WorldWideScience

Sample records for accelerated titration designs

  1. Escalation with Overdose Control is More Efficient and Safer than Accelerated Titration for Dose Finding

    Directory of Open Access Journals (Sweden)

    André Rogatko

    2015-07-01

    Full Text Available The standard 3 + 3 or “modified Fibonacci” up-and-down (MF-UD method of dose escalation is by far the most used design in dose-finding cancer trials. However, MF-UD has always shown inferior performance when compared with its competitors regarding number of patients treated at optimal doses. A consequence of using less effective designs is that more patients are treated with doses outside the therapeutic window. In June 2012, the U S Food and Drug Administration (FDA rejected the proposal to use Escalation with Overdose Control (EWOC, an established dose-finding method which has been extensively used in FDA-approved first in human trials and imposed a variation of the MF-UD, known as accelerated titration (AT design. This event motivated us to perform an extensive simulation study comparing the operating characteristics of AT and EWOC. We show that the AT design has poor operating characteristics relative to three versions of EWOC under several practical scenarios. From the clinical investigator’s perspective, lower bias and mean square error make EWOC designs preferable than AT designs without compromising safety. From a patient’s perspective, uniformly higher proportion of patients receiving doses within an optimal range of the true MTD makes EWOC designs preferable than AT designs.

  2. Project X: Accelerator Reference Design

    CERN Document Server

    Holmes, S D; Chase, B; Gollwitzer, K; Johnson, D; Kaducak, M; Klebaner, A; Kourbanis, I; Lebedev, V; Leveling, A; Li, D; Nagaitsev, S; Ostroumov, P; Pasquinelli, R; Patrick, J; Prost, L; Scarpine, V; Shemyakin, A; Solyak, N; Steimel, J; Yakovlev, V; Zwaska, R

    2013-01-01

    Part 1 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". Part 1 contains the volume Preface and a description of the conceptual design for a high-intensity proton accelerator facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Subjects covered include performance goals, the accelerator physics design, and the technological basis for such a facility.

  3. Injector Design for Advanced Accelerators

    Science.gov (United States)

    Henestroza, Enrique; Faltens, A.

    1996-11-01

    Accelerator designs intended to provide acceleration at a much lower cost per Joule than the ILSE or ELISE designs are under study. For these designs, which typically have many beams, an injector of significantly lower cost is needed. A goal, which from our design appears to be achievable, is to reduce the transverse dimension to half that of the 2 MeV, 800 mA ILSE injector(E. Henestroza, ``Injectors for Heavy Ion Fusion", Proc. of the 11th International Wkshp. on Laser Interaction and Related Plasma Phenomena, 1993.) while generating about the same current. A single channel of a lower cost injector includes an 800 kV column, accelerating a 700 mA beam extracted from a potassium source of 4 cm radius by a 120 kV electrode. The beam passes into a superconducting 7 T solenoid of 15 cm aperture and 15 cm length. This high-field solenoid provides the focusing needed for a small beam without increasing the electric field gradient. The injector and its matching section, also designed, fit within a 12 cm radius, which is small enough to allow construction of attractive multi-beam injectors. We will present solutions for the generation and transport of 700 mA potassium beams of up to 1.6 MeV within the same transverse constraint.

  4. COMPASS Accelerator Design Technical Overview

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff; /SLAC

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  5. The Spallation Neutron Source accelerator system design

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, S., E-mail: stuarth@fnal.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Abraham, W. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Aleksandrov, A. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, C. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Alonso, J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Arenius, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Arthur, T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Assadi, S. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Ayers, J.; Bach, P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Badea, V. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Battle, R. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Beebe-Wang, J. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); and others

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ∼100 high-power RF power systems, a 2 K cryogenic plant, ∼400 DC and pulsed power supply systems, ∼400 beam diagnostic devices and a distributed control system handling ∼100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  6. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  7. The deuteron accelerator preliminary design for BISOL

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.X., E-mail: sxpeng@pku.edu.cn; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z.Y.

    2016-06-01

    BISOL, which was named as Beijing-ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He{sup 2+} beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  8. The deuteron accelerator preliminary design for BISOL

    Science.gov (United States)

    Peng, S. X.; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z. Y.

    2016-06-01

    BISOL, which was named as Beijing_ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He2+ beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  9. DESIGN CRITERIA OF A PROTON FFAG ACCELERATOR.

    Energy Technology Data Exchange (ETDEWEB)

    RUGGIERO, A.G.

    2004-10-13

    There are two major issues that are to be confronted in the design of a Fixed-Field Alternating-Gradient (FFAG) accelerator, namely: (1) the stability of motion over the large momentum range needed for the beam acceleration, and (2) the compactness of the trajectories over the same momentum range to limit the dimensions of the magnets. There are a numbers of rules that need to be followed to resolve these issues. In particular, the magnet arrangement in the accelerator lattice and the distribution of the bending and focusing fields are to be set properly in accordance with these rules. In this report they describe four of these rules that ought to be applied for the optimum design of a FFAG accelerator, especially in the case of proton beams.

  10. Nuclear data for designing the IFMIF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The objective of the International Fusion Materials Irradiation Facility (IFMIF) and the design concept of the IFMIF accelerator system are described. The status of the nuclear data, especially for the deuteron-induced reactions, to qualify the system design is reviewed. The requests for the nuclear data compilation and/or evaluation are summarized. (author)

  11. Accelerator design concept for future neutrino facilities

    Energy Technology Data Exchange (ETDEWEB)

    Apollonio, M [Imperial College London, London (United Kingdom); Berg, J S; Fernow, R; Gallardo, J [Brookhaven National Laboratory, Upton, Long Island, NY (United States); Blondel, A [University of Geneva, Geneva (Switzerland); Bogacz, A [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brooks, S; Edgecock, R [Rutherford Appleton Laboratory, Chilton, Didcot Oxon (United Kingdom); Campagne, J-E [LAL, University Paris-Sud, IN2P3/CNRS, Orsay (France); Caspar, D [University of California-Irvine, Irvine, CA (United States); Cavata, C [CEA, CEN Saclay, Gif-sur-Yvette (France); Chimenti, P [University of Trieste and INFN, Trieste (Italy); Cobb, J [University of Oxford, Oxford (United Kingdom); Dracos, M [Institut de Recherches Subatomiques, Universite Louis Pasteur, Strasbourg (France); Efthymiopoulos, I; Fabich, A; Garoby, R [CERN, Geneva (Switzerland); Filthaut, F [NIKHEF, Amsterdam (Netherlands); Geer, S [Fermi National Accelerator Laboratory, Batavia, IL (United States)], E-mail: mszisman@lbl.gov (and others)

    2009-07-15

    This document summarizes the work of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The main goal of the activity was to reach consensus on a baseline design for a Neutrino Factory complex, including proton driver parameters, choice of target, front-end design, acceleration system design, and decay ring geometry. Another goal was to explore the commonality, if any, between the proton driver for a Neutrino Factory and those for a Superbeam or Beta Beam facility. In general, the requirements for either of the latter facilities are less stringent than those for a Neutrino Factory. Here, we discuss concepts, parameters, and expected performance of the required subsystems for our chosen baseline design of a Neutrino Factory. We also give an indication of the main R and D tasks - many of which are already under way - that must be carried out to finalize facility design approaches.

  12. Design of a Compact Pulsed Power Accelerator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A 100 kA/60 ns compact pulsed power accelerator was designed to study the influence to the X-pinch by the load. It is composed of a Marx generator, a combined pulse forming (PFL), a gas-filled V/N field distortion switch, a transfer line,

  13. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  14. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  15. Protamine titration.

    Science.gov (United States)

    Newall, Fiona

    2013-01-01

    Protamine titration is the gold standard method for the measurement of unfractionated heparin (UFH) concentration in plasma. Protamine titration produces reliable and reproducible results; however it is -generally not considered a convenient assay for current clinical management of UFH as it is not readily automated (Olson et al. Arch Pathol Lab Med 122(9):782-798, 1998). Early clinical trials of UFH therapy determined that a heparin concentration of 0.2-0.4 U/ml by protamine titration correlated to an APTT of 1.5-2.5 times higher compared to baseline values produced desirable UFH safety and efficacy outcomes (Hull et al. N Engl J Med 315(18):1109-1114, 1986; Hull et al. N Engl J Med 322:1260-1264, 1990; Turpie et al. N Engl J Med 320:352-357, 1989; Brill-Edwards et al. Ann Intern Med 119(2):104-109, 1993; Hull Int Angiol 14(1):32-34, 1995). Such studies paved the way to the current view that it is no longer ideal to manage UFH based solely upon a 1.5-2.5 times prolongation of the "normal" APTT. Most advisory bodies recommend therapeutic APTTs be determined by correlating APTT results with therapeutic UFH levels as measured by anti-Xa assay (0.35-0.7 U/ml) or protamine titration (0.2-0.4 U/ml) (Hirsh and Raschke. Chest 126(3):188S-203S, 2004) (see Note 1). The concentration of UFH in a sample is measured by determining the amount of protamine required to return the thrombin clotting time (TCT) test (prolonged by UFH) to a pre-UFH level (Laffan and Manning. Dacie and Lewis: practical haematology. Churchill Livingstone: London, 2001).

  16. Designing isothermal titration calorimetry experiments for the study of 1:1 binding: problems with the "standard protocol".

    Science.gov (United States)

    Tellinghuisen, Joel

    2012-05-15

    Literature recommendations for designing isothermal titration calorimetry (ITC) experiments to study 1:1 binding, M+X -->/applicability of the ITC technique. These deficiencies are discussed here along with other misconceptions. Whether a specific binding process can be studied by ITC is determined less by c (the product of binding constant K and titrand concentration [M](0)) than by the total detectable heat q(tot) and the extent to which M can be converted to MX. As guidelines, with 90% conversion to MX, K can be estimated within 5% over the range 10 to 10(8)M(-1) when q(tot)/σ(q)≈700, where σ(q) is the standard deviation for estimation of q. This ratio drops to ~150 when the stoichiometry parameter n is treated as known. A computer application for modeling 1:1 binding yields realistic estimates of parameter standard errors for use in protocol design and feasibility assessment.

  17. Introduction to the overall physics design of CSNS accelerators

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng; FANG Shou-Xian; FU Shi-Nian; LIU Wei-Bin; OUYANG Hua-Fu; QIN Qing; TANG Jing-Yu; WEI Jie

    2009-01-01

    The China Spallation Neutron Source(CSNS)is an accelerator-based facility.The accelerator of CSNS consists of a low energy linac,a Rapid Cycling Synchrotron(RCS)and two beam transport lines.The overall physits design of CSNS accelerator is described,including the design principle,the choice of the main parameters and design of each part of accelerators.The key problems of the physics design,such as beam loss and control,are also discussed.The interface between the different parts of accelerator,as well as between accelerator and target,are introduced.

  18. Accelerator design concept for future neutrino facilities

    CERN Document Server

    Apollonio, M; Blondel, A; Bogacz, A; Brooks, S; Campagne, Jean-Eric; Caspar, D; Cavata, C; Chimenti, P; Cobb, J; Dracos, M; Edgecock, R; Efthymiopoulos, I; Fabich, A; Fernow, R; Filthaut, F; Gallardo, J; Garoby, R; Geer, S; Gerigk, F; Hanson, G; Johnson, R; Johnstone, C; Kaplan, D; Keil, E; Kirk, H; Klier, A; Kurup, A; Lettry, J; Long, K; Machida, S; McDonald, K; Mot, F; Mori, Y; Neuffer, D; Palladino, V; Palmer, R; Paul, K; Poklonskiy, A; Popovic, M; Prior, C; Rees, G; Rossi, C; Rovelli, T; Sandstrom, R; Sevior, R; Sievers, P; Simos, N; Torun, Y; Vretenar, M; Yoshimura, K; Zisman, M S

    2009-01-01

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and super-beam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  19. Accelerator Design Concept for Future Neutrino Facilities

    Energy Technology Data Exchange (ETDEWEB)

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  20. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  1. Design of a nonscaling fixed field alternating gradient accelerator

    CERN Document Server

    Trbojevic, D; Blaskiewicz, M

    2005-01-01

    We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the dispersion action function H. The design is considered both analytically and via computer modeling. We present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for muons are discussed.

  2. Design of a nonscaling fixed field alternating gradient accelerator

    Science.gov (United States)

    Trbojevic, D.; Courant, E. D.; Blaskiewicz, M.

    2005-05-01

    We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the dispersion action function H. The design is considered both analytically and via computer modeling. We present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for muons are discussed.

  3. ILC Reference Design Report: Accelerator Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, Nan; /SLAC

    2007-12-14

    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radiofrequency (SCRF) accelerating cavities. The use of the SCRF technology was recommended by the International Technology Recommendation Panel (ITRP) in August 2004 [1], and shortly thereafter endorsed by the International Committee for Future Accelerators (ICFA). In an unprecedented milestone in high-energy physics, the many institutes around the world involved in linear collider R&D united in a common effort to produce a global design for the ILC. In November 2004, the 1st International Linear Collider Workshop was held at KEK, Tsukuba, Japan. The workshop was attended by some 200 accelerator physicists from around the world, and paved the way for the 2nd ILC Workshop in August 2005, held at Snowmass, Colorado, USA, where the ILC Global Design Effort (GDE) was officially formed. The GDE membership reflects the global nature of the collaboration, with accelerator experts from all three regions (Americas, Asia and Europe). The first major goal of the GDE was to define the basic parameters and layout of the machine--the Baseline Configuration. This was achieved at the first GDE meeting held at INFN, Frascati, Italy in December 2005 with the creation of the Baseline Configuration Document (BCD). During the next 14 months, the BCD was used as the basis for the detailed design work and value estimate (as described in section 1.6) culminating in the completion of the second major milestone, the publication of the draft ILC Reference Design Report (RDR). The technical design and cost estimate for the ILC is based on two decades of world-wide Linear Collider R&D, beginning with the construction and operation of the SLAC Linear Collider (SLC). The SLC is acknowledged as a proof-of-principle machine for the linear collider concept. The ILC SCRF linac technology was pioneered by the TESLA collaboration*, culminating in

  4. Conception design of helium ion FFAG accelerator with induction accelerating cavity

    Institute of Scientific and Technical Information of China (English)

    LUO Huan-Li; XU Yu-Cun; WANG Xiang-Qi; XU Hong-Liang

    2013-01-01

    In the recent decades of particle accelerator R&D area,the fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost,although there are still some technical challenges.In this paper,the FFAG accelerator is adopted to accelerate a helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of the FFAG accelerator and exploring the possibility of developing high power FFAG accelerators.The conventional period focusing unit of the helium ion FFAG accelerator and threedimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given.For low energy and low revolution frequency,induction acceleration is proposed to replace conventional radio frequency (RF) acceleration for the helium ion FFAG accelerator,which avoids the potential breakdown of the acceleration field caused by the wake field and improves the acceleration repetition frequency to gain higher beam intensity.The main parameters and three-dimensional model of induction cavity are given.Two special constraint waveforms are proposed to refrain from particle accelerating time slip (AT) caused by accelerating voltage drop of flat top and energy deviation.The particle longitudinal motion in two waveforms is simulated.

  5. Self-shielded electron linear accelerators designed for radiation technologies

    Science.gov (United States)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  6. Isothermal titration calorimetry for drug design: Precision of the enthalpy and binding constant measurements and comparison of the instruments.

    Science.gov (United States)

    Linkuvienė, Vaida; Krainer, Georg; Chen, Wen-Yih; Matulis, Daumantas

    2016-12-15

    Isothermal titration calorimetry (ITC) is one of the most robust label- and immobilization-free techniques used to measure protein - small molecule interactions in drug design for the simultaneous determination of the binding affinity (ΔG) and the enthalpy (ΔH), both of which are important parameters for structure-thermodynamics correlations. It is important to evaluate the precision of the method and of various ITC instrument models by performing a single well-characterized reaction. The binding between carbonic anhydrase II and acetazolamide was measured by four ITC instruments - PEAQ-ITC, iTC200, VP-ITC, and MCS-ITC and the standard deviation of ΔG and ΔH was determined. Furthermore, the limit of an approach to reduce the protein concentration was studied for a high-affinity reaction (Kd = 0.3 nM), too tight to be measured by direct (non-displacement) ITC. Chemical validation of the enthalpy measurements is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. BBU design of linear induction accelerator cells for radiography application

    Energy Technology Data Exchange (ETDEWEB)

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.; Houck, T.L.; Molau, N.E.; Focklen, J.; Gregory, S.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  8. Design and performance criteria for medical electron accelerators

    Science.gov (United States)

    Nunan, Craig S.

    1985-05-01

    A brief comparison is made of the design and performance of early and modern isocentric microwave linear accelerators for radiotherapy. Generally accepted criteria for the design of current machines are presented, along with a rationale for their selection. The current development of international standards for safety and performance of medical electron accelerators is reviewed.

  9. Design and status of the AGS booster accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Lee, Y.Y.

    1987-01-01

    Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described. (LEW)

  10. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    Energy Technology Data Exchange (ETDEWEB)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1993-12-08

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh- Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0. 6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g{sub o}, where g{sub o} is accelerated due to gravity.

  11. Hybrid Interconnect Design for Heterogeneous Hardware Accelerators

    NARCIS (Netherlands)

    Pham-Quoc Cuong, P.

    2015-01-01

    Heterogeneous multicore systems are becoming increasingly important as the need for computation power grows, especially when we are entering into the big data era. As one of the main trends in heterogeneous multicore, hardware accelerator systems provide application specific hardware circuits and

  12. Hybrid Interconnect Design for Heterogeneous Hardware Accelerators

    NARCIS (Netherlands)

    Pham-Quoc Cuong, P.

    2015-01-01

    Heterogeneous multicore systems are becoming increasingly important as the need for computation power grows, especially when we are entering into the big data era. As one of the main trends in heterogeneous multicore, hardware accelerator systems provide application specific hardware circuits and ar

  13. Status of the Neutrino Factory accelerator design studies

    CERN Document Server

    Prior, Gersende

    2013-01-01

    This document is a review of the present status of the Neutrino Factory design study, after the publication of the Interim Design Report and before the publication of the Reference Design Report. The different components of the accelerator as well as their current design stage and future tasks are described here.

  14. Design of four-beam IH-RFQ linear accelerator

    Science.gov (United States)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  15. Third order TRANSPORT with MAD (Methodical Accelerator Design) input

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1988-09-20

    This paper describes computer-aided design codes for particle accelerators. Among the topics discussed are: input beam description; parameters and algebraic expressions; the physical elements; beam lines; operations; and third-order transfer matrix. (LSP)

  16. Accelerated Life Test Design for Tractor Powertrain Front Axle

    Directory of Open Access Journals (Sweden)

    Ismail Azianti

    2016-01-01

    Full Text Available Accelerated Life Test (ALT has been applied in the manufacturing for many years due to rapid changing technologies, more complex products, speedier product development, and more demanding customer requirements. These reasons have pushed the manufacturers to acquire reliability information faster. ALT allows reducing the time needed to show the reliability of the product. The purpose of this study is to design accelerated life testing which involved determination of normal test time, acceleration factor, acceleration test time, and finally experimental setup. This case study provides the basis for ALT designs for the tractor front axle based on customer usage and field failure analysis, which were conducted to estimate the current reliability, especially on the B10 life during the operational stage of the product. The accelerated life test conducted has guaranteed the B10 life of 4,000 hours with 90% confidence level for lesser time needed for testing to show the reliability of the front axle assembly.

  17. Integrated design of superconducting accelerator magnets

    CERN Document Server

    Russenschuck, Stephan; Ramberger, S; Rodríguez-Mateos, F; Wolf, R

    1999-01-01

    This chapter introduces the main features of the ROXIE program which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. The program combines numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, was chosen as an example for the integrated design process. (17 refs).

  18. Design of MEMS accelerometer based acceleration measurement system for automobiles

    Science.gov (United States)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  19. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  20. Asymmetric catalysis : ligand design and microwave acceleration

    OpenAIRE

    Bremberg, Ulf

    2000-01-01

    This thesis deals partly with the design and synthesis ofligands for use in asymmetric catalysis, and partly with theapplication of microwave heating on metal-based asymmetriccatalytic reactions. Enantiomerically pure pyridyl alcohols and bipyridylalcohols were synthesized from the chiral pool for future usein asymmetric catalysis. Lithiated pyridines were reacted withseveral chiral electrophiles, yielding diastereomeric mixturesthat could be separated without the use of resolutiontechniques....

  1. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    Arup Bandyopadhyay

    2002-12-01

    Variable Energy Cyclotron Centre (VECC) is presently developing an ISOL post-acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for the post-acceleration. The design aspects of these postaccelerator LINAC modules will be discussed in this paper.

  2. Accelerated Life Test Design for Tractor Powertrain Front Axle

    OpenAIRE

    2016-01-01

    Accelerated Life Test (ALT) has been applied in the manufacturing for many years due to rapid changing technologies, more complex products, speedier product development, and more demanding customer requirements. These reasons have pushed the manufacturers to acquire reliability information faster. ALT allows reducing the time needed to show the reliability of the product. The purpose of this study is to design accelerated life testing which involved determination of normal test time, accelera...

  3. A bridge for accelerating materials by design

    Science.gov (United States)

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas; Kalinin, Sergei V.

    2015-11-01

    Recent technical advances in the area of nanoscale imaging, spectroscopy and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum and statistical mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges. In this perspective, we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions and provide examples of scientific issues that can be addressed using a tightly integrated approach where theory and experiments are linked through big-deep data.

  4. Reliability Approach for Machine Protection Design in Particle Accelerators

    CERN Document Server

    Apollonio, A; Mikulec, B; Puccio, B; Sanchez Alvarez, J L; Schmidt, R; Wagner, S

    2013-01-01

    Particle accelerators require Machine Protection Systems (MPS) to prevent beam-induced damage of equipment in case of failures. This becomes increasingly important for proton colliders with large energy stored in the beam such as LHC, for high power accelerators with a beam power of up to 10 MW, such as the European Spallation Source (ESS), and for linear colliders with high beam power and very small beam size. The reliability of Machine Protection Systems is crucial for safe machine operation; all possible sources of risk need to be taken into account in the early design stage. This paper presents a systematic approach to classify failures and to assess the associated risk, and discusses the impact of such considerations on the design of Machine Protection Systems. The application of this approach will be illustrated using the new design of the MPS for LINAC4, a linear accelerator under construction at CERN.

  5. Design of Octupole Channel for Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Chicago U.; Carlson, Kermit [Fermilab; Castellotti, Riccardo [Unlisted, IT; Valishev, Alexander [Fermilab; Wesseln, Steven [Fermilab

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  6. Physics design of the DARHT 2nd axis accelerator cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y J; Houck, T L; Reginato, L J; Shang, C C; Yu, S S

    1999-08-19

    The next generation of radiographic machines based on induction accelerators require very high brightness electron beams to realize the desired x-ray spot size and intensity. This high brightness must be maintained throughout the beam transport, from source to x-ray converter target. The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility is being designed to accelerate a 4-kA, 2-{micro}s pulse of electrons to 20 MeV. After acceleration, the 2-{micro}s pulse will be chopped into a train of four 50-ns pulses with variable temporal spacing by rapidly deflecting the beam between a beam stop and the final transport section. The short beam pulses will be focused onto an x-ray converter target generating four radiographic pulses within the 2-{micro}s window. Beam instability due to interaction with the accelerator cells can very adversely effect the beam brightness and radiographic pulse quality. This paper describes the various issues considered in the design of the accelerator cell with emphasis on transverse impedance and minimizing beam instabilities.

  7. Operational and design aspects of accelerators for medical applications

    Science.gov (United States)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  8. Open-label randomized trial of titrated disease management for patients with hypertension: Study design and baseline sample characteristics.

    Science.gov (United States)

    Jackson, George L; Weinberger, Morris; Kirshner, Miriam A; Stechuchak, Karen M; Melnyk, Stephanie D; Bosworth, Hayden B; Coffman, Cynthia J; Neelon, Brian; Van Houtven, Courtney; Gentry, Pamela W; Morris, Isis J; Rose, Cynthia M; Taylor, Jennifer P; May, Carrie L; Han, Byungjoo; Wainwright, Christi; Alkon, Aviel; Powell, Lesa; Edelman, David

    2016-09-01

    Despite the availability of efficacious treatments, only half of patients with hypertension achieve adequate blood pressure (BP) control. This paper describes the protocol and baseline subject characteristics of a 2-arm, 18-month randomized clinical trial of titrated disease management (TDM) for patients with pharmaceutically-treated hypertension for whom systolic blood pressure (SBP) is not controlled (≥140mmHg for non-diabetic or ≥130mmHg for diabetic patients). The trial is being conducted among patients of four clinic locations associated with a Veterans Affairs Medical Center. An intervention arm has a TDM strategy in which patients' hypertension control at baseline, 6, and 12months determines the resource intensity of disease management. Intensity levels include: a low-intensity strategy utilizing a licensed practical nurse to provide bi-monthly, non-tailored behavioral support calls to patients whose SBP comes under control; medium-intensity strategy utilizing a registered nurse to provide monthly tailored behavioral support telephone calls plus home BP monitoring; and high-intensity strategy utilizing a pharmacist to provide monthly tailored behavioral support telephone calls, home BP monitoring, and pharmacist-directed medication management. Control arm patients receive the low-intensity strategy regardless of BP control. The primary outcome is SBP. There are 385 randomized (192 intervention; 193 control) veterans that are predominately older (mean age 63.5years) men (92.5%). 61.8% are African American, and the mean baseline SBP for all subjects is 143.6mmHg. This trial will determine if a disease management program that is titrated by matching the intensity of resources to patients' BP control leads to superior outcomes compared to a low-intensity management strategy.

  9. Web-based guided insulin self-titration in patients with type 2 diabetes: the Di@log study. Design of a cluster randomised controlled trial [TC1316

    Directory of Open Access Journals (Sweden)

    Kostense Piet J

    2009-06-01

    Full Text Available Abstract Background Many patients with type 2 diabetes (T2DM are not able to reach the glycaemic target level of HbA1c Methods/Design T2DM patients (n = 248, aged 35–75 years, with an HbA1c ≥ 7.0%, eligible for treatment with insulin and able to use the internet will be selected from general practices in two different regions in the Netherlands. Cluster randomisation will be performed at the level of general practices. Patients in the intervention group will use a self-developed internet programme to assist them in self-titrating insulin. The control group will receive usual care. Primary outcome is the difference in change in HbA1c between intervention and control group. Secondary outcome measures are quality of life, treatment satisfaction, diabetes self-efficacy and frequency of hypoglycaemic episodes. Results will be analysed according to the intention-to-treat principle. Discussion An internet intervention supporting self-titration of insulin therapy in T2DM patients is an innovative patient-centred intervention. The programme provides guided self-monitoring and evaluation of health and self-care behaviours through tailored feedback on input of glucose values. This is expected to result in a better performance of self-titration of insulin and consequently in the improvement of glycaemic control. The patient will be enabled to 'discover and use his or her own ability to gain mastery over his/her diabetes' and therefore patient empowerment will increase. Based on the self-regulation theory of Leventhal, we hypothesize that additional benefits will be achieved in terms of increases in treatment satisfaction, quality of life and self-efficacy. Trial registration Dutch Trial Register TC1316.

  10. Next Linear Collider Test Accelerator conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This document presents the scientific justification and the conceptual design for the {open_quotes}Next Linear Collider Test Accelerator{close_quotes} (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the {open_quotes}dark current{close_quotes} generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m.

  11. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    CERN Document Server

    2003-01-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accompli...

  12. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    OpenAIRE

    Zhaopeng Zhong; Yousry Gohar

    2016-01-01

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nu...

  13. Accelerator-driven subcritical facility:Conceptual design development

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: gohar@anl.gov; Bolshinsky, Igor [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Naberezhnev, Dmitry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Duo, Jose [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Pennsylvania State University, University Park, PA 16802 (United States); Belch, Henry [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Bailey, James [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-06-23

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a K {sub eff} of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  14. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  15. Accelerator technical design report for J-PARC

    CERN Document Server

    2003-01-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results.

  16. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    Science.gov (United States)

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. OPTIMUM DESIGN OF EXPERIMENTS FOR ACCELERATED RELIABILITY TESTING

    Directory of Open Access Journals (Sweden)

    Sebastian Marian ZAHARIA

    2014-05-01

    Full Text Available In this paper is presented a case study that demonstrates how design to experiments (DOE information can be used to design better accelerated reliability tests. In the case study described in this paper, will be done a comparison and optimization between main accelerated reliability test plans (3 Level Best Standard Plan, 3 Level Best Compromise Plan, 3 Level Best Equal Expected Number Failing Plan, 3 Level 4:2:1 Allocation Plan. Before starting an accelerated reliability test, it is advisable to have a plan that helps in accurately estimating reliability at operating conditions while minimizing test time and costs. A test plan should be used to decide on the appropriate stress levels that should be used (for each stress type and the amount of the test units that need to be allocated to the different stress levels (for each combination of the different stress types' levels. For the case study it used ALTA 7 software what provides a complete analysis for data from accelerated reliability tests

  18. New developments in design and applications for Pelletron accelerators

    Indian Academy of Sciences (India)

    Greg Norton

    2002-11-01

    Most of the developments over the last several years related to Pelletron accelerator are in the field of accelerator mass spectrometry (AMS) and other low beam current applications with the exception of a very high DC electron recirculation Pelletron. High precision AMS systems based on tandem Pelletrons from 500 kV to 5 MV terminal potential are now in use for routine high precision AMS measurements. Their performance will be reported. In addition, there has been significant advancement in the design of the multi-cathode SNICS source for the use of both gas and solid samples within a single source. The latest performance of these sources will be discussed. New diagnostics is being developed for very low beam currents. The latest design of the low current beam profile monitor (LCBPM) will also be presented.

  19. A Newly Designed and Optimized CLIC Main Linac Accelerating Structure

    CERN Document Server

    Grudiev, A

    2004-01-01

    A new CLIC main-linac accelerating-structure design, HDS (Hybrid Damped Structure), with improved high-gradient performance, efficiency and simplicity of fabrication is presented. The gains are achieved in part through a new cell design which includes fully-profiled rf surfaces optimized to minimize surface fields and hybrid damping using both iris slots and radial waveguides. The slotted irises allow a simple structure fabrication in quadrants with no rf currents across joints. Further gains are achieved through a new structure optimization procedure, which simultaneously balances surface fields, power flow, short and long-range transverse wakefields, rf-to-beam efficiency and the ratio of luminosity to input power. The optimization of a 30 GHz structure with a loaded accelerating gradient of 150 MV/m results in a bunch spacing of seven rf cycles and 32 % rf-to-beam efficiency.

  20. Beam dynamics design for uranium drift tube linear accelerator

    Science.gov (United States)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  1. Workshop on Accelerator Magnet Superconductors, Design and Optimization

    CERN Document Server

    WAMSDO Workshop

    2009-01-01

    This report contains the proceedings of the CARE-HHH-AMT Workshop on Accelerator Magnet Superconductors, Design and Optimization (WAMSDO) held at CERN from 19 to 23 May 2008. The needs in terms of superconducting magnets for the accelerator projects were discussed, mainly for the LHC interaction regions and injector upgrades, and for the GSI FAIR complex. The first part of the workshop focused on the development of superconductor and cables, i.e., low-loss Nb-Ti cables, Nb3Sn and high-temperature superconductors. An industry session summarized the actual plans and status of the activities in the main European industries. Then, a worldwide status of the high field magnets programme was presented. A special session was devoted to fast cycled magnets, including FAIR facilities and LHC injector upgrades. A final session focused on the optimization methods and numerical tools for magnet design.

  2. Design, development, and acceleration trials of radio-frequency quadrupole

    Science.gov (United States)

    Rao, S. V. L. S.; Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.

    2014-04-01

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (˜±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D+) beam, we tested it by accelerating both the proton (H+) and D+ beams. The RFQ was operated in pulsed mode and accelerated both H+ and D+ beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  3. Design and Construction of the Linac4 Accelerating Structures

    CERN Document Server

    Gerigk, F; Dallocchio, A; Favre, G; Vretenar, M; Wegner, R; Tirado, P Ugena; Rossi, C; Riffaud, B; Ramberger, S; Polini, M; Gentini, L; Geisser, JM; Giguet, JM; Mathot, S; Naumenko, M; Kendjebulatov, E; Tribendis, A; Kryuchkov, Ya

    2013-01-01

    The Linac4 project at CERN is at an advanced state of construction. Prototypes and/or operational modules of the different types of accelerating structures (RFQ, buncher, DTL, CCDTL, and PIMS) have been built and are presently tested. This paper gives the status of the cavity production and reviews the RF and mechanical design of the various structure types. Furthermore the production experience and the first test results shall be presented.

  4. Bayesian optimal design of step stress accelerated degradation testing

    Institute of Scientific and Technical Information of China (English)

    Xiaoyang Li; Mohammad Rezvanizaniani; Zhengzheng Ge; Mohamed Abuali; Jay Lee

    2015-01-01

    This study presents a Bayesian methodology for de-signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de-sign framework for SSADT is presented. Then, by considering his-torical data, specific optimal objectives oriented Kul back–Leibler (KL) divergence is established. A numerical example is discussed to il ustrate the design approach. It is assumed that the degrada-tion model (or process) fol ows a drift Brownian motion;the accele-ration model fol ows Arrhenius equation; and the corresponding parameters fol ow normal and Gamma prior distributions. Using the Markov Chain Monte Carlo (MCMC) method and WinBUGS software, the comparison shows that KL divergence is better than quadratic loss for optimal criteria. Further, the effect of simulation outliers on the optimization plan is analyzed and the preferred sur-face fitting algorithm is chosen. At the end of the paper, a NASA lithium-ion battery dataset is used as historical information and the KL divergence oriented Bayesian design is compared with maxi-mum likelihood theory oriented local y optimal design. The results show that the proposed method can provide a much better testing plan for this engineering application.

  5. Shielding design of the linear accelerator at RAON: Accelerator tunnel and utility gallery

    Science.gov (United States)

    Kim, Suna; Kang, Bo Sun; Lee, Sangjin; Nam, Shinwoo; Chung, Yeonsei

    2015-10-01

    RAON is the first Korean heavy-ion accelerator for various rare-isotope experiments and will be constructed by the year of 2021. The building for the about 550-m-long superconducting linear accelerator at RAON has three divisions in the vertical layout: accelerator tunnel, intermediate tunnel, and utility gallery. One of the requirements for the building design is that the effective dose rate in the utility gallery should be well below the dose limit for workers. Other parts of the building underground are classified as high-radiation zones where access is strictly controlled. The radiation dose distribution in the building has been calculated by using the Monte Carlo transport code MCNPX including the radiation streaming effects through the intermediate tunnel and penetrating holes. We have applied a point beam loss model in which the continuous beam loss along the beam line is treated as an equivalent point loss with a simple target. We describe the details of the calculation and discuss the results.

  6. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  7. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    Directory of Open Access Journals (Sweden)

    Zhaopeng Zhong

    2016-06-01

    Full Text Available The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both

  8. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  9. Challenges in the design of linear accelerator tunnels and services

    CERN Document Server

    Osborne, John

    2008-01-01

    Studies are well underway for the next generation of linear accelerators. The International Linear Collider (ILC) is working towards a maximum collision energy of 1 TeV and the Compact Linear Collider (CLIC) even higher at 3 TeV. Although the accelerating technologies are very different, many similarities can be found between the two projects from a civil engineering and technical services point of view. Both projects would require a site of approximately 50 km in length with stable geological conditions. CERN has been selected as one of the sample sites for the preliminary studies. The aim of this paper is to present the key challenges in the design of civil engineering and technical services such as cooling, ventilation and electricity that need to be overcome to realise such large scale projects in the future.

  10. Design of a plasma discharge circuit for particle wakefield acceleration

    CERN Document Server

    Anania, M P; Cianchi, A; Di Giovenale, D; Ferrario, M; Flora, F; Gallerano, G P; Ghigo, A; Marocchino, A; Massimo, F; Mostacci, A; Mezi, L; Musumeci, P; Serio, M; 10.1016/j.nima.2013.10.053

    2014-01-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV m^-1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators; radiofrequency-based accelerators, in fact, are limited in the accelerating field (10-100 MV m^-1) requiring therefore kilometric distances to reach the GeV energies, but can provide very bright electron bunches. Combining high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of shor...

  11. Design & simulation of a 800 kV dynamitron accelerator by CST studio

    Directory of Open Access Journals (Sweden)

    A M Aghayan

    2015-09-01

    Full Text Available Nowadays, middle energy electrostatic accelerators in industries are widely used due to their high efficiency and low cost compared with other types of accelerators. In this paper, the importance and applications of electrostatic accelerators with 800 keV energy are studied. Design and simulation of capacitive coupling of a dynamitron accelerator is proposed. Furthermore, accelerating tube are designed and simulated by means of CST Suit Studio

  12. Shielding design for a laser-accelerated proton therapy system.

    Science.gov (United States)

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  13. Shielding design for a laser-accelerated proton therapy system

    Science.gov (United States)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  14. MAPA: an interactive accelerator design code with GUI

    Science.gov (United States)

    Bruhwiler, David L.; Cary, John R.; Shasharina, Svetlana G.

    1999-06-01

    The MAPA code is an interactive accelerator modeling and design tool with an X/Motif GUI. MAPA has been developed in C++ and makes full use of object-oriented features. We present an overview of its features and describe how users can independently extend the capabilities of the entire application, including the GUI. For example, a user can define a new model for a focusing or accelerating element. If the appropriate form is followed, and the new element is "registered" with a single line in the specified file, then the GUI will fully support this user-defined element type after it has been compiled and then linked to the existing application. In particular, the GUI will bring up windows for modifying any relevant parameters of the new element type. At present, one can use the GUI for phase space tracking, finding fixed points and generating line plots for the Twiss parameters, the dispersion and the accelerator geometry. The user can define new types of simulations which the GUI will automatically support by providing a menu option to execute the simulation and subsequently rendering line plots of the resulting data.

  15. Engineering Design of a Multipurpose X-band Accelerating Structure

    CERN Document Server

    Gudkov, Dmitry; Samoshkin, Alexander; Zennaro, Riccardo; Dehler, Micha; Raguin, Jean-Yves

    2010-01-01

    Both FEL projects, SwissFEL and Fermi-Elettra each require an X-band RF accelerating structure for optimal bunch compression at the respective injectors. As the CLIC project is pursuing a program for producing and testing the X-band high-gradient RF structures, a collaboration between PSI, Elettra and CERN has been established to build a multipurpose X-band accelerating structure. This paper focuses on its engineering design, which is based on the disked cells jointed together by diffusion bonding. Vacuum brazing and laser beam welding is used for auxiliary components. The accelerating structure consists of two coupler subassemblies, 73 disks and includes a wakefield monitor and diagnostic waveguides. The engineering study includes the external cooling system, consisting of two parallel cooling circuits and an RF tuning system, which allows phase advance tuning of the cell by deforming the outer wall. The engineering solution for the installation and sealing of the wake field monitor feed-through devices that...

  16. Towards Integrated Design and Modeling of High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Ferracin, P.

    2006-06-01

    The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

  17. Design and construction of the first Iranian powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    AM Poursaleh

    2015-09-01

    Full Text Available In This paper we will introduce the process of design and manufacturing an electron accelerator with 10MeV energy and 100kW power as the first Iranian powerful industrial electron accelerator. This accelerator designed based on modeling of one of the most powerful industrial accelerator called Rhodotron. But the design of the accelerator in a way that can be localize by relying on domestic industries. So although it looks like a Rhodotron accelerator structure but has some different in design and manufacture of components, the results are satisfactory

  18. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  19. Design of a relativistic klystron two-beam accelerator prototype

    Energy Technology Data Exchange (ETDEWEB)

    Westenskow, G.; Caporaso, G.; Chen, Y. [and others

    1995-10-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.

  20. ''Titration'' polymerization of monovinylacetylene

    NARCIS (Netherlands)

    Mavinkurve, A; Visser, S; vandenBroek, W; Pennings, AJ

    1996-01-01

    A polymer consisting of a saturated carbon backbone with pendent acetylenic groups was prepared from monovinylacetylene. A titration was performed between the monomer and tertiary butyllithium, its lithiating agent. The charge transfer complex formed between the solvent THF and the tertiary butyllit

  1. Filtrates & Residues: Olfactory Titration.

    Science.gov (United States)

    Wood, John T.; Eddy, Roberta M.

    1996-01-01

    Presents an experiment that uses a unique acid-base indicator--the odor of raw onion--to indicate the end point of the titration of sodium hydroxide with hydrochloric acid. Allows the student to detect the completion of the neutralization reaction by olfaction rather than sight. (JRH)

  2. The physics design of accelerator-driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, F.

    1995-02-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power.

  3. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  4. Computer control of large accelerators, design concepts and methods

    Science.gov (United States)

    Beck, F.; Gormley, M.

    1985-03-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. This presentation is an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies, and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented, since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided.

  5. Nuclear design aspect of the Korean high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Song, Tae-Yung [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1998-11-01

    A plan to construct a high current proton accelerator has been proposed by KAERI. We are presenting the required nuclear design to support the project as well as a brief overview of the proposed proton accelerator. The target and core design is highlighted to show feasibility of incineration of minor actinides from the spent fuel of light water reactors. Radiation shielding and activation analyses are also important for the design and the license of the accelerator. (author)

  6. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  7. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  8. Design of spheromak injector using conical accelerator for large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Yamada, H.; Yasui, K.; Kato, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukumoto, N.; Nagata, M.; Uyama, T. [Himeji Inst. of Tech., Hyogo (Japan)

    1999-11-01

    Optimization of CT injector for LHD has been carried out and conical electrode for adiabatic CT compression is adopted in the design. Point-model of CT acceleration in a co-axial electrode is solved to optimize the electrode geometry and the power supplies. Large acceleration efficiency of 34% is to be obtained with 3.2 m long conical accelerator and 40 kV - 42 kJ power supply. The operation scenario of a CT injector named SPICA mk. I (SPheromak Injector using Conical Accelerator) consisting of 0.8 m conical accelerator is discussed based on this design. (author)

  9. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace.

    Science.gov (United States)

    Fadde, Peter J

    2016-01-01

    The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn't get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters' box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures, the cooperating team

  10. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace

    Directory of Open Access Journals (Sweden)

    Peter J. Fadde

    2016-03-01

    Full Text Available The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn’t get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters’ box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures

  11. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Helene Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  12. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  13. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  14. Ground motions and its effects in accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  15. Design concept of radiation control system for the high intensity proton accelerator facility

    CERN Document Server

    Miyamoto, Y; Harada, Y; Ikeno, K

    2002-01-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics.

  16. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    Science.gov (United States)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  17. Microscale chemistry-based design of eco-friendly, reagent-saving and efficient pharmaceutical analysis: a miniaturized Volhard's titration for the assay of sodium chloride.

    Science.gov (United States)

    Rojanarata, Theerasak; Sumran, Krissadecha; Nateetaweewat, Paksupang; Winotapun, Weerapath; Sukpisit, Sirarat; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2011-09-15

    This work demonstrates the extended application of microscale chemistry which has been used in the educational discipline to the real analytical purposes. Using Volhard's titration for the determination of sodium chloride as a paradigm, the reaction was downscaled to less than 2 mL conducted in commercially available microcentrifuge tubes and using micropipettes for the measurement and transfer of reagents. The equivalence point was determined spectrophotometrically on the microplates which quickened the multi-sample measurements. After the validation and evaluation with bulk and dosage forms, the downsized method showed good accuracy comparable to the British Pharmacopeial macroscale method and gave satisfactory precision (intra-day, inter-day, inter-analyst and inter-equipment) with the relative standard deviation of less than 0.5%. Interestingly, the amount of nitric acid, silver nitrate, ferric alum and ammonium thiocyanate consumed in the miniaturized titration was reduced by the factors of 25, 50, 50 and 215 times, respectively. The use of environmentally dangerous dibutyl phthalate was absolutely eliminated in the proposed method. Furthermore, the release of solid waste silver chloride was drastically reduced by about 25 folds. Therefore, microscale chemistry is an attractive, facile and powerful green strategy for the development of eco-friendly, safe, and cost-effective analytical methods suitable for a sustainable environment.

  18. Beam by design: laser manipulation of electrons in modern accelerators

    CERN Document Server

    Hemsing, Erik; Xiang, Dao; Zholents, Alexander

    2014-01-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, we review a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation. Basic theories of electron-laser interactions, techniques to create micro- and nano-structures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. We overview laser-based techniques for the generation ...

  19. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace

    OpenAIRE

    Fadde, Peter J.

    2016-01-01

    The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity...

  20. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    Science.gov (United States)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  1. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, Iraj, E-mail: i_jabbari@ast.ui.ac.ir [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Poursaleh, Ali Mohammad [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of); Khalafi, Hossein [Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of)

    2016-08-21

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  2. Jacobs Engineering Group Inc. receives architectural and engineering design contract from Stanford Linear Accelerator Centre

    CERN Multimedia

    2004-01-01

    "Jacobs Engineering Group Inc. announced that a subsidiary company won a contract from Stanford Linear Accelerator Center (SLAC), to provide architectural and engineering design services for the Linac Coherent Light Source (LCLS) conventional facilities" (1/2 page)

  3. Design of On-chip Power Transport and Coupling Components for a Silicon Woodpile Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ziran; Ng, C.; McGuinness, C.; Colby, E.; /SLAC

    2011-05-23

    Three-dimensional woodpile photonic bandgap (PBG) waveguide enables high-gradient and efficient laser driven acceleration, while various accelerator components, including laser couplers, power transmission lines, woodpile accelerating and focusing waveguides, and energy recycling resonators, can be potentially integrated on a single monolithic structure via lithographic fabrications. This paper will present designs of this on-chip accelerator based on silicon-on-insulator (SOI) waveguide. Laser power is coupled from free-space or fiber into SOI waveguide by grating structures on the silicon surface, split into multiple channels to excite individual accelerator cells, and eventually gets merged into the power recycle pathway. Design and simulation results will be presented regarding various coupling components involved in this network.

  4. Design and validation of wireless acceleration sensor network for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    Yu Yan; Ou Jinping

    2006-01-01

    A wireless sensor network is proposed to monitor the acceleration of structures for the purpose of structural health monitoring of civil engineering structures. Using commercially available parts, several modules are constructed and integrated into complete wireless sensors and base stations. The communication protocol is designed and the fusion arithmetic of the temperature and acceleration is embedded in the wireless sensor node so that the measured acceleration values are more accurate. Measures are adopted to finish energy optimization, which is an important issue for a wireless sensor network. The test is performed on an offshore platform model, and the experimental results are given to show the feasibility of the designed wireless sensor network.

  5. Collider design issues based on proton-driven plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Mete, O. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Aimidula, A.; Welsch, C.P. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Chattopadhyay, S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Mandry, S. [Department of Physics and Astronomy, University College London, London (United Kingdom); Wing, M. [Department of Physics and Astronomy, University College London, London (United Kingdom); Deutsche Elektronen-Synchrotron DESY, Hamburg (Germany)

    2014-03-11

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron–positron linear collider and an electron–proton collider based on the existing CERN accelerator infrastructure.

  6. Collider design issues based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Xia, G; Aimidula, A; Welsch, C; Chattopadhyay, S; Mandry, S; Wing, M

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron-positron linear collider and an electron-proton collider based on existing CERN accelerator infrastructure.

  7. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Quanling, E-mail: pengql@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Xu, Fengyu [Harbin Institute of Technology, Heilongjiang 150006 (China); Wang, Ting [Beijing Huantong Special Equipment Co., LTD, Beijing 100192 (China); Yang, Xiangchen [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Anbin [Harbin Institute of Technology, Heilongjiang 150006 (China); Wei, Xiaotao [Beijing Huantong Special Equipment Co., LTD, Beijing 100192 (China); Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-11-11

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  8. On designing a control system for a new generation of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, S.C.; Schultz, D.E.

    1987-01-01

    A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs.

  9. Inflation and late time acceleration designed by Stueckelberg massive photon

    CERN Document Server

    Akarsu, Ozgur; Katirci, Nihan

    2016-01-01

    We present a mini review of the Stueckelberg mechanism, which was proposed to make the abelian gauge theories massive as an alternative to Higgs mechanism, within the framework of Minkowski as well as curved spacetimes. The higher the scale the tighter the bounds on the photon mass, which might be gained via the Stueckelberg mechanism, may be signalling that even an extremely small mass of the photon which cannot be measured directly could have far reaching effects in cosmology. We present a cosmological model where Stueckelberg fields, which consist of both scalar and vector fields, are non-minimally coupled to gravity and the universe could go through a decelerating expansion phase sandwiched by two different accelerated expansion phases. We discuss also the possible anisotropic extensions of the model.

  10. Inflation and Late Time Acceleration Designed by Stueckelberg Massive Photon

    Science.gov (United States)

    Akarsu, Özgür; Arık, Metin; Katırcı, Nihan

    2017-01-01

    We present a mini review of the Stueckelberg mechanism, which was proposed to make the abelian gauge theories massive as an alternative to Higgs mechanism, within the framework of Minkowski as well as curved spacetimes. The higher the scale the tighter the bounds on the photon mass, which might be gained via the Stueckelberg mechanism, may be signalling that even an extremely small mass of the photon which cannot be measured directly could have far reaching effects in cosmology. We present a cosmological model where Stueckelberg fields, which consist of both scalar and vector fields, are non-minimally coupled to gravity and the universe could go through a decelerating expansion phase sandwiched by two different accelerated expansion phases. We discuss also the possible anisotropic extensions of the model.

  11. Design of Smith-Purcell emitter in femtosecond accelerator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the femtosecond accelerator device,we are planning to build a broad band and tunable THz source using the Smith-Purcell tadiation mechanism.Coherent Smith-Purcell radiation could be achieved owing to the super-short bunch produced in the device.To shorten the distance between the beam and grating,we use Transport to match the beta function producing a sheet beam on the grating surface.The optimization of grating length,groove depth and groove width are given in the paper.Then the radiation power for the shallow and deep grating using these parameters are presented.The detection devices and methods are also briefly discussed.

  12. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design

    Directory of Open Access Journals (Sweden)

    Edson Mata

    2016-11-01

    Full Text Available The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.

  13. AEi systems designing power sstem for world's largest particle accelerator

    CERN Multimedia

    Weinberg, Lee

    2007-01-01

    "AEi Systems, a world leader in power systems analysis and design, announced today that the Large Hadron Collider (LHC) at CERN (the European Centre for Nuclear Research) near Geneva, Switzerland, has engaged AEi Systems to design and develop a radiation-hard power supply for CERN's giant ATLAS particle detector." (1 page)

  14. Design of an X-band accelerating structure using a newly developed structural optimization procedure

    Science.gov (United States)

    Huang, Xiaoxia; Fang, Wencheng; Gu, Qiang; Zhao, Zhentang

    2017-05-01

    An X-band high gradient accelerating structure is a challenging technology for implementation in advanced electron linear accelerator facilities. The present work discusses the design of an X-band accelerating structure for dedicated application to a compact hard X-ray free electron laser facility at the Shanghai Institute of Applied Physics, and numerous design optimizations are conducted with consideration for radio frequency (RF) breakdown, RF efficiency, short-range wakefields, and dipole/quadrupole field modes, to ensure good beam quality and a high accelerating gradient. The designed X-band accelerating structure is a constant gradient structure with a 4π/5 operating mode and input and output dual-feed couplers in a racetrack shape. The design process employs a newly developed effective optimization procedure for optimization of the X-band accelerating structure. In addition, the specific design of couplers providing high beam quality by eliminating dipole field components and reducing quadrupole field components is discussed in detail.

  15. Design studies of a high-current radiofrequency quadrupole for accelerator-driven systems programme

    Indian Academy of Sciences (India)

    S V L S Rao; P Singh

    2010-02-01

    A 3 MeV, 30 mA radiofrequency quadrupole (RFQ) accelerator has been designed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC, India. The beam and cavity dynamics studies were performed using the computer codes LIDOS, TOUTATIS, SUPERFISH and CST microwave studio. We have followed the conventional design technique with slight modifications and compared that with the equipartitioned (EP) type of design. The sensitivity of the RFQ to the variation of input beam Twiss–Courant parameters and emittance has also been studied. In this article we discuss both design strategies and the details of the 3D cavity simulation studies.

  16. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: ttinoue@juntendo.ac.jp; Sugimoto, S.; Sasai, K. [Graduate School of Medicine, Juntendo University, Tokyo 113–8421 (Japan); Hattori, T. [National Institute of Radiological Sciences, Chiba 263–0024 (Japan)

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  17. Design of a compact focusing lens system with short acceleration tube at 300 kV

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki, E-mail: ishii.yasuyuki@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohkubo, Takeru; Kojima, Takuji; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2011-10-15

    A compact focusing lens system with high demagnification over 1500 was designed to form an ion nanobeam with 346 keV energy by adding a short distance acceleration tube for beam acceleration and focusing downstream of the existing double acceleration lens system. The demagnification, focusing points and aberrations of the acceleration tube were studied using beam trajectory calculation. The acceleration tube was designed to have a length of 140 mm and a demagnification of 2 at its acceleration tube voltage of 300 kV, which resulted in a new compact focusing lens system with a total length of about 640 mm. In addition, the maximum voltage and electric-field of the acceleration tube were confirmed experimentally on the built device to be 300 kV and 30 kV/cm, respectively. The final beam size formed by the system was estimated to be 130 nm in diameter using the design parameters. The result suggests that an ion nanobeam of 346 keV can be formed by an apparatus having the reasonable length of 2 m, which permits us to develop a system for 1 MV by elongating its tube length.

  18. Origami Optimization: Role of Symmetry in Accelerating Design

    Science.gov (United States)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Durstock, Michael; Reich, Gregory; Joo, James; Vaia, Richard

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. Design optimization tools have recently been developed to predict optimal fold patterns with mechanics-based metrics, such as the maximal energy storage, auxetic response and actuation. Origami actuator design problems possess inherent symmetries associated with the grid, mechanical boundary conditions and the objective function, which are often exploited to reduce the design space and computational cost of optimization. However, enforcing symmetry eliminates the prediction of potentially better performing asymmetric designs, which are more likely to exist given the discrete nature of fold line optimization. To better understand this effect, actuator design problems with different combinations of rotation and reflection symmetries were optimized while varying the number of folds allowed in the final design. In each case, the optimal origami patterns transitioned between symmetric and asymmetric solutions depended on the number of folds available for the design, with fewer symmetries present with more fold lines allowed. This study investigates the interplay of symmetry and discrete vs continuous optimization in origami actuators and provides insight into how the symmetries of the reference grid regulate the performance landscape. This work was supported by the Air Force Office of Scientific Research.

  19. Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets

    CERN Document Server

    Ramberger, S

    1998-01-01

    The paper describes the use of genetic algorithms with the concept of niching for the optimal design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of local optima which can be further examined with respect to objectives such as ease of coil winding, sensitivity to manufacturing tolerances and local electromagnetic force distribution. A 6 block dipole coil was found to have advantages compared to the standard 5 block version which was previously designed using deterministic optimization methods. Results were proven by a short model magnet recently built and tested at CERN.

  20. Enhancing GNU Radio for Hardware Accelerated Radio Design

    OpenAIRE

    Irick, Charles Robert

    2010-01-01

    As technology evolves and new methods for designing radios arise, it becomes necessary to continue the search for fast and flexible development environments. Some of these new technologies include software defined radio (SDR), Field Programmable Gate Arrays (FPGAs), and the open source project GNU Radio. Software defined radio is a concept that GNU Radio has harnessed to allow developers to quickly create flexible radio designs. In terms of hardware, the maturity of FPGAs give ...

  1. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1994-03-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g{sub o}, where g{sub o} is acceleration due to gravity.

  2. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  3. Design of 10 MeV cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    R Solhju

    2015-09-01

    Full Text Available Design and construction of 10MeV cyclotron has been started at Amirkabir University of Technology since 2012. So far, the conceptual and detail engineering design phases have been finalized. The main purpose of this baby cyclotron is to generate proton beam for the production of PET radioisotopes. The cyclotron consists of magnet, cavity, ion source, RF and LLRF system, vacuum system, cooling system, power amplifiers and power supplies system. In this paper, a brief of design principles for all the parts of cyclotron and their final simulation results is presented. It should be noted that these simulations have been performed and optimized by the most accurate softwares such as TOSCA, ANSYS, HFSS, SolidWorks and CST. Also, the manufacturing feasibility of all the parts is performed and their dimensions and parameters are synchronized with manufacturing standards

  4. Physical design and cooling test of C-band standing wave accelerating tube

    Institute of Scientific and Technical Information of China (English)

    Bai Wei; Xu Zhou; Jin Xiao; Li Ming

    2006-01-01

    The physical design and cooling test of a C-band 2MeV standing wave (SW) accelerating tube are described in this paper. The designed accelerating structure consists of 3-cell buncher and 4-cell accelerating section with a total length of about 163mm , excited with 1MW magnetron. Dynamic simulation presents that about 150mA beam pulse current and 30% capture efficiency can be achieved. By means of nonlinear Gauss fit on electron transverse distribution, the diameter of beam spot FWHM (full width at half maximum of density distribution) is about 0.55mm. Cooling test results of the accelerating tube show that frequencies of cavities are tuned to 5527MHz and the field distribution of bunching section is about 3:9:10.

  5. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    Energy Technology Data Exchange (ETDEWEB)

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; /Titan Beta, Dublin; Miller, R.; /Titan Beta, Dublin /SLAC; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  6. Evaluation of GNU Radio Platform Enhanced for Hardware Accelerated Radio Design

    OpenAIRE

    Karve, Mrudula Prabhakar

    2010-01-01

    The advent of software radio technology has enabled radio developers to design and imple- ment radios with great ease and flexibility. Software radios are effective in experimentation and development of radio designs. However, they have limitations when it comes to high- speed, high-throughput designs. This limitation can be overcome by introducing a hardware element to the software radio platform. Enhancing GNU Radio for Hardware Accelerated Radio Design project implements suc...

  7. Scaling of induction-cell transverse impedance: effect on accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-09

    The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is characterized by the transverse coupling impedance Z. This note addresses the dimensional scaling of Z, which is important when comparing new LIA designs to existing accelerators with known i BBU growth. Moreover, it is shown that the scaling of Z with the accelerating gap size relates BBU growth directly to high-voltage engineering considerations. It is proposed to firmly establish this scaling though a series of AMOS calculations.

  8. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  9. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  10. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    Science.gov (United States)

    Frickland, P. O.; Repar, J.

    1982-01-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  11. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    Science.gov (United States)

    Frickland, P. O.; Repar, J.

    1982-04-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  12. ACCELERATORS: Study of the design of CSNS MEBT

    Science.gov (United States)

    Ouyang, Hua-Fu; Liu, Hua-Chang; Fu, Shi-Nian

    2009-07-01

    The design of CSNS MEBT has two objectives: (1) to match the beam both in the transversal direction and the longitudinal direction from RFQ into DTL; (2) to further chop the beam into the required time structure asked by RCS. It is very difficult and critical to control well the emittance growth and in the meantime to match and chop the beam. Firstly, the optical design is done and optimized, and the multi-particle simulations show that the maximum emittance growth is successfully controlled within 14%. Secondly, based on the different beam envelopes obtained by TRACE-3D and PARMELA, the least deflecting angle of the chopper is determined by TRACE-3D. At last, the field of steering magnet is determined through simulations.

  13. Accelerator production of tritium pollution prevention design assessment

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R.; Nowacki, P.; Sheetz, S.O. [Westinghouse Savannah River Co., Aiken, SC (United States); Lanik, P. [Burns and Roe Engineering Inc. (United States)

    1997-09-18

    This Pollution Prevention Design Assessment (PPDA) provides data for cost-benefit analysis of the potential environmental impact of the APT, is an integral part of pollution prevention/waste minimization, and is required by DOE for any activity generating radioactive, hazardous, and mixed wastes. It will also better position the APT to meet future requirements, since it is anticipated that regulatory and other requirements will continue to become more restrictive and demanding.

  14. Engineering design and fabrication of tapered damped X-Band accelerating structures

    CERN Document Server

    Solodko, A; Gudkov, D; Riddone, G; Grudiev, A; Atieh, S; Taborelli, M

    2011-01-01

    The accelerating structures (AS) are one of the main components of the Compact LInear Collider (CLIC), under study at CERN. Each accelerating structure contains about 30 copper discs, which form the accelerating cavity. The requirements of different technical systems, such as vacuum and cooling, have to be considered during the engineering design. A fully featured AS is very challenging and requires several technologies. Different damping methods, waveguides, vacuum manifolds, slots and chokes, result in various design configurations. In the CLIC AS each cell is damped by means of four waveguides coupled to the cell. The vacuum manifolds combine a number of functions such as damping, vacuum pumping and cooling. A silicon carbide absorber, fixed inside of each manifold, is required for effective damping of Higher Order Modes (HOMs). This paper describes the engineering design of the X-band AS with damping material, and focuses on few technical solutions.

  15. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    Science.gov (United States)

    Baranov, V. T.; Makhov, S. S.; Savin, D. A.; Terekhov, V. I.

    2016-10-01

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10-20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  16. Scaling and design of high-energy laser plasma electron acceleration

    Institute of Scientific and Technical Information of China (English)

    Kazuhisa Nakajima; Hyung Taek Kim; Tae Moon Jeong; Chang Hee Nam

    2015-01-01

    Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.

  17. Design of a high DC voltage generator and D-T fuser based on particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L.; Campos, Tarcisio P.R., E-mail: wagnerleite@ufmg.b, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/ UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    This paper approaches a design and simulation of a high voltage Cockcroft Walton multiplier and a compact size deuteron accelerator addressed in neutron generation by d-t fusion. We proposed a circuit arrangement, which was led to simulations. The particle accelerator was computer-generated providing particle transport and electric potential analysis. As results, the simulated voltage multiplier achieved 119 kV, and the accelerator presented a deuteron beam current up to 15 mA, achieving energies in order to 100 keV. In conclusion, the simulation motivates experimental essays in order to investigate the viability of a deuteron accelerator powered by a Cockcroft-Walton source. Such d-t fusor shall produce an interesting ion beam profile, reaching energy values near the d-t fusion cross section peak. (author)

  18. Design of waveguide damped cells for 12 GHz high gradient accelerating structures

    CERN Document Server

    Sjobak, Kyrre Ness; Adli, Erik

    2014-01-01

    This document describes the design procedure and numerical techniques used to optimize waveguidedamped traveling wave accelerating structure cells for high gradients, and characterize their wakefields. All simulations where made using ACE3P. The document also contains the design data for a collection of such cells operating at accelerating mode frequency = 11.9942 GHz and 120° phase-advance. This collection of highly optimized cells is created for use with the fast RF structure parameter estimator CLICopti, which is used for CLIC rebaselining

  19. Design of an RFQ Accelerator optimised for Linac4 and SPL

    CERN Document Server

    Lombardi, A M; Vretenar, M; CERN. Geneva. AB Department

    2007-01-01

    In the Linac 4 and the SPL a 3 MeV RFQ is required to accelerate the H- beam from the ion source to the DTL input energy. The IPHI RFQ, primarily designed for high beam power applications, is presently being built within a collaboration between CEA, IN2P3 and CERN and is intended to become the front end for the new CERN accelerator complex. However, a new shorter RFQ optimised for the CERN lower duty application would present several advantages with respect to the IPHI one. The design of such an RFQ is the subject of this note.

  20. Theoretical Design of a 104 MHz Ladder Type IH-RFQ Accelerator

    Institute of Scientific and Technical Information of China (English)

    NIE Yuan-Cun; LU Yuan-Rong; CHEN Jia-Er; YAN Xue-Qing; GAO Shu-Li; ZHU Kun; LIU Ke-Xin; GUO Zhi-Yu

    2010-01-01

    @@ Beam dynamics and rf designs of a 104 MHz ladder type IH-RFQ (L-IH-RFQ) accelerator are finished at Peking University for the acceleration of 14C+ from 40 keV to 500 keV. As a specific feature, the output beam energy spread is as low as 0.6% achieved with the internal discrete bunching method, which makes potential applications of RFQ feasible, such as accelerator mass spectrometry and ion implantation. Tolerances of the beam dynamics design are studied by means of changing the input beam parameters, and the results are quite satisfying. On the other hand, the L-IH-RFQ structure is employed, taking advantage of its mechanical stability and the absence of inter-electrode voltage asymmetry. Radio-frequency properties are studied and optimized for reducing power loss with Microwave Studio (MWS). Tuning of the field fiatness and frequency is investigated in principle.

  1. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Science.gov (United States)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  2. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Institute of Scientific and Technical Information of China (English)

    A. Caliskan; M. Yi1maz

    2012-01-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project.Optimization criteria in cavity design are effective shunt impedance (ZTT),transit-time factor and electrical breakdown limit.In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor.Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA.The results of both codes have been compared.In the beam dynamical studies,the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  3. ESS-Bilbao light-ion linear accelerator and neutron source: design and applications

    Science.gov (United States)

    Abad, E.; Arredondo, I.; Badillo, I.; Belver, D.; Bermejo, F. J.; Bustinduy, I.; Cano, D.; Cortazar, D.; de Cos, D.; Djekic, S.; Domingo, S.; Echevarria, P.; Eguiraun, M.; Etxebarria, V.; Fernandez, D.; Fernandez, F. J.; Feuchtwanger, J.; Garmendia, N.; Harper, G.; Hassanzadegan, H.; Jugo, J.; Legarda, F.; Magan, M.; Martinez, R.; Megia, A.; Muguira, L.; Mujika, G.; Muñoz, J. L.; Ortega, A.; Ortega, J.; Perlado, M.; Portilla, J.; Rueda, I.; Sordo, F.; Toyos, V.; Vizcaino, A.

    2011-10-01

    The baseline design for the ESS-Bilbao light-ion linear accelerator and neutron source has been completed and the normal conducting section of the linac is at present under construction. The machine has been designed to be compliant with ESS specifications following the international guidelines of such project as described in Ref. [1]. The new accelerator facility in Bilbao will serve as a base for support of activities on accelerator physics carried out in Spain and southern Europe in the frame of different ongoing international collaborations. Also, a number of applications have been envisaged in the new Bilbao facility for the outgoing light ion beams as well as from fast neutrons produced by low-energy neutron-capture targets, which are briefly described.

  4. Matched and equipartitioned design method for modern high-intensity radio frequency quadrupole accelerators

    Science.gov (United States)

    Yan, X. Q.; Jameson, R. A.; Lu, Y. R.; Guo, Z. Y.; Fang, J. X.; Chen, J. E.

    2007-07-01

    A new design method—Matched and equipartitioned (EP) design method—has been proposed for radio frequency quadrupole (RFQ) dynamics design, on the considerations of preventing emittance growth and halo formation in high-intensity linacs by means of keeping beam envelope matched and energy balance within the beam, as well as avoiding structure resonances [R.A. Jameson, IEEE Trans. Nucl. Sci. NS-28 (1981) 2408; R.A. Jameson et al., Scaling and optimization in high-intensity linear accelerators, LA-CP-91-272, Los Alamos National Laboratory, July 1991 (introduction of LINACS design code); R.A. Jameson, AIP Conf. Proc. 279 (1992) 969; R.A. Jameson, An approach to fundamental study of beam loss minimization, in: Y.K. Batygin (Ed.), AIP Conference Proceedings, vol. 480, Space Charge Dominated Beam Physics for Heavy Ion Fusion, Saitama, Japan, December 1998]. As there are more than three parameters for a linear accelerator, but only three equations (two envelope equations and an EP equation) are available to design the structural parameters of the RFQ accelerator around the beam, therefore the others have to be determined by additional rules. Following these equations and rules, a new RFQ design code named MATCHDESIGN has been written at Peking University. Three example designs are generated by this code and their simulation results have been compared with a conventional RFQ, which had proved the feasibilities and merits of the new method.

  5. Design and operation of an inverse free-electron-laser accelerator in the microwave regime

    Science.gov (United States)

    Yoder, Rodney Bruce

    2000-09-01

    A novel electron accelerator demonstrating the inverse free-electron-laser (IFEL) principle has been designed, built, and operated using radio-frequency power at 2.856 GHz. Such an accelerator uses a stationary, periodic magnetic field to impart transverse motion to charged particles, which are then accelerated by guided electromagnetic waves. The experiment described here demonstrates for the first time the phase dependence of IFEL acceleration. This design uses up to 15 MW of RF power propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator; an array of solenoids provides an axial guiding magnetic field undulator; pitch, which is initially 11.75 cm, is linearly increased to 12.3 cm. over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of up to 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The initial injection phase is the most important parameter, determining the rate of energy gain or loss. These simulations are compared with experimental measurements at low power in which electron beams at energies between 5 and 6 MeV gain up to 0.35 MeV with minimal energy spread, all exiting particles having been accelerated. The predicted phase sensitivity of the mechanism is verified, with beams injected into accelerating phases gaining energy cleanly while those injected into ``decelerating'' phases are shown to be degraded in quality and hardly changed in energy, demonstrating the asymmetry of a tapered-wiggler design. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling to higher power and frequency is investigated. The maximum attainable acceleration gradient for a MIFELA using 150 MW of RF power at 34 GHz is estimated to be at least 30 MV/m, and laser IFELs could conceivably reach gradients in the GeV/m range.

  6. Design of the plasma chamber and beam extraction system for SC ECRIS of RAON accelerator

    Science.gov (United States)

    Kim, Y.; Choi, S.; Hong, I. S.

    2014-02-01

    The RAON accelerator is the heavy ion accelerator being built in Korea. It contains a 3rd generation SC ECRIS which uses 28 GHz/18 GHz microwave power to extract 12 puA uranium ion beams. A plasma chamber for that ECRIS is made of aluminum machined from bulk Al. That chamber contains cooling channels to remove dumped power and another access port for microwave introduction and plasma diagnostics. Beam extraction electrodes were designed considering the engineering issues and preliminary beam extraction analysis was done. That plasma chamber will be assembled with a cryostat, and beam extraction experiment will be done.

  7. Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Mark [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-04-22

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes

  8. Design and realization of a high productivity cluster-based network application reconfigurable accelerator board

    Institute of Scientific and Technical Information of China (English)

    Zeng Yu; Li Jun; Sun Ninghui; Wang Jie; Liu Zhaohui

    2008-01-01

    Improving processor frequency to strengthen massive data processing capability will lead to incremental server marginal costs and bring about a series of problems such as power consumption, management complexity, etc. Based on the field programmable gate array (FPGA), TCP offload engine (TOE), zero-copy and other key technologies, this paper describes the design and realization of a reconfigurable accelerator board. In this board, TCP/IP protocol will be moved to high-speed reconfigurable accelerator board. The packets will be labeled according to the protocol and submitted to the upper data processing software after IP-quintuple filtering in hardware. Reconfigurable accelerator board obtains higher performance speed-up compared with ordinary NIC card.

  9. Design, Construction and Test Arrangement of a Fast-Cycling HTS Accelerator Magnet

    CERN Document Server

    Piekarz, H; Hays, Steven; Shiltsev, Vladimir

    2014-01-01

    Design, fabrication and assembly of a novel fast-cycling accelerator magnet is presented. A short-sample magnet is powered with a single-turn HTS cable capable to carry 80 kA current at 20 K and generate 1.75 T field in a 40 mm magnet gap. The applied conventional leads and the power supply, however, allow only for a sin-wave 24 kA, 20 Hz current limiting test magnet to a B-field of 0.5 T and to a maximum cycling rate of 20 T/s. The critical aspects of the cable construction and the splicing connection to the power leads are described. Tentative power losses of the proposed HTS accelerator magnet in a possible application for proton and muon accelerators are presented.

  10. Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning

    CERN Document Server

    Osmic, F; Gyorgy, A; Kerschbaum, A; Repovz, M; Schwarz, S; Neustadt, W; Burtin, G

    2012-01-01

    The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen different monitor types (153 devices in total) and will allow measuring all relevant beam parameters from the source to the irradiation rooms. The monitors will have to cope with large intensities and energy ranges. Currently, one ion source, the low energy beam transfer line and the RFQ are being commissioned in the Injector Test Stand (ITS) at CERN. This paper gives an overview of all beam monitors foreseen for the MedAustron accelerator, elaborates some of the design choices and reports the first beam commissioning results from the ITS.

  11. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  12. A conceptual design of the DTL-SDTL for the JAERI high intensity proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Hiroshi; Kabeya, Zenzaburo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Chishiro, Etsuji; Ouchi, Nobuo; Hasegawa, Kazuo; Mizumoto, Motoharu

    1998-08-01

    A high intensity proton linear accelerator with an energy of 1.5 GeV and an average beam power of 8 MW has been proposed for the Neutron Science Project (NSP) at JAERI. This linac starts with radio-frequency quadrupole (RFQ) linac, which is followed by a drift-tube linac (DTL), separated-type DTL (SDTL), and a superconducting structure. In this report, we focus on the DTL and SDTL part of the accelerator. The DTL accelerates the beam from 2 to 51 MeV, and SDTL accelerates the beam from 51 to 10 MeV. Since the main features of the requirement for the DTL-SDTL are high peak current ({approx}30 mA) and a high-duty factor ({approx}CW), the conceptual design should be determined not only based on the result of a beam-dynamics calculation, but by careful study of the cooling problems. The design processes of the DTL-SDTL and the matching sections (RFQ to DTL, CW-Pulse merge section, and SDTL to SCC) and the result of a heat transfer analysis of DTL are described. (author)

  13. Isothermal titration calorimetry and differential scanning calorimetry.

    Science.gov (United States)

    Holdgate, Geoff

    2009-01-01

    Isothermal titration [Holdgate (BioTechniques 31:164-184, 2001); Ward and Holdgate (Prog. Med. Chem. 38:309-376, 2001); O'Brien et al. (2001) Isothermal titration calorimetry of biomolecules. In: Harding, S. E. and Chowdhry, B. Z. (eds.), Protein-Ligand Interactions: Hydrodynamics and Calorimetry, A Practical Approach. Oxford University Press, Oxford, UK] and differential scanning calorimetry [Jelesarov and Bosshard (J. Mol. Recognit. 12:3-18, 1999); Privalov and Dragan (Biophys. Chem. 126:16-24, 2007); Cooper et al. (2001) Differential scanning microcalorimetry. In: Harding, S. E. and Chowdhry, B. Z. (eds.), Protein-Ligand Interactions: Hydrodynamics and Calorimetry, A Practical Approach. Oxford University Press, Oxford, UK] are valuable tools for characterising protein targets, and their interactions with ligands, during the drug discovery process. The parameters obtained from these techniques: triangle DeltaH, triangle DeltaG, triangle DeltaS, and triangle DeltaC (p), are properties of the entire system studied and may be composed of many contributions, including the binding reaction itself, conformational changes of the protein and/or ligand during complexation, changes in solvent organisation or other equilibria linked to the binding process. Dissecting and understanding these components, and how they contribute to binding interactions, is a critical step in the ability to design ligands that have high binding affinity for the target protein.

  14. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Science.gov (United States)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  15. Design of a low-cost, compact SRF accelerator for flue gas and wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222439. The proposed project consists of the design of a novel superconducting continuous-wave accelerator capable of providing a beam current of ~1 A at an energy of 1-2 MeV for the treatment of flue gases and wastewater streams. The novel approach consists on studying the feasibility of using a single-cell Nb cavity coated with a thin Nb3Sn layer of the inner surface and conductively cooled by to 4.2 K by cryocoolers inside a compact cryomodule. The proposed study will include beam transport simulations, thermal and mechanical engineering analysis of the cryomodule and a cost analysis for both the fabrications costs and the operational and maintenance costs of such accelerator. The outcome of the project will be a report summarizing the analysis and results from the design study.

  16. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chitarin, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Department of Engineering and Management, University of Padova, Vicenza (Italy); Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  17. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  18. Curriculum design to promote the critical thinking of accelerated bachelor's degree nursing students.

    Science.gov (United States)

    DeSimone, Barbara B

    2006-01-01

    This project describes the curriculum design of an accelerated bachelor's degree nursing program intended to promote the critical thinking of its students. Course objectives and teaching-learning strategies are described. Rogers' unitary view of human beings supports critical thinking as a developing process that should be measured in the context of nursing practice. Pre- and post-program critical thinking test scores indicated significant growth for the 38 graduates in the first 4 consecutive classes tested.

  19. Design and testing of a dc ion injector suitable for accelerator-driven transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.D.; Meyer, E.; Stevens, R.R. Jr.; Hansborough, L.; Sherman, J.

    1994-08-01

    For a number of years, Los Alamos have collaborated with a team of experimentalists at Chalk River Labs who were pursuing the development of the front end of a high power cw proton accelerator. With the help of internal laboratory funding and modest defense conversion funds, we have set up and operated the accelerator at Los Alamos Operational equipment includes a slightly modified Chalk River Injector Test Stand (CRITS) including a 50 keV proton injector and a 1.25 MeV radio-frequency quadrupole (RFQ) with a klystrode rf power system. Many of the challenges involved in operating an rf linear accelerator to provide neutrons for an accelerator-driven reactor are encountered at the front (low energy) end of this system. The formation of the ion beam, the control of the beam parameters, and the focusing and matching of a highly space-charge-dominated beam are major problems. To address the operating problems in this critical front end, the Accelerator Operations and Technology Division at the Los Alamos National Laboratory has designed the APDF (Accelerator Prototype Demonstration Facility). The front end of this facility is a 75 keV, high-current, ion injector which has been assembled and is now being tested. This paper discusses the design modifications required in going from the 50 keV CRITS injector to the higher current, 75 keV injector. Major innovative changes were made in the design of this injector. This design eliminates all the control electronics and most of the ion source equipment at high potential. Also, a new, high-quality, ion-extractor system has been built. A dual-solenoid lens will be used in the low energy beam transport (LEBT) line to provide the capability of matching the extracted beam to a high-current ADTT linac. This new injector is the first piece of hardware in the APDF program and will be used to develop the long-term, reliable cw beam operation required for ADIT applications.

  20. A Laser-Pointer-Based Spectrometer for Endpoint Detection of EDTA Titrations

    Science.gov (United States)

    Dahm, Christopher E.; Hall, James W.; Mattioni, Brian E.

    2004-01-01

    A laser spectrometer for the ethylenediaminetetra-acetic acid (EDTA) titration of magnesium or calcium ions that is designed around a handheld laser pointer as the source and a photoresistor as the detector is developed. Findings show that the use of the spectrometer reduces the degree of uncertainty and error in one part of the EDTA titrations,…

  1. Operational radiation protection in high-energy physics accelerators: implementation of ALARA in design and operation of accelerators.

    Science.gov (United States)

    Fassò, A; Rokni, S

    2009-11-01

    This paper considers the historical evolution of the concept of optimisation of radiation exposures, as commonly expressed by the acronym ALARA, and discusses its application to various aspects of radiation protection at high-energy accelerators.

  2. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    Science.gov (United States)

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural design of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of this new generation of single spoke cavities with values of maximum allowable working pressure that exceeds the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  3. Progress of the ITER NBI acceleration grid power supply reference design

    Energy Technology Data Exchange (ETDEWEB)

    Toigo, Vanni [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Zanotto, Loris, E-mail: loris.zanotto@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Bigi, Marco [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Decamps, Hans [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ferro, Alberto; Gaio, Elena [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gutiérrez, Daniel [Fusion For Energy, C/Josep Pla 2, 08019 Barcelona (Spain); Tsuchida, Kazuki; Watanabe, Kazuhiro [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki-ken 311-0193 (Japan)

    2013-10-15

    Highlights: ► This paper reports the progress in the reference design of the Acceleration Grid Power Supply (AGPS) of the ITER Neutral Beam Injector (NBI) ► A critical revision of the main design choices is presented in light of the definition of some key interface parameters between the two AGPS subsystems. ► The verification of the fulfillment of the requirements in any operational conditions is reported and discussed. -- Abstract: This paper reports the progress in the reference design of the Acceleration Grid Power Supply (AGPS) of the ITER Neutral Beam Injector (NBI). The design of the AGPS is very challenging, as it shall be rated to provide about 55 MW at 1 MV dc in quasi steady-state conditions; moreover, the procurement of the system is shared between the European Domestic Agency (F4E) and the Japanese Domestic Agency (JADA), resulting in additional design complication due to the need of a common definition of the interface parameters. A critical revision of the main design choices is presented also in light of the definition of some key interface parameters between the two AGPS subsystems. Moreover, the verification of the fulfillment of the requirements in any operational conditions taking into account the tolerance of the different parameters is also reported and discussed.

  4. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W; Sandberg, J; Parson, W M; Walstrom, P; Murray, M M; Cook, E; Hartouni, E

    2001-06-12

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  5. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  6. Physics design of a CW high-power proton Linac for accelerator-driven system

    Indian Academy of Sciences (India)

    Rajni Pande; Shweta Roy; S V L S Rao; P Singh; S Kailas

    2012-02-01

    Accelerator-driven systems (ADS) have evoked lot of interest the world over because of their capability to incinerate the MA (minor actinides) and LLFP (long-lived fission products) radiotoxic waste and their ability to utilize thorium as an alternative nuclear fuel. One of the main subsystems of ADS is a high energy (∼1 GeV) and high current (∼30 mA) CW proton Linac. The accelerator for ADS should have high efficiency and reliability and very low beam losses to allow hands-on maintenance. With these criteria, the beam dynamics simulations for a 1 GeV, 30 mA proton Linac has been done. The Linac consists of normal-conducting radio-frequency quadrupole (RFQ), drift tube linac (DTL) and coupled cavity drift tube Linac (CCDTL) structures that accelerate the beam to about 100 MeV followed by superconducting (SC) elliptical cavities, which accelerate the beam from 100 MeV to 1 GeV. The details of the design are presented in this paper.

  7. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Pesaran, Ahmad A.

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  8. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parro Albeniz, M.

    2015-07-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  9. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator R&D in the Technical Design Phase

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Hélène Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  10. Physics and engineering design of the accelerator and electron dump for SPIDER

    Science.gov (United States)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2011-06-01

    The ITER Neutral Beam Test Facility (PRIMA) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size ion source with low voltage extraction called SPIDER and a full size neutral beam injector at full beam power called MITICA. SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H- and in a later stage D- ions) from an ITER size ion source. The main requirements of this experiment are a H-/D- extracted current density larger than 355/285 A m-2, an energy of 100 keV and a pulse duration of up to 3600 s. Several analytical and numerical codes have been used for the design optimization process, some of which are commercial codes, while some others were developed ad hoc. The codes are used to simulate the electrical fields (SLACCAD, BYPO, OPERA), the magnetic fields (OPERA, ANSYS, COMSOL, PERMAG), the beam aiming (OPERA, IRES), the pressure inside the accelerator (CONDUCT, STRIP), the stripping reactions and transmitted/dumped power (EAMCC), the operating temperature, stress and deformations (ALIGN, ANSYS) and the heat loads on the electron dump (ED) (EDAC, BACKSCAT). An integrated approach, taking into consideration at the same time physics and engineering aspects, has been adopted all along the design process. Particular care has been taken in investigating the many interactions between physics and engineering aspects of the experiment. According to the 'robust design' philosophy, a comprehensive set of sensitivity analyses was performed, in order to investigate the influence of the design choices on the most relevant operating parameters. The design of the SPIDER accelerator, here described, has been developed in order to satisfy with reasonable margin all the requirements given by ITER, from the physics and engineering points of view. In particular, a new approach to the compensation of unwanted beam deflections inside the accelerator

  11. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fontana, M.H. [Oak Ridge National Lab., TN (United States); Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A. [Los Alamos National Lab., NM (United States)

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  12. Accelerated multidimensional radiofrequency pulse design for parallel transmission using concurrent computation on multiple graphics processing units.

    Science.gov (United States)

    Deng, Weiran; Yang, Cungeng; Stenger, V Andrew

    2011-02-01

    Multidimensional radiofrequency (RF) pulses are of current interest because of their promise for improving high-field imaging and for optimizing parallel transmission methods. One major drawback is that the computation time of numerically designed multidimensional RF pulses increases rapidly with their resolution and number of transmitters. This is critical because the construction of multidimensional RF pulses often needs to be in real time. The use of graphics processing units for computations is a recent approach for accelerating image reconstruction applications. We propose the use of graphics processing units for the design of multidimensional RF pulses including the utilization of parallel transmitters. Using a desktop computer with four NVIDIA Tesla C1060 computing processors, we found acceleration factors on the order of 20 for standard eight-transmitter two-dimensional spiral RF pulses with a 64 × 64 excitation resolution and a 10-μsec dwell time. We also show that even greater acceleration factors can be achieved for more complex RF pulses. Copyright © 2010 Wiley-Liss, Inc.

  13. Risks and benefits of rapid clozapine titration

    Directory of Open Access Journals (Sweden)

    Jeannie D. Lochhead

    2016-05-01

    Full Text Available Clozapine is often considered the gold standard for the treatment of schizophrenia. Clinical guidelines suggest a gradual titration over 2 weeks to reduce the risks of adverse events such as seizures, hypotension, agranulocytosis, and myocarditis. The slow titration often delays time to therapeutic response. This raises the question of whether, in some patients, it may be safe to use a more rapid clozapine titration. The following case illustrates the potential risks associated with the use of multiple antipsychotics and rapid clozapine titration. We present the case of a young man with schizophrenia who developed life threatening neuroleptic malignant syndrome (NMS during rapid clozapine titration and treatment with multiple antipsychotics. We were unable to find another case in the literature of NMS associated with rapid clozapine titration. This case is meant to urge clinicians to carefully evaluate the risks and benefits of rapid clozapine titration, and to encourage researchers to further evaluate the safety of rapid clozapine titration. Rapid clozapine titration has implications for decreasing health care costs associated with prolonged hospitalizations, and decreasing the emotional suffering associated with uncontrolled symptoms of psychosis. Clozapine is considered the most effective antipsychotic available thus efforts should focus on developing strategies that would allow for safest and most efficient use of clozapine to encourage its utilization for treatment resistance schizophrenia.

  14. Design of high power radio frequency radial combiner for proton accelerator.

    Science.gov (United States)

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2009-01-01

    A simplified design method has been proposed for systematic design of novel radio frequency (rf) power combiner and divider, incorporating radial slab-line structure, without using isolation resistor and external tuning mechanism. Due to low insertion loss, high power capability, and rigid mechanical configuration, this structure is advantageous for modern solid state rf power source used for feeding rf energy to superconducting accelerating structures. Analysis, based on equivalent circuit and radial transmission line approximation, provides simple design formula for calculating combiner parameters. Based on this method, novel 8-way and 16-way power combiners, with power handling capability of 4 kW, have been designed, as part of high power solid state rf amplifier development. Detailed experiments showed good performance in accordance with theory.

  15. Power System Design Compromises for Large-Scale Linear Particle Accelerators

    CERN Document Server

    Papastergiou, K D

    2014-01-01

    This paper discusses various design aspects of a 280MW Power System for the Compact Linear Collider (CLIC), a 50km long electrons-positrons accelerator, under feasibility evaluation. The key requirements are a very high accelerator availability and constant power flow from the utility grid, considering the pulsed power nature of CLIC. Firstly, the possible power network and cabling layouts are discussed along with potential difficulties on electrical fault clearance. Following, the use of active front-end converters is examined as a means to control the power flow and power quality seen by the 400kV grid. In particular a modular multilevel converter preliminary configuration is described and the compromises related to energy storage and voltage level are discussed.

  16. Power supply design for the filament of the high-voltage electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lige; Yang, Lei; Yang, Jun, E-mail: jyang@mail.hust.edu.cn; Huang, Jiang; Liu, Kaifeng; Zuo, Chen

    2015-12-21

    The filament is a key component for the electron emission in the high-voltage electron accelerator. In order to guarantee the stability of the beam intensity and ensure the proper functioning for the power supply in the airtight steel barrel, an efficient filament power supply under accurate control is required. The paper, based on the dual-switch forward converter and synchronous rectification technology, puts forward a prototype of power supply design for the filament of the high-voltage accelerator. The simulation is conducted with MATLAB-Simulink on the main topology and the control method. Loss analysis and thermal analysis are evaluated using the FEA method. Tests show that in this prototype, the accuracy of current control is higher than 97.5%, and the efficiency of the power supply reaches 87.8% when the output current is 40 A.

  17. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  18. Design of a 3 GHz Accelerator Structure for the CLIC Test Facility (CTF 3) Drive Beam

    CERN Document Server

    Carron, G.; Luong, M.; Millich, A.; Rugo, E.; Syratchev, I.; Thorndahl, L.

    2000-01-01

    For the CLIC two-beam scheme, a high-current, long-pulse drive beam is required for RF power generation. Taking advantage of the 3 GHz klystrons available at the LEP injector once LEP stops, a 180 MeV electron accelerator is being constructed for a nominal beam current of 3.5 A and 1.5 ms pulse length. The high current requires highly effective suppression of dipolar wakes. Two concepts are investigated for the accelerating structure design: the "Tapered Damped Structure" developed for the CLIC main beam, and the "Slotted Iris - Constant Aperture" structure. Both use 4 SiC loads per cell for effective higher-order mode damping. A full-size prototype of the TDS structure has been built and tested successfully at full power. A first prototype of the SICA structure is being built

  19. Experimental design and analysis for accelerated degradation tests with Li-ion cells.

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Daniel Harvey; Thomas, Edward Victor; Jungst, Rudolph George; Roth, Emanuel Peter

    2003-08-01

    This document describes a general protocol (involving both experimental and data analytic aspects) that is designed to be a roadmap for rapidly obtaining a useful assessment of the average lifetime (at some specified use conditions) that might be expected from cells of a particular design. The proposed experimental protocol involves a series of accelerated degradation experiments. Through the acquisition of degradation data over time specified by the experimental protocol, an unambiguous assessment of the effects of accelerating factors (e.g., temperature and state of charge) on various measures of the health of a cell (e.g., power fade and capacity fade) will result. In order to assess cell lifetime, it is necessary to develop a model that accurately predicts degradation over a range of the experimental factors. In general, it is difficult to specify an appropriate model form without some preliminary analysis of the data. Nevertheless, assuming that the aging phenomenon relates to a chemical reaction with simple first-order rate kinetics, a data analysis protocol is also provided to construct a useful model that relates performance degradation to the levels of the accelerating factors. This model can then be used to make an accurate assessment of the average cell lifetime. The proposed experimental and data analysis protocols are illustrated with a case study involving the effects of accelerated aging on the power output from Gen-2 cells. For this case study, inadequacies of the simple first-order kinetics model were observed. However, a more complex model allowing for the effects of two concurrent mechanisms provided an accurate representation of the experimental data.

  20. Nap-titration : An effective alternative for continuous positive airway pressure titration

    NARCIS (Netherlands)

    Hoekema, A; Stegenga, B; Meinesz, AF; van der Hoeven, JH; Wijkstra, PJ

    2006-01-01

    When treating Obstructive Steep Apnea-Hypopnea Syndrome (OSAHS) several alternatives for standard (manual) continuous positive airway pressure (CPAP) titration are feasible. A practical alternative is titration without polysomnography during an afternoon nap (Nap-titration). The aim of the present s

  1. Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A. [Los Alamos National Laboratory; Baca, David M. [Los Alamos National Laboratory; Partridge, Edward R. [retired; Rees, Daniel E. [Los Alamos National Laboratory

    2012-06-22

    This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

  2. Design of a 50 MW 30 GHz gyroklystron amplifier for accelerator applications

    CERN Document Server

    Blank, M; Cauffman, S; Felch, K; Mizuhara, Y M; Lawson, W

    2002-01-01

    Summary form only given. The results of a study performed by CPI for CERN are described below. The purpose of the work was to design a pulsed 30 GHz, 50 MW gyroklystron amplifier to be used for testing and conditioning Compact Linear Collider (CLIC) mainline accelerating structures. The specifications for the amplifier are listed. The technical risk factors and achievable performance for several distinct configurations, including coaxial and cylindrical cavities interacting at the fundamental and second harmonic of the cyclotron frequency, were investigated in the study. Following detailed physics designs of several different circuits and electron guns, a fundamental TE/sub 011/ coaxial mode configuration was selected as the most likely to achieve the specifications. Design details and performance predictions for this configuration are given.

  3. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    Science.gov (United States)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.

    2011-09-01

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  4. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  5. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    Science.gov (United States)

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications.

  6. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    Science.gov (United States)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  7. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI

    Science.gov (United States)

    Agostinetti, P.; Aprile, D.; Antoni, V.; Cavenago, M.; Chitarin, G.; de Esch, H. P. L.; De Lorenzi, A.; Fonnesu, N.; Gambetta, G.; Hemsworth, R. S.; Kashiwagi, M.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Sartori, E.; Serianni, G.; Singh, M.; Sonato, P.; Spada, E.; Toigo, V.; Veltri, P.; Zaccaria, P.

    2016-01-01

    The ITER Neutral Beam Test Facility (PRIMA) is presently under construction at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: an ITER-size ion source with low voltage extraction, called SPIDER, and the full prototype of the whole ITER Heating Neutral Beams (HNBs), called MITICA. The purpose of MITICA is to demonstrate that all operational parameters of the ITER HNB accelerator can be experimentally achieved, thus establishing a large step forward in the performances of neutral beam injectors in comparison with the present experimental devices. The design of the MITICA extractor and accelerator grids, here described in detail, was developed using an integrated approach, taking into consideration at the same time all the relevant physics and engineering aspects. Particular care was taken also to support and validate the design on the basis of the expertise and experimental data made available by the collaborating neutral beam laboratories of CEA, IPP, CCFE, NIFS and JAEA. Considering the operational requirements and the other physics constraints of the ITER HNBs, the whole design has been thoroughly optimized and improved. Furthermore, specific innovative concepts have been introduced.

  8. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  9. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  10. Beam dynamics design of the main accelerating section with KONUS in the CSR-LINAC

    CERN Document Server

    Xiao-Hu, Zhang; Jia-Wen, Xia; Xue-Jun, Yin; Heng, Du

    2013-01-01

    The CSR-LINAC injector has been proposed in Heavy Ion Research Facility in Lanzhou (HIRFL). The linac mainly consists of two parts, the RFQ and the IH-DTL. The KONUS (Kombinierte Null Grad Struktur) concept has been introduced into the DTL section. In this paper, the re-matching of the main accelerating section will be finished in the 3.7 MeV/u scheme and the new beam dynamics design up to 7 MeV/u will be also shown. Through the beam re-matching, the relative emittance growth has been suppressed greatly along the linac.

  11. Design of a Linear Induction 1-MV Injector for the Relativisitic Two-Beam Accelerator

    Science.gov (United States)

    Anderson, D. E.; Henestroza, E.; Houck, T.; Lidia, S.; Reginato, L.; Vanecek, D.; Westenskow, G.; Yu, S.

    1997-05-01

    A Relativisitic Klystron Two-Beam Accelerator (RTA) is envisioned as a RF power source upgrade of the Next Linear Collider. A prototype to study physics, engineering and costing issues is presently under construction at Lawrence Berkeley National Laboratory. The first half of the injector, a 1 MeV, 1.2 kA, 300 ns induction electron gun, has been built and is presently being tested. The design of the injector cells and pulsed power drive units will be presented. Preliminary test results of the power drive units will also be given.

  12. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    Science.gov (United States)

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability.

  13. Improving the design and analysis of superconducting magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh Chandra [Univ. of Rajasthan, Jaipur (India). Dept. of Physics

    1996-11-01

    High energy particle accelerators are now the primary means of discovering the basic building blocks of matter and understanding the forces between them. In order to minimize the cost of building these machines, superconducting magnets are used in essentially all present day high energy proton and heavy ion colliders. The cost of superconducting magnets is typically in the range of 20--30% of the total cost of building such machines. The circulating particle beam goes through these magnets a large number of times (over hundreds of millions). The luminosity performance and life time of the beam in these machines depends significantly on the field quality in these magnets. Therefore, even a small error in the magnetic field shape may create a large cumulative effect in the beam trajectory to throw the particles of the magnet aperture. The superconducting accelerator magnets must, therefore, be designed and constructed so that these errors are small. In this thesis the research and development work will be described 3which has resulted in significant improvements in the field quality of the superconducting magnets for the Relativistic Heavy Ion Collider (RHIC). The design and the field quality improvements in the prototype of the main collider dipole magnet for the Superconducting Super Collider (SSC) will also be presented. RHIC will accelerate and collide two counter rotating beams of heavy ions up to 100 GeV/u and protons up to 250 GeV. It is expected that RHIC will create a hot, dense quark-gluon plasma and the conditions which, according to the Big Bang theory, existed in the early universe.

  14. Accelerator-based epithermal neutron beam design for neutron capture therapy.

    Science.gov (United States)

    Yanch, J C; Zhou, X L; Shefer, R E; Klinkowstein, R E

    1992-01-01

    Recent interest in the production of epithermal neutrons for use in boron neutron capture therapy (BNCT) has promoted an investigation into the feasibility of generating such neutrons with a high current proton accelerator. Energetic protons (2.5 MeV) on a 7Li target produce a spectrum of neutrons with maximum energy of roughly 800 keV. A number of combinations of D2O moderator, lead reflector, 6Li thermal neutron filtration, and D2O/6Li shielding will result in a useful epithermal flux of 1.6 x 10(8) n/s at the patient position. The neutron beam is capable of delivering 3000 RBE-cGy to a tumor at a depth of 7.5 cm in a total treatment time of 60-93 min (depending on RBE values used and based on a 24-cm diameter x 19-cm length D2O moderator). Treatment of deeper tumors with therapeutic advantage would also be possible. Maximum advantage depths (RBE weighted) of 8.2-9.2 (again depending on RBE values and precise moderator configuration) are obtained in a right-circular cylindrical phantom composed of brain-equivalent material with an advantage ratio of 4.7-6.3. A tandem cascade accelerator (TCA), designed and constructed at Science Research Laboratory (SRL) in Somerville MA, can provide the required proton beam parameters for BNCT of deep-seated tumors. An optimized configuration of materials required to shift the accelerator neutron spectrum down to therapeutically useful energies has been designed using Monte Carlo simulation in the Whitaker College Biomedical Imaging and Computation Laboratory at MIT. Actual construction of the moderator/reflector assembly is currently underway.

  15. Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS

    CERN Document Server

    Bracco, C; Brethoux, D; Clerc, V; Goddard, B; Gschwendtner, E; Jensen, L K; Kosmicki, A; Le Godec, G; Meddahi, M; Muggli, P; Mutin, C; Osborne, O; Papastergiou, K; Pardons, A; Velotti, F M; Vincke, H

    2013-01-01

    The world’s first proton driven plasma wakefield acceleration experiment (AWAKE) is presently being studied at CERN. The experimentwill use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility were considered: the West Area and the CNGS beam line. The previous transfer line from the SPS to the West Area was completely dismantled in 2005 and would need to be fully re-designed and re-built. For this option, geometric constraints for radiation protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.

  16. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, James [Varian Medical Systems, Inc., Palo Alto, CA 94304 (United States). Imaging Lab.; Shedlock, Daniel [Varian Medical Systems, Inc., Palo Alto, CA 94304 (United States). Imaging Lab.; Langeveld, Willem G.J. [Rapiscan Laboratories, Inc., Sunnyvale, CA 94085 (United States); Bharadwaj, Vinod [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Yuri [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-07

    In the security and inspection market, there is a push towards highly mobile, reduced-dose active interrogation scanning and imaging systems to allow operation in urban environments. To achieve these goals, the accelerator system design needs to be smaller than existing systems. A smaller radiation exclusion zone may be accomplished through better beam collimation and an integrated, x-ray-source/detector-array assembly to allow feedback and control of an intensity-modulated x-ray source. A shaped low-Z target in the x-ray source can be used to generate a more forward peaked x-ray beam. Electron-beam steering can then be applied to direct the forward-peaked x rays toward areas in the cargo with high attenuation. This paper presents an exploratory study to identify components and upgrades that would be required to meet the desired specifications, as well as the best technical approach to design and build a prototype.

  17. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  18. Surface Titrations of Perlite Suspensions.

    Science.gov (United States)

    Alkan; Do

    1998-11-01

    The surface charge behaviour of unexpanded and expanded perlite samples in KNO3 and NaCl solutions were investigated as a function of pH and ionic strength. The solutions of KNO3 and NaCl ranging from 10(-3) to 1.0 M were used. The potentiometric titration method was used to determine the surface charge of perlite samples. It was confirmed that the perlite samples had no the point of zero charge and was negatively charged in the pH range of 3-10. The double extrapolation method was used for determining the intrinsic equilibrium constants for simple ionization and complex ionization reactions. The values obtained are pKinta2 = 2.5 and p*KintK+ = 2.3 in KNO3 solutions and pKinta2 = 3.0 and p*KintNa+ = 2.4 in NaCl solutions for unexpanded perlite, and pKinta2 = 2.6 and p*KintK+ = 2.4 in KNO3 solutions and pKinta2 = 2.7 and pKintNa+ = 2.4 in NaCl solutions for expanded perlite. Copyright 1998 Academic Press.

  19. Design of APhF-IH Linac for a Compact Medical Accelerator

    CERN Document Server

    Kapin, V; Iwata, Y

    2003-01-01

    The design of a small injection linac for a compact medical synchrotron is discussed. The linac design is based on interdigital H-type (IH) drift-tube structure with alternative phase focusing (APhF). A high acceleration rate and an absence of magnetic lenses inside drift-tubes reduce the cost and length of APhF-IH linac in comparison with HIMAC linac based on Alvarez structure with magnet quadrupoles inside drift-tubes. To reduce effects of emittance growth, the RFQ structure is used in front of the APhF linac. In such linac layout, the current transmission of a carbon beam can reach up to 90-100%. In this report, the basic parameters of whole linac are presented, while the design of APhF structure is considered in details. Two reference designs of 4 MeV/u 200 MHz APhF linacs with different voltage distributions along the whole tank have been generated and analyzed numerically. For the first design, a constant voltage distribution along the tank is assumed. The total length of the structure is about 4.2 m. F...

  20. Determination of titratable acidity in white wine

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2007-01-01

    Full Text Available The amount of titration acid in must is in the largest number of cases with in the range 5.0-8.0 g/dm3. Wines, as a rule, contain less acids than must, and according to Regulations, titratable acidity is in the range of 4.0-8.0 g/dm3 expressed in tartaric acid, because a part of tartaric acid is deposited in the form of salts (tartar or argol during alcohol fermentation. For wines that contain less than 4 g/dm3 of titratable acids there arises a suspicion about their origin, that is, that during the preparation some illegal acts were done. Because of that, the aim of this paper is to determine titratable acidity in white wine, using standard methods of determination, which are compared with the results received by potentiometric titration using ion-selective electrode. According to the received results it can be seen that wine titration with indicator gives sufficient reliable values of wine titration acidity. However, as potentiometric titration at pH value 7.00 is more reliable and objective method, the values of titratable acids content in wine, expressed through tartaric acid, are given according to this result. The analysis of differential potentiometric curves shows that these curves can give us an answer to the question of the presence of a larger amount of other nonorganic substances, which have already existed in wine. However, none of the used methods gives absolutely reliable answer what substances are present in analysed samples.

  1. Titration of gold nanoparticles in phase extraction.

    Science.gov (United States)

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-07

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  2. Design and construction of the clean room for proton beam accelerator assembly

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. S.; Song, I. T

    2000-09-01

    The objective of this report is to design, construction and evaluation of clean room for proton beam accelerator assembly. The design conditions o Class : 1,000(1,000 ea ft{sup 3}), o Flow Rate : 200 m{sup 3}/h m{sup 2}, o Temperature : 22 deg C{+-}2, o Humidity : 55%{+-}5. The main design results are summarized as follows: o Air-handling unit : Cooling Capacity : 13,500 kcal/h, Heating Capacity : 10,300 kcal/h, Humidity Capacity : 4 kg/h, Flow Rate : 150 CMM o Air Shower : Flow Rate : 35 CMM, Size : 1500 x 1000 x 2200, Material : In-steel, Out-SUS304, Filter : PRE + HEPA, AIR Velocity : 25 m/s o Relief Damper : Size : {phi}250, Casing : SS41, Blade : AL, Shaft : SUS304, Weight Ring : SS41, Grill : AL o HEPA Filter Box : Filter Box Size : 670 x 670 x 630, Filter Size : 610 x 610 x 150, Frame: Poly Wood, Media : Glass Fiber, Filter Efficiency : 0.3{mu}m, 99.97%, Separator : AL, Flow Rate : 17 CMM, Damper Size : {phi}300 Following this report will be used important data for the design, construction, operation and maintenance of the clean room, for high precision apparatus assembly laboratory.

  3. Status of the 1 MeV Accelerator Design for ITER NBI

    Science.gov (United States)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  4. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  5. Design and characteristics of electric supercharger for diesel engine acceleration by additional rapid air injection

    Institute of Scientific and Technical Information of China (English)

    YAO Chun-de; ZHOU Hong-xiu

    2006-01-01

    The ES (electric supercharger) driven by a high-speed brushless motor was developed to solve the problem of smoke caused by the turbocharger's sluggish response during acceleration.Its rotation speed was from 6 000 r/min to 24 000 r/min,and the maximum flux was 0.1 kg/s.The structural design of the electric supercharger is novel,which makes it easier to set the lubricating installation and to assemble.The velocity distribution at the outlet of the electric supercharger is determined by hot-wire anemometry under various rotation speeds in steady state.Furthermore,the trends of the flux and charge rate with various speeds were analyzed.In addition,the transient response was detected from the motor setup to smooth running within 10 s,15 s,20 s and 25 s respectively,and the characteristic of the transient flux is under pilot study.Research results indicate that the electric supercharger can respond rapidly with the great flux,and it is independent of the operating conditions of a diesel engine.Therefore,it is a feasible way to reduce smoke emission and improve the acceleration performance.

  6. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.

    Science.gov (United States)

    Bleuel, D L; Donahue, R J; Ludewigt, B A; Vujic, J

    1998-09-01

    The 7Li(p,n)7Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF3, 7LiF, and D2O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo N-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF3 or 7LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to approximately 50% higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a 7LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq.

  7. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  8. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  9. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  10. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  11. Methodology to improve design of accelerated life tests in civil engineering projects.

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available For reliability testing an Energy Expansion Tree (EET and a companion Energy Function Model (EFM are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  12. Methodology to improve design of accelerated life tests in civil engineering projects.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  13. CLUSTER: concept study and design of a low-medium {beta} accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U. [TERA Foundation, Via Puccini 11, 28100 (Italy); Citterio, A. [TERA Foundation, Via Puccini 11, 28100 (Italy); University of Milano Bicocca (Italy); Crescenti, M.; Giuliacci, A. [TERA Foundation, Via Puccini 11, 28100 (Italy); Tronci, C. [TERA Foundation, Via Puccini 11, 28100 (Italy); Imperial College, London (United Kingdom); Zennaro, R. [TERA Foundation, Via Puccini 11, 28100 (Italy)

    2007-10-15

    A novel linear accelerating structure is proposed particularly suited for hadrontherapy applications. The main features are compactness, due to the high frequency and consequent large gradients, and good power efficiency, especially at low beam velocities, obtained by using coupled H-mode cavities. The structure is called CLUSTER which stands for 'Coupled cavity Linac USing Transverse Electric Radial field'. In order to compare the performances of this structure with other hadrontherapy linac designs operating at high frequencies, a conceptual study has been performed by choosing the frequency of 3 GHz. Moreover a proof of principle of the radiofrequency behaviour of the cavity has been obtained by RF measurements on a prototype running at 1 GHz.

  14. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  15. Critical Density Target Design for Ion Acceleration on the T-Cubed Laser

    Science.gov (United States)

    Kordell, Peter; Campbell, Paul; Maksimchuk, Anatoly; Willingale, Louise; Krushelnick, Karl

    2016-10-01

    The interaction of an intense laser pulse with a critical density target can form a high Mach number electrostatic shock. Recent experiments on CO2 lasers have demonstrated that such shocks can be used to produce directional, quasi-monoenergetic proton beams. PIC simulations indicate that the our single pulse system, the T-Cubed laser (1.053 μm, 6J in 400fs), is both capable of both producing these shocks and accelerating protons to MeV energies. Shock formation and propagation with our system has challenging target peak density and density gradient requirements. We present our target design, an interferometric characterization of its density profile and preliminary experiments on T-Cubed.

  16. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  17. The design of the electron beam dump unit of Turkish Accelerator Center (TAC)

    Science.gov (United States)

    Cite, L. H.; Yilmaz, M.

    2016-03-01

    The required simulations of the electron beam interactions for the design of electron beam dump unit for an accelerator which will operate to get two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns is presented in this work. Simulations have been carried out to understand the interactions of a bulk of specially shaped of four different and widely used materials for the dump materials for a 77 pC, 40 MeV, 13 MHz repetition rate e-beam. In the simulation studies dump materials are chosen to absorb the 99% of the beam energy and to restrict the radio-isotope production in the bulk of the dump. A Lead shielding also designed around the dump core to prevent the leakage out of the all the emitted secondary radiations, e.g., neutrons, photons. The necessary dump material requirements, for the overall design considerations and the possible radiation originated effects on the dump unit, are discussed and presented.

  18. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju; Zhong, Zhaopeng; Gohar, Yousry

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-state simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.

  19. Application of factorial design to accelerate identification of CHO growth factor requirements.

    Science.gov (United States)

    Chun, Chung; Heineken, Katy; Szeto, Dongmei; Ryll, Thomas; Chamow, Steve; Chung, John D

    2003-01-01

    To accelerate recombinant CHO media and process development, we describe a simple approach to integrating multiple tasks associated with these processes including initial media design, serum-free adaptation, stability analysis and first generation scale-up. Factorial design techniques and normal probability chart representation of the results were first applied to identify potent parental CHO cell growth factors in a lean basal medium. These results were then applied to identify a suitable manufacturing medium from a panel of commercial and proprietary media formulations. When this approach was applied to recombinant CHO cell line, rapid adaptation of the cell line to an appropriate production medium occurred during culture expansion in the presence of the identified growth factor(s). This approach allows media component screening to be naturally integrated into the adaptation and scale-up processes since components that have little or no relative effect on cell proliferation are selected against as the "best" cultures are moved forward. The rapidity of the adaptation process allowed cell line stability studies to be initiated relatively early in the development process, thus providing preliminary stability information by the time the "outgrowing" culture could be scaled to 100-L reactors some 30 days after adaptation commenced. The application of full factorial design techniques allowed us to calculate the maximum number of interaction effects, the interpretation of which we believe can provide insights into growth factor biology.

  20. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  1. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  2. Thermal Design of an Nb3Sn High Field Accelerator Magnet

    CERN Document Server

    Pietrowicz, S

    2011-01-01

    Within the framework of the European project EuCARD, a Nb3Sn high field accelerator magnet is under design to serve as a test bed for future high field magnets and to upgrade the vertical CERN cable test facility, Fresca. The Fresca 2 block coil type magnet will be operated at 1.9 K or 4.2 K and is designed to produce about 13 T. A 2D numerical thermal model was developed to determinate the temperature margin of the coil in working conditions and the appropriate cool-down scenario. The temperature margin, which is DTmarge=5.8 K at 1.9 K and DTmarge=3.5 K at 4.2 K, was investigated in steady state condition with the AC losses due to field ramp rate as input heat generation. Several cool-down scenarios were examined in order to minimize the temperature difference and therefore reducing the mechanical constraints within the structure. The paper presents the numerical model, the assumptions taken for the calculations and several results of the simulation for the cool-down and temperature distributions due to seve...

  3. Venting Design for Di-tert-butyl Peroxide Runaway Reaction Based on Accelerating Rate Calorimeter Test

    Institute of Scientific and Technical Information of China (English)

    魏彤彤; 蒋慧灵

    2012-01-01

    In order to design the relief system size of di-tert-butyl peroxide(DTBP) storage tanks,the runaway re-action of DTBP was simulated by accelerating rate calorimeter(ARC).The results indicated that under adiabatic conditions the initial exothermic temperature was 102.6 ℃,the maximum self-heating rate was 3.095×107 ℃·min-1,the maximum self-heating temperature was 375.9 ℃,and the pressure produced by unit mass was 4.512 MPa·g-1.Judged by ARC test,the emergency relief system for DTBP was a hybrid system.Based on Design Institute for Emergency Relief System(DIERS) method,the releasing mass flow rate W was determined by Leung methods,and the mass velocity G was calculated by two modified Omega methods.The two relief sizes calculated by monograph Omega method and arithmetic Omega method are close,with only 0.63% relative error.The monograph Omega method is more convenient to apply.

  4. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    Science.gov (United States)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  5. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Yamano, Y. [Saitama University, Saitama, Saitama-ken 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-02-15

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  6. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    Science.gov (United States)

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  7. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  8. End-point construction and systematic titration error in linear titration curves-complexation reactions

    NARCIS (Netherlands)

    Coenegracht, P.M.J.; Duisenberg, A.J.M.

    1975-01-01

    The systematic titration error which is introduced by the intersection of tangents to hyperbolic titration curves is discussed. The effects of the apparent (conditional) formation constant, of the concentration of the unknown component and of the ranges used for the end-point construction are consid

  9. A generalized approach for the calculation and automation of potentiometric titrations Part 2. Redox Titrations

    NARCIS (Netherlands)

    Stur, J.; Bos, M.; van der Linden, W.E.

    1984-01-01

    The very fast calculation procedure described earlier is applied to calculate the titration curves of complicated redox systems. The theory is extended slightly to cover inhomogeneous redox systems. Titrations of iodine or 2,6-dichloroindophenol with ascorbic acid are described. It is shown that cor

  10. Enculturating science: Community-centric design of behavior change interactions for accelerating health impact.

    Science.gov (United States)

    Kumar, Vishwajeet; Kumar, Aarti; Ghosh, Amit Kumar; Samphel, Rigzin; Yadav, Ranjanaa; Yeung, Diana; Darmstadt, Gary L

    2015-08-01

    Despite significant advancements in the scientific evidence base of interventions to improve newborn survival, we have not yet been able to "bend the curve" to markedly accelerate global rates of reduction in newborn mortality. The ever-widening gap between discovery of scientific best practices and their mass adoption by families (the evidence-practice gap) is not just a matter of improving the coverage of health worker-community interactions. The design of the interactions themselves must be guided by sound behavioral science approaches such that they lead to mass adoption and impact at a large scale. The main barrier to the application of scientific approaches to behavior change is our inability to "unbox" the "black box" of family health behaviors in community settings. The authors argue that these are not black boxes, but in fact thoughtfully designed community systems that have been designed and upheld, and have evolved over many years keeping in mind a certain worldview and a common social purpose. An empathetic understanding of these community systems allows us to deconstruct the causal pathways of existing behaviors, and re-engineer them to achieve desired outcomes. One of the key reasons for the failure of interactions to translate into behavior change is our failure to recognize that the content, context, and process of interactions need to be designed keeping in mind an organized community system with a very different worldview and beliefs. In order to improve the adoption of scientific best practices by communities, we need to adapt them to their culture by leveraging existing beliefs, practices, people, context, and skills. The authors present a systems approach for community-centric design of interactions, highlighting key principles for achieving intrinsically motivated, sustained change in social norms and family health behaviors, elucidated with progressive theories from systems thinking, management sciences, cross-cultural psychology, learning

  11. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  12. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  13. Design and Modeling of a Flexible Contact-Mode Piezoresistive Detector for Time-Based Acceleration Sensing

    NARCIS (Netherlands)

    Rajaraman, V.; Hau, B.S.; Rocha, L.A.; French, P.J.; Makinwa, K.A.A.

    2010-01-01

    This work reports on the design and modeling of a new flexible contact-mode 1-DOF piezoresistive contact force and impacttime detector used for acceleration sensing in the time domain. The key advantages of the contact-mode detection mechanism are the use of simple readout circuitry, compactness,

  14. Design and Modeling of a Flexible Contact-Mode Piezoresistive Detector for Time-Based Acceleration Sensing

    NARCIS (Netherlands)

    Rajaraman, V.; Hau, B.S.; Rocha, L.A.; French, P.J.; Makinwa, K.A.A.

    2010-01-01

    This work reports on the design and modeling of a new flexible contact-mode 1-DOF piezoresistive contact force and impacttime detector used for acceleration sensing in the time domain. The key advantages of the contact-mode detection mechanism are the use of simple readout circuitry, compactness, go

  15. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  16. Design of Web-Based Experiments on Acceleration and Speed Transducers

    Directory of Open Access Journals (Sweden)

    Ashish Mani

    2011-01-01

    Full Text Available Remote laboratories are becoming increasingly popular in academic arena due to availability of web-based technologies and infrastructure. Remote Labs are equipped with real instruments, where experiments are performed by controlling the instruments and observing the real data from a distant location through computer networks. They provide for student centric laboratory experience as students can perform experiments at their own convenience and requirements. Further, Remote Labs reduce management of work involved in running conventional laboratories. This paper describes design and implementation of such an experimental setup for performing characterization experiments on Transducers in general and Acceleration and Speed Transducers in particular from a remote location. The experiment can be made accessible to anyone over a TCP/IP network with a standard Web Browser, relevant plugin, and permission. This paper demonstrates that traditional experiments on sensors and transducers can be successfully made available online to both on-campus and off-campus students at their own schedule and convenience.

  17. Current Lead Design for the Accelerator Project for Upgrade of LHC

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  18. Design stage confirmation of lifetime improvement for newly modified products through accelerated life testing

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadian, S. Hossein, E-mail: seyed-h.mohammadian.1@ulaval.c [Centre Interuniversitaire de Recherche sur les Reseaux d' Entreprise, la Logistique et le Transport (CIRRELT), Departement de Genie Mecanique, Pavillon Adrien-Pouliot, Universite Laval, Quebec, G1V 0A6 (Canada) and Centre Interdisciplinaire de Recherche en Readaptation et en Integration Sociale (CIRRIS), Institut de Readaptation en Deficience Physique de Quebec, 525 Boul. Hamel, Quebec, G1M 2S8 (Canada); Ait-Kadi, Daoud, E-mail: Daoud.Aitkadi@gmc.ulaval.c [Centre Interuniversitaire de Recherche sur les Reseaux d' Entreprise, la Logistique et le Transport (CIRRELT), Departement de Genie Mecanique, Pavillon Adrien-Pouliot, Universite Laval, Quebec, G1V 0A6 (Canada); Centre Interdisciplinaire de Recherche en Readaptation et en Integration Sociale (CIRRIS), Institut de Readaptation en Deficience Physique de Quebec, 525 Boul. Hamel, Quebec, G1M 2S8 (Canada)

    2010-08-15

    After a modification to the original version of a product and before mass production, the expected improvement in the product lifetime or reliability needs to be validated. This paper presents three approaches based on accelerated life testing to verify, estimate and confirm the lifetime or reliability of a newly modified product at design stage: ALT comparative approach, reliability estimation approach, and reliability validation test. Test samples of the original and modified versions are expected to fail during the tests in order to obtain their failure time data. In ALT comparative approach, the statistical comparison between failure time data of the original and modified versions is used to verify the required improvement in lifetime. In reliability estimation approach, the relationship made between available lifetime and failure time data of the original version is used to extrapolate lifetime data of the modified version from its failure time data. Since modified versions are usually highly reliable, all test samples might survive the tests (without any failures) that results in the lack of failure time data for statistical analysis. To confirm a level of service reliability with confidence, reliability validation test is presented to make an estimate of the number of samples required to survive the tests. To fulfill the same level of confidence for fewer number of prototypes (as test samples), the test time must be extended. On the other hand, more prototypes are needed to pass a shorter test time if there are any time constraints.

  19. A design study for an accelerator-based epithermal neutron beam for BNCT.

    Science.gov (United States)

    Allen, D A; Beynon, T D

    1995-05-01

    An achievable design concept for a boron neutron capture therapy (BNCT) facility, based on a high-current, low-energy proton accelerator, is described. Neutrons are produced within a thick natural lithium target, under bombardment from protons with an initial energy between 2.5 and 3.0 MeV. The proton current will be up to 10 mA. After gamma-ray filtering, the neutrons are partially moderated to epithermal energies within a heavy-water moderator, poisoned with 6Li to remove thermal neutrons. Monte Carlo modelling has been used to predict system performance in terms of neutron fluence rate and neutron and gamma-ray dose at the patient position. The relationship between the system performance and key parameters, such as proton energy, moderator depth and 6Li concentration, has been investigated. With a proton current of 10 mA, the facility is capable of providing a therapy beam with a useful neutron fluence rate of 10(9) cm-2 s-1 and a neutron dose per unit fluence of less than 6 x 10(-13) Gy cm2, with a gamma-ray contamination of the therapy beam of about 10(-13) Gy cm2.

  20. Design of a cervical collar device to facilitate and accelerate implementation of first aid.

    Science.gov (United States)

    Işık, Hakan; Saraçoğlu, Esra; Harmanci, Hüseyin; Güler, Inan

    2010-08-01

    Frequently there are disasters all over the world-fires, earthquakes, or even some unexpected shocking catastrophes. Hence people injured, or even died. Lifesaving actions begin with the initiation of the chain of survival. With every minute that passes without medical action being taken, the probability of being able to save the patients life decreases by ten percent. After 10 min there is normally no chance of resuscitation being successful. First aid is emergency treatment given before regular medical aid can be obtained. And it is a concept of first hands-on measures performed in a medical emergency by laypersons. The major aim of this study is to develop an easy-feasible cervical collar, for facilitating and accelerating implementation of first aid especially in case of collective injuries. The developed device is different from the cervical collars which are used to treat the neck pain. In the present study, the heartbeat is obtained by detecting pulse with the stethoscope that is a part of the developed device and fixed on the carorid artery. The obtained heartbeat signal has been processed by the electronic control circuit and the used LED has given light according to the patient's life signal. Although there are some disadvantages of the developed system, the precautions for these cases have been taken and the system has been tried to design in order to operate sensibly.

  1. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-26

    The discovery of the Higgs boson, a subatomic particle whose field is responsible for endowing all other particles with mass, is one of the major discoveries of the last decade. To unlock the mysteries of the subatomic world, physicists use the worlds’ most powerful microscopes – particle accelerators. The resolving power of these microscopes is proportional to the energy of the beams they produce. Since their inception nearly 80 years ago, the energy reach of accelerators has grown exponentially due to continued breakthroughs in accelerator physics and engineering. The highest energy beams in the world are currently at the 27km circumference Large Hadron Collider (LHC) in Europe. Although it is a monument to human engineering, scientists are approaching a practical limit to the size and cost of such collider facilities. Innovation is essential for continued progress. Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC.

  2. Design of Cavity for 10 MeV Electron Irradiation Accelerator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This article describes the 10 MeV high-power electron irradiation accelerator. This accelerator can output varied energy electron beam which the highest energy is 10 MeV or shooting target produce X-rays for industrial radiation processing.

  3. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Green, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zhang, X. [Shanhai Inst. of Optics and Fine Mechanics, Shanghai (China); Farinella, D. M. [Univ. of California, Irvine, CA (United States); Taborek, P. [Univ. of California, Irvine, CA (United States); Tajima, T. [Univ. of California, Irvine, CA (United States); Wheeler, J. A. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee; Mourou, G. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 1020 – 1023 cm-3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a

  4. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young min [Fermilab; Green, A. [NICADD, DeKalb; Lumpkin, A. H. [Fermilab; Thurman-Keup, R. M. [Fermilab; Shiltsev, V. [Fermilab; Zhang, X. [Shanghai, Inst. Optics, Fine Mech.; Farinella, D. M. [UC, Irvine; Taborek, P. [UC, Irvine; Tajima, T. [UC, Irvine; Wheeler, J. A. [U. Michigan, Ann Arbor; Mourou, G. [U. Michigan, Ann Arbor

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1] in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 10 to the power of 20 – 10 to the power of 23 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a

  5. Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of-concept (POC) experiments

    Science.gov (United States)

    Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2017-03-01

    A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time

  6. Coupling MCNP-DSP and LAHET Monte Carlo codes for designing subcriticality monitors for accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.; Perez, R. [Oak Ridge National Lab., TN (United States); Rugama, Y.; Munoz-Cobo, J.L. [Poly. Tech. Univ. of Valencia (Spain). Chemical and Nuclear Engineering Dept.

    2001-07-01

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements. (orig.)

  7. Coupling MCNP-DSP and LAHET Monte Carlo Codes for Designing Subcriticality Monitors for Accelerator-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Rugama, Y. Munoz-Cobos, J.; Perez, R.

    2000-10-23

    The design of reactivity monitoring systems for accelerator-driven systems must be investigated to ensure that such systems remain subcritical during operation. The Monte Carlo codes LAHET and MCNP-DSP were combined together to facilitate the design of reactivity monitoring systems. The coupling of LAHET and MCNP-DSP provides a tool that can be used to simulate a variety of subcritical measurements such as the pulsed neutron, Rossi-{alpha}, or noise analysis measurements.

  8. An overview of the adaptive designs accelerating promising trials into treatments (ADAPT-IT) project.

    Science.gov (United States)

    Meurer, William J; Lewis, Roger J; Tagle, Danilo; Fetters, Michael D; Legocki, Laurie; Berry, Scott; Connor, Jason; Durkalski, Valerie; Elm, Jordan; Zhao, Wenle; Frederiksen, Shirley; Silbergleit, Robert; Palesch, Yuko; Berry, Donald A; Barsan, William G

    2012-10-01

    Randomized clinical trials, which aim to determine the efficacy and safety of drugs and medical devices, are a complex enterprise with myriad challenges, stakeholders, and traditions. Although the primary goal is scientific discovery, clinical trials must also fulfill regulatory, clinical, and ethical requirements. Innovations in clinical trials methodology have the potential to improve the quality of knowledge gained from trials, the protection of human subjects, and the efficiency of clinical research. Adaptive clinical trial methods represent a broad category of innovations intended to address a variety of long-standing challenges faced by investigators, such as sensitivity to previous assumptions and delayed identification of ineffective treatments. The implementation of adaptive clinical trial methods, however, requires greater planning and simulation compared with a more traditional design, along with more advanced administrative infrastructure for trial execution. The value of adaptive clinical trial methods in exploratory phase (phase 2) clinical research is generally well accepted, but the potential value and challenges of applying adaptive clinical trial methods in large confirmatory phase clinical trials are relatively unexplored, particularly in the academic setting. In the Adaptive Designs Accelerating Promising Trials Into Treatments (ADAPT-IT) project, a multidisciplinary team is studying how adaptive clinical trial methods could be implemented in planning actual confirmatory phase trials in an established, National Institutes of Health-funded clinical trials network. The overarching objectives of ADAPT-IT are to identify and quantitatively characterize the adaptive clinical trial methods of greatest potential value in confirmatory phase clinical trials and to elicit and understand the enthusiasms and concerns of key stakeholders that influence their willingness to try these innovative strategies.

  9. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  10. Natural Monocrystalline Pyrite as Sensor for Potentiometric Redox Titrations. Part I. Titrations with Permanganate

    Directory of Open Access Journals (Sweden)

    B. V. Vukanovic

    2002-04-01

    Full Text Available Results obtained in potentiometric titrations of Fe(II, Mn(II, Fe(CN64-, C2O42- and As(III with standard potassium permanganate solution, are presented. The titration end point (TEP was detected with a universal electrode whose sensor is natural crystalline pyrite. The titrations of As(III were carried out in HCl (1.2 M and H2SO4 solutions (0.1- 4.5 M, whereas oxalate was determined in H2SO4 (0.1-4.5 M. Iron(II and hexacyanoferrate(II were titrated in H2SO4 and also in H3PO4 solutions (0.1-4.5 M. The titrations of Mn(II were performed in H2P2O72- media at pH 4.0, 5.0, 6.0 and 7.0. The results obtained by using the pyrite electrode were compared with those obtained by the application of a Pt-electrode, and good agreement, reproducibility and accuracy were obtained. The potentials in the course of the titration and at the end-point (TEP are rapidly established. The potential changes at the TEP ranged from 90 to 330 mV/0.1 mL, depending on the titrated system. The highest changes were observed in titrations of Fe(II in H3PO4 (240-330 mV/0.1 mL. Reversed titrations were also performed and accurate and reproducible results were obtained.

  11. Design, realization and test of C-band accelerating structures for the SPARC_LAB linac energy upgrade

    Science.gov (United States)

    Alesini, D.; Bellaveglia, M.; Biagini, M. E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-11-01

    The energy upgrade of the SPARC_LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  12. NON-SCALING FIXED FIELD GRADIENT ACCELERATOR (FFAG) DESIGN FOR THE PROTON AND CARBON THERAPY.

    Energy Technology Data Exchange (ETDEWEB)

    TRBOJEVIC, D.; KEIL, E.; SESSLER, A.

    2005-06-05

    The non-scaling Fixed Field Alternating Gradient (FFAG-from now on) accelerator provides few advantages with respect to the other fixed field accelerators like CYCLOTRONS or scaling-FFAG's. One of the advantages is smaller required aperture due to small orbit offsets during acceleration. The large and heavy magnets are avoided. The beam is very well controlled in a strong focusing regime. This concept has been extensively investigated during the last eight FFAG workshops in Japan, USA, Canada, and CERN in Europe.

  13. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi, E-mail: sugahara@isl.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan)

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  14. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    Science.gov (United States)

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  15. Isothermal Titration Calorimetry in the Student Laboratory

    Science.gov (United States)

    Wadso, Lars; Li, Yujing; Li, Xi

    2011-01-01

    Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…

  16. Isothermal Titration Calorimetry in the Student Laboratory

    Science.gov (United States)

    Wadso, Lars; Li, Yujing; Li, Xi

    2011-01-01

    Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…

  17. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  18. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  19. Numerical design and model measurements for a 1.3 GHz microtron accelerating cavity

    Science.gov (United States)

    Kleeven, W. J. G. M.; Theeuwen, M. E. H. J.; Knoben, M. H. M.; Moerdijk, A. J.; Botman, J. I. M.; van der Heide, J. A.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    As part of the free electron laser project TEUFEL, a 25 MeV racetrack microtron is under construction at the Eindhoven University. The accelerating cavity of this microtron is a standing wave on axis coupled structure. It consists of three accelerating cells and two coupling cells. Numerical field calculations for this cavity were done with the computer codes SUPERFISH, URMEL-T and MAFIA. Not only the accelerating modes but also the dangerous beam breakup modes were calculated with MAFIA. An aluminium, scale 1:1 model of the structure was made in order to measure various cavity properties. Field profiles were measured with the perturbation ball method. An equivalent LC-circuit simulation of the accelerating structure was made, which serves as a model for the interpretation of the results.

  20. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  1. Design of Power Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Hegner, Jonas Stenbæk; Sindholt, Joakim; Nannarelli, Alberto

    2012-01-01

    Using Field Programmable Gate Arrays (FPGAs) to accelerate financial derivative calculations is becoming very common. In this work, we implement an FPGA-based specific processor for European option pricing using Monte Carlo simulations, and we compare its performance and power dissipation...... to the execution on a CPU. The experimental results show that impressive results, in terms of speed-up and energy savings, can be obtained by using FPGA-based accelerators at expenses of a longer development time....

  2. Accelerating Digital Mental Health Research From Early Design and Creation to Successful Implementation and Sustainment.

    Science.gov (United States)

    Mohr, David C; Lyon, Aaron R; Lattie, Emily G; Reddy, Madhu; Schueller, Stephen M

    2017-05-10

    Mental health problems are common and pose a tremendous societal burden in terms of cost, morbidity, quality of life, and mortality. The great majority of people experience barriers that prevent access to treatment, aggravated by a lack of mental health specialists. Digital mental health is potentially useful in meeting the treatment needs of large numbers of people. A growing number of efficacy trials have shown strong outcomes for digital mental health treatments. Yet despite their positive findings, there are very few examples of successful implementations and many failures. Although the research-to-practice gap is not unique to digital mental health, the inclusion of technology poses unique challenges. We outline some of the reasons for this gap and propose a collection of methods that can result in sustainable digital mental health interventions. These methods draw from human-computer interaction and implementation science and are integrated into an Accelerated Creation-to-Sustainment (ACTS) model. The ACTS model uses an iterative process that includes 2 basic functions (design and evaluate) across 3 general phases (Create, Trial, and Sustain). The ultimate goal in using the ACTS model is to produce a functioning technology-enabled service (TES) that is sustainable in a real-world treatment setting. We emphasize the importance of the service component because evidence from both research and practice has suggested that human touch is a critical ingredient in the most efficacious and used digital mental health treatments. The Create phase results in at least a minimally viable TES and an implementation blueprint. The Trial phase requires evaluation of both effectiveness and implementation while allowing optimization and continuous quality improvement of the TES and implementation plan. Finally, the Sustainment phase involves the withdrawal of research or donor support, while leaving a functioning, continuously improving TES in place. The ACTS model is a step

  3. Titration Calorimetry Standards and the Precision of Isothermal Titration Calorimetry Data

    Science.gov (United States)

    Baranauskienė, Lina; Petrikaitė, Vilma; Matulienė, Jurgita; Matulis, Daumantas

    2009-01-01

    Current Isothermal Titration Calorimetry (ITC) data in the literature have relatively high errors in the measured enthalpies of protein-ligand binding reactions. There is a need for universal validation standards for titration calorimeters. Several inorganic salt co-precipitation and buffer protonation reactions have been suggested as possible enthalpy standards. The performances of several commercial calorimeters, including the VP-ITC, ITC200, and Nano ITC-III, were validated using these suggested standard reactions. PMID:19582227

  4. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  5. Telephone titration of heart failure medications.

    Science.gov (United States)

    Steckler, Anne E; Bishu, Kalkidan; Wassif, Heba; Sigurdsson, Gardar; Wagner, Judy; Jaenicke, Connie; Vats, Shashank; Rector, Thomas; Anand, Inder S

    2011-01-01

    In clinical practice, heart failure (HF) medications are underused and prescribed at lower than recommended doses. Telephone care is an option that could help to titrate HF medication in a timely manner. We describe our experience of a nurse-run, cardiologist- or nurse practitioner-supervised clinic to up-titrate HF medications via telephone. Patients with the diagnosis of HF, New York Heart Association classes I to III, were referred to a registered nurse-run, cardiologist-/nurse practitioner-supervised HF medication titration clinic. Clinical and medication data collected at enrollment to the clinic and at 3 to 6 months after optimization of HF medications in patients who did or did not reach the target doses were compared. Effect on left ventricular (LV) function was also evaluated. There were 79 patients in the evaluation: 64 with HF and LV systolic dysfunction (LVSD) and the remaining 15 with HF and preserved ejection fraction (EF). Seventy-two percent of patients with LVSD were on an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB), and 61% were on a β-blocker at baseline, and this increased to 98% and 97%, respectively, after optimization. Target doses was achieved in 50% of patients for ACEI or ARB, and in 41% for β-blockers. The median time to optimization was 54 days (interquartile range, 20-97 days). The average number of phone calls at the time of optimization were 5.4 (SD, 3.7), and the average number of clinic visits was 1.9 (SD, 1.3). Reasons for not reaching the target doses included hypotension, hyperkalemia, and renal dysfunction for ACEI and bradycardia for β-blockers. Overall, the EF increased by 10% (SD, 10%) after 6 months, and 35% or greater in 42% of patients whose baseline EF was less than 35%. There were no adverse events related to the dose up-titration. Telephonic titration of HF medications was feasible and safe and was achieved in 97% patients on ACEI/ARB and β-blockers. Medication titration was

  6. Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G A; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Gentini, L; Lambert, L; Lopes, M; Perez, J C; de Rijk, G; Rijllart, A; Rossi, L; ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Härö, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2015-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  7. Accelerator Quality HTS Dipole Magnet Demonstrator designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Lambert, L; Lopes, M; Perez, J; DeRijk, G; Rijllart, A; Rossi, L; Ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Haro, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2014-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  8. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.

    Science.gov (United States)

    Lee, Deok-jae; Han, Chi Young; Park, Sung Ho; Kim, Jong Kyung

    2004-01-01

    The beam shaping assembly design has been investigated in order to improve the epithermal neutron beam for accelerator-based boron neutron capture therapy in intensity and quality, and dosimetric evaluation for the beams has been performed using both mathematical and voxel head phantoms with MCNP runs. The neutron source was assumed to be produced from a conventional 2.5 MeV proton accelerator with a thick (7)Li target. The results indicate that it is possible to enhance epithermal neutron flux remarkably as well as to embody a good spectrum shaping to epithermal neutrons only with the proper combination of moderator and reflector. It is also found that a larger number of thermal neutrons can reach deeply into the brain and, therefore, can reduce considerably the treatment time for brain tumours. Consequently, the epithermal neutron beams designed in this study can treat more effectively deep-seated brain tumours.

  9. DESIGN DEVELOPMENT OF A PASSIVE NEUTRON DOSEMETER FOR THE USE AT HIGH-ENERGY ACCELERATORS.

    Science.gov (United States)

    Sokolov, Alexey; Fehrenbacher, Georg; Radon, Torsten

    2016-09-01

    For the radiation survey at intermediate and high-energy accelerators, there is a need for a neutron dosemeter which provides reliable readings of the neutron dose in a wide energy range for continuous and pulsed radiation. The objective of this development is to find a dosemeter that fulfils the necessary requirements and can be reliably used to prove that the radiation levels in areas around accelerators are in accordance with the limits of the respective radiation protection legislation. A simple layout with small dimensions and light weight as well as the usage of common materials to lower the production costs is to be achieved.

  10. Kinetic titration series with biolayer interferometry.

    Science.gov (United States)

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.

  11. Kinetic titration series with biolayer interferometry.

    Directory of Open Access Journals (Sweden)

    Daniel Frenzel

    Full Text Available Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42. Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i circumvents problems in data evaluation caused by unavoidable sensor differences, ii saves resources and iii increases throughput if screening a multitude of different analyte/ligand combinations.

  12. Titration force microscopy on supported lipid bilayers.

    Science.gov (United States)

    Garcia-Manyes, Sergi; Gorostiza, Pau; Sanz, Fausto

    2006-01-01

    The use of chemically modified atomic force microscopy (AFM) probes allows us to measure the surface charges of supported planar lipid bilayers with high sensitivity through the force spectroscopy operation mode. By controlling the chemistry of the tip, we can perform a classical analytical chemistry titration where the titration agent is a weak acid (attached to the AFM tip) with the particularity of being performed in surface rather than in solution and, especially, at the nanometric scale. Thus, the AFM tip acts as a real "nanosensor". The approaching curves of the force plots reveal that electrostatic interactions between the tip and the supported membrane play a key role. Besides, the plot of the adhesion force (measured from the retracting curve of the force plots) versus pH displays a nonsigmoidal shape with a peak in the adhesion force attributed to high-energy hydrogen bonds. One of these peaks corresponds to the pKa of the surface under study and the other to the pKa of the titrating probe attached to the tip.

  13. Shielding design and dose assessment for accelerator based neutron capture therapy.

    Science.gov (United States)

    Howard, W B; Yanch, J C

    1995-05-01

    Preparations are ongoing to test the viability and usefulness of an accelerator source of epithermal neutrons for ultimate use in a clinical environment. This feasibility study is to be conducted in a shielded room located on the Massachusetts Institute of Technology campus and will not involve patient irradiations. The accelerator production of neutrons is based on the 7Li(p, n)7Be reaction, and a maximum proton beam current of 4 mA at an energy of 2.5 MeV is anticipated. The resultant 3.58 x 10(12) neutrons s-1 have a maximum energy of 800 keV and will be substantially moderated. This paper describes the Monte Carlo methods used to estimate the neutron and photon dose rates in a variety of locations in the vicinity of the accelerator, as well as the shielding configuration required when the device is run at maximum current. Results indicate that the highest absorbed dose rate to which any individual will be exposed is 3 microSv h-1 (0.3 mrem h-1). The highest possible yearly dose is 0.2 microSv (2 x 10(-2) mrem) to the general public or 0.9 mSv (90 mrem) to a radiation worker in close proximity to the accelerator facility. The shielding necessary to achieve these dose levels is also discussed.

  14. Ferrite Characterization for the Design of an Accelerating Cavity With Perpendicular Biasing

    CERN Document Server

    Eberhardt, Johannes; Vollinger, Christine

    2016-01-01

    A perpendicular biased ferrite loaded accelerating cavity is studied for a possible upgrade of the CERN accelerator complex which could help to overcome the intensity limitations occurring at the SPS injection. The required accelerating cavity should cover a frequency range of 18 to 40 MHz with high cavity Q, which poses high demands on the ferrite material properties. A test setup is presented to measure the relative permeability and magnetic losses of full scale ferrite garnets (350 mm outer and 200 mm inner diameter) in a magnetic bias field within the frequency range of interest. An one-port reflection measurement provides adequate input to model the relative permeability of the ferrite in numerical simulations for different magnetic bias fields. A resonant measurement setup was used to cross-check simulation results with measurement data and to investigate the magnetic losses of the ferrite material. A numerical model of a simplified accelerating cavity is used to study the capability of the garnet G-510...

  15. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

    Directory of Open Access Journals (Sweden)

    Tayfun Gokmen

    2016-07-01

    Full Text Available In recent years, deep neural networks (DNN have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30,000X compared to state-of-the-art microprocessors while providing power efficiency of 84,000 GigaOps/s/W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things sensors.

  16. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations.

    Science.gov (United States)

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.

  17. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

    Science.gov (United States)

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  18. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Science.gov (United States)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  19. Optimal Design of Multiple Stresses Accelerated Life Test Plan Based on Transforming the Multiple Stresses to Single Stress

    Institute of Scientific and Technical Information of China (English)

    GAO Liang; CHEN Wenhua; QIAN Ping; PAN Jun; HE Qingchuan

    2014-01-01

    For planning optimum multiple stresses accelerated life test plans, a commonly followed guiding principle is that all parameters of the life-stress relationship should be estimated, and the number of the stress level combinations must be no less than the number of parameters of the life-stress relationship. However, the general objective of an accelerated life test(ALT) is to assess thep-th quantile of the product life distribution under normal stress. For this objective,estimating all model parameters is not necessary, and this will increase the cost of test. Based on the theoretical conclusion that the stress level combinations of the optimum multiple stresses ALT plan locate on a straight line through the origin of coordinate, it is proposed that a design idea of planning the optimum multiple stresses ALT plan through transforming the problem of designing an optimum multiple stresses ALT plan to designing an optimum single stress ALT plan. Moreover, a method of planning the optimum multiple stresses ALT plan which can avoid estimating all model parameters is established. An example shows that, the proposed plan which only has two stress level combinations could achieve an accuracy no less than the traditional plan, and save the test time and cost on one stress level combination at least; when the actual product life is less than the design value, even the deviation of the model initial parameters value is up to 20%, the variance of the estimation of thep-th quantile of the proposed plan is still smaller than the traditional plans approximately 25%. A design method is provided for planning the optimum multiple stresses ALT which uses the statistical optimum degenerate test plan as the optimum multiple stresses accelerated life test plan.

  20. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    Science.gov (United States)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  1. Efficacy of split night CPAP titration in moderate and severe obstructive sleep apnea syndrome patients

    Directory of Open Access Journals (Sweden)

    Shereen Farghaly

    2016-01-01

    Conclusion: Split night sleep study is more commonly associated with unsuccessful CPAP titration than full night titration but successful titration could be obtained during split night titration in patients with severe AHI >36.5 event/h.

  2. FDTD Acceleration for Cylindrical Resonator Design Based on the Hybrid of Single and Double Precision Floating-Point Computation

    Directory of Open Access Journals (Sweden)

    Hasitha Muthumala Waidyasooriya

    2014-01-01

    Full Text Available Acceleration of FDTD (finite-difference time-domain is very important for the fields such as computational electromagnetic simulation. We consider the FDTD simulation model of cylindrical resonator design that requires double precision floating-point and cannot be done using single precision. Conventional FDTD acceleration methods have a common problem of memory-bandwidth limitation due to the large amount of parallel data access. To overcome this problem, we propose a hybrid of single and double precision floating-point computation method that reduces the data-transfer amount. We analyze the characteristics of the FDTD simulation to find out when we can use single precision instead of double precision. According to the experimental results, we achieved over 15 times of speed-up compared to the CPU single-core implementation and over 1.52 times of speed-up compared to the conventional GPU-based implementation.

  3. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  4. Delayed resonator with acceleration feedback - Complete stability analysis by spectral methods and vibration absorber design

    Science.gov (United States)

    Vyhlídal, Tomáš; Olgac, Nejat; Kučera, Vladimír

    2014-12-01

    This paper deals with the problem of active vibration suppression using the concept of delayed resonator (DR) absorber with acceleration feedback. A complete dynamic analysis of DR and its coupling with a single degree of freedom mechanical system are performed. Due to the presence of a delay in the acceleration feedback, the dynamics of the resonator itself, as well as the dynamics of combined system are of ‘neutral' character. On this system, spectral methods are applied to perform a complete stability analysis. Particularly, the method of cluster treatment of characteristic roots is used to determine stability boundaries in the space of the resonator parameters. Based on this analysis, a methodology to select the resonator parameters is proposed in order to guarantee desirable suppression characteristics and to provide safe stability margins. An example case study is included to demonstrate these analytical results.

  5. Design and fabrication of a silicon-based MEMS acceleration switch working lower than 10 g

    Science.gov (United States)

    Hwang, Jeongki; Ryu, Daeho; Park, Chihyun; Jang, Seung-gyo; Lee, Chung-il; Kim, Yong-Kweon

    2017-06-01

    This paper reports a low-g MEMS acceleration switch with threshold acceleration below 10 g. The proposed switch is made of single-crystalline silicon for high thermal stability and stress-free structure. A vertical operation type is adopted to enable fine control of the contact surface during the fabrication process. The switch contains displacement-restricting structures in all directions for impact resistance and is packaged with anodic bonding process. The fabricated switches had an average proof mass, initial gap, and spring constant of 307.38 µg, 6.39 µm, and 3.29 N m-1, respectively. Height profile of the free-hanging proof mass was measured to show that the switch does not suffer from stress problems. In the electrostatic operation test, the contact resistance of the switch was varied with contact force and the minimum value was estimated to be 8.5 Ω. The response time of the switch was measured to be shorter than 1.2 ms. The fabricated switch operated more than 10 000 cycles without failure. For the thermal stability test, the switch was heated at 80 °C for 6 h and the switch operated successfully over 200 times. In the rotation-table experiment, the switch operated at 6.61 g and error analysis was carried out in the consideration of tangential force generated during the rotation-table experiment. From the experimental values, the tangential force was calculated as 2.375 µN and the resulting reduction in the initial switching gap was simulated as 0.32 µm. The reduced threshold acceleration thus was estimated to be 6.62 g, which agrees very well with the measured threshold acceleration value of 6.61 g.

  6. Design and Development Tools for the Systems Engineering Experience Accelerator - Part 3

    Science.gov (United States)

    2017-04-29

    Experience Accelerator infrastructure to HTML5 , which allows for more flexibility in developing functionality and interfaces for different experiences, and...interface technology needs to be upgraded from Flash to HTML5 . This is critical for Section 508 compliance, and is a requirement for U.S. Government use...infrastructure to HTML5 is described. The evaluation of the tools is provided next. Finally, the Conclusions and future research are presented. RESEARCH

  7. Measuring the Kinetics of Molecular Association by Isothermal Titration Calorimetry.

    Science.gov (United States)

    Vander Meulen, Kirk A; Horowitz, Scott; Trievel, Raymond C; Butcher, Samuel E

    2016-01-01

    The real-time power response inherent in an isothermal titration calorimetry (ITC) experiment provides an opportunity to directly analyze association kinetics, which, together with the conventional measurement of thermodynamic quantities, can provide an incredibly rich description of molecular binding in a single experiment. Here, we detail our application of this method, in which interactions occurring with relaxation times ranging from slightly below the instrument response time constant (12.5 s in this case) to as large as 600 s can be fully detailed in terms of both the thermodynamics and kinetics. In a binding titration scenario, in the most general case an injection can reveal an association rate constant (kon). Under more restrictive conditions, the instrument time constant-corrected power decay following each injection is simply an exponential decay described by a composite rate constant (kobs), from which both kon and the dissociation rate constant (koff) can be extracted. The data also support the viability of this exponential approach, for kon only, for a slightly larger set of conditions. Using a bimolecular RNA folding model and a protein-ligand interaction, we demonstrate and have internally validated this approach to experiment design, data processing, and error analysis. An updated guide to thermodynamic and kinetic regimes accessible by ITC is provided.

  8. Design and optimization of Compact Linear Collider main linac accelerating structure

    Science.gov (United States)

    Zha, Hao; Grudiev, Alexej

    2016-11-01

    The Compact Linear Collider (CLIC) main linac uses waveguide damped structure as its baseline design. The current baseline structure design written in the CLIC Conceptual Design Report is named "CLIC-G." Recent activities on the CLIC-G design including high power tests on structure prototypes and the study of machining cost assessment had raised the need of reoptimizing the structure design to minimize the machining cost and the pulse surface temperature rise. This work presents optimization of the structure geometry, high-order-mode (HOM) damping loads and the design of a HOM-free power splitter for the input coupler. Compared to the current baseline design CLIC-G, the new structure design reduced the pulse surface temperature rise, input power and manufacturing cost and achieves better suppression to the long range transverse wakefield. Cell disks and damping loads for the new structure design are also more compact than those of the CLIC-G design.

  9. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  10. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  11. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    Science.gov (United States)

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  12. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, A.A.; Girola, S. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Valda, A.A., E-mail: valda@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Minsky, D.M.; Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)] [CONICET, Buenos Aires (Argentina); Sanchez, G. [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)

    2011-12-15

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: Black-Right-Pointing-Pointer Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. Black-Right-Pointing-Pointer Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. Black-Right-Pointing-Pointer Calculations: Monte Carlo simulations with the MCNP code. Black-Right-Pointing-Pointer Measured and calculated figure-of-merit parameters in agreement with those of IAEA. Black-Right-Pointing-Pointer Initial MCNP dose calculations for a treatment room to define future design actions.

  13. Automatic photometric titration procedure based on multicommutation and flow-batch approaches employing a photometer based on twin LEDs

    OpenAIRE

    Silva,Milton B. da; Crispino,Carla C.; REIS, Boaventura F.

    2010-01-01

    In this work, a reliable and inexpensive photometer based on twin LEDs assembled as a radiation source and as a photodetector is described. The setup including the photometer and flow system module was designed to implement an automated titration procedure employing the multicommuted flow injection analysis (MCFIA) process. The proposed system was able to carry out photometric titration without using analytical curve to achieve the sample concentration. Its usefulness was proven by analyzing ...

  14. The Summary for Optimization of the Annular Coupled Structure Accelerating Module Physical Design for High Intensity Hadron Linac

    CERN Document Server

    Paramonov, Valentin

    2013-01-01

    The normal conducting Annular Coupled Structure (ACS) is applied for 190-400 MeV part of high intensity proton linac for the J-PARC. The ACS operating frequency is 972 MHz. The J-PARC ACS is strongly based on the results of previous investigations, especially results of Japan Hadron Project (JHP) research program in KEK. However, the design was revised and optimized to meet the requirements of reliability, operation efficiency and cost reduction. The cells shape of accelerating cells was optimized in total energy range to have high shunt impedance value together with the careful matching with the decreased coupling cells. The design of the bridge coupler cells was optimized to simplify mass production and shape of RF input cell together with matching window were optimized for higher operational reliability. Collected and adjusted all together, these modifications result in the significant effect. The ACS module design doesn't lose to another possible accelerating structures in RF parameters and dimensions. Pr...

  15. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    Science.gov (United States)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  16. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.

    Science.gov (United States)

    Allen, D A; Beynon, T D; Green, S

    1999-01-01

    This paper is concerned with the proposed Birmingham accelerator-based epithermal neutron beam for boron neutron capture therapy (BNCT). In particular, the option of producing a therapy beam at an orthogonal direction to the incoming protons is considered. Monte Carlo radiation transport simulations, both with and without a head phantom, have shown that an orthogonal beam geometry is not only acceptable but is indeed beneficial, in terms of a lower mean neutron energy and an enhanced therapeutic ratio for the same useful neutron fluence in the therapy beam. Typical treatment times for various beam options have been calculated, and range from 20 to 48 min with a 5 mA beam of 2.8 MeV protons, if the maximum photon-equivalent dose delivered to healthy tissue is to be 12.6 Gy Eq. The effects of proton beam diameter upon the therapy beam parameters have also been considered.

  17. Design Concepts for RF-DC Conversion in Particle Accelerator Systems

    CERN Document Server

    Caspers, F; Grudiev, A; Sapotta, H

    2010-01-01

    In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that have come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments of the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which have been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

  18. Isothermal titration calorimetry of ion-coupled membrane transporters.

    Science.gov (United States)

    Boudker, Olga; Oh, SeCheol

    2015-04-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biophysical characterization of antibodies with isothermal titration calorimetry

    Directory of Open Access Journals (Sweden)

    Verna Frasca

    2016-07-01

    Full Text Available Antibodies play a key role in the immune response. Since antibodies bind antigens with high specificity and tight affinity, antibodies are an important reagent in experimental biology, assay development, biomedical research and diagnostics. Monoclonal antibodies are therapeutic drugs and used for vaccine development. Antibody engineering, biophysical characterization, and structural data have provided a deeper understanding of how antibodies function, and how to make better drugs. Isothermal titration calorimetry (ITC is a label-free binding assay, which measures affinity, stoichiometry, and binding thermodynamics for biomolecular interactions. When thermodynamic data are used together with structural and kinetic data from other assays, a complete structure-activity-thermodynamics profile can be constructed. This review article describes ITC, and discusses several applications on how data from ITC provides insights into how antibodies function, guide antibody engineering, and aid design of new therapeutic drugs.

  20. Increasing titration speed by using an end paint anticipator device

    OpenAIRE

    2001-01-01

    A simple device is described for use in any titrations with the objective of rapidly locating the vicinity of the end point of a titration. The device stores inside about 10% of a 10 mL titrand solution. The titration itself proceeds with rapid addition of titrant until the end point is passed. The anticipator device now starts to rotate, using a dc motor, which is turned on by a micro-computer. The solution stored in the device is mixed with the already titrated solution and the property bei...

  1. Integrated design of superconducting accelerator magnets a case study of the main quadrupole

    CERN Document Server

    Russenschuck, Stephan; Lewin, M; Paul, C; Ramberger, S; Rodríguez-Mateos, F; Tortschanoff, Theodor; Verweij, A P; Wolf, R

    1998-01-01

    This paper describes the software tool which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. Applied methods include numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software tool is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, which was designed at C.E.A. Saclay (France) using a different approach, was chosen as an example for the integrated design process. The paper focuses on the design issues and is not a project report on the main quadrupoles under construction.

  2. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Fang Yan

    2015-05-01

    Full Text Available The 10 MeV accelerator-driven subcritical system (ADS Injector I test stand at Institute of High Energy Physics (IHEP is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC spoke cavities with β=0.12. The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β=0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ∼5  MeV. Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  3. A Full Automatic Device for Sampling Small Solution Volumes in Photometric Titration Procedure Based on Multicommuted Flow System

    Science.gov (United States)

    Borges, Sivanildo S.; Vieira, Gláucia P.; Reis, Boaventura F.

    2007-01-01

    In this work, an automatic device to deliver titrant solution into a titration chamber with the ability to determine the dispensed volume of solution, with good precision independent of both elapsed time and flow rate, is proposed. A glass tube maintained at the vertical position was employed as a container for the titrant solution. Electronic devices were coupled to the glass tube in order to control its filling with titrant solution, as well as the stepwise solution delivering into the titration chamber. The detection of the titration end point was performed employing a photometer designed using a green LED (λ=545 nm) and a phototransistor. The titration flow system comprised three-way solenoid valves, which were assembled to allow that the steps comprising the solution container loading and the titration run were carried out automatically. The device for the solution volume determination was designed employing an infrared LED (λ=930 nm) and a photodiode. When solution volume delivered from proposed device was within the range of 5 to 105 μl, a linear relationship (R = 0.999) between the delivered volumes and the generated potential difference was achieved. The usefulness of the proposed device was proved performing photometric titration of hydrochloric acid solution with a standardized sodium hydroxide solution and using phenolphthalein as an external indicator. The achieved results presented relative standard deviation of 1.5%. PMID:18317510

  4. ROXIE A Computer Code for the Integrated Design of Accelerator Magnets

    CERN Document Server

    Russenschuck, Stephan

    1998-01-01

    The paper describes the ROXIE software program package which has been developed for the design of the superconducting magnets for the LHC at CERN. The software is used as an approach towards the integrated design of superconducting magnets including feature-based coil geometry creation, conceptual design using genetic algorithms, optimization of the coil and iron cross-sections using a reduced vector-potential formulation, 3-D coil end geometry and field optimization using deterministic vector-optimization techniques, tolerance analysis, production of drawings by means of a DXF interface, end-spacer design with interfaces to CAD-CAM for the CNC machining of these pieces, and the tracing of manufacturing errors using field quality measurements.

  5. Isothermal Titration Calorimetry to Characterize Enzymatic Reactions.

    Science.gov (United States)

    Mazzei, Luca; Ciurli, Stefano; Zambelli, Barbara

    2016-01-01

    Isothermal titration calorimetry (ITC) is a technique that measures the heat released or absorbed during a chemical reaction as an intrinsic probe to characterize any chemical process that involves heat changes spontaneously occurring during the reaction. The general features of this method to determine the kinetic and thermodynamic parameters of enzymatic reactions (kcat, KM, ΔH) are described and discussed here together with some detailed applications to specific cases. ITC does not require any modification or labeling of the system under analysis, can be performed in solution, and needs only small amounts of enzyme. These properties make ITC an invaluable, powerful, and unique tool to extend the knowledge of enzyme kinetics to drug discovery. © 2016 Elsevier Inc. All rights reserved.

  6. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    Science.gov (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. © 2015 Wiley Periodicals, Inc.

  7. Accelerated design and quality control of impact modifiers for plastics through atomic force microscopy (AFM) analysis

    Science.gov (United States)

    Moeller, Gunter

    2011-03-01

    Standard polymer resins are often too brittle or do not meet other mechanical property requirements for typical polymer applications. To achieve desired properties it is common to disperse so called ``impact modifiers'', which are spherical latex particles with diameters of much less than one micrometer, into the pure resin. Understanding and control of the entire process from latex particle formation to subsequent dispersion into polymer resins are necessary to accelerate the development of new materials that meet specific application requirements. In this work AFM imaging and nanoindentation techniques in combination with AFM-based spectroscopic techniques were applied to assess latex formation and dispersion. The size and size distribution of the latex particles can be measured based on AFM amplitude modulation images. AFM phase images provide information about the chemical homogeneity of individual particles. Nanoindentation may be used to estimate their elastic and viscoelastic properties. Proprietary creep and nanoscale Dynamic Mechanical Analysis (DMA) tests that we have developed were used to measure these mechanical properties. The small size of dispersed latex inclusions requires local mechanical and spectroscopic analysis techniques with high lateral and spatial resolution. We applied the CRAVE AFM method, developed at NIST, to perform mechanical analysis of individual latex inclusions and compared results with those obtained using nanoscale DMA. NanoIR, developed by Anasys Inc., and principal component confocal Raman were used for spectroscopic analysis and results from both techniques compared.

  8. Developments in the design of proton and ion accelerators for medical use

    CERN Document Server

    Bryant, P J

    1998-01-01

    Accelerators and medicine have been close companions since cyclotrons first made biological studies with particle beams possible in the 1930s. Later improvements, such as H-minus (H-) extraction, made cyclotrons the foremost, commercially-available producer of medical isotopes. Although the world's first hospital-based proton treatment centre, Loma Linda, uses a synchrotron, the cyclotron is now al so establishing a dominance in proton centres using passive beam spreading. However, two trends indicate a slightly different direction. The first is towards light ions and the second is towards 'penc il' beam scanning with active energy control. Together, these point to a new generation of synchrotrons with slow-beam-extraction systems that allow time for on-line dosimetry and provide very smooth spills. There are several variants for the slow extraction including the use of a betatron core and rf knockout. There are also methods for improving the spill quality such as rf channelling buckets a nd rf noise. The use...

  9. Design and characterization of the DC acceleration and transport system required for the FOM 1 MW free electron maser experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab., CA (United States); Urbanus, W.H.; Geer, C. van der [FOM-Institut voor Plasma Fysica, Nieuwegein (Netherlands)] [and others

    1995-12-31

    A Free Electron Maser (FEM) has been constructed and is soon to be tested at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz. The design uses a DC beam system in a depressed collector configuration in order to make the overall wall plug efficiency 50%. The high voltage ({approximately} 2 MeV) power supply provides only the body interception current ({approximately} 30 mA) while the 12 amp beam current is supplied by the 100-200 keV collector supplies. Some of the design features to ensure low interception current, which is critical to long pulse (CW) operation are: (1) DC beam in-line transport and acceleration system, (2) emittance conserving solenoid focusing system, (3) halo suppression techniques at cathode edge, and (4) very low beam fill factor (<20%). A relativistic version of the Herman Optical theory developed for microwave tubes is used to determine current distribution functions everywhere along the beam from the electron gun, through the DC accelerator and transport system to the wiggler. This theory takes into account thermals far out on the gaussian tail which translates into beam current far outside the ideal beam edge. This theory is applied to the FOM beam line design to predict a series of beam envelope contours containing various percentages of total beam current up to 99.9%. Predictions of body interception current due to finite emittance (effective temperature) are presented and compared with measured experimental results.

  10. Conceptual design for accelerator-driven sodium-cooled sub-critical transmutation reactors using scale laws

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates the reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scaled and verified through the methodology in this paper, which is referred to Advanced Liquid Metal Reactor (ALMR). A Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the integrated code system. Integrated Code System (ICS) consists of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related regions are analyzed once-through Results of conceptual design are attached in this paper. 5 refs., 4 figs., 1 tab. (Author)

  11. OPTIMUM PARAMETERS AND DESIGN OFTUNED MASS DAMPER FOR BUILDINGFRAMES UNDER GROUND ACCELERATION

    Institute of Scientific and Technical Information of China (English)

    李春祥

    2001-01-01

    For the purpose of comparison and applications, two criteria for the optimum searching are considered, which are the minimization of the minimum of the maximum dynamic magnification factor(Min. Min. Max. DMF) and the minimization of the minimum dynamic reduction factor (Min.Min.DRF). A study is carried out to investigate the applicability of designing TMD utilizing the unit modal participation factor. In addition, the design steps for the building frame with TMD are suggested. It is demonstrated that significant reduction in the response can be achieved by adopting the optimum TMD parameters in the present paper.

  12. Software design for a database driven system for accelerator magnet measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.C.; Bleadon, M.E.; Glass, H.D.; Glosson, R.; Hanft, R.W.; Harding, D.J.; Mazur, P.O.; Pachnik, J.E.; Sim, J.W.; Trombly-Freytag, K.; Walbridge, D.G.

    1991-05-01

    Measurements of more than 1000 new magnets are needed for the Main Injector Project at Fermilab. In order to achieve efficiency and accuracy in measurements, we chose a database driven design for control of the measurement system. We will use a relational database to describe the measurement subjects and equipment. A logbook system defined in the database will provide for prescription of measurements to be carried out, description of measurements as they are carried out, and a comment database for less structured information. The operator interface will be built on X-windows. This paper will describe our system design. 2 refs.

  13. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  14. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Araya, Million; /SLAC

    2015-08-25

    SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  15. Acceleration of solving the dynamic multi-objective network design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, L.J.J.; Berkum, van E.C.; Bliemer, M.C.J.

    2014-01-01

    Optimization of externalities and accessibility using dynamic traffic management measures on a strategic level is a specific example of solving a multi-objective network design problem. Solving this optimization problem is time consuming, because heuristics like evolutionary multi objective algorith

  16. Accelerating solving the dynamic multi-objective nework design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, Luc J.J.; Berkum, van Eric C.; Bliemer, Michiel C.J.

    2011-01-01

    Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface me

  17. A microfabrication-based approach to quantitative isothermal titration calorimetry.

    Science.gov (United States)

    Wang, Bin; Jia, Yuan; Lin, Qiao

    2016-04-15

    Isothermal titration calorimetry (ITC) directly measures heat evolved in a chemical reaction to determine equilibrium binding properties of biomolecular systems. Conventional ITC instruments are expensive, use complicated design and construction, and require long analysis times. Microfabricated calorimetric devices are promising, although they have yet to allow accurate, quantitative ITC measurements of biochemical reactions. This paper presents a microfabrication-based approach to integrated, quantitative ITC characterization of biomolecular interactions. The approach integrates microfabricated differential calorimetric sensors with microfluidic titration. Biomolecules and reagents are introduced at each of a series of molar ratios, mixed, and allowed to react. The reaction thermal power is differentially measured, and used to determine the thermodynamic profile of the biomolecular interactions. Implemented in a microdevice featuring thermally isolated, well-defined reaction volumes with minimized fluid evaporation as well as highly sensitive thermoelectric sensing, the approach enables accurate and quantitative ITC measurements of protein-ligand interactions under different isothermal conditions. Using the approach, we demonstrate ITC characterization of the binding of 18-Crown-6 with barium chloride, and the binding of ribonuclease A with cytidine 2'-monophosphate within reaction volumes of approximately 0.7 µL and at concentrations down to 2mM. For each binding system, the ITC measurements were completed with considerably reduced analysis times and material consumption, and yielded a complete thermodynamic profile of the molecular interaction in agreement with published data. This demonstrates the potential usefulness of our approach for biomolecular characterization in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  19. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    Science.gov (United States)

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  20. Quantitative Analysis of Sulfate in Water by Indirect EDTA Titration

    Science.gov (United States)

    Belle-Oudry, Deirdre

    2008-01-01

    The determination of sulfate concentration in water by indirect EDTA titration is an instructive experiment that is easily implemented in an analytical chemistry laboratory course. A water sample is treated with excess barium chloride to precipitate sulfate ions as BaSO[subscript 4](s). The unprecipitated barium ions are then titrated with EDTA.…

  1. The coulometric titration of acids and bases in dimethylsulfoxide media

    NARCIS (Netherlands)

    Bos, M.; IJpma, S.T.; Dahmen, E.A.M.F.

    1976-01-01

    The coulometric titration of 20–200 μeq of acids and bases in DMSO media is described. In the titration of bases, the electro-oxidation of hydrogen at a platinized platinum electrode is used as the source of protons. The conditions for 100 % current efficiency at this electrode are low current

  2. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy.

    Science.gov (United States)

    Inoue, R; Hiraga, F; Kiyanagi, Y

    2014-06-01

    An accelerator based BNCT has been desired because of its therapeutic convenience. However, optimal design of a neutron moderator system is still one of the issues. Therefore, detailed studies on materials consisting of the moderator system are necessary to obtain the optimal condition. In this study, the epithermal neutron flux and the RBE dose have been calculated as the indicators to look for optimal materials for the filter and the moderator. As a result, it was found that a combination of MgF2 moderator with Fe filter gave best performance, and the moderator system gave a dose ratio greater than 3 and an epithermal neutron flux over 1.0×10(9)cm(-2)s(-1).

  3. Requirements for design of accelerator, beam transport, and target in a study of thermonuclear reaction cross section

    Energy Technology Data Exchange (ETDEWEB)

    Itahashi, T.; Takahisa, K.; Fujiwara, M.; Toki, H.; Ejiri, H. [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Ohsumi, H.; Komori, M.

    1997-03-01

    A compact accelerator with high current ion source, low energy beam transport elements and windowless gas target was designed to investigate the thermonuclear reaction cross section. The idea of this project focused on the cross section measurement of the fusion reaction data {sup 3}He+{sup 3}He-{sup 4}He+p+p at 25keV. The system will be installed in Otoh Cosmo Observatory (1270m.w.e.) to get rid of the huge cosmic and environmental background. It consists of NANOGUN ECR ion source, focusing elements made of permanent magnets window less {sup 3}He gas target and/or He{sup 3} plasma target and detector telescopes with low noise and low background. Requirements for these were discussed technically and various ideas were proposed. (author)

  4. COMPILATION OF REGIONAL CONSTRUCTION CATALOGUES AS A RELEVANT METHOD OF QUALITY IMPROVEMENT AND ACCELERATION OF DESIGN DEVELOPMENT AND CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Granev Viktor Vladimirovich

    2012-10-01

    Full Text Available The article represents the overview of unification and standardization processes, and their impact on the construction sector in the new social and economic environment of Russia. The expediency of compilation of regional construction catalogues as the drivers of accelerated construction works, construction quality improvement, and profitability. The proposed methodology and the expert opinion principles that serve as its basis may be applied to other sections of regional (territorial construction catalogues. No national economy, regions or territories can pursue their development absent of the construction sector; therefore, a scientific approach to the organization of the process of designing, construction and operation of buildings and structures on the basis of regional unification and regional catalogues of solutions encompassing construction operations, structures and products are of particular relevance.

  5. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  6. Design, Implementation, and Test of a Multi-Model Systolic Neural-Network Accelerator

    Directory of Open Access Journals (Sweden)

    Thierry Cornu

    1996-01-01

    Full Text Available A multi-model neural-network computer has been designed and built. A compute-intensive application in the field of power-system monitoring, using the Kohonen neural network, has then been ported onto this machine. After a short description of the system, this article focuses on the programming paradigm adopted. The performance of the machine is also evaluated and discussed.

  7. Design and Implementation of GDI Accelerator%GDI函数硬件加速器设计与实现

    Institute of Scientific and Technical Information of China (English)

    王汐; 蒋林; 张敏

    2014-01-01

    This paper designs and implements the accelerator circuit for Microsoft GDI AlphaBlend 、BitBlt、MaskBlt、StretchBlt、TransparentBlt functions ;Put forward a kind of efficient scale structure ,improve the handling capacity of the images , after consider Data Dependence of Scaling algorithm . The FPGA output is in accordance with Microsoft GDI . Compared with Marvell PXA300 has obvious improvement in performance . In addition , the operating frequency can reach 203 MHz with SMIC 0 .13 μm standard CMOS cell library using Design Compiler .%设计实现了加速Microsoft GDI中AlphaBlend、BitBlt、MaskBlt、StretchBlt、TransparentBlt等函数的硬件结构;对函数实现中缩放算法的数据相关性进行研究,提出一种高效的缩放结构,与Marvell PXA300相比性能有明显提升.并且使用FPGA对本结构进行验证,结果与Microsoft GDI一致,在SMIC 0.13μm CMOS工艺标准单元库下使用Design Compiler进行综合,频率可达203 M Hz .

  8. A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-06-15

    High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.

  9. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  10. ACCELERATOR PHYSICS CHALLENGES IN THE DESIGN OF MULTI-BEND-ACHROMAT-BASED STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Hettel, R.; Leemann, S. C.; Robin, D. S.

    2017-06-01

    With the recent success in commissioning of MAX IV, the multi-bend achromat (MBA) lattice has begun to deliver on its promise to usher in a new generation of higher-brightness synchrotron light sources. In this paper, we begin by reviewing the challenges, recent success, and lessons learned of the MAX-IV project. Drawing on these lessons, we then describe the physics challenges in even more ambitious rings and how these can be met. In addition, we touch on engineering issues and choices that are tightly linked with the physics design.

  11. Design Study of Full Scale Accelerator Driven System (ADS, for Transmuting High Level Waste of MA/Pu

    Directory of Open Access Journals (Sweden)

    Marsodi

    2008-07-01

    Full Text Available The ADS system used in this study consisting of a high intensity proton linear accelerator, a spallation target, and a sub-critical reactor core. The Pb-Bi spallation target is bombarded by high intensity protons coming from the accelerator. The fast neutrons generated from the spallation reaction were used to drive the sub-critical reactor core. In this ADS system, the neutron source is in the center of reactor core region, so that the neutron distribution was concentrated in the center of core region. In this case, the B/T of MA/Pu could be performed effectively in the center of core region. The neutron energy in the outer region of reactor core was decreased due to the moderation of fuel and coolant materials. Such condition gives a chance to perform Burning and/or Transmutation of LLFPs.The basic parameters of this system are shown in the form of neutronic design, neutron spectrum and B/T rate, including other aspects related to the safety operation system. Furthermore, the analysis of the ADS system was accomplished using ATRAS computer code of the Japan Atomic Energy Research Institute, JAERI[1]. Due to the complexity of the reactor calculation codes, the author has carried out only those calculations needed for analyzing the neutronics system and some parameters related to the safety system. Design study of the transmutation system was a full-scale power level system of 657.53 MWt sub-critical reactor for an accelerator-driven transmutation system. The liquid Pb-Bi was used together as the spallation target materials and coolant of the system, because of some advantages of Pb-Bi in the system concerning the comparison with the sodium coolant. Moreover, they have a possibility to achieve a hard neutron energy spectrum, avoid a positive void reactivity coefficient, allow much lower system operating temperatures, and are favorable for safety in the event of coolant leakage. The multiplication factor of sub-critical core design was adjusted

  12. Design, construction and start up by Air Liquide of two 18 kW at 45 K helium refrigerators for the new CERN accelerator (LHC)

    CERN Document Server

    Dauguet, P; Delcayre, F; Ghisolfi, A; Gistau-Baguer, Guy M; Guerin, C A; Hilbert, B; Marot, G; Monneret, E

    2004-01-01

    CERN in Switzerland is presently building a new particle accelerator labeled as the LHC. This 27 km accelerator will, for the first time at such a large scale, operate at cryogenic temperatures with superconducting magnets and radio-frequency cavities. For that purpose, Air Liquide has designed, constructed and started up two custom designed refrigerators. The cryogenic power of each of these refrigerators is equivalent to 18 kW at 4.5 K. In order to produce the cryogenic power requested by the LHC accelerator at the different temperature levels with a very high efficiency, a custom design thermodynamic cycle has been chosen. This cycle, the major components of the refrigerators and the results obtained during the reception tests of the refrigerators are presented in this paper.

  13. Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons

    Science.gov (United States)

    Salas Pereira, Ruben Mario

    2003-06-01

    In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon corrosion damage, several reported failures of individual tendons as well as a few collapses of non-typical structures. While experience in the USA has been generally good, some foreign experience has been less than satisfactory. This dissertation is part of a comprehensive research program started in 1993, which has the objectives to examine the use of post-tensioning in bridge substructures, identify durability concerns and existing technology, develop and carry out an experimental testing program, and conclude with durability design guidelines. Three experimental programs were developed: A long term macrocell corrosion test series, to investigate corrosion protection for internal tendons in precast segmental construction; a long term beam corrosion test series, to examine the effects of post-tensioning on corrosion protection as affected by crack width; and, a long term column corrosion test series, to examine corrosion protection in vertical elements. Preliminary design guidelines were developed previously in the overall study by the initial researchers, after an extensive literature review. This dissertation scope includes continuation of exposure testing of the macrocell, beam and column specimens, performing comprehensive autopsies of selected specimens and updating the durability design guidelines based on the exposure testing and autopsy results. After autopsies were performed, overall findings indicate negative durability effects due to the use of mixed reinforcement, small concrete covers, galvanized steel ducts, and industry standard or heat-shrink galvanized duct splices. The width of cracks was shown to have a direct negative effect on specimen performance. Grout voids were found to be detrimental to the

  14. Design Study for 10MHz Beam Frequency of Post-Accelerated RIBs at HIE-ISOLDE

    CERN Document Server

    Fraser, M A; Magdau, I B

    2013-01-01

    An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28MHz REX (Radioactive ion beam EXperiment) RFQ [1] with a subharmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.

  15. Computer-aided molecular design of solvents for accelerated reaction kinetics.

    Science.gov (United States)

    Struebing, Heiko; Ganase, Zara; Karamertzanis, Panagiotis G; Siougkrou, Eirini; Haycock, Peter; Piccione, Patrick M; Armstrong, Alan; Galindo, Amparo; Adjiman, Claire S

    2013-11-01

    Solvents can significantly alter the rates and selectivity of liquid-phase organic reactions, often hindering the development of new synthetic routes or, if chosen wisely, facilitating routes by improving rates and selectivities. To address this challenge, a systematic methodology is proposed that quickly identifies improved reaction solvents by combining quantum mechanical computations of the reaction rate constant in a few solvents with a computer-aided molecular design (CAMD) procedure. The approach allows the identification of a high-performance solvent within a very large set of possible molecules. The validity of our CAMD approach is demonstrated through application to a classical nucleophilic substitution reaction for the study of solvent effects, the Menschutkin reaction. The results were validated successfully by in situ kinetic experiments. A space of 1,341 solvents was explored in silico, but required quantum-mechanical calculations of the rate constant in only nine solvents, and uncovered a solvent that increases the rate constant by 40%.

  16. Titration procedure for low ethoxylated nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany); Huelskoetter, F. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany)

    1997-01-01

    Highly lipophilic surfactants are frequently used as emulsifiers for preparing oil-in-water emulsions (e.g. coolants lubricants). Typical surfactants used for this purpose are low ethoxylated alcohols and ethoxylated alkylphenols. Due to the low degree of ethoxylation they cannot be analysed by conventional methods. The method described in this article is based on the introduction of an anionic group into the molecule by a derivatization reaction. The reaction product can be determined by conventional titration methods for anionic surfactants without any modification. The use of the new method for other nonionic surfactants like sorbitan esters, (ethoxylated) fatty acid amides or glycerol fatty acid partial esters is also described as well as the sample preparation for coolants lubricants. (orig.) [Deutsch] Lipophile Tenside werden haeufig zur Herstellung von Oel-in-Wasser-Emulsionen verwandt, wie sie beispielsweise in Kuehlschmiermitteln eingesetzt werden. Typische Vertreter dieser Tenside sind niedrig ethoxylierte Fettalkohole und Alkylphenole. Wegen ihres geringen Ethoxylierungsgrades koennen sie mit den konventionellen Methoden nicht analytisch bestimmt werden. Die hier beschriebene Analysenmethode beruht auf der Derivatisierung der Ethoxylate zu entsprechenden anionischen Tensiden (Ethersulfate). Diese koennen ohne weiteres mit den etablierten Titrationsverfahren bestimmt werden. Die Anwendung dieses neuen Verfahrens auf die Bestimmung anderer nichtionischer Tenside - Sorbitanester, (ethoxylierte) Fettsaeureamide und Partialglyceride - wird ebenso beschrieben wie die Probenvorbereitung fuer die Analyse von Kuehlschmiermitteln. (orig.)

  17. Null space imaging: nonlinear magnetic encoding fields designed complementary to receiver coil sensitivities for improved acceleration in parallel imaging.

    Science.gov (United States)

    Tam, Leo K; Stockmann, Jason P; Galiana, Gigi; Constable, R Todd

    2012-10-01

    To increase image acquisition efficiency, we develop alternative gradient encoding strategies designed to provide spatial encoding complementary to the spatial encoding provided by the multiple receiver coil elements in parallel image acquisitions. Intuitively, complementary encoding is achieved when the magnetic field encoding gradients are designed to encode spatial information where receiver spatial encoding is ambiguous, for example, along sensitivity isocontours. Specifically, the method generates a basis set for the null space of the coil sensitivities with the singular value decomposition and calculates encoding fields from the null space vectors. A set of nonlinear gradients is used as projection imaging readout magnetic fields, replacing the conventional linear readout field and phase encoding. Multiple encoding fields are used as projections to capture the null space information, hence the term null space imaging. The method is compared to conventional Cartesian SENSitivity Encoding as evaluated by mean squared error and robustness to noise. Strategies for developments in the area of nonlinear encoding schemes are discussed. The null space imaging approach yields a parallel imaging method that provides high acceleration factors with a limited number of receiver coil array elements through increased time efficiency in spatial encoding.

  18. Design and fabrication of a continuous wave electron accelerating structure; Projeto e construcao de uma estrutura aceleradora de eletrons de onda continua

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jiro

    1997-07-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  19. Analysis of the Purity of Cetrimide by Titrations

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Rasmussen, Claus/Dallerup; Nielsen, Hans/Boye

    2006-01-01

    The purity of cetrimide, trimethyl tetradecyl ammonium bromide (TTAB), that is an important preservative of many cosmetic and pharmaceutical products, was determined by three independent methods of titration. Traditionally, cetrimide was analysed by an assay method of the European Pharmacopoeia (Ph....... Eur.), which showed consistently a low purity of cetrimide with large standard deviations associated, however. A systematic 3% bias of the Ph. Eur. assay method was identified by comparing the result with results of two alternative methods of titration that exhibited high precision and high accuracy....... Titration by perchloric acid showed a 99.69 ± 0.05 % purity of cetrimide and titration by silver nitrate showed a 99.85% ± 0.05 % purity while the traditional assay method predicted a purity of only 97.1 ± 0.4. It was found that the discrepancy could be identified as differences in selectivity during...

  20. A microcomputer-controlled system for titration analysis

    NARCIS (Netherlands)

    Boelema, Gerrit Jan

    1982-01-01

    This thesis deals with the results of the implementation of microprocessor technology in automatic titration equipment to obtain a versatile system for pharmaceutical, chemical analytical and optimization research purposes. ... Zie: Summary

  1. A Titration Technique for Demonstrating a Magma Replenishment Model.

    Science.gov (United States)

    Hodder, A. P. W.

    1983-01-01

    Conductiometric titrations can be used to simulate subduction-setting volcanism. Suggestions are made as to the use of this technique in teaching volcanic mechanisms and geochemical indications of tectonic settings. (JN)

  2. Titrated oral misoprostol solution- a new method of labour induction ...

    African Journals Online (AJOL)

    Titrated oral misoprostol solution- a new method of labour induction. ... a cheap, stable, orally active prostaglandin analogue, is effective for labour induction ... misoprostol doses commencing with 20 μg, increased after three doses to 40 μg.

  3. Complexometric Titration of Zinc: An Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Novick, S. G.

    1997-12-01

    Complexometric titrations with EDTA have traditionally been performed in undergraduate analytical chemistry courses to determine the calcium or magnesium content of water. These titrations are performed at a basic pH, where the formation constants of Ca-EDTA and Mg-EDTA complexes are high. These types of problems are well-treated in the analytical chemistry textbooks. In contrast, treatment of metal ions whose EDTA complexes occur significantly at low pH (e.g., Zn2+, Fe3+, Cu2+, Ni2+, Pb2+, Al3+) is sparse. An incorrect conclusion can be reached by the student that practical EDTA titrations are only performed at high pH. In addition, widening the window of possible metal ions for complexometric titration affords the possibility of analyzing real world products, such as the cold lozenges discussed in the article.

  4. Microscope Titration and Extraction of DNA from Liver.

    Science.gov (United States)

    Mayo, Lois T.; And Others

    1993-01-01

    Describes a simple and inexpensive, one-period activity to extract DNA to make the study of DNA less abstract. A microscope titration is used to determine when cells are ready for DNA extraction. (PR)

  5. Microscope Titration and Extraction of DNA from Liver.

    Science.gov (United States)

    Mayo, Lois T.; And Others

    1993-01-01

    Describes a simple and inexpensive, one-period activity to extract DNA to make the study of DNA less abstract. A microscope titration is used to determine when cells are ready for DNA extraction. (PR)

  6. Depression may reduce adherence during CPAP titration trial

    National Research Council Canada - National Science Library

    Law, Mandy; Naughton, Matthew; Ho, Sally; Roebuck, Teanau; Dabscheck, Eli

    2014-01-01

    Depression is a risk factor for medication non-compliance. We aimed to identify if depression is associated with poorer adherence during home-based autotitrating continuous positive airway pressure (autoPAP) titration...

  7. Titration microcalorimetry of adsorption processes in aqueous systems

    NARCIS (Netherlands)

    Blandamer, Michael J.; Briggs, Barbara; Cullis, Paul M.; Irlam, Keith D.; Engberts, Jan B.F.N.; Kevelam, Jan

    1998-01-01

    Procedures are described for analysing enthalpograms characterising adsorption by macromolecules in solution recorded using a titration microcalorimeter. The experimental procedure involves injecting small aliquots of a solution containing adsorbate into a sample cell containing a solution of macrom

  8. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  9. A fully automatic system for acid-base coulometric titrations

    OpenAIRE

    1990-01-01

    An automatic system for acid-base titrations by electrogeneration of H+ and OH- ions, with potentiometric end-point detection, was developed. The system includes a PC-compatible computer for instrumental control, data acquisition and processing, which allows up to 13 samples to be analysed sequentially with no human intervention. The system performance was tested on the titration of standard solutions, which it carried out with low errors and RSD. It was subsequently applied to the analysis o...

  10. Compliance by Design: Influence of Acceleration Trade-offs on CO2 Emissions and Costs of Fuel Economy and Greenhouse Gas Regulations.

    Science.gov (United States)

    Whitefoot, Kate S; Fowlie, Meredith L; Skerlos, Steven J

    2017-09-19

    The ability of automakers to improve the fuel economy of vehicles using engineering design modifications that compromise other performance attributes, such as acceleration, is not currently considered when setting fuel economy and greenhouse-gas emission standards for passenger cars and light trucks. We examine the role of these design trade-offs by simulating automaker responses to recently reformed vehicle standards with and without the ability to adjust acceleration performance. Results indicate that acceleration trade-offs can be important in two respects: (1) they can reduce the compliance costs of the standards, and (2) they can significantly reduce emissions associated with a particular level of the standards by mitigating incentives to shift sales toward larger vehicles and light trucks relative to passenger cars. We contrast simulation-based results with observed changes in vehicle attributes under the reformed standards. We find evidence that is consistent with firms using acceleration trade-offs to achieve compliance. Taken together, our analysis suggests that acceleration trade-offs play a role in automaker compliance strategies with potentially large implications for both compliance costs and emissions.

  11. Requirements for design of accelerator, beam transport, and target in a study of thermonuclear reaction cross section

    Energy Technology Data Exchange (ETDEWEB)

    Itahashi, T.; Takahisa, K.; Ohsumi, H.; Komori, M.; Fujiwara, M.; Toki, H. [Osaka Univ., Suita (Japan)

    1997-02-01

    The process of pp-de{sup +}{nu} is the basic fusion reaction for hydrogen burning in the sun and the prime reaction in chain producing photons and neutrinos. There are many works of the theoretical estimation of the reaction rate in the reaction chain in the sun. The precise measurement of the nutrinos from the sun is one of the most important current physics issues. The rate of the pp-de{sup +}{nu} is too small to be measured in laboratories. The construction of a compact ion accelerator facility with high current, low energy transport and plasma target is planned at the underground laboratory in Otoh Cosmo Observatory of Research Center for Nuclear Physics. The plasma target by using the EBIS type synthesized plasma was proposed as a bare {sup 3}He target. The production of helium ions of each charge state was tested by using the present NEOMAFIOS ECR ion source, and the obtained current is shown. For noncontaminated, high current beam transport, the strong focusing system was introduced. The design of windowless gas target, plasma target, the detection of the energetic reaction particles of protons, digital calorimeter, the couple of ECR ion source and plasma target, and the underground laboratory are reported. (K.I.)

  12. Methodology for the design of accelerated stress tests for non-precious metal catalysts in fuel cell cathodes

    Science.gov (United States)

    Sharabi, Ronit; Wijsboom, Yair Haim; Borchtchoukova, Nino; Finkelshtain, Gennadi; Elbaz, Lior

    2016-12-01

    In this work we propose systematic methods for testing non-precious group metal catalysts and support degradation alkaline fuel cell cathodes. In this case study, we used a cathode composed of a pyrolyzed non-precious metal catalyst (NPMC) on activated carbon. The vulnerabilities of the cathode components were studied in order to develop the methodology and design an accelerated stress test (AST) for NPMC-based cathode in alkaline environment. Cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were used to characterize the electrochemical behavior of the cathode and to follow the changes that occur as a result of exposing the cathodes to extreme operating conditions. Rotating ring disk electrode (RRDE) was used to study the cathodes kinetics; Raman spectroscopy and X-ray fluorescence (XRF) were used to study the structural changes in the electrode surface as well as depletion of the catalysts' active sites from the electrode. The changes in the composition of the electrode and catalyst were detected using X-ray diffraction (XRD). For the first time, we show that NPMC degrade rapidly at low operating potentials whereas the support degrades at high operating potentials and developed a tailor-made AST to take these into account.

  13. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia, E-mail: jrosales@instec.cu [Higher Institute of Technologies and Applied Sciences, Habana City (Cuba); Castells, Escriva [Energetic Engeniering Institute, Politechnical University of Valencia, Valencia (Spain); Abanades [Department of Simulation of Termoenergetic Systems, Politechnical University of Madrid, Madrid (Spain)

    2011-07-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  14. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  15. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  16. Survey of the year 2008: applications of isothermal titration calorimetry.

    Science.gov (United States)

    Falconer, Robert J; Penkova, Anita; Jelesarov, Ilian; Collins, Brett M

    2010-01-01

    Isothermal titration calorimetry (ITC) is a fast, accurate and label-free method for measuring the thermodynamics and binding affinities of molecular associations in solution. Because the method will measure any reaction that results in a heat change, it is applicable to many different fields of research from biomolecular science, to drug design and materials engineering, and can be used to measure binding events between essentially any type of biological or chemical ligand. ITC is the only method that can directly measure binding energetics including Gibbs free energy, enthalpy, entropy and heat capacity changes. Not only binding thermodynamics but also catalytic reactions, conformational rearrangements, changes in protonation and molecular dissociations can be readily quantified by performing only a small number of ITC experiments. In this review, we highlight some of the particularly interesting reports from 2008 employing ITC, with a particular focus on protein interactions with other proteins, nucleic acids, lipids and drugs. As is tradition in these reviews we have not attempted a comprehensive analysis of all 500 papers using ITC, but emphasize those reports that particularly captured our interest and that included more thorough discussions we consider exemplify the power of the technique and might serve to inspire other users.

  17. Monosegemented flow potentiometric titration for the determination of chloride in milk and wine

    Directory of Open Access Journals (Sweden)

    Vieira Jonas A.

    2003-01-01

    Full Text Available An automated flow potentiometric titration procedure for the determination of chloride in milk and wine exploiting the monosegmented flow approach is described. The flow network was designed based on a six-way solenoid valve, controlled by a microcomputer running software written in VisualBasic 3.0, allowing selection of the titration conditions. An Ag2S tubular electrode selective for Cl- and a conventional Ag/AgCl electrode were employed as indicator and reference, respectively. An algorithm based on the potential difference between two subsequent titrant additions was developed, allowing to reach the end point in less than 10 attempts, with a precision better than 1.0%. The proposed system was evaluated by determining chloride in milk and wine, using a standard AgNO3 solution as titrant. Accuracy was ascertained by comparing the results with those obtained using the AOAC procedure. No significant difference at a 95% confidence level was observed.

  18. Determination of the aggregation number for micelles by isothermal titration calorimetry

    DEFF Research Database (Denmark)

    Olesen, Niels Erik; Holm, Rene; Westh, Peter

    2014-01-01

    Isothermal titration calorimetry (ITC) has previously been applied to estimate the aggregation number (n), Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of micellization. However, some difficulties of micelle characterization by ITC still remain; most micelles have aggregation numbers...... > 4 and its mathematical implementation is therefore not straight-forward. It seems as if all of these difficulties can be traced back to the aggregation number. In this work a new principle of data quantification is derived which is easy to apply, interpret and will provide statistical reliable...... insight into optimal design of titration protocols for micelle characterization. By applying the new method, the aggregation number of sodium dodecyl sulphate and glycochenodeoxycholate was determined at concentrations around their critical micelle concentration (CMC)...

  19. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    Science.gov (United States)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  20. QUANTITATION OF DNA TOPOISOMERASE-II-ALPHA MESSENGER-RIBONUCLEIC-ACID LEVELS IN A SMALL-CELL LUNG-CANCER CELL-LINE AND 2 DRUG-RESISTANT SUBLINES USING A POLYMERASE CHAIN REACTION-AIDED TRANSCRIPT TITRATION ASSAY

    NARCIS (Netherlands)

    WITHOFF, S; SMIT, EF; MEERSMA, GJ; van den Berg, Anke; TIMMERBOSSCHA, H; KOK, K; POSTMUS, PE; MULDER, NH; DEVRIES, EGE; BUYS, CHCM

    1994-01-01

    BACKGROUND: We have modified a polymerase chain reaction (PCR)-aided transcript titration assay (1) in order to allow quantitation of low amounts of DNA topoisomerase II alpha mRNA in small RNA samples. EXPERIMENTAL DESIGN: The titration assay was used to quantitate the amount of DNA topoisomerase I

  1. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  2. Making pH calculations in the titration of strong protolytes

    OpenAIRE

    2013-01-01

    Titration graphs of protolytic systems are very useful among other things to find the equivalence point (ep), choose the most suitable indicator, calculate the titration error and decide whether a given titration is feasible or not under certain conditions. The main feature of a titration curve is the pH jump that occurs in the vicinity of the equivalence point. Titration graphs can be obtained experimentally using the potentiometric method with the pH electrode. They also can be obtained the...

  3. Potentiometric titration and equivalent weight of humic acid

    Science.gov (United States)

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  4. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor.

    Science.gov (United States)

    Singh, M J; De Esch, H P L

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  5. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor

    Science.gov (United States)

    Singh, M. J.; De Esch, H. P. L.

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H- accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  6. Manufacturing of a Secretoneurin Drug Delivery System with Self-Assembled Protamine Nanoparticles by Titration

    Science.gov (United States)

    Scheicher, Bernhard; Lorenzer, Cornelia; Gegenbauer, Katrin; Partlic, Julia; Andreae, Fritz; Kirsch, Alexander H.; Rosenkranz, Alexander R.; Werzer, Oliver

    2016-01-01

    Since therapeutic peptides and oligonucleotides are gathering interests as active pharmaceutical ingredients (APIs), nanoparticulate drug delivery systems are becoming of great importance. Thereby, the possibility to design drug delivery systems according to the therapeutic needs of APIs enhances clinical implementation. Over the last years, the focus of our group was laid on protamine-oligonucleotide-nanoparticles (so called proticles), however, the possibility to modify the size, zeta potential or loading efficiencies was limited. Therefore, at the present study we integrated a stepwise addition of protamine (titration) into the formation process of proticles loaded with the angiogenic neuropeptide secretoneurin (SN). A particle size around 130 nm was determined when proticles were assembled by the commonly used protamine addition at once. Through application of the protamine titration process it was possible to modify and adjust the particle size between approx. 120 and 1200 nm (dependent on mass ratio) without influencing the SN loading capacity. Dynamic light scattering pointed out that the difference in particle size was most probably the result of a secondary aggregation. Initially-formed particles of early stages in the titration process aggregated towards bigger assemblies. Atomic-force-microscopy images also revealed differences in morphology along with different particle size. In contrast, the SN loading was only influenced by the applied mass ratio, where a slight saturation effect was observable. Up to 65% of deployed SN could be imbedded into the proticle matrix. An in-vivo biodistribution study (i.m.) showed a retarded distribution of SN from the site of injection after the application of a SN-proticle formulation. Further, it was demonstrated that SN loaded proticles can be successfully freeze-dried and resuspended afterwards. To conclude, the integration of the protamine titration process offers new possibilities for the formulation of proticles in

  7. FFAGS FOR MUON ACCELERATION.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.KAHN,S.PALMER,R.TRBOJEVIC,D.JOHNSTONE,C.KEIL,Y.OGITSU,T.OHMORI,C.SESSLER,A.KOSCIELNIAK,S.

    2003-06-26

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed.

  8. New applications of corrosion measurements by titration (CMT)

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1998-01-01

    CMT measurements and electrochemical (EC) measurements of corrosion rate are generally in agreement, when only electrochemical dissolution of metals in acid take place. However, dissolution of oxide layers and other acid-consuming reactions can cause CMT measurements to exceed EC measurements....... It is shown that when aluminium dissolves in alkali, CMT measurements can also be applied, but in this case requiring titration with alkali. Titration with alkali is also required in a special situation, where corrosion of nickel in an acid solution and subsequent formation of a nickel complex results...

  9. Fast coarse-grained model for RNA titration

    Science.gov (United States)

    Barroso da Silva, Fernando Luís; Derreumaux, Philippe; Pasquali, Samuela

    2017-01-01

    A new numerical scheme for RNA (ribonucleic acid) titration based on the Debye-Hückel framework for the salt description is proposed in an effort to reduce the computational costs for further applications to study protein-RNA systems. By means of different sets of Monte Carlo simulations, we demonstrated that this new scheme is able to correctly reproduce the experimental titration behavior and salt pKa shifts. In comparison with other theoretical approaches, similar or even better outcomes are achieved at much lower computational costs. The model was tested on the lead-dependent ribozyme, the branch-point helix, and the domain 5 from Azotobacter vinelandii Intron 5.

  10. Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.

    Science.gov (United States)

    Lubbers, Brad; Baudenbacher, Franz

    2011-10-15

    We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 μm SiN membrane and 79 pW/(Hz)(1/2) for a 1 μm polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH.

  11. "Titration simulator"--Good assistant for titration analysis%滴定分析教学的好帮手"Titration simulator"

    Institute of Scientific and Technical Information of China (English)

    屠婕红

    2005-01-01

    @@ Titration simulator(滴定模拟器)软件是专门为滴定分析而设计的教学软件,它短小精悍,简洁实用,可以从Internet网上免费下载,网址为:http://www.chemonline.net/Truechemsoft/downsoft.asp?softID=1565该软件所占容量仅为72KB,是学生训练及化学教师的好助手.笔者在教学中尝试运用该软件辅助教学,效果良好,现将Titration simulator软件的主要功能、应用简要介绍如下:

  12. The Typhoid Vaccine Acceleration Consortium (TyVAC): Vaccine effectiveness study designs: Accelerating the introduction of typhoid conjugate vaccines and reducing the global burden of enteric fever. Report from a meeting held on 26-27 October 2016, Oxford, UK.

    Science.gov (United States)

    Meiring, James E; Gibani, Malick

    2017-09-12

    Typhoid fever is estimated to cause between 11.9-26.9 million infections globally each year with 129,000-216,510 deaths. Access to improved water sources have reduced disease incidence in parts of the world but the use of efficacious vaccines is seen as an important public health tool for countries with a high disease burden. A new generation of Vi typhoid conjugate vaccines (TCVs), licensed for use in young children and expected to provide longer lasting protection than previous vaccines, are now available. The WHO Strategic Advisory Group of Experts on Immunization (SAGE) has convened a working group to review the evidence on TCVs and produce an updated WHO position paper for all typhoid vaccines in 2018 that will inform Gavi, the Vaccine Alliance's future vaccine investment strategies for TCVs. The Typhoid Vaccine Acceleration Consortium (TyVAC) has been formed through a $36.9 million funding program from the Bill & Melinda Gates Foundation to accelerate the introduction of TCVs into Gavi-eligible countries. In October 2016, a meeting was held to initiate planning of TCV effectiveness studies that will provide the data required by policy makers and stakeholders to support decisions on TCV use in countries with a high typhoid burden. Discussion topics included (1) the latest evidence and data gaps in typhoid epidemiology; (2) WHO and Gavi methods and data requirements; (3) data on TCV efficacy; (4) cost effectiveness analysis for TCVs from mathematical models; (5) TCV delivery and effectiveness study design. Specifically, participants were asked to comment on study design in 3 sites for which population-based typhoid surveillance is underway. The conclusion of the meeting was that country-level decision making would best be informed by the respective selected sites in Africa and Asia vaccinating children aged from 9-months to 15-years-old, employing either an individual or cluster randomized design with design influenced by population characteristics

  13. Design of the main racetrack microtron accelerator end magnets of the Institute of Physics of University of São Paulo

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1999-03-01

    Full Text Available This work deals with the design of the Institute of Physics of the University of São Paulo (IFUSP main racetrack microtron accelerator end magnets. This is the last stage of acceleration, comprised of an accelerating section (1.04 m and two end magnets (0.1585 T, in which a 5.10 MeV beam, produced by a racetrack microtron booster has its energy raised up to 31.15 MeV after 28 accelerations. Poisson code was used to give the final configuration that includes auxiliary pole pieces (clamps and auxiliary homogenizing gaps. The clamps create a reverse fringe field region and avoid the vertical defocusing and the horizontal displacement of the beam produced by extended fringe fields; Ptrace code was used to perform the trajectory calculations in the fringe field region. The auxiliary homogenizing gaps improve the field uniformity as they create a “magnetic shower” that provides uniformity of ±0.3%, before the introduction of the correcting coils that will be attached to the pole faces. This method of correction, used in the IFUSP racetrack microtron booster magnets, enabled uniformity of ±0.001% in an average field of 0.1 T and will also be employed for these end magnets.

  14. Design of the main racetrack microtron accelerator end magnets of the Institute of Physics of University of São Paulo

    Science.gov (United States)

    Kassab, L. R.; Martins, M. N.; Takahashi, J.; Gouffon, P.

    1999-03-01

    This work deals with the design of the Institute of Physics of the University of São Paulo (IFUSP) main racetrack microtron accelerator end magnets. This is the last stage of acceleration, comprised of an accelerating section (1.04 m) and two end magnets (0.1585 T), in which a 5.10 MeV beam, produced by a racetrack microtron booster has its energy raised up to 31.15 MeV after 28 accelerations. Poisson code was used to give the final configuration that includes auxiliary pole pieces (clamps) and auxiliary homogenizing gaps. The clamps create a reverse fringe field region and avoid the vertical defocusing and the horizontal displacement of the beam produced by extended fringe fields; Ptrace code was used to perform the trajectory calculations in the fringe field region. The auxiliary homogenizing gaps improve the field uniformity as they create a ``magnetic shower'' that provides uniformity of +/-0.3%, before the introduction of the correcting coils that will be attached to the pole faces. This method of correction, used in the IFUSP racetrack microtron booster magnets, enabled uniformity of +/-0.001% in an average field of 0.1 T and will also be employed for these end magnets.

  15. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

    1995-02-22

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

  16. Fixture Design Method for Multiaxial Dynamic Acceleration Test%多轴动态加速度试验夹具设计方法研究

    Institute of Scientific and Technical Information of China (English)

    欧阳智江; 张平; 邓志刚; 欧峰; 陆家富

    2015-01-01

    ABSTRACT:Objective To explore a new method for the fixture design suitable the test according to the characteristics of multiaxial dynamic acceleration test. Methods The traditional experiential design method and the new method were applied to the mechanic simulation analysis of the same simple model, and the differences in the results by the two methods were compared. Results In the process of multiaxial dynamic acceleration test, the new method could achieve more comprehensive results and guarantee the safety of the fixture, which was suitable for popularization and application. Conclusion There is a big difference between the multiaxial dynamic acceleration test and the traditional single static acceleration test, the whole process of the test should be concerned in the corresponding fixture design.%目的:针对多轴动态加速度试验的特点探索一种适合多轴动态加速度试验的夹具设计新方法。方法分别采用传统经验设计法和新方法对同一简单模型进行力学仿真分析,并进一步对比两种方法所得结果的差异。结果新方法所得结果更具全面性,在多轴动态加速度试验过程中更有利于保证夹具的安全性,适合推广应用。结论多轴动态加速度试验与传统的单一稳态加速度试验差异较大,在相应夹具设计时更应该注重试验的全过程。

  17. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  18. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    Science.gov (United States)

    Zhou, Lin; Li, Zhenghong; Wang, Zhen; Liang, Chuan; Li, Mingjia; Qi, Jianmin; Chu, Yanyun

    2016-03-01

    The linear-transformer-driver (LTD) is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z -pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z -pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%-90%) can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm /μ s when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%-30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  19. Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

    CERN Document Server

    Le Duff, J; Thomas, C

    2000-01-01

    Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

  20. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  1. Potentiometric titration of gold, platinum, and some other precious metals

    Energy Technology Data Exchange (ETDEWEB)

    Selig, W.S.

    1991-02-04

    Gold, platinum, and several other platinum metals can be determined by titration with cetylpyridinium chloride (CPC). CPC forms a precipitate with AuCl{sub 4}{sup {minus}} and PtCl{sub 6}{sup 2{minus}}. Differentiation of AuCl{sub 4{minus}} and PtCl{sub 6}{sup 2{minus}} with this titrant is not possible; however, their sum can be determined. Titration with tetraphenylarsonium chloride at pH 1 is selective for tetrachloroaurate, which thus can be determined in the presence of hexachloroplatinate. Hexachloroosmate(IV), tetrachloroplatinite(II), tetrachloropalladate(II), hexachloropalladate(IV), and hexachloroiridate(IV) can also be determined potentiometrically vs. CPC. The indicating electrode is prepared by coating a spectroscopic graphite rod with a solution of poly(vinyl chloride) (PVC) and dioctylphthalate (DOP) in tetrahydrofuran (THF). Gold in gold cyanide plating baths and in potassium aurocyanide can be determined by potentiometric titration vs standard silver nitrate, using a silver ion-selective indicating electrode. The monovalent gold need not be converted to the trivalent state with aqua regia, resulting in a considerable saving of time and effort. Free cyanide and aurocyanide can be titrated sequentially by this method. Chloride does not interfere and can, in fact, also be sequentially determined. 17 refs., 2 figs., 3 tabs.

  2. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    Science.gov (United States)

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  3. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    Science.gov (United States)

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  4. Modeling of titration experiments by a reactive transport model

    Institute of Scientific and Technical Information of China (English)

    Ma Hongyun; Samper Javier; Xin Xin

    2011-01-01

    Acid mine drainage (AMD) is commonly treated by neutralization with alkaline substances. This treatment is supported by titration experiments that illustrate the buffering mechanisms and estimate the base neutralization capacity (BNC) of the AMD. Detailed explanation of titration curves requires modeling with a hydro-chemical model. In this study the titration curves of water samples from the drainage of the As Pontes mine and the corresponding dumps have been investigated and six buffers are selected by analyzing those curves. Titration curves have been simulated by a reactive transport model to discover the detailed buffering mechanisms. These simulations show seven regions involving different buffering mechanism. The BNC is primarily from buffers of dissolved Fe, Al and hydrogen sulfate. The BNC can be approximated by: BNC = 3(CFe + CAl) + 0.05Csulfate, where the units are mol/L. The BNC of the sample from the mine is 9.25 × 10-3 mol/L and that of the dumps sample is 1.28 × 10-2 mol/L.

  5. Titration of Isolated Cell Walls of Lemna minor L 1

    Science.gov (United States)

    Morvan, Claudine; Demarty, Maurice; Thellier, Michel

    1979-01-01

    A theoretical model has been built to bypass the equation of titration of the cell wall. This equation, which is an extension of the Henderson-Hasselbach equation, underlines the importance of the exchange constant, the ionic strength as well as the rate of neutralization. The model is restricted to the case when the ionization degree is equal to the neutralization degree. The shape of the titration curve is shown to be strongly dependent on the valency of the base used. Experimental results have shown that isolated cell walls bear at least two kinds of sites. The first sites which are titrated after a short time of equilibration are attributed to polyuronic acids (capacity: 0.3 milliequivalents per gram fresh cell walls). The second sites, are obtained after a long time of equilibration (capacity: 1.2 to 1.3 milliequivalents per gram, fresh cell walls). Titrations have been performed with different bases [KOH, NaOH, and Ca(OH)2] and under different ionic strengths. The results obtained with NaOH and KOH do not exhibit any difference of selectivity. Conversely, the sites have a much bigger affinity for the Ca2+ ions than for the monovalent ones. The apparent pKa of the uronic acids was estimated to lie between 3.0 and 3.4; this is consistent with the values obtained with polyuronic acid solutions. PMID:16660868

  6. potentiometric titration curves of aluminium salt solutions and its ...

    African Journals Online (AJOL)

    a

    In addition, the changes of critical points reflect the influence of experiment ... organic acid radical on the titration curves and its critical points were observed. ..... According to the theory of hard and soft acids and bases (HSAB), Al3+ ion ...

  7. Analysis of the Purity of Cetrimide by Titrations

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Rasmussen, Claus/Dallerup; Nielsen, Hans/Boye

    2006-01-01

    The purity of cetrimide, trimethyl tetradecyl ammonium bromide (TTAB), that is an important preservative of many cosmetic and pharmaceutical products, was determined by three independent methods of titration. Traditionally, cetrimide was analysed by an assay method of the European Pharmacopoeia (Ph...

  8. Design, construction and operational results of the IGBT controlled solid state modulator high voltage power supply used in the high power RF systems of the Low Energy Demonstration Accelerator of the accelerator production of tritium (APT) project

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.T. III; Rees, D.; Przeklasa, R.S. [Los Alamos National Lab., NM (United States); Scott, M.C. [Continental Electronics Corp., Dallas, TX (United States)

    1998-12-31

    The 1700 MeV, 100 mA Accelerator Production of Tritium (APT) Proton Linac will require 244 1 MW, continuous wave RF systems. 1 MW continuous wave klystrons are used as the RF source and each klystron requires 95 kV, 17 A of beam voltage and current. The cost of the DC power supplies is the single largest percentage of the total RF system cost. Power supply reliability is crucial to overall RF system availability and AC to DC conversion efficiency affects the operating cost. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory (LANL) will serve as the prototype and test bed for APT. The design of the RF systems used in LEDA is driven by the need to field test high efficiency systems with extremely high reliability before APT is built. The authors present a detailed description and test results of one type of advanced high voltage power supply system using Insulated Gate Bipolar Transistors (IGBTs) that has been used with the LEDA High Power RF systems. The authors also present some of the distinctive features offered by this power supply topology, including crowbarless tube protection and modular construction which allows graceful degradation of power supply operation.

  9. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Paris, E.

    2004-04-05

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather

  10. Neutrons production on the IPHI accelerator for the validation of the design of the compact neutron source SONATE

    CERN Document Server

    Menelle, Alain; Prunes, Fabien; Homatter, Benoit; Annighöfer, Burkhard; Porcher, Florence; Chauvin, Nicolas; Schwindling, Jérôme; Letourneau, Alain; Marchix, Anthony; Tran, Ngoc-Hoang

    2016-01-01

    We aim at building an accelerator based compact neutron source which would provide a thermal neutron flux on the order of 4E12 n.s-1.cm-2.sr-1. Such brilliance would put compact neutron sources on par with existing medium flux neutron research reactors. We performed the first neutron production tests on the IPHI proton accelerator at Saclay. The neutron fluxes were measured using gold foil activation and 3He detectors. The measured fluxes were compared with MCNP and GEANT4 Monte Carlo simulations in which the whole experimental setup was modelled. There is a good agreement between the experimental measurements and the Monte-Carlo simulations. The available modelling tools will allow us to optimize the whole Target Moderator Reflector assembly together with the neutron scattering spectrometer geometries.

  11. Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluences

    Science.gov (United States)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Maltsev, D.; Frolov, A.; Zabusov, O.; Erak, D.; Zhurko, D.

    2015-01-01

    In this paper comprehensive studies of structure and properties of VVER-1000 RPV steels after the accelerated irradiation to fluences corresponding to extended lifetime up to 60 years or more as well as comparative studies of materials irradiated with different fluxes were carried out. The significant flux effect is confirmed for the weld metal (nickel concentration ⩾1.35%) which is mainly due to development of reversible temper brittleness. The rate of radiation embrittlement of VVER-1000 RPV steels under operation up to 60 years and more (based on the results of accelerated irradiation considering flux effect for weld metal) is expected not to differ significantly from the observed rate under irradiation within surveillance specimens.

  12. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    Directory of Open Access Journals (Sweden)

    Zhou Lin

    2016-03-01

    Full Text Available The linear-transformer-driver (LTD is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z-pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z-pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%–90% can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32  cm/μs when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%–30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  13. When acid-base titrations are carried out in unusual conditions

    OpenAIRE

    Domenico De Marco; Rocco De Marco

    2012-01-01

    Uncommon aspects in acid-base titrations are presented, which occur in titrations between both mono- and/or poly-functional acid and bases but are rarely introduced in ordinary analytical chemistry courses.

  14. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  15. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  16. W.K.H. Panofsky Prize in Experimental Particle Physics: The design, construction and performance of the B Factory accelerator facilities, PEP-II and KEKB

    Science.gov (United States)

    Dorfan, Jonathan

    2016-03-01

    The discovery and elucidation of CP violation in the B-meson system presented daunting challenges for the accelerator and detector facilities. This talk discusses how these challenges were met and overcome in the electron-positron colliding-beam accelerator facilities PEP-II (at SLAC) and KEKB (at KEK). The key challenge was to produce unprecedentedly large numbers of B-mesons in a geometry that provided high-statistics, low-background samples of decays to CP eigenstates. This was realized with asymmetric collisions at the Γ(4S) at peak luminosities in excess of 3 ×1033 /sq. cm/sec. Specialized optics were developed to generate efficient, low background, multi-bunch collisions in an energy-asymmetric collision geometry. Novel technologies for the RF, vacuum and feedback systems permitted the storage of multi-amp, multi-bunch beams of electrons and positrons, thereby generating high peak luminosities. Accelerator uptimes greater than 95 percent, combined with high-intensity injection systems, ensured large integrated luminosity. Both facilities rapidly attained their design specifications and ultimately far exceeded the projected performance expectations for both peak and integrated luminosity.

  17. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.; Zangenberg, N.; Baurichter, A.

    2006-01-01

    A comprehensive analysis of the innovation potential of superconductivity at Risø was performed in February 2004 by the main author of this report [1]. Several suggestions for new products and new markets were formulated by the superconductivity group andexamined by the innovation staff at Risø. ...... accelerator, B = 4:4 Tesla and coil aperture D = 76 mm [6], which has been identified by Danfysik A/S as interesting. It isconcluded that MgB2 is useful for the dipole application and construction of a small test coil of one half of the magnet is planned in 2007....

  18. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  19. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  20. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  1. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    Science.gov (United States)

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed.

  2. Applications of isothermal titration calorimetry in protein science.

    Science.gov (United States)

    Liang, Yi

    2008-07-01

    During the past decade, isothermal titration calorimetry (ITC) has developed from a specialist method for understanding molecular interactions and other biological processes within cells to a more robust, widely used method. Nowadays, ITC is used to investigate all types of protein interactions, including protein-protein interactions, protein-DNA/RNA interactions, protein-small molecule interactions and enzyme kinetics; it provides a direct route to the complete thermodynamic characterization of protein interactions. This review concentrates on the new applications of ITC in protein folding and misfolding, its traditional application in protein interactions, and an overview of what can be achieved in the field of protein science using this method and what developments are likely to occur in the near future. Also, this review discusses some new developments of ITC method in protein science, such as the reverse titration of ITC and the displacement method of ITC.

  3. Monitoring RNA-ligand interactions using isothermal titration calorimetry.

    Science.gov (United States)

    Gilbert, Sunny D; Batey, Robert T

    2009-01-01

    Isothermal titration calorimetry (ITC) is a biophysical technique that measures the heat evolved or absorbed during a reaction to report the enthalpy, entropy, stoichiometry of binding, and equilibrium association constant. A significant advantage of ITC over other methods is that it can be readily applied to almost any RNA-ligand complex without having to label either molecule and can be performed under a broad range of pH, temperature, and ionic concentrations. During our application of ITC to investigate the thermodynamic details of the interaction of a variety of compounds with the purine riboswitch, we have explored and optimized experimental parameters that yield the most useful and reproducible results for RNAs. In this chapter, we detail this method using the titration of an adenine-binding RNA with 2,6-diaminopurine (DAP) as a practical example. Our insights should be generally applicable to observing the interactions of a broad range of molecules with structured RNAs.

  4. Applications of isothermal titration calorimetry in protein science

    Institute of Scientific and Technical Information of China (English)

    Yi Liang

    2008-01-01

    During the past decade,isothermal titration calorimetry (ITC)has developed from a specialist method for understanding molecular interactions and other biological processes within cells to a more robust,widely used method.Nowadays,ITC is used to investigate all types of protein interactions,including protein-protein interactions,protein-DNA/RNA interactions,protein-small molecule interactions and enzyme kinetics;it provides a direct route to the complete thermodynamic characterization of protein interactions.This review concentrates on the new applications of ITC in protein folding and misfolding,its traditional application in protein interactions,and an overview of what can be achieved in the field of protein science using this method and what developments are likely to occur in the near future.Also,this review discusses some new developments of ITC method in protein science,such as the reverse titration of ITC and the displacement method of ITC.

  5. Randomized cross-over trial of ventilator modes during non-invasive ventilation titration in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Vrijsen, Bart; Buyse, Bertien; Belge, Catharina; Vanpee, Goele; Van Damme, Philip; Testelmans, Dries

    2017-08-01

    Non-invasive ventilation (NIV) improves survival, quality of life and sleep in patients with amyotrophic lateral sclerosis (ALS). Nevertheless, NIV titration is conducted in different ways. We aim to provide more insight into NIV titration by comparing the effects of a spontaneous (S) and spontaneous-timed (ST) modes on gas exchange, sleep architecture and patient-ventilator asynchronies (PVAs). After an initial night of NIV titration, patients were randomized to S or ST mode in a cross-over design. NIV was titrated using polysomnography, oximetry (oxygen saturation, SpO2 %) and transcutaneous carbon dioxide (PtcCO2 ) measurement. PVAs were analysed breath-by-breath. Thirteen patients were analysed after inclusion. ST mode showed better results in gas exchange (minimal SpO2 %: 83 (80-89)% vs 87 (84-89)%; oxygen desaturation index: 15 (5-28)/h sleep vs 7 (3-9)/h sleep; PtcCO2 >55 mm Hg: 20 (0-59)% vs 0 (0-27)% total sleep time for S and ST mode, respectively, all P < 0.05) and respiratory events (obstructive: 8.9 (1.2-18.3)/h sleep vs 1.8 (0.3-4.9)/h sleep and central: 2.6 (0.4-14.1)/h sleep vs 0.2 (0.0-1.1)/h sleep for S and ST mode, respectively, both P < 0.01). No differences in sleep architecture were found. Ineffective efforts and respiratory events were more frequently present in S mode. Nevertheless, four patients were discharged on S mode as these patients showed clinically better results for sleep architecture and PVA during the night on S mode. ST mode shows better results in gas exchange, respiratory events and PVA. Nevertheless, accurate NIV titration remains necessary as some patients show equal or better results when using the S mode. © 2017 Asian Pacific Society of Respirology.

  6. Neutron cross-sections above 20 MeV for design and modeling of accelerator driven systems

    Indian Academy of Sciences (India)

    J Blomgren

    2007-02-01

    One of the outstanding new developments in the field of partitioning and transmutation (P&T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently several million data points can be found in various data libraries. At higher energies, data are scarce or even non-existent. With the development of nuclear techniques based on neutrons at higher energies, nowadays there is a need also for higher-energy nuclear data. To provide alternative to this lack of data, a wide program on neutron-induced data related to ADS for P&T is running at the 20–180 MeV neutron beam facility at `The Svedberg Laboratory' (TSL), Uppsala. The programme encompasses studies of elastic scattering, inelastic neutron production, i.e., (, ′) reactions, light-ion production, fission and production of heavy residues. Recent results are presented and future program of development is outlined.

  7. Design and analysis of a piezoelectric material based touch screen with additional pressure and its acceleration measurement functions

    Science.gov (United States)

    Chu, Xiang-Cheng; Liu, Jia-Yi; Gao, Ren-Long; Chang, Jie; Li, Long-Tu

    2013-12-01

    Touch screens are becoming more and more prevalent in everyday environments due to their convenience and humanized operation. In this paper, a piezoelectric material based touch screen is developed and investigated. Piezoelectric ceramics arrayed under the touch panel at the edges or corners are used as tactile sensors to measure the touch positioning point similarly to conventional touch screens. However, additional touch pressure and its acceleration performance can also be obtained to obtain a higher-level human-machine interface. The piezoelectric ceramics can also be added to a traditional touch screen structure, or they can be used independently to construct a novel touch screen with a high light transmittance approach to a transparent glass. The piezoelectric ceramics were processed from PZT piezoelectric ceramic powder into a round or rectangular shape. According to the varied touch position and physical press strength of a finger, or even a gloved hand or fingernail, the piezoelectric tactile sensors will have different output voltage responses. By calculating the ratio of different piezoelectric tactile sensors’ responses and summing up all piezoelectric tactile sensors’ output voltages, the touch point position, touch pressure and touch force acceleration can be detected. A prototype of such a touch screen is manufactured and its position accuracy, touch pressure and response speed are measured in detail. The experimental results show that the prototype has many advantages such as high light transmittance, low energy cost and high durability.

  8. Monitoring assembly of ribonucleoprotein complexes by isothermal titration calorimetry

    OpenAIRE

    Recht, Michael I; Ryder, Sean P.; Williamson, James R.

    2008-01-01

    Isothermal titration calorimetry (ITC) is a useful technique to study RNA-protein interactions, as it provides the only method by which the thermodynamic parameters of free energy, enthalpy, and entropy can be directly determined. This chapter presents a general procedure for studying RNA-protein interactions using ITC, and gives specific examples for monitoring the binding of Caenorhabditis elegans GLD-1 STAR domain to TGE RNA and the binding of Aquifex aeolicus S6:S18 ribosomal protein hete...

  9. Solubility of strontium-substituted apatite by solid titration

    OpenAIRE

    Pan, HB; Darvell, BW; Luk, KDK; Lu, WW; Li, ZY; Lam, WM; Wong, JC

    2009-01-01

    Solid titration was used to explore the solubility isotherms of partially (Srx-HAp, x = 1, 5, 10, 40, 60 mol.%) and fully substituted strontium hydroxyapatite (Sr-HAp). Solubility increased with increasing strontium content. No phase other than strontium-substituted HAp, corresponding to the original titrant, was detected in the solid present at equilibrium; in particular, dicalcium hydrogen phosphate was not detected at low pH. The increase in solubility with strontium content is interpreted...

  10. A titration microcalorimeter and the vesicle of mixed surfactants

    Institute of Scientific and Technical Information of China (English)

    白光月[1; 王玉洁[2; 王金本[3; 杨冠英[4; 韩布兴[5; 闫海科[6

    2000-01-01

    A titration microcalorimeter with the sample cells of 1 mL and 3 mL volume was constructed by combining LKB-2107 ampule microcalorimeter with an improved Thermometric titration microcalorimeter. Its sensitivity and precision were tested with the baseline noise and stability, the measurement of energy equivalent, and the linear relation of electric energy and integral area as the function of voltage (V)-time (f). Its accuracy was demonstrated by measuring the dilution enthalpy of a concentrated sucrose solution and the micelle-forming enthalpy of sodium dodecyl sulfate (SDS) in aqueous solution respectively. At the same time, the enthalpy of interaction between SDS and didodecyldimethylammonium bromide (DDAB) was measured by using the titration microcalorimeter, and the phase behavior of SDS-DDAB aqueous mixture was discussed. The microcalorimetric results show that the enthalpy of interaction between SDS and DDAB micelles is -29.53 kJ/mol, the enthalpy of formation of 1:1 SDS-DDAB salt is -125.8 kJ/mol,

  11. A titration microcalorimeter and the vesicle of mixed surfactants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A titration microcalorimeter with the sample cells of 1 mL and 3 mL volume was constructed by combining LKB-2107 ampule microcalorimeter with an improved Thermometric titration microcalorimeter. Its sensitivity and precision were tested with the baseline noise and stability, the measurement of energy equivalent, and the linear relation of electric energy and integral area as the function of voltage (V )-time (t ). Its accuracy was demonstrated by measuring the dilution enthalpy of a concentrated sucrose solution and the micelle-forming enthalpy of sodium dodecyl sulfate (SDS) in aqueous solution respectively. At the same time, the enthalpy of interaction between SDS and didodecyldimethylammonium bromide (DDAB) was measured by using the titration microcalorimeter, and the phase behavior of SDS-DDAB aqueous mixture was discussed. The microcalorimetric results show that the enthalpy of interaction between SDS and DDAB micelles is ?29.53 kJ/mol, the enthalpy of formation of 1:1 SDS-DDAB salt is ?125.8 kJ/mol, the vesicle-forming enthalpy of SDS-DDAB is 41.23 kJ/mol, and the enthalpy of phase transition from vesicles to SDS rich micelle is 32.10 kJ/mol.

  12. Impact of Residual Inducer on Titratable Expression Systems.

    Directory of Open Access Journals (Sweden)

    Taliman Afroz

    Full Text Available Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on "all-or-none" systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering.

  13. Effects of fixed or self-titrated dosages of Sativex on cannabis withdrawal and cravings.

    Science.gov (United States)

    Trigo, Jose M; Lagzdins, Dina; Rehm, Jürgen; Selby, Peter; Gamaleddin, Islam; Fischer, Benedikt; Barnes, Allan J; Huestis, Marilyn A; Le Foll, Bernard

    2016-04-01

    There is currently no pharmacological treatment approved for cannabis dependence. In this proof of concept study, we assessed the feasibility/effects of fixed and self-titrated dosages of Sativex (1:1, Δ(9)-tetrahydrocannabinol (THC)/cannabidiol (CBD)) on craving and withdrawal from cannabis among nine community-recruited cannabis-dependent subjects. Participants underwent an 8-week double-blind placebo-controlled trial (an ABACADAE design), with four smoke as usual conditions (SAU) (A) separated by four cannabis abstinence conditions (B-E), with administration of either self-titrated/fixed doses of placebo or Sativex (up to 108 mg THC/100 mg CBD). The order of medication administration during abstinence conditions was randomized and counterbalanced. Withdrawal symptoms and craving were assessed using the Cannabis Withdrawal Scale (CWS), Marijuana Withdrawal Checklist (MWC) and Marijuana Craving Questionnaire (MCQ). Medication use was assessed during the study by means of self-reports, vial weight control, toxicology and metabolite analysis. Cannabis use was assessed by means of self-reports. High fixed doses of Sativex were well tolerated and significantly reduced cannabis withdrawal during abstinence, but not craving, as compared to placebo. Self-titrated doses were lower and showed limited efficacy as compared to high fixed doses. Participants reported a significantly lower "high" following Sativex or placebo as compared to SAU conditions. Cannabis/medication use along the study, as per self-reports, suggests compliance with the study conditions. The results found in this proof of concept study warrant further systematic exploration of Sativex as a treatment option for cannabis withdrawal and dependence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Vibration control in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  15. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    Science.gov (United States)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  16. Procedure for developing experimental designs for accelerated tests for service-life prediction. [for solar cell modules

    Science.gov (United States)

    Thomas, R. E.; Gaines, G. B.

    1978-01-01

    Recommended design procedures to reduce the complete factorial design by retaining information on anticipated important interaction effects, and by generally giving up information on unconditional main effects are discussed. A hypothetical photovoltaic module used in the test design is presented. Judgments were made of the relative importance of various environmental stresses such as UV radiation, abrasion, chemical attack, temperature, mechanical stress, relative humidity and voltage. Consideration is given to a complete factorial design and its graphical representation, elimination of selected test conditions, examination and improvement of an engineering design, and parametric study. The resulting design consists of a mix of conditional main effects and conditional interactions and represents a compromise between engineering and statistical requirements.

  17. Improvement in the Design of Metal-Ceramic High Voltage Feedthroughs for use in High Energy Particle Accelerators

    CERN Document Server

    Weterings, W

    1999-01-01

    Large high-voltage devices operate in particle accelerators to steer charged particles in the desired direction. Solid and hollow rods of sintered alumina are used as insulating supports and high-voltage feedthroughs to power the electrodes of these electrostatic systems. The performance of the systems is often limited by voltage breakdown along the surface of the ceramic insulator (so-called surface flashover) or discharge between feedthrough and vacuum tank, which can lead to significant disruptions in terms of overall machine efficiency. Available results on the influence of the mechanical preparation, thermal history and particular cleaning techniques on commercially obtainable alumina samples have been studied in order to investigate possibilities for better preparation methodology of the insulating supports. Also the influence of the relative position of the feedthrough inside the vacuum tank on the high-voltage breakdown behaviour has been studied. This paper describes the theoretical and practical bac...

  18. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  19. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  20. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Science.gov (United States)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  1. Modeling of Complexometric Titration Data: Applications and Implications of New Computational Tools and Thermodynamic Data

    Science.gov (United States)

    Hudson, R.; Omanovic, D.; Kogut, M.; Voelker, B. M.

    2016-02-01

    Complexometric titration of natural ligands in seawater using the competitive ligand equilibration-adsorptive cathodic stripping voltammetry method (CLE-AdCSV) is the method of choice for characterizing the organic complexation of Cu and Fe in seawater. Interpreting such titration data is made difficult by the complexity of the modeling process, which arises from the need to estimate non-linear model equations, the potential for artifacts, and the use of reference equilibrium constants that have been subject of only limited study. Due to the need to model multi-component equilibrium systems when these titration data, a variety of approximations have been made in order to allow standard linear and non-linear regression tools to be applied. Two software tools, KINETEQL and ProMCC, solve the model equations exactly and allow users to estimate complexation model parameters accurately. ProMCC excels in visualization and ease-of-use, while KINETEQL provides the user with flexibility in the definition of equilibrium models and has the additional capability of solving reaction kinetics problems. A detailed example of the application of KINETQL to simulating the kinetics of Cu(II) complexation by EDTA in seawater will be illustrated. The implications of kinetics for experimental determination of the stability constants of natural Cu- and Fe-binding ligands will be addressed. These modeling tools make it feasible to design experiments and analyze datasets using new, complex approaches to data analysis, i.e., data from multiple CLE-AdCSV titrations obtained in different analytical windows. This approach can help solve to the problem of internal calibration in waters that contain mixtures of weak and strong ligands. Because it attempts to model data that span a much wider range in chemistries, the "multiwindow" approach is especially vulnerable to bias in the reference complex stability constants. The difficulty of obtaining coherent models of multiwindow CLE-AdCSV datasets

  2. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT.

    Science.gov (United States)

    Evans, J F; Blue, T E

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions "How much?" and "What kind?" of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room , patient "scatterer," and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel.

  3. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  4. Radiation containment at a 1 MW high energy electron accelerator: Status of LCLS-II radiation physics design

    Science.gov (United States)

    Leitner, M. Santana; Blaha, J.; Guetg, M. W.; Li, Z.; Liu, J. C.; Mao, S. X.; Nicolas, L.; Rokni, S. H.; Xiao, S.; Ge, L.

    2017-09-01

    LCLS-II will add a 4 GeV, 1 MHz, SCRF electron accelerator in the first 700 meters of the SLAC 2-mile Linac, as well as adjustable gap polarized undulators in the down-beam electron lines, to produce tunable, fully coherent X-rays in programmable bunch patterns. This facility will work in unison with the existing Linac Coherent Light Source, which uses the legacy copper cavities in the last third of the linac to deliver electrons between 2 and 17 GeV to an undulator line. The upgrade plan includes new beam lines, five stages of state of the art collimation that shall clean the high-power beam well up-beam of the radio-sensitive undulators, and new electron and photon beam dumps. This paper describes the challenges encountered to define efficient measures to protect machine, personnel, public and the environment from the potentially destructive power of the beam, while maximizing the reuse of existing components and infrastructure, and allowing for complex operational modes.

  5. Curriculum Design to Promote the Ethical Decision-Making Competence of Accelerated Bachelor’s Degree Nursing Students

    Directory of Open Access Journals (Sweden)

    Barbara B. DeSimone

    2016-02-01

    Full Text Available Few nursing curricula offer a course dedicated exclusively to ethical decision making. More often, ethical decision making is integrated into nursing courses and clinical experiences along with other course content. This article describes an accelerated bachelor’s degree nursing curriculum systematically organized to promote ethical decision-making competence from the first to the last nursing course. Examples of course objectives, ethical indicators, and teaching strategies emphasizing ethical decision making from trimester to trimester are outlined. A survey that assessed the similarities between critical thinking and ethical decision making perceived by faculty and students justified using critical thinking skills to measure ethical decision-making competence. t-Test calculations indicated significant improvement in the critical thinking scores of 100 students from four consecutive classes at the beginning and end of the nursing program. Examples of ethical questions examined by students are included. By integrating critical thinking skills throughout the nursing curriculum, faculty heightened the capacity of students to make and defend their own ethical decisions.

  6. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  7. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    Science.gov (United States)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  8. A Continuing Education Short Course and Engineering Curriculum to Accelerate Workforce Development in Wind Power Plant Design, Construction, and Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tinjum, James [Univ. of Wisconsin, Madison, WI (United States)

    2012-11-29

    Significant advances in wind turbine technology and wind turbine power plant capabilities are appearing in the U.S. Sites that only 10 years ago might have been overlooked are being considered for build out. However, the development of a skilled workforce in the engineering fields and construction trades lags the potential market, especially if the industry is expected to site, design, construct, and operate sufficient wind power plant sites to meet the potential for 20% wind energy by 2030. A select few firms have penetrated the engineer-procure-construction (EPC) market of wind power plant construction. Competition and know-how in this market is vital to achieve cost-effective, design-construct solutions. The industry must produce or retrain engineers, contractors, and technicians to meet ambitious goals. Currently, few universities offer undergraduate or graduate classes that teach the basics in designing, building, and maintaining wind power plants that are safe, efficient, and productive.

  9. A titration model for evaluating calcium hydroxide removal techniques

    Directory of Open Access Journals (Sweden)

    Mark PHILLIPS

    2015-02-01

    Full Text Available Objective Calcium hydroxide (Ca(OH2 has been used in endodontics as an intracanal medicament due to its antimicrobial effects and its ability to inactivate bacterial endotoxin. The inability to totally remove this intracanal medicament from the root canal system, however, may interfere with the setting of eugenol-based sealers or inhibit bonding of resin to dentin, thus presenting clinical challenges with endodontic treatment. This study used a chemical titration method to measure residual Ca(OH2 left after different endodontic irrigation methods. Material and Methods Eighty-six human canine roots were prepared for obturation. Thirty teeth were filled with known but different amounts of Ca(OH2 for 7 days, which were dissolved out and titrated to quantitate the residual Ca(OH2 recovered from each root to produce a standard curve. Forty-eight of the remaining teeth were filled with equal amounts of Ca(OH2 followed by gross Ca(OH2 removal using hand files and randomized treatment of either: 1 Syringe irrigation; 2 Syringe irrigation with use of an apical file; 3 Syringe irrigation with added 30 s of passive ultrasonic irrigation (PUI, or 4 Syringe irrigation with apical file and PUI (n=12/group. Residual Ca(OH2 was dissolved with glycerin and titrated to measure residual Ca(OH2 left in the root. Results No method completely removed all residual Ca(OH2. The addition of 30 s PUI with or without apical file use removed Ca(OH2 significantly better than irrigation alone. Conclusions This technique allowed quantification of residual Ca(OH2. The use of PUI (with or without apical file resulted in significantly lower Ca(OH2 residue compared to irrigation alone.

  10. Titratable acidity of beverages influences salivary pH recovery

    Directory of Open Access Journals (Sweden)

    Livia Maria Andaló TENUTA

    2015-01-01

    Full Text Available A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively. Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  11. Titratable acidity of beverages influences salivary pH recovery.

    Science.gov (United States)

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  12. Accelerator Technology Division annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  13. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  14. Future accelerators

    CERN Document Server

    Hübner, K

    1999-01-01

    An overview of the various schemes for electron-positron linear colliders is given and the status of the development of key components and the various test facilities is given. The present studies of muon-muon colliders and very large hadron colliders are summarized including the plans for component development and tests. Accelerator research and development to achieve highest gradients in linear accelerators is outlined. (44 refs).

  15. Monitoring assembly of ribonucleoprotein complexes by isothermal titration calorimetry

    Science.gov (United States)

    Recht, Michael I.; Ryder, Sean P.; Williamson, James R.

    2010-01-01

    Isothermal titration calorimetry (ITC) is a useful technique to study RNA-protein interactions, as it provides the only method by which the thermodynamic parameters of free energy, enthalpy, and entropy can be directly determined. This chapter presents a general procedure for studying RNA-protein interactions using ITC, and gives specific examples for monitoring the binding of Caenorhabditis elegans GLD-1 STAR domain to TGE RNA and the binding of Aquifex aeolicus S6:S18 ribosomal protein heterodimer to an S15-rRNA complex. PMID:18982287

  16. Isothermal Titration Calorimetry: Assisted Crystallization of RNA-Ligand Complexes.

    Science.gov (United States)

    Da Veiga, Cyrielle; Mezher, Joelle; Dumas, Philippe; Ennifar, Eric

    2016-01-01

    The success rate of nucleic acids/ligands co-crystallization can be significantly improved by performing preliminary biophysical analyses. Among suitable biophysical approaches, isothermal titration calorimetry (ITC) is certainly a method of choice. ITC can be used in a wide range of experimental conditions to monitor in real time the formation of the RNA- or DNA-ligand complex, with the advantage of providing in addition the complete binding profile of the interaction. Following the ITC experiment, the complex is ready to be concentrated for crystallization trials. This chapter describes a detailed experimental protocol for using ITC as a tool for monitoring RNA/small molecule binding, followed by co-crystallization.

  17. Isothermal Titration Calorimetry of Membrane Proteins – Progress and Challenges

    Science.gov (United States)

    Rajarathnam, Krishna; Rösgen, Jörg

    2013-01-01

    Summary Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. PMID:23747362

  18. Characterization of Native and Modified Starches by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Diana Soto

    2014-01-01

    Full Text Available The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation, a graft copolymer of itaconic acid (IA onto starch, and starch esters (mono- and diester itaconate was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, followed by graft copolymer of itaconic acid and finally oxidized starches. Analytical techniques and synthesis of modified starches were also described.

  19. Design, construction and installation of the electromechanical components of the current control of filament of the Pelletron Electron Accelerator; Diseno, construccion e instalacion de las componentes electromecanicas del control de corriente de filamento del acelerador de electrones Pelletron

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar J, R.A.; Valdovinos A, M.; Lopez V, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1985-01-15

    For the operation of the Pelletron electron accelerator is required to have control of the filament current. For it was designed, built and installed an electromechanical system located in the Acceleration Unit inside the Accelerator tank and operated from the Control console. All the components located inside the tank operated under the following conditions: Pressure: until 7.03 Kg/cm{sup 2}; High voltage: 10{sup 6} V (only the insulating arrow); Atmosphere: mixture of N{sub 2} and CO{sub 2} or SF{sub 6}. (Author)

  20. Dielectric assist accelerating structure

    Science.gov (United States)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  1. Diaphragm-free cell for trace determination of water based on the karl Fischer reaction using continuous coulometric titration.

    Science.gov (United States)

    Cedergren, A; Jonsson, S

    1997-08-01

    A new type of diaphragm-free coulometric cell for continuous coulometric Karl Fischer titrations of water in the range 0.1-1000 μg is described. The relative standard deviation obtained for titrations of 1 μg amounts of water was typically 1%. The background due to diffusion of water from the air was normally in the range 0.3-0.9 μg of water min(-1) depending on environmental humidity. The variation in the background was normally ±0.01 μg min(-1). The construction makes it possible, at any time in a sequence of titrations, to renew the catholyte by means of a Teflon plunger inside the cathode compartment. In this way, the interference effects caused by oxidizable reduction products of methyl sulfite which are formed at the cathode can be controlled in a very simple way. These products are rapidly eliminated by means of a normal titration before a new titration starts. The need for this draining step differs depending on the type of reagent used. The coulometric titration system makes use of true potentiometric end-point detection, and this principle makes it possible to control the iodine level at the end-point at much lower levels as compared with commercial instrumentation. The analytical advantages gained by this option are demonstrated for the determination of water in ethylenediamine, a task which was found to be impossible when using end-point concentrations in the range (3-7) × 10(-5) M, which is typical for the bipotentiometric indicating system used in commercial instruments. Recovery rates in the range 100-102% were obtained and are shown to be dependent on the type of reagent used. The most accurate results were obtained for an imidazole-buffered methanolic reagent in which the concentration of sulfur dioxide was kept relatively low (0.10 M). The diaphragm-free cell described was shown to be compatible with all of the commercial reagents (designed for coulometry) investigated, including the well-known Hydranal products Coulomat A, AK, AG, AG-H, and

  2. Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC photo-injector energy upgrade

    CERN Document Server

    Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.

    2011-01-01

    The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.

  3. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage, friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian) control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach, and the performance is validated by simulation.

  4. Isothermal titration calorimetry: general formalism using binding polynomials.

    Science.gov (United States)

    Freire, Ernesto; Schön, Arne; Velazquez-Campoy, Adrian

    2009-01-01

    The theory of the binding polynomial constitutes a very powerful formalism by which many experimental biological systems involving ligand binding can be analyzed under a unified framework. The analysis of isothermal titration calorimetry (ITC) data for systems possessing more than one binding site has been cumbersome because it required the user to develop a binding model to fit the data. Furthermore, in many instances, different binding models give rise to identical binding isotherms, making it impossible to discriminate binding mechanisms using binding data alone. One of the main advantages of the binding polynomials is that experimental data can be analyzed by employing a general model-free methodology that provides essential information about the system behavior (e.g., whether there exists binding cooperativity, whether the cooperativity is positive or negative, and the magnitude of the cooperative energy). Data analysis utilizing binding polynomials yields a set of binding association constants and enthalpy values that conserve their validity after the correct model has been determined. In fact, once the correct model is validated, the binding polynomial parameters can be immediately translated into the model specific constants. In this chapter, we describe the general binding polynomial formalism and provide specific theoretical and experimental examples of its application to isothermal titration calorimetry.

  5. Semi-automated potentiometric titration method for uranium characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, B.F.G., E-mail: barbara@ird.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Instituto de Radioprotecao e Dosimetria (IRD), Avenida Salvador Allende s/n Recreio dos Bandeirantes, PO Box 37750, Rio de Janeiro, 22780-160 RJ (Brazil); Delgado, J.U.; Silva, J.W.S. da; Barros, P.D. de; Araujo, R.M.S. de [Comissao Nacional de Energia Nuclear (CNEN), Instituto de Radioprotecao e Dosimetria (IRD), Avenida Salvador Allende s/n Recreio dos Bandeirantes, PO Box 37750, Rio de Janeiro, 22780-160 RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear (PEN/COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundao, PO Box 68509, Rio de Janeiro, 21945-970 RJ (Brazil)

    2012-07-15

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. - Highlights: Black-Right-Pointing-Pointer We developed a semi-automatic version of potentiometric titration method. Black-Right-Pointing-Pointer The method is used for certification and characterization of uranium compounds. Black-Right-Pointing-Pointer The traceability of the method was assured by a K{sub 2}Cr{sub 2}O{sub 7} primary standard. Black-Right-Pointing-Pointer The results of U{sub 3}O{sub 8} reference material analyzed was consistent with certified value. Black-Right-Pointing-Pointer The uncertainty obtained, near 0.01%, is useful for characterization purposes.

  6. Measuring Multivalent Binding Interactions by Isothermal Titration Calorimetry.

    Science.gov (United States)

    Dam, Tarun K; Talaga, Melanie L; Fan, Ni; Brewer, Curtis F

    2016-01-01

    Multivalent glycoconjugate-protein interactions are central to many important biological processes. Isothermal titration calorimetry (ITC) can potentially reveal the molecular and thermodynamic basis of such interactions. However, calorimetric investigation of multivalency is challenging. Binding of multivalent glycoconjugates to proteins (lectins) often leads to a stoichiometry-dependent precipitation process due to noncovalent cross-linking between the reactants. Precipitation during ITC titration severely affects the quality of the baseline as well as the signals. Hence, the resulting thermodynamic data are not dependable. We have made some modifications to address this problem and successfully studied multivalent glycoconjugate binding to lectins. We have also modified the Hill plot equation to analyze high quality ITC raw data obtained from multivalent binding. As described in this chapter, ITC-driven thermodynamic parameters and Hill plot analysis of ITC raw data can provide valuable information about the molecular mechanism of multivalent lectin-glycoconjugate interactions. The methods described herein revealed (i) the importance of functional valence of multivalent glycoconjugates, (ii) that favorable entropic effects contribute to the enhanced affinities associated with multivalent binding, (iii) that with the progression of lectin binding, the microscopic affinities of the glycan epitopes of a multivalent glycoconjugate decrease (negative cooperativity), (iv) that lectin binding to multivalent glycoconjugates, especially to mucins, involves internal diffusion jumps, (bind and jump) and (v) that scaffolds of glycoconjugates influence their entropy of binding. © 2016 Elsevier Inc. All rights reserved.

  7. Characterization of protein-protein interactions by isothermal titration calorimetry.

    Science.gov (United States)

    Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2015-01-01

    The analysis of protein-protein interactions has attracted the attention of many researchers from both a fundamental point of view and a practical point of view. From a fundamental point of view, the development of an understanding of the signaling events triggered by the interaction of two or more proteins provides key information to elucidate the functioning of many cell processes. From a practical point of view, understanding protein-protein interactions at a quantitative level provides the foundation for the development of antagonists or agonists of those interactions. Isothermal Titration Calorimetry (ITC) is the only technique with the capability of measuring not only binding affinity but the enthalpic and entropic components that define affinity. Over the years, isothermal titration calorimeters have evolved in sensitivity and accuracy. Today, TA Instruments and MicroCal market instruments with the performance required to evaluate protein-protein interactions. In this methods paper, we describe general procedures to analyze heterodimeric (porcine pancreatic trypsin binding to soybean trypsin inhibitor) and homodimeric (bovine pancreatic α-chymotrypsin) protein associations by ITC.

  8. Outpatient titration of carbidopa/levodopa enteral suspension (Duopa).

    Science.gov (United States)

    Pahwa, Rajesh; Lyons, Kelly E

    2017-05-01

    Carbidopa/levodopa enteral suspension (CLES; Duopa) is a suspension or gel formulation of carbidopa/levodopa that is approved by the USA Food and Drug Administration for the treatment of advanced Parkinson's disease patients with motor fluctuations. CLES is delivered at a constant rate continuously throughout the day into the jejunum through an infusion pump via a PEG-J tube implanted surgically. The efficacy of CLES was established in the USA based on a randomized, double-blind, double-dummy, active controlled, parallel group and 12-week study, in which mean daily OFF time was reduced by 4.0 h, compared to 1.9 h with oral immediate release carbidopa/levodopa. The CLES hardware consists of a cassette containing the drug, a pump to deliver the drug and tubing to connect the PEG-J to the pump. It is critical to understand the appropriate conversion of the carbidopa/levodopa daily dosages to the CLES dosage and how to program the pump and titrate CLES to achieve the most effective dose. We describe one methodology for patient selection, outpatient titration and pump programming.

  9. Design of a high-yield H{sub 2}{sup +} ion source for commissioning of the IFMIF accelerator using a one-dimensional plasma model

    Energy Technology Data Exchange (ETDEWEB)

    King, R.F. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)], E-mail: robert.king@jet.uk; Surrey, E. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Holmes, A.J.T. [Marcham Scientific Ltd., Sarum House, 10 Salisbury Road, Hungerford, Berkshire RG17 0LH (United Kingdom)

    2008-12-15

    It is desirable to minimise the activation of components during the commissioning phase of the IFMIF accelerator and this can be achieved by using a beam of H{sub 2}{sup +} ions in place of the D{sup +} beam. Having the same charge to mass ratio ensures that the commissioning can be conducted at full power, provided a sufficiently intense source of H{sub 2}{sup +} ions is available. Ideally, the H{sub 2}{sup +} beam current should equal that of the IFMIF D{sup +} beam current, 140 mA, with a species fraction of greater than 85% H{sub 2}{sup +}. This paper describes a study to determine the physical processes and ion source design criteria that optimise H{sub 2}{sup +} yield. Examination of the processes contributing to the yield of H{sub 2}{sup +} ions in a plasma indicate that extraction should occur as close to the ionisation volume as possible. The most suitable ion source is currently the volume discharge. A one-dimensional plasma model of this source has been developed and is validated against experimental measurements. The model has been used to identify those design criteria that most strongly affect the H{sub 2}{sup +} yield and has been used to optimise the design of the volume arc source for the production of H{sub 2}{sup +} ions.

  10. Signal processing with a summing operational amplifier in multicomponent potentiometric titrations.

    Science.gov (United States)

    Parczewski, A

    1987-06-01

    It has been proved that application of two indicator electrodes connected to the ordinary titration apparatus through an auxiliary electronic device (a summing operational amplifier) significantly extends the scope of multicomponent potentiometric titrations in which the analytes are determined simultaneously from a single titration curve. For each analyte there is a corresponding potential jump on the titration curve. By application of the proposed auxiliary device, the sum of the electrode potentials is measured. The device also enables the relative sizes of the potential jumps at the end-points on the titration curve to be varied. The advantages of the proposed signal processing are exemplified by complexometric potentiometric titrations of Fe(III) and Cu(II) in mixtures, with a platinum electrode and a copper ion-selective electrode as the indicator electrodes.

  11. Potential estimation of titratable acidity in cow milk using mid-infrared spectrometry

    OpenAIRE

    Colinet, Frédéric; Soyeurt, Hélène; Anceau, Christine; Vanlierde, Amélie; Keyen, Nicolas; Pierre DARDENNE; Gengler, Nicolas; Sindic, Marianne

    2010-01-01

    Milk coagulation has a direct effect on cheese yield. Several factors influence the milk coagulation kinetics. In addition to calcium and milk protein concentrations, titratable acidity influences all the phases of milk coagulation. The objective of this research was to study the feasibility of prediction of titratable acidity directly in bovine milk using mid-infrared spectrometry. In order to maximize the variability in the measurements of titratable acidity, milk samples were collected on ...

  12. NIIEFA accelerators for applied purposes

    Science.gov (United States)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  13. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    Science.gov (United States)

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-01

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  14. Resolving beam transport problems in electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Larson, J.D.

    1977-01-01

    A review is given of problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance.

  15. Advances in conformal radiotherapy using Monte Carlo Code to design new IMRT and IORT accelerators and interpret CT numbers

    CERN Document Server

    Wysocka-Rabin, A

    2013-01-01

    The introductory chapter of this monograph, which follows this Preface, provides an overview of radiotherapy and treatment planning. The main chapters that follow describe in detail three significant aspects of radiotherapy on which the author has focused her research efforts. Chapter 2 presents studies the author worked on at the German National Cancer Institute (DKFZ) in Heidelberg. These studies applied the Monte Carlo technique to investigate the feasibility of performing Intensity Modulated Radiotherapy (IMRT) by scanning with a narrow photon beam. This approach represents an alternative to techniques that generate beam modulation by absorption, such as MLC, individually-manufactured compensators, and special tomotherapy modulators. The technical realization of this concept required investigation of the influence of various design parameters on the final small photon beam. The photon beam to be scanned should have a diameter of approximately 5 mm at Source Surface Distance (SSD) distance, and the penumbr...

  16. Subvisible retinal laser therapy: titration algorithm and tissue response.

    Science.gov (United States)

    Lavinsky, Daniel; Sramek, Christopher; Wang, Jenny; Huie, Philip; Dalal, Roopa; Mandel, Yossi; Palanker, Daniel

    2014-01-01

    Laser therapy for diabetic macular edema and other retinal diseases has been used within a wide range of laser settings: from intense burns to nondamaging exposures. However, there has been no algorithm for laser dosimetry that could determine laser parameters yielding a predictable extent of tissue damage. This multimodal imaging and structural correlation study aimed to verify and calibrate a computational model-based titration algorithm for predictable laser dosimetry ranging from nondamaging to intense coagulative tissue effects. Endpoint Management, an algorithm based on a computational model of retinal photothermal damage, was used to set laser parameters for various levels of tissue effect. The algorithm adjusts both power and pulse duration to vary the expected level of thermal damage at different percentages of a reference titration energy dose. Experimental verification was conducted in Dutch Belted rabbits using a PASCAL Streamline 577 laser system. Titration was performed by adjusting laser power to produce a barely visible lesion at 20 ms pulse duration, which is defined as the nominal (100%) energy level. Tissue effects were then determined for energy levels of 170, 120, 100, 75, 50, and 30% of the nominal energy at 1 hour and 3, 7, 30, and 60 days after treatment. In vivo imaging included fundus autofluorescence, fluorescein angiography, and spectral-domain optical coherence tomography. Morphologic changes in tissue were analyzed using light microscopy, as well as scanning and transmission electron microscopy. One hundred and seventy percent and 120% levels corresponded to moderate and light burns, respectively, with damage to retinal pigment epithelium, photoreceptors, and at highest settings, to the inner retina. 50% to 75% lesions were typically subvisible ophthalmoscopically but detectable with fluorescein angiography and optical coherence tomography. Histology in these lesions demonstrated some selective damage to retinal pigment epithelium and

  17. Design Study and Optimization of Irradiation Facilities for Detector and Accelerator Equipment Testing in the SPS North Area at CERN

    CERN Document Server

    Biskup, Bartolomej; Stekl, Ivan

    Due to increasing performance of LHC during the last years, the strong need of new detector and electronic equipment test areas at CERN appeared from user communities. This thesis reports on two test facilities: GIF++ and H4IRRAD. GIF++, an upgrade of GIF facility, is a combined high-intensity gamma and particle beam irradiation facility for testing detectors for LHC. It combines a high-rate 137Cs source, providing photons with energy of 662 keV, together with the high-energy secondary particle beam from SPS. H4IRRAD is a new mixed-field irradiation area, designed for testing LHC electronic equipment for radiation damage effects. In particular, large volume assemblies such as full electronic racks of high current power converters can be tested. The area uses alternatively an attenuated primary 400 GeV/c proton beam from SPS, or a secondary, mainly proton, beam of 280 GeV/c directed towards a copper target. Different shielding layers are used to reproduce a radiation field similar to the LHC “tunnel” and �...

  18. Accelerated Unification

    OpenAIRE

    Arkani-Hamed, Nima; Cohen, Andrew; Georgi, Howard

    2001-01-01

    We construct four dimensional gauge theories in which the successful supersymmetric unification of gauge couplings is preserved but accelerated by N-fold replication of the MSSM gauge and Higgs structure. This results in a low unification scale of $10^{13/N}$ TeV.

  19. Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations.

    Science.gov (United States)

    He, Xingfeng; Mo, Yifei

    2015-07-21

    We perform a first principles computational study of designing the Na0.5Bi0.5TiO3 (NBT) perovskite material to increase its oxygen ionic conductivity. In agreement with the previous experiments, our computation results confirm fast oxygen ionic diffusion and good stability of the NBT material. The oxygen diffusion mechanisms in this new material were systematically investigated, and the effects of local atomistic configurations and dopants on oxygen diffusion were revealed. Novel doping strategies focusing on the Na/Bi sublattice were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm(-1) at 900 K compared to the previous Mg doped compositions. This study demonstrated the advantages of first principles calculations in understanding the fundamental structure-property relationship and in accelerating the materials design of the ionic conductor materials.

  20. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  1. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity

    Science.gov (United States)

    Duff,, Michael R.; Grubbs, Jordan; Howell, Elizabeth E.

    2011-01-01

    Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. PMID:21931288

  2. Isothermal titration calorimetry of membrane proteins - progress and challenges.

    Science.gov (United States)

    Rajarathnam, Krishna; Rösgen, Jörg

    2014-01-01

    Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. IMPEDANCE METHOD OF MEASURING OF THE TITRATABLE ACIDITY OF YOGURT

    Directory of Open Access Journals (Sweden)

    Miroslav Vasilev

    2016-10-01

    Full Text Available In the present work are analyzed studies related to changes in the active impedance component of the dairy environment caused by the flow of lactic fermentation and coagulation of casein in milk. The aim of this work was to determine the relationship between the relative change of titratable acidity and the relative change of active impedance component of the dairy environment with lactic fermentation, causing coagulation of the casein in milk. . The data were interpolated with cubic spline, visualizing how when the fat content increases, the electrical resistance increases too. All data, collected during the tests would complement and be used for solving the optimization problem to determine the time of completion of the coagulation in future work.

  4. Determination of Dimethylallylamine by Titration in Nonaqueous Solvent

    Institute of Scientific and Technical Information of China (English)

    LIU Li-hua; GONG Zhu-qing; ZHENG Ya-jie

    2004-01-01

    The content of dimethylallylamine was determined using glacial acetic acid as solvent, acetic-formic mixture as an anhydrite, perchloric acid-glacial acetic acid as titrant, and 1% crystal violet in acetic acid as indicator in the presence of methylamine and dimethylamine The influences of inert constituents and water on the titration were investigated, and a complete analytical method was determined. The results showed that the determination error of total amines increased with water increasing, while the effect of water on the determination of dimethylallylamine was little when the amount of water was within 5%, the relative error was generally within 1%, and that the end-point was acutely when about 10% chloroform was added. Compared with gas chromatography, this method is simple, convenient and accurate.

  5. Design of UAV longitudinal control scheme based on acceleration%基于加速度的无人机纵向控制方案设计

    Institute of Scientific and Technical Information of China (English)

    李道斌

    2015-01-01

    Since the general longitudinal control schemes for UAV has high cost,drastic attitude change and great over-shoot in height tracking,a longitudinal control scheme based on acceleration was designed,and the longitudinal linear motion model of UVA was established. The acceleration-based longitudinal control equationand control block diagram are introduced. The hardware needed for longitudinal control is given. The specific design steps of the control parameters are presented. The mathematical simulation of level flight,climbout and decline was conducted. The simulation results are compared with the mathe-matical simulation results of conventional longitudinal control law. Simulation comparison results show that the proposed scheme has good anti-interference ability,smooth attitude change,high-accuracy height tracking,fast speed and no overshoot,which is suitable for the longitudinal control of various UAVs.%针对无人机常规纵向控制方案成本较高、姿态变化剧烈、高度跟踪超调大的问题,设计一种基于加速度的纵向控制方案.建立了无人机纵向线性运动模型,介绍基于加速度的纵向控制方程和控制框图,给出纵向控制所需的硬件,提出了控制参数设计的具体步骤,进行了平飞、爬升和下降三种状态数学仿真,并与常规的纵向控制数学仿真结果进行了对比.仿真对比表明,基于加速度的纵向控制方案成本抗干扰能力强,姿态变化平稳,高度跟踪精度高、速度快、无超调,适用于各型无人机的纵向控制.

  6. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  7. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  8. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  9. Quick titration of pergolide in cotreatment with domperidone is safe and effective

    NARCIS (Netherlands)

    Jansen, PAF; Herings, RMC; Samson, MM; Schuurmans-Daemen, LMPJ; Hovestadt, A; Verhaar, HJJ; Van Laar, T; de Vreede, P.

    2001-01-01

    The purpose of the study was to analyze efficacy and safety of quick pergolide titration combined with domperidone. In an open-label prospective study, pergolide was titrated in 16 days to a maximum of 3 mg/d doses as adjunctive treatment to L-Dopa in 10 elderly patients with Parkinson's disease. Si

  10. The ion-sensitive field effect transistor in rapid acid-base titrations

    NARCIS (Netherlands)

    Bos, M.; Bergveld, P.; Veen-Blaauw, van A.M.W.

    1979-01-01

    Ion-sensitive field effect transistors (ISFETs) are used as the pH sensor in rapid acid—base titrations. Titration speeds at least five times greater than those with glass electrodes are possible for accuracies better than ±1%.

  11. A knowledge based advisory system for acid/base titrations in non-aqueous solvents

    NARCIS (Netherlands)

    Bos, M.; Linden, van der W.E.

    1996-01-01

    A computer program was developed that could advice on the choice of solvent and titrant for acid/base titrations in nonaqueous media. It is shown that the feasibility of a titration in a given solvent can be calculated from solvent properties and intrinsic acid/base properties of the sample componen

  12. Quick titration of pergolide in cotreatment with domperidone is safe and effective

    NARCIS (Netherlands)

    Jansen, PAF; Herings, RMC; Samson, MM; Schuurmans-Daemen, LMPJ; Hovestadt, A; Verhaar, HJJ; Van Laar, T; de Vreede, P.

    2001-01-01

    The purpose of the study was to analyze efficacy and safety of quick pergolide titration combined with domperidone. In an open-label prospective study, pergolide was titrated in 16 days to a maximum of 3 mg/d doses as adjunctive treatment to L-Dopa in 10 elderly patients with Parkinson's disease.

  13. MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  14. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  15. Study and Application of a New On—Line Titration Technique

    Institute of Scientific and Technical Information of China (English)

    朱建育; 施利毅; 等

    2002-01-01

    A new on-line titration method and device based on a new technique-continuous flow titration is described.By the means of electronically controlled switching of a solenoid valve,the main component of the system,the equivalent point of the titration is easily determined.Several kinds of mixing tools were examined.whereby a self-made mixing chamer with minimum volume gave best results and was therefore used in the dveice,The error of the titration is within 0.2% and the relative standard deviation(RSD) is below 1.2%,The results show no difference compared with a commercial device,meanwhile the new on-line titration system is cheaper and fully automated and thus easy to hand and less slovent consumption.

  16. SPECIAL CONSIDERATIONS REGARDING WARFARIN DOSE TITRATION IN PATIENTS WITH ATRIAL FIBRILLATION DEPENDING ON CLINICAL FACTORS

    Directory of Open Access Journals (Sweden)

    E. L. Artanova

    2011-01-01

    Full Text Available Aim. To study the relations of clinical characteristics and individual warfarin dose titration in patients with atrial fibrillation. Material and methods. Period of warfarin dose titration was analyzed in 68 patients with atrial fibrillation due to ischemic heart disease. Adjusted warfarin dose in milligram, duration of dose titration in days and maximal international normalized ratio (INR were taken into account. Sex, age, history of myocardial infarction and stroke, concomitant diseases, amiodarone therapy were considered among clinical characteristics. Results. Adjusted warfarin dose was significantly higher in obesity , and it was lower in case of experienced myocardial infarction. The INR highest levels and maximal amplitudes of its fluctuations were observed in patients with thyroid gland nodes and smokers. Period of warfarin dose titration was longer in patients treated with amiodarone. Conclusion. Warfarin dose titration in patients with atrial fibrillation depends on the presence of myocardial infarction, obesity , thyroid nodular changes, smoking and amiodarone treatment.

  17. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    Science.gov (United States)

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  18. GPU graphics acceleration driver design and implement based on FT%基于飞腾平台的GPU图形加速驱动设计与实现

    Institute of Scientific and Technical Information of China (English)

    李荣振; 吴庆波; 邵立松; 伍复慧; 谭郁松

    2014-01-01

    With the rapid development of VLSI and graphics technology, especially the rapid development of 2D/3D graphics acceleration technology, GPU graphics acceleration has become the main issue of research. This paper designs the driver of light weight DirectFB graphics hardware acceleration system on FT. This paper, from the design and imple-mentation of GPU graphics acceleration perspectives, introduces Radeon GPU graphics acceleration related principles and mainly researches GPU memory address space and command transport mechanism and others base technology imple-ment. At last, this system is implemented.%在超大规模集成电路和图形技术快速发展,特别是2D/3D图形加速技术高速发展的背景下,GPU图形加速已经成为人们研究的焦点。主要在飞腾平台上为轻量级的DirectFB图形系统设计了一种硬件加速驱动。从驱动的设计与实现角度介绍了Radeon GPU图形加速的相关原理,对飞腾平台上GPU主存地址空间和命令传送机制等关键技术进行了系统的研究,并最终实现了该系统。

  19. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging

    Institute of Scientific and Technical Information of China (English)

    LIU YanJie; LI Teng; SUN LiNing

    2009-01-01

    A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage,friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian)control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach,and the performance is validated by simulation.

  20. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  1. X-ray converter design for an electron linear accelerator%电子直线加速器X射线转换靶设计

    Institute of Scientific and Technical Information of China (English)

    张耀锋; 黄建微; 胡涛; 张明昕; 江艳

    2013-01-01

    设计了用于BF-5电子直线加速器的X射线转换靶.采用蒙特卡罗模拟程序优化计算了靶材厚度;设计了转换靶的冷却结构,并采用有限元方法模拟计算了水冷效果;依据设计的结构参数,计算了转换靶产生X射线的剂量分布及能谱分布.结果表明:靶体温度控制在40℃以下,转换靶在该条件下能够长期稳定工作;X射线平均能量为0.65 MeV,在转换靶正前方1 m处吸收剂量可达6 Gy/min.%The design of an X-ray converter for the BF-5 electron linear accelerator is described.First,the thickness of the converter is optimized by Monte Carlo simulations and the water-cooling structure of the converter is designed.Then,the water cooling process is simulated by finite element analysis and the temperature distribution of the converter is computed.Finally,the dose distribution of the converter as well as the energy spectrum of the generated X-ray is calculated.The results show that the maximal temperature of the converter is below 40 ℃,thus the converter could operate consistently and stably.The mean energy of the generated X-ray is 0.65 MeV,and the absorbed dose of the X-ray for the point 1 meter ahead from the center of the converter could reach 6 Gy/min.

  2. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  3. VLHC accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  4. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  5. Impact accelerations

    Science.gov (United States)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  6. 束中放疗加速器多叶光栅控制系统设计%Design of MLC’s control system for IORT accelerators

    Institute of Scientific and Technical Information of China (English)

    杜锡九; 蒋舸扬; 叶斌; 陈广花; 陈建锋; 沈立人

    2015-01-01

    Background: The multi-leaf collimator (MLC) is one of key components of modern medical accelerators for Intra-operative Radiation Therapy (IORT). The stability and accuracy of MLC’s control system will insure patients’ life security during radiation therapy. Comparing with the world’s top level, domestic MLC technologies falls behind not only in stability but also in accuracy. Purpose: This study aims to design a MLC control system satisfying the requirements of developing the first domestic IORT accelerator and closing the gap with the world advanced level. Methods: The MLC control system was reconfigurated by the System-on-a-Programmable-Chip (SOPC) technique based on the traditional MLC control system. By adding new function model, preventing Electromagnetic Interference (EMI) and other ways, the newly developed MLC control system can fulfill IORT accelerator’s function and mechanical installation requirements. Results and Conclusion: The test results show that the control system possess properties of full functionalities, redundant position feedback, conformity to national standards of medical instruments and insuring the R&D of IORT accelerator.%多叶光栅是现代医用加速器的重要组成部分之一,其控制系统的稳定性和精确度直接影响手术中病人的生命安全。但目前国内的多叶光栅无论在稳定性还是在精确度上仍与世界先进水平相差甚远。为满足国内一台术中治疗加速器的研发需要,我们在传统多叶光栅控制基础上,利用可编程片上系统(System-on-a-Programmable-Chip, SOPC)技术对多叶光栅控制系统进行了软硬件重构,通过增加功能模块和改善电磁辐射防护等手段,研制了符合术中治疗加速器功能需求和机械安装尺寸的基于现场可编程门阵列(Field-Programmable Gate Array, FPGA)芯片的全新控制系统。经测试,该控制系统功能完善,双路位置反馈可靠性高,测试结果满足国家现

  7. Accelerator structure work for NLC

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gluckstern, R. [Maryland Univ., College Park, MD (United States); Ko, K.; Kroll, N. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  8. Hot biological catalysis: isothermal titration calorimetry to characterize enzymatic reactions.

    Science.gov (United States)

    Mazzei, Luca; Ciurli, Stefano; Zambelli, Barbara

    2014-04-04

    Isothermal titration calorimetry (ITC) is a well-described technique that measures the heat released or absorbed during a chemical reaction, using it as an intrinsic probe to characterize virtually every chemical process. Nowadays, this technique is extensively applied to determine thermodynamic parameters of biomolecular binding equilibria. In addition, ITC has been demonstrated to be able of directly measuring kinetics and thermodynamic parameters (kcat, KM, ΔH) of enzymatic reactions, even though this application is still underexploited. As heat changes spontaneously occur during enzymatic catalysis, ITC does not require any modification or labeling of the system under analysis and can be performed in solution. Moreover, the method needs little amount of material. These properties make ITC an invaluable, powerful and unique tool to study enzyme kinetics in several applications, such as, for example, drug discovery. In this work an experimental ITC-based method to quantify kinetics and thermodynamics of enzymatic reactions is thoroughly described. This method is applied to determine kcat and KM of the enzymatic hydrolysis of urea by Canavalia ensiformis (jack bean) urease. Calculation of intrinsic molar enthalpy (ΔHint) of the reaction is performed. The values thus obtained are consistent with previous data reported in literature, demonstrating the reliability of the methodology.

  9. Application of isothermal titration calorimetry in bioinorganic chemistry.

    Science.gov (United States)

    Grossoehme, Nicholas E; Spuches, Anne M; Wilcox, Dean E

    2010-11-01

    The thermodynamics of metals ions binding to proteins and other biological molecules can be measured with isothermal titration calorimetry (ITC), which quantifies the binding enthalpy (ΔH°) and generates a binding isotherm. A fit of the isotherm provides the binding constant (K), thereby allowing the free energy (ΔG°) and ultimately the entropy (ΔS°) of binding to be determined. The temperature dependence of ΔH° can then provide the change in heat capacity (ΔC (p)°) upon binding. However, ITC measurements of metal binding can be compromised by undesired reactions (e.g., precipitation, hydrolysis, and redox), and generally involve competing equilibria with the buffer and protons, which contribute to the experimental values (K (ITC), ΔH (ITC)). Guidelines and factors that need to be considered for ITC measurements involving metal ions are outlined. A general analysis of the experimental ITC values that accounts for the contributions of metal-buffer speciation and proton competition and provides condition-independent thermodynamic values (K, ΔH°) for metal binding is developed and validated.

  10. Characterization of membrane protein interactions by isothermal titration calorimetry.

    Science.gov (United States)

    Situ, Alan J; Schmidt, Thomas; Mazumder, Parichita; Ulmer, Tobias S

    2014-10-23

    Understanding the structure, folding, and interaction of membrane proteins requires experimental tools to quantify the association of transmembrane (TM) helices. Here, we introduce isothermal titration calorimetry (ITC) to measure integrin αIIbβ3 TM complex affinity, to study the consequences of helix-helix preorientation in lipid bilayers, and to examine protein-induced lipid reorganization. Phospholipid bicelles served as membrane mimics. The association of αIIbβ3 proceeded with a free energy change of -4.61±0.04kcal/mol at bicelle conditions where the sampling of random helix-helix orientations leads to complex formation. At bicelle conditions that approach a true bilayer structure in effect, an entropy saving of >1kcal/mol was obtained from helix-helix preorientation. The magnitudes of enthalpy and entropy changes increased distinctly with bicelle dimensions, indicating long-range changes in bicelle lipid properties upon αIIbβ3 TM association. NMR spectroscopy confirmed ITC affinity measurements and revealed αIIbβ3 association and dissociation rates of 4500±100s(-1) and 2.1±0.1s(-1), respectively. Thus, ITC is able to provide comprehensive insight into the interaction of membrane proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enzyme kinetics determined by single-injection isothermal titration calorimetry.

    Science.gov (United States)

    Transtrum, Mark K; Hansen, Lee D; Quinn, Colette

    2015-04-01

    The purposes of this paper are (a) to examine the effect of calorimeter time constant (τ) on heat rate data from a single enzyme injection into substrate in an isothermal titration calorimeter (ITC), (b) to provide information that can be used to predict the optimum experimental conditions for determining the rate constant (k2), Michaelis constant (KM), and enthalpy change of the reaction (ΔRH), and (c) to describe methods for evaluating these parameters. We find that KM, k2 and ΔRH can be accurately estimated without correcting for the calorimeter time constant, τ, if (k2E/KM), where E is the total active enzyme concentration, is between 0.1/τ and 1/τ and the reaction goes to at least 99% completion. If experimental conditions are outside this domain and no correction is made for τ, errors in the inferred parameters quickly become unreasonable. A method for fitting single-injection data to the Michaelis-Menten or Briggs-Haldane model to simultaneously evaluate KM, k2, ΔRH, and τ is described and validated with experimental data. All four of these parameters can be accurately inferred provided the reaction time constant (k2E/KM) is larger than 1/τ and the data include enzyme saturated conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hot Biological Catalysis: Isothermal Titration Calorimetry to Characterize Enzymatic Reactions

    Science.gov (United States)

    Mazzei, Luca; Ciurli, Stefano; Zambelli, Barbara

    2014-01-01

    Isothermal titration calorimetry (ITC) is a well-described technique that measures the heat released or absorbed during a chemical reaction, using it as an intrinsic probe to characterize virtually every chemical process. Nowadays, this technique is extensively applied to determine thermodynamic parameters of biomolecular binding equilibria. In addition, ITC has been demonstrated to be able of directly measuring kinetics and thermodynamic parameters (kcat, KM, ΔH) of enzymatic reactions, even though this application is still underexploited. As heat changes spontaneously occur during enzymatic catalysis, ITC does not require any modification or labeling of the system under analysis and can be performed in solution. Moreover, the method needs little amount of material. These properties make ITC an invaluable, powerful and unique tool to study enzyme kinetics in several applications, such as, for example, drug discovery. In this work an experimental ITC-based method to quantify kinetics and thermodynamics of enzymatic reactions is thoroughly described. This method is applied to determine kcat and KM of the enzymatic hydrolysis of urea by Canavalia ensiformis (jack bean) urease. Calculation of intrinsic molar enthalpy (ΔHint) of the reaction is performed. The values thus obtained are consistent with previous data reported in literature, demonstrating the reliability of the methodology. PMID:24747990

  13. Predicting proton titration in cationic micelle and bilayer environments

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Brian H.; Shen, Jana K. [Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201 (United States); Eike, David M.; Murch, Bruce P.; Koenig, Peter H. [Computational Chemistry, Modeling and Simulation GCO, Procter and Gamble, Cincinnati, Ohio 45201 (United States)

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  14. Effect of a stirring process in an isothermal titration microcalorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Socorro, F.; Nuez, I. de la; Alvarez, L.; Rodriguez de Rivera, M

    2004-10-01

    In this paper, it is analysed the way in which the thermodynamic results obtained in an isothermal titration microcalorimeter, with continuous injection of a liquid and a variable mass are affected. Two aspects are presented, the first one refers to a variation in the baseline that takes place when the liquid mass is increased in the laboratory cell, this variation is due to the change in the thermal coupling between the stirrer and its contact with the thermostat. The second aspect is the analysis of the effect of the stirring process and the injection velocity on the homogenization of the remaining mixture in the laboratory cell. The aim of the study of these two previous aspects is to increase the accuracy of the thermodynamic measures carried out. The variation of the baseline affects in a percentage from 1 to 2% of the total energy developed. It is also shown the necessity of a stirring process according to the injection velocity in order to obtain a homogeneous mixture at every instant. This fact allows to carry out a deconvolution of the calorimetric signal and to obtain directly the power developed in the mixture process in terms of the amount of mixed substance [Meas. Sci. Technol. 1 (1990) pp. 1285-1290; J. Thermal Analysis 41 (1994) pp. 1385-1392].

  15. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  16. 沉淀滴定的林邦滴定曲线方程%Ringbom titration curve equation of precipitation titration

    Institute of Scientific and Technical Information of China (English)

    乔成立; 李文新

    2014-01-01

    Ionic strength effect,acid effect,precipitation effect and ligand effect were identified as side reactions of the main reaction,Ringbom titration curve equation of precipitation titration was derived by means of material balance, conditional stability constant and titration scores,etc,which can lay a solid foundation for researching precipitation titration analysis theory on the basis of Ringbom titration curve equation.%把离子强度效应、酸效应、沉淀效应、配位效应等看作是主反应发生的副反应,通过物料平衡、条件稳定常数和滴定分数等推导出沉淀滴定的林邦滴定曲线方程,为用林邦滴定曲线方程研究沉淀滴定分析理论打下坚实的基础。

  17. Titration Calorimetry Applied to the Thermokinetics Study of Consecutive First-order Reactions

    Institute of Scientific and Technical Information of China (English)

    SHI Jing-Yan; LI Jie; WANG Zhi-Yong; LIU Yu-Wen; WANG Cun-Xin

    2008-01-01

    The thermokinetic mathematical models for consecutive first-order reactions in titration period and the stopped-titration reaction period were proposed for titration calorimetry, based on which, thermodynamic parameters (reaction enthalpies, △rHm1 and △rHm2) and kinetic parameters (rate constants, k1 and k2) of the consecutive first-order reactions could be obtained by directly simulating the calorimetric curve from a single experiment with the method of nonlinear least squares regression (NLLS).The reliability of the model has been verified by investigating the reaction of the saponification of diethyl succinate in an aqueous ethanol solvent.

  18. On the Physical Meaning of the Isothermal Titration Calorimetry Measurements in Calorimeters with Full Cells

    Science.gov (United States)

    Grolier, Jean-Pierre E.; del Río, Jose Manuel

    2009-01-01

    We have performed a detailed study of the thermodynamics of the titration process in an isothermal titration calorimeter with full cells. We show that the relationship between the enthalpy and the heat measured is better described in terms of the equation Δ H = Winj + Q (where Winj is the work necessary to carry out the titration) than in terms of ΔH = Q. Moreover, we show that the heat of interaction between two components is related to the partial enthalpy of interaction at infinite dilution of the titrant component, as well as to its partial volume of interaction at infinite dilution. PMID:20054472

  19. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Science.gov (United States)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  20. 混合离子的沉淀准确滴定%Precipitation Titration for Multiple Ions

    Institute of Scientific and Technical Information of China (English)

    乔成立

    2016-01-01

    The absolute value of titration break in precipitation titration is deduced with the Ringbom titration curve equation, and the conditions for accurate precipitation titration are thus deduced with the absolute value of the titration break.%用沉淀滴定的林邦滴定曲线方程推导滴定突跃的绝对值,用滴定突跃的绝对值推导混合离子准确滴定的条件。