WorldWideScience

Sample records for accelerated weathering

  1. 46 CFR 160.072-5 - Accelerated weathering test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  2. Quantifying PV module microclimates and translation into accelerated weathering protocols

    Science.gov (United States)

    Phillips, Nancy H.; Scott, Kurt P.

    2014-10-01

    Long term reliability is not well addressed by current standards for PV modules or components, and developing accelerated weathering stress protocols to test the resistance of key components to wear-out is an active area of research. A first step is to understand and quantify the range of actual stresses modules will encounter in the various mounting configurations and in-service environments. In this paper, we use real-world data to benchmark PV module service environments in hot/dry, hot/wet, and temperate environments, with subsequent analysis to translate the microclimate data into a portfolio of practical weathering instrument settings.

  3. Accelerating Climate and Weather Simulations through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark

    2011-01-01

    Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.

  4. An Unusual Process of Accelerated Weathering of a Marly Limestone

    Science.gov (United States)

    Ercoli, L.; Rizzo, G.; Algozzini, G.

    2003-04-01

    This work deals with a singular case of stone deterioration, which occurred during the restoration of the Cathedral of Cefalù. In particular, a significant process of stone decohesion started after a consolidation treatment on ashlars of the external face of the cloister portico. A study was carried out to characterize the stone and to investigate the deterioration process. Petrographical, chemical and physical analyses were performed on samples taken from the wall. The results indicate that the medieval monument was built using a Pliocene marly limestone, called "trubo", quarried from outcrops of the environs of Cefalù. The rock is soft and uniformely cemented. The carbonatic fraction of the rock is due to foraminifera shells; the rock also contains detritic quartz, feldspate and glauconite. The clay minerals, mainly illite and montmorillonite, are widespread in the rock in the form of thin layers. The use of such a stone in a building of relevant artistic value is definitely unusual. In fact, the "trubo" is a rock subjected to natural decay because of its mineralogical composition and fabric; as effect of natural weathering, in the outcrops the rock disaggregates uniformely, producing silt. In the cloister this effect was magnified by extreme environmental conditions (marine spray, severe excursions of both relative humidity and temperature). Furthermore, after soluble salts removing and subsequent consolidation with ethyl silicate, a significant acceleration of the decay process was observed, producing friable scales detach for a depth of about 3 cm into the ashlars. The stone appeared corroded and uneven. Experimental tests were performed in laboratory in order to evidence any origin of incompatibility between such stone composition and the treatments carried out, which on the other hand are the most generally adopted in restoration interventions.

  5. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste.

    Science.gov (United States)

    Matthies, R; Krahé, L; Blowes, D W

    2014-07-15

    Accelerated oxidative weathering in a reaction cell (ASTM D 5744 standard protocol) was performed over a 33 week period on well characterized, sulfidic mine waste from the Kidd Creek Cu-Zn volcanogenic massive sulfide deposit, Canada. The cell leachate was monitored for physicochemical parameters, ion concentrations and stable isotope ratios of zinc. Filtered zinc concentrations (weathering processes in complex multi-phase matrices.

  6. Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend

    Science.gov (United States)

    Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.

    2015-12-01

    Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.

  7. Evaluation of high density polyethylene composite filled with bagasse after accelerated weathering followed by biodegradation

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2012-11-01

    Full Text Available Wood-plastic composites (WPC have many applications as structural and non-structural material. As their outdoor application becomes more widespread, their resistance against weathering, particularly ultraviolet light and biodegradation becomes of more concern. In the present study, natural fiber composites (NFPC made of bagasse and high density polyethylene, with and without pigments, were prepared by extrusion and subjected to accelerated weathering for 1440 h; then weathered and un-weathered samples were exposed to fungal and termite resistance tests. The chemical and surface qualities of samples were studied by ATR-FTIR spectroscopy, colorimetry, contact angle, and roughness tests before and after weathering. Using bagasse as filler does reduce the discoloration of weathered samples. Adding pigments may reduce the effect of weathering on lignin degradation, although it favors polymer oxidation, but it increases the weight loss caused by fungi. Despite the high resistance of samples against biological attack, weathering triggers attack by termites and fungi on the surface and causes surface quality loss.

  8. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    OpenAIRE

    Renato Altobelli Antunes; Rodrigo Uchida Ichikawa; Luis Gallego Martinez; Isolda Costa

    2014-01-01

    The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron micr...

  9. Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, William H.; San, Juan A.; Rau, Greg H.; Caldeira, Ken

    2009-01-01

    Accelerated weathering of limestone appears to provide a low-tech, inexpensive, high-capacity, environmentally friendly CO2 mitigation method that could be applied to about 200 fossil fuel fired power plants and about eight cement plants located in coastal areas in the conterminous U.S. This approach could also help solve the problem of disposal of limestone waste fines in the crushed stone industry. Research and implementation of this technology will require new collaborative efforts among the crushed stone and cement industries, electric utilities, and the science and engineering communities.

  10. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  11. Effects of UV-accelerated weathering and natural weathering conditions on anti-fungal efficacy of wood/PVC composites doped with propylene glycol-based HPQM

    Directory of Open Access Journals (Sweden)

    P. Srimalanon

    2016-04-01

    Full Text Available This work studied the mechanical, physical and weathering properties and anti-fungal efficacy of polyvinyl chloride(PVC and wood flour/polyvinyl chloride composites(WPVC. 2-hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate (HPQM in propylene glycol was used as an anti-fungal agent. Propylene glycol-based HPQM was doped in neat PVC and in WPVC containing 50 and 100 pph wood (WPVC-50 and WPVC-100. The flexural properties of PVC decreased when propylene glycol-based HPQM was added. However, adding this component did not affect the flexural properties of WPVC. Fungal growth inhibition test and dry weight technique were used for evaluation of anti-fungal effectiveness. Aspergillus niger was used as a testing fungus. Adding propylene glycol-based HPQM to WPVC-100 led to the most effective anti-fungal performance. Wood flour acted as an anti-fungal promoter for the WPVC composites. The optimal dosages of propylene glycol-based HPQM in PVC, WPVC-50, and WPVC-100 were 50000, 15000, and 10000 ppm, respectively. UV-accelerated weathering aging and natural weathering conditions were found to affect the flexural properties of PVC and WPVC. The change in the anti-microbial performance of WPVC under natural weathering were slower than those under UV-accelerated weathering aging. The anti-microbial evaluation indicated that the samples doped with less than 20000 ppm propylene glycol-based HPQM had a more pronounced effect than the ones doped with higher dosages.

  12. Influence of surface modified nano silica on alkyd binder before and after accelerated weathering

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Nguyen, Hiep Dinh; Daugaard, Anders Egede;

    2016-01-01

    Introduction of nano fillers in exterior wood coatings is not straight forward. Influence on aging of polymer binder needs to be taken into account along with possible benefits that nano fillers can provide immediately after application. This study shows the influence of two differently modified...... hydrophobic nano silica on an alkyd binder for exterior wood coatings. One month after application, the highest strength and energy required to break the films was obtained with addition of 3% disilazane modified silica. Changes in tensile properties were accompanied with a small increase in glass transition...... temperature. However, the highest stability upon accelerated weathering, measured by ATR-IR and DMA, was for nano composites with the highest amount of nano filler. The reasons for the observed changes are discussed together with the appearance of a feature that is possibly a secondary relaxation of alkyd...

  13. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering

    International Nuclear Information System (INIS)

    Highlights: • AFM was firstly used to characterize the surface morphology and roughness of weathered wood–plastic composites. • Composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites. • ATR-FTIR and XPS analyses demonstrated in detail that significant chemistry changes occurred in wood flour, lignin, and cellulose. • The crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization. • The stabilization and antioxidation effects of lignin were proved. - Abstract: In this study, six groups of polypropylene composites reinforced with wood flour (WF), cellulose, and lignin at different loading levels were exposed in a QUV accelerated weathering tester for a total duration of 960 h. The changes in surface morphology, chemistry, and thermal properties of weathered samples were characterized by atomic force microscope (AFM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetric (DSC), respectively. The flexural properties of all samples were tested after different durations of weathering. The results showed that: (1) the surface roughness of all samples increased after weathering; (2) composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites, indicating the functions of stabilization and antioxidation of lignin; (3) the crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization; (4) ATR-FTIR and XPS analyses demonstrated in detail that significant changes occurred in surface chemistry, accompanied by the photodegradation and photo-oxidation of lignin and cellulose with prolonged weathering time

  14. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  15. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering

    Science.gov (United States)

    Peng, Yao; Liu, Ru; Cao, Jinzhen

    2015-03-01

    In this study, six groups of polypropylene composites reinforced with wood flour (WF), cellulose, and lignin at different loading levels were exposed in a QUV accelerated weathering tester for a total duration of 960 h. The changes in surface morphology, chemistry, and thermal properties of weathered samples were characterized by atomic force microscope (AFM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetric (DSC), respectively. The flexural properties of all samples were tested after different durations of weathering. The results showed that: (1) the surface roughness of all samples increased after weathering; (2) composites containing lignin showed less loss of flexural strength and modulus and less roughness on weathered surface compared with lignin-free composites, indicating the functions of stabilization and antioxidation of lignin; (3) the crystallinity of PP increased in all weathered samples due to chain scissions and recrystallization; (4) ATR-FTIR and XPS analyses demonstrated in detail that significant changes occurred in surface chemistry, accompanied by the photodegradation and photo-oxidation of lignin and cellulose with prolonged weathering time.

  16. Accelerated weathering of limestone for CO2 mitigation opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, W.H.; Juan, C.A.S.; Rau, G.H.; Caldeira, K.

    2009-01-01

    Large amounts of limestone fines coproduced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO 2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point-sources such as cement manufacturing. AWL reactants are readily available, inexpensive, and environmentally benign. Waste CO 2 is hydrated with water to produce carbonic acid, which then reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate. AWL waste products can be disposed of in the ocean. Feasibility requires access to an inexpensive source of limestone and to seawater, thus limiting AWL facilities within about 10 km of the coastline. The majority of U.S. coastal power generating facilities are within economical transport distance of limestone resources. AWL presents opportunities for collaborative efforts among the crushed stone industry, electrical utilities, cement manufactures, and research scientists.

  17. The NREL outdoor accelerated-weathering tracking system and photovoltaic module exposure results

    Science.gov (United States)

    Basso, Thomas S.

    1999-03-01

    This paper describes the Outdoor Accelerated-weathering Tracking System (OATS) and interim results for the first OATS study on photovoltaic (PV) modules. With two test planes measuring 1.52×1.83 m, OATS provides a unique solar-concentrating exposure capability. Test sample temperatures are moderated by air blowers. Water spray capability exists for wetting samples. The OATS two-axis tracker points to the sun using software calculations. Non-imaging aluminum reflectors give a nominal clear-sky optical concentration ratio of three. Field-qualification measurements in the test plane under reflector conditions showed its relative irradiance non-uniformity was ±15% for a clear-sky summer day with ± 75 mm as the smallest distance for that non-uniformity. Exposure studies began in November 1997 on seven pairs of commercially available ribbon silicon, crystalline silicon and amorphous silicon PV modules kept at constant resistive load. The modules were periodically removed from OATS for visual inspection and solar simulator performance measurements. There were no module failures. This PV module study is ongoing and later results will be compared to other testing techniques. Through July 1998, the modules under reflector conditions received 392 MJ/m2 of total ultraviolet (TUV) exposure. That was 2.07 times the TUV exposure compared to a south-facing fixed array tilted 40° up from horizontal at NREL. Similarly, the modules in the test plane under the covered reflectors received 1.04 times the fixed array TUV exposure. For the test plane under the covered reflectors there was a loss of 13% TUV exposure attributed to the reflectors blocking some of the diffuse-sky UV light. Also through July 1998, the OATS sunlight availability measured 95% compared to the cumulative global normal exposure at the NREL Solar Radiation Research Laboratory (SRRL). The OATS sunlight availability losses included downtime when the PV modules were removed, and when there were OATS tracking

  18. Reducing Energy-Related CO2 Emissions Using Accelerated Limestone Weathering

    Energy Technology Data Exchange (ETDEWEB)

    Rau, G H; Knauss, K G; Langer, W H; Caldeira, K

    2004-04-27

    Following earlier descriptions, the use and impacts of accelerated weathering of limestone AWL; reaction: CO{sub 2} + H{sub 2}O + CaCO{sub 3} {yields} Ca{sup 2+} + 2(HCO{sub 3}{sup -}) as a CO{sub 2} capture and sequestration method is further explored. Since ready access to the ocean is likely an essential requirement for AWL, it is shown that significant limestone resources are relatively close to a majority of CO{sub 2}-emitting power plants along the coastal US. Furthermore, waste fines, representing more than 20% of current US crushed limestone production (>10{sup 9} tonnes/yr), could be used in many instances as an inexpensive or free source of AWL carbonate. With limestone transportation to coastal sites then as the dominant cost variable, CO{sub 2} sequestration (plus capture) costs of $3-$4/tonne are achievable in certain locations. While there is vastly more limestone and water on earth than that required for AWL to capture and sequester all fossil fuel CO{sub 2} production, the transportation cost of bringing limestone, seawater, and waste CO{sub 2} into contact likely limits the method's applicability to perhaps 10-20% of US point-source emissions. Using a bench-scale laboratory reactor, it is shown that CO{sub 2} sequestration rates of 10{sup -6} to 10{sup -5} moles/sec per m{sup 2} of limestone surface area are readily achievable using seawater. This translates into reaction densities as high as 2 x 10{sup -2} tonnes CO{sub 2} m{sup -3}day{sup -1}, highly dependent on limestone particle size, solution turbulence and flow, and CO{sub 2} concentration. Modeling of AWL end-solution disposal in the ocean shows significantly reduced effects on ocean pH and carbonate chemistry relative to those caused by direct CO{sub 2} disposal into the atmosphere or ocean. In fact the increase in ocean Ca{sup 2+} and bicarbonate offered by AWL should significantly enhance the growth of corals and other marine calcifiers whose health is currently being threatened by

  19. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    Science.gov (United States)

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion.

  20. The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests.

    Science.gov (United States)

    López, I; López, M; Aragonés, L; García-Barba, J; López, M P; Sánchez, I

    2016-10-01

    One of the main problems that coasts around the world present, is the regression and erosion of beaches. However, the factors involved in these processes are unclear. In this study, the influence of sediment erosion on beach regression has been analysed. In order to do that, a three-step investigation has been carried out. Firstly, coastline variations of four Spanish beaches have been analysed. Secondly, a study on sediment position along the beach profile has been developed. Finally, the process that beach sediments undergo along the surf zone when they are hit by the incident waves has been simulated by an accelerated particle weathering test. Samples of sand and shells were subjected to this accelerated particle weathering test. Results were supplemented with those from carbonate content test, XRD, SEM and granulometric analysis. Results shows a cross-shore classification of sediments along the beach profile in which finer particles move beyond offshore limit. Besides, it was observed that sediment erosion process is divided into three sages: i) particles wear due to crashes ii) dissolution of the carbonate fraction, and iii) breakage and separation of mineral and carbonate parts of particles. All these processes lead to a reduction of particle size. The mechanism responsible of beach erosion would consist of multiples and continuous particle location exchanges along the beach profile as a consequence of grain-size decrease due to erosion. PMID:27220096

  1. Operational numerical weather prediction on a GPU-accelerated cluster supercomputer

    Science.gov (United States)

    Lapillonne, Xavier; Fuhrer, Oliver; Spörri, Pascal; Osuna, Carlos; Walser, André; Arteaga, Andrea; Gysi, Tobias; Rüdisühli, Stefan; Osterried, Katherine; Schulthess, Thomas

    2016-04-01

    The local area weather prediction model COSMO is used at MeteoSwiss to provide high resolution numerical weather predictions over the Alpine region. In order to benefit from the latest developments in computer technology the model was optimized and adapted to run on Graphical Processing Units (GPUs). Thanks to these model adaptations and the acquisition of a dedicated hybrid supercomputer a new set of operational applications have been introduced, COSMO-1 (1 km deterministic), COSMO-E (2 km ensemble) and KENDA (data assimilation) at MeteoSwiss. These new applications correspond to an increase of a factor 40x in terms of computational load as compared to the previous operational setup. We present an overview of the porting approach of the COSMO model to GPUs together with a detailed description of and performance results on the new hybrid Cray CS-Storm computer, Piz Kesch.

  2. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF Goddard microphysics scheme

    Directory of Open Access Journals (Sweden)

    J. Mielikainen

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same

  3. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    Science.gov (United States)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations

  4. Extrapolating Accelerated UV Weathering Data: Perspective From PVQAT Task Group 5 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.; Annigoni, E.; Ballion, A.; Bokria, J.; Bruckman, L.; Burns, D.; Elliott, L.; French, R.; Fowler, S.; Gu, X.; Honeker, C.; Khonkar, H.; Kohl, M.; Krommenhoek, P.; Peret-Aebi, L.; Phillips, N.; Scott, K.; Sculati-Meillaud, F.; Shioda, T.

    2015-02-01

    Taskgroup 5 (TG5) is concerned with a accelerated aging standard incorporating factors including ultraviolet radiation, temperature, and moisture. Separate experiments are being conducted in support of a test standard via the regional sub-groups in Asia, Europe, and the United States. The authors will describe the objectives and timeline for the TG5 interlaboratory study being directed out of the USA. Qualitative preliminary data from the experiment is presented. To date, the encapsulation transmittance experiment has: replicated behaviors of fielded materials (including specimen location- and formulation additive-specific discoloration); demonstrated coupling between UV aging and temperature; demonstrated that degradation in EVA results from UV- aging; and obtained good qualitative comparison between Xe and UVA-340 sources for EVA. To date, the encapsulation adhesion experiment (using the compressive shear test to quantify strength of attachment) has demonstrated that attachment strength can decrease drastically (>50%) with age; however, early results suggest significant factor (UV, T, RH) dependence. Much remains to be learned about adhesion.

  5. Cracking and delamination behaviors of photovoltaic backsheet after accelerated laboratory weathering

    Science.gov (United States)

    Lin, Chiao-Chi; Lyu, Yadong; Hunston, Donald L.; Kim, Jae Hyun; Wan, Kai-Tak; Stanley, Deborah L.; Gu, Xiaohong

    2015-09-01

    The channel crack and delamination phenomena that occurred during tensile tests were utilized to study surface cracking and delamination properties of a multilayered backsheet. A model sample of commercial PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet was studied. Fragmentation testing was performed after accelerated aging with and without ultraviolet (UV) irradiation in two relative humidity (RH) levels (5 % RH and 60 % RH) at elevated temperature (85 °C) conditions for 11 days and 22 days. Results suggest that the embrittled surface layer resulting from the UV photo-degradation is responsible for surface cracking when the strain applied on the sample is far below the yielding strain (2.2 %) of the PPE sample. There was no surface cracking observed on the un-aged sample and samples aged without UV irradiation. According to the fragmentation testing results, the calculated fracture toughness (KIC) values of the embrittled surface layer are as low as 0.027 MPa·m1/2 to 0.104 MPa·m1/2, depending on the humidity levels and aging times. Surface analysis using attenuated total reflectance Fourier transform infrared and atomic force microscopy shows the degradation mechanism of the embrittled surface layer is a combination of the photodegradation within a certain degradation depth and the moisture erosion effect depending on the moisture levels. Specifically, UV irradiation provides a chemical degradation effect while moisture plays a synergistic effect on surface erosion, which influences surface roughness after aging. Finally, there was no delamination observed during tensile testing in this study, suggesting the surface cracking problem is more significant than the delamination for the PPE backsheet material and conditions tested here.

  6. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    Science.gov (United States)

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures.

  7. Reaction-to-fire performance of fire-retardant treated wooden facades in Japan with respect to accelerated weathering

    Directory of Open Access Journals (Sweden)

    Nakamura Miki

    2016-01-01

    Full Text Available Wood has been used for building facades to enhance the aesthetic design of buildings since the revision to the evaluation method associated with the amendment of the Building Standard Law of Japan in 2000. In response, wood that has been pressure-impregnated with fire retardants (fire-retardant treated wood is often used to ensure it is safe in the event of a fire. Currently, when fire-retardant-treated wood is tested for certification of reaction to fire performance, a cone calorimeter test is conducted in Japan. This test applies radiant heat to the surface of a square specimen, 100 mm each side, immediately after it has undergone fire-retardant treatment. However, when applying fire-retardant treatment to wood, aqueous chemical injection is the standard procedure. When wood is actually used to construct a building, there is a concern about environmental forces such as wind and rain that could cause the wood to deteriorate, and concerns about performance degradation associated with aging. One of the past studies in Japan [1] conducted a cone calorimeter test after an outdoor exposure test and accelerated weathering test, compared the post-test performance with the initial performance and confirmed the amount of remaining fire retardant in the treated wood had been reduced. However, no comparison of the fireproof performance of fire-retardant wood in actual use in a building facade had been conducted in Japan. There have been already valuable researches [e.g. 2, 3] on this issue internationally, but this paper is the first step in Japan and authors hope to focus on the wooden façade construction technique and the standard façade test in Japan.

  8. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  9. Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash.

    Science.gov (United States)

    Muriithi, Grace N; Petrik, Leslie F; Fatoba, Olanrewaju; Gitari, Wilson M; Doucet, Frédéric J; Nel, Jaco; Nyale, Sammy M; Chuks, Paul E

    2013-09-30

    Natural weathering at coal power plants ash dams occurs via processes such as carbonation, dissolution, co-precipitation and fluid transport mechanisms which are responsible for the long-term chemical, physical and geochemical changes in the ash. Very little information is available on the natural carbon capture potential of wet or dry ash dams. This study investigated the extent of carbon capture in a wet-dumped ash dam and the mineralogical changes promoting CO2 capture, comparing this natural phenomenon with accelerated ex-situ mineral carbonation of fresh fly ash (FA). Significant levels of trace elements of Sr, Ba and Zr were present in both fresh and weathered ash. However Nb, Y, Sr, Th and Ba were found to be enriched in weathered ash compared to fresh ash. Mineralogically, fresh ash is made up of quartz, mullite, hematite, magnetite and lime while weathered and carbonated ashes contained additional phases such as calcite and aragonite. Up to 6.5 wt % CO2 was captured by the fresh FA with a 60% conversion of calcium to CaCO3 via accelerated carbonation (carried out at 2 h, 4Mpa, 90 °C, bulk ash and a S/L ratio of 1). On the other hand 6.8 wt % CO2 was found to have been captured by natural carbonation over a period of 20 years of wet disposed ash. Thus natural carbonation in the ash dumps is significant and may be effective in capturing CO2.

  10. Evaluation of hydrophobic treatments applied to stones used in andalusian cathedrals. III.-Accelerated weathering test with polluted atmosphere

    Directory of Open Access Journals (Sweden)

    Villegas Sánchez, R.

    1993-12-01

    Full Text Available SUMMARY In this work we study the weathering resistance of samples of five types of stone used in Andalusian Cathedrals, treated with six water repellent products, by subjecting the samples to a SO2 polluted atmosphere. To evaluate the alteration of the samples, besides visual observation of macroscopic aspect, changes in weight and the quantity of sulfate that remains on the surface have been measured. Also properties related with water have been measured after the test to determine if there have been any changes in the hydrophobic characteristics.

    En el presente artículo se estudia el comportamiento de muestras de cinco tipos de piedra utilizados en catedrales andaluzas, tratadas con seis productos hidrófugos, sometiéndolas a un ensayo acelerado de alteración en atmósfera contaminada con SO2 . Para evaluar la alteración, además de la observación visual de las manifestaciones macroscópicas, se ha medido la variación de peso de las muestras expuestas y la cantidad de sulfato que permanece en la superficie tras el ensayo. Así mismo, se han detectado los cambios experimentados en las propiedades hidrófugas conferidas por los tratamientos, mediante la medida de propiedades relacionadas con el movimiento del agua.

  11. 茶粉/聚丙烯复合材料加速老化性能%Properties of accelerated weathering of tea stalk/polypropylene composites

    Institute of Scientific and Technical Information of China (English)

    龚新怀; 赵升云; 陈良璧

    2015-01-01

    Wood plastic composite has gradually gained importance recently all over the world. The composite manufacturers continue to search for new and cheaper lignocellulosic materials or annual plant residues as an alternative to wood. Tea is the most popular beverage in the world. The worldwide consumption of tea is about 4.5 million tons annually, which is far more than that of coffee, beer, wine and carbonated drinks. It always ends up with lots of waste tea leaves, stalks and dusts daily during the process of tea production and consumption. The tea residue is made of fibrous biomass, which brings the increasing problems of solid waste and disposal in many countries. Studies have been conducted to determine potential uses of waste tea residues such as adsorbent for synthetic dyes and heavy metals, fertilizer, mushroom growing medium, energy source, livestock and poultry feed, and particleboard. The tea residue to use as organic filler in polymer composites has showed a great prospect because of its lignocellulose behavior and low cost, but there have been few researches about the work, and no researches about the outdoor application or weathering mechanism of polymer composites by using waste tea residues as organic filler so far. Because the chemical compositions and fiber morphology of tea fiber in the waste tea residue were quite different from that in wood residue, in order to make high-valued use of the waste tea residue, the wasted tea stalk/Polypropylene (TS/PP) composites were manufactured by open mill and injection molding machine, with maleic anhydride grafted polypropylene (MAPP) as coupling agent. At the same time aimed to explore the outdoor application and weathering mechanism of TS/PP composites, the effects of freeze-thaw cycles accelerating weathering on the mechanical properties, color change and thermal behavior of the composites were investigated, the surfaces morphology of composites were investigated by SEM (scanning electronic microscopy), and

  12. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  13. Mirador - Weather

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Our weather system includes the dynamics of the atmosphere and its interaction with the oceans and land. The improvement of...

  14. 竹粉/聚丙烯发泡复合材料加速老化性能的研究%Performance of bamboo flour/polypropylene foamed composite under accelerated weathering

    Institute of Scientific and Technical Information of China (English)

    周吓星; 陈礼辉; 黄舒晟; 苏国基; 余雁

    2014-01-01

    In order to reduce the density and improve the toughness of wood-plastic composite (WPC), the foamed WPC was made through adding chemical foaming agent in this study. To fully utilize bamboo resources in China and reduce white pollution, the foamed composite with 54% PP and 13% HMSPP containing 33%bamboo powder and 1%modified azodicarbonamide (AC) foaming agent blends by weight was made by injection molding. Furthermore, the aging performance of bamboo powder/polypropylene (PP) foamed composites was studied in order to investigate the weathering mechanism of WPC and to strengthen its production and quality management and thus expand its application fields. The composites were exposed to 1 200 h accelerated xenon-arc radiation with water spray, the mechanical characteristics including bending performance, notched impact strength, and color change of composites were studied. The rheological behavior of composites with regard to frequency sweep ranges from 0.01 to 70 Hz at 195℃was observed. The surface morphology of composites with non-weathered and weathered for 1 200 h were investigated by ESEM and their chemical structures were analyzed by FTIR. The results showed that the mechanical properties of composites decreased significantly for weathering 300 h and decreased continuously with an increase of exposure time. The retentions of residual bending strength, flexural modulus and notched impact strengths were only 79.4%, 68.3%and 75.6%respectively. The weathering also resulted in significant color fading of the composites, especially for the first 900 h. The color began to change slowly within the next 300 h. After weathering for 1 200 h, the color changeΔE*, lightness changeΔL*, redness changeΔa*and yellowness changeΔb*were 49.0, 48.4,-5.9 and-4.9 respectively. The frequency sweep results indicated that the storage modulus, loss modulus and complex viscosity of composite weathered for 1 200 h decreased and the intersection value of energy storage modulus and

  15. Weather forecast

    CERN Document Server

    Courtier, P

    1994-01-01

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  16. Activities in Teaching Weather

    Science.gov (United States)

    Tonn, Martin

    1977-01-01

    Presented is a unit composed of activities for teaching weather. Topics include cloud types and formation, simple weather instruments, and the weather station. Illustrations include a weather chart and instruments. A bibliography is given. (MA)

  17. Winter Weather Checklists

    Science.gov (United States)

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Weather Information on Specific Types of Emergencies Winter Weather Checklists Language: English Español (Spanish) Recommend on Facebook ...

  18. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  19. Weather in Your Life.

    Science.gov (United States)

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  20. Fun with Weather

    Science.gov (United States)

    Yildirim, Rana

    2007-01-01

    This three-part weather-themed lesson for young learners connects weather, clothing, and feelings vocabulary. The target structures covered are: asking about the weather; comparing weather; using the modal auxiliary, should; and the question word, when. The lessons utilize all four skills and include such activities as going outside, singing,…

  1. Pricing weather derivatives

    OpenAIRE

    Κορδή, Κωνσταντίνα Ι.

    2013-01-01

    ABSTRACT Weather makes influence on our daily lives and choices and has substantial impact on corporate revenues and earnings. The impact of weather on business activities is significant and varies both geographically and seasonally. Almost every industry is affected by the weather, among which is agriculture, energy, entertainment, travel, constructions. It is been stated that "weather is not just an environmental issue; it is major economic factor". Weather risk is localized, and canno...

  2. Landslides as weathering reactors; links between physical erosion and weathering in rapidly eroding mountain belts

    Science.gov (United States)

    Emberson, R.; Hovius, N.; Galy, A.

    2014-12-01

    The link between physical erosion and chemical weathering is generally modelled with a surface-blanketing weathering zone, where the supply of fresh minerals is tied to the average rate of denudation. In very fast eroding environments, however, sediment production is dominated by landsliding, which acts in a stochastic fashion across the landscape, contrasting strongly with more uniform denudation models. If physical erosion is a driver of weathering at the highest erosion rates, then an alternative weathering model is required. Here we show that landslides can be effective 'weathering reactors'. Previous work modelling the effect of landslides on chemical weathering (Gabet 2007) considered the fresh bedrock surfaces exposed in landslide scars. However, fracturing during the landslide motion generates fresh surfaces, the total surface area of which exceeds that of the exposed scar by many orders of magnitude. Moreover, landslides introduce concavity into hillslopes, which acts to catch precipitation. This is funnelled into a deposit of highly fragmented rock mass with large reactive surface area and limited hydraulic conductivity (Lo et al. 2007). This allows percolating water reaction time for chemical weathering; any admixture of macerated organic debris could yield organic acid to further accelerate weathering. In the South island of New Zealand, seepage from recent landslide deposits has systematically high solute concentrations, far outstripping concentration in runoff from locations where soils are present. River total dissolved load in the western Southern Alps is highly correlated with the rate of recent (<35yrs) landsliding, suggesting that landslides are the dominant locus of weathering in this rapidly eroding landscape. A tight link between landsliding and weathering implies that localized weathering migrates through the landscape with physical erosion; this contrasts with persistent and ubiquitous weathering associated with soil production. Solute

  3. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  4. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  5. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  6. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  7. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Outdoor Safety Winter PSAs and Podcasts Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  8. Winter Weather: Frostbite

    Science.gov (United States)

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... related health problems. More Information: Hypothermia Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  9. Cold Weather Pet Safety

    Science.gov (United States)

    ... Emergency Care Animal Welfare Veterinary Careers Public Health Cold Weather Pet Safety Client Handout Available for download ... in hot cars , but did you know that cold weather also poses serious threats to your pets’ ...

  10. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  11. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  12. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during...

  13. Surface Weather Observing Manuals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Manuals and instructions for taking weather observations. Includes the annual Weather Bureau 'Instructions for Preparing Meteorological Forms...' and early airways...

  14. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  15. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  16. The power of weather

    OpenAIRE

    Christian Huurman; Francesco Ravazzolo; Chen Zhou

    2010-01-01

    This paper examines the predictive power of weather for electricity prices in day ahead markets in real time. We find that next-day weather forecasts improve the forecast accuracy of Scandinavian day-ahead electricity prices substantially in terms of point forecasts, suggesting that weather forecasts can price the weather premium. This improvement strengthens the confidence in the forecasting model, which results in high center-mass predictive densities. In density forecast, such a predictive...

  17. Convective Weather Avoidance with Uncertain Weather Forecasts

    Science.gov (United States)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  18. Cold-Weather Sports

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Cold-Weather Sports KidsHealth > For Teens > Cold-Weather Sports Print A A A Text Size ... the easiest sports around, snowshoeing can be excellent cold-weather cross-training for runners and cyclists — or ...

  19. Weather Fundamentals: Meteorology. [Videotape].

    Science.gov (United States)

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  20. Weathering: methods and techniques to measure

    Science.gov (United States)

    Lopez-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    Surface recession takes place when weathered material is removed from the rocks. In order to know how fast does weathering and erosion occur, a review of several methods, analyses and destructive and non-destructive techniques to measure weathering of rocks caused by physico-chemical changes that occur in bedrocks due to salt crystallization, freezing-thaw, thermal shock, influence of water, wind, temperature or any type of environmental agent leading to weathering processes and development of soils, in-situ in the field or through experimental works in the laboratory are addressed. From micro-scale to macro-scale, from the surface down to more in depth, several case studies on in-situ monitoring of quantification of decay on soils and rocks from natural landscapes (mountains, cliffs, caves, etc) or from urban environment (foundations or facades of buildings, retaining walls, etc) or laboratory experimental works, such as artificial accelerated ageing tests (a.a.e.e.) or durability tests -in which one or more than one weathering agents are selected to assess the material behaviour in time and in a cyclic way- performed on specimens of these materials are summarised. Discoloration, structural alteration, precipitation of weathering products (mass transfer), and surface recession (mass loss) are all products of weathering processes. Destructive (SEM-EDX, optical microscopy, mercury intrusion porosimetry, drilling resistance measurement, flexural and compression strength) and Non-destructive (spectrophotocolorimetry, 3D optical surface roughness, Schmidt hammer rebound tester, ultrasound velocity propagation, Nuclear Magnetic Resonance NMR, X ray computed micro-tomography or CT-scan, geo-radar differential global positioning systems) techniques and characterization analyses (e.g. water absorption, permeability, open porosity or porosity accessible to water) to assess their morphological, physico-chemical, mechanical and hydric weathering; consolidation products or

  1. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  2. Space Weathering of Rocks

    Science.gov (United States)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  3. THOR contribution to space weather science

    Science.gov (United States)

    Vaivads, Andris; Opgenoorth, Hermann; Retinò, Alessandro; Khotyaintsev, Yuri; Soucek, Jan; Valentini, Francesco; Escoubet, Philippe

    2016-04-01

    Turbulence Heating ObserveR - THOR is a mission proposal to study energy dissipation and particle acceleration in turbulent space plasma. THOR will focus on turbulent plasma in pristine solar wind, bow shock and magnetosheath. The orbit of THOR is tuned to spend long times in those regions allowing THOR to obtain high resolution data sets that can be used also for space weather science. In addition, THOR is designed with enough propellant to reach L1 in the second phase of the mission if necessary. Here we will discuss the space weather science questions that can be addressed and significantly advanced using THOR. Link to THOR: http://thor.irfu.se.

  4. Tales of future weather

    Science.gov (United States)

    Hazeleger, W.; van den Hurk, B. J. J. M.; Min, E.; van Oldenborgh, G. J.; Petersen, A. C.; Stainforth, D. A.; Vasileiadou, E.; Smith, L. A.

    2015-02-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The traditional approach uses ensembles of climate model simulations, statistical bias correction, downscaling to the spatial and temporal scales relevant to decision-makers, and then translation into quantities of interest. The veracity of this approach cannot be tested, and it faces in-principle challenges. Alternatively, numerical weather prediction models in a hypothetical climate setting can provide tailored narratives for high-resolution simulations of high-impact weather in a future climate. This 'tales of future weather' approach will aid in the interpretation of lower-resolution simulations. Arguably, it potentially provides complementary, more realistic and more physically consistent pictures of what future weather might look like.

  5. Is Weather Chaotic?

    CERN Document Server

    Raidl, A

    1998-01-01

    The correlation dimension and K2-entropy are estimated from meteorological time- series. The results lead us to claim that seasonal variability of weather is under influence of low dimensional dynamics, whereas changes of weather from day to day are governed by high dimensional system(s). Error-doubling time of this system is less than 3 days. We suggest that the outstanding feature of the weather dynamics is deterministic chaos.

  6. Weathering of copper-amine treated wood

    International Nuclear Information System (INIS)

    In this study, the effect of ultraviolet light (UV) irradiation and water spray on color, contact angle and surface chemistry of treated wood was studied. Southern pine sapwood (Pinus Elliottii.Engelm.) treated with copper ethanolamine (Cu-MEA) was subjected to artificially accelerated weathering with a QUV Weathering Tester. The compositional changes and the surface properties of the weathered samples were characterized by Fourier transform infrared (FTIR) spectroscopy, color and contact angle measurements. FTIR indicated that MEA treatment was not found to slow down wood weathering. FTIR spectrum of MEA-treated sample was similar to that of the untreated SP. However, the Cu-MEA treatment retarded the surface lignin degradation during weathering. The main changes in FTIR spectrum of Cu-MEA treatment took place at 915, 1510, and 1595 cm-1. The intensity of the bands at 1510 and 1595 cm-1 increased with the Cu-MEA treatment. Both untreated and MEA-treated exhibited higher ΔE than the Cu-MEA treated samples, indicating that MEA treatment did not retard color changes. However, ΔE decreased with increasing copper concentration, suggesting a positive contribution of Cu-EA to wood color stability. The contact angle of untreated and MEA-treated samples changed rapidly, and dropped from 75 ± 5o to 0o after artificial weathering up to 600 h. Treatment with Cu-MEA slowed down the decreasing in contact angle. As the copper concentration increases, the rate of change in contact angle decreases.

  7. Space Weather Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Space Weather Analysis archives are model output of ionospheric, thermospheric and magnetospheric particle populations, energies and electrodynamics

  8. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  9. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  10. Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hollander, A.

    2014-09-01

    The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of new materials, technologies, behavior-change models, and processes.

  11. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  12. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather predictio

  13. Exercising in Cold Weather

    Science.gov (United States)

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  14. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore...

  15. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  16. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  17. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  18. The correlation between accelerated and field corrosion tests performed in carbon steel and weathering steel coupons, coated and non-coated; Correlacao entre ensaios acelerados e ensaios de campo em corpos-de-provas de aco carbono e aco patinavel, sem e com revestimento

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato Altobelli

    2002-07-01

    The performance of four different organic coating systems applied to carbon and weathering steel coupons has been assessed in this investigation. applied on the surface of carbon steel and weathering steel coupons. The coupons have been evaluated using five different tests, three field tests and two accelerated tests. The field tests were carried out at three atmospheric stations, located at COSIPA in Cubatao-SP, at Alto da Serra in Cubatao-SP and at Paula Souza in Sao Paulo city. The accelerated tests consisted of (a) exposure to alternate cycles of ultraviolet radiation/condensation combined with salt spray cycles (UVCON combined with Salt Spray) and of (b) exposure to alternate cycles of ultraviolet radiation/condensation combined with the Prohesion test. The performance of the coatings was assessed by visual observation and photographs, using a method based on ASTM D-610, ASTM D-714 and ASTM-1654 standards to rank them. The oxide phases formed on the surfaces of the non-coated specimens of carbon and weathering steels, exposed to the same tests performed with the coated specimens, were identified using three different techniques: X-ray diffraction, Raman microscopy and Moessbauer spectroscopy. In the field tests, the specimens have been exposed for 1, 2, 3, 6 and 9 months. In the accelerated ones, the results were obtained after 1340 hours (4 cycles) test. The main component identified in all the specimens collected from the field tests and from the UVCON combined with the Prohesion test was lepidocrocite ({gamma}-FeOOH). Goethite ({alpha}-FeOOH ) and magnetite (Fe{sub 3}O{sub 4}) were identified as the other two main phases present in ali the specimens. In the UVCON combined with Salt Spray test, the dominant phase was magnetite, followed by goethite and lepidocrocite. The morphology of the rust formed on the specimens was examined by scanning electron microscopy (SEM). Structures corresponding to goethite and lepidocrocited were recognized on ali specimens

  19. Winter Weather Frequently Asked Questions

    Science.gov (United States)

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Weather Information on Specific Types of Emergencies Winter Weather Frequently Asked Questions Language: English Español (Spanish) Recommend ...

  20. Environmental Education Tips: Weather Activities.

    Science.gov (United States)

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  1. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  2. National Weather Service

    Science.gov (United States)

    ... Forecast Models GIS Data Portal NOAA Weather Radio Services SKYWARN Storm Spotters StormReady TsunamiReady EDUCATION Be A ... For NWS Employees International National Centers Products and Services Careers Contact Us Glossary Local forecast by "City, ...

  3. Oil Rig Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather observations taken at offshore platforms along the United States coastlines. The majority are located in oil-rich areas of the Gulf of Mexico, Gulf of...

  4. Weathering in a Cup.

    Science.gov (United States)

    Stadum, Carol J.

    1991-01-01

    Two easy student activities that demonstrate physical weathering by expansion are described. The first demonstrates ice wedging and the second root wedging. A list of the needed materials, procedure, and observations are included. (KR)

  5. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  6. Monthly Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  7. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  8. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    OpenAIRE

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M S; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliora...

  9. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  10. Casebook on application for weather

    International Nuclear Information System (INIS)

    This book introduces the excellent cases on application using weather at the industry, research center and public office. It lists the names and application cases in 2008 and 2009, which includes research on decease in risk by weather in the industry by Sam sung institute of safety and environment, service on weather information for people by KT, application with weather information in the flight by Korean air, use on weather information for prevention of disasters by Masan city hall, upgrade for business with weather marketing, center for river forecast in NOAA and the case using weather management for high profit margins.

  11. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  12. Spaceborne weather radar

    Science.gov (United States)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  13. Space weather & telecommunications

    CERN Document Server

    Goodman, John M

    2006-01-01

    This book is both a survey of practical concepts for forecasting the performance of various telecommunication systems as well as a balanced treatment of space-weather phenomena that give rise to telecommunication impairment episodes. It bridges the gap in the relationship that exists between the following two disciplines: space weather and telecommunication system performance. There are a number of books that address one of the two disciplines in some detail, but only merely mention the other as an afterthought. In this book the author has married the two disciplines so that the readership can

  14. Weather In Some Islands

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    There are four seasons in a year. When spring comes, the weather is mild(温和的). Summer comes after spring. Summer is the hottest season of the year. Autumn follows summer. It is the best season of the year. Winter is the coldest season of the year. Some islands(岛) have their own particular(特别的) seasons because their weather is very much affected(影响) by the oceans(海洋) around them. In Britain, winter is not very cold and summer is not very hot.

  15. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  16. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    Science.gov (United States)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  17. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... where you will be before you go hiking, camping, or skiing. Avoid traveling on ice-covered roads, overpasses, and bridges if at all possible. If you are stranded, it is safest to stay in your car. When the weather is extremely cold, and especially ...

  18. Silam Irrusia (Weather Conditions).

    Science.gov (United States)

    Brown, Emily Ivanoff

    This illustrated reader in Inupiaq Athabascan is intended for use in a bilingual education setting and is geared toward readers, especially schoolchildren, who have a good grasp of the language. It consists of a story about traditional Inupiaq beliefs concerning the weather, stars, etc. (AMH)

  19. Weather at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-19

    This report gives general information about how to become a meteorologist and what kinds of jobs exist in that field. Then it goes into detail about why weather is monitored at LANL, how it is done, and where the data can be accessed online.

  20. Dress for the Weather

    Science.gov (United States)

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice when preparing for…

  1. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  2. Weatherization Works: An interim report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G. [Oak Ridge National Lab., TN (United States); Kinney, L.F. [Synertech Systems Corp., Syracuse, NY (United States)

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  3. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 ... Your Heart Health • Watch, Learn & Live Animations Library Cold Weather Fitness Guide Popular Articles 1 Understanding Blood ...

  4. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  5. Food Safety for Warmer Weather

    Science.gov (United States)

    ... please review our exit disclaimer . Subscribe Fight Off Food Poisoning Food Safety for Warmer Weather In warm-weather months, ... for picnics, backyard gatherings, and of course delicious foods? But high temperatures raise your chance of getting ...

  6. Severe Weather Data Inventory (SWDI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  7. Detection of Weather Radar Clutter

    OpenAIRE

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2008-01-01

    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality. Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving...

  8. Space Weather: The Solar Perspective

    Directory of Open Access Journals (Sweden)

    Schwenn Rainer

    2006-08-01

    Full Text Available The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  9. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality...

  10. Severe Weather Planning for Schools

    Science.gov (United States)

    Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill

    2008-01-01

    Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…

  11. Whether weather affects music

    Science.gov (United States)

    Aplin, Karen L.; Williams, Paul D.

    2012-09-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London [Richardson, 2012]. Of course, an important part of what we see and hear is not only the people with whom we interact but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant because we are exposed to it directly and daily. The weather was a great source of inspiration for artists Claude Monet, John Constable, and William Turner, who are known for their scientifically accurate paintings of the skies [e.g., Baker and Thornes, 2006].

  12. Salt Weathering on Mars

    Science.gov (United States)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  13. Weathering the financial storm

    DEFF Research Database (Denmark)

    Ólafsson, Tjörvi; Pétursson, Thórarinn G.

    2011-01-01

    and severity of the crisis. In particular, we find that the pre-crisis rate of inflation is important in explaining the post-crisis experience. Our results also suggest an important role for financial factors. In particular, we find that large banking systems tended to be associated with a deeper and more...... of the crisis and, in particular, that countries with sound fundamentals and flexible economic frameworks were better able to weather the financial storm....

  14. Weathering of Roofing Materials-An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  15. Weather Monitoring Station: A Review

    Directory of Open Access Journals (Sweden)

    Mr. Dipak V. Sose

    2016-06-01

    Full Text Available Weather monitoring plays a very important role in human life hence study of weather system is necessary. Currently there are two types of the weather monitoring stations available i.e. wired and wireless. Wireless system has some advantages over the wired one hence popular now a days. The parameters are include in weather monitoring usually temperature, humidity atmospheric pressure, light intensity, rainfall etc. There are many techniques existed using different processor such as PIC, AVR, ARM etc. Analog to digital channel are used to fetch the analog output of the sensors. The wireless techniques used in the weather monitoring having GSM, FM channel, Zigbee, RF etc Protocols

  16. Space Weathering of Lunar Rocks

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  17. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... Baby's Growth Can the Weather Affect My Child's Asthma? KidsHealth > For Parents > Can the Weather Affect My ... empeorar el asma de mi hijo? Weather and Asthma The effect of weather on asthma symptoms isn' ...

  18. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.

    2015-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  19. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  20. Natural versus accelerated weathering: Understanding water kinetics in bilayer coatings

    NARCIS (Netherlands)

    Baukh, V.; Huinink, H.P.; Adan, O.C.G.; Ven, L.G.J. van der

    2013-01-01

    Exposure to water is a key issue in the performance of multilayer coatings. It may take place in different forms, i.e. as rainfall, dew and humidity variation. Consequently, coatings will experience time-dependent water activity fluctuations. In industrial practice, coatings are subjected to artific

  1. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547

  2. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547

  3. Combating bad weather

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the

  4. The Weather in Richmond

    OpenAIRE

    Harless, William Edwin

    2014-01-01

    ABSTRACT: The Weather in Richmond is a short documentary about the Oilers, the football team at Richmond High School in downtown Richmond, California, as they struggle in 2012 with the legacy of winning no games, with the exception of a forfeit, in two years. The video documents the city of Richmond’s poverty and violence, but it also is an account of the city’s cultural diversity, of the city’s industrial history and of the hopes of some of the people who grow up there. The...

  5. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  6. Monitoring with reflectance spectroscopy the colour change of PVC plastisol coated strip steel due to weathering

    Energy Technology Data Exchange (ETDEWEB)

    Wijdekop, M.; Arnold, J.C.; Evans, M.; John, V.; Lloyd, A.

    2005-07-15

    Weathering can cause colour changes in pigmented PVC plastisol coatings. The rate of colour change is dependent on a number of factors, such as PVC resin, pigment type and concentration, and local climate. In this paper, an investigation into the mechanisms that cause these colour changes is reported. The investigation involves a set of 350 paints, based on a typical plastisol formulation, that has been exposed to natural weathering at sites in Lancashire and Sussex in the UK, and to accelerated weathering using QUV testers with UVA-340 lamps and condensation cycles. Colour changes were measured using a Gretag SPM50 reflectance spectrophotometer. It was found that the reflectance spectra measured in this way provided a more potent tool for investigating the chemical reactions that cause discolouration in coatings during weathering than the CIE L*a*b* parameters that are normally used to describe colour changes. Reflectance spectroscopy has been shown to facilitate the correlation between natural weathering and accelerated weathering, by giving a better understanding of the prevalent chemical processes that take place in the coatings during different accelerated weathering programmes (with and without condensation) and with natural weathering at different locations (high UV climates and higher rainfall climates). Phenomena such as PVC dehydrochlorination and organic pigment degradation could be analysed conveniently using reflectance spectrophotometry. (author)

  7. Severe Weather Forecast Decision Aid

    Science.gov (United States)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  8. GEOSS interoperability for Weather, Ocean and Water

    Science.gov (United States)

    Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian

    2013-04-01

    "Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of

  9. Road Weather and Connected Vehicles

    Science.gov (United States)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  10. Weatherization Apprenticeship Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  11. Weather Forecasting Systems and Methods

    Science.gov (United States)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  12. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  13. Topological analysis of weather images

    OpenAIRE

    MUBI, GREGOR

    2015-01-01

    In this thesis computational topology is used to analyse weather data. The goal is to analyse weather images and discern, if it is possible to expose certain parameters, which could improve humid mass classification. For this reason we were observing how those masses appear and merge on sequences of images. We used topological method named persistence. For data analysis we obtained weather radar images. We also wrote around 20 scripts in computing environment MATLAB, which served for data co...

  14. Accelerator operations

    International Nuclear Information System (INIS)

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  15. Bishop Paiute Weatherization Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez

    2010-01-28

    The DOE Weatherization Training Grant assisted Native American trainees in developing weatherization competencies, creating employment opportunities for Bishop Paiute tribal members in a growing field. The trainees completed all the necessary training and certification requirements and delivered high-quality weatherization services on the Bishop Paiute Reservation. Six tribal members received all three certifications for weatherization; four of the trainees are currently employed. The public benefit includes (1) development of marketable skills by low-income Native individuals, (2) employment for low-income Native individuals in a growing industry, and (3) economic development opportunities that were previously not available to these individuals or the Tribe.

  16. Small Sensors for Space Weather

    Science.gov (United States)

    Nicholas, A. C.

    2015-12-01

    The Naval Research Laboratory is actively pursuing enhancing the nation's space weather sensing capability. One aspect of this plan is the concept of flying Space Weather sensor suites on host spacecraft as secondary payloads. The emergence and advancement of the CubeSat spacecraft architecture has produced a viable platform for scientifically and operationally relevant Space Weather sensing. This talk will provide an overview of NRL's low size weight and power sensor technologies targeting Space Weather measurements. A summary of on-orbit results of past and current missions will be presented, as well as an overview of future flights that are manifested and potential constellation missions.

  17. Advanced accelerators

    International Nuclear Information System (INIS)

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  18. Terminal weather information management

    Science.gov (United States)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.

  19. Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose

    Science.gov (United States)

    Peng, Yao; Liu, Ru; Cao, Jinzhen; Chen, Yu

    2014-10-01

    In this study, the influence of accelerated weathering on polypropylene composites reinforced with wood flour (WF), lignin, and cellulose at different loading levels were evaluated. Six groups of samples were exposed in a QUV accelerated weathering tester for a total of 960 h. The surface color, surface gloss, contact angle and flexural properties of the samples were tested. Besides, the weathered surface was characterized by SEM and ATR-FTIR. The results revealed that (1) the discoloration of composites was accelerated by the presence of lignin, especially at high content; (2) composites containing lignin showed less loss of flexural strength and modulus, less cracks, and better hydrophobicity on weathered surface than other groups, confirming its functions of stabilization and antioxidation; (3) cellulose-based composites exhibited better color stability but more significant deterioration in flexural properties after weathering compared to other composites, suggesting that such kind of composites could not be used as load-bearing structure in outdoor applications.

  20. KEKB accelerator

    International Nuclear Information System (INIS)

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  1. Accelerating networks

    International Nuclear Information System (INIS)

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  2. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    Science.gov (United States)

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…

  3. Tibetan History of Weather Monitoring

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Modem weather monitoring began in Tibet at the end of the 19th century. In 1894, the British set up a weather monitoting station in Chunpei of Yadong,which continued to operate until August 1956. In the 1940s, the Nationalist Govemment's Ministry of Communications set up a rainfall measuring station in Qamdo, Xikang Province.

  4. Upgrade Summer Severe Weather Tool

    Science.gov (United States)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  5. Cool Stars and Space Weather

    CERN Document Server

    Vidotto, A A; Cameron, A C; Morin, J; Villadsen, J; Saar, S; Alvarado, J; Cohen, O; Holzwarth, V; Poppenhaeger, K; Reville, V

    2014-01-01

    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.

  6. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  7. Analyzing Drivers of World Food Prices: Weather, Growth, and Biofuels

    OpenAIRE

    Saunders, Caroline M.; Kaye-Blake, William; Cagatay, Selim

    2009-01-01

    The recent rise of food cost in world markets has accelerated the research examining the underlying factors for this rise. The present research investigated the separate and combined impacts of three factors thought to contribute to the price rise: adverse weather events, strong and sustained growth in high populated countries, and increased biofuels production. The research further analysed the effects of these price rises on consumption expenditures in Brazil, China and India. Analyses were...

  8. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  9. Weathering of oil

    Energy Technology Data Exchange (ETDEWEB)

    Rosmanith, P.P.; Haegh, T.; Audunson, T.; Eggen, S.; Eide, I.

    1978-01-01

    Ekofisk crude oil (250 L) was exposed to weathering in Nov. 1977 contained in an oil boom on Trondheimsfjorden. Meteorologic and hydrographic data were recorded. Immediately after release of the oil, concentrations of up to 190 ppm of gas were measured 50 cm above the slick. In the water 20 cm below the oil, several parts per million of hydrocarbons was detected. Evaporation and solution of the oil was studied over a period of one month by gas chromatography. The loss of oil during this period was approximately 40%. Trials conducted with a polyvinyl chloride skimmer to study the adhesive properties of the oil showed that the amount of oil recoverable by this method varied between 0.03 and 0.13 ml/sq cm. Microbiological investigations, phytoplankton growth, and growth rate measurements of Ascophyllum nodosum in oil/water mixtures also were made. The total number of bacteria in the polluted water increased by approximately 1000 times during 2 days following release of the oil. The phytoplankton were only slightly affected (75 cm below the slick), though A. nodosum showed a clear reduction in growth rate.

  10. Space weathering of asteroids

    CERN Document Server

    Shestopalov, D I; Cloutis, E A

    2012-01-01

    Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope of an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual r...

  11. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  12. Cold-Weather Sports and Your Family

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Cold-Weather Sports and Your Family KidsHealth > For Parents > ... things once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the ...

  13. Rainmakers: Why Bad Weather Means Good Productivity

    OpenAIRE

    Lee, Jooa Julia; Gino, Francesca; Bradley R. Staats

    2012-01-01

    People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Most people believe that bad weather conditions reduce productivity. In this research, we predict and find just the opposite. Drawing on cognitive psychology research, we propose that bad weather increases individual productivity by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individual...

  14. Extreme Weather and Natural Disasters

    CERN Document Server

    Healey, Justin

    2012-01-01

    Australia is a vast land in which weather varies significantly in different parts of the continent. Recent extreme weather events in Australia, such as the Queensland floods and Victorian bushfires, are brutal reminders of nature's devastating power. Is global warming increasing the rate of natural disasters? What part do La Niña and El Niño play in the extreme weather cycle? Cyclones, floods, severe storms, bushfires, landslides, earthquakes, tsunamis - what are the natural and man-made causes of these phenomena, how predictable are they, and how prepared are we for the impacts of natural dis

  15. Space Weather Forecasting: An Enigma

    Science.gov (United States)

    Sojka, J. J.

    2012-12-01

    The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove

  16. Powernext weather, benchmark indices for effective weather risk management

    International Nuclear Information System (INIS)

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  17. STEREO Space Weather and the Space Weather Beacon

    Science.gov (United States)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  18. KZBW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs...

  19. Practical Weathering for Geology Students.

    Science.gov (United States)

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  20. WARP Weather Information Network Server

    Data.gov (United States)

    Department of Transportation — WINS is the dissemination module of the WARP system that provides an interface to various NAS Users/systems that require weather data/products/information from WARP...

  1. Northern Hemisphere Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Series of Synoptic Weather Maps. Part I consists of plotted and analyzed daily maps of sea-level and 500-mb maps for 0300, 0400, 1200, 1230, 1300, and 1500...

  2. US Weather Bureau Storm Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow,...

  3. Surface Weather Observations (Pre-1893)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly weather records from U.S. Army Forts stations (~1820-1871), U.S. Army Signal Service Stations (1871-1892), Smithsonian Institution voluntary observer...

  4. Cave breakdown by vadose weathering.

    OpenAIRE

    Osborne R. Armstrong L.

    2002-01-01

    Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coate...

  5. Weather service upgrade too costly?

    Science.gov (United States)

    Bush, Susan

    America needs timely and accurate weather forecasting, said Ernest F. Hollings (D-S.C.), chairman of the Senate Committee on Commerce, Science, and Transportation on National Ocean Policy. Calling the existing warning and forecast system dangerously obsolete, Hollings said that new technology “should dramatically improve the accuracy and timeliness of weather predictions,” as we face the new challenge of bringing the National Weather Service into the 21st century. Hollings' committee heard testimony to consider the modernization of the NWS and pending legislation (S98, S916) on June 18.Major components of the Weather Service Modernization program, according to John A. Knauss, administrator of the National Oceanic and Atmospheric Administration, are the Next Generation Weather Radar (NEXRAD), a new generation of Geostationary Operational Environmental Satellites (GOES-NEXT), the Automated Surface Observing System (ASOS), and the Advanced Weather Interactive Processing System (AWIA). The best defense against severe weather—early warnings—is probably hampered by outdated equipment, he added.

  6. Temperature dependence of basalt weathering

    Science.gov (United States)

    Li, Gaojun; Hartmann, Jens; Derry, Louis A.; West, A. Joshua; You, Chen-Feng; Long, Xiaoyong; Zhan, Tao; Li, Laifeng; Li, Gen; Qiu, Wenhong; Li, Tao; Liu, Lianwen; Chen, Yang; Ji, Junfeng; Zhao, Liang; Chen, Jun

    2016-06-01

    The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been difficult to quantify clearly in natural settings at landscape scale. By compiling data from basaltic catchments worldwide and considering only inactive volcanic fields (IVFs), here we show that the rate of CO2 consumption associated with the weathering of basaltic rocks is strongly correlated with mean annual temperature (MAT) as predicted by chemical kinetics. Relations between temperature and CO2 consumption rate for active volcanic fields (AVFs) are complicated by other factors such as eruption age, hydrothermal activity, and hydrological complexities. On the basis of this updated data compilation we are not able to distinguish whether or not there is a significant runoff control on basalt weathering rates. Nonetheless, the simple temperature control as observed in this global dataset implies that basalt weathering could be an effective mechanism for Earth to modulate long-term carbon cycle perturbations.

  7. Rock-weathering by lichens in Antarctic:patterns and mechanisms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Saxicolous species of lichens are able to induce and accelerate weathering of their rocksubstrate, and effects of lichens on substrate can be attributed to both physical and chemical causes.This paper is focused on biotic weathering actions of epilithic and endolithic species on the differentrock types (sandstones and volcanogenic rocks) in Antarctica. The patterns, mechanisms, processes andneoformations of rock-weathering resulting from lichen colonization are expounded in detail.Furthermore, it is pointed out that, for a better understanding of the impacts of lichens onenvironments, the studies on the rate of biotic weathering and the comprehensive involvement of thelichen effects on weathering of natural rocks remain to be carried out in Antarctica.

  8. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey; Harden, Jennifer; Maher, Kate

    2014-08-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  9. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  10. Commercializing Space Weather using GAIM

    Science.gov (United States)

    Tobiska, W. Kent; Schunk, Robert; Sojka, Jan J.

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the en-ergy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects com-munication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) was organized in 2009 to develop commercial space weather applications. It uses the Global Assimilation of Ionospheric Measurements (GAIM) system as the basis for providing improvements to communication and navigation systems. For example, in August 2009 SWC released, in conjunction with Space Environment Technologies, the world's first real-time space weather via an iPhone app, Space WX. It displays the real-time, current global ionosphere to-tal electron content along with its space weather drivers, is available through the Apple iTunes store, and is used around the world. The GAIM system is run operationally at SWC for global and regional (continental U.S.) conditions. Each run stream continuously ingests up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations in a Kalman filter to adjust the background output from the physics-based Ionosphere Forecast Model (IFM). Additionally, 80 real-time digisonde data streams from around the world provide ionosphere characterization up to the F-region peak. The combination of these data dramatically improves the current epoch ionosphere specification beyond the physics-based solution. The altitudinal range is 90-1500 km for output TEC, electron densities, and other data products with a few degrees resolution in latitude and longitude at 15-minute time granularity. We describe the existing SWC products that are used as commercial space weather information. SWC funding is provided by the State of Utah's Utah Science Technology and Research (USTAR) initiative. The SWC is physically located on the USU campus in Logan, Utah.

  11. Weather Derivatives – Origin, Types and Application

    OpenAIRE

    Piotr Binkowski

    2008-01-01

    The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europ...

  12. Quantitative Chemical Indices of Weathered Igneous Rocks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A study was conducted to compare the effectiveness of different weathering indices for characterising weathered igneous rocks of Hong Kong. Among eight chemical indices evaluated in this study, the Parker index has been found most suitable for a quantitative description of state of weathering. Based on geochemical results of 174 samples, the index decreases almost linearly with an increasing extent of weathering. The results enable a better understanding of the modification of geotechnical properties of igneous rocks associated with weathering processes.

  13. The effects of weather on retail sales

    OpenAIRE

    Martha Starr-McCluer

    2000-01-01

    Monthly fluctuations in consumer spending are often attributed to the weather. This paper presents a model in which weather affects the productivity of time in nonmarket activities (such as shopping or recreation), and so, via time and budget constraints, may induce substitution in spending across goods and over time. Using monthly data on retail sales and weather data from the National Weather Service, I find that unusual weather has a modest but significant role in explaining monthly sales ...

  14. Cosmic rays and space weather

    Science.gov (United States)

    Dorman, L. I.

    2003-04-01

    It is well known that in periods of great FEP (Flare Energetic Particle), fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead (each year insurance companies paid more than 500,000,000 dollars for these failures). In these periods is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 radiation storms according to classification of NOAA). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 5-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 30-60 minutes later). We describe here principles and experience of automatically working programs "FEP-Search-1 min", "FEP-Search-2 min","FEP-Search-5 min", developed and checked in the Emilio Segre' Observatory of Israel Cosmic Ray Center (2025 m above sea level, cut-off rigidity 10.8 GV). The second step is automatically determination of flare energetic particle spectrum, and then automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere and on the ground. We will describe also the theory and experience of high energy cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects (what

  15. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  16. Weathering of Thermal Control Coatings

    Science.gov (United States)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.; Triolo, Jack J.

    2007-01-01

    Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliques upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel. This is a challenge, as new composite radiator panels are being considered as replacements for the aluminum panels used previously. Various thermal control paints, coatings, and appliques were applied to aluminum and isocyanate ester composite coupons and were exposed for 30 days at the Atmospheric Exposure Site of the Kennedy Space Center s Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected coupons were subsequently exposed to simulated solar wind and vacuum ultraviolet radiation to identify the effect of a simulated space environment on the as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints and coatings. The purpose of this paper is to present the results of the weathering testing and to summarize the durability of several thermal control paints, coatings, and appliques to weathering and postweathering environments.

  17. Ionospheric climate and weather modeling

    International Nuclear Information System (INIS)

    Simulations of the ionospheric model of Schunk et al. (1986) have been used for climatology and weather modeling. Steady state empirical models were used in the climatology model to provide plasma convection and particle precipitation patterns in the northern high-latitude region. The climatology model also depicts the ionospheric electron density and ion and electron temperatures for solar maximum, winter solstice, and strong geomagnetic activity conditions. The weather model describes the variations of ionospheric features during the solar cycle, seasonal changes, and geomagnetic activity. Prospects for future modeling are considered. 23 references

  18. Weatherization and Intergovernmental Programs Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Weatherization and Intergovernmental Programs (WIP) Office is part of EERE’s balanced research, development, demonstration, and deployment approach to accelerate America’s transition to a clean energy economy. WIP’s mission is to partner with state and local organizations to improve energy security and to significantly accelerate the deployment of clean energy technologies and practices by a wide range of government, community, and business stakeholders.

  19. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  20. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  1. Tomorrow's Forecast: Oceans and Weather.

    Science.gov (United States)

    Smigielski, Alan

    1995-01-01

    This issue of "Art to Zoo" focuses on weather and climate and is tied to the traveling exhibition Ocean Planet from the Smithsonian's National Museum of Natural History. The lessons encourage students to think about the profound influence the oceans have on planetary climate and life on earth. Sections of the lesson plan include: (1) "Ocean…

  2. Solar variability, weather, and climate

    Science.gov (United States)

    1982-01-01

    Advances in the understanding of possible effects of solar variations on weather and climate are most likely to emerge by addressing the subject in terms of fundamental physical principles of atmospheric sciences and solar-terrestrial physis. The limits of variability of solar inputs to the atmosphere and the depth in the atmosphere to which these variations have significant effects are determined.

  3. Dynamic Weather Routes Architecture Overview

    Science.gov (United States)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  4. Mexican Space Weather Service (SCIESMEX)

    Science.gov (United States)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  5. Solar activity and the weather

    Science.gov (United States)

    Wilcox, J. M.

    1975-01-01

    Attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given, and several recent investigations are summarized. Use of the solar-interplanetary magnetic sector structure in future investigations may add an element of cohesiveness and interaction to these investigations.

  6. Weather-Corrected Performance Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  7. Enhanced weathering strategies for cooling the planet and saving coral reefs

    Science.gov (United States)

    Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.

    2014-12-01

    Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.

  8. Photodegradation profiles of PVC compound and wood/PVC composites under UV weathering

    Directory of Open Access Journals (Sweden)

    N. Sombatsompop

    2013-02-01

    Full Text Available This work aimed to study the effect of different ultraviolet (UV weathering conditions (natural and accelerated on the photodegradation of polyvinyl chloride (PVC and wood/polyvinyl chloride (WPVC composites by considering the structural and physical changes of PVC and WPVC samples as well as examining the photodegradation profiles at different depths from the sample surfaces. The photodegradation of PVC and WPVC composites under natural weathering conditions were lower than those under accelerated weathering conditions. The addition of Tinuvin P stabilizer at 2 phr was sufficient to stabilize PVC and WPVC composites, whereas the presence of wood appeared to accelerate the photodegradation of PVC under both natural and accelerated weathering conditions. When considering the photodegradation profiles at different depths of the samples, it was found that the polyene and carbonyl sequences of PVC and WPVC composites were high at the sample surfaces and tended to decrease rapidly with increasing depth from the specimen surface before stabilizing at a depth of 60 μm for PVC and 80 μm for WPVC composites. The differences in specimen depths for the stabilization of polyene and carbonyl sequences in PVC and WPVC samples implied that the presence of wood particles enhanced the absorption of UV radiation by the WPVC composite samples.

  9. Biomedical Accelerator Mass Spectrometry

    Data.gov (United States)

    Federal Laboratory Consortium — Industrial partner projects focus on big, complex challenges and opportunities like smart grid, weather forecasting for renewable energy sources, alternative energy...

  10. OpenWeather: a peer-to-peer weather data transmission protocol

    CERN Document Server

    Yanes, Adrian

    2011-01-01

    The study of the weather is performed using instruments termed weather stations. These weather stations are distributed around the world, collecting the data from the different phenomena. Several weather organizations have been deploying thousands of these instruments, creating big networks to collect weather data. These instruments are collecting the weather data and delivering it for later processing in the collections points. Nevertheless, all the methodologies used to transmit the weather data are based in protocols non adapted for this purpose. Thus, the weather stations are limited by the data formats and protocols used in them, not taking advantage of the real-time data available on them. We research the weather instruments, their technology and their network capabilities, in order to provide a solution for the mentioned problem. OpenWeather is the protocol proposed to provide a more optimum and reliable way to transmit the weather data. We evaluate the environmental factors, such as location or bandwi...

  11. Rolling stones; fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification

    NARCIS (Netherlands)

    Schuiling, R.D.; Boer, P.L. de

    2011-01-01

    Human CO2 emissions may drive the Earth into a next greenhouse state. They can be mitigated by accelerating weathering of natural rock under the uptake of CO2. We disprove the paradigm that olivine weathering in nature would be a slow process, and show that it is not needed to mill olivine to very f

  12. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-01-01

    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives especially the financial derivatives based on different types of indexes financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  13. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  14. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires,...

  15. National Weather Service County Warning Area Boundaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains polygons corresponding to the County Warning Areas (CWAs) of each Weather Forecast Office (WFO) in the National Weather Service (NWS).

  16. Newspaper Clippings and Articles (Weather-related)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather-related newspaper articles and photos, almost exclusively from Baltimore, MD and nearby areas. Includes storm damage, rainfall reports, and weather's affect...

  17. World War II Weather Record Transmittances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  18. NOAA Weather and Climate Toolkit (WCT)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The...

  19. Operability Guidelines For Product Tanker In Heavy Weather In The Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Mudronja Luka

    2014-06-01

    Full Text Available This paper presents operability guidelines for seafarers on a product tanker which navigates in the Adriatic Sea during heavy weather. Tanker route starts from the Otranto strait in the south to the island Krk in the north of Adriatic Sea. Heavy weather is caused by south wind called jugo (blowing from E-SE to SS-E, sirocco family. Operability guidelines are given based on an operability criteria platform for presenting ship seakeeping characteristics. Operability criteria considered in this paper are propeller emergence, deck wetness and bow acceleration of a product tanker. Limiting values of mentioned criteria determine sustainable speed. Heavy weather is described by extreme sea state of 7.5 m wave height. Wave spectrum used in this paper is Tabain spectrum which is developed specifically for Adriatic Sea. Seafarer's approach of decisions making in extreme weather is also shown and servers as a guideline for further research of the authors.

  20. Reducing prediction uncertainty of weather controlled systems

    NARCIS (Netherlands)

    Doeswijk, T.G.

    2007-01-01

    In closed agricultural systems the weather acts both as a disturbance and as a resource. By using weather forecasts in control strategies the effects of disturbances can be minimized whereas the resources can be utilized. In this situation weather forecast uncertainty and model based control are cou

  1. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  2. The Early Years: The Wonders of Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  3. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  4. Cave breakdown by vadose weathering.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2002-01-01

    Full Text Available Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coated, rather than having fresh broken faces, and blocks continue to disintegrate after separating from the bedrock. Not only gypsum, but also hydromagnesite and aragonite are responsible for crystal wedging. It is impossible to study or identify potential breakdown foci by surface surveys alone, in-cave observation and mapping are essential.

  5. The Sun and Space Weather

    Science.gov (United States)

    Hanslmeier, Arnold

    2002-06-01

    What are the terrestrial effects of solar activity and the solar activity cycle? The modern term used for solar terrestrial relations is `Space Weather'. This term describes all external effects on the space environment of the Earth and the Earth's atmosphere. The main driver for space weather is our Sun. Explosive events on the Sun that are modulated by the solar activity cycle lead to enhanced particle emission and short wavelength radiation. This affects satellites: for example surface charging and enhanced drag forces on satellites in low Earth orbit can cause satellite crashes etc. Enhanced radiation also poses a problem for astronauts, especially for extravehicular activities. Another source of space weather effects is space debris and micrometeoroids. Since the Sun is the main source of space weather effects, the first part of the book is devoted to a general introduction to the physics of the Sun. A better understanding of the phenomena underlying solar activity is also important for prediction of solar outbursts and thus for establishing alert systems for space missions and telecommunication systems. The book contains the following topics: * possible influence of the Sun on the Earth's climate; * the effects of radiation on humans in space and the expected radiation dose from various solar events; * disturbances of the Earth's ionosphere and the implications of radio communication at different wavelength ranges; * possible hazardous asteroids and meteoroids and their detection; and * space debris and special shielding of spacecraft. In the cited literature the reader can find more detailed information about the topics. This book provides an introduction and overview of modern solar-terrestrial physics for students as well as for researchers in the field of astrophysics, solar physics, geophysics, and climate research. Link: http://www.wkap.nl/prod/b/1-4020-0684-5

  6. Fatigue properties of weathering steel

    OpenAIRE

    Zavadilová, Petra

    2012-01-01

    This work deals with the influence of atmospheric corrosion on high-cycle fatigue properties of a weathering steel ATMOFIX B. New experimental data on fatigue strength of a steel exposed for 20 years to an atmospheric corrosion were compared to those characterizing the base material. Reduction of the fatigue lifetime of the exposed material compared with the base material was predicted on the basic of fractographic examination of fracture surfaces and the influence of surface notches on fatig...

  7. Sunspots, Space Weather and Climate

    Science.gov (United States)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  8. The Weather and Climate Toolkit

    Science.gov (United States)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  9. Positive lightning and severe weather

    Science.gov (United States)

    Price, C.; Murphy, B.

    2003-04-01

    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  10. Role of Lichens in Weathering and Soil—Forming Processes in Fildes Peninsula,Antarctic

    Institute of Scientific and Technical Information of China (English)

    CHENJIE; GONGZi-TONG

    1995-01-01

    Lichens play an unparalleledly vital role in weathering and soil-forming processes in Antarctic region,In this study some related chemical components and micromorphological analyses have been carried out on the samples of the weathered rocks and the lichens grown on them from Files Peninsula,Antarctic,The results indicatied that the major chemical components in the bioweathering surface layer of the sampled rocks have been obviously altered and the weathering potential in this layer has greatly decreased by and average range around 4.66 percent in 4 samples,In the weathering surface layer ferruginiztion of some minerals in varying degress was seen by means of microscopic examination through the thin section of the weathered rocks,and its products proved to be dominated by hematitie,limonite,goethite and free iron oxides Meanwhile,the study suggested that the dissolution and absorption of lichens by their secretion accelerated the process of calcitization of minerals in the bio-weathering suface layer,Eventually,the results also show that different species of lichens play different roles in weathering and soil-forming proesses.

  11. Operational Space Weather Activities in the US

    Science.gov (United States)

    Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert

    2016-07-01

    We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.

  12. Economic Value of Weather and Climate Forecasts

    Science.gov (United States)

    Katz, Richard W.; Murphy, Allan H.

    1997-06-01

    Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.

  13. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  14. The direction of acceleration

    Science.gov (United States)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  15. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  16. Probability for Weather and Climate

    Science.gov (United States)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  17. Evolution of Oxidative Continental Weathering

    Science.gov (United States)

    Konhauser, Kurt; Lalonde, Stefan

    2014-05-01

    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen levels increased above 10-5 times the present atmospheric level. This value is based on the loss of sulphur isotope mass independent fractionation (S-MIF) from the rock record, beginning at 2.45 Ga and disappearing by 2.32 Ga. However, a number of recent papers have pushed back the timing for oxidative continental weathering, and by extension, the onset of atmospheric oxygenation several hundreds of million years earlier despite the presence of S-MIF (e.g., Crowe et al., 2013). This apparent discrepancy can, in part, be resolved by the suggestion that recycling of older sedimentary sulphur bearing S-MIF might have led to this signal's persistence in the rock record for some time after atmospheric oxygenation (Reinhard et al., 2013). Here we suggest another possibility, that the earliest oxidative weathering reactions occurred in environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts, riverbed and estuarine sediments, and lacustrine microbial mats. We calculate that the rate of O2 production via oxygenic photosynthesis in these terrestrial microbial ecosystems provides largely sufficient oxidizing potential to mobilise sulphate and a number of redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. These findings reconcile geochemical signatures in the rock record for the earliest oxidative continental weathering with the history of atmospheric sulphur chemistry, and demonstrate the plausible antiquity of a terrestrial biosphere populated by cyanobacteria. Crowe, S.A., Dossing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R. & Canfield, D.E. Atmospheric oxygenation three billion years ago. Nature 501, 535-539 (2013). Reinhard, C.T., Planavsky, N.J. & Lyons, T.W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497

  18. Fair weather terrestrial atmospheric electricity

    Science.gov (United States)

    Harrison, G.

    Atmospheric electricity is one of the oldest experimental topics in atmospheric science. The fair weather aspects, although having less dramatic effects than thunderstorm electrification, link the microscale behaviour of ion clusters to currents flowing on the global scale. This talk will include a survey of some past measurements and measurement methods, as atmospheric electrical data from a variety of sites and eras are now being used to understand changes in atmospheric composition. Potential Gradient data was the original source of information on the global atmospheric electrical circuit, and similar measurements can now be used to reconstruct past air pollution concentrations, and black carbon loading.

  19. Space weather applications with PICARD

    Science.gov (United States)

    Dudok de Wit, Thierry; Thuillier, Gerard

    The PICARD mission aims at providing a better understanding of the origin of solar variability and the relations between the Sun and Earth's climate. Some of the instruments from PICARD will also be of direct interest to space weather. SODISM will provide regular UV images at 215 and 393 nm wavelength and PREMOS will measure the solar spectral irradiance in 5 channels, 3 of which are in the visible and in the near-infrared. Some potential applications will be discussed as well as synergies with other spectral irradiance observations, such as by LYRA on PROBA2 and EVE on SDO.

  20. Radiometers Optimize Local Weather Prediction

    Science.gov (United States)

    2010-01-01

    Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.

  1. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  2. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  3. Standing wave linear accelerator

    International Nuclear Information System (INIS)

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  4. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  5. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  6. Enhanced Weather Radar (EWxR) System

    Science.gov (United States)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  7. Maximal Acceleration Is Nonrotating

    OpenAIRE

    Page, Don N.

    1997-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruenc...

  8. A Solid state accelerator

    International Nuclear Information System (INIS)

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  9. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  10. Accelerators at school

    International Nuclear Information System (INIS)

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  11. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  12. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  13. Accelerators and Dinosaurs

    CERN Document Server

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  14. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  15. Weathering of ordinary chondrites from Oman: Correlation of weathering parameters with 14C terrestrial ages and a refined weathering scale

    Science.gov (United States)

    Zurfluh, Florian J.; Hofmann, Beda A.; Gnos, Edwin; Eggenberger, Urs; Jull, A. J. Timothy

    2016-09-01

    We have investigated 128 14C-dated ordinary chondrites from Oman for macroscopically visible weathering parameters, for thin section-based weathering degrees, and for chemical weathering parameters as analyzed with handheld X-ray fluorescence. These 128 14C-dated meteorites show an abundance maximum of terrestrial age at 19.9 ka, with a mean of 21.0 ka and a pronounced lack of samples between 0 and 10 ka. The weathering degree is evaluated in thin section using a refined weathering scale based on the current W0 to W6 classification of Wlotzka (1993), with five newly included intermediate steps resulting in a total of nine (formerly six) steps. We find significant correlations between terrestrial ages and several macroscopic weathering parameters. The correlation of various chemical parameters including Sr and Ba with terrestrial age is not very pronounced. The microscopic weathering degree of metal and sulfides with newly added intermediate steps shows the best correlation with 14C terrestrial ages, demonstrating the significance of the newly defined weathering steps. We demonstrate that the observed 14C terrestrial age distribution can be modeled from the abundance of meteorites with different weathering degrees, allowing the evaluation of an age-frequency distribution for the whole meteorite population.

  16. Rock weathering and Carbon cycle

    Science.gov (United States)

    Strozza, Patrick

    2010-05-01

    In the history of the Earth system, we can find indicators of hot or glacial periods, as well as brutal climatic change… How can we explain those climate variations on a geological timescale ? One of the causative agents is probably the fluctuation of atmospheric CO2 amounts, (gas responsible for the greenhouse effect). A concrete study of some CO2 fluxes between Earth system reservoirs (atmo, hydro and lithosphere) is proposed in this poster. Hydrogencarbonate is the major ion in river surface waters and its amount is so high that it can not be explained by a simple atmospheric Carbon diffusion. From a simple measurement of river HCO3- concentration, we can estimate the consumption of atmospheric CO2 that arises from carbonate and silicate weathering processes. Practical experiments are proposed. These are carried out in the local environment, and are conform to the curriculums of Chemistry and Earth sciences. These tests enable us to outline long-term Carbon cycles and global climatic changes. Key words : Erosion, rock weathering, CO2 cycle, Hydrogencarbonate in waters, climatic changes

  17. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  18. Prediction Techniques in Operational Space Weather Forecasting

    Science.gov (United States)

    Zhukov, Andrei

    2016-07-01

    The importance of forecasting space weather conditions is steadily increasing as our society is becoming more and more dependent on advanced technologies that may be affected by disturbed space weather. Operational space weather forecasting is still a difficult task that requires the real-time availability of input data and specific prediction techniques that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. Key observations that are essential for operational space weather forecasting are listed. Predictions made on the base of empirical and statistical methods, as well as physical models, are described. Their validation, accuracy, and limitations are discussed in the context of operational forecasting. Several important problems in the scientific basis of predicting space weather are described, and possible ways to overcome them are discussed, including novel space-borne observations that could be available in future.

  19. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  20. Direct Laser Acceleration in Laser Wakefield Accelerators

    OpenAIRE

    Shaw, Jessica

    2016-01-01

    In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are t...

  1. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  2. Extreme Compression of Weather Radar Data

    OpenAIRE

    Makkapati, Vishnu V; Mahapatra, Pravas R

    2007-01-01

    A method for achieving extreme levels of compression of high-volume weather radar data is presented. Weather reflectivity contours, as per National Weather Service or custom thresholds, are processed by tracing their departure from a smoothed version to obtain the local extrema which serve as control points. The control points, which are transmitted in relative coordinates for further compression, are interpolated using a second-degree B- spline to retrieve the contours. The encoding–decoding...

  3. Extreme weather events and infectious disease outbreaks

    OpenAIRE

    Anthony J McMichael

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental c...

  4. Effect of weathering on the properties of hybrid composite based on polyethylene, woodflour, and nanoclay

    Directory of Open Access Journals (Sweden)

    Amir Eshraghi

    2013-02-01

    Full Text Available Hybrid composites of polyethylene/wood flour/nanoclay with different concentrations of nanoclay were fabricated using melt compounding followed by injection molding. Composites were weathered in a xenon-arc type accelerated weathering apparatus for 2000 h. Physical properties of the composites were evaluated by colorimetery and water absorption before and after weathering. Changes in surface chemistry were monitored using spectroscopic techniques. The results indicated that water absorption of the composites increased after weathering, but nanoclay can reduce the intensity of weathering to some extent by decreasing water absorption. Weathering increased the degree of color change and lightness of the samples; however, the lightness of the samples containing nanoclay was less than that of neat wood-plastic composites. Fourier transform infrared spectroscopy revealed a lower carbonyl index of composites containing nanoclay. X-ray diffraction patterns revealed that the nanocomposites formed were intercalated. The order of intercalation for samples containing 2 wt% nanoclay was higher than that of 4 wt% at the same maleic anhydride grafted polyethylene content, due to some agglomeration of the nanoclay.

  5. Induction linear accelerators

    Science.gov (United States)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typicallymarriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  6. Aging and weathering of cool roofing membranes

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Berhe, Asmeret A.; Levinson, Ronnen; Graveline,Stanley; Foley, Kevin; Delgado, Ana H.; Paroli, Ralph M.

    2005-08-23

    Aging and weathering can reduce the solar reflectance of cool roofing materials. This paper summarizes laboratory measurements of the solar spectral reflectance of unweathered, weathered, and cleaned samples collected from single-ply roofing membranes at various sites across the United States. Fifteen samples were examined in each of the following six conditions: unweathered; weathered; weathered and brushed; weathered, brushed and then rinsed with water; weathered, brushed, rinsed with water, and then washed with soap and water; and weathered, brushed, rinsed with water, washed with soap and water, and then washed with an algaecide. Another 25 samples from 25 roofs across the United States and Canada were measured in their unweathered state, weathered, and weathered and wiped. We document reduction in reflectivity resulted from various soiling mechanisms and provide data on the effectiveness of various cleaning approaches. Results indicate that although the majority of samples after being washed with detergent could be brought to within 90% of their unweathered reflectivity, in some instances an algaecide was required to restore this level of reflectivity.

  7. A comparative study of accelerated tests to simulate atmospheric corrosion

    International Nuclear Information System (INIS)

    In this study, specimens coated with five organic coating systems were exposed to accelerated tests for periods up to 2000 hours, and also to weathering for two years and six months. The accelerated tests consisted of the salt spray test, according to ASTM B-117; Prohesion (ASTM G 85-98 annex 5A); Prohesion combined with cyclic exposure to UV-A radiation and condensation; 'Prohchuva' a test described by ASTM G 85-98 using a salt spray with composition that simulated the acid rain of Sao Paulo, but one thousand times more concentrated, and 'Prohchuva' combined with cyclic exposure to UV-A radiation and condensation. The coated specimens were exposed with and without incision to expose the substrate. The onset and progress of corrosion at and of the exposed metallic surface, besides coating degradation, were followed by visual observation, and photographs were taken. The coating systems were classified according to the extent of corrosion protection given to the substrate, using a method based on ASTM standards D-610, D-714, D-1654 and D-3359. The rankings of the coatings obtained from accelerated tests and weathering were compared and contrasted with classification of the same systems obtained from literature, for specimens exposed to an industrial atmosphere. Coating degradation was strongly dependent on the test, and could be attributed to differences in test conditions. The best correlation between accelerated test and weathering was found for the test Prohesion alternated with cycles of exposure to UV-A radiation and condensation. (author)

  8. Traffic Control Under Complex Weather Conditions in Suining Airport

    Institute of Scientific and Technical Information of China (English)

    吕维峰

    2014-01-01

    Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety. When confronted with complex weather conditions,the controllers should know the weather condition and trend weather,and notify the aircraft under your control zone.The controllers provide the required services to the pilots,help the pilots to avoid the complex weather.In this paper, through different complex weathers under different control command,get the different methods of control.

  9. The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite.

    Science.gov (United States)

    Olsson-Francis, K; Simpson, A E; Wolff-Boenisch, D; Cockell, C S

    2012-09-01

    The weathering of volcanic rocks contributes significantly to the global silicate weathering budget, effecting carbon dioxide drawdown and long-term climate control. The rate of chemical weathering is influenced by the composition of the rock. Rock-dwelling micro-organisms are known to play a role in changing the rate of weathering reactions; however, the influence of rock composition on bio-weathering is unknown. Cyanobacteria are known to be a ubiquitous surface taxon in volcanic rocks. In this study, we used a selection of fast and slow growing cyanobacterial species to compare microbial-mediated weathering of bulk crystalline rocks of basaltic and rhyolitic composition, under batch conditions. Cyanobacterial growth caused an increase in the pH of the medium and an acceleration of rock dissolution compared to the abiotic controls. For example, Anabaena cylindrica increased the linear release rate (R(i)(l)) of Ca, Mg, Si and K from the basalt by more than fivefold (5.21-12.48) and increased the pH of the medium by 1.9 units. Although A. cylindrica enhanced rhyolite weathering, the increase in R(i)(l) was less than threefold (2.04-2.97) and the pH increase was only 0.83 units. The R(i)(l) values obtained with A. cylindrica were at least ninefold greater with the basalt than the rhyolite, whereas in the abiotic controls, the difference was less than fivefold. Factors accounting for the slower rate of rhyolite weathering and lower biomass achieved are likely to include the higher content of quartz, which has a low rate of weathering and lower concentrations of bio-essential elements, such as, Ca, Fe and Mg, which are known to be important in controlling cyanobacterial growth. We show that at conditions where weathering is favoured, biota can enhance the difference between low and high Si-rock weathering. Our data show that cyanobacteria can play a significant role in enhancing rock weathering and likely have done since they evolved on the early Earth.

  10. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  11. Weather Satellite Enterprise Information Chain

    Science.gov (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  12. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  13. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  14. Hedging Weather Risk for Corn Production in Northeastern China: The Efficiency of Weather-indexed Insurance

    NARCIS (Netherlands)

    Sun, Baojing; Guo, Changhao; Kooten, van G.C.

    2014-01-01

    Purpose – The paper analyzes the hedging efficiency of weather-indexed insurance for corn production in Northeast of China. The purpose of this paper is to identify the potential weather variables that impact corn yields and to analyze the efficiency of weather-indexed insurance under varying thresh

  15. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    Science.gov (United States)

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  16. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    Science.gov (United States)

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and

  17. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  18. Fully polarimetric analysis of weather radar signatures

    OpenAIRE

    Galletti, Michele; Bebbington, David; Chandra, Madhukar; Börner, Thomas

    2008-01-01

    In this work the concept of depolarization response, namely the degree of polarization as a function of transmit polarization state, is investigated. Application examples are shown in the field of radar meteorology, namely for hydrometeor identification with fully polarimetric weather radar signatures. Data are from POLDIRAD, DLR research weather radar.

  19. Uncertainty analysis of weather controlled systems

    NARCIS (Netherlands)

    Keesman, K.J.; Doeswijk, T.G.

    2010-01-01

    The indoor climate of many storage facilities for agricultural produce is controlled by mixing ambient air with the air flow through the store room. Hence, the indoor climate is affected by the ambient weather conditions. Given hourly fluctuating energy tariffs, weather forecasts over some days are

  20. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations. PMID:26168924

  1. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to uncertain

  2. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  3. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  4. Future weather dataset for fourteen UK sites.

    Science.gov (United States)

    Liu, Chunde

    2016-09-01

    This Future weather dataset is used for assessing the risk of overheating and thermal discomfort or heat stress in the free running buildings. The weather files are in the format of .epw which can be used in the building simulation packages such as EnergyPlus, DesignBuilder, IES, etc. PMID:27570809

  5. Towards a National Space Weather Predictive Capability

    Science.gov (United States)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  6. Black weathering of Bentheim and Obernkirchen sandstone

    NARCIS (Netherlands)

    Nijland, T.G.; Dubelaar, C.W.; Hees, R.P.J. van; Linden, T.J.M. van der

    2003-01-01

    Black weathering of sandstone in monuments is widespread. Some obiects owe their name to it, like the Porta Nigra in Triet (Germany). Other than the black gypsum crusts common on limestone, the black weathering layer on sandstone is rather thin and well adhe¡ent. Formation of such layers on Bentheim

  7. Financial Weather Options for Crop Production

    NARCIS (Netherlands)

    Sun, Baojing; Kooten, van G.C.

    2014-01-01

    Weather derivatives based on heating degree days or cooling degree days have been traded in financial markets for more than 10 years. Although used by the energy sector, agricultural producers have been slow to adopt this technology even though agriculture is particularly vulnerable to weather uncer

  8. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  9. Switched Matrix Accelerator

    International Nuclear Information System (INIS)

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  10. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  11. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  12. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  13. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  14. Weatherization works: Final report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G.; Kinney, L.F.

    1994-09-01

    In 1990, the U.S. Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation`s largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year (supplemented by data from 1991-92). The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it (1) saves energy, (2) lowers fuel bills, and (3) improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effective manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years.

  15. Learn about Earth Science: Weather. [CD-ROM].

    Science.gov (United States)

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of weather. Students investigate weather to learn about climate and the seasons, how animals adapt to weather changes, how clouds tell us about conditions, and how weather plays a part in our everyday lives. The weather calendar lets students record and write about conditions…

  16. Space weather: European Space Agency perspectives

    Science.gov (United States)

    Daly, E. J.; Hilgers, A.

    Spacecraft and payloads have become steadily more sophisticated and therefore more susceptible to space weather effects. ESA has long been active in applying models and tools to the problems associated with such effects on its spacecraft. In parallel, ESA and European agencies have built a highly successful solar-terrestrial physics capability. ESA is now investigating the marriage of these technological and scientific capabilities to address perceived user needs for space weather products and services. Two major ESA-sponsored studies are laying the groundwork for a possible operational European space weather service. The wide-ranging activities of ESA in the Space Weather/Space Environment domain are summarized and recent important examples of space weather concerns given.

  17. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low power microwave cold test and high power, high gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  19. Forecasting Space Weather from Magnetograms

    Science.gov (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, maps of the measured field in the photosphere, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). For each type of event, the expected rate is readily converted to the chance that the active region will produce such an event in any given forward time window of a day or so. If the chance is small enough (e.g. forecast is All Clear for that type of event. We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare (GOES

  20. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    Energy Technology Data Exchange (ETDEWEB)

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  1. Weather Station and Sensor Locations, MDTA Roadway weather station, weather stations, weather sensors, Roadway weather sensors, RWIS, MDTA weather sensors, Published in 2009, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Weather Station and Sensor Locations dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Hardcopy Maps information as of 2009. It...

  2. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  3. Angular velocities, angular accelerations, and coriolis accelerations

    Science.gov (United States)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  4. Weatherization Works: Final Report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    2001-02-01

    In 1990, the US Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation's largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year. The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it saves energy, lowers fuel bills, and improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effective manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years. The Program's mission is to reduce the heating and cooling costs for low-income families--particularly the elderly, persons with disabilities, and children by improving the energy efficiency of their homes and ensuring their health and safety. Substantial progress has been made, but the job is far from over. The Department of Health and Human Services (HHS) reports that the average low-income family spends 12 percent of its income on residential energy, compared to only 3% for the average-income family. Homes where low-income families live also have a greater need for energy efficiency improvements, but less money to pay for them.

  5. Nanosatellites : A paradigm change for space weather studies.

    Science.gov (United States)

    Barthelemy, Mathieu

    2016-04-01

    Nanosatellites are changing the paradigm of space exploration and engineering. The past 15 years have seen a growing activity in this field, with a marked acceleration in the last 3 years. Whereas the educational value of nanosatellites is well recognized, their scientific and technological use is potentially extremely rich but not fully explored. Conventional attitudes towards space engineering need to be reviewed in light of the capabilities and characteristics of these miniature devices that enable approaches and applications not possible with traditional satellite platforms. After an evaluation of the past and near future nanosatellites missions in the domain of space weather and from the example of the Zegrensat/ATISE mission, we will give some perspectives on the possibilities opened by these small satellites.

  6. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  7. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  8. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  9. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  10. Accelerators for energy production

    International Nuclear Information System (INIS)

    A tremendous progress of accelerators for these several decades, has been motivated mainly by the research on subnuclear physics. The culmination in high energy accelerators might be SSC, 20 TeV collider in USA, probably the ultimate accelerator being built with the conventional principle. The technology cultivated and integrated for the accelerator development, can now stably offer the high power beam which could be used for the energy problems. The Inertial Confinement Fusion (ICF) with high current, 10 kA and short pulse, 20 ns heavy ion beam (HIB) of mass number ∼200, would be the most promising application of accelerators for energy production. In this scenario, the fuel containing D-T mixture, will be compressed to the high temperature, ∼10 keV and to the high density state, ∼1000 times the solid density with the pressure of ablative plasma or thermal X ray produced by bombarding of high power HIB. The efficiency, beam power/electric power for accelerator, and the repetition rate of HIB accelerators could be most suitable for the energy production. In the present paper, the outline of HIB ICF (HIF) is presented emphasizing the key issues of high current heavy ion accelerator system. (author)

  11. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  12. On-line data acquisition system for Aanderaa weather station

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    Aanderaa Weather Station can be installed at unattended remote places for collection of various weather parameters at regular preselected intervals. The weather parameters are recorded on the magnetic spool inside a battery operated datalogger which...

  13. Toward a Space Weather Virtual Organization (Invited)

    Science.gov (United States)

    Paxton, L. J.; Holm, J. M.; Schaefer, R. K.; Weiss, M.

    2009-12-01

    On the 150th anniversary of the Carrington Event, it behooves us to reflect upon the impact of space weather on our technology-intensive, communications-driven, socitey. Over the period since the last solar maximum in 2001, the commercial, defense department, and other national entities have become increasingly dependent on the electronic command, control, & communication systems that are vulnerable to Space Weather events. There has not been a concomitant increase in our ability to reliably predict space weather nor in our ability to separate natural effects from human ones. Now we need to quickly gear up space situational awareness capability in time for the next solar max predicted to occur in about 3-4 years. Unfortunately, space weather expertise is spread over institutions and academic disciplines and communication between space weather forecasters, forecast users, and the research community is poor. We would like to set up a demonstration space weather virtual organization to find a more efficient way to communicate and manage knowledge to ensure the operational community can get actionable information in a timely manner. We call this system concept SWIFTER-ACTION (Space Weather Informatics, Forecasting, and Technology through Enabling Research - Accessibility, Content, & Timely Information On the Network.) In this paper we provide an overview of the issues that must be addressed in order to transform data into knowledge that enables action.

  14. MEASURING SYSTEM OF ADVERSE WEATHER PHENOMENA

    Directory of Open Access Journals (Sweden)

    M. Ćurić

    2012-03-01

    Full Text Available Measuring system of adverse weather phenomena. The adverse weather phenomena in nowadays are becoming an extraordinary problem in human life and human activity. Therefore, it seems very important to know the thresholds of adverse weather phenomena. These thresholds can be calculated in different ways, but some experience has shown that for weather elements which departures from normal follow the normal distribution suits to use the Gaussian curve of frequency distribution (temperature and pressure. For such weather elements the normal curve of frequency distribution may be used for classification of thresholds. For weather elements which departures do not depend on such a frequency distribution configuration (precipitation amounts may be used a decile method. For wind speed thresholds, the Beaufort scale units can be used for calculation. In this paper the threshold scales for four basic weather elemnts are presented. All these scales contain four steps each. They are defined: normal, above normal, much above normal and extraordinary above normal or normal, below normal, much below normal and extraordinary below normal. The examples by observations of Meteorological Observatory in Belgrade are presented.

  15. Forecasting Space Weather Events for a Neighboring World

    Science.gov (United States)

    Zheng, Yihua; Mason, Tom; Wood, Erin L.

    2015-01-01

    Shortly after NASA's Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft entered Mars' orbit on 21 September 2014, scientists glimpsed the Martian atmosphere's response to a front of solar energetic particles (SEPs) and an associated coronal mass ejection (CME). In response to some solar flares and CMEs, streams of SEPs burst from the solar atmosphere and are further accelerated in the interplanetary medium between the Sun and the planets. These particles deposit their energy and momentum into anything in their path, including the Martian atmosphere and MAVEN particle detectors. MAVEN scientists had been alerted to the likely CME-Mars encounter by a space weather prediction system that had its origins in space weather forecasting for Earth but now forecasts space weather for Earth's neighboring planets. The two Solar Terrestrial Relations Observatory spacecraft and Solar Heliospheric Observatory observed a CME on 26 September, with a trajectory that suggested a Mars intercept. A computer model developed for solar wind prediction, the Wang-Sheeley-Arge-Enlil cone model [e.g., Zheng et al., 2013; Parsons et al., 2011], running in real time at the Community Coordinated Modeling Center (CCMC) located at NASA Goddard since 2006, showed the CME propagating in the direction of Mars (Figure 1). According to MAVEN particle detectors, the disturbance and accompanying SEP enhancement at the leading edge of the CME reached Mars at approximately 17 hours Universal Time on 29 September 2014. Such SEPs may have a profound effect on atmospheric escape - they are believed to be a possible means for driving atmospheric loss. SEPs can cause loss of Mars' upper atmosphere through several loss mechanisms including sputtering of the atmosphere. Sputtering occurs when atoms are ejected from the atmosphere due to impacts with energetic particles.

  16. Maximal Acceleration Is Nonrotating

    CERN Document Server

    Page, D N

    1998-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry...

  17. Linear induction accelerator

    International Nuclear Information System (INIS)

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  18. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  19. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  20. Weather Derivatives: A Contemporary Review and Its Application in China

    OpenAIRE

    Xin LIU

    2006-01-01

    The weather has impact on both human activity and all forms of businesses. A variety of businesses including energy and power, agriculture, retail, insurance, and entertainment are either favorably or adversely by weather. Then a new class of financial derivatives--weather derivatives are evolved to manage the economic impact of weather events on the performance of business activities. To this day, the weather derivative market has developed throughout the world. Various of weather derivative...

  1. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  2. Weather station with a web server

    OpenAIRE

    Repinc, Matej

    2013-01-01

    In this diploma thesis we present the process of making a cheap weather station using Arduino prototyping platform and its functionality. The weather station monitors current temperature, humidity of air and air pressure. The station has its own simple HTTP server that is used to relay current data in two different formats: JSON encoded data and simple HTML website. The weather station can also send data to a pre-defined server used for data collection. We implemented a web site where data an...

  3. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; Berrios, David

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  4. Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies

    Science.gov (United States)

    Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.

    2011-01-01

    Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.

  5. Powernext weather, benchmark indices for effective weather risk management; Powernext Weather, des indices de reference pour gerer le risque meteo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  6. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  7. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  8. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  9. Collective ion acceleration

    International Nuclear Information System (INIS)

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  10. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    Science.gov (United States)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  11. Improving Local Weather Forecasts for Agricultural Applications

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    For controlling agricultural systems, weather forecasts can be of substantial importance. Studies have shown that forecast errors can be reduced in terms of bias and standard deviation using forecasts and meteorological measurements from one specific meteorological station. For agricultural systems

  12. National Ignition Facility wet weather construction plan

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  13. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... of the soil profile relative to stage one altered saprolite. This gain in Cr is accompanied by decreasing δ53Cr values and can be explained by partial immobilization (possibly by adsorption/coprecipitation on/with Fe-oxy-hydroxides) of mobile Cr(III) during upward transport in the weathering profile....... The negatively fractionated δ53Cr values measured in the weathering profile relative to the unaltered tonalitic bedrock characterized by a high temperature magmatic inventory Cr isotope signature are consistent with loss of a positively fractionated Cr(VI) pool formed during weathering. The predicted existence...

  14. Sentinels of the Sun: Forecasting Space Weather

    Science.gov (United States)

    Poland, Arthur I.

    2006-08-01

    The story of humanity's interest in space weather may go back to prehistoric times when people at high latitudes noticed the northern lights. Interest became more acute after the development of electrical technologies such as the telegraph, and certainly during World War II when shortwave radio communication came into practical use. Solar observing actually began to be supported by the military, with the observatory at Climax, Colorado being established to monitor the Sun during the war. With the advent of satellites and manned space travel to the Moon, space weather became a seriously funded endeavor both for basic research and forecasting. In the book, Sentinels of the Sun: Forecasting Space Weather, Barbara Poppe does an excellent job of telling this story for the nonprofessional. Moreover, as a professional who has studied space weather since before humans landed on the Moon, I found the book to be a very enjoyable read.

  15. Can enhanced weathering remove carbon dioxide from the atmosphere to prevent climate change? (Invited)

    Science.gov (United States)

    Renforth, P.; Pogge von Strandmann, P.; Henderson, G. M.

    2013-12-01

    On long timescales, silicate weathering provides the ultimate sink for CO2 released by volcanic degassing and, because the rate of such weathering is temperature dependant, this sink is thought to respond to climate change to provide a strong negative feedback stabilising Earth's climate. An increase of global weathering rates is expected in response to anthropogenic warming and this increased weathering will ultimately (on the timescale of hundreds of thousands of years) serve to remove additional CO2 and return the climate system to lower temperatures. Some have proposed that accelerating this natural process by adding ground minerals to the land surface may help to prevent climate change. However, a major challenge in assessing such a proposal is the lack of experimental kinetic data for minerals added to the environment. Here we will present results from an experiment in which a forsterite rich olivine (Mg2SiO4) was added to the top of a soil column extracted from an agricultural field. A solution was passed through the columns over a period of 5 months and the drainage waters were collected and analysed. The greater flux of Mg measured eluting from the treated soil can be used to constrain the weathering rate of the olivine. A weathering rate can be determined by normalising the rate of magnesium flux to the surface area of olivine in the soil. By combining this information with a simple shrinking core model, we can estimate that an average particle size less than 1 μm would be required in order for the olivine to completely dissolve in a year. Therefore, the energy requirements for enhanced weathering are large >2 GJ(electrical) per net tonne of CO2 sequestered, but it is at least comparable to direct air capture technologies. These preliminary results suggest limited carbon capture potential for enhanced weathering in temperate agricultural soils. However, some environments may be better suited (e.g. humid tropical agricultural soils) and additional

  16. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  17. Hadron accelerators in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). Accelerator School; Silari, M. [Consiglio Nazionale delle Ricerche, Milan (Italy)

    1996-12-31

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author) 28 refs.

  18. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  19. Entropic accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)

    2011-01-31

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  20. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  1. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  2. The particle accelerator

    International Nuclear Information System (INIS)

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  3. Space Weather Gets Real—on Smartphones

    Science.gov (United States)

    Tobiska, W. Kent; Crowley, Geoff; Oh, Seung Jun; Guhathakurta, Madhulika

    2010-10-01

    True to the saying that "a picture is worth a thousand words," society's affinity for visual images has driven innovative efforts to see space weather as it happens. The newest frontiers of these efforts involve applications, or apps, on cellular phones, allowing space weather researchers, operators, and teachers, as well as other interested parties, to have the ability to monitor conditions in real time with just the touch of a button.

  4. CRADE OF SAND AND DUST STORM WEATHER

    Institute of Scientific and Technical Information of China (English)

    Niu Ruoyun; Tian Cuiying; Bi Baogui; Yang Keming; Wang Youheng; Tuo Ya; Ding Haifang; Zhang Tairen

    2011-01-01

    Background Sand and dust storm,as one of the main disastrous weathers that affect northern China,not only affect the people health and normal life,but cause the short-term climatic changes due to the direct and indirect radiation of the earth-atmosphere system through the dust floating in the sky.The sand end dust weather and its potential harm on the national economy,ecological environment,social activities and other aspects have aroused worldwide concern.

  5. Personalized Real Time Weather Forecasting With Recommendations

    OpenAIRE

    Abhishek Kumar Singh; Aditi Sharma; Rahul Mishra

    2013-01-01

    Temperature forecasting and rain forecasting in today's environment is playing a major role in many fields like transportation, tour planning and agriculture. The purpose of this paper is to provide a real time forecasting to the user according to their current position and requirement. The simplest method of forecasting the weather, persistence, relies upon today's conditions to forecast the conditions tomorrow i.e. analyzing historical data for predicting future weather conditions. The weat...

  6. Resource Letter SW1: Space Weather

    Science.gov (United States)

    Baker, Daniel N.; Lanzerotti, Louis J.

    2016-03-01

    This Resource Letter describes the phenomena and effects on technological systems that are known collectively as space weather. A brief history of the topic is provided, and the scientific understandings of drivers for such phenomena are discussed. The impacts of space disturbances are summarized, and the strategies for dealing with space weather threats are examined. The Resource Letter concludes with description of approaches that have been proposed to deal with threats to our increasingly technological society.

  7. Does weather affect US bank loan efficiency?

    OpenAIRE

    Mamatzakis, E

    2013-01-01

    The impact of strong emotions or mood on decision making and risk taking is well recognized in behavioral economics and finance. Yet, and in spite of the immense interest, no study, so far, has provided any comprehensive evidence on the impact of weather conditions. This paper provides the theoretical framework to study the impact of weather through its influence on bank manager’s mood on bank inefficiency. In particular, we provide empirical evidence of the dynamic interactions between weath...

  8. Weather Radar Signals with Alpha Stable Distributions

    OpenAIRE

    Lagha, Mohand; Bensebti, Messaoud

    2007-01-01

    This work, treats about a modeling of the weather precipitation echoes detected by a weather pulse Doppler radar. The methods used for the simulation of the Doppler spectrum, and I & Q signals representing the precipitations radar echoes, is based on a macroscopic models, i.e. random processes with assigned spectra. We propose global model, with a power spectrum having a range of statistical distributions ranging between Cauchy and Gauss called alpha-stable model. The results obtained shows t...

  9. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    OpenAIRE

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an opera...

  10. Polarization Characteristics Simulation of Airborne Weather Radar Rainfall Target Based on Numerical Weather Prediction

    OpenAIRE

    Liu Xia; Han Yanfei; Li Hai; Lu Xiaoguang; Wu Renbiao

    2016-01-01

    Meteorological target simulation using polarization information is the foundation of the theoretical research and design application of dual-polarization Doppler weather radar. Currently, the theoretical research of airborne dual-polarization weather radar is in the development stage. To provide high-fidelity simulation data required for airborne dual-polarization weather radar detection technology, in this study, a simulation method of the polarization characteristics of rainfall determined ...

  11. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?

    OpenAIRE

    Hartmann, Jens; Jansen, N; Dürr, H. H.; Kempe, S.; Köhler, Peter

    2009-01-01

    CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering ratios influences the terrestrial lateral inorganic carbon flux to the ocean and long-term climate changes. However, little is known of the spatial extension of highly active weathering regions and their proportion of global CO2-consumption. As those regions may be of significant importance for global climate change, global CO2-consumption is calculated here at high resolution, to adequately repres...

  12. The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations

    OpenAIRE

    Barnard, Luke; Portas, Antonio M; Gray, Suzanne L.; Harrison, R. Giles

    2016-01-01

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse induced weather changes; and to develop a nationwide public engagement activity based participation of citizen scientists. In total NEWEx collected 15606 ...

  13. Space Weathering in the Inner Solar System

    Science.gov (United States)

    Noble, Sarah K.

    2010-01-01

    "Space weathering" is the term given to the cumulative effects incurred by surfaces which are exposed to the harsh environment of space. Lunar sample studies over the last decade or so have produced a clear picture of space weathering processes in the lunar environment. By combining laboratory and remote spectra with microanalytical methods (scanning and transmission electron microscopy), we have begun to unravel the various processes (irradiation, micrometeorite bombardment, etc) that contribute to space weathering and the physical and optical consequences of those processes on the Moon. Using the understanding gleaned from lunar samples, it is possible to extrapolate weathering processes to other airless bodies from which we have not yet returned samples (i.e. Mercury, asteroids). Through experiments which simulate various components of weathering, the expected differences in environment (impact rate, distance from Sun, presence of a magnetic field, reduced or enhanced gravity, etc) and composition (particularly iron content) can be explored to understand how space weathering will manifest on a given body.

  14. Introducing GFWED: The Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  15. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  16. CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo

    2015-04-01

    With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.

  17. Weather derivatives or how an energy company can hedge its weather risks

    International Nuclear Information System (INIS)

    This paper gives a detailed overview of weather derivatives and explains where this new class of financial products falls. The emergence of weather derivatives came about as a response to a need in the energy sector to hedge this sector's weather risks. This article focuses on the nature of these financial contracts, what they include and how they are priced. This article concludes by stating that energy companies in Europe can no longer afford to remain exposed to weather risks in an increasingly privatized and competitive market

  18. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  19. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  20. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  1. Dimension Driven Accelerating Universe

    CERN Document Server

    Chatterjee, S

    2009-01-01

    The current acceleration of the universe leads us to investigate higher dimensional gravity theory, which is able to explain acceleration from a theoretical view point without the need of introducing dark energy by hand. We argue that the terms containing higher dimensional metric coefficients produce an extra negative pressure that apparently drives an acceleration of the 3D space, tempting us to suggest that the accelerating universe seems to act as a window to the existence of extra spatial dimensions. Interesting to point out that in this case our cosmology apparently mimics the well known quintessence scenario fuelled by a generalised Chaplygin-type of fluid where a smooth transition from a dust dominated model to a de Sitter like one takes place. Correspondence to models generated by a tachyonic form of matter is also briefly discussed.

  2. Revisiting Caianiello's Maximal Acceleration

    OpenAIRE

    Papini, G.

    2003-01-01

    A quantum mechanical limit on the speed of orthogonality evolution justifies the last remaining assumption in Caianiello's derivation of the maximal acceleration. The limit is perfectly compatible with the behaviour of superconductors of the first type.

  3. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  4. A symmetrical rail accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  5. Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  6. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  7. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  8. Designing reliability into accelerators

    International Nuclear Information System (INIS)

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed

  9. Accelerated cyclic corrosion tests

    OpenAIRE

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  10. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  11. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  12. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  13. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  14. 14 CFR 135.213 - Weather reports and forecasts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that...

  15. 44 CFR 15.3 - Access to Mt. Weather.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and...

  16. Airborne Differential Doppler Weather Radar

    Science.gov (United States)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  17. Using Artificial Intelligence to Inform Pilots of Weather

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.

    2006-01-01

    An automated system to assist a General Aviation (GA) pilot in improving situational awareness of weather in flight is now undergoing development. This development is prompted by the observation that most fatal GA accidents are attributable to loss of weather awareness. Loss of weather awareness, in turn, has been attributed to the difficulty of interpreting traditional preflight weather briefings and the difficulty of both obtaining and interpreting traditional in-flight weather briefings. The developmental automated system not only improves weather awareness but also substantially reduces the time a pilot must spend in acquiring and maintaining weather awareness.

  18. Weather forecasts, Weather derivatives, Black-Scholes, Feynmann-Kac and Fokker-Planck

    CERN Document Server

    Jewson, S

    2003-01-01

    We investigate the relationships between weather forecasting, weather derivatives, the Black-Scholes equation, Feynmann-Kac theory and the Fokker-Planck equation. There is one useful result, but on the whole the relations we present seem to be more interesting than practically useful.

  19. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai;

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...

  20. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.

  1. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Cautley, Dan [Energy Center of Wisconsin, Madison, WI (United States); Francisco, Paul [Univ. of Illinois, Urbana-Champaign, IL (United States); Hawkins, Beth A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brennan, Terry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  2. Small type accelerator. Try for accelerator driven system

    CERN Document Server

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  3. A Multi-period Equilibrium Pricing Model of Weather Derivatives

    OpenAIRE

    Lee, Yongheon; Shmuel S. Oren

    2008-01-01

    The prevalence of commercial activities whose profit and cost are correlated with weather risk makes weather derivatives valuable financial instruments that enable hedging of price or volumetric (quantity) risk in many industries. This paper proposes a multi-period equilibrium pricing model for weather derivative. In our stylized economy representative agents of weather-sensitive industries optimizes their hedging portfolios that drive the supply and demand for weather derivative which are dy...

  4. Visually Comparing Weather Features in Forecasts.

    Science.gov (United States)

    Quinan, P Samuel; Meyer, Miriah

    2016-01-01

    Meteorologists process and analyze weather forecasts using visualization in order to examine the behaviors of and relationships among weather features. In this design study conducted with meteorologists in decision support roles, we identified and attempted to address two significant common challenges in weather visualization: the employment of inconsistent and often ineffective visual encoding practices across a wide range of visualizations, and a lack of support for directly visualizing how different weather features relate across an ensemble of possible forecast outcomes. In this work, we present a characterization of the problems and data associated with meteorological forecasting, we propose a set of informed default encoding choices that integrate existing meteorological conventions with effective visualization practice, and we extend a set of techniques as an initial step toward directly visualizing the interactions of multiple features over an ensemble forecast. We discuss the integration of these contributions into a functional prototype tool, and also reflect on the many practical challenges that arise when working with weather data.

  5. Space Weather Studies at Istanbul Technical University

    Science.gov (United States)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  6. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  7. Upgrade Summer Severe Weather Tool in MIDDS

    Science.gov (United States)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  8. ESA situational awareness of space weather

    Science.gov (United States)

    Luntama, Juha-Pekka; Glover, Alexi; Keil, Ralf; Kraft, Stefan; Lupi, Adriano

    2016-07-01

    ESA SSA Period 2 started at the beginning of 2013 and will last until the end of 2016. For the Space Weather Segment, transition to Period 2 introduced an increasing amount of development of new space weather service capability in addition to networking existing European assets. This transition was started already towards the end of SSA Period 1 with the initiation of the SSA Space Weather Segment architecture definition studies and activities enhancing existing space weather assets. The objective of Period 2 has been to initiate SWE space segment developments in the form of hosted payload missions and further expand the federated service network. A strong focus has been placed on demonstration and testing of European capabilities in the range of SWE service domains with a view to establishing core products which can form the basis of SWE service provision during SSA Period 3. This focus has been particularly addressed in the SSA Expert Service Centre (ESC) Definition and Development activity that was started in September 2015. This presentation will cover the current status of the SSA SWE Segment and the achievements during SSA Programme Periods 1 and 2. Particular attention is given to the federated approach that allow building the end user services on the best European expertise. The presentation will also outline the plans for the Space Weather capability development in the framework of the ESA SSA Programme in 2017-2020.

  9. Review on space weather in Latin America. 3. Development of space weather forecasting centers

    Science.gov (United States)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the third of a three-part review of space weather in Latin America, specifically observing its evolution in three countries (Argentina, Brazil and Mexico). This work presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reasons/opportunities that lead to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings, ​watches and alerts.

  10. Review on space weather in Latin America. 2. The research networks ready for space weather

    Science.gov (United States)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the second of a three-part review of space weather in Latin America, specifically observing its evolution in three countries (Argentina, Brazil and Mexico). This work comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue watches, warnings and alerts.

  11. Accelerating nondiffracting beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  12. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  13. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)

    Science.gov (United States)

    Lechler, Maria; Pogge von Strandmann, Philip A. E.; Jenkyns, Hugh C.; Prosser, Giacomo; Parente, Mariano

    2015-12-01

    An abrupt rise in temperature, forced by a massive input of CO2 into the atmosphere, is commonly invoked as the main trigger for Oceanic Anoxic Events (OAEs). Global warming initiated a cascade of palaeoenvironmental perturbations starting with increased continental weathering and an accelerated hydrological cycle that delivered higher loads of nutrients to coastal areas, stimulating biological productivity. The end-result was widespread anoxia and deposition of black shales: the hallmarks of OAEs. In order to assess the role of weathering as both an OAE initiator and terminator (via CO2 sequestration) during the Early Aptian OAE 1a (Selli Event, ∼120 Ma) the isotopic ratio of lithium isotopes was analysed in three sections of shallow-marine carbonates from the Pacific and Tethyan realms and one basinal pelagic section from the Tethyan domain. Because the isotopic composition of lithium in seawater is largely controlled by continental silicate weathering and high- and low-temperature alteration of basaltic material, a shift to lighter δ7Li values is expected to characterize OAEs. The studied sections illustrate this phenomenon: δ7Li values decrease to a minimum coincident with the negative carbon-isotope excursion that effectively records the onset of OAE 1a. A second negative δ7Li excursion occurs coeval with the minimum in strontium isotopes after the event. The striking similarity to the strontium-isotope record argues for a common driver. The formation and destruction (weathering) of an oceanic LIP could account for the parallel trend in both isotope systems. The double-spike in lithium isotopes is probably related to a change in weathering congruencies. Such a chemostratigraphy is consistent with the hypothesis that an increase in silicate weathering, in conjunction with organic-carbon burial, led to drawdown of atmospheric CO2 during the early Aptian OAE 1a.

  14. Biofilm supported increase of chemical weathering and decrease of chemical denudation in pine growth experiments

    Science.gov (United States)

    Balogh, Z.; Keller, C.; Gill, R. A.

    2006-12-01

    Vascular plants and associated microbial communities produced biofilm coatings increase weathering by extending contact periods of minerals with low pH liquids. We performed an experiment to isolate the effects of ectomycorrhiza-forming fungi and ectomycorrhiza- helper bacteria on chemical weathering and chemical denudation (i.e. chemical erosion), and their effects on these fluxes in association with red pine as a host. The study was conducted in a growth chamber using sandy growth medium in replicated flow-through columns. Biotite and anorthite supplied Ca, Mg and K. Concentrations of these cations were measured in input and output solutions, in tree biomass and on exchangeable cation sites of the growth medium; then weathering and denudation fluxes were estimated by mass-balance. In addition, mineral surface changes, biofilm cover and microbial attachment to surfaces were investigated with scanning electron microscopy. The column experiment demonstrated that both bacteria and fungi had a large weathering potential for Ca- bearing minerals, but the microbial communities were not able to regulate denudation losses without a vascular host. Chemical weathering and denudation were about equal in each microbe-only treatment. By the second 6 months of the experiment treatment effects became significant for the seedling systems (pplant without allowing loss to the bulk soil solution. On the other hand, the non-ectomycorrhizal treatment produced more root hairs and fine roots, which partially compensated for hyphal absorbing surfaces in the biofilm cover. The present study supports our proposition that microbial biofilms can not only accelerate the weathering process, but also regulate denudation losses by acting as a protective layer covering the mineral-water-hyphal/root hair interface in the mycorrhizosphere and rhizosphere of vascular plants.

  15. Properties of weathered and moderately weathered rhyolite tuff: what cause changes in mechanical properties?

    Science.gov (United States)

    Fityus, Stephen; Rickard, Scott; Bögöly, Gyula; Czinder, Balázs; Görög, Péter; Vásárhelyi, Balázs; Török, Ákos

    2016-04-01

    Miocene rhyolite tuff forms extended steep cliffs in NE-Hungary, at village of Sirok. The unique geomorphology and the presence of stable and unstable cliff faces are supposedly associated with the different rate of weathering of tuff. To understand the weathering characteristics, and the changes that lead to various degrees of preservation, block samples of tuff were taken for laboratory analyses. Samples were chosen to represent various grades of weathering. Density, porosity, mechanical properties, mineralogy and geochemical composition of tuffs were tested by using standardized methods. A strong correlation was found between the dry density and dry uniaxial compressive strength of the tuff. Systematic trends were also observed in porosity: an increase in pore volume and an increase in dominant pore size were both recorded as samples become weaker and less dense. To the contrary, no significant differences in mineralogy (XRD) or elemental composition (XRF) were found between apparently slightly and strongly weathered tuff, suggesting that no major clay mineralization had taken place with increasing weathering. Micro-fabric analyses (SEM) suggest that glass shards and vitreous particles are present in all samples but more corroded in samples of tuff which appeared intensively weathered. The differences in density, porosity, strength and appearance seem to correlate well with a difference in weathering intensity, but the lack of variation in chemical and mineralogical composition do not support this idea. Another and more probable explanation is that the differences in density are inherent in this type of tuff, even when it is fresh, and that more dense material is inherently stronger. The apparent correlation to weathering may simply be due to the more porous, less dense material being more susceptible to moisture infiltration, and hence, to freeze-thaw weathering and visible staining, and thus they appear to be more weathered.

  16. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  17. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  18. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling.

    Science.gov (United States)

    Thorley, Rachel M S; Taylor, Lyla L; Banwart, Steve A; Leake, Jonathan R; Beerling, David J

    2015-09-01

    On million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering. Here, we review key physical and chemical mechanisms by which the symbiotic mycorrhizal fungi of forest tree roots potentially enhance carbonate rock weathering. Evidence from our ongoing field study at the UK's national pinetum confirms increased weathering of carbonate rocks by a wide range of gymnosperm and angiosperm tree species that form arbuscular (AM) or ectomycorrhizal (EM) fungal partnerships. We demonstrate that calcite-containing rock grains under EM tree species weather significantly faster than those under AM trees, an effect linked to greater soil acidification by EM trees. Weathering and corresponding alkalinity export are likely to increase with rising atmospheric CO2 and associated climate change. Our analyses suggest that strategic planting of fast-growing EM angiosperm taxa on calcite- and dolomite-rich terrain might accelerate the transient sink for atmospheric CO2 and slow rates of ocean acidification.

  19. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  20. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  1. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  2. Healthy Housing Opportunities During Weatherization Work

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.; Tohn, E.

    2011-03-01

    In the summer and early fall of 2010, the National Center for Healthy Housing interviewed people from a selection of state and local agencies that perform weatherizations on low-income housing in order to gauge their approach to improving the health and safety of the homes. The interviews provided a strong cross section of what work agencies can do, and how they go about funding this work when funds from the Weatherization Assistance Program (WAP) do not cover the full extent of the repairs. The report also makes recommendations for WAP in how to assist agencies to streamline and maximize the health and safety repairs they are able to make in the course of a standard weatherization.

  3. Weathering a Perfect Storm from Space

    Science.gov (United States)

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  4. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  5. Space Weather Research Towards Applications in Europe

    CERN Document Server

    Lilensten, Jean

    2007-01-01

    This book shows the state of the art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position, with theoretic papers and applicative papers as well. It is divided into 5 chapters. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, 4 to 5 contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather. From the reading of this book, it becomes evident that space weather is a living discipline, full of promises and already full of amazing realizations. The strength of Europe is clear through the book, but it is also clear that this discipline is world wide.

  6. Weather effects on aerial snow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, O.

    1979-01-01

    When aerial snow measurements are carried out, various weather phenomena have influence on the survey operations and the registered gamma radiation values. Among these phenomena are low visibility and wind causing problems to aircraft operations, and temperature inversions which may trap radioactive gases and particles in the air layer near the ground. The pressure and temperature of the air and its humidity influence the gamma radiation field above the ground, and this should be taken into consideration. As some types of weather may cause delays and errors in the snow measurement, it is important for the operators to have a reliable account of the weather situation prior to and during the survey flights. This will reduce the cost of the measurement operation and improve the quality of the collected data.

  7. Space Weather Prediction with Exascale Computing

    CERN Document Server

    Lapenta, Giovanni

    2011-01-01

    Space weather refers to conditions on the Sun, in the interplanetary space and in the Earth space environment that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socioeconomic losses. The conditions in space are also linked to the Earth climate. The activity of the Sun affects the total amount of heat and light reaching the Earth and the amount of cosmic rays arriving in the atmosphere, a phenomenon linked with the amount of cloud cover and precipitation. Given these great impacts on society, space weather is attracting a growing attention and is the subject of international efforts worldwide. We focus here on the steps necessary for achieving a true physics-based ability to predict the arrival and consequences of major space weather storms....

  8. Uniform Acceleration in General Relativity

    CERN Document Server

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  9. Nuclear Physics accelerator facilities

    International Nuclear Information System (INIS)

    The Nuclear Physics program requires the existence and effective operation of large and complex accelerator facilities. These facilities provide the variety of projectile beams upon which virtually all experimental nuclear research depends. Their capability determine which experiments can be performed and which cannot. Seven existing accelerator facilities are operated by the Nuclear Physics program as national facilities. These are made available to all the Nation's scientists on the basis of scientific merit and technical feasibility of proposals. The national facilities are the Clinton P. Anderson Meson Physics Facility (LAMPF) at Los Alamos National Laboratory; the Bates Linear Accelerator Center at Massachusetts Institute of Technology; the Bevalac at Lawrence Berkeley Laboratory; the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory; the ATLAS facility at Argonne National Laboratory; the 88-Inch Cyclotron at Lawrence Berkeley Laboratory; the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory. The Nuclear Physics Injector at the Stanford Linear Accelerator Center (SLAC) enables the SLAC facility to provide a limited amount of beam time for nuclear physics research on the same basis as the other national facilities. To complement the national facilities, the Nuclear Physics program supports on-campus accelerators at Duke University, Texas A and M University, the University of Washington, and Yale University. The facility at Duke University, called the Triangle Universities Nuclear Laboratory (TUNL), is jointly staffed by Duke University, North Carolina State University, and the University of North Carolina. These accelerators are operated primarily for the research use of the local university faculty, junior scientists, and graduate students

  10. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  11. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa -2, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  12. Pilot based frameworks for Weather Research Forecasting

    Science.gov (United States)

    Ganapathi, Dinesh Prasanth

    The Weather Research Forecasting (WRF) domain consists of complex workflows that demand the use of Distributed Computing Infrastructure (DCI). Weather forecasting requires that weather researchers use different set of initial conditions and one or a combination of physics models on the same set of input data. For these type of simulations an ensemble based computing approach becomes imperative. Most DCIs have local job-schedulers that have no smart way of dealing with the execution of an ensemble type of computational problem as the job-schedulers are built to cater to the bare essentials of resource allocation. This means the weather scientists have to submit multiple jobs to the job-scheduler. In this dissertation we use Pilot-Job based tools to decouple work-load submission and resource allocation therefore streamlining the complex workflows in Weather Research and Forecasting domain and reduce their overall time to completion. We also achieve location independent job execution, data movement, placement and processing. Next, we create the necessary enablers to run an ensemble of tasks bearing the capability to run on multiple heterogeneous distributed computing resources there by creating the opportunity to minimize the overall time consumed in running the models. Our experiments show that the tools developed exhibit very good, strong and weak scaling characteristics. These results bear the potential to change the way weather researchers are submitting traditional WRF jobs to the DCIs by giving them a powerful weapon in their arsenal that can exploit the combined power of various heterogeneous DCIs that could otherwise be difficult to harness owing to interoperability issues.

  13. Space Weather affects on Air Transportation

    Science.gov (United States)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  14. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  15. Silicate weathering in the Ganges alluvial plain

    Science.gov (United States)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as δ30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher δ30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  16. Explaining the road accident risk: weather effects.

    Science.gov (United States)

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion. PMID:23928504

  17. Intermittent Sea Level Acceleration

    OpenAIRE

    Olivieri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Spada, G.; Dipartimento di Scienze di Base e Fondamenti, Università di Urbino Carlo Bo, Urbino

    2013-01-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea{level acceleration for the last 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, con firm the existence of a global sea level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0:01 mm/yr2. However, di fferently from previous studies, we discuss how change points or ...

  18. Seismic surveying and accelerators

    International Nuclear Information System (INIS)

    The paper deals with an investigation into the impact of earth vibrations on charged particle beams in modern colliders. It is ascertained that the displacement of accelerator magnetic elements from the perfect position results in the excitation of betatron oscillations and distortion of particle orbit position. The results of experimental investigations into seismic noises are presented for ASR, SSC, DESY and KEK. The rms orbit displacement in accelerators is estimated relying on the law of earth diffusion motion, according to which the variance of relative displacements is proportional to the distance between these points and time of observation. 6 refs., 3 figs., 2 tabs

  19. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  20. Investigation of possible sun-weather relationships

    Energy Technology Data Exchange (ETDEWEB)

    Businger, S

    1978-01-01

    Statistical correlations between anomalous solar activity (as denoted by large solar flares, active plages, and interplanetary magnetic sector boundaries) and the circulation of the troposphere are reviewed. Two indices (measuring atmospheric vorticity and mean zonal geostrophic flow in the northern hemisphere) are analyzed in an effort to reveal possible sun-weather relationships. The result of this analysis provides no additional statistical evidence for a connection between solar activity and the weather. Finally, physical mechanisms that have been suggested to explain the claimed correlations are discussed.

  1. Estuary wader capacity following severe weather mortality

    International Nuclear Information System (INIS)

    The building of a tidal power barrage across an estuary may lead to substantial changes in its ecology. Many of Britain's estuaries hold internationally important numbers of waders. Careful consideration, therefore, needs to be given to the likely effects of tidal power barrages on wader populations. The opportunity for increased understanding of the mechanisms which govern wader populations was provided by a period of severe winter weather in 1991, which resulted in a substantial mortality of waders in eastern England. Such conditions are known to be stressful to birds and the study objectives were to investigate both the effects of and recovery from severe weather. (author)

  2. An operation problem in weather forecasting

    Directory of Open Access Journals (Sweden)

    S. L. Mlurkrar

    1953-07-01

    Full Text Available The weather forecaster has to get ready his forecasts at definite hours of the day on the basis of isopleths. Provided the observations from most of the main stations had been received, the deduction that could be had by decreasing the plotting tome and studying the chart at greater leisure was often better than if the plotting time had not been decreased. A consideration of the weather chart plotted for a given forecast would also help the subsequent, forecasts, due account having been taken of the diurnal changes

  3. How MAG4 Improves Space Weather Forecasting

    Science.gov (United States)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  4. Investigation of possible sun-weather relationships

    International Nuclear Information System (INIS)

    Statistical correlations between anomalous solar activity (as denoted by large solar flares, active plages, and interplanetary magnetic sector boundaries) and the circulation of the troposphere are reviewed. Two indices (measuring atmospheric vorticity and mean zonal geostrophic flow in the northern hemisphere) are analyzed in an effort to reveal possible sun-weather relationships. The result of this analysis provides no additional statistical evidence for a connection between solar activity and the weather. Finally, physical mechanisms that have been suggested to explain the claimed correlations are discussed

  5. Space Weather Effects of Coronal Mass Ejection

    Indian Academy of Sciences (India)

    K. N. Iyer; R. M. Jadav; A. K. Jadeja; P. K. Manoharan; Som Sharma; Hari Om Vats

    2006-06-01

    This paper describes the space weather effects of a major CME which was accompanied by extremely violent events on the Sun. The signatures of the event in the interplanetary medium (IPM) sensed by Ooty Radio Telescope, the solar observations by LASCO coronagraph onboard SOHO, GOES X-ray measurements, satellite measurements of the interplanetary parameters, GPS based ionospheric measurements, the geomagnetic storm parameter Dst and ground based ionosonde data are used in the study to understand the space weather effects in the different regions of the solar-terrestrial environment. The effects of this event are compared and possible explanations attempted.

  6. Weather Test Reference Year of Greenland

    DEFF Research Database (Denmark)

    Kragh, Jesper; Pedersen, Frank; Svendsen, Svend

    2005-01-01

    The building code of Greenland from 1982 is to be revised in the coming years fulfilling the increased demand of more energy efficient buildings. To establish appropriate levels of energy consumption for heating the weather conditions have to be analyzed. The purpose of this paper is to describe...... test reference year is constructed using measurements from the town Uummannaq located in the north part of Greenland on the west coast. The construction of the test reference years fulfills the procedures described in the standard EN ISO 15927-4 using the following main weather parameters: Dry bulb...

  7. Detection and attribution of extreme weather disasters

    Science.gov (United States)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  8. Research relative to weather radar measurement techniques

    Science.gov (United States)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  9. Construction method under severe weather condition

    International Nuclear Information System (INIS)

    ALL WEATHER CONSTRUCTION METHOD, developed and applied to the actual plant by KAJIMA CORPORATION, completely changes the hitherto image of nuclear power plant construction. This is a system in which, building materials are carried in and erected efficiently by various building equipment, under bright and most favorable working conditions. The work site is as if moved into a factory, offering many merits such as expedited productivity, time saving and others. This construction method has been called ALL WEATHER CONSTRUCTION METHOD from the beginning of development. Now KAJIMA is pursuing further development of this method in order to raise productivity, shorten construction period. (author)

  10. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    Science.gov (United States)

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use…

  11. INFLUENCE OF LIGNIN CONTENT ON PHOTODEGRADATION IN WOOD/HDPE COMPOSITES UNDER UV WEATHERING

    Directory of Open Access Journals (Sweden)

    Narongrit Sombatsompop

    2011-11-01

    Full Text Available The aim of this work was to examine the influence the lignin component of wood on the photodegradation of high-density polyethylene (HDPE in wood/HDPE (WPE composites. The neat HDPE and wood/HDPE composites were prepared using a twin screw extruder followed by an injection moulder. The lignin content was varied from 0 to 29 %wt. of wood by the addition of delignified wood pulp into wood flour. The results suggested that the photodegradation of HDPE in WPE composites was accelerated by the presence of lignin; the chromophoric groups in the lignin enhanced UV adsorption onto the WPE composite surface. The carbonyl and vinyl indices, color, percentage crystallinity, and the melting temperature increased when the lignin contents were increased. The color fading in WPE composites resulted from photobleaching of lignin. In addition, the presence of lignin led to the development ofl cracks in WPE composites, especially at high lignin contents. For the effect of UV weathering time, the carbonyl and vinyl indices, discoloration, and percentage crystallinity increased as a function of UV weathering times, whereas the melting temperature of HDPE in both neat HDPE and WPE composites and water absorption of specimens decreased; the wood index in WPE composites increased during the initial UV weathering times and then decreased at 720 h weathering time.

  12. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments

    International Nuclear Information System (INIS)

    Highlights: → Atmospheric corrosion resistance of a low cost MnCuP weathering steel was investigated by simulated wet/dry cyclic tests. → The steel shows high corrosion resistance in simulated coastal, industrial, and coastal-industrial atmospheres. → Mn and Cu are identified in bivalent and univalent respectively, leading to cation-selectivity of the rust layer. → Phosphorus promotes the formation of non-soluble phosphates that may act as corrosion inhibitor in rust layer. - Abstract: In this work, atmospheric corrosion resistance of low cost MnCuP weathering steel in simulated coastal, industrial, and coastal-industrial atmospheric environments was investigated by wet/dry cyclic acceleration corrosion tests. The results indicate that MnCuP weathering steel exhibits high corrosion resistance in the three atmospheres. Besides, the alloying effect of Mn, Cu, and P elements on the anti-corrosion mechanism of MnCuP weathering steel was discussed by techniques of X-ray photoelectron spectroscopy, potential-pH diagram, and electron probe microanalysis.

  13. Reliable and efficient injury assessment for free-fall lifeboat occupants during water entry: Correlation study between lifeboat acceleration indicators and simulated human injury responses

    NARCIS (Netherlands)

    Dam, E. van; Uittenbogaard, J.; Reinholdtsen, S.A.; Fouques, S.; Sauder, T.

    2014-01-01

    The evacuation of personnel from an offshore installation in severe weather conditions is generally ensured by free-fall lifeboats. During the water entry phase of the launch, the lifeboat may be subject to large acceleration loads that may cause harmful acceleration-induced loads on the occupants.

  14. NASA Space Weather Research Center: Addressing the Unique Space Weather Needs of NASA Robotic Missions

    Science.gov (United States)

    Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Taktakishvili, A.; Chulaki, A.; Thompson, B. J.; Collado-Vega, Y. M.; Muglach, K.; Evans, R. M.; Wiegand, C.; MacNeice, P. J.; Rastaetter, L.

    2014-12-01

    The Space Weather Research Center (SWRC) has been providing space weather monitoring and forecasting services to NASA's robotic missions since its establishment in 2010. Embedded within the Community Coordinated Modeling Center (CCMC) (see Maddox et al. in Session IN026) and located at NASA Goddard Space Flight Center, SWRC has easy access to state-of-the-art modeling capabilities and proximity to space science and research expertise. By bridging space weather users and the research community, SWRC has been a catalyst for the efficient transition from research to operations and operations to research. In this presentation, we highlight a few unique aspects of SWRC's space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases (see Wiegand et al. in the same session SM004), and educating and engaging the next generation of space weather scientists.

  15. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    Science.gov (United States)

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  16. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8302397: View from the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138. Giacomo Primadei stands on the left.

  17. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  18. Hamburg Accelerator Conference

    International Nuclear Information System (INIS)

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  19. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  20. The CERN accelerator complex

    CERN Multimedia

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  1. The Bevalac accelerator

    International Nuclear Information System (INIS)

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  2. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  3. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  4. Accelerators in the sky

    International Nuclear Information System (INIS)

    The author surveys the large body of evidence showing that there are very efficient mechanisms capable of accelerating particles to high energies under very different astrophysical conditions. The circumstances whereby huge amounts of relativistic and ultrarelativistic particles such as one finds in a) cosmic rays, b) supernova remnants and c) radio galaxies and quasars are produced are considered. (Auth.)

  5. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  6. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream

  7. Superconducting traveling wave accelerators

    International Nuclear Information System (INIS)

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table

  8. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  9. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  10. Overview of Space Weather Impacts and NASA Space Weather Center Services and Products

    Science.gov (United States)

    Zheng, Y.

    2012-01-01

    The presentation is divided into two major components. First, I will give an overview of space weather phenomenon and their associated impacts. Then I will describe the comprehensive list of products and tools that NASA Space Weather Center has developed by leveraging more than a decade long modeling experience enabled by the Community Coordinated Modeling Center (CCMC) and latest scientific research results from the broad science community. In addition, a summary of the space weather activities we have been engaged in and our operational experience will be provided.

  11. Coronal Mass Ejection Detection using Wavelets, Curvelets and Ridgelets: Applications for Space Weather Monitoring

    CERN Document Server

    Gallagher, Peter T; Byrne, Jason P; McAteer, R T James; 10.1016/j.physletb.2003.10.071

    2010-01-01

    Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic feld that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and supressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.

  12. Menopause accelerates biological aging.

    Science.gov (United States)

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  13. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  14. Solar Energy: Solar and the Weather.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  15. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  16. School Science Inspired by Improving Weather Forecasts

    Science.gov (United States)

    Reid, Heather; Renfrew, Ian A.; Vaughan, Geraint

    2014-01-01

    High winds and heavy rain are regular features of the British weather, and forecasting these events accurately is a major priority for the Met Office and other forecast providers. This is the challenge facing DIAMET, a project involving university groups from Manchester, Leeds, Reading, and East Anglia, together with the Met Office. DIAMET is part…

  17. The Quest for the Perfect Weather Forecaster

    Science.gov (United States)

    Kahl, Jonathan; Horwitz, Kevin; Berg, Craig; Gruhl, Mary

    2004-01-01

    It is said that meteorology is the only profession where a person can be wrong half the time and still keep his or her job. The truth is not quite so bleak, but one can still ask, "Just how accurate are weather forecasters, anyway?" This article presents two projects for middle level students to investigate this issue in a hands-on,…

  18. WEATHER CONDITIONS AND COMPLAINTS IN FIBROMYALGIA

    NARCIS (Netherlands)

    DEBLECOURT, ACE; KNIPPING, AA; DEVOOGD, N; VANRIJSWIJK, MH

    1993-01-01

    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain, stiffness

  19. Space Weather Prediction and Exascale Computing

    OpenAIRE

    Lapenta, Giovanni; Markidis, Stefano; Poedts, Stefaan; Vucinic, Dean

    2013-01-01

    Space weather can have a great effect on Earth's climate. Predicting the impact of space environment disturbances on Earth presents a challenge to scientists. Here, the ExaScience Lab's efforts are presented, which use exascale computing and new visualization tools to predict the arrival and impact of space events on Earth.

  20. Biogeochemical weathering under ice: Size matters

    Science.gov (United States)

    Wadham, J. L.; Tranter, M.; Skidmore, M.; Hodson, A. J.; Priscu, J.; Lyons, W. B.; Sharp, M.; Wynn, P.; Jackson, M.

    2010-09-01

    The basal regions of continental ice sheets are gaps in our current understanding of the Earth's biosphere and biogeochemical cycles. We draw on existing and new chemical data sets for subglacial meltwaters to provide the first comprehensive assessment of sub-ice sheet biogeochemical weathering. We show that size of the ice mass is a critical control on the balance of chemical weathering processes and that microbial activity is ubiquitous in driving dissolution. Carbonate dissolution fueled by sulfide oxidation and microbial CO2 dominate beneath small valley glaciers. Prolonged meltwater residence times and greater isolation characteristic of ice sheets lead to the development of anoxia and enhanced silicate dissolution due to calcite saturation. We show that sub-ice sheet environments are highly geochemically reactive and should be considered in regional and global solute budgets. For example, calculated solute fluxes from Antarctica (72-130 t yr-1) are the same order of magnitude as those from some of the world's largest rivers and rates of chemical weathering (10-17 t km-2 yr-1) are high for the annual specific discharge (2.3-4.1 × 10-3 m). Our model of chemical weathering dynamics provides important information on subglacial biodiversity and global biogeochemical cycles and may be used to design strategies for the first sampling of Antarctic Subglacial Lakes and other sub-ice sheet environments for the next decade.

  1. Data Network Weather Service Reporting - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Frey

    2012-08-30

    A final report is made of a three-year effort to develop a new forecasting paradigm for computer network performance. This effort was made in co-ordination with Fermi Lab's construction of e-Weather Center.

  2. Characterising Cold Weather for the UK mainland

    Science.gov (United States)

    Fradley, Kate; Dacre, Helen; Ambaum, Maarten

    2016-04-01

    Excess Winter Mortality is a peak in the population's mortality rate during winter months and is correlated with low outdoor temperatures. Excess Winter Mortality has adverse impacts, including increased demand on health services. The management of resources for such increased demands maybe improved through incorporation of weather forecasting information to advanced warnings. For the UK, prolonged cold periods are associated with easterly advection, and high pressure systems. Characterisation of the synoptic conditions associated with cold periods is important to understand forecast performance. Principal Component Analysis has been used with mean sea level pressure from 35 years of ERA interim reanalysis to capture synoptic variability on a continuous scale. Cold events in the North and South of the UK mainland have been identified as having different synoptic variability using this method. Furthermore extending the Principal Component Analysis to investigate the skill of forecasts has identified systematic under prediction of some cold weather synoptic conditions. Ensemble forecasts are used to quantify the uncertainty associated with these cold weather synoptic conditions. This information maybe be used to improve the value of existing weather warnings.

  3. Discussion of long-range weather prediction

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1998-09-10

    A group of scientists at Los Alamos have held a series of discussions of the issues in and prospects for improvements in Long-range Weather Predictions Enabled by Proving of the Atmosphere at High Space-Time Resolution. The group contained the requisite skills for a full evaluation, although this report presents only an informal discussion of the main technical issues. The group discussed all aspects of the proposal, which are grouped below into the headings: (1) predictability; (2) sensors and satellites, (3) DIAL and atmospheric sensing; (4) localized transponders; and (5) summary and integration. Briefly, the group agreed that the relative paucity of observations of the state of the atmosphere severely inhibits the accuracy of weather forecasts, and any program that leads to a more dense and uniform observational network is welcome. As shown in Long-range Weather more dense and uniform observational network is welcome. As shown in Long-range Weather Predictions, the pay-back of accurate long-range forecasts should more than justify the expenditure associated with improved observations and forecast models required. The essential step is to show that the needed technologies are available for field test and space qualification.

  4. Weathering approaches to carbon dioxide sequestration

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The aim of enhanced weathering is to capture CO2 by the carbonation of silicates, or by dissolution of these silicates during which the greenhouse gas CO2 is converted to bicarbonate in solution. Research in this field is still focused on increasing the rate of reaction, but the required additional

  5. Cold weather properties and performance of biodiesel

    Science.gov (United States)

    Biodiesel is an alternative fuel made from vegetable oil or animal fat that can be employed in compression-ignition (diesel) engines. Biodiesel is more prone to start-up and operability problems during cold weather than conventional diesel fuels (petrodiesel). This work reviews impacts that exposu...

  6. Accelerated weathering of carbonate rocks following the 2010 forest wildfire on Mt. Carmel, Israel

    Science.gov (United States)

    Shtober-Zisu, Nurit; Tessler, Naama; Tsatskin, Alexander; Greenbaum, Noam

    2015-04-01

    Massive destruction of carbonate rocks occurred on the slopes of Mt. Carmel, during the severe forest fire in 2010. The bedrock surfaces exhibited extensive exfoliation into flakes and spalls covering up to 80%-100% of the exposed rocks; detached boulders were totally fractured or disintegrated. The fire affected six carbonate units -- various types of chalk, limestone, and dolomite. The burned flakes show a consistent tendency towards flatness, in all lithologies, as 85%-95% of the flakes were detached in the form of blades, plates, and slabs. The effects of the fire depend to a large extent on the rocks' physical properties and vary with lithology: the most severe response was found in the chalk formations which are covered by calcrete (Nari crusts). These rocks reacted by extreme exfoliation, at an average depth of 7.7 to 9.6 cm and a maximum depth of 20 cm. The flakes formed in chalk were thicker, longer, and wider than those of limestone or dolomite formations. Moreover, the chalk outcrops were exfoliated in a laminar structure, one above the other, to a depth of 10 cm and more. Their shape also tended to be blockier or rod-like. In contrast, the limestone flakes were the thinnest, with 99% of them shaped like blades and plates. Scorched and blackened faces under the upper layer of spalls provided strong evidence that chalk breakdown took place at an early stage of the fire. The extreme response of the chalks can be explained by the laminar structure of the Nari, which served as planes of weakness for the rock destruction. Three years after the fire, the rocks continue to exfoliate and break down internally. As the harder surface of the Nari was removed, the more brittle underlying chalk is exposed to erosion. If fires can obliterate boulders in a single wildfire event, it follows that wildfires may serve as limiting agents in the geomorphic evolution of slopes. However, it is difficult to estimate the frequency of high-intensity fires in the Carmel region over the past 2-3 million years. It is even harder to assess the frequency of fires (and the destruction) of a single rock outcrop. Our findings show that rock outcrop may lose even 20 cm of its thickness in a single fire. This value, if accounted to the long run, can be responsible for a high percentage of the total denudation rate and therefore, in the mountainous carbonate slopes of the Mediterranean region, wildland fires may serve as extremely important factors in landscape evolution.

  7. BLISTERING AND DEGRADATION OF POLYURETHANE COATINGS UNDER DIFFERENT ACCELERATED WEATHERING TESTS. (R828081E01)

    Science.gov (United States)

    An epoxy primer with a high gloss polyurethane topcoat coating system was exposed either only in a QUV chamber or exposed in a QUV chamber and a Prohesion chamber, alternatively, in this study. AFM studies found that micro blisters formed on the coating surface after both expo...

  8. The effect of artificial accelerated weathering on the mechanical properties of maxillofacial polymers PDMS and CPE

    Energy Technology Data Exchange (ETDEWEB)

    Eleni, P N; Krokida, M K [Department of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780 Athens (Greece); Polyzois, G L [Division of Removable Prosthodontics, University of Athens, Dental School, 2 Thivon Street, 11527 Athens (Greece)

    2009-06-15

    The effect of UVA-UVB irradiation on the mechanical properties of three different industrial types of polydimethylsiloxane and chlorinated polyethylene samples, used in maxillofacial prostheses, was investigated in this study. Mechanical properties and thermal analysis are commonly used to determine the structural changes and mechanical strength. An aging chamber was used in order to simulate the solar radiation and assess natural aging. Compression and tensile tests were conducted on a Zwick testing machine. Durometer Shore A hardness measurements were carried out in a CV digital Shore A durometer according to ASTM D 2240. Glass transition temperature was evaluated with a differential scanning calorimeter. Simple mathematical models were developed to correlate the measured properties with irradiation time. The effect of UVA-UVB irradiation on compressive behavior affected model parameters. Significant deterioration seems to occur due to irradiation in samples.

  9. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  10. WEATHER SENSITIVITY OF KINDERGARTEN AGE CHILDREN

    Directory of Open Access Journals (Sweden)

    A. RAZSI

    2013-03-01

    Full Text Available Living organisms are sensitive to the changes of weather. Our study is carried out on effects of weather changes on children’s behaviour in 29 kindergarten groups in Eger. The kindergarten nurces were asked to characterise the behaviour of the children group every day during three month, from March 2011 to May 2011. Marks from 1 to 5 were defined, giving 3 to average behaviour, 2 and 4 to worse and to better than average one. Marks 1 and 5 were retained for extremely good or bad behaviour of the group on the given day. The components evaluated separately were as follows: i- Playing, array or disarray: How do they play? Do they keep the array, or make chaos? ii- Sleeping: Normally, children of this age sleep for a few hours after lunch, but sometimes they do not want to do so. We looked after how it depends on the actual weather. iii- Aggression: Sometimes, some children are more aggressive than the others, but on other days these children do not show aggressive attitude. Was this the case on the given day? iv- Activity: How were children motivated for activities on the given day? In order to compare these marks, provided by the kindergarten groups, with weather and its changes, front analysis was performed every day, based on temperature data at the 925 hPa and 850 hPa levels. Besides that, surface observations of temperature, sunshine, humidity were also incorporated into the search for weather relatedness of the children’s behaviour.

  11. Accelerator mass spectrometry programme at Mumbai pelletron accelerator facility

    International Nuclear Information System (INIS)

    The Accelerator Mass Spectrometry (AMS) programme and the related developments based on the Mumbai Pelletron accelerator are described. The initial results of the measurement of the ratio, 36Cl / Cl in water samples are presented. (author)

  12. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2016-01-01

    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  13. Weather data analysis based on typical weather sequence analysis. Application: energy building simulation

    CERN Document Server

    David, Mathieu; Garde, Francois; Boyer, Harry

    2014-01-01

    In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

  14. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    Directory of Open Access Journals (Sweden)

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  15. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  16. Accelerator research studies

    International Nuclear Information System (INIS)

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under contract number AC05-85ER40216-8, is currently in the third year of its three-year funding cycle. This Renewal Proposal requests DOE support for the next three-year period from June 1, 1991 to May 31, 1994. It documents the progress made during the past year and outlines the proposed research program for the next three years. The program consisted of the following three tasks: Task A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' Task B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' Task C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders.'' These tasks will be discussed in this paper

  17. Accelerator research studies

    International Nuclear Information System (INIS)

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks

  18. Accelerated Parallel Texture Optimization

    Institute of Scientific and Technical Information of China (English)

    Hao-Da Huang; Xin Tong; Wen-Cheng Wang

    2007-01-01

    Texture optimization is a texture synthesis method that can efficiently reproduce various features of exemplar textures. However, its slow synthesis speed limits its usage in many interactive or real time applications. In this paper, we propose a parallel texture optimization algorithm to run on GPUs. In our algorithm, k-coherence search and principle component analysis (PCA) are used for hardware acceleration, and two acceleration techniques are further developed to speed up our GPU-based texture optimization. With a reasonable precomputation cost, the online synthesis speed of our algorithm is 4000+ times faster than that of the original texture optimization algorithm and thus our algorithm is capable of interactive applications. The advantages of the new scheme are demonstrated by applying it to interactive editing of flow-guided synthesis.

  19. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  20. Accelerating QDP++ using GPUs

    CERN Document Server

    Winter, Frank

    2011-01-01

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an ...

  1. Accelerator research studies

    International Nuclear Information System (INIS)

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  2. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  3. Accelerator research studies

    International Nuclear Information System (INIS)

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  4. NEW ACCELERATION METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1984-07-01

    But a glance at the Livingston chart, Fig. 1, of accelerator particle energy as a function of time shows that the energy has steadily, exponentially, increased. Equally significant is the fact that this increase is the envelope of diverse technologies. If one is to stay on, or even near, the Livingston curve in future years then new acceleration techniques need to be developed. What are the new acceleration methods? In these two lectures I would like to sketch some of these new ideas. I am well aware that they will probably not result in high energy accelerators within this or the next decade, but conversely, it is likely that these ideas will form the basis for the accelerators of the next century. Anyway, the ideas are stimulating and suffice to show that accelerator physicists are not just 'engineers', but genuine scientists deserving to be welcomed into the company of high energy physicists. I believe that outsiders will find this field surprisingly fertile and, certainly fun. To put it more personally, I very much enjoy working in this field and lecturing on it. There are a number of review articles which should be consulted for references to the original literature. In addition there are three books on the subject. Given this material, I feel free to not completely reference the material in the remainder of this article; consultation of the review articles and books will be adequate as an introduction to the literature for references abound (hundreds are given). At last, by way of introduction, I should like to quote from the end of Ref. 2 for I think the remarks made there are most germane. Remember that the talk was addressed to accelerator physicists: 'Finally, it is often said, I think by physicists who are not well-informed, that accelerator builders have used up their capital and now are bereft of ideas, and as a result, high energy physics will eventually--rather soon, in fact--come to a halt. After all, one can't build too many

  5. RFQ accelerator development

    International Nuclear Information System (INIS)

    Radio frequency quadrupole (RFQ) accelerators have established themselves as highly efficient and potential tools for delivering intense beams of the order of 100 mA or more. They are being employed as injectors to high energy machines used for basic sciences, spallation neutron sources, fusion devices and accelerator breeders. They have also made their mark as neutron generators, ion implanters, x-ray generators, etc. Realising the importance of this programme, Bhabha Atomic Research Centre initiated a totally indigenous effort to develop RFQs for the light as well as heavy ion beams. A low power RFQ for the proton and deuteron beams is already in the final phase of commissioning. (author). 30 refs., 14 figs., 2 tabs

  6. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  7. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  8. Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity

    OpenAIRE

    Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

    2002-01-01

    A recent (1996-2000) acceleration of declines in energy and carbon intensity in the U.S. remains largely unexplained. This study uses Divisia decomposition and regression to test two candidate explanations - fuel mix and weather. The Divisia method demonstrates that fuel mix does not explain the declines in carbon intensity. The fuel mix, both overall and for electricity generation, became slightly more carbon intensive over the study period (though the slight trend reversed before the e...

  9. Acceleration and Deceleration of Coronal Mass Ejection (CME) Propagation

    Science.gov (United States)

    Shen, F.; Wu, S.; Feng, X. S.; Wu, C.

    2011-12-01

    A major challenge to the space weather forecasting community is accurate prediction of coronal mass ejections (CME) induced Shock Arrival Time (SAT) at Earth's environment. In order to improve the current accuracy, it is necessary to understand the physical processes of the acceleration and deceleration of the CME propagation in the heliosphere. We present a three-dimensional (3D) magnetohydrodynamic (MHD) simulation of the evolution of two interacting CMEs in a realistic ambient solar wind for the March 28-31, 2001 event. The forces which caused the acceleration and deceleration are analyzed in detail. The force which caused the acceleration are Lorenz force and pressure gradient and the forces which caused the deceleration are aerodynamic drag and the Sun's gravity. In addition the momentum exchange between the solar wind and the moving CMEs can cause acceleration and deceleration of the CME which are now analyzed. In this specific CME event (March 28-31, 2001), we also investigate the interactions of two CMEs causing the acceleration and deceleration of the CMEs.

  10. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  11. GPU accelerated face detection

    OpenAIRE

    Mäkelä, J.

    2013-01-01

    Graphics processing units have massive parallel processing capabilities, and there is a growing interest in utilizing them for generic computing. One area of interest is computationally heavy computer vision algorithms, such as face detection and recognition. Face detection is used in a variety of applications, for example the autofocus on cameras, face and emotion recognition, and access control. In this thesis, the face detection algorithm was accelerated with GPU using OpenCL. The goal was...

  12. Accelerator Experiments for Astrophysics

    OpenAIRE

    Ng, Johnny S. T.

    2003-01-01

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the S...

  13. Compact pulsed accelerator

    International Nuclear Information System (INIS)

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab

  14. Laser plasma accelerators

    OpenAIRE

    Malka, V.

    2012-01-01

    Research activities on laser plasma accelerators are paved by many significant breakthroughs. This review article provides an opportunity to show the incredible evolution of this field of research which has, in record time, allowed physicists to produce high quality electron beams at the GeV level using compact laser systems. I will show the scientific path that led us to explore different injection schemes and to produce stable, high peak current and high quality electron beams with control ...

  15. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  16. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  17. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  18. Weathering of a liquid-filled solar collector

    Science.gov (United States)

    1979-01-01

    Report describes procedures and results of tests for effects of weathering on flat-plate liquid solar collector. Thermal performance was measured before and after natural weathering for 15-1/2 months by using Marshall Space Flight solar simulator.

  19. Internet-accessible real-time weather information system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Desa, E.; Mehra, P.; Desa, E.; Gouveia, A.D.

    multiple features such as platform-independence, remote configuration and control of the weather stations, data base queries, graphical displays and multi-media presentation capability. The weather information is presented in user-selectable formats...

  20. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the...

  1. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  2. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu...

  3. Weather Information Services supporting Civilian UAS Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We build a system that supports the weather information needs of Unmanned Aircraft Systems (UAS) planning to fly in the National Airspace System (NAS). This weather...

  4. Shock accelerated vortex ring

    CERN Document Server

    Haehn, N; Oakley, J; Anderson, M; Rothamer, D; Bonazza, R

    2009-01-01

    The interaction of a shock wave with a spherical density inhomogeneity leads to the development of a vortex ring through the impulsive deposition of baroclinic vorticity. The present fluid dynamics videos display this phenomenon and were experimentally investigated at the Wisconsin Shock Tube Laboratory's (WiSTL) 9.2 m, downward firing shock tube. The tube has a square internal cross-section (0.25 m x 0.25 m) with multiple fused silica windows for optical access. The spherical soap bubble is generated by means of a pneumatically retracted injector and released into free-fall 200 ms prior to initial shock acceleration. The downward moving, M = 2.07 shock wave impulsively accelerates the bubble and reflects off the tube end wall. The reflected shock wave re-accelerates the bubble (reshock), which has now developed into a vortex ring, depositing additional vorticity. In the absence of any flow disturbances, the flow behind the reflected shock wave is stationary. As a result, any observed motion of the vortex rin...

  5. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  6. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  7. Accelerated GLAS exposure station

    International Nuclear Information System (INIS)

    The Geoscience Laser Altimeter System (GLAS) is being developed by NASA/GSFC to measure the dynamics of the ice sheet mass balance, land, and cloud and atmospheric properties. An instrument altimetric resolution of 10 cm per shot is required. The laser transmitter will be a diode pumped, Q-switched, Nd:YAG laser producing 1064 nm, 100 mJ, 4 ns pulses at 40 Hz repetition rate in a TEM∞ mode. A minimum lifetime goal of 2 billion shots is required per laser transmitter. The performance of the GLAS laser can be limited by physical damage to the optical components caused by the interaction of intense laser energy with the optical coatings and substrates. Very little data exists describing the effects of long duration laser exposure, of 4 ns pulses, on an optical component. An Accelerated GLAS Exposure Station (AGES) is being developed which will autonomously operate and monitor the GLAS laser at an accelerated rate of 500 Hz. The effects of a large number of laser shots will be recorded. Parameters to be monitored include: laser power, pulsewidth, beam size, laser diode drive current and power, Q-switch drive voltage, temperature, and humidity. For comparison, one set of AGES-sister optical components will be used in the non-accelerated GLAS laser and another will be evaluated by a commercial optical damage test facility

  8. Linac transport and acceleration

    International Nuclear Information System (INIS)

    The acceleration of intense bunches maintaining high brightness is limited both by single-particle effects, e.g., misalignments, injection errors, and rf-steering, and collective phenomena, where the effects of the longitudinal and transverse wakefield on particles within a single bunch are the most severe. The working group has considered both problems and potentials of linac acceleration from ∼50 MeV to 1 GeV for free electron laser (FEL) applications, as well as from a few Gev to 1 TeV for linear colliders. The outlook for free electron lasers is bright: no fundamental problems seem to arise in the acceleration of peak currents in excess of 100 A with small emittance and low momentum spread. The situation of linear colliders is more complex and more difficult. Two examples, one operating at 11.4 GHz, the other at 30 GHz, are used to illustrate some of the difficulties and the exceedingly tight tolerances required. Both examples are based on round beams, and thus neither benefit from the advantages of flat beams nor address the increased care required in transporting beams of very small emittance in one plane. The working group acknowledges, but did not explore, promising concepts for colliders based on RF superconductivity

  9. Acceleration during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Beresnyak, Andrey [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  10. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  11. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  12. CESR Test Accelerator

    CERN Document Server

    Rubin, David L

    2013-01-01

    The Cornell Electron Storage Ring (CESR) was reconfigured in 2008 as a test accelerator to investigate the physics of ultra-low emittance damping rings. During the approximately 40 days/year available for dedicated operation as a test accelerator, specialized instrumentation is used to measure growth and mitigation of the electron cloud, emittance growth due to electron cloud, intra-beam scattering, and ions, and single and multi-bunch instabilities generated by collective effects. The flexibility of the CESR guide field optics and the integration of accelerator modeling codes with the control system have made possible an extraordinary range of experiments. Findings at CesrTA with respect to electron cloud effects, emittance tuning techniques, and beam instrumentation for measuring electron cloud, beam sizes, and beam positions are the basis for much of the design of the ILC damping rings as documented in the ILC-Technical Design Report. The program has allowed the Cornell group to cultivate the kind of talen...

  13. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki

    2012-12-01

    The weathering of municipal solid waste incineration (MSWI) residues consists of complicated phenomena. This makes it difficult to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash, which was relevant interactively to pH neutralization and formation of secondary minerals. In this study, mineralogical weathering indices for natural rock profiles were applied to fresh/landfilled MSWI bottom ash to investigate the relation of these weathering indices to landfill time and leaching concentrations of component elements. Tested mineralogical weathering indices were Weathering Potential Index (WPI), Ruxton ratio (R), Weathering Index of Parker (WIP), Vogt's Residual Index (V), Chemical Index of Alternation (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alternation (PIA), Silica-Titania Index (STI), Weathering Index of Miura (Wm), and Weatherability index of Hodder (Ks). Welch's t-test accepted at 0.2% of significance level that all weathering indices could distinguish fresh and landfilled MSWI bottom ash. However, R and STI showed contrasted results for landfilled bottom ash to theoretical expectation. WPI, WIP, Wm, and Ks had good linearity with reclamation time of landfilled MSWI bottom ash. Therefore, these four indices might be applicable as an indicator to identify fresh/weathered MSWI bottom ash and to estimate weathering time. Although WPI had weak correlation with leachate pH, other weathering indices had no significant correlation. In addition, all weathering indices could not explain leaching concentration of Al, Ca, Cu, and Zn quantitatively. Large difficulty to modify weathering indices correctly suggests that geochemical simulation including surface sorption, complexation with DOM, and other mechanisms seems to be the only way to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash.

  14. Experimental Protocol to Investigate Particle Aerosolization of a Product Under Abrasion and Under Environmental Weathering.

    Science.gov (United States)

    Shandilya, Neeraj; Le Bihan, Olivier Louis; Bressot, Christophe; Morgeneyer, Martin

    2016-01-01

    The present article presents an experimental protocol to investigate particle aerosolization of a product under abrasion and under environmental weathering, which is a fundamental element to the approach of nanosafety-by-design of nanostructured products for their durable development. This approach is basically a preemptive one in which the focus is put on minimizing the emission of engineered nanomaterials' aerosols during the usage phase of the product's life cycle. This can be attained by altering its material properties during its design phase without compromising with any of its added benefits. In this article, an experimental protocol is presented to investigate the nanosafety-by-design of three commercial nanostructured products with respect to their mechanical solicitation and environmental weathering. The means chosen for applying the mechanical solicitation is an abrasion process and for the environmental weathering, it is an accelerated UV exposure in the presence of humidity and heat. The eventual emission of engineered nanomaterials is studied in terms of their number concentration, size distribution, morphology and chemical composition. The purpose of the protocol is to study the emission for test samples and experimental conditions which are corresponding to real life situations. It was found that the application of the mechanical stresses alone emits the engineered nanomaterials' aerosols in which the engineered nanomaterial is always embedded inside the product matrix, thus, a representative product element. In such a case, the emitted aerosols comprise of both nanoparticles as well as microparticles. But if the mechanical stresses are coupled with the environmental weathering, the experimental protocol reveals then the eventual deterioration of the product, after a certain weathering duration, may lead to the emission of the free engineered nanomaterial aerosols too.

  15. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T.F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1995-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  16. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  17. Sensors and Systems to Enhance Aviation Safety Against Weather Hazards

    OpenAIRE

    Mahapatra, Pravas R; Zrnic, Dusan S

    1991-01-01

    Weather-related factors are among major causes of aviation hazards, passenger discomfort, poor airline schedule-keeping, and poor operating economy. A variety of new high-technology electronic sensors and systems for aviation weather are being developed and installed across the US. The aviation weather monitoring system of the future will be centered around Doppler weather radars which offer the best combination of coverage, resolution, and agility for this purpose, and are able to detect and...

  18. Generating Weather Forecast Texts with Case Based Reasoning

    OpenAIRE

    Adeyanju, Ibrahim

    2015-01-01

    Several techniques have been used to generate weather forecast texts. In this paper, case based reasoning (CBR) is proposed for weather forecast text generation because similar weather conditions occur over time and should have similar forecast texts. CBR-METEO, a system for generating weather forecast texts was developed using a generic framework (jCOLIBRI) which provides modules for the standard components of the CBR architecture. The advantage in a CBR approach is that systems can be built...

  19. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO2 and NOx removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where direct

  20. Accelerating in de Sitter spacetimes

    CERN Document Server

    Cotaescu, Ion I

    2014-01-01

    We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a result with a reasonable physical meaning.