological analysis in the skin of SDT fatty rats showed severe infiltration of inflammatory cell, hemorrhage and many bacterial masses in the remaining and slight fibrosis of crust on skin tissue . Thought that this results skin performance to be a delay of crust formation and regeneration of epithelium; however, these findings were ameliorated in the SGLT 2 inhibitor treated group. Glycemic control is effective for treatment in diabetic wounds and the SDT fatty rat may be useful to investigate pathophysiological changes in impaired diabetic wound healing.

  4. Age-related aspects of cutaneous wound healing: a mini-review.

    Science.gov (United States)

    Sgonc, Roswitha; Gruber, Johann

    2013-01-01

    As the aging population in developed countries is growing in both numbers and percentage, the medical, social, and economic burdens posed by nonhealing wounds are increasing. Hence, it is all the more important to understand the mechanisms underlying age-related impairments in wound healing. The purpose of this article is to give a concise overview of (1) normal wound healing, (2) alterations in aging skin that have an impact on wound repair, (3) alterations in the repair process of aged skin, and (4) general factors associated with old age that might impair wound healing, with a focus on the literature of the last 10 years. Copyright © 2012 S. Karger AG, Basel.

  5. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  6. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice.

    Science.gov (United States)

    Choi, Seong Mi; Lee, Kyoung-Mi; Kim, Hyun Jung; Park, Ik Kyu; Kang, Hwi Ju; Shin, Hang-Cheol; Baek, Dawoon; Choi, Yoorim; Park, Kwang Hwan; Lee, Jin Woo

    2018-01-15

    able to accelerate wound healing including re-epithelialization, neovascularization, and collagen deposition. Consequentially, these ST-EGF and ST-bFGF-loaded HCD matrix may be used as future therapeutic agents in patients with diabetic foot ulcers. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Chitosan-based films composites for wound healing purposes

    International Nuclear Information System (INIS)

    Alves, Natali de O.; Silva, Gabriela T. da; Schulz, Gracelie A.S.; Fajardo, Andre R.

    2015-01-01

    Chitosan has been extensively applied in the developing of biomaterials due to its desirable good physico-chemical and biological properties. According to this, here films composite of chitosan, poly(vinyl alcohol) and bovine bone powder were prepared by casting willing to be applied in wound healing purposes. Moreover, the first step was the developing of a suitable method to obtain bovine bone powder, which was utilized here as filler. All the materials and films were fully characterized by FTIR, DRX and thermal analysis. Water uptake capacity was measured by swelling assays. (author)

  8. Effects of Minoxidil Gel on Burn Wound Healing in Rats

    OpenAIRE

    Khazaeli, Payam; Karamouzian, Mohammad; Rohani, Shohreh; Sadeghirad, Behnam; Ghalekhani, Nima

    2014-01-01

    Minoxidil has been reported to inhibit in-vitro fibroblast proliferation and lysyl hydroxylase activity, a key enzyme in collagen biosynthesis. These in-vitro effects proposed minoxidil to be a potential antifibrotic agent. The present study aimed to investigate the effects of minoxidil gel on wound healing procedure in a second-degree burn model in rats. Wistar rats were anesthetized and a second-degree burn was induced on the back of Wistar rats using a heated 2 cm diameter metal plate. Exp...

  9. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing.

    Science.gov (United States)

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.

  10. Upregulation of BAG3 with apoptotic and autophagic activities in maggot extract‑promoted rat skin wound healing.

    Science.gov (United States)

    Dong, Jian-Li; Dong, Hai-Cao; Yang, Liang; Qiu, Zhe-Wen; Liu, Jia; Li, Hong; Zhong, Li-Xia; Song, Xue; Zhang, Peng; Li, Pei-Nan; Zheng, Lian-Jie

    2018-03-01

    Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.

  11. The effects of psychological interventions on wound healing: A systematic review of randomized trials.

    Science.gov (United States)

    Robinson, Hayley; Norton, Sam; Jarrett, Paul; Broadbent, Elizabeth

    2017-11-01

    Psychological stress has been shown to delay wound healing. Several trials have investigated whether psychological interventions can improve wound healing, but to date, this evidence base has not been systematically synthesized. The objective was to conduct a systematic review of randomized controlled trials in humans investigating whether psychological interventions can enhance wound healing. A systematic review was performed using PsychINFO, CINAHL, Web of Science, and MEDLINE. The searches included all papers published in English up until September 2016. The reference lists of relevant papers were screened manually to identify further review articles or relevant studies. Nineteen studies met inclusion criteria and were included in the review. Fifteen of nineteen studies were of high methodological quality. Six studies were conducted with acute experimentally created wounds, five studies with surgical patients, two studies with burn wounds, two studies with fracture wounds, and four studies were conducted with ulcer wounds. Post-intervention standardized mean differences (SMD) between groups across all intervention types ranged from 0.13 to 3.21, favouring improved healing, particularly for surgical patients and for relaxation interventions. However, there was some evidence for publication bias suggesting negative studies may not have been reported. Due to the heterogeneity of wound types, population types, and intervention types, it is difficult to pool effect sizes across studies. Current evidence suggests that psychological interventions may aid wound healing. Although promising, more research is needed to assess the efficacy of each intervention on different wound types. Statement of contribution What is already known on this subject? Psychological stress negatively affects wound healing. A number of studies have investigated whether psychological interventions can improve healing. However, no systematic reviews have been conducted. What does this study add

  12. Longitudinal Evaluation of Wound Healing after Penetrating Corneal Injury: Anterior Segment Optical Coherence Tomography Study.

    Science.gov (United States)

    Zheng, Kang Keng; Cai, Jianhao; Rong, Shi Song; Peng, Kun; Xia, Honghe; Jin, Chuan; Lu, Xuehui; Liu, Xinyu; Chen, Haoyu; Jhanji, Vishal

    2017-07-01

    Ocular imaging can enhance our understanding of wound healing. We report anterior segment optical coherence tomography (ASOCT) findings in penetrating corneal injury. Serial ASOCT was performed after repair of penetrating corneal injury. Internal aberrations of wound edges were labeled as "steps" or "gaps" on ASOCT images. The wound type was characterized as: type 1: continuous inner wound edge or step height ≤ 80 µm; type 2: step height > 80 µm; type 3: gap between wound edges; and type 4: intraocular tissue adherent to wound. Surgical outcomes of different wound types were compared. 50 consecutive patients were included (6 females, 44 males; mean age 33 ± 12 years). The average size of wound was 4.2 ± 2.6 mm (type 1, 8 eyes; type 2, 27 eyes; type 3, 12 eyes; type 4, 3 eyes). At the end of 3 months, 70% (n = 35) of the wounds were type 1. At the end of 6 months, all type 1 wounds had healed completely, whereas about half of type 2 (48.1%) and type 3 (50%) wounds had recovered to type 1 configuration. The wound type at baseline affected the height of step (p = 0.047) and corneal thickness at 6 months (p = 0.035). ASOCT is a useful tool for monitoring wound healing in cases with penetrating corneal injury. Majority of the wound edges appose between 3 and 6 months after trauma. In our study, baseline wound configuration affected the healing pattern.

  13. Shedding Light on a New Treatment for Diabetic Wound Healing: A Review on Phototherapy

    Directory of Open Access Journals (Sweden)

    Nicolette N. Houreld

    2014-01-01

    Full Text Available Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cells in vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP. In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation both in vitro and in vivo in diabetic wound healing.

  14. Healing of excisional wound in alloxan induced diabetic sheep: A planimetric and histopathologic study

    Directory of Open Access Journals (Sweden)

    Farshid Sarrafzadeh-Rezaei

    2013-09-01

    Full Text Available Healing of skin wound is a multi-factorial and complex process. Proper treatment of diabetic wounds is still a major clinical challenge. Although diabetes mellitus can occur in ruminants, healing of wounds in diabetic ruminants has not yet been investigated. The aim of this study was to evaluate healing of ovine excisional diabetic wound model. Eight 4-month-old Iranian Makoui wethers were equally divided to diabetic and nondiabetic groups. Alloxan monohydrate (60 mg kg-1, IV was used for diabetes induction. In each wether, an excisional wound was created on the dorsum of the animal. Photographs were taken in distinct times for planimetric evaluation. Wound samples were taken on day 21 post-wounding for histopathologic evaluations of epidermal thickness, number of fibroblasts and number of new blood vessels. The planimetric study showed slightly delay in wound closure of diabetic animals, however, it was not significantly different from nondiabetic wounds (p ≥ 0.05. Furthermore, epidermal thickness, number of fibroblasts and number of blood vessels were significantly lower in diabetic group (p < 0.05. We concluded that healing of excisional diabetic wounds in sheep may be compromised, as seen in other species. However, contraction rate of these wounds may not be delayed due to metabolic features of ruminants and these animals might go under surgeries without any serious concern. However, healing quality of these wounds may be lower than normal wounds.

  15. Dynamic protein expression patterns during intraoral wound healing in the rat.

    Science.gov (United States)

    van Beurden, Hugo E; Snoek, Patricia A M; Von den Hoff, Johannes W; Torensma, Ruurd; Maltha, Jaap C; Kuijpers-Jagtman, Anne M

    2005-04-01

    Wound healing after cleft palate surgery is often associated with impairment of maxillary growth and dento-alveolar development. Wound contraction and scar tissue formation contribute strongly to these effects. In vitro studies have revealed that fibroblasts isolated during different phases of palatal wound healing show phenotypical differences. They change from a quiescent to an activated state and then partly back to a quiescent state. In this study, we evaluated the existence of fibroblast phenotypes at several time-points during palatal wound healing in the rat. Based on cytoskeletal changes (alpha-sma, vimentin, vinculin), integrin expression (alpha1, alpha2, alpha(v) and beta1) and changes in cellularity, we conclude that phenotypically different fibroblast populations are also present during in vivo wound healing. Alpha-sma and the integrin subunits alpha1 and alpha(v) were significantly up-regulated, and vinculin was significantly down-regulated, at early time-points compared to late time-points in wound healing. These changes point to an activated fibroblast state early in wound healing. Later in wound healing, these activated fibroblasts return only partially to the unwounded situation. These results strongly support the idea that different fibroblast populations with specific phenotypes occur in the course of palatal wound healing.

  16. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Directory of Open Access Journals (Sweden)

    Sandra Matabi Ayuk

    2016-01-01

    Full Text Available The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI or photobiomodulation (PBM is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  17. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation.

    Science.gov (United States)

    Ayuk, Sandra Matabi; Abrahamse, Heidi; Houreld, Nicolette Nadene

    2016-01-01

    The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  18. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.

    Science.gov (United States)

    Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao

    2017-09-01

    The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Enhance wound healing monitoring through a thermal imaging based smartphone app

    Science.gov (United States)

    Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh

    2018-03-01

    In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.

  1. Multigenerational epigenetic adaptation of the hepatic wound-healing response.

    Science.gov (United States)

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K; Mathers, John C; Fox, Christopher R; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L; Anstee, Quentin M; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M; Mann, Derek A; Mann, Jelena

    2012-09-01

    We investigated whether ancestral liver damage leads to heritable reprogramming of hepatic wound healing in male rats. We found that a history of liver damage corresponds with transmission of an epigenetic suppressive adaptation of the fibrogenic component of wound healing to the male F1 and F2 generations. Underlying this adaptation was less generation of liver myofibroblasts, higher hepatic expression of the antifibrogenic factor peroxisome proliferator-activated receptor γ (PPAR-γ) and lower expression of the profibrogenic factor transforming growth factor β1 (TGF-β1) compared to rats without this adaptation. Remodeling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for the histone variant H2A.Z and trimethylation of histone H3 at Lys27 (H3K27me3) at PPAR-γ chromatin. These modifications to the sperm chromatin were transmittable by adaptive serum transfer from fibrotic rats to naive rats and similar modifications were induced in mesenchymal stem cells exposed to conditioned media from cultured rat or human myofibroblasts. Thus, it is probable that a myofibroblast-secreted soluble factor stimulates heritable epigenetic signatures in sperm so that the resulting offspring better adapt to future fibrogenic hepatic insults. Adding possible relevance to humans, we found that people with mild liver fibrosis have hypomethylation of the PPARG promoter compared to others with severe fibrosis.

  2. The genomics of oral cancer and wound healing.

    Science.gov (United States)

    Aswini, Y B

    2009-01-01

    Oral cancer is the most common malignancy in India, where it is epidemiologically linked to the chewing of betel quid and other carcinogens. But various point mutations were detectable in the p53 and p15 genes. Hence, this review was conducted with the aim to find out genetic risks as well as markers for oral cancers and wound healing. Tobacco-related cancers are associated with polymorphisms of the CYP1A1 and GSTM1 genes in terms of genotype frequencies and cigarette smoking dose. Expression of E6/E7 were also found in tumors, most of which were derived from the oropharynx. Presence of homozygous arginine at codon 72 renders p53 about seven times more susceptible to E6-mediated proteolytic degradation. Erythropoietin, vascular permeability factor (VPF, also known as vascular endothelial growth factor or VEGF), and PDGF has been implicated as one of the principal mitogens involved in cutaneous wound healing. Activation of NF-kB is associated with enhanced cell survival. Human papilloma virus status is a significantly favorable prognostic factor in tonsilar cancer and may be used as a marker in order to optimize the treatment of patients with this type of cancer.

  3. The genomics of oral cancer and wound healing

    Directory of Open Access Journals (Sweden)

    Aswini Y

    2009-03-01

    Full Text Available Oral cancer is the most common malignancy in India, where it is epidemiologically linked to the chewing of betel quid and other carcinogens. But various point mutations were detectable in the p53 and p15 genes. Hence, this review was conducted with the aim to find out genetic risks as well as markers for oral cancers and wound healing. Tobacco-related cancers are associated with polymorphisms of the CYP1A1 and GSTM1 genes in terms of genotype frequencies and cigarette smoking dose. Expression of E6/E7 were also found in tumors, most of which were derived from the oropharynx. Presence of homozygous arginine at codon 72 renders p53 about seven times more susceptible to E6-mediated proteolytic degradation. Erythropoietin, vascular permeability factor (VPF, also known as vascular endothelial growth factor or VEGF, and PDGF has been implicated as one of the principal mitogens involved in cutaneous wound healing. Activation of NF-kB is associated with enhanced cell survival. Human papilloma virus status is a significantly favorable prognostic factor in tonsilar cancer and may be used as a marker in order to optimize the treatment of patients with this type of cancer.

  4. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair.

    Science.gov (United States)

    Huang, Sha; Lu, Gang; Wu, Yan; Jirigala, Enhe; Xu, Yongan; Ma, Kui; Fu, Xiaobing

    2012-04-01

    Bone-marrow-derived mesenchymal stem cells (BM-MSCs) can contribute to wound healing after skin injury. However, the role of BM-MSCs on repairing skin appendages in renewal tissues is incompletely explored. Moreover, most preclinical studies suggest that the therapeutic effects afforded by BM-MSCs transplantation are short-lived and relatively unstable. To assess whether engrafted bone-marrow-derived mesenchymal stem cells via a delivery system can participate in cutaneous wound healing and sweat-gland repair in mice. For safe and effective delivery of BM-MSCs to wounds, epidermal growth factor (EGF) microspheres were firstly developed to both support cells and maintain appropriate stimuli, then cell-seeded microspheres were incorporated with biomimetic scaffolds and thus fabricated an engineered skin construct with epithelial differentiation and proliferative potential. The applied efficacy was examined by implanting them into excisional wounds on both back and paws of hind legs in mice. After 3 weeks, BM-MSC-engineered skin (EGF loaded) treated wounds exhibited accelerated healing with increased re-epithelialization rates and less skin contraction. Furthermore, histological and immunofluorescence staining analysis revealed sweat glands-like structures became more apparent in BM-MSC-engineered skin (EGF loaded) treated wounds but the number of implanted BM-MSCs were decreased gradually in later phases of healing progression. Our study suggests that BM-MSCs delivered by this EGF microspheres-based engineered skin model may be a promising strategy to repair sweat glands and improve cutaneous wound healing after injury and success in this study might provide a potential benefit for BM-MSCs administration clinically. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment.

    Science.gov (United States)

    He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena; Bazan, Haydee E P

    2017-09-01

    Diabetic keratopathy decreases corneal sensation and tear secretion and delays wound healing after injury. In the current study, we tested the effect of treatment with pigment epithelium-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) on corneal nerve regeneration in a mouse model of diabetes with or without corneal injury. The study was performed in streptozotocin-induced diabetic mice (C57BL/6). Ten weeks after streptozotocin injection, diabetic mice showed significant decreases of corneal sensitivity, tear production, and epithelial subbasal nerve density when compared with age-matched normal mice. After diabetic mice were wounded in the right eye and treated in both eyes with PEDF+DHA for 2 weeks, there was a significant increase in corneal epithelial nerve regeneration and substance P-positive nerve density in both wounded and unwounded eyes compared with vehicle-treated corneas. There also was elevated corneal sensitivity and tear production in the treated corneas compared with vehicle. In addition, PEDF+DHA accelerated corneal wound healing, selectively recruited type 2 macrophages, and prevented neutrophil infiltration in diabetic wounded corneas. These results suggest that topical treatment with PEDF+DHA promotes corneal nerve regeneration and wound healing in diabetic mice and could potentially be exploited as a therapeutic option for the treatment of diabetic keratopathy. © 2017 by the American Diabetes Association.

  6. Influence of phytochemicals in piper betle linn leaf extract on wound healing.

    Science.gov (United States)

    Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh

    2015-01-01

    Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.

  7. Clinical evaluation of ethanolic extract of curcumin (Curcuma longa on wound healing in Black Bengal goats

    Directory of Open Access Journals (Sweden)

    Md Abu Haris Miah

    2017-06-01

    Conclusion: Ethanol treated turmeric enhances wound healing process in goats. This result could help the veterinarian and the researchers to consider herbal product especially ethanolic extract of turmeric for the treatment and better healing of surgical wounds with minimal complications. [J Adv Vet Anim Res 2017; 4(2.000: 181-186

  8. Phototherapy — a treatment modality for wound healing and pain relief

    African Journals Online (AJOL)

    Phototherapy — a treatment modality for wound healing and pain relief. D Hawkins, H Abrahamse. Abstract. When applied properly, phototherapy or Low Level Laser Therapy (LLLT) has proved to be very efficient in relieving pain and improving wound healing. However, until recently there has been a lack of scientific

  9. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    Science.gov (United States)

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...

  10. The impact of virulence factors of Porphyromonas gingivalis on wound healing in vitro

    NARCIS (Netherlands)

    Laheij, A.M.G.A.; van Loveren, C.; Deng, D.; de Soet, J.J.

    2015-01-01

    Background: Porphyromonas gingivalis inhibits oral epithelial wound healing in vitro more strongly than other oral bacteria, but it is unknown why P. gingivalis is such a potent inhibitor of wound healing. Objective: Therefore, the aim of this study was to investigate the influence of major

  11. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  12. Knee disarticulation : Survival, wound healing and ambulation. A historic cohort study

    NARCIS (Netherlands)

    Ten Duis, K.; Bosmans, J. C.; Voesten, H. G. J.; Geertzen, J. H. B.; Dijkstra, P. U.

    2009-01-01

    The aim of this study was to analyze survival, wound healing and ambulation after knee disarticulation (KD). A historic cohort study using medical records and nursing home records was performed. Data included demographics, reason for amputation, concomitant diseases, survival, wound healing,

  13. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  14. Microvascular Remodeling and Wound Healing: A Role for Pericytes

    Science.gov (United States)

    Dulmovits, Brian M.; Herman, Ira M.

    2012-01-01

    Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing “pericyte-like” characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed. PMID:22750474

  15. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications

    Science.gov (United States)

    Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng

    2018-01-01

    Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065

  16. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.

    Science.gov (United States)

    Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2015-06-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Wound Healing Effects of Prunus yedoensis Matsumura Bark in Scalded Rats

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2017-01-01

    Full Text Available Pruni Cortex has been used to treat asthma, measles, cough, urticaria, pruritus, and dermatitis in traditional Korean medicine. The objective of this study was to investigate the effects of Prunus yedoensis Matsumura bark methanol extract (PYE on scald-induced dorsal skin wounds in rats. Scalds were produced in Sprague-Dawley rats with 100°C water and treated with 5% and 20% PYE (using Vaseline as a base, silver sulfadiazine (SSD, and Vaseline once a day for 21 days, beginning 24 hours after scald by treatment group allocation. The PYE-treated groups showed accelerated healing from 12 days after scald, demonstrated by rapid eschar exfoliation compared to the control and SSD groups. PYE-treated groups showed higher wound contraction rates and better tissue regeneration in comparison with the control group. Serum analysis showed that transforming growth factor beta 1 and vascular endothelial growth factor levels remained high or gradually increased up to day 14 in both PYE groups and then showed a sharp decline by day 21, implying successful completion of the inflammatory phase and initiation of tissue regeneration. These findings suggested that PYE is effective in promoting scald wound healing in the inflammation and tissue proliferation stages.

  18. Exercise, Obesity, and Cutaneous Wound Healing: Evidence from Rodent and Human Studies.

    Science.gov (United States)

    Pence, Brandt D; Woods, Jeffrey A

    2014-01-01

    Significance: Impaired cutaneous wound healing is a major health concern. Obesity has been shown in a number of studies to impair wound healing, and chronic nonhealing wounds in obesity and diabetes are a major cause of limb amputations in the United States. Recent Advances: Recent evidence indicates that aberrant wound site inflammation may be an underlying cause for delayed healing. Obesity, diabetes, and other conditions such as stress and aging can result in a chronic low-level inflammatory state, thereby potentially affecting wound healing negatively. Critical Issues: Interventions which can speed the healing rate in individuals with slowly healing or nonhealing wounds are of critical importance. Recently, physical exercise training has been shown to speed healing in both aged and obese mice and in older adults. Exercise is a relatively low-cost intervention strategy which may be able to be used clinically to prevent or treat impairments in the wound-healing process. Future Directions: Little is known about the mechanisms by which exercise speeds healing. Future translational studies should address potential mechanisms for these exercise effects. Additionally, clinical studies in obese humans are necessary to determine if findings in obese rodent models translate to the human population.

  19. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  20. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  1. Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    Wound care and management accounted for over 1.8 million hospital discharges in 2009. The complex nature of wound physiology involves hundreds of overlapping processes that we have only begun to understand over the past three decades. The management of wounds remains a significant challenge for inexperienced clinicians. The ensuing inflammatory response ultimately dictates the pace of wound healing and tissue regeneration. Consequently, the eventual timing of wound closure or definitive coverage is often subjective. Some wounds fail to close, or dehisce, despite the use and application of novel wound-specific treatment modalities. An understanding of the molecular environment of acute and chronic wounds throughout the wound-healing process can provide valuable insight into the mechanisms associated with the patient's outcome. Pathologic alterations of wounds are accompanied by fundamental changes in the molecular environment that can be analyzed by vibrational spectroscopy. Vibrational spectroscopy, specifically Raman and Fourier transform infrared spectroscopy, offers the capability to accurately detect and identify the various molecules that compose the extracellular matrix during wound healing in their native state. The identified changes might provide the objective markers of wound healing, which can then be integrated with clinical characteristics to guide the management of wounds.

  2. Personalized prediction of chronic wound healing: an exponential mixed effects model using stereophotogrammetric measurement.

    Science.gov (United States)

    Xu, Yifan; Sun, Jiayang; Carter, Rebecca R; Bogie, Kath M

    2014-05-01

    Stereophotogrammetric digital imaging enables rapid and accurate detailed 3D wound monitoring. This rich data source was used to develop a statistically validated model to provide personalized predictive healing information for chronic wounds. 147 valid wound images were obtained from a sample of 13 category III/IV pressure ulcers from 10 individuals with spinal cord injury. Statistical comparison of several models indicated the best fit for the clinical data was a personalized mixed-effects exponential model (pMEE), with initial wound size and time as predictors and observed wound size as the response variable. Random effects capture personalized differences. Other models are only valid when wound size constantly decreases. This is often not achieved for clinical wounds. Our model accommodates this reality. Two criteria to determine effective healing time outcomes are proposed: r-fold wound size reduction time, t(r-fold), is defined as the time when wound size reduces to 1/r of initial size. t(δ) is defined as the time when the rate of the wound healing/size change reduces to a predetermined threshold δ current model improves with each additional evaluation. Routine assessment of wounds using detailed stereophotogrammetric imaging can provide personalized predictions of wound healing time. Application of a valid model will help the clinical team to determine wound management care pathways. Published by Elsevier Ltd.

  3. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    Science.gov (United States)

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  4. Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats.

    Science.gov (United States)

    Agarwal, P K; Singh, A; Gaurav, K; Goel, Shalini; Khanna, H D; Goel, R K

    2009-01-01

    Plantain banana (M. sapientum var. paradisiaca, MS) has been shown to possess ulcer healing activity. The present work with plantain banana was undertaken with the premise that the drug promoting ulcer healing could have effect on wound healing also. Wound healing activity of MS was studied in terms of (i) percent wound contraction, epithelization period and scar area; (ii) wound breaking strength and (iii) on granulation tissue antioxidant status [estimation of superoxide dismutase (SOD) and reduced glutathione (GSH), free radical (lipid peroxidation, an indicator of tissue damage) and connective tissue formation and maturation (hexuronic acid, hydroxyproline and hexosamine levels)] in excision, incision and dead space wound models respectively. The rats were given graded doses (50-200 mg/kg/day) of aqueous (MSW) and methanolic (MSE) extracts of MS orally for a period of 10-21 days depending upon the type of study. Both extracts (100 mg/kg) when studied for incision and dead space wounds parameters, increased wound breaking strength and levels of hydroxyproline, hexuronic acid, hexosamine, superoxide dismutase, reduced glutathione in the granulation tissue and decreased percentage of wound area, scar area and lipid peroxidation when compared with the control group. Both the extracts showed good safety profile. Plantain banana thus, favoured wound healing which could be due to its antioxidant effect and on various wound healing biochemical parameters.

  5. Chronic wound repair and healing in older adults: current status and future research.

    Science.gov (United States)

    Gould, Lisa; Abadir, Peter; Brem, Harold; Carter, Marissa; Conner-Kerr, Teresa; Davidson, Jeff; DiPietro, Luisa; Falanga, Vincent; Fife, Caroline; Gardner, Sue; Grice, Elizabeth; Harmon, John; Hazzard, William R; High, Kevin P; Houghton, Pamela; Jacobson, Nasreen; Kirsner, Robert S; Kovacs, Elizabeth J; Margolis, David; McFarland Horne, Frances; Reed, May J; Sullivan, Dennis H; Thom, Stephen; Tomic-Canic, Marjana; Walston, Jeremy; Whitney, Jo Anne; Williams, John; Zieman, Susan; Schmader, Kenneth

    2015-03-01

    Older adults are more likely to have chronic wounds than younger people, and the effect of chronic wounds on quality of life is particularly profound in this population. Wound healing slows with age, but the basic biology underlying chronic wounds and the influence of age-associated changes on wound healing are poorly understood. Most studies have used in vitro approaches and various animal models, but observed changes translate poorly to human healing conditions. The effect of age and accompanying multimorbidity on the effectiveness of existing and emerging treatment approaches for chronic wounds is also unknown, and older adults tend to be excluded from randomized clinical trials. Poorly defined outcomes and variables; lack of standardization in data collection; and variations in the definition, measurement, and treatment of wounds also hamper clinical studies. The Association of Specialty Professors, in conjunction with the National Institute on Aging and the Wound Healing Society, held a workshop, summarized in this article, to explore the current state of knowledge and research challenges, engage investigators across disciplines, and identify research questions to guide future study of age-associated changes in chronic wound healing. © 2015 by the American Geriatrics Society and the Wound Healing Society.

  6. Wound healing effect of bioactive ion released from Mg-smectite.

    Science.gov (United States)

    Sasaki, Yu; Sathi, Gulsan Ara; Yamamoto, Osamu

    2017-08-01

    Bioactive ions like Mg 2+ and Si 4+ have been known as promotion factors of tissue regeneration. In the present work, Mg-smectite, consisting of Mg 2+ and Si 4+ ions, was synthesized by a solution process, and evaluated for the efficiency of the powder on wound healing in rats. White precipitates were obtained by mixing a magnesium chloride hexahydrate solution and a sodium silicate hexahydrate solution at room temperature. The precipitates mixed with a NaOH aqueous solution were subjected to hydrothermal reaction, and finally crystalline Mg-smectite powder was obtained. The crystal and molecular structure of Mg-smectite was identified by X-ray diffractometry (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The synthesized material was determined to be crystalline Mg-smectite. The amount of Mg 2+ and Si 4+ ions released from Mg-smectite in physiological saline was analyzed by inductively coupled plasma mass spectroscopy (ICP-MS). The total amount of Si 4+ ion released from Mg-smectite was greater than that of Mg 2+ ion. To evaluate the wound healing effect of Mg-smectite, Mg-smectite powder was applied to a full-thickness surgical wound reaching the subcutaneous tissue in the rat's abdomen. At 1 and 2weeks, skin tissue was collected and subjected to histological analysis. The results for skin regeneration showed no significant difference in wound size between the control and Mg-smectite group. However, it was found that the neovascularization, collagen deposition, and maturation were notedly accelerated by applying Mg-smectite powder in comparison with the control. Mg-smectite can then be hypothesized to stimulate the regeneration of skin tissue by releasing Mg 2+ and Si 4+ ions. These results suggested that Mg-smectite could offer great potential as a wound dressing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The phagocytic fitness of leucopatches may impact the healing of chronic wounds

    DEFF Research Database (Denmark)

    Thomsen, K; Trøstrup, H; Christophersen, L.

    2016-01-01

    Chronic non-healing wounds are significantly bothersome to patients and can result in severe complications. In addition, they are increasing in numbers, and a challenging problem to the health-care system. Handling of chronic, non-healing wounds can be discouraging due to lack of improvement......, and a recent explanation can be the involvement of biofilm infections in the pathogenesis of non-healing wounds. Therefore, new treatment alternatives to improve outcome are continuously sought-after. Autologous leucopatches are such a new, adjunctive treatment option, showing promising clinical effects...... wounds by leucopatches is attributed to the activity of the PMNs in the leucopatch....

  8. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  9. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis.

    Science.gov (United States)

    Huang, Luying; Wang, Yi; Liu, Hua; Huang, Jianhua

    2018-02-02

    Impaired angiogenesis contributes to delayed wound healing in aging. Hyaluronan (HA) has a close relationship with angiogenesis and wound healing. However, HA content decreases with age. In this study, we used high molecular weight HA (HMW-HA) (1650 kDa), and investigated its effects on wound healing in old rats by local injection. We found that HMW-HA significantly increases proliferation, migration and tube formation in endothelial cells, and protects endothelial cells against apoptosis. Local injection of HMW-HA promotes wound healing by increasing angiogenesis in old rats. HMW-HA increases the phosphorylation of Src, ERK and AKT, leading to increased angiogenesis, suggesting that local injection of HMW-HA promotes wound healing in elderly patients.

  10. [ROLE OF microRNA IN SKIN DEVELOPMENT AND WOUND HEALING].

    Science.gov (United States)

    Song, Zhifang; Liu, Dewu

    2014-07-01

    To review the role of microRNA (miRNA) in skin development and wound healing. The recent literature about miRNA in skin development and wound healing was reviewed and analyzed. miRNA extensively involved in the development of the skin, including epidermal cell proliferation, differentiation, aging and hair follicle development; miR-203 known as the "skin-specific miRNA" can directly inhibit the expression of p63 and promote the differentiation of the epidermis. Meanwhile, miRNA also involved in various stages of skin regeneration and wound healing. Abnormal expression of miRNA is closely related with abnormal wound healing. miRNA play an important role in maintaining normal skin physiology and skin regeneration. To explore their roles in the healing of skin wounds and their regulatory mechanism can provide a new target for the treatment, which has a potential value and broad prospects.

  11. Effects of Foeniculum vulgare essential oil compounds, fenchone and limonene, on experimental wound healing.

    Science.gov (United States)

    Keskin, I; Gunal, Y; Ayla, S; Kolbasi, B; Sakul, A; Kilic, U; Gok, O; Koroglu, K; Ozbek, H

    2017-01-01

    We investigated the wound healing efficacy of the Foeniculum vulgare compounds, fenchone and limonene, using an excisional cutaneous wound model in rats. An excision wound was made on the back of the rat and fenchone and limonene were applied topically to the wounds once daily, separately or together, for 10 days. Tissue sections from the wounds were evaluated for histopathology. The healing potential was assessed by comparison to an untreated control group and an olive oil treated sham group. We scored wound healing based on epidermal regeneration, granulation tissue thickness and angiogenesis. After day 6, wound contraction with limonene was significantly better than for the control group. Ten days after treatment, a significant increase was observed in wound contraction and re-epithelialization in both fenchone and limonene oil treated groups compared to the sham group. Groups treated with fenchone and with fenchone + limonene scored significantly higher than the control group, but the difference was not statistically significant compared to the olive oil treated group. Our findings support the beneficial effects of fenchone and limonene for augmenting wound healing. The anti-inflammatory and antimicrobial activities of fenchone and limonene oil increased collagen synthesis and decreased the number of inflammatory cells during wound healing and may be useful for treating skin wounds.

  12. The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats

    DEFF Research Database (Denmark)

    Kruse, Carla R; Singh, Mansher; Sørensen, Jens A

    2016-01-01

    BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts and keratin......BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts...