WorldWideScience

Sample records for accelerated three-dimensional upper

  1. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla.

    Science.gov (United States)

    Kim, Yoon-Chul; Hayes, Cecil E; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-06-01

    Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high-resolution three-dimensional imaging and dynamic two-dimensional imaging and the importance of further improvements in spatio-temporal resolution. The purpose of the study was to describe a novel 16-channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three-dimensional imaging of the upper airway during static posture, 6-fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three-dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm(2) in-plane spatial and 84 ms temporal resolution. Copyright © 2010 Wiley-Liss, Inc.

  2. Upper bound on the capacity of constrained three-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2000-01-01

    An upper bound on the capacity of constrained three-dimensional codes is presented. The bound for two-dimensional codes of Calkin and Wilf (see SIAM Journal of Discrete Mathematics, vol.11, no.1, p.54-60, 1998) was extended to three dimensions by Nagy and Zeger. Both bounds apply to first order s...

  3. Three-dimensional sparse electromagnetic imaging accelerated by projected steepest descent

    KAUST Repository

    Desmal, Abdulla

    2016-11-02

    An efficient and accurate scheme for solving the nonlinear electromagnetic inverse scattering problem on three-dimensional sparse investigation domains is proposed. The minimization problem is constructed in such a way that the data misfit between measurements and scattered fields (which are expressed as a nonlinear function of the contrast) is constrained by the contrast\\'s first norm. The resulting minimization problem is solved using nonlinear Landweber iterations accelerated using a steepest descent algorithm. A projection operator is applied at every iteration to enforce the sparsity constraint by thresholding the result of that iteration. Steepest descent algorithm ensures accelerated and convergent solution by utilizing larger iteration steps selected based on a necessary B-condition.

  4. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    Science.gov (United States)

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2010-01-01

    Full Text Available A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel et al., in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002, p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.

  6. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Science.gov (United States)

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  7. Three-dimensional crust and upper mantle structure at the Nevada test site

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1983-01-01

    The three-dimensional crust and upper mantle structure at the Nevada Test Site (NTS) is derived by combining teleseismic P wave travel time residuals with Pn source time terms. The NTS time terms and relative teleseismic residuals are calculated by treating the explosions as a network of 'receivers' which record 'shots' located at the surrounding stations. Utilization of the Pn time terms allows for better crustal resolution than is possible from teleseismic information alone. Average relative teleseismic P wave residuals show a consistent progression of positive (late arrivals) to negative residuals from east to west across the NTS. However, Pn time terms beneath Rainier Mesa are at least 0.3 and 0.5 s less than those beneath Pahute Mesa and Yucca Flat, respectively, indicating the presence of high-velocity crustal material or crustal thinning beneath Rainier Mesa. The time terms at Pahute Mesa are surprisingly uniform, and the largest time terms and residuals are observed in the northwest and southern parts of Yucca Flat. The Pn time terms show a slight correlation with the working-point velocity at the shot point for Pahute Mesa and Yucca Flat, indicating that part of the observed lateral variations are caused by shallow effects of the upper crust. Three-dimensional inversion of the travel time residuals suggests that Yucca Flat is characterized by low-velocity anomalies confined to the upper crust, Rainer Mesa by very high velocities in the upper and middle crust, and Pahute Mesa by a high-velocity anomaly extending through the crust and into the upper mantle. Relatively low velocities are observed in the lower crust beneath the Timber Mountain caldera south of Pahute Mesa with no expression in the upper mantle. These observed differences in velocity beneath the Tertiary Silent Canyon and Timber Mountain calderas may be related to their magma volume and mode of enrichment from a mantle-derived magma source

  8. Development of whole core thermal-hydraulic analysis program ACT. 4. Incorporation of three-dimensional upper plenum model

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2003-03-01

    The thermal-hydraulic analysis computer program ACT is under development for the evaluation of detailed flow and temperature fields in a core region of fast breeder reactors under various operation conditions. The purpose of this program development is to contribute not only to clarifying thermal hydraulic characteristics that cannot be revealed by experiments due to measurement difficulty but also to performing rational safety design and assessment. This report describes the incorporation of a three-dimensional upper plenum model to ACT and its verification study as part of the program development. To treat the influence of three-dimensional thermal-hydraulic behavior in a upper plenum on the in-core temperature field, the multi-dimensional general purpose thermal-hydraulic analysis program AQUA, which was developed and validated at JNC, was applied as the base of the upper plenum analysis module of ACT. AQUA enables to model the upper plenum configuration including immersed heat exchangers of the direct reactor auxiliary cooling system (DRACS). In coupling core analysis module that consists of the fuel-assembly and the inter-wrapper gap calculation parts with the upper plenum module, different types of computation mesh systems were jointed using the staggered quarter assembly mesh scheme. A coupling algorithm among core, upper plenum and heat transport system modules, which can keep mass, momentum and energy conservation, was developed and optimized in consideration of parallel computing. ACT was applied to analyzing a sodium experiment (PLANDTL-DHX) performed at JNC, which simulated the natural circulation decay heat removal under DRACS operation conditions for the program verification. From the calculation result, the validity of the improved program was confirmed. (author)

  9. High energy gain in three-dimensional simulations of light sail acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sgattoni, A., E-mail: andrea.sgattoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milano (Italy); CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Sinigardi, S. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN sezione di Bologna, Bologna (Italy); Macchi, A. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa (Italy)

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  10. High energy gain in three-dimensional simulations of light sail acceleration

    International Nuclear Information System (INIS)

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-01-01

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  11. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P.

    2011-01-01

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long-term results are needed to assess

  12. NMR experiments on a three-dimensional vibrofluidized granular medium

    Science.gov (United States)

    Huan, Chao; Yang, Xiaoyu; Candela, D.; Mair, R. W.; Walsworth, R. L.

    2004-04-01

    A three-dimensional granular system fluidized by vertical container vibrations was studied using pulsed field gradient NMR coupled with one-dimensional magnetic resonance imaging. The system consisted of mustard seeds vibrated vertically at 50 Hz, and the number of layers Nl⩽4 was sufficiently low to achieve a nearly time-independent granular fluid. Using NMR, the vertical profiles of density and granular temperature were directly measured, along with the distributions of vertical and horizontal grain velocities. The velocity distributions showed modest deviations from Maxwell-Boltzmann statistics, except for the vertical velocity distribution near the sample bottom, which was highly skewed and non-Gaussian. Data taken for three values of Nl and two dimensionless accelerations Γ=15,18 were fitted to a hydrodynamic theory, which successfully models the density and temperature profiles away from the vibrating container bottom. A temperature inversion near the free upper surface is observed, in agreement with predictions based on the hydrodynamic parameter μ which is nonzero only in inelastic systems.

  13. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    Directory of Open Access Journals (Sweden)

    Changsheng Zhu

    2018-03-01

    Full Text Available In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  14. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units.

    Science.gov (United States)

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A

    2013-02-01

    Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction.

  15. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P. [IRCC, Candiolo (Italy)

    2011-10-15

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was < 10 mm in 33 patients (53%) and > 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long

  16. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  17. Plasmas in particle accelerators: a hydrodynamic model of three-dimensional electrostatic instabilities

    International Nuclear Information System (INIS)

    Krafft, G.A.; Mark, J.W.K.; Wang, T.S.F.

    1983-01-01

    In an earlier paper, closed hydrodynamic equations were derived with possible application to the simulation of beam plasmas relevant to designs of heavy ion accelerators for inertial confinement fusion energy applications. The closure equations involved a novel feature of anisotropic stresses even transverse to the beam. A related hydrodynamic model is used in this paper to examine further the boundaries of validity of such hydrodynamic approximations. It is also proposed as a useful tool to provide an economic means for searching the large parameter space relevant to three-dimensional stability problems involving coupling of longitudinal and transverse motions in the presence of wall impedance

  18. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1990-01-01

    The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

  19. Clinical accuracy of three-dimensional fluoroscopy (IsoC-3D)-assisted upper thoracic pedicle screw insertion

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihisa; Ito, Yasuo; Shimokawa, Tetsuya; Shiozaki, Yasuyuki; Mazaki, Tetsuro; Tomioka, Masao; Tanaka, Masato

    2010-01-01

    Correct screw placement is especially difficult in the upper thoracic vertebrae. At the cervicothoracic junction (C7-T2), problems can arise because of the narrowness of the pedicle and the difficulty of using a lateral image intensifier there. Other upper thoracic vertebrae (T3-6) pose a problem for screw insertion also because of the narrower pedicle. We inserted 154 pedicle screws into 78 vertebrae (C7 to T6) in 38 patients. Screws were placed using intraoperative data acquisition by an isocentric C-arm fluoroscope (Siremobile Iso-C3D) and computer navigation. Out of 90 pedicle screws inserted into 45 vertebrae between C7 and T2, 87 of the 90 (96.7%) screws were classified as grade 1 (no perforation). Of 64 pedicle screws inserted into 33 vertebrae between T3 and T6, 61 of 64 (95.3%) screws were classified as grade 1. In this study, we reduced pedicle screw misplacement at the level of the C7 and upper thoracic (T1-6) vertebrae using the three-dimensional fluoroscopy navigation system. (author)

  20. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Three-dimensional P velocity structure of the crust and upper mantle under Beijing region

    Energy Technology Data Exchange (ETDEWEB)

    Quan, A.; Liu, F.; Sun, Y.

    1980-04-01

    By use of the teleseismic P arrival times at 15 stations of the Beijing network for 120 events distributed over various azimuths, we studied the three-dimensional P velocity structure under the Beijing region. In calculating the theoretic travel time, we adopted the source parameters given in BISC, and used the J-B model as the standard model of earth. On inversion, we adopted singular value decomposition as a generalized inversion package, which can be used for solving very large over-determined systems of equations Gm = t without resorting to normal equations G/sup T/Gm = G/sup T/t. The results are that within the crust and upper mantle under the Beijing region there are clear lateral differences. In the results obtained by use of data from 1972 to 1975, it can be seen that there are three different zones of P-velocity. In the southeast Beijing region, P velocity is lower than that of the normal model by 10 to 14% within the crust, and by 8 to 9% within the upper mantle. The northwest Beijing region is a higher-velocity zone, within which the average P-velocity is faster than that of the normal model by about 9%. It disappears after entering into the upper mantle. The central part of this region is a normal zone. On the surface, the distribution of these P velocity variations corresponds approximately to the distribution of the over-burden. But in the deeper region, the distribution of velocity variation agrees with the distribution of seismicity. It is interesting to note that the hypocenters of several major earthquakes in this region, e.g., the Sanhe-Pinggu earthquake (1679, M = 8), the Shacheng earthquake (1730, M = 6-3/4) and the Tangshan earthquake (1976, M = 7.8), are all located very close to this boundary of these P-velocity variation zones.

  2. Initial dosimetric experience using simple three-dimensional conformal external-beam accelerated partial-breast irradiation

    International Nuclear Information System (INIS)

    Taghian, Alphonse G.; Kozak, Kevin R.; Doppke, Karen P.; Katz, Angela; Smith, Barbara L.; Gadd, Michele; Specht, Michelle; Hughes, Kevin; Braaten, Kristina; Kachnic, Lisa A.; Recht, Abram; Powell, Simon N.

    2006-01-01

    Purpose: Several accelerated partial-breast irradiation (APBI) techniques are being investigated in patients with early-stage breast cancer. We present our initial experience using three-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Sixty-one patients with tumors of 2 cm or less and negative axillary nodes were treated with 3D-CRT accelerated partial-breast irradiation (APBI) between August 2003 and March 2005. The prescribed radiation dose was 32 Gy in 4-Gy fractions given twice daily. Efforts were made to minimize the number of beams required to achieve adequate planning target volume (PTV) coverage. Results: A combination of photons and electrons was used in 85% of patients. A three-field technique that consisted of opposed, conformal tangential photons and enface electrons was employed in 43 patients (70%). Nine patients (15%) were treated with a four-field arrangement, which consisted of three photon fields and enface electrons. Mean PTV volumes that received 100%, 95%, and 90% of the prescribed dose were 93% ± 7%, 97% ± 4%, and 98% ± 2%, respectively. Dose inhomogeneity exceeded 10% in only 7 patients (11%). Mean doses to the ipsilateral lung and heart were 1.8 Gy and 0.8 Gy, respectively. Conclusions: Simple 3D-CRT techniques of APBI can achieve appropriate PTV coverage while offering significant normal-tissue sparing. Therefore, this noninvasive approach may increase the availability of APBI to patients with early-stage breast cancer

  3. The upper level of control system of electron accelerators

    International Nuclear Information System (INIS)

    Gribov, I.V.; Nedeoglo, F.N.; Shvedunov, I.V.

    2005-01-01

    The upper level software of a three-level control system that supports several electron accelerators is described. This software operates in the Linux and RTLinux (Real Time Linux) environment. The object information model functions on the basis of a parametric description supported by the SQLite Data Base Management System. The Javascript sublanguage is used for script forming, and the Qt Designer application is used to construct the user interface [ru

  4. Accelerating the reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning using CUDA.

    Science.gov (United States)

    Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao

    2014-01-01

    An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.

  5. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    Science.gov (United States)

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  6. Accelerated hypofractionated three-dimensional conformal radiation therapy in the treatment of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yu Jinming; Zheng Aiqing; Yu Yonghua; Wang Xuetao; Yuan Shuanghu; Han Dali; Li Kunhai

    2005-01-01

    Objective: To evaluate the effect and complication of non-small-cell lung cancer (NSCLC) treated with accelerated hypofractionated three dimensional conforms] radiation therapy (3DCRT). Methods: There were squamous carcinoma 21, adenocarcinoma 7, squamous-adenocarcinoma 4 and other cancer 3. There were 17 stage I and 18 stage II. Thirty-five patients of NSCLC were treated with a dose of 30-48 Gy in 6 or 8 Gy per fraction, 3 times a week. The outcome of these patients Was analyzed. Results: The overall 1-, 2- and 3- Year survival rate was 78.2%, 46.9% and 36.3%, respectively. The 1- and 2-year recurrence-free survival rate was 64.6 % and 39.7 %, respectively. The acute radiation pneumonitis and late lung fibrosis rates were high. Univariate analysis showed that Vm was a significant predictor of acute radiation pneumonitis. Conclusion: Compared with accelerated hypofractionated irradiation, the routine conventional fractionated radiation therapy may be preferred for more patients of NSCLC. (authors)

  7. Three-dimensional sparse electromagnetic imaging accelerated by projected steepest descent

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2016-01-01

    An efficient and accurate scheme for solving the nonlinear electromagnetic inverse scattering problem on three-dimensional sparse investigation domains is proposed. The minimization problem is constructed in such a way that the data misfit between

  8. Effect of trapezius muscle strength on three-dimensional scapular kinematics

    OpenAIRE

    Turgut, Elif; Duzgun, Irem; Baltaci, Gul

    2016-01-01

    [Purpose] This study aimed to investigate the effect of trapezius muscle isometric strength on three-dimensional scapular kinematics in asymptomatic shoulders. [Subjects and Methods] Thirty asymptomatic subjects were included to the study. Isometric strengths of the upper, middle, and lower trapezius muscle were measured using a handheld dynamometer. Three-dimensional scapular kinematics was recorded by an electromagnetic tracking device during frontal and sagittal plane elevation. For each m...

  9. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  10. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  11. The usefulness of three-dimensional imaging with spiral CT in the evaluation of upper airway stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Ho; Yoon, Dae Young; Bae, Sang Hoon; Rho, Young Soo; Jung, Yin Gyo [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-01-01

    To assess the usefulness of three-dimensional (3D) spiral CT imaging in patients with upper airway stenosis. We performed 3D spiral CT imagings in ten patients in whom upper airway stenosis was clinically suspected. Eight of these patients had upper airway stenosis caused by intubation or tracheostomy (n-6), tuberculosis (n=1), or extrinsic compression by a thyroid mass (n=1). Spiral CT scanning (30-second continuous exposure and 90-mm length) was performed with a table speed of 3mm/sec and a section thickness of 3mm. The selected starting point was the epiglottis. The resulting data were reformatted by multiplanar reformation (MPR) and shaded surface display (SSD) with peeling after reconstruction of 2mm interval. In the evaluation of location and extent of stenosis, we compared fidings of 3D imaging with those of baseline axial images (n=10), endoscopy (n=9) and operation (n=4). The locations of stenosis in eight patients were as follows;tracheostoma (n=4), subglottic region (n=3), and larynx (n=1). In all eight, 3D imaging demonstrated the location and extent of stenosis, which exactly correlated with endoscopic and operative findings. In one patient, however, another stenotic area in the tracheal bifurcation was not discovered because this lesion was not included in the field of CT scan. In two patients, the diagnosis on 3D images of no 'stenosis' was comfirmed by clinical findings or operation. No differences in diagnostic accuracy were noted between axial images, MPR, and SSD when evalvating the location and extent of stenosis; vertical extent was shown more easily by 3D imaging than by axial images, however. 3D imaging with spiral CT may be an useful adjunctive method in the evaluation of upper airway stenosis with variable causes.

  12. The usefulness of three-dimensional imaging with spiral CT in the evaluation of upper airway stenosis

    International Nuclear Information System (INIS)

    Jang, Won Ho; Yoon, Dae Young; Bae, Sang Hoon; Rho, Young Soo; Jung, Yin Gyo

    1996-01-01

    To assess the usefulness of three-dimensional (3D) spiral CT imaging in patients with upper airway stenosis. We performed 3D spiral CT imagings in ten patients in whom upper airway stenosis was clinically suspected. Eight of these patients had upper airway stenosis caused by intubation or tracheostomy (n-6), tuberculosis (n=1), or extrinsic compression by a thyroid mass (n=1). Spiral CT scanning (30-second continuous exposure and 90-mm length) was performed with a table speed of 3mm/sec and a section thickness of 3mm. The selected starting point was the epiglottis. The resulting data were reformatted by multiplanar reformation (MPR) and shaded surface display (SSD) with peeling after reconstruction of 2mm interval. In the evaluation of location and extent of stenosis, we compared fidings of 3D imaging with those of baseline axial images (n=10), endoscopy (n=9) and operation (n=4). The locations of stenosis in eight patients were as follows;tracheostoma (n=4), subglottic region (n=3), and larynx (n=1). In all eight, 3D imaging demonstrated the location and extent of stenosis, which exactly correlated with endoscopic and operative findings. In one patient, however, another stenotic area in the tracheal bifurcation was not discovered because this lesion was not included in the field of CT scan. In two patients, the diagnosis on 3D images of no 'stenosis' was comfirmed by clinical findings or operation. No differences in diagnostic accuracy were noted between axial images, MPR, and SSD when evalvating the location and extent of stenosis; vertical extent was shown more easily by 3D imaging than by axial images, however. 3D imaging with spiral CT may be an useful adjunctive method in the evaluation of upper airway stenosis with variable causes

  13. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  14. Analysis of the three-dimensional trajectories of dusts observed with a stereoscopic fast framing camera in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, M., E-mail: shoji@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Tanaka, Y. [Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Pigarov, A.Yu.; Smirnov, R.D. [University of California at San Diego, La Jolla, CA 92093 (United States); Kawamura, G.; Uesugi, Y.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan)

    2015-08-15

    The three-dimensional trajectories of dusts have been observed with two stereoscopic fast framing cameras installed in upper and outer viewports in the Large Helical Device (LHD). It shows that the dust trajectories locate in divertor legs and an ergodic layer around the main plasma confinement region. While it is found that most of the dusts approximately move along the magnetic field lines with acceleration, there are some dusts which have sharply curved trajectories crossing over the magnetic field lines. A dust transport simulation code was modified to investigate the dust trajectories in fully three dimensional geometries such as LHD plasmas. It can explain the general trend of most of observed dust trajectories by the effect of the plasma flow in the peripheral plasma. However, the behavior of the some dusts with sharply curved trajectories is not consistent with the simulations.

  15. Three-dimensional changes to the upper airway after maxillomandibular advancement with counterclockwise rotation: a systematic review and meta-analysis.

    Science.gov (United States)

    Louro, R S; Calasans-Maia, J A; Mattos, C T; Masterson, D; Calasans-Maia, M D; Maia, L C

    2018-05-01

    The aim of this study was to evaluate the effect of counterclockwise (CCW) rotation and maxillomandibular advancement (MMA) on the upper airway space using three-dimensional images. An electronic search was performed in the PubMed, Cochrane Library, Scopus, Virtual Health Library, Web of Science, and OpenGrey databases (end date July 2016); a hand-search of primary study reference lists was also conducted. The inclusion criteria encompassed computed tomography evaluations of the upper airway spaces of adult patients undergoing orthognathic surgery with CCW rotation and MMA. The articles were evaluated for risk of bias with a tool for before-and-after studies. A meta-analysis was performed with the mean differences using a random-effects model. Heterogeneity was assessed with the Q-test and the I 2 index. The meta-analysis revealed significant (Pspaces. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  17. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  18. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  19. Conformal three dimensional radiotherapy treatment planning in Lund

    International Nuclear Information System (INIS)

    Knoos, T.; Nilsson, P.; Anders, A.

    1995-01-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam's eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam's eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment

  20. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy.

    Science.gov (United States)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-02-27

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  1. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-01-01

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  2. Weekly bi-fractionated 40 Gy three-dimensional conformational accelerated partial irradiation of breast: results of a phase II French pilot study

    International Nuclear Information System (INIS)

    Bourgier, C.; Pichenot, C.; Verstraet, R.; Heymann, S.; Biron, B.; Delaloge, S.; Garbay, J.R.; Marsiglia, H.; Bourhis, J.; Taghian, A.; Marsiglia, H.

    2010-01-01

    The authors report the first French experience of three-dimensional conformational and accelerated partial irradiation of breast. Twenty five patients have been concerned by this phase II trial. The prescribed total dose was 40 Gy, was delivered over 5 days in two daily fractions. Irradiation was performed with two 6 MV tangential mini-beams and a 6-22 MeV front electron beams. The planning target volume coverage was very good. Toxicity has been assessed. Healthy tissues (heart, lungs) are considerably protected. The acute and late toxicity is correct. Short communication

  3. Conformal three dimensional radiotherapy treatment planning in Lund

    Energy Technology Data Exchange (ETDEWEB)

    Knoos, T; Nilsson, P [Lund Univ. (Sweden). Dept. of Radiation Physics; Anders, A [Lund Univ. (Sweden). Dept. of Oncology

    1995-12-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam`s eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam`s eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment.

  4. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  5. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  6. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  7. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  8. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  9. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  10. The current status of the three-dimensional ultrasonography in gyneaecology

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Chiou Li [Dept. of Diagnostic and Interventional Imaging, KK Women' s and Children' s Hospital, Singapore (Singapore)

    2016-01-15

    Ultrasonography (US) is the most recent cross-sectional imaging modality to acquire three-dimensional (3D) capabilities. The reconstruction of volumetric US data for multiplanar display took a significantly longer time to develop in comparison with computed tomography and magnetic resonance imaging. The current equipment for 3D-US is capable of producing high-resolution images in three different planes, including real-time surface-rendered images. The use of 3D-US in gynaecology was accelerated through the development of the endovaginal volume transducer, which allows the automated acquisition of volumetric US data. Although initially considered an adjunct to two-dimensional US, 3D-US is now the imaging modality of choice for the assessment of Müllerian duct anomalies and the location of intrauterine devices.

  11. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1999-01-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  12. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1999-12-01

    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  13. Dosimetric comparison of proton and photon three-dimensional, conformal, external beam accelerated partial breast irradiation techniques

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Katz, Angela; Adams, Judith C.; Crowley, Elizabeth M.; Nyamwanda, Jacqueline A.C.; Feng, Jennifer K.C.; Doppke, Karen P.; DeLaney, Thomas F.; Taghian, Alphonse G.

    2006-01-01

    Purpose: To compare the dosimetry of proton and photon-electron three-dimensional, conformal, external beam accelerated partial breast irradiation (3D-CPBI). Methods and Materials: Twenty-four patients with fully excised, Stage I breast cancer treated with adjuvant proton 3D-CPBI had treatment plans generated using the mixed-modality, photon-electron 3D-CPBI technique. To facilitate dosimetric comparisons, planning target volumes (PTVs; lumpectomy site plus 1.5-2.0 cm margin) and prescribed dose (32 Gy) were held constant. Plans were optimized for PTV coverage and normal tissue sparing. Results: Proton and mixed-modality plans both provided acceptable PTV coverage with 95% of the PTV receiving 90% of the prescribed dose in all cases. Both techniques also provided excellent dose homogeneity with a dose maximum exceeding 110% of the prescribed dose in only one case. Proton 3D-CPBI reduced the volume of nontarget breast tissue receiving 50% of the prescribed dose by an average of 36%. Statistically significant reductions in the volume of total ipsilateral breast receiving 100%, 75%, 50%, and 25% of the prescribed dose were also observed. The use of protons resulted in small, but statistically significant, reductions in the radiation dose delivered to 5%, 10%, and 20% of ipsilateral and contralateral lung and heart. The nontarget breast tissue dosimetric advantages of proton 3D-CPBI were not dependent on tumor location, breast size, PTV size, or the ratio of PTV to breast volume. Conclusions: Compared to photon-electron 3D-CPBI, proton 3D-CPBI significantly reduces the volume of irradiated nontarget breast tissue. Both approaches to accelerated partial breast irradiation offer exceptional lung and heart sparing

  14. Three-dimensional, three-component wall-PIV

    Science.gov (United States)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  15. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  16. The Convergence Acceleration of Two-Dimensional Fourier Interpolation

    Directory of Open Access Journals (Sweden)

    Anry Nersessian

    2008-07-01

    Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.

  17. Three dimensional δf simulations of beams in the SSC

    International Nuclear Information System (INIS)

    Koga, J.; Tajima, T.; Machida, S.

    1993-01-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed

  18. Three dimensional [delta]f simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Machida, S. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1993-02-01

    A three dimensional [delta]f strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a [delta]f code. The [delta]f method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  19. Three dimensional {delta}f simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Machida, S. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-02-01

    A three dimensional {delta}f strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a {delta}f code. The {delta}f method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  20. Three dimensional δf simulations of beams in the SSC

    International Nuclear Information System (INIS)

    Koga, J.; Tajima, T.

    1993-02-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed

  1. Three-dimensional dental arch changes of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusion.

    Science.gov (United States)

    Peixoto, Adriano Porto; dos Santos Pinto, Ary; Garib, Daniela Gamba; Gonçalves, João Roberto

    2014-01-01

    This study assessed the three-dimensional changes in the dental arch of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusions at three different periods. Landmarks previously identified on upper and lower dental casts were digitized on a three-dimensional digitizer MicroScribe-3DX and stored in Excel worksheets in order to assess the width, length and depth of patient's dental arches. During orthodontic preparation, the maxillary and mandibular transverse dimensions measured at the premolar regions were increased and maintained throughout the follow-up period. Intercanine width was increased only in the upper arch during orthodontic preparation. Maxillary arch length was reduced during orthodontic finalization, only. Upper and lower arch depths were stable in the study periods. Differences between changes in centroid and gingival points suggested that upper and lower premolars buccaly proclined during the pre-surgical period. Maxillary and mandibular dental arches presented transverse expansion at premolar regions during preoperative orthodontic preparation, with a tendency towards buccal tipping. The transverse dimensions were not altered after surgery. No sagittal or vertical changes were observed during the follow-up periods.

  2. Microstructure in two- and three-dimensional hybrid simulations of perpendicular collisionless shocks

    Czech Academy of Sciences Publication Activity Database

    Burgess, D.; Hellinger, Petr; Gingell, I.; Trávníček, Pavel M.

    2016-01-01

    Roč. 82, č. 4 (2016), 905820401/1-905820401/23 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : ion-acceleration * numerical simulations * bow shock * electron acceleration * cluster observations * self-reformation * magnetic-field * whistler waves * injection * nonstationarity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/ journals /journal-of-plasma-physics/article/microstructure-in-two-and-three-dimensional-hybrid-simulations-of-perpendicular-collisionless-shocks/F964EF89FB14A6504A49CFAD54970E2B

  3. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  4. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  5. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  6. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Riet, Wilma van der; Crelier, Gerard; Salomonowitz, Erich

    2010-01-01

    Purpose: To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Materials and methods: Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R = 2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Results: Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. Conclusion: We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping.

  7. Three-dimensional dental arch changes of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusion

    OpenAIRE

    Peixoto,Adriano Porto; Pinto,Ary dos Santos; Garib,Daniela Gamba; Gonçalves,João Roberto

    2014-01-01

    INTRODUCTION: This study assessed the three-dimensional changes in the dental arch of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusions at three different periods. METHODS: Landmarks previously identified on upper and lower dental casts were digitized on a three-dimensional digitizer MicroScribe-3DX and stored in Excel worksheets in order to assess the width, length and depth of patient's dental arches. RESULTS: During orthodontic preparation, the m...

  8. Effects of dimensionality and laser polarization on kinetic simulations of laser-ion acceleration in the transparency regime

    Science.gov (United States)

    Stark, David; Yin, Lin; Albright, Brian; Guo, Fan

    2017-10-01

    The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.

  9. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  10. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  11. A three-dimensional morphometric analysis of upper forelimb morphology in the enigmatic tapir (Perissodactyla: Tapirus) hints at subtle variations in locomotor ecology.

    Science.gov (United States)

    MacLaren, Jamie A; Nauwelaerts, Sandra

    2016-11-01

    Forelimb morphology is an indicator for terrestrial locomotor ecology. The limb morphology of the enigmatic tapir (Perissodactyla: Tapirus) has often been compared to that of basal perissodactyls, despite the lack of quantitative studies comparing forelimb variation in modern tapirs. Here, we present a quantitative assessment of tapir upper forelimb osteology using three-dimensional geometric morphometrics to test whether the four modern tapir species are monomorphic in their forelimb skeleton. The shape of the upper forelimb bones across four species (T. indicus; T. bairdii; T. terrestris; T. pinchaque) was investigated. Bones were laser scanned to capture surface morphology and 3D landmark analysis was used to quantify shape. Discriminant function analyses were performed to reveal features which could be used for interspecific discrimination. Overall our results show that the appendicular skeleton contains notable interspecific differences. We demonstrate that upper forelimb bones can be used to discriminate between species (>91% accuracy), with the scapula proving the most diagnostic bone (100% accuracy). Features that most successfully discriminate between the four species include the placement of the cranial angle of the scapula, depth of the humeral condyle, and the caudal deflection of the olecranon. Previous studies comparing the limbs of T. indicus and T. terrestris are corroborated by our quantitative findings. Moreover, the mountain tapir T. pinchaque consistently exhibited the greatest divergence in morphology from the other three species. Despite previous studies describing tapirs as functionally mediportal in their locomotor style, we find osteological evidence suggesting a spectrum of locomotor adaptations in the tapirs. We conclude that modern tapir forelimbs are neither monomorphic nor are tapirs as conserved in their locomotor habits as previously described. J. Morphol. 277:1469-1485, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals

  12. Upper Estimates on the Higher-dimensional Multifractal Spectrum of Local Entropy%局部熵高维重分形谱的上界估计

    Institute of Scientific and Technical Information of China (English)

    严珍珍; 陈二才

    2008-01-01

    We discuss the problem of higher-dimensional multifractal spectrum of lo-cal entropy for arbitrary invariant measures. By utilizing characteristics of a dynam-ical system, namely, higher-dimensional entropy capacities and higher-dimensional correlation entropies, we obtain three upper estimates on the higher-dimensional mul-tifractal spectrum of local entropies. We also study the domain of higher-dimensional multifractal spetrum of entropies.

  13. Three-dimensional dental arch changes of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusion

    Directory of Open Access Journals (Sweden)

    Adriano Porto Peixoto

    2014-08-01

    Full Text Available INTRODUCTION: This study assessed the three-dimensional changes in the dental arch of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusions at three different periods. METHODS: Landmarks previously identified on upper and lower dental casts were digitized on a three-dimensional digitizer MicroScribe-3DX and stored in Excel worksheets in order to assess the width, length and depth of patient's dental arches. RESULTS: During orthodontic preparation, the maxillary and mandibular transverse dimensions measured at the premolar regions were increased and maintained throughout the follow-up period. Intercanine width was increased only in the upper arch during orthodontic preparation. Maxillary arch length was reduced during orthodontic finalization, only. Upper and lower arch depths were stable in the study periods. Differences between centroid and gingival changes suggested that upper and lower arch premolars buccaly proclined during the pre-surgical period. CONCLUSIONS: Maxillary and mandibular dental arches presented transverse expansion at premolar regions during preoperative orthodontic preparation, with a tendency towards buccal tipping. The transverse dimensions were not altered after surgery. No sagittal or vertical changes were observed during the follow-up periods.

  14. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    Science.gov (United States)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  15. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  16. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    Science.gov (United States)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  17. QUALITY INSPECTION AND ANALYSIS OF THREE-DIMENSIONAL GEOGRAPHIC INFORMATION MODEL BASED ON OBLIQUE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    S. Dong

    2018-04-01

    Full Text Available In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  18. The three-dimensional, discrete ordinates neutral particle transport code TORT: An overview

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1996-01-01

    The centerpiece of the Discrete Ordinates Oak Ridge System (DOORS), the three-dimensional neutral particle transport code TORT is reviewed. Its most prominent features pertaining to large applications, such as adjustable problem parameters, memory management, and coarse mesh methods, are described. Advanced, state-of-the-art capabilities including acceleration and multiprocessing are summarized here. Future enhancement of existing graphics and visualization tools is briefly presented

  19. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  20. Three dimensional [delta][ital f] simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. (Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)); Machida, S. (SSC Laboratory, 2550 Beckleymeade Avenue, Dallas, Texas 75237 (United States))

    1993-12-25

    A three dimensional [delta][ital f] strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a [delta][ital f] code. The [delta][ital f] method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  1. Particle acceleration at corotating interaction regions in the three-dimensional heliosphere

    International Nuclear Information System (INIS)

    Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Balogh, A.; Forsyth, R.J.; Gosling, J.T.

    1998-01-01

    We have investigated the relationship between the energetic (∼1MeV) proton intensity (J) and the magnetic compression ratio (C) measured at the trailing edges of corotating interaction regions observed at Ulysses. In general, our results show that the proton intensity was well correlated with the compression ratio, provided that the seed intensity remained constant, consistent with predictions of the Fermi model. Specifically, our results indicate that particles were accelerated to above ∼1MeV in energy at or near the trailing edges of the compression regions observed in the midlatitude southern heliosphere, irrespective of whether the bounding reverse shocks were present or not. On the basis of this, we conclude that shock acceleration is probably not the only mechanism by which particles are accelerated to above ∼1MeV in energy at compression or interaction regions (CIRs). On the basis of magnetic field measurements obtained near the trailing edges of several midlatitude CIRs, we propose that particles could have been accelerated via the Fermi mechanism by being scattered back and forth across the trailing edges of the compression regions by large-amplitude Alfvacute en waves. Our results also show that the proton intensity was well correlated with the compression ratio during low solar activity periods but was essentially independent of C during periods of high solar activity. We suggest that the correlation between J and C was not observed during solar active periods because of significant variations in the seed intensity that result from sporadic contributions from transient solar events. In contrast, the correlation was observable during quiescent periods probably because contributions from transients had decreased dramatically, which allowed the CIRs to accelerate particles out of a seed population whose intensity remained relatively unperturbed. copyright 1998 American Geophysical Union

  2. THREEDANT: A code to perform three-dimensional, neutral particle transport calculations

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1994-01-01

    The THREEDANT code solves the three-dimensional neutral particle transport equation in its first order, multigroup, discrate ordinate form. The code allows an unlimited number of groups (depending upon the cross section set), angular quadrature up to S-100, and unlimited Pn order again depending upon the cross section set. The code has three options for spatial differencing, diamond with set-to-zero fixup, adaptive weighted diamond, and linear modal. The geometry options are XYZ and RZΘ with a special XYZ option based upon a volume fraction method. This allows objects or bodies of any shape to be modelled as input which gives the code as much geometric description flexibility as the Monte Carlo code MCNP. The transport equation is solved by source iteration accelerated by the DSA method. Both inner and outer iterations are so accelerated. Some results are presented which demonstrate the effectiveness of these techniques. The code is available on several types of computing platforms

  3. Stationary vs. singular points in an accelerating FRW cosmology derived from six-dimensional Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Elizalde, E.; Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E.; Filippov, A.E.

    2007-01-01

    Six-dimensional Einstein-Gauss-Bonnet gravity (with a linear Gauss-Bonnet term) is investigated. This theory is inspired by basic features of results coming from string and M-theory. Dynamical compactification is carried out and it is seen that a four-dimensional accelerating FRW universe is recovered, when the two-dimensional internal space radius shrinks. A non-perturbative structure of the corresponding theory is identified which has either three or one stable fixed points, depending on the Gauss-Bonnet coupling being positive or negative. A much richer structure than in the case of the perturbative regime of the dynamical compactification recently studied by Andrew, Bolen, and Middleton is exhibited

  4. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    Science.gov (United States)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  5. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  6. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  7. Quantitative facial asymmetry: using three-dimensional photogrammetry to measure baseline facial surface symmetry.

    Science.gov (United States)

    Taylor, Helena O; Morrison, Clinton S; Linden, Olivia; Phillips, Benjamin; Chang, Johnny; Byrne, Margaret E; Sullivan, Stephen R; Forrest, Christopher R

    2014-01-01

    Although symmetry is hailed as a fundamental goal of aesthetic and reconstructive surgery, our tools for measuring this outcome have been limited and subjective. With the advent of three-dimensional photogrammetry, surface geometry can be captured, manipulated, and measured quantitatively. Until now, few normative data existed with regard to facial surface symmetry. Here, we present a method for reproducibly calculating overall facial symmetry and present normative data on 100 subjects. We enrolled 100 volunteers who underwent three-dimensional photogrammetry of their faces in repose. We collected demographic data on age, sex, and race and subjectively scored facial symmetry. We calculated the root mean square deviation (RMSD) between the native and reflected faces, reflecting about a plane of maximum symmetry. We analyzed the interobserver reliability of the subjective assessment of facial asymmetry and the quantitative measurements and compared the subjective and objective values. We also classified areas of greatest asymmetry as localized to the upper, middle, or lower facial thirds. This cluster of normative data was compared with a group of patients with subtle but increasing amounts of facial asymmetry. We imaged 100 subjects by three-dimensional photogrammetry. There was a poor interobserver correlation between subjective assessments of asymmetry (r = 0.56). There was a high interobserver reliability for quantitative measurements of facial symmetry RMSD calculations (r = 0.91-0.95). The mean RMSD for this normative population was found to be 0.80 ± 0.24 mm. Areas of greatest asymmetry were distributed as follows: 10% upper facial third, 49% central facial third, and 41% lower facial third. Precise measurement permitted discrimination of subtle facial asymmetry within this normative group and distinguished norms from patients with subtle facial asymmetry, with placement of RMSDs along an asymmetry ruler. Facial surface symmetry, which is poorly assessed

  8. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  9. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  10. Effectiveness of Three-Dimensional Digital Animation in Teaching Human Anatomy in an Authentic Classroom Context

    Science.gov (United States)

    Hoyek, Nady; Collet, Christian; Di Rienzo, Franck; De Almeida, Mickael; Guillot, Aymeric

    2014-01-01

    Three-dimensional (3D) digital animations were used to teach the human musculoskeletal system to first year kinesiology students. The purpose of this study was to assess the effectiveness of this method by comparing two groups from two different academic years during two of their official required anatomy examinations (trunk and upper limb…

  11. Three-dimensional biplanar radiography as a new means of accessing femoral version: a comparitive study of EOS three-dimensional radiography versus computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, M.L. [University of California San Diego School of Medicine, Orthopaedic Surgery Department, San Diego, CA (United States); Glaser, Diana [Aurora Spine, Carlsbad, CA (United States); Doan, Josh [Orthopedic Biomechanics Research Center, San Diego, CA (United States); Kumar, Sita [University of California, San Diego, CA (United States); Edmonds, Eric W. [University of California San Diego School of Medicine, Orthopaedic Surgery Department, San Diego, CA (United States); Rady Children' s Hospital San Diego, Division of Orthopedic Surgery, San Diego, CA (United States)

    2014-10-17

    To validate femoral version measurements made from biplanar radiography (BR), three-dimensional (3D) reconstructions (EOS imaging, France) were made in differing rotational positions against the gold standard of computed tomography (CT). Two cadaveric femurs were scanned with CT and BR in five different femoral versions creating ten total phantoms. The native version was modified by rotating through a mid-diaphyseal hinge twice into increasing anteversion and twice into increased retroversion. For each biplanar scan, the phantom itself was rotated -10, -5, 0, +5 and +10 . Three-dimensional CT reconstructions were designated the true value for femoral version. Two independent observers measured the femoral version on CT axial slices and BR 3D reconstructions twice. The mean error (upper bound of the 95 % confidence interval), inter- and intraobserver reliability, and the error compared to the true version were determined for both imaging techniques. Interobserver intraclass correlation for CT axial images ranged from 0.981 to 0.991, and the intraobserver intraclass correlation ranged from 0.994 to 0.996. For the BR 3D reconstructions these values ranged from 0.983 to 0.998 and 0.982 to 0.998, respectively. For the CT measurements the upper bound of error from the true value was 5.4-7.5 , whereas for BR 3D reconstructions it was 4.0-10.1 . There was no statistical difference in the mean error from the true values for any of the measurements done with axial CT or BR 3D reconstructions. BR 3D reconstructions accurately and reliably provide clinical data on femoral version compared to CT even with rotation of the patient of up to 10 from neutral. (orig.)

  12. Prior-knowledge Fitting of Accelerated Five-dimensional Echo Planar J-resolved Spectroscopic Imaging: Effect of Nonlinear Reconstruction on Quantitation.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert

    2017-07-24

    1 H Magnetic Resonance Spectroscopic imaging (SI) is a powerful tool capable of investigating metabolism in vivo from mul- tiple regions. However, SI techniques are time consuming, and are therefore difficult to implement clinically. By applying non-uniform sampling (NUS) and compressed sensing (CS) reconstruction, it is possible to accelerate these scans while re- taining key spectral information. One recently developed method that utilizes this type of acceleration is the five-dimensional echo planar J-resolved spectroscopic imaging (5D EP-JRESI) sequence, which is capable of obtaining two-dimensional (2D) spectra from three spatial dimensions. The prior-knowledge fitting (ProFit) algorithm is typically used to quantify 2D spectra in vivo, however the effects of NUS and CS reconstruction on the quantitation results are unknown. This study utilized a simulated brain phantom to investigate the errors introduced through the acceleration methods. Errors (normalized root mean square error >15%) were found between metabolite concentrations after twelve-fold acceleration for several low concentra- tion (OGM) human brain matter were quantified in vivo using the 5D EP-JRESI sequence with eight-fold acceleration.

  13. Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence

    Science.gov (United States)

    Takamoto, M.

    2018-05-01

    In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.

  14. Three-dimensional seismic analysis for spent fuel storage rack

    International Nuclear Information System (INIS)

    Lee, Gyu Mahn; Kim, Kang Soo; Park, Keun Bae; Park, Jong Kyun

    1998-01-01

    Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack (SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input. In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSY code. The 3-D model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall. This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. As a result of the adequacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input. (author)

  15. Differences in three-dimensional soft tissue changes after upper, lower, or both jaw orthognathic surgery in skeletal class III patients.

    Science.gov (United States)

    Verdenik, M; Ihan Hren, N

    2014-11-01

    The decision is not always straightforward as to which orthognathic procedure is best for a good aesthetic result; three-dimensional imaging has brought new insight into this topic. The aim of this prospective study was to verify objectively whether postoperative changes occur within those regions not directly affected by surgical movements of the underlying jaw bones. The study included 83 young adults with skeletal class III deformities. They were classified into three groups according to the type of surgery: bilateral sagittal split osteotomy set-back of the mandible (BSSO), Le Fort I advancement of the maxilla, or a combination of both. Pre- and postoperative optical scans were registered as regional best-fits on the areas of the foreheads and both orbits. The shell to shell differences were measured and the average distances between the observed regions were calculated. As expected, changes were greatest in the regions where the underlying bones had been moved, but regardless of the operation performed, changes were found over the whole face. Changes in the nose, cheek, and upper lip regions in the BSSO group and in the lower lip and chin region in the Le Fort I group confirmed the concept of the facial soft tissue mask acting as one unit. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Two and three dimensional imaging of compact toroid plasmas using fast photography

    International Nuclear Information System (INIS)

    Englert, S.E.; Bell, D.E.; Coffey, S.K.

    1992-01-01

    As is discussed in a companion paper, Degnan el al, fast photography is used as a visual diagnostic tool for high energy plasma research at the Phillips Laboratory. Both, two dimensional and three dimensional images, are gathered by using nanosecond and microsecond range fast photography techniques. A set of microchannel plate cameras and a fast framing camera are used to record images of a compact toroid plasma during formation and acceleration stages. These images are subsequently digitized and enhanced to bring out detailed information of interest. This spatial information is combined with other diagnostic results as well as theoretical models in order to build a more complete picture of the fundamental physics associated with high-energy plasmas

  17. Reliability and accuracy of three imaging software packages used for 3D analysis of the upper airway on cone beam computed tomography images.

    Science.gov (United States)

    Chen, Hui; van Eijnatten, Maureen; Wolff, Jan; de Lange, Jan; van der Stelt, Paul F; Lobbezoo, Frank; Aarab, Ghizlane

    2017-08-01

    The aim of this study was to assess the reliability and accuracy of three different imaging software packages for three-dimensional analysis of the upper airway using CBCT images. To assess the reliability of the software packages, 15 NewTom 5G ® (QR Systems, Verona, Italy) CBCT data sets were randomly and retrospectively selected. Two observers measured the volume, minimum cross-sectional area and the length of the upper airway using Amira ® (Visage Imaging Inc., Carlsbad, CA), 3Diagnosys ® (3diemme, Cantu, Italy) and OnDemand3D ® (CyberMed, Seoul, Republic of Korea) software packages. The intra- and inter-observer reliability of the upper airway measurements were determined using intraclass correlation coefficients and Bland & Altman agreement tests. To assess the accuracy of the software packages, one NewTom 5G ® CBCT data set was used to print a three-dimensional anthropomorphic phantom with known dimensions to be used as the "gold standard". This phantom was subsequently scanned using a NewTom 5G ® scanner. Based on the CBCT data set of the phantom, one observer measured the volume, minimum cross-sectional area, and length of the upper airway using Amira ® , 3Diagnosys ® , and OnDemand3D ® , and compared these measurements with the gold standard. The intra- and inter-observer reliability of the measurements of the upper airway using the different software packages were excellent (intraclass correlation coefficient ≥0.75). There was excellent agreement between all three software packages in volume, minimum cross-sectional area and length measurements. All software packages underestimated the upper airway volume by -8.8% to -12.3%, the minimum cross-sectional area by -6.2% to -14.6%, and the length by -1.6% to -2.9%. All three software packages offered reliable volume, minimum cross-sectional area and length measurements of the upper airway. The length measurements of the upper airway were the most accurate results in all software packages. All

  18. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    Science.gov (United States)

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  19. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    Science.gov (United States)

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Comparison of two dimensional and three dimensional radiotherapy treatment planning in locally advanced non-small cell lung cancer treated with continuous hyperfractionated accelerated radiotherapy weekend less

    International Nuclear Information System (INIS)

    Wilson, Elena M.; Joy Williams, Frances; Ethan Lyn, Basil; Aird, Edwin G.A.

    2005-01-01

    Background and purpose: Patients with inoperable non-small cell lung cancer being treated with continuous hyperfractionated accelerated radiotherapy weekend less (CHARTWEL) were planned and treated with a three dimensional (3D) conformal protocol and comparison made with two dimensional (2D) planning, as used previously, to compare past practice and methods. Patients and methods: Twenty-four patients were planned initially using 3D and then replanned using a 2D system. The 2D plans were transferred onto the 3D system and recalculated. Dose volume histograms could then be constructed of planning target volumes for phases 1 and 2 (PTV 1 and 2, respectively), lung and spinal cord for the 2D plans and compared with the 3D plans. Results: There was a significantly lower absolute dose to the isocentre with 2D compared to 3D planning with dose reductions of 3.9% for phase 1, 4.4% for phase 2 and 4.7% for those treated with a single phase. Maximum dose to spinal cord was greater in 17 of the 24 2D plans with a median dose reduction of 0.82 Gy for 3D (P=0.04). The percentage volume of whole lung receiving ≥20 Gy (V 20 ) was greater in 16 of the 24 2D plans with a median reduction in V 20 of 2.4% for 3D (P=0.03). Conclusions: A lower dose to tumour was obtained using 2D planning due to the method of dose calculation and spinal cord and lung doses were significantly higher

  1. Three-Dimensional Dynamics of Breakout Afterburner Ion Acceleration Using High-Contrast Short-Pulse Laser and Nanoscale Targets

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Fernandez, J. C.; Jung, D.; Hegelich, B. M.

    2011-01-01

    Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.

  2. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio

    2016-01-01

    The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts.

  3. S2 synthetic acceleration scheme for the one-dimensional S/sub n/ equations

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Larsen, E.W.; Morel, J.E.

    1986-01-01

    The authors have developed an S 2 synthetic acceleration method for the one-dimensional S/sub n/ equations with linear-discontinuous (LD) spatial differencing, and implemented it in a new version of the ONETRAN code. As in the diffusion-synthetic acceleration (DSA) of Morel, both the zeroth and first moments of the scattering source are accelerated. This is done by using the S 2 equations with Gauss quadrature rather than the diffusion equation as the low-order operator in the synthetic acceleration scheme

  4. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  5. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  6. Three-Dimensional Numerical Modeling of Macrosegregation in Continuously Cast Billets

    Directory of Open Access Journals (Sweden)

    Qipeng Dong

    2017-06-01

    Full Text Available Macrosegregation, serving as a major defect in billets, can severely degrade material homogeneity. Better understanding of the physical characteristics of macrosegregation through numerical simulation could significantly contribute to the segregation control. The main purpose of this study was to predict macrosegregation in continuously cast billets with a newly developed three-dimensional macrosegregation model. The fluid flow, solidification, and solute transport in the entire billet region were solved and analyzed. Flow patterns, revealing a typical melt recirculation at the upper region of mold and thermosolutal convection at the secondary cooling zone, significantly affect the solidification and solute distribution. The solute redistribution occurring with thermosolutal convection at the solidification front contributes significantly to continued macrosegregation as solidification proceeds. The results of this study show that the equilibrium partition coefficient is mostly responsible for the magnitude of macrosegregation, while comparison between solute P and S indicated that diffusion coefficients also have some amount of influence. Typical macrosegregation patterns containing a positively segregated peak at the centerline and negatively segregated minima at either side were obtained via the proposed three-dimensional macrosegregation model, which validated by the measured surface temperatures and segregation degree.

  7. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  8. Three-body segment musculoskeletal model of the upper limb

    Directory of Open Access Journals (Sweden)

    Valdmanová L.

    2013-06-01

    Full Text Available The main aim is to create a computational three-body segment model of an upper limb of a human body for determination of muscle forces generated to keep a given loaded upper limb position. The model consists of three segments representing arm, forearm, hand and of all major muscles connected to the segments. Muscle origins and insertions determination corresponds to a real anatomy. Muscle behaviour is defined according to the Hill-type muscle model consisting of contractile and viscoelastic element. The upper limb is presented by a system of three rigid bars connected by rotational joints. The whole limb is fixed to the frame in the shoulder joint. A static balance problem is solved by principle of virtual work. The system of equation describing the musculoskeletal system is overdetermined because more muscles than necessary contribute to get the concrete upper limb position. Hence the mathematical problem is solved by an optimization method searching the least energetically-consuming solution. The upper limb computational model is verified by electromyography of the biceps brachii muscle.

  9. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    International Nuclear Information System (INIS)

    Huang, W D; Fan, H G; Chen, N X

    2012-01-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  10. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    Science.gov (United States)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  11. Three-dimensional printing and pediatric liver disease.

    Science.gov (United States)

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.

  12. MOMCON: A spectral code for obtaining three-dimensional magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Lee, D.K.

    1986-01-01

    A new code, MOMCON (spectral moments code with constraints), is described that computes three-dimensional ideal magnetohydrodynamic (MHD) equilibria in a fixed toroidal domain using a Fourier expansion for the inverse coordinates (R, Z) representing nested magnetic surfaces. A set of nonlinear coupled ordinary differential equations for the spectral coefficients of (R, Z) is solved using an accelerated steepest descent method. A stream function, lambda, is introduced to improve the mode convergence properties of the Fourier series for R and Z. The convergence rate of the R-Z spectra is optimized on each flux surface by solving nonlinear constraint equations relating the m>=2 spectral coefficients of R and Z. (orig.)

  13. ACCELERATORS: School report

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-12-15

    The expanded 1987 US Particle Accelerator School, held at Fermilab from 20 July to 14 August, included two two-week sessions. In the first, 101 students covered three university-style courses, listed as upper-division University of Chicago physics, covering the fundamentals of particle beams, magnetic optics and acceleration; relativistic electronics; and high energy storage rings. The 180 participants in the second session profited from 24 short courses presented by experts and covering a wide variety of topics in the physics and technology of particle accelerators.

  14. Visual Interpretation with Three-Dimensional Annotations (VITA): Three-Dimensional Image Interpretation Tool for Radiological Reporting

    OpenAIRE

    Roy, Sharmili; Brown, Michael S.; Shih, George L.

    2013-01-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...

  15. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  16. A new simple three-dimensional method to characterize upper airway in orthognathic surgery patient

    DEFF Research Database (Denmark)

    Di Carlo, Gabriele; Fernandez Gurani, Sirwan; Pinholt, Else Marie

    2017-01-01

    .2% for cross-sectional measurements, and 0.3 to 2.5% for linear measurements. No systematic errors were detected. CONCLUSIONS: This new proposed definition of upper airway boundaries was shown to be technical feasible and tested to be reliable in measuring upper airway in patients undergoing orthognathic......OBJECTIVES: To develop and validate a new reproducible 3D upper airway analysis based on skeletal structures not involved in the modification, which occur during orthognathic surgery. METHODS: From retrospective cohort of orthognathic surgically treated patients, pre- and postsurgical CBCT...

  17. Computer assisted surgery for malunited fractures in upper limb

    International Nuclear Information System (INIS)

    Yoneda, Masahiro; Kazuki, Kenichi; Uemura, Takuya; Okada, Mitsuhiro; Takaoka, Kunio

    2006-01-01

    Our objective was to evaluate the usefulness of computer-assisted preoperative simulation of malunited fractures in the upper limb. Ten patients with malunited fractures underwent multislice computed tomography of both upper limbs with reconstruction of three-dimensional bone models using three-dimensional (3D) software. Preoperative simulation was comprised of four main procedures: performance of virtual corrective osteotomy, matching of reposition with a mirror-image model of the unaffected side, creating new data for the bone defect, and machining of an hydroxyapatite block as bone graft. In addition, we used full-sized three-dimensional virtual reality modeling with a rapid prototyping molding device, and performed preoperative rehearsals of osteotomies using plaster models. All patients tolerated the surgical procedure well. This technique permits the surgeon to recognize and correct three-dimensional deformities of malunited fracture with both accuracy and precision. (author)

  18. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  19. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  20. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    Science.gov (United States)

    Liakos, Anastasios; Malamataris, Nikolaos

    2014-11-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experimental conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horse-shoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000. Financial support of author NM from the Office of Naval Research Global (ONRG-VSP, N62909-13-1-V016) is acknowledged.

  1. High-performance parallel approaches for three-dimensional light detection and ranging point clouds gridding

    Science.gov (United States)

    Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon

    2017-01-01

    With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.

  2. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  3. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  4. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.

    2000-01-01

    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  5. Direct Linear System Identification Method for Multistory Three-dimensional Building Structure with General Eccentricity

    OpenAIRE

    Shintani, Kenichirou; Yoshitomi, Shinta; Takewaki, Izuru

    2017-01-01

    A method of physical parameter system identification (SI) is proposed here for three-dimensional (3D) building structures with in-plane rigid floors in which the stiffness and damping coefficients of each structural frame in the 3D building structure are identified from the measured floor horizontal accelerations. A batch processing least-squares estimation method for many discrete time domain measured data is proposed for the direct identification of the stiffness and damping coefficients of...

  6. [Bone drilling simulation by three-dimensional imaging].

    Science.gov (United States)

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  7. Numerical Study of Single Bubble Growth on and Departure from a Horizontal Superheated Wall by Three-dimensional Lattice Boltzmann Method

    Science.gov (United States)

    Feng, Yuan; Li, Hui-Xiong; Guo, Kai-Kai; Zhao, Jian-Fu; Wang, Tai

    2018-05-01

    A three-dimensional hybrid lattice Boltzmann method was used to simulate the progress of a single bubble's growth and departure from a horizontal superheated wall. The evolutionary process of the bubble shapes and also the temperature fields during pool nucleate boiling were obtained and the influence of the gravitational acceleration on the bubble departure diameter (BDD), the bubble release frequency (BRF) and the heat flux on the superheated wall was analyzed. The simulation results obtained by the present three-dimensional numerical studies demonstrate that the BDD is proportional to g^{-0.301}, the BRF is proportional to g^{-0.58}, and the averaged wall heat flux is proportional to g^{0.201}, where g is the gravitational acceleration. These results are in good agreement with the common-used experimental correlations, indicating the rationality of the present numerical model and results.

  8. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  9. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  10. Development of the three dimensional flow model in the SPACE code

    International Nuclear Information System (INIS)

    Oh, Myung Taek; Park, Chan Eok; Kim, Shin Whan

    2014-01-01

    SPACE (Safety and Performance Analysis CodE) is a nuclear plant safety analysis code, which has been developed in the Republic of Korea through a joint research between the Korean nuclear industry and research institutes. The SPACE code has been developed with multi-dimensional capabilities as a requirement of the next generation safety code. It allows users to more accurately model the multi-dimensional flow behavior that can be exhibited in components such as the core, lower plenum, upper plenum and downcomer region. Based on generalized models, the code can model any configuration or type of fluid system. All the geometric quantities of mesh are described in terms of cell volume, centroid, face area, and face center, so that it can naturally represent not only the one dimensional (1D) or three dimensional (3D) Cartesian system, but also the cylindrical mesh system. It is possible to simulate large and complex domains by modelling the complex parts with a 3D approach and the rest of the system with a 1D approach. By 1D/3D co-simulation, more realistic conditions and component models can be obtained, providing a deeper understanding of complex systems, and it is expected to overcome the shortcomings of 1D system codes. (author)

  11. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  12. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  13. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  14. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  15. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  16. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  17. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory.

    Science.gov (United States)

    Bilgin, Cemal Cagatay; Lund, Amanda W; Can, Ali; Plopper, George E; Yener, Bülent

    2010-09-30

    Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions. We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population. Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.

  18. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    2010-09-01

    Full Text Available Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs and extra cellular matrix (ECM. In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions.We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population.Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.

  19. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  20. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  1. Cadaveric and three-dimensional computed tomography study of the morphology of the scapula with reference to reversed shoulder prosthesis.

    Science.gov (United States)

    Torrens, Carlos; Corrales, Monica; Gonzalez, Gemma; Solano, Alberto; Cáceres, Enrique

    2008-10-10

    The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50 degrees-52 degrees ) and type II (mean 62.50 degrees-64 degrees ), with significant differences between them (p craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25 degrees while the angle with the upper posterior column of the scapula averaged 8 degrees . Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation.

  2. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  3. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  4. Backlund transformations and three-dimensional lattice equations

    NARCIS (Netherlands)

    Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W.

    1984-01-01

    A (nonlocal) linear integral equation is studied, which allows for Bäcklund transformations in the measure. The compatibility of three of these transformations leads to an integrable nonlinear three-dimensional lattice equation. In appropriate continuum limits the two-dimensional Toda-lattice

  5. One and two dimensional simulations on beat wave acceleration

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.

    1984-01-01

    Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept

  6. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  7. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo

    1995-01-01

    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  8. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems

    Science.gov (United States)

    Dashti-Naserabadi, H.; Najafi, M. N.

    2017-10-01

    We present extensive numerical simulations of Bak-Tang-Wiesenfeld (BTW) sandpile model on the hypercubic lattice in the upper critical dimension Du=4 . After re-extracting the critical exponents of avalanches, we concentrate on the three- and two-dimensional (2D) cross sections seeking for the induced criticality which are reflected in the geometrical and local exponents. Various features of finite-size scaling (FSS) theory have been tested and confirmed for all dimensions. The hyperscaling relations between the exponents of the distribution functions and the fractal dimensions are shown to be valid for all dimensions. We found that the exponent of the distribution function of avalanche mass is the same for the d -dimensional cross sections and the d -dimensional BTW model for d =2 and 3. The geometrical quantities, however, have completely different behaviors with respect to the same-dimensional BTW model. By analyzing the FSS theory for the geometrical exponents of the two-dimensional cross sections, we propose that the 2D induced models have degrees of similarity with the Gaussian free field (GFF). Although some local exponents are slightly different, this similarity is excellent for the fractal dimensions. The most important one showing this feature is the fractal dimension of loops df, which is found to be 1.50 ±0.02 ≈3/2 =dfGFF .

  9. Upper Primary Students Constructing and Exploring Three Dimensional Shapes: A Comparison of Virtual Reality with Card Nets.

    Science.gov (United States)

    Ainge, David J.

    1996-01-01

    A grade 6/7 class which constructed and explored three-dimensional shapes with the VREAM virtual reality (VR) development system program was compared with a grade 5/6/7 control group using card nets (diagrams which can be cut out/folded). Results indicated that VR had little impact on shape visualization and name writing, but it strongly enhanced…

  10. Estimate of the damage in organs induced by neutrons in three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.; Uribe, M. del R.

    2014-08-01

    By means of Monte Carlo methods was considered the damage in the organs, induced by neutrons, of patients with cancer that receive treatment in modality of three-dimensional conformal radiotherapy (3D-CRT) with lineal accelerator Varian Ix. The objective of this work was to estimate the damage probability in radiotherapy patients, starting from the effective dose by neutrons in the organs and tissues out of the treatment region. For that a three-dimensional mannequin of equivalent tissue of 30 x 100 x 30 cm 3 was modeled and spherical cells were distributed to estimate the Kerma in equivalent tissue and the absorbed dose by neutrons. With the absorbed dose the effective dose was calculated using the weighting factors for the organ type and radiation type. With the effective dose and the damage factors, considered in the ICRP 103, was considered the probability of damage induction in organs. (Author)

  11. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2009-06-15

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)

  12. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  13. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  14. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  15. Computer codes for designing proton linear accelerators

    International Nuclear Information System (INIS)

    Kato, Takao

    1992-01-01

    Computer codes for designing proton linear accelerators are discussed from the viewpoint of not only designing but also construction and operation of the linac. The codes are divided into three categories according to their purposes: 1) design code, 2) generation and simulation code, and 3) electric and magnetic fields calculation code. The role of each category is discussed on the basis of experience at KEK (the design of the 40-MeV proton linac and its construction and operation, and the design of the 1-GeV proton linac). We introduce our recent work relevant to three-dimensional calculation and supercomputer calculation: 1) tuning of MAFIA (three-dimensional electric and magnetic fields calculation code) for supercomputer, 2) examples of three-dimensional calculation of accelerating structures by MAFIA, 3) development of a beam transport code including space charge effects. (author)

  16. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  17. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  18. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  19. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  20. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  1. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  2. Exact rebinning methods for three-dimensional PET.

    Science.gov (United States)

    Liu, X; Defrise, M; Michel, C; Sibomana, M; Comtat, C; Kinahan, P; Townsend, D

    1999-08-01

    The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.

  3. Modification of equivalent charge method for the Roben three-dimensional problem in electrostatics

    International Nuclear Information System (INIS)

    Barsukov, A.B.; Surenskij, A.V.

    1989-01-01

    The approach of the Roben problem solution for the calculation of the potential of intermediate electrode of accelerating structure with HFQ focusing is considered. The solution is constructed on the basis of variational formulation of the equivalent charge method, where electrostatic problem is reduced to equations of root-mean-square residuals on the system conductors. The technique presented permits to solve efficiently the three-dimensional problems of electrostatics for rather complicated from geometrical viewpoint systems of electrodes. Processing time is comparable with methods of integral equations. 5 refs.; 2 figs

  4. Cadaveric and three-dimensional computed tomography study of the morphology of the scapula with reference to reversed shoulder prosthesis

    Directory of Open Access Journals (Sweden)

    Solano Alberto

    2008-10-01

    Full Text Available Abstract Purpose The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Methods Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. Results The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50°–52° and type II (mean 62,50°–64°, with significant differences between them (p Conclusion Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation.

  5. Three-dimensional radiative transfer in an isotropically scattering, plane-parallel medium: generalized X- and Y-functions

    International Nuclear Information System (INIS)

    Mueller, D.W.; Crosbie, A.L.

    2005-01-01

    The topic of this work is the generalized X- and Y-functions of multidimensional radiative transfer. The physical problem considered is spatially varying, collimated radiation incident on the upper boundary of an isotropically scattering, plane-parallel medium. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is used to derive coupled, integro-differential equations for the source functions at the boundaries of the medium. The resulting equations are said to be in double-integral form because the integration is over both angular variables. Numerical results are presented to illustrate the computational characteristics of the formulation

  6. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    Directory of Open Access Journals (Sweden)

    Nataraj Raviraj

    2012-05-01

    Full Text Available Abstract Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI. Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS, and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its

  7. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  8. Evaluation of nasal cartilage using three-dimensional soft tissue images in patients with unilateral cleft lip

    International Nuclear Information System (INIS)

    Hasegawa, Yoshimichi; Saijo, Hideto; Yonehara, Yoshiyuki; Takato, Tsuyoshi; Nakatuka, Takashi

    2008-01-01

    In the treatment of nasal deformities associated with cleft lip and palate, deformities of the alar cartilage and upper lateral cartilage are usually repaired. It is very useful if deformities of the nasal cartilage are evaluated preoperatively. We created three-dimensional CT images of soft tissues by the volume rendering method, the nasal cartilage. In 26 patients with unilateral cleft lip and palate, the alar cartilage, upper lateral cartilage, and septal cartilage were evaluated morphologically. As a result, in each case, these cartilages were deviated and deformed. However, the size of both the alar cartilage and the upper lateral cartilage on the cleft side were approximately similar to those on the healthy side. It is suggested that using this method formulated for the imaging of cartilaginous morphology, preoperative planning and follow-up can be performed easily. (author)

  9. Three-dimensional CT of the pediatric spine

    International Nuclear Information System (INIS)

    Starshak, R.J.; Crawford, C.R.; Waisman, R.C.; Sty, J.R.

    1987-01-01

    CT of the spine has been shown to be useful in evaluating congenital, neoplastic, inflammatory, and traumatic lesions. Any portion of the neural arch may be involved by these disease processes. However, the complex nature of the spinal column can make evaluation of these abnormalities difficult on axial CT. This is especially true if the spine is distorted by scoliosis, kyphosis, or lordosis. The principal advantage of three-dimensional CT is its ability to display the surface relationships of complicated objects. The complexity of the spinal axis makes it ideal for study with three-dimensional CT. This presentation illustrates the advantages and drawbacks of three-dimensional CT in spinal abnormalities in children

  10. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  11. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  12. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  13. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  14. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  15. Three-dimensional vision enhances task performance independently of the surgical method.

    Science.gov (United States)

    Wagner, O J; Hagen, M; Kurmann, A; Horgan, S; Candinas, D; Vorburger, S A

    2012-10-01

    Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance. In this study, 34 individuals with varying laparoscopic experience (18 inexperienced individuals) performed three tasks to test spatial relationships, grasping and positioning, dexterity, precision, and hand-eye and hand-hand coordination. Each task was performed in 3D using binocular vision for open performance, the Viking 3Di Vision System for laparoscopic performance, and the DaVinci robotic system. The same tasks were repeated in 2D using an eye patch for monocular vision, conventional laparoscopy, and the DaVinci robotic system. Loss of 3D vision significantly increased the perceived difficulty of a task and the time required to perform it, independently of the approach (P robot than with laparoscopy (P = 0.005). In every case, 3D robotic performance was superior to conventional laparoscopy (2D) (P < 0.001-0.015). The more complex the task, the more 3D vision accelerates task completion compared with 2D vision. The gain in task performance is independent of the surgical method.

  16. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    Science.gov (United States)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  17. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments.

    Science.gov (United States)

    Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru

    2014-09-01

    This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with

    Directory of Open Access Journals (Sweden)

    Ahmed Kadhim Hussein

    2016-06-01

    Full Text Available Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ⩽ Ra ⩽ 105, while the trapezoidal cavity inclination angle is varied as 0° ⩽ Φ ⩽ 180°. Prandtl number is considered constant at Pr = 0.71. Second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers is presented and discussed, while, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low. Moreover, when the Rayleigh number increases the average Nusselt number increases.

  19. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  20. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  1. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  2. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  3. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  4. A two-dimensional laser-wire scanner for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, A. [Physics Department John Adams Institute for Accelerator Science at Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)], E-mail: alessio.bosco@rhul.ac.uk; Price, M.T.; Blair, G.A.; Boogert, S.T.; Boorman, G.; Malton, S.; Driouichi, C. [Physics Department John Adams Institute for Accelerator Science at Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Kamps, T. [Berliner Elektronenspeicherring, Gesellschaft fur Synchrotronstrahlung, Albert Einstein-Str. 15, 12489 Berlin (Germany); Poirier, F.; Balewski, K.; Elsen, E.; Gharibyan, V.; Lewin, H.-C.; Schreiber, S.; Walker, N.; Wittenburg, K. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany)

    2008-07-21

    A two-dimensional laser-wire scanner capable of measuring the transverse charge profiles of an electron (or positron) bunch has been constructed at the PETRA accelerator in DESY. The development of the system is explained in this paper, along with descriptions of its photon detector and laser system. Results of transverse profile scans are presented for both horizontal and vertical directions. The measurement error is 1.3% from a multi-scan measurement in the vertical direction, where single scans can be performed in less than 50 s.

  5. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  6. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  7. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  8. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

    International Nuclear Information System (INIS)

    Dunning, M.J.; Haan, S.W.

    1995-01-01

    Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

  9. A Dosimetric Comparison of Accelerated Partial Breast Irradiation Techniques: Multicatheter Interstitial Brachytherapy, Three-Dimensional Conformal Radiotherapy, and Supine Versus Prone Helical Tomotherapy

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Becker, Stewart J.; Das, Rupak K.; Mackie, Thomas R.

    2007-01-01

    Purpose: To compare dosimetrically four different techniques of accelerated partial breast irradiation (APBI) in the same patient. Methods and Materials: Thirteen post-lumpectomy interstitial brachytherapy (IB) patients underwent imaging with preimplant computed tomography (CT) in the prone and supine position. These CT scans were then used to generate three-dimensional conformal radiotherapy (3D-CRT) and prone and supine helical tomotherapy (PT and ST, respectively) APBI plans and compared with the treated IB plans. Dose-volume histogram analysis and the mean dose (NTD mean ) values were compared. Results: Planning target volume coverage was excellent for all methods. Statistical significance was considered to be a p value mean dose of 1.3 Gy 3 and 1.2 Gy 3 , respectively. Both of these methods were statistically significantly lower than the supine external beam techniques. Overall, all four methods yielded similar low doses to the heart. Conclusions: The use of IB and PT resulted in greater normal tissue sparing (especially ipsilateral breast and lung) than the use of supine external beam techniques of 3D-CRT or ST. However, the choice of APBI technique must be tailored to the patient's anatomy, lumpectomy cavity location, and overall treatment goals

  10. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  11. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  12. Continuum modeling of three-dimensional truss-like space structures

    Science.gov (United States)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  13. Slab1.0: A three-dimensional model of global subduction zone geometries

    Science.gov (United States)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of ‘average’ active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  14. [Precision of three-dimensional printed brackets].

    Science.gov (United States)

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J

    2017-08-18

    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and

  15. Simulating autonomous driving styles: Accelerations for three road profiles

    Directory of Open Access Journals (Sweden)

    Karjanto Juffrizal

    2017-01-01

    Full Text Available This paper presents a new experimental approach to simulate projected autonomous driving styles based on the accelerations at three road profiles. This study was focused on the determination of ranges of accelerations in triaxial direction to simulate the autonomous driving experience. A special device, known as the Automatic Acceleration and Data controller (AUTOAccD, has been developed to guide the designated driver to accomplish the selected accelerations based on the road profiles and the intended driving styles namely assertive, defensive and light rail transit (LRT. Experimental investigations have been carried out at three different road profiles (junction, speed hump, and corner with two designated drivers with five trials on each condition. A driving style with the accelerations of LRT has also been included in this study as it is significant to the present methodology because the autonomous car is predicted to accelerate like an LRT, in such a way that it enables the users to conduct activities such as working on a laptop, using personal devices or eating and drinking while travelling. The results demonstrated that 92 out of 110 trials of the intended accelerations for autonomous driving styles could be achieved and simulated on the real road by the designated drivers. The differences between the two designated drivers were negligible, and the rates of succeeding in realizing the intended accelerations were high. The present approach in simulating autonomous driving styles focusing on accelerations can be used as a tool for experimental setup involving autonomous driving experience and acceptance.

  16. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  17. Three-dimensional architecture of hair-cell linkages as revealedby electron-microscopic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Manfred; Koster, Bram; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng; Hudspeth, A. James

    2006-07-28

    The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of ankle or basal links, kinociliary links, and tip links. We observed clear differences in the dimensions and appearances of the three links. We found two distinct populations of tip links suggestive of the involvement of two proteins or splice variants. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface.

  18. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  19. An algorithm for three-dimensional imaging in the positron camera

    International Nuclear Information System (INIS)

    Chen Kun; Ma Mei; Xu Rongfen; Shen Miaohe

    1986-01-01

    A mathematical algorithm of back-projection filtered for image reconstructions using two-dimensional signals detected from parallel multiwire proportional chambers is described. The approaches of pseudo three-dimensional and full three-dimensional image reconstructions are introduced, and the available point response functions are defined as well. The designing parameters and computation procedure of the full three-dimensional method is presented

  20. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  1. Evaluation of three-dimensional virtual perception of garments

    Science.gov (United States)

    Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.

    2017-10-01

    In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.

  2. Mesh three-dimensional arm orthosis with built-in ultrasound physiotherapy system

    Science.gov (United States)

    Kashapova, R. M.; Kashapov, R. N.; Kashapova, R. S.

    2017-09-01

    The possibility of using the built-in ultrasound physiotherapy system of the hand orthosis is explored in the work. The individual mesh orthosis from nylon 12 was manufactured by the 3D prototyping method on the installation of selective laser sintering SLS SPro 60HD. The applied technology of three-dimensional scanning made it possible to obtain a model of the patient’s hand and on the basis of it to build a virtual model of the mesh frame. In the course of the research, the developed system of ultrasound exposure was installed on the orthosis and its tests were carried out. As a result, the acceleration of the healing process and the reduction in the time of wearing orthosis were found.

  3. Three-dimensional reconstruction and visualization system for medical images

    International Nuclear Information System (INIS)

    Preston, D.F.; Batnitzky, S.; Kyo Rak Lee; Cook, P.N.; Cook, L.T.; Dwyer, S.J.

    1982-01-01

    A three-dimensional reconstruction and visualization system could be of significant advantage in medical application such as neurosurgery and radiation treatment planning. The reconstructed anatomic structures from CT head scans could be used in a head stereotactic system to help plan the surgical procedure and the radiation treatment for a brain lesion. Also, the use of three-dimensional reconstruction algorithm provides for quantitative measures such as volume and surface area estimation of the anatomic features. This aspect of the three-dimensional reconstruction system may be used to monitor the progress or staging of a disease and the effects of patient treatment. Two cases are presented to illustrate the three-dimensional surface reconstruction and visualization system

  4. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  5. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  6. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  7. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  8. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  9. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    Science.gov (United States)

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.

  10. Intermittency and geometrical statistics of three-dimensional homogeneous magnetohydrodynamic turbulence: A wavelet viewpoint

    International Nuclear Information System (INIS)

    Yoshimatsu, Katsunori; Kawahara, Yasuhiro; Schneider, Kai; Okamoto, Naoya; Farge, Marie

    2011-01-01

    Scale-dependent and geometrical statistics of three-dimensional incompressible homogeneous magnetohydrodynamic turbulence without mean magnetic field are examined by means of the orthogonal wavelet decomposition. The flow is computed by direct numerical simulation with a Fourier spectral method at resolution 512 3 and a unit magnetic Prandtl number. Scale-dependent second and higher order statistics of the velocity and magnetic fields allow to quantify their intermittency in terms of spatial fluctuations of the energy spectra, the flatness, and the probability distribution functions at different scales. Different scale-dependent relative helicities, e.g., kinetic, cross, and magnetic relative helicities, yield geometrical information on alignment between the different scale-dependent fields. At each scale, the alignment between the velocity and magnetic field is found to be more pronounced than the other alignments considered here, i.e., the scale-dependent alignment between the velocity and vorticity, the scale-dependent alignment between the magnetic field and its vector potential, and the scale-dependent alignment between the magnetic field and the current density. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian accelerations and the corresponding time-derivatives of the magnetic field are performed. It is found that the Lagrangian acceleration does not exhibit substantially stronger intermittency compared to the Eulerian acceleration, in contrast to hydrodynamic turbulence where the Lagrangian acceleration shows much stronger intermittency than the Eulerian acceleration. The Eulerian time-derivative of the magnetic field is more intermittent than the Lagrangian time-derivative of the magnetic field.

  11. Application of three-dimensional CT reconstruction cranioplasty

    International Nuclear Information System (INIS)

    Yan Shuli; Yun Yongxing; Wan Kunming; Qiu Jian

    2011-01-01

    Objective: To study the application of three-dimensional CT reconstruction in cranioplasty. Methods: 46 patients with skull defect were divided into two group. One group underwent CT examination and three-dimensional reconstruction, and then the Titanium nets production company manufactured corresponding titanium meshes were shaped those data before the operation. The other group received traditional operation in which titanium meshes were shaped during operation. The average time of operation were compared. Results: The average time of operation of the first group is 86.6±13.6 mins, and that of the second group is 115±15.0 mins. The difference of average operation time between the two groups was statistically significant. Conclusion: Three-dimensional CT reconstruction techniques contribute to shorten the average operation time, reduce the intensity of neurosurgeon's work and the patien's risk. (authors)

  12. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  13. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  14. Evaluation of diagnostic quality in musculoskeletal three-dimensional CT scans

    International Nuclear Information System (INIS)

    Vannier, M.W.; Hildebolt, C.F.; Gilula, L.A.; Sutherland, C.J.; Offutt, C.J.; Drebin, R.; Mantle, M.; Giordono, T.A.

    1988-01-01

    A major application of three-dimensional computed tomography (CT) is in the imaging of the skeleton. Three-dimensional CT has an important role in determining the presence and extent of congenital and acquired orthopedic abnormalities. The objective of this study was to compare the diagnostic sensitivity and specificity of three-dimensional CT, planar CT, and plain radiography in the detection and characterization of orthopedic abnormalities. Three-dimensional CT scan reconstructions were obtained by two methods, surface reconstruction and volumetric techniques. Seventy patients were imaged with CT, three-dimensional CT, and plain radiography. The consensus opinion of experts with access to all images plus clinical history, surgical findings, and follow-up findings were taken as truth. Expert radiologists read these cases in a blinded fashion. The results were compared using receiver operating characteristic (ROC) analysis. The diagnostic value of each three-dimensional reconstruction method and the parameters used to perform the reconstructions were evaluated

  15. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  16. Three dimensional computational fluid dynamic analysis of debris transport under emergency cooling water recirculation

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2010-01-01

    This paper provides a computational fluid dynamic (CFD) analysis method on the evaluation of debris transport under emergency recirculation mode after loss of coolant accident of a nuclear power plant. Three dimensional reactor building floor geometrical model is constructed including flow obstacles larger than 6 inches such as mechanical components and equipments and considering various inlet flow paths from the upper reactor building such as break and spray flow. In the modeling of the inlet flows from the upper floors, effect of gravitational force was also reflected. For the precision of the analysis, 3 millions of tetrahedral-shaped meshes were generated. Reference calculation showed physically reasonable results. Sensitivity studies for mesh type and turbulence model showed very similar results to the reference case. This study provides useful information on the application of CFD to the evaluation of debris transport fraction for the design of new emergency sump filters. (orig.)

  17. Study of the nonlinear three-dimensional Debye screening in plasmas

    International Nuclear Information System (INIS)

    Lin Chang; Zhao Jinbao; Zhang Xiulian

    2000-01-01

    The nonlinear three-dimensional Debye screening in plasmas is investigated. New analytical solutions for the three-dimensional Poisson equation have been obtained for the nonlinear Debye potential for the first time. We derive exact analytical expression for the special case of the nonlinear three-dimensional Debye screening in plasmas. (orig.)

  18. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6

    Science.gov (United States)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-08-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.

  19. Dimensional crossover and its interplay with in-plane anisotropy of upper critical field in β-(BDA-TTP)_2SbF_6

    International Nuclear Information System (INIS)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-01-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (H_c_2) for β-(BDA-TTP)_2SbF_6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, H_c_2 shows twofold symmetry: H_c_2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to H_c_2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of H_c_2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of H_c_2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)_2SbF_6. (author)

  20. Heat engine in the three-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)

    2017-03-02

    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.

  1. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  2. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  3. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  4. First trimester diagnosis of parapagus diprosopus dibrachius dipus twins with cranirachischisis totalis by three-dimensional ultrasound.

    Science.gov (United States)

    Ülker, Kahraman; Akyer, Şahika P; Temur, İsmail; Tan, Temel; Karaca, Mehmet; Adıgüzel, Esat; Gül, Abdülaziz

    2012-02-01

    Parapagus (laterally fused), diprosopus (two faces), dibrachius (two upper extremities), dipus (two lower extremities) conjoined twinning is extremely rare. The coexistence of anencephaly with a contiguous spinal defect (craniorachischisis totalis) makes the present case one of the rarest of the published cases. In our case, it was difficult to make the final diagnosis by two-dimensional abdominal and vaginal ultrasound. Three-dimensional ultrasound was helpful for final diagnosis and post-abortal examination confirmed the prenatal ultrasound diagnosis. The heart, diaphragm, liver and perineum were all united. Fine dissection of the heart showed four vessels arising from the ventricles and a membranous type ventricular septal defect. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.

  5. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  6. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  7. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  8. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  9. Three-dimensional attached viscous flow basic principles and theoretical foundations

    CERN Document Server

    Hirschel, Ernst Heinrich; Kordulla, Wilhelm

    2014-01-01

    Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases.   This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.   The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...

  10. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  11. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  12. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  13. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  14. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-01-01

    Highlights: • Three-dimensional porous LiFePO 4 /N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO 4 electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO 4 /N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO 4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO 4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  15. Three-diemensional materials science: An intersection of three-dimensional reconstructions and simulations

    DEFF Research Database (Denmark)

    Thornton, Katsuyo; Poulsen, Henning Friis

    2008-01-01

    The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties. Comb...... an overview of this emerging field of materials science, as well as brief descriptions of selected methods and their applicability.......The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties....... Combined with three-dimensional (3D) simulations and analyses that are capable of handling the complexity of these microstructures, 3D reconstruction, or tomography, has become a powerful tool that provides clear insights into materials processing and properties. This introductory article provides...

  16. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  17. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    Energy Technology Data Exchange (ETDEWEB)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O., E-mail: klaus.reitberger@uibk.ac.at [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria)

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  18. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  19. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  20. Dissemination and support of ARGUS for accelerator applications

    International Nuclear Information System (INIS)

    1992-01-01

    The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model. These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms

  1. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  2. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Hirotani, Kouichi [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan (China)

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  3. RECONSTRUCTING THREE-DIMENSIONAL JET GEOMETRY FROM TWO-DIMENSIONAL IMAGES

    Science.gov (United States)

    Avachat, Sayali; Perlman, Eric S.; Li, Kunyang; Kosak, Katie

    2018-01-01

    Relativistic jets in AGN are one of the most interesting and complex structures in the Universe. Some of the jets can be spread over hundreds of kilo parsecs from the central engine and display various bends, knots and hotspots. Observations of the jets can prove helpful in understanding the emission and particle acceleration processes from sub-arcsec to kilo parsec scales and the role of magnetic field in it. The M87 jet has many bright knots as well as regions of small and large bends. We attempt to model the jet geometry using the observed 2 dimensional structure. The radio and optical images of the jet show evidence of presence of helical magnetic field throughout. Using the observed structure in the sky frame, our goal is to gain an insight into the intrinsic 3 dimensional geometry in the jets frame. The structure of the bends in jet's frame may be quite different than what we see in the sky frame. The knowledge of the intrinsic structure will be helpful in understanding the appearance of the magnetic field and hence polarization morphology. To achieve this, we are using numerical methods to solve the non-linear equations based on the jet geometry. We are using the Log Likelihood method and algorithm based on Markov Chain Monte Carlo (MCMC) simulations.

  4. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  5. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Gangneung Asan Hospital, Gangneung (Korea, Republic of); Yang, Oh Nam; Lim, Cheong Hwan [Hanseo Univ., Seosan (Korea, Republic of)

    2012-12-15

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

  6. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Yang, Oh Nam; Yang, Oh Nam; Lim, Cheong Hwan

    2012-01-01

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose

  7. Mid-term follow-up of patients with transposition of the great arteries after atrial inversion operation using two- and three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Fogel, Mark A.; Weinberg, Paul M.; Hubbard, Anne

    2002-01-01

    Background: Older patients with transposition of the great arteries who have undergone an atrial inversion procedure (ATRIAL-INV) are difficult to image by echocardiography. The surgical baffles are spatially complex. Objective: To test the hypothesis that two- and three-dimensional MRI can elucidate the spatially complex anatomy in this patient population. Materials and methods; Twelve patients with ATRIAL-INV, ages 16±4.5 years, underwent routine T1-weighted spin-echo axial imaging to obtain a full cardiac volumetric data set. Postprocessing created three-dimensional shaded surface displays and allowed for multiplanar reconstruction. Routine transthoracic echocardiography was available on all patients. Results: Three-dimensional reconstruction enabled complete spatial conceptualization of the venous pathways, and allowed for precise localization of a narrowed region in the upper limb of the systemic venous pathway found in two patients. This was subsequently confirmed on angiography. Routine MRI was able to image the full extent of the venous pathways in all 12 patients. Routine transthoracic echocardiography was able to visualize proximal portions of the venous pathways in eight (67%), the distal upper limb in five (42%), and the distal lower limb in four (33%) patients, and it was able to visualize the outflow tracts in all patients. Conclusion: Three-dimensional reconstruction adds important spatial information, which can be especially important in stenotic regions. Routine MRI is superior to transthoracic echocardiography in delineation of the systemic and pulmonary venous pathway anatomy of ATRIAL-INV patients at mid-term follow-up. Although transesophageal echocardiography is an option, it is more invasive. (orig.)

  8. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  9. Three-dimensional theory for light-matter interaction

    DEFF Research Database (Denmark)

    Sørensen, Martin Westring; Sørensen, Anders Søndberg

    2008-01-01

    We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...... fluctuations are mapped between atoms and light while the random positioning of the atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three dimensional theory reduce to the one dimensional theory typically used to describe the interaction....

  10. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  11. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  12. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  13. Measuring three-dimensional flow structures in the conductive airways using 3D-PTV

    Science.gov (United States)

    Janke, Thomas; Schwarze, Rüdiger; Bauer, Katrin

    2017-10-01

    Detailed information about flow patterns and mass transport in the conductive airways is of crucial interest to improve ventilation strategies as well as targeted drug delivery. Despite a vast number of flow studies in this field, there is still a dearth in experimental data of three-dimensional flow patterns, in particular for the validation of numerical results. Therefore, oscillating flow within a realistic model of the upper human conductive airways is studied here experimentally. The investigated range of Reynolds numbers is Re = 250-2000 and the Womersley number is varied between α = 1.9-5.1, whereby physiological flow at rest conditions is included. In employing the three-dimensional particle tracking velocimetry measurement technique, we can directly visualize airway specific flow structures as well as examine Lagrangian trajectory statistics, which has not been covered to date. The systematic variation of characteristic flow parameters in combination with the advanced visualization technique sheds new light on the mechanisms of evolving flow patterns. By determining Lagrangian properties such as pathline curvature and torsion, we find that both strongly depend on the Reynolds number. Moreover, the probability density function of the curvature reveals a unique shape for certain flow regions and resembles a turbulent like behavior at the small scales.

  14. Three-dimensional CT imaging of soft-tissue anatomy

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.; Kuhlman, J.E.

    1988-01-01

    Three-dimensional display of computed tomographic data has been limited to skeletal structures. This was in part related to the reconstruction algorithm used, which relied on a binary classification scheme. A new algorithm, volumetric rendering with percentage classification, provides the ability to display three-dimensional images of muscle and soft tissue. A review was conducted of images in 35 cases in which muscle and/or soft tissue were part of the clinical problem. In all cases, individual muscle groups could be clearly identified and discriminated. Branching vessels in the range of 2.3 mm could be identified. Similarly, lymph nodes could be clearly defined. High-resolution three-dimensional images were found to be useful both in providing an increased understanding of complex muscle and soft tissue anatomy and in surgical planning

  15. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  16. A protection system for picosecond accelerator

    International Nuclear Information System (INIS)

    Cao Hongping; Chinese Academy of Sciences, Beijing; Chen Huanguang; Xu Ruinian; Tang Junlong; Li Deming

    2006-01-01

    A personnel and machine protection system for the picosecond accelerator has been built. The key of the system is to send on/off of three triggering signals which are those of electron gun, 2856 MHz and 476 MHz, respectively, to ensure the safety of users and the accelerator. This paper describes the emergencies interlocked by ADAM5511 and timing trigger processor, and some secondary functions which improve the efficiency of the protection system completed in upper layer software. (authors)

  17. Application status of three-dimensional CT reconstruction in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2017-02-01

    Full Text Available With the development of imaging technology, three-dimensional CT reconstruction has been widely used in hepatobiliary surgery. Three-dimensional CT reconstruction can divide and reconstruct two-dimensional images into three-dimensional images and clearly show the location of lesion and its relationship with the intrahepatic bile duct system. It has an important value in the preoperative assessment of liver volume, diagnosis and treatment decision-making process, intraoperative precise operation, and postoperative individualized management, and promotes the constant development of hepatobiliary surgery and minimally invasive technology, and therefore, it holds promise for clinical application.

  18. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro

    1998-01-01

    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  19. Three-dimensional features on oscillating microbubbles streaming flows

    Science.gov (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  20. Three-dimensional Upper Crustal Velocity and Attenuation Structures of the Central Tibetan Plateau from Local Earthquake Tomography

    Science.gov (United States)

    Zhou, B.; Liang, X.; Lin, G.; Tian, X.; Zhu, G.; Mechie, J.; Teng, J.

    2017-12-01

    A series of V-shaped conjugate strike-slip faults are the most spectacular geologic features in the central Tibetan plateau. A previous study suggested that this conjugate strike-slip fault system accommodates the east-west extension and coeval north-south contraction. Another previous study suggested that the continuous convergence between the Indian and Eurasian continents and the eastward asthenospheric flow generated lithospheric paired general-shear (PGS) deformation, which then caused the development of conjugate strike-slip faults in central Tibet. Local seismic tomography can image three dimensional upper-crustal velocity and attenuation structures in central Tibet, which will provide us with more information about the spatial distribution of physical properties and compositional variations around the conjugate strike-slip fault zone. Ultimately, this information could improve our understanding of the development mechanism of the conjugate strike-slip fault system. In this study, we collected 6,809 Pg and 2,929 Sg arrival times from 414 earthquakes recorded by the temporary SANDWICH and permanent CNSN networks from November 2013 to November 2015. We also included 300 P and 17 S arrival times from 12 shots recorded by the INDEPTH III project during the summer of 1998 in the velocity tomography. We inverted for preliminary Vp and Vp/Vs models using the SIMUL2000 tomography algorithm, and then relocated the earthquakes with these preliminary velocity models. After that, we inverted for the final velocity models with these improved source locations and origin times. After the velocity inversion, we performed local attenuation tomography using t* measurements from the same dataset with an already existing approach. There are correlated features in the velocity and attenuation structures. From the surface to 10 km depth, the study area is dominated by high Vp and Qp anomalies. However, from 10 km to 20 km depth, there is a low Vp and Qp zone distributed along the

  1. Three-dimensional cardiac cine imaging using the kat ARC acceleration: Initial experience in clinical adult patients at 3T.

    Science.gov (United States)

    Okuda, Shigeo; Yamada, Yoshitake; Tanimoto, Akihiro; Fujita, Jun; Sano, Motoaki; Fukuda, Keiichi; Kuribayashi, Sachio; Jinzaki, Masahiro; Nozaki, Atsushi; Lai, Peng

    2015-09-01

    Three-dimensional cardiac cine imaging has demonstrated promising clinical 1.5-Tesla results; however, its application to 3T scanners has been limited because of the higher sensitivity to off-resonance artifacts. The aim of this study was to apply 3D cardiac cine imaging during a single breath hold in clinical patients on a 3T scanner using the kat ARC (k- and adaptive-t auto-calibrating reconstruction for Cartesian sampling) technique and to evaluate the interchangeability between 2D and 3D cine imaging for cardiac functional analysis and detection of abnormalities in regional wall motion. Following institutional review board approval, we obtained 2D cine images with an acceleration factor of two during multiple breath holds and 3D cine images with a net scan acceleration factor of 7.7 during a single breath hold in 20 patients using a 3T unit. Two readers independently evaluated the wall motion of the left ventricle (LV) using a 5-point scale, and the consistency in the detection of regional wall motion abnormality between 2D and 3D cine was analyzed by Cohen's kappa test. The LV volume was calculated at end-diastole and end-systole (LVEDV, LVESV); the ejection fraction (LVEF) and myocardial weight (LVmass) were also calculated. The relationship between functional parameters calculated for 2D and 3D cine images was analyzed using Pearson's correlation analysis. The bias and 95% limit of agreement (LA) were calculated using Bland-Altman plots. In addition, a qualitative evaluation of image quality was performed with regard to the myocardium-blood contrast, noise level and boundary definition. Despite slight degradation in image quality for 3D cine, excellent agreement was obtained for the detection of wall motion abnormalities between 2D and 3D cine images (κ=0.84 and 0.94 for each reader). Excellent correlations between the two imaging methods were shown for the evaluation of functional parameters (r>0.97). Slight differences in LVEDV, LVESV, LVEF and LVmass

  2. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    Science.gov (United States)

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  3. Three-dimensional image reconstruction from stereo DSA

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Umehara, Takayoshi; Yamada, Eiji; Inaba, Tomohiro; Itou, Hiroshi

    1999-01-01

    The technique of interventional radiology has spread rapidly in recent years, and three-dimensional information from blood vessel images is being sought to enhance examinations. Stereo digital subtraction angiography (DSA) and rotational DSA were developed for that purpose. However, it is difficult with stereo DSA to observe the image pair during examination and to obtain positional information on blood vessels. Further, the exposure dose is increased in rotational DSA when many mask images need to be collected, and the patient is required to hold his or her breath for a long duration. We therefore devised a technique to construct three-dimensional blood vessel images by employing geometrical information extracted from stereo DSA images using the right and left images. We used a judgment method based on the correlation coefficient, although we had to extract an equal blood vessel from the right and left images to determine the three-dimensional coordinates of the blood vessel. The reconstructed three-dimensional blood vessels were projected from various angles, again by using a virtual focus, and new images were created. These image groups were displayed as rotational images by the animation display function incorporated in the DSA device. This system can observe blood vessel images of the same phase at a free angle, although the image quality is inferior to that of rotational DSA. In addition, because collection of the mask images is reduced, exposure dose can be decreased. Further, the system offers enhanced safety because no mechanical movement of the imaging system is involved. (author)

  4. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    International Nuclear Information System (INIS)

    S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS

    1998-01-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems

  5. Three-dimensional irradiation planning of laryngeal and hypopharyngeal cancers based on phantom examinations Pt. 1

    International Nuclear Information System (INIS)

    Esik, Olga; Schlegel, Wolfgang; Doll, Josef; Nemeth, Gyoergy; Lorenz, W.J.

    1989-01-01

    Three-dimensional dose distributions were computed for the photon radiotherapy of laryngeal and hypopharyngeal cancers using a pair of opposing lateral beams in fixed positions. Treatment plans obtained under various irradiation conditions ( 60 Co gamma unit, photon beams from a 8 MeV and a 15 MeV linear accelerator) are analyzed and compared. The 8 MeV and 15 MeV plans are somewhat superior to the cobalt ones in all cases. Simulations show that extreme care is needed in positioning the isocentre: an accuracy of ±3 mm is required in the median sagittal plane. (author) 21 refs.; 11 figs

  6. Respiration-induced movement of the upper abdominal organs: a pitfall for the three-dimensional conformal radiation treatment of pancreatic cancer

    International Nuclear Information System (INIS)

    Bussels, Barbara; Goethals, Laurence; Feron, Michel; Bielen, Didier; Dymarkowski, Steven; Suetens, Paul; Haustermans, Karin

    2003-01-01

    Respiration-induced movement of the upper abdominal organs (pancreas, liver and kidneys) was assessed in 12 subjects using dynamic magnetic resonance imaging. The movement of each organ in the cranio-caudal, the lateral and the anterior-posterior direction was deduced from the movement of the center of gravity on two-dimensional images. This center of gravity was computed from the volume delineated on sequential 8-mm slices of both sagittal and coronal dynamic series. The largest movements were noticed in the cranio-caudal direction for pancreas and liver (23.7±15.9 mm and 24.4±16.4 mm). The kidneys showed smaller movements in the cranio-caudal direction (left kidney 16.9±6.7 mm and right kidney 16.1±7.9 mm). The movements of the different organs in the anterior-posterior and lateral directions were less pronounced. It is of the greatest importance to be aware of these movements in the planning of a conformal radiation treatment for pancreatic cancer

  7. Summary of three-dimensional animation creation based on ethnic culture element

    Directory of Open Access Journals (Sweden)

    Shao Zhaopo

    2016-01-01

    Full Text Available three-dimensional animation is a product combined by technology and art. It is an artistic ex-pression form combining painting, film & television, digital technology, music, and literature. As an audio and visual art, three-dimensional animation has its own unique culture-loading function, technical aesthetic charac-teristics, and requirements for national art expression. This paper aims to find the method to combine digital technology and national art in combination of three-dimensional animation short film creation, and hopes to clear the road for the cultivation of domestic three-dimensional animation quality project.

  8. Performance, Accuracy and Efficiency Evaluation of a Three-Dimensional Whole-Core Neutron Transport Code AGENT

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Hursin, Mathieu; Satvat, Nader; Hopkins, John; Xiao, Shanjie; Gert, Godfree

    2006-01-01

    The AGENT (Arbitrary Geometry Neutron Transport) an open-architecture reactor modeling tool is deterministic neutron transport code for two or three-dimensional heterogeneous neutronic design and analysis of the whole reactor cores regardless of geometry types and material configurations. The AGENT neutron transport methodology is applicable to all generations of nuclear power and research reactors. It combines three theories: (1) the theory of R-functions used to generate real three-dimensional whole-cores of square, hexagonal or triangular cross sections, (2) the planar method of characteristics used to solve isotropic neutron transport in non-homogenized 2D) reactor slices, and (3) the one-dimensional diffusion theory used to couple the planar and axial neutron tracks through the transverse leakage and angular mesh-wise flux values. The R-function-geometrical module allows a sequential building of the layers of geometry and automatic sub-meshing based on the network of domain functions. The simplicity of geometry description and selection of parameters for accurate treatment of neutron propagation is achieved through the Boolean algebraic hierarchically organized simple primitives into complex domains (both being represented with corresponding domain functions). The accuracy is comparable to Monte Carlo codes and is obtained by following neutron propagation through real geometrical domains that does not require homogenization or simplifications. The efficiency is maintained through a set of acceleration techniques introduced at all important calculation levels. The flux solution incorporates power iteration with two different acceleration techniques: Coarse Mesh Re-balancing (CMR) and Coarse Mesh Finite Difference (CMFD). The stand-alone originally developed graphical user interface of the AGENT code design environment allows the user to view and verify input data by displaying the geometry and material distribution. The user can also view the output data such

  9. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    Science.gov (United States)

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  10. Three-dimensional reconstruction of the pigeon inner ear

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on

  11. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  12. Three-dimensional magnetophotonic crystals based on artificial opals

    Science.gov (United States)

    Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-06-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.

  13. Three-dimensional magnetophotonic crystals based on artificial opals

    International Nuclear Information System (INIS)

    Baryshev, A.V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-01-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties

  14. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  15. Earthquake behavior at deep underground observed by three-dimensional array

    International Nuclear Information System (INIS)

    Komada, Hiroya; Sawada, Yoshihiro; Aoyama, Shigeo.

    1989-01-01

    The earthquake observation has been carried out using an eight point three-dimensional array between on-ground and the depth of about 400 m at Hosokura Mine in Miyagi prefecture, for the purpose of obtaining the basic datum on the characteristics of the seismic waves for the earthquake resistance design of the deep underground disposal facility of high level waste. The following results ware obtained. (1) The maximum accelerations at the underground are damped to about 60 % of those at on-ground horizontal and to about 70 % vertical. (2) Although the frequency characteristics of the seismic waves varies for each earthquake, the transfer characteristics of seismic waves from deep underground to on-ground is the same for each earthquake. (3) The horizontal dirrections of seismic wave incidence are similar to the directions from epicenters of each earthquake. The vertical directions of seismic wave incidence are in the range of about 3deg to 35deg from vertical line. (author)

  16. Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ronggui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wen, Rongfu [University of Colorado; Xu, Shanshan [University of Colorado; Ma, Xuehu [Dalian University of Technology; Lee, Yung-Cheng [University of Colorado

    2017-12-18

    Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, we experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.

  17. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  18. Possibility of estimating three-dimensional mandibular morphology by cephalogram analysis

    International Nuclear Information System (INIS)

    Kim, S.; Motegi, Etsuko; Kikuchi, Yu; Yamaguchi, Hideharu; Takaki, Takashi; Shibahara, Takahiko

    2007-01-01

    The purpose of this study was to investigate the possibility of a surmise of three-dimensional mandibular morphology by two-dimensional cephalogram analysis. The materials were three-dimensional CT and cephalogram of 20 female mandibular prognathism patients (average age: 25.20±7.49) before there orthognathic surgery. Mandibular bone volume and sponge bone width were calculated from three-dimensional images constructed from CT images using imaging software (Real Intage, KGT inc.). There was a positive correlation (r=0.72) between mandibular volume value and mandibular ramus width. There was a positive correlation between sponge bone width at the site of the mandibular cuspid and mandibular ramus width and SNB angle (r=0.80), and between sponge bone width at the site of the mandibular molar and symphysis height and mandibular ramus width (r=0.81). It was thought that these results will be useful for a surmise of three-dimensional mandibular morphology by cephalogram analysis. (author)

  19. Three-dimensional interpretation of TEM soundings

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  20. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    -D calculation and these two calculations are combined using the results of each other. In this thesis, MOC for two dimensional whole-core calculation will be described and the some results of calculation will be presented. Then, the description of the 2D/1D fusion method and the results of three dimensional calculation will be followed. The partial current-based coarse mesh finite difference (p-CMFD) acceleration method which was used in this work to reduce computation time will be also described. From the results of benchmark problem, the 2D/1D fusion method provides accurate results and good convergence. But in the large scale problem, it requires huge amount of computer memory and long computation time. To step closer to real reactor design application, it would be necessary to reduce the computer memory requirement and computing time further

  1. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  2. Three-dimensional imaging technology offers promise in medicine.

    Science.gov (United States)

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  3. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    Science.gov (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Tactical Routing Using Two-Dimensional and Three-Dimensional Views of Terrain

    National Research Council Canada - National Science Library

    St

    2001-01-01

    Consoles for military and civilian occupations such as air warfare, command and control, air traffic control, piloting, and meteorological forecasting will be capable of displaying three-dimensional (3-D) perspective views...

  5. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    Rendek, Kimberly N.; Fromme, Raimund; Grotjohann, Ingo; Fromme, Petra

    2013-01-01

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  6. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  7. A method of image improvement in three-dimensional imaging

    International Nuclear Information System (INIS)

    Suto, Yasuzo; Huang, Tewen; Furuhata, Kentaro; Uchino, Masafumi.

    1988-01-01

    In general, image interpolation is required when the surface configurations of such structures as bones and organs are three-dimensionally constructed from the multi-sliced images obtained by CT. Image interpolation is a processing method whereby an artificial image is inserted between two adjacent slices to make spatial resolution equal to slice resolution in appearance. Such image interpolation makes it possible to increase the image quality of the constructed three-dimensional image. In our newly-developed algorithm, we have converted the presently and subsequently sliced images to distance images, and generated the interpolation images from these two distance images. As a result, compared with the previous method, three-dimensional images with better image quality have been constructed. (author)

  8. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    Directory of Open Access Journals (Sweden)

    Tetsuro Tominaga

    2016-04-01

    Full Text Available The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care.

  9. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Sprengers, Andre M.; Nillesen, Maartje; Hansen, Hendrik H.G.; Verdonschot, Nico; De Korte, Chris L.

    2015-01-01

    Muscle contraction is characterized by large deformation and translation, which requires a multi-dimensional imaging modality to reveal its behavior. Previous work on ultrasound strain imaging of the muscle contraction was limited to 2D and bi-plane techniques. In this study, a three-dimensional

  10. Three-dimensional analysis of otolith-ocular reflex during eccentric rotation in humans.

    Science.gov (United States)

    Takimoto, Yasumitsu; Imai, Takao; Okumura, Tomoko; Takeda, Noriaki; Inohara, Hidenori

    2016-10-01

    When a participant is rotated while displaced from the axis of rotation (eccentric rotation, ER), both rotational stimulation and linear acceleration are applied to the participant. As linear acceleration stimulates the otolith, the vestibulo-ocular reflex (VOR) caused by the otolith (linear VOR; lVOR) would be induced during ER. Ten participants were rotated sinusoidally at a maximum angular velocity of 50°/s and at frequencies of 0.1, 0.3, 0.5, and 0.7Hz. The radius of rotation during ER was 90cm. The participants sat on a chair at three different positions: on the axis (center rotation, CR), at 90cm backward from the axis (nose-in ER, NI-ER) and at 90cm forward from the axis (nose-out ER, NO-ER). Their eye movements during rotation were recorded and analyzed three-dimensionally. The VOR gain during NI-ER was lower at 0.5 and 0.7Hz, and that during NO-ER was higher at 0.3, 0.5, and 0.7Hz than during CR. These results indicate that lVOR actually worked at 0.5 and 0.7Hz during ER and that the enhancement and decline of the VOR gain relative to the VOR gain during CR was seen in humans. Thus, we suggest that otolith function can be assessed via rotational testing of NI-ER and NO-ER. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  11. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  12. Normalization and Implementation of Three Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.; Gottlieb, Robert G.

    2016-01-01

    Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the real universe is that gravitational fields are sensitive to the asphericity of their generating central bodies. The gravitational potential of an aspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities that must be removed to generalize the method and solve for any possible orbit, including polar orbits. Samuel Pines, Bill Lear, and Robert Gottlieb developed three unique algorithms to eliminate these singularities. This paper documents the methodical normalization of two of the three known formulations for singularity-free gravitational acceleration (namely, the Lear and Gottlieb algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre polynomials and Associated Legendre Functions (ALFs) for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  13. Freeze-drying synthesis of three-dimensional porous LiFePO{sub 4} modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiaofeng; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Song, Yijie

    2017-04-01

    Highlights: • Three-dimensional porous LiFePO{sub 4}/N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO{sub 4} electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO{sub 4}/N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO{sub 4} modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO{sub 4} to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  14. Three-dimensional reacting shock–bubble interaction

    NARCIS (Netherlands)

    Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.

    2017-01-01

    We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric

  15. Three-dimensional facial analysis of Chinese children with repaired unilateral cleft lip and palate

    Science.gov (United States)

    Othman, Siti Adibah; Aidil Koay, Noor Airin

    2016-08-01

    We analyzed the facial features of Chinese children with repaired unilateral cleft lip and palate (UCLP) and compared them with a normal control group using a three-dimensional (3D) stereophotogrammetry camera. This cross-sectional study examined 3D measurements of the facial surfaces of 20 Chinese children with repaired UCLP and 40 unaffected Chinese children aged 7 to 12 years old, which were captured using the VECTRA 3D five-pod photosystem and analyzed using Mirror software. Twenty-five variables and two ratios were compared between both groups using independent t-test. Intra- and inter-observer reliability was determined using ten randomly selected images and analyzed using intra-class correlation coefficient test (ICC). The level of significance was set at p cleft group exhibited wider alar base root width, flattened nose and broader nostril floor width on the cleft side. They tended to have shorter upper lip length and thinner upper vermillion thickness. Faces of Chinese children with repaired UCLP displayed meaningful differences when compared to the normal group especially in the nasolabial regions.

  16. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  17. Eustachian tube three-dimensional reconstruction of secretory otitis media

    International Nuclear Information System (INIS)

    Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin

    2006-01-01

    Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)

  18. Computerized three-dimensional normal atlas

    International Nuclear Information System (INIS)

    Mano, Isamu; Suto, Yasuzo; Suzuki, Masataka; Iio, Masahiro.

    1990-01-01

    This paper presents our ongoing project in which normal human anatomy and its quantitative data are systematically arranged in a computer. The final product, the Computerized Three-Dimensional Normal Atlas, will be able to supply tomographic images in any direction, 3-D images, and coded information on organs, e.g., anatomical names, CT numbers, and T 1 and T 2 values. (author)

  19. Three-Dimensional Shallow Water Acoustics

    Science.gov (United States)

    2016-03-30

    medium properties, so horizontal refraction and reflection of sound can occur and produce significant three-dimensional (3-D) sound propagation ...by the environmental factors existing commonly in the continental shelf and shelfbreak areas, such as slopes, submarine canyons, sub-bottom layers ...surface waves, internal waves and shelfbreak fronts. 15. SUBJECT TERMS Continental Shelf; 3-D Acoustics , Surface Waves, Sound Propagation 16

  20. On the instability of a three-dimensional attachment-line boundary layer - Weakly nonlinear theory and a numerical approach

    Science.gov (United States)

    Hall, P.; Malik, M. R.

    1986-01-01

    The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier-Stokes equations for the attachment-line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.

  1. Three dimensional CT imaging of ossicular chain: a preliminary study

    International Nuclear Information System (INIS)

    Hu Chunhong; Zhong Shenbin; Fu Yindi; Zhu Wei; Wang Xueyuan; Chen Jianhua; Ding Yi

    2001-01-01

    Objective: To analysis the features of normal and abnormal ossicular chain in three dimensional images and asses the best parameters and its usefulness in diagnosis and treatment of chronic otitis media (COM). Methods: All patients, including 43 patients with normal ears and 24 ears with COM, were examined using spiral CT with inner ear software, 1-mm slice width and 1 pitch. SSD method was used in three dimensional reconstruction and the threshold was 100-300 Hu. Results: In normal cases, Malleus, incus, stapes crura, incudomalleal joints and incudostapedial joints were displayed well, but stapes footplate unsatisfactorily. The disruption of the ossicular chain showed in three-dimensional images in cases of chronic otitis media was in accord with that seen in the operation. Conclusion: It is very important for imaging with high quality through selecting proper parameters, and three-dimensional image can provide valuable information for surgery

  2. Three-dimensional motion tracking correlates with skill level in upper gastrointestinal endoscopy

    DEFF Research Database (Denmark)

    Arnold, Sif H.; Svendsen, Morten Bo Søndergaard; Konge, Lars

    2015-01-01

    untrained medical students) were tested using a virtual reality simulator. A motion sensor was used to collect data regarding the distance between the hands, and height and movement of the scope hand. Test characteristics between groups were explored using Kruskal-Wallis H and Man-Whitney U exact tests......Background and study aim: Feedback is an essential part of training in upper gastrointestinal endoscopy. Virtual reality simulators provide limited feedback, focusing only on visual recognition with no feedback on the procedural part of training. Motion tracking identifies patterns of movement......, and this study aimed to explore the correlation between skill level and operator movement using an objective automated tool. Methods: In this medical education study, 37 operators (12 senior doctors who performed endoscopic retrograde cholangiopancreatography, 13 doctors with varying levels of experience, and 12...

  3. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  4. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  5. Effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators

    International Nuclear Information System (INIS)

    Miller, R.B.; Marder, B.M.; Coleman, P.D.; Clark, R.E.

    1988-01-01

    The electron beam in a linear induction accelerator is generally susceptible to growth of the transverse beam breakup instability. In this paper we analyze a new technique for reducing the transverse coupling between the beam and the accelerating cavities, thereby reducing beam breakup growth. The basic idea is that the most worrisome cavity modes can be cutoff by a short section of coaxial transmission line inserted between the cavity structure and the accelerating gap region. We have used the three-dimensional simulation code SOS to analyze this problem. In brief, we find that the technique works, provided that the lowest TE mode cutoff frequency in the coaxial line is greater than the frequency of the most worrisome TM mode of the accelerating cavity

  6. Quantifying the quality of hand movement in stroke patients through three-dimensional curvature

    Directory of Open Access Journals (Sweden)

    Osu Rieko

    2011-10-01

    Full Text Available Abstract Background To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test scores ranging from 2 (incomplete performance to 4 (mild clumsiness were recruited. Nine healthy participant with a SIAS score of 5 (normal also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable

  7. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  8. Center of Mass Acceleration Feedback Control of Standing Balance by Functional Neuromuscular Stimulation against External Postural Perturbations

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation (FNS) control system to restore standing function to a subject with complete, thoracic-level spinal cord injury (SCI). The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (> 89% variance explained) using three-dimensional (3-D) outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living. PMID:22987499

  9. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  10. Vibrational spectra and thermal rectification in three-dimensional anharmonic lattices

    International Nuclear Information System (INIS)

    Lan Jinghua; Li Baowen

    2007-01-01

    We study thermal rectification in a three-dimensional model consisting of two segments of anharmonic lattices. One segment consists of layers of harmonic oscillator arrays coupled to a substrate potential, which is a three-dimensional Frenkel-Kontorova model, and the other segment is a three-dimensional Fermi-Pasta-Ulam model. We study the vibrational bands of the two lattices analytically and numerically, and find that, by choosing the system parameters properly, the rectification can be as high as a few thousands, which is high enough to be observed in experiment. Possible experiments in nanostructures are discussed

  11. Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol

    Science.gov (United States)

    Underwood, Sonia M.; Matz, Rebecca L.; Posey, Lynmarie A.; Carmel, Justin H.; Caballero, Marcos D.; Fata-Hartley, Cori L.; Ebert-May, Diane; Jardeleza, Sarah E.; Cooper, Melanie M.

    2016-01-01

    Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of “three-dimensional learning” is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not. PMID:27606671

  12. Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol.

    Science.gov (United States)

    Laverty, James T; Underwood, Sonia M; Matz, Rebecca L; Posey, Lynmarie A; Carmel, Justin H; Caballero, Marcos D; Fata-Hartley, Cori L; Ebert-May, Diane; Jardeleza, Sarah E; Cooper, Melanie M

    2016-01-01

    Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not.

  13. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  14. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  15. Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules

    DEFF Research Database (Denmark)

    Parigi, Dario; Pugnale, Alberto

    2012-01-01

    , causing every configuration to develop naturally out-of the plane. The structures presented here were developed and built by the students of the Master of Science in “Architectural Design” during a two week long workshop organized at Aalborg University in the fall semester 2011.......This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the other...

  16. Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Sadot, O.; Betti, R.; Goncharov, V.N.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Shvarts, D.

    2006-01-01

    An understanding of the nonlinear evolution of Rayleigh-Taylor (RT) instability is essential in inertial confinement fusion and astrophysics. The nonlinear RT growth of three-dimensional (3-D) broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial 3-D target modulations were seeded by laser nonuniformities and subsequently amplified by the RT instability. The measured modulation Fourier spectra and nonlinear growth velocities are in excellent agreement with those predicted by Haan's model [S. Haan, Phys. Rev. A 39, 5812 (1989)]. These spectra and growth velocities are insensitive to initial conditions. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions, in agreement with the Alon-Oron-Shvarts theoretical predictions [D. Oron et al. Phys. Plasmas 8, 2883 (2001)

  17. Flukacad/Pipsicad: three-dimensional interfaces between Fluka and Autocad

    International Nuclear Information System (INIS)

    Helmut Vincke

    2001-01-01

    FLUKA is a widely used 3-D particle transport program. Up to now there was no possibility to display the simulation geometry or the calculated tracks in three dimensions. Even with FLUKA there exists only an option to picture two-dimensional views through the geometry used. This paper covers the description of two interface programs between the particle transport code FLUKA and the CAD program AutoCAD. These programs provide a three-dimensional facility not only for illustrating the simulated FLUKA geometry (FLUKACAD), but also for picturing simulated particle tracks (PIPSICAD) in a three-dimensional set-up. Additionally, the programming strategy for connecting FLUKA with AutoCAD is shown. A number of useful features of the programs themselves, but also of AutoCAD in the context of FLUKACAD and PIPSICAD, are explained. (authors)

  18. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam [Chosun University Hospital, Gwangju (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture.

  19. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    International Nuclear Information System (INIS)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam

    2006-01-01

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture

  20. Three-dimensional accuracy of plastic transfer impression copings for three implant systems.

    Science.gov (United States)

    Teo, Juin Wei; Tan, Keson B; Nicholls, Jack I; Wong, Keng Mun; Uy, Joanne

    2014-01-01

    The purpose of this study was to compare the three-dimensional accuracy of indirect plastic impression copings and direct implant-level impression copings from three implant systems (Nobel Biocare [NB], Biomet 3i [3i], and Straumann [STR]) at three interimplant buccolingual angulations (0, 8, and 15 degrees). Two-implant master models were used to simulate a three-unit implant fixed partial denture. Test models were made from Impregum impressions using direct implant-level impression copings (DR). Abutments were then connected to the master models for impressions using the plastic impression copings (INDR) at three different angulations for a total of 18 test groups (n = 5 in each group). A coordinate measuring machine was used to measure linear distortions, three-dimensional (3D) distortions, angular distortions, and absolute angular distortions between the master and test models. Three-way analysis of variance showed that the implant system had a significant effect on 3D distortions and absolute angular distortions in the x- and y-axes. Interimplant angulation had a significant effect on 3D distortions and absolute angular distortions in the y-axis. Impression technique had a significant effect on absolute angular distortions in the y-axis. With DR, the NB and 3i systems were not significantly different. With INDR, 3i appeared to have less distortion than the other systems. Interimplant angulations did not significantly affect the accuracy of NBDR, 3iINDR, and STRINDR. The accuracy of INDR and DR was comparable at all interimplant angulations for 3i and STR. For NB, INDR was comparable to DR at 0 and 8 degrees but was less accurate at 15 degrees. Three-dimensional accuracy of implant impressions varied with implant system, interimplant angulation, and impression technique.

  1. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    Science.gov (United States)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  2. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  3. User's manual for ONEDANT: a code package for one-dimensional, diffusion-accelerated, neutral-particle transport

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.

    1982-02-01

    ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method

  4. Stochastic Acceleration in Turbulent Electric Fields Generated by 3D Reconnection

    International Nuclear Information System (INIS)

    Onofri, Marco; Isliker, Heinz; Vlahos, Loukas

    2006-01-01

    Electron and proton acceleration in three-dimensional electric and magnetic fields is studied through test particle simulations. The fields are obtained by a three-dimensional magnetohydrodynamic simulation of magnetic reconnection in slab geometry. The nonlinear evolution of the system is characterized by the growth of many unstable modes and the initial current sheet is fragmented with formation of small scale structures. We inject at random points inside the evolving current sheet a Maxwellian distribution of particles. In a relatively short time (less than a millisecond) the particles develop a power-law tail. The acceleration is extremely efficient and the electrons absorb a large percentage of the available energy in a small fraction of the characteristic time of the MHD simulation, suggesting that resistive MHD codes are unable to represent the full extent of particle acceleration

  5. Three dimensional force prediction in a model linear brushless dc motor

    Energy Technology Data Exchange (ETDEWEB)

    Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)

    1994-11-01

    Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.

  6. Fourier analysis of parallel block-Jacobi splitting with transport synthetic acceleration in two-dimensional geometry

    International Nuclear Information System (INIS)

    Rosa, M.; Warsa, J. S.; Chang, J. H.

    2007-01-01

    A Fourier analysis is conducted in two-dimensional (2D) Cartesian geometry for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) and Richardson iteration preconditioned with Transport Synthetic Acceleration (TSA), using the Parallel Block-Jacobi (PBJ) algorithm. The results for the un-accelerated algorithm show that convergence of PBJ can degrade, leading in particular to stagnation of GMRES(m) in problems containing optically thin sub-domains. The results for the accelerated algorithm indicate that TSA can be used to efficiently precondition an iterative method in the optically thin case when implemented in the 'modified' version MTSA, in which only the scattering in the low order equations is reduced by some non-negative factor β<1. (authors)

  7. Visual Interpretation with Three-Dimensional Annotations (VITA): three-dimensional image interpretation tool for radiological reporting.

    Science.gov (United States)

    Roy, Sharmili; Brown, Michael S; Shih, George L

    2014-02-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications in Medicine (DICOM) object and is automatically added to the study for archival in Picture Archiving and Communication System (PACS). In addition, a video summary (e.g., MPEG4) can be generated for sharing with patients and for situations where DICOM viewers are not readily available to referring physicians. The current version of VITA is compatible with ClearCanvas; however, VITA can work with any PACS workstation that has a structured annotation implementation (e.g., Extendible Markup Language, Health Level 7, Annotation and Image Markup) and is able to seamlessly integrate into the existing reporting workflow. In a survey with referring physicians, the vast majority strongly agreed that 3D visual summaries improve the communication of the radiologists' reports and aid communication with patients.

  8. Electromagnetic modeling in accelerator designs

    International Nuclear Information System (INIS)

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described

  9. Three-dimensional Simulation of Backward Raman Amplification

    International Nuclear Information System (INIS)

    Balakin, A.A.; Fraiman, G.M.; Fisch, N.J.

    2005-01-01

    Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization

  10. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  11. Three dimensional imaging in cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Torizuka, Kanji; Ishii, Yasushi; Yonekura, Yoshiharu; Yamamoto, Kazutaka; Tamaki, Takeyoshi

    1981-01-01

    Methods to obtain three dimensional images of the heart were reviewed. Gated three dimensional display reconstructed from images using bidirectional collimator, was a useful method to detect akinesis of the heart wall. Tomographic observation of the heart can be carried out by a pinhole collimator to image ischemia with high sensitivity. However the focusing plane must be carefully selected to prevent false positives. In the case of emission CT (ECT), utilization of positron emitters gave a quantitative image without correction, whereas single photon ECT needed the correction due to the absorption of γ-ray. Though the reliability of the images by ECT was high, the time required for data acquisition was much longer than that by a 7 pinhole or bidirectional collimator. (Nakanishi, T.)

  12. [Three-dimensional computer aided design for individualized post-and-core restoration].

    Science.gov (United States)

    Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun

    2009-10-01

    To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.

  13. The Study of Two-Dimensional Oscillations Using a Smartphone Acceleration Sensor: Example of Lissajous Curves

    Science.gov (United States)

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-01-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for…

  14. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  15. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    Science.gov (United States)

    Smith, L. M.; Hochstedler, R. D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).

  16. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    Smith, L.M.; Hochstedler, R.D.

    1997-01-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)

  17. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    International Nuclear Information System (INIS)

    Ruhlandt, Aike; Salditt, Tim

    2016-01-01

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality

  18. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  19. Clinical significance of three-dimensional sonohysterography

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel

    1999-01-01

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  20. Clinical significance of three-dimensional sonohysterography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel [Pochon Cha University College of Medicine, Pochon (Korea, Republic of)

    1999-12-15

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  1. Prognostic value of three-dimensional ultrasound for fetal hydronephrosis

    Science.gov (United States)

    WANG, JUNMEI; YING, WEIWEN; TANG, DAXING; YANG, LIMING; LIU, DONGSHENG; LIU, YUANHUI; PAN, JIAOE; XIE, XING

    2015-01-01

    The present study evaluated the prognostic value of three-dimensional ultrasound for fetal hydronephrosis. Pregnant females with fetal hydronephrosis were enrolled and a novel three-dimensional ultrasound indicator, renal parenchymal volume/kidney volume, was introduced to predict the postnatal prognosis of fetal hydronephrosis in comparison with commonly used ultrasound indicators. All ultrasound indicators of fetal hydronephrosis could predict whether postnatal surgery was required for fetal hydronephrosis; however, the predictive performance of renal parenchymal volume/kidney volume measurements as an individual indicator was the highest. In conclusion, ultrasound is important in predicting whether postnatal surgery is required for fetal hydronephrosis, and the three-dimensional ultrasound indicator renal parenchymal volume/kidney volume has a high predictive performance. Furthermore, the majority of cases of fetal hydronephrosis spontaneously regress subsequent to birth, and the regression time is closely associated with ultrasound indicators. PMID:25667626

  2. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  3. Three-Dimensional Graphene–RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ee-Seul Kang

    2018-02-01

    Full Text Available Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs. Amine-modified silica nanoparticles (SiNPs were uniformly coated onto an indium tin oxide electrode (ITO, followed by graphene oxide (GO encapsulation and electrochemical deposition of gold nanoparticles. A RGD–MAP–C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene–RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle–RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP, runt-related transcription factor 2, enzyme activity (ALP, and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14–21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene–RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.

  4. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    OpenAIRE

    Tominaga, Tetsuro; Takagi, Katsunori; Takeshita, Hiroaki; Miyamoto, Tomo; Shimoda, Kozue; Matsuo, Ayano; Matsumoto, Keitaro; Hidaka, Shigekazu; Yamasaki, Naoya; Sawai, Terumitsu; Nagayasu, Takeshi

    2016-01-01

    The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face ...

  5. Loop expansion in massless three-dimensional QED

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Radulovic, Z.M.

    1983-01-01

    It is shown how the loop expansion in massless three-dimensional QED can be made finite, up to three loops, by absorbing the infrared divergences in a gauge-fixing term. The same method removes leading and first subleading singularities to all orders of perturbation theory, and all singularities of the fermion self-energy to four loops

  6. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  7. The dynamics of low-β plasma clouds as simulated by a three-dimensional, electromagnetic particle code

    International Nuclear Information System (INIS)

    Neubert, T.; Miller, R.H.; Buneman, O.; Nishikawa, K.I.

    1992-01-01

    The dynamics of low-β plasma clouds moving perpendicular to an ambient magnetic field in vacuum and in a background plasma is simulated by means of a three-dimensional, electromagnetic, and relativistic particle simulation code. The simulations show the formation of the space charge sheaths at the sides of the cloud with the associated polarization electric field which facilitate the cross-field propagation, as well as the sheaths at the front and rear end of the cloud caused by the larger ion Larmor radius, which allows ions to move ahead and lag behind the electrons as they gyrate. Results on the cloud dynamics and electromagnetic radiation include the following: (1) In a background plasma, electron and ion sheaths expand along the magnetic field at the same rate, whereas in vacuum the electron sheath expands much faster than the ion sheath. (2) Sheath electrons are accelerated up to relativistic energies. This result indicates that artificial plasma clouds released in the ionosphere or magnetosphere may generate optical emissions (aurora) as energetic sheath electrons scatter in the upper atmosphere. (3) The expansion of the electron sheaths is analogous to the ejection of high-intensity electron beams from spacecraft. (4) Second-order and higher-order sheaths are formed which extend out into the ambient plasma. (5) Formation of the sheaths and the polarization field reduces the forward momentum of the cloud. (6) The coherent component of the particle gyromotion is damped in time as the particles establish a forward directed drift velocity. (7) The coherent particle gyrations generate electromagnetic radiation

  8. Comparison of two three-dimensional cephalometric analysis computer software

    OpenAIRE

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-01-01

    Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...

  9. Three-dimensional transesophageal echocardiography of the atrial septal defects

    Directory of Open Access Journals (Sweden)

    Romero-Cárdenas Ángel

    2008-07-01

    Full Text Available Abstract Transesophageal echocardiography has advantages over transthoracic technique in defining morphology of atrial structures. Even though real time three-dimensional echocardiographic imaging is a reality, the off-line reconstruction technique usually allows to obtain higher spatial resolution images. The purpose of this study was to explore the accuracy of off-line three-dimensional transesophageal echocardiography in a spectrum of atrial septal defects by comparing them with representative anatomic specimens.

  10. Symmetries, integrals, and three-dimensional reductions of Plebanski's second heavenly equation

    International Nuclear Information System (INIS)

    Neyzi, F.; Sheftel, M. B.; Yazici, D.

    2007-01-01

    We study symmetries and conservation laws for Plebanski's second heavenly equation written as a first-order nonlinear evolutionary system which admits a multi-Hamiltonian structure. We construct an optimal system of one-dimensional subalgebras and all inequivalent three-dimensional symmetry reductions of the original four-dimensional system. We consider these two-component evolutionary systems in three dimensions as natural candidates for integrable systems

  11. Teaching veterinary obstetrics using three-dimensional animation technology.

    Science.gov (United States)

    Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L

    2010-01-01

    In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.

  12. Three-dimensional wax patterning of paper fluidic devices.

    Science.gov (United States)

    Renault, Christophe; Koehne, Jessica; Ricco, Antonio J; Crooks, Richard M

    2014-06-17

    In this paper we describe a method for three-dimensional wax patterning of microfluidic paper-based analytical devices (μPADs). The method is rooted in the fundamental details of wax transport in paper and provides a simple way to fabricate complex channel architectures such as hemichannels and fully enclosed channels. We show that three-dimensional μPADs can be fabricated with half as much paper by using hemichannels rather than ordinary open channels. We also provide evidence that fully enclosed channels are efficiently isolated from the exterior environment, decreasing contamination risks, simplifying the handling of the device, and slowing evaporation of solvents.

  13. Estimation of three-dimensional radar tracking using modified extended kalman filter

    Science.gov (United States)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  14. Three-dimensional models of metal-poor stars

    International Nuclear Information System (INIS)

    Collet, R

    2008-01-01

    I present here the main results of recent realistic, three-dimensional (3D), hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of local thermodynamic equilibrium (LTE) with the results of analogous line formation calculations performed with classical, 1D, hydrostatic model atmospheres. The low surface temperatures encountered in the upper photospheric layers of 3D model atmospheres of very metal-poor stars cause spectral lines of neutral metals and molecules to appear stronger in 3D than in 1D calculations. Hence, 3D elemental abundances derived from such lines are significantly lower than estimated by analyses with 1D models. In particular, differential 3D-1D LTE abundances for C, N and O derived from CH, NH and OH lines are found to be in the range -0.5 to - 1 dex. Large negative differential 3D-1D corrections to the Fe abundance are also computed for weak low-excitation Fe i lines. The application of metal-poor 3D models to the spectroscopic analysis of extremely iron-poor halo stars is discussed.

  15. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  16. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1997-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  17. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1998-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  18. Three-dimensional MRI of the glenoid labrum

    International Nuclear Information System (INIS)

    Loehr, S.P.; Pope, T.L. Jr.; Martin, D.F.; Link, K.M.; Monu, J.U.V.; Hunter, M.; Reboussin, D.

    1995-01-01

    The objective of this study was to assess the accuracy of three-dimensional (3D) magnetic resonance imaging (MRI) reformation in the evaluation of tears of the glenoid labrum complex (GLC). Fifty-five shoulders were evaluated by MRI using standard spin-echo sequences. Gradient-refocused-echo axial projections were used to assess the GLC on the two-dimensional (2D) studies. Three-dimensional Fourier transform multiplanar gradient-recalled imaging with a resolution of 0.7 mm was also performed in all patients. Independent analyses of the anterior and posterior labra were performed in a blinded manner for both the 2D and 3D studies by three experienced musculoskeletal radiologists. Observations of the imaging studies were compared with the videoarthroscopic findings. The appearance of the GLC was rated on a scale of 0 to 4 (0-2=normal, 3, 4=abnormal or torn). The diagnostic confidence was averaged from the three reader's scores. Anterior labral tears were effectively detected with sensitivities of 89% and 96% and specificities of 96% and 100% (P<0.0001) for the 2D and 3D studies, respectively. For posterior labral tears, the sensitivity and specificity of the 2D method were 47% and 98%, respectively. The sensitivity and specificity of the 3D volume sequence were 53% and 98%, respectively. The lower sensitivity of both imaging methods for detecting posterior labral tears may be influenced by the smaller number (n=5) of arthroscopically confirmed cases in our study and reflects the difficulty of visualizing the posteroinferior borders of the GLC with present MRI techniques. (orig.)

  19. Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-21

    Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.

  20. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  1. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  2. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  3. Two-dimensional molecular line transfer for a cometary coma

    Science.gov (United States)

    Szutowicz, S.

    2017-09-01

    In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).

  4. Two- and three-dimensional CT evaluation of sacral and pelvic anomalies

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Magid, D.

    1988-01-01

    Pelvic anomalies are difficult to evaluate with standard techniques. Detailed knowledge of the existing pelvic structures and musculature is essential for successful repair. The authors evaluated 12 patients with complex malformations of the pelvis using two- and three-dimensional imaging. The anomalies included bladder exstrophy (n = 4), cloacal exstrophy (n = 1), duplicated and absent sacrum (n = 3), myelomeningoceles (n = 2), and diastrophic dwarfism (n = 2). The two-dimensional images consisted of sequential coronal and sagittal reconstructions that could be reviewed dynamically on screen. Three-dimensional images were generated on the Pixar imaging computer with use of volumetric rendering. Two- and three-dimensional CT proved complementary in the evaluation of pelvic anomalies, providing optimal information from transaxial CT data

  5. Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification

    International Nuclear Information System (INIS)

    Nayek, Kuntal; Roy, Shibaji

    2017-01-01

    Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H_6) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t_0, with t_0 some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t_0) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H_6. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)

  6. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  7. Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries

    Science.gov (United States)

    Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.

    2015-01-01

    Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485

  8. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  9. Early orthognathic surgery with three-dimensional image simulation during presurgical orthodontics in adults.

    Science.gov (United States)

    Kang, Sang-Hoon; Kim, Moon-Key; Park, Sun-Yeon; Lee, Ji-Yeon; Park, Wonse; Lee, Sang-Hwy

    2011-03-01

    To correct dentofacial deformities, three-dimensional skeletal analysis and computerized orthognathic surgery simulation are used to facilitate accurate diagnoses and surgical plans. Computed tomography imaging of dental occlusion can inform three-dimensional facial analyses and orthognathic surgical simulations. Furthermore, three-dimensional laser scans of a cast model of the predetermined postoperative dental occlusion can be used to increase the accuracy of the preoperative surgical simulation. In this study, we prepared cast models of planned postoperative dental occlusions from 12 patients diagnosed with skeletal class III malocclusions with mandibular prognathism and facial asymmetry that had planned to undergo bimaxillary orthognathic surgery during preoperative orthodontic treatment. The data from three-dimensional laser scans of the cast models were used in three-dimensional surgical simulations. Early orthognathic surgeries were performed based on three-dimensional image simulations using the cast images in several presurgical orthodontic states in which teeth alignment, leveling, and space closure were incomplete. After postoperative orthodontic treatments, intraoral examinations revealed that no patient had a posterior open bite or space. The two-dimensional and three-dimensional skeletal analyses showed that no mandibular deviations occurred between the immediate and final postoperative states of orthodontic treatment. These results showed that early orthognathic surgery with three-dimensional computerized simulations based on cast models of predetermined postoperative dental occlusions could provide early correction of facial deformities and improved efficacy of preoperative orthodontic treatment. This approach can reduce the decompensation treatment period of the presurgical orthodontics and contribute to efficient postoperative orthodontic treatments.

  10. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    Science.gov (United States)

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  11. NUMERICAL SIMULATION OF THREE-DIMENSIONAL ASYMMETRIC RECONNECTION AND APPLICATION TO A PHYSICAL MECHANISM OF PENUMBRAL MICROJETS

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Shibata, Kazunari; Isobe, Hiroaki

    2012-01-01

    Three-dimensional (3D) component reconnection, where reconnecting field lines are not perfectly anti-parallel, is studied with a 3D magnetohydrodynamic simulation. In particular, we consider the asymmetry of the field strength of the reconnecting field lines. As the asymmetry increases, the generated reconnection jet tends to be parallel to stronger field lines. This is because weaker field lines have higher gas pressure in the initial equilibrium, and hence the gas pressure gradient along the reconnected field lines is generated, which accelerates the field-aligned plasma flow. This mechanism may explain penumbral microjets and other types of jets that are parallel to magnetic field lines.

  12. Three-dimensional characterization of stress corrosion cracks

    DEFF Research Database (Denmark)

    Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera

    2011-01-01

    the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...

  13. Two- and three-dimensional evaluation of the acetabulum in the pediatric patient

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Sponseller, P.D.

    1987-01-01

    Complex anatomic structures such as the hip and acetabulum are best evaluated with the use of two- and three-dimensional reconstruction techniques and standard transaxial CT data. CT scans of children with various hip pathologies, including congenital hip dislocation, slipped capital femoral epiphyses, hip dysplasias, dwarfism, and acetabular fractures, were reviewed to determine the value of two- and three-dimensional imaging. The advantages of two-dimensional imaging techniques (sequential coronal/sagittal reconstruction) and three-dimensional valumetric imaging techniques (using real-time video display) are illustrated with specific examples

  14. Application of space-and-angle finite element method to the three-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Fujimura, T.; Nakahara, Y.; Matsumura, M.

    1983-01-01

    A double finite element method (DFEM), in which both the space-and-angle finite elements are employed, has been formulated and computer codes have been developed to solve the static multigroup neutron transport problems in the three-dimensional geometry. Two methods, Galerkin's weighted residual and variational are used to apply the DFEM to the transport equation. The variational principle requires complicated formulation than the Galerkin method, but the boundary conditions can be automatically incorporated and each plane equation becomes symmetric. The system equations are solved over the planar layers which we call plane iteration. The coarse mesh rebalancing technique is used for the inner iteration and the outer iteration is accelerated by extra-polation. Numerical studies of these two DFEM algorithms have been done in comparison between them and also with THe CITATION and TWOTRAN-II results. It has been confirmed that in the case of variational formulation an adaptive acceleration method of the SSOR iteration works effectively and the ray effects are mitigated in both DFEM algorithms. (author)

  15. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  16. GPU-based implementation of an accelerated SR-NLUT based on N-point one-dimensional sub-principal fringe patterns in computer-generated holograms

    Directory of Open Access Journals (Sweden)

    Hee-Min Choi

    2015-06-01

    Full Text Available An accelerated spatial redundancy-based novel-look-up-table (A-SR-NLUT method based on a new concept of the N-point one-dimensional sub-principal fringe pattern (N-point1-D sub-PFP is implemented on a graphics processing unit (GPU for fast calculation of computer-generated holograms (CGHs of three-dimensional (3-Dobjects. Since the proposed method can generate the N-point two-dimensional (2-D PFPs for CGH calculation from the pre-stored N-point 1-D PFPs, the loading time of the N-point PFPs on the GPU can be dramatically reduced, which results in a great increase of the computational speed of the proposed method. Experimental results confirm that the average calculation time for one-object point has been reduced by 49.6% and 55.4% compared to those of the conventional 2-D SR-NLUT methods for each case of the 2-point and 3-point SR maps, respectively.

  17. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  18. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    International Nuclear Information System (INIS)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.

    2014-01-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  19. Superconductivity and the existence of Nambu's three-dimensional phase space mechanics

    International Nuclear Information System (INIS)

    Angulo, R.; Gonzalez-Bernardo, C.A.; Rodriguez-Gomez, J.; Kalnay, A.J.; Perez-M, F.; Tello-Llanos, R.A.

    1984-01-01

    Nambu proposed a generalization of hamiltonian mechanics such that three-dimensional phase space is allowed. Thanks to a recent paper by Holm and Kupershmidt we are able to show the existence of such three-dimensional phase space systems in superconductivity. (orig.)

  20. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    Wolff, L.B.; Angelopoulou, E.

    1994-01-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  1. Three-dimensional metallic opals fabricated by double templating

    International Nuclear Information System (INIS)

    Yan Qingfeng; Nukala, Pavan; Chiang, Yet-Ming; Wong, C.C.

    2009-01-01

    We report a simple and cost-effective double templating method for fabricating large-area three-dimensional metallic photonic crystals of controlled thickness. A self-assembled polystyrene opal was used as the first template to fabricate a silica inverse opal on a gold-coated glass substrate via sol-gel processing. Gold was subsequently infiltrated to the pores of the silica inverse opal using electrochemical deposition. A high-quality three-dimensional gold photonic crystal was obtained after removal of the secondary template (silica inverse opal). The effects of template sphere size and deposition current density on the gold growth rate, and the resulting morphology and growth mechanism of the gold opal, were investigated.

  2. CFT description of three-dimensional Kerr-de Sitter spacetime

    International Nuclear Information System (INIS)

    Fjelstad, Jens; Hwang, Stephen; Maansson, Teresia

    2002-01-01

    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space

  3. CFT description of three-dimensional Kerr-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se; Maansson, Teresia E-mail: teresia@physto.se

    2002-10-07

    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space.

  4. Radiological evaluation of the fetal face using three-dimensional ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Bäumler M

    2012-12-01

    Full Text Available Marcel Bäumler,1–3 Michèle Bigorre,1,4 Jean-Michel Faure1,51CHU Montpellier, Centre de Compétence des Fentes Faciales, Hôpital Lapeyronie, Montpellier, 2Clinique du Parc, Imagerie de la Femme, Castelnau-le-Lez, 3Cabinet de Radiologie du Trident, Lunel, 4CHU Service de Chirurgie Plastique Pédiatrique, Hôpital Lapeyronie, Montpellier, 5CHU Montpellier, Service de Gynécologie-Obstétrique, Hôpital Arnaud de Villeneuve, Montpellier, FranceAbstract: This paper reviews screening and three-dimensional diagnostic ultrasound imaging of the fetal face. The different techniques available for analyzing biometric and morphological items of the profile, eyes, ears, lips, and hard and soft palate are commented on and briefly compared with the respective bi-dimensional techniques. The available literature supports the use of three-dimensional ultrasound in difficult prenatal diagnostic conditions because of its diagnostic accuracy, enabling improved safety of perinatal care. Globally, a marked increase has been observed in the accuracy of three-dimensional ultrasound in comparison with the bi-dimensional approach. Because there is no consensus about the performance of the different three-dimensional techniques, future studies are needed in order to compare them and to find the best technique for analysis of each of the respective facial elements. Universal prenatal standards may integrate these potential new findings in the future. At this time, the existing guidelines for prenatal facial screening should not be changed.Keywords: prenatal three-dimensional ultrasound, prenatal screening, prenatal diagnosis, cleft lip and palate, fetal profile, retrognathism

  5. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator.

    Science.gov (United States)

    Putha, Suman Kumar; Saxena, P U; Banerjee, S; Srinivas, Challapalli; Vadhiraja, B M; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (S t ) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. S t s were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (D iso,TPS ), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (D iso,Transit ) from the measured S t s. A locally fabricated pelvic phantom validated the estimations of D iso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The D iso,Transit agreement with D iso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is -1.37% ±2.03% ( n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery.

  6. A three-dimensional analysis of the sigmoid notch

    Directory of Open Access Journals (Sweden)

    Evan D. Collins

    2011-12-01

    Full Text Available Fractures of the distal radius are among the most common injuries of the upper extremity, though treatment has traditionally focused on restoration of the radiocarpal joint and late sequelae may persist. X-ray imaging underestimates sigmoid notch involvement following distal radius fractures. No classification system exists for disruption patterns of the sigmoid notch of the radius associated with distal radius fractures. This study quantifies the anatomy of the sigmoid notch and identifies the landmarks of the articular surface and proximal boundaries of the distal radioulnar joint (DRUJ capsule. Computed tomography scans of freshly frozen cadaveric hands were used - followed by dissection, and three-dimensional reconstruction of the distal radius and sigmoid notch. The sigmoid notch surface was divided into two surfaces and measured. The Anterior Posterior (AP and Proximal Distal (PD widths of the articulating surface were reviewed, along with the radius of curvature, version angle and depth. The study showed that the sigmoid notch is flatter than previously believed - and only the distal 69% of its surface is covered by cartilage. On average, it has about nine degrees of retroversion, and its average inclination is almost parallel to the anatomical axis of the radius. Clinical implications exist for evaluation of the DRUJ involvement in distal radius fractures or degenerative diseases and for future development and evaluation of hemiarthroplasty replacement of the distal radius.

  7. Research and Realization of Medical Image Fusion Based on Three-Dimensional Reconstruction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new medical image fusion technique is presented. The method is based on three-dimensional reconstruction. After reconstruction, the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure, as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique, three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images, but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter. The research proves this fusion technique is more exact and has no registration, so it is more adapt to arbitrary medical image fusion with different equipments.

  8. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  9. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)

    Price

    2011-11-01

    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: mathew@cogency.co.za Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: jgreen@csir.co.za John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  10. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  11. The therapeutic effect of three-dimensional conformal radiation therapy combined with conventional radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Liang Feng; Lu Zhonghong; Yao Zhijun; Cao Yongzhen

    2011-01-01

    Objective: To observe the therapeutic effect of three-dimensional conformal radiation therapy (3DCRT) for nasopharyngeal carcinoma (NPC). Methods: 78 patients with NPC was treated by radiation schedule in two phases. In the first phase, nasopharyngeal lesions and metastases of all patients were treated by three-dimensional conformal radiation therapy (3DCRT) with a fraction of 2-5 Gy daily, 5 day per weeks, total dose 30 Gy. The second phase T1N0 or parts of T2N0 patients were done by Conventional radiotherapy with total dose 55 Gy on two small lateral opposing fields + with total dose 50 Gy on neck on tangential field,adding a 3 cm block. Patients with lymph node metastasis were given 55 Gy on the dacio-neck field (After 40 Gy, two small lateral opposing fields were used to boost the primary tumor while the spinal cord shielded) + with total dose 55 Gy on lower neck on tangential field. The upper bound of designed therapeutic field was set to connect with lower bound of main therapeutic field. Results: Three months after treatment,the rate of CR, PR, SD, PD were 38.5%, 55.1%, 5.1%, 1.3%, Total effective rate (CR+PR) were 93.6%. The 1-year, 2-year, 3-year and 5-year local-regional control rates were 92.3%, 88.5%, 78.2%, 70.5%.The 1-year, 2-year , 3-year and 5-year overall survival rate were 96.2%, 89.7%, 83.3%, 71.8%. Appearing early radiation response is well tolerated and no obviously mouth difficulties and cranial nerve damage observed. Conclusion: Clinical result of early-course three-dimensional conformal radiation therapy (3DCRT) for nasopharyngeal carcinoma (NPC) is good. (authors)

  12. Surgical accuracy of three-dimensional virtual planning

    DEFF Research Database (Denmark)

    Stokbro, Kasper; Aagaard, Esben; Torkov, Peter

    2016-01-01

    This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy...... and transverse expansion. Furthermore, only a few have evaluated the precision and accuracy of genioplasty in placement of the chin segment. The virtual surgical plan was compared with the postsurgical outcome by using three linear and three rotational measurements. The influence of maxillary segmentation...

  13. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions. The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  14. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  15. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  16. Method and system for manipulating a digital representation of a three-dimensional object

    DEFF Research Database (Denmark)

    2010-01-01

    A method of manipulating a three-dimensional virtual building block model by means of two-dimensional cursor movements, the virtual building block model including a plurality of virtual building blocks each including a number of connection elements for connecting the virtual building block...... with another virtual building block according to a set of connection rules, the method comprising positioning by means of cursor movements in a computer display area representing a two-dimensional projection of said model, a two-dimensional projection of a first virtual building block to be connected...... to the structure, resulting in a two-dimensional position; determining, from the two-dimensional position, a number of three-dimensional candidate positions of the first virtual building block in the three-dimensional coordinate system; selecting one of said candidate positions based on the connection rules...

  17. Multi-particle three-dimensional coordinate estimation in real-time optical manipulation

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Perch-Nielsen, Ivan R.; Palima, Darwin

    2009-01-01

    We have previously shown how stereoscopic images can be obtained in our three-dimensional optical micromanipulation system [J. S. Dam et al, Opt. Express 16, 7244 (2008)]. Here, we present an extension and application of this principle to automatically gather the three-dimensional coordinates for...

  18. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lisa Mailleux

    Full Text Available The clinical application of upper limb (UL three-dimensional movement analysis (3DMA in children with unilateral cerebral palsy (uCP remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS levels and explored the relation between clinical and kinematic parameters in children with uCP.Fifty children (MACS: I = 15, II = 26, III = 9 underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis, bimanual performance (Assisting Hand Assessment, AHA, unimanual capacity (Melbourne Assessment 2, MA2 and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS, duration, (timing of maximum velocity, trajectory straightness and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk.Longer movement durations and increased APS were found with higher MACS-levels (p<0.001. Increased APS was also associated with more severe sensorimotor impairments (r = -0.30-(-0.73 and with lower AHA and MA2-scores (r = -0.50-(-0.86. For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74 and muscle tone (r = 0.33-(-0.61; proximal movement deviations correlated only with muscle weakness (r = -0.35-0.59. Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002.We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness

  19. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy.

    Science.gov (United States)

    Mailleux, Lisa; Jaspers, Ellen; Ortibus, Els; Simon-Martinez, Cristina; Desloovere, Kaat; Molenaers, Guy; Klingels, Katrijn; Feys, Hilde

    2017-01-01

    The clinical application of upper limb (UL) three-dimensional movement analysis (3DMA) in children with unilateral cerebral palsy (uCP) remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS) levels and explored the relation between clinical and kinematic parameters in children with uCP. Fifty children (MACS: I = 15, II = 26, III = 9) underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis), bimanual performance (Assisting Hand Assessment, AHA), unimanual capacity (Melbourne Assessment 2, MA2) and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS), duration, (timing of) maximum velocity, trajectory straightness) and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS)) were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk. Longer movement durations and increased APS were found with higher MACS-levels (pMA2-scores (r = -0.50-(-0.86)). For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74)) and muscle tone (r = 0.33-(-0.61)); proximal movement deviations correlated only with muscle weakness (r = -0.35-0.59). Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002). We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness. The lower correlations suggest that 3DMA provides additional information regarding UL motor function, particularly for

  20. Diagnosis of Acceleration, Reconnection, Turbulence, and Heating

    Science.gov (United States)

    Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.

    2017-10-01

    The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.

  1. Three-dimensional radiologic device as a new diagnostic aid in angiocardiography

    International Nuclear Information System (INIS)

    Takeyama, Minoru; Fujino, Yasuhiro; Mikuniya, Atsushi; Onodera, Kogo.

    1992-01-01

    Angiography with 180deg arc was performed using a rapidly rotating stereoradiographic device and a single injection of contrast medium. Duration of rotation of the X-ray tube through 180deg was 2.25 sec. The angiograms displayed in a rotating manner were three-dimensional with depth information. Every adjacent angiogram was obtained by the rapidly rotating X-ray tube at slightly different angles and positions, resulting in paired stereo images. The angiograms can be displayed on side-by-side monitors and viewed stereoscopically with a stereoviewer. Rotating images were displayed at 30 frames/sec (60 fields/sec) and were viewed in a fluorographic manner. To apply the data to angiocardiography the following procedures were required: the start of rotation of the X-ray tube was synchronized with the R wave of the EKG; suspension of respiration, and the subject's upper extremities were immobilized at his head. To obtain left atrial angiograms the following steps were taken: (1) the circulation time from the pulmonary artery to the left atrium was estimated by injecting 15 ml contrast medium into the pulmonary artery under the fixed X-ray tube; then, (2) X-ray exposures of 20 fields/sec were obtained during 15 sec; and (3) left atrial arteriograms were taken by using the rotating X-ray tube referring to the circulation time. With this method, stenotic lesions of the coronary arteries and collateral pathways were easily observed simultaneously with morphological changes in a 180deg arc. In cases of acute myocardial infarction, percutaneous transluminal coronary angioplasty (PTCA) and percutaneous transluminal coronary reperfusion (PTCR) utilizing this technique had great merit, because the examination time was greatly reduced due to the three-dimensional information. Therefore, there were possibilities of screening coronary artery diseases and of detecting complicated cardiac malformations and high-risk patients. (author)

  2. Computer simulation of 2-D and 3-D ion beam extraction and acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Shunji; Nakajima, Yuji [Saitama Univ., Urawa (Japan). Faculty of Engineering

    1997-03-01

    The two-dimensional code and the three-dimensional code have been developed to study the physical features of the ion beams in the extraction and acceleration stages. By using the two-dimensional code, the design of first electrode(plasma grid) is examined in regard to the beam divergence. In the computational studies by using the three-dimensional code, the axis-off model of ion beam is investigated. It is found that the deflection angle of ion beam is proportional to the gap displacement of the electrodes. (author)

  3. On the structure of acceleration in turbulence

    DEFF Research Database (Denmark)

    Liberzon, A.; Lüthi, B.; Holzner, M.

    2012-01-01

    Acceleration and spatial velocity gradients are obtained simultaneously in an isotropic turbulent flow via three dimensional particle tracking velocimetry. We observe two distinct populations of intense acceleration events: one in flow regions of strong strain and another in regions of strong...... vorticity. Geometrical alignments with respect to vorticity vector and to the strain eigenvectors, curvature of Lagrangian trajectories and of streamlines for total acceleration, and for its convective part, , are studied in detail. We discriminate the alignment features of total and convective acceleration...... statistics, which are genuine features of turbulent nature from those of kinematic nature. We find pronounced alignment of acceleration with vorticity. Similarly, and especially are predominantly aligned at 45°with the most stretching and compressing eigenvectors of the rate of the strain tensor...

  4. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  5. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

    Science.gov (United States)

    Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

    2018-03-19

    In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

  6. The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient

    International Nuclear Information System (INIS)

    Bentaleb, Y.; Leschziner, M.A.

    2013-01-01

    Highlights: • We study a spatially-evolving three-dimensional boundary layer. • We impose a streamwise-varying spanwise-homogeneous pressure gradient. • A collateral flow is formed close to the wall, and this is investigated alongside the skewed upper part of the boundary layer. • A wide range of flow-physical properties have been studied. -- Abstract: A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows

  7. Three-dimensional magnetic probe measurements of EXTRAP T1 equilibria

    International Nuclear Information System (INIS)

    Hedin, E.R.

    1988-12-01

    Internal probes are described for use in measuring the three orthogonal components of the magnetic field in the Extrap T1 device. The data analysis process for numerical processing of the probe signals is also explained. Results include radial and vertical profiles of the field components, three-dimensional field plots, inverse field strength contours, two-dimensional magnetic flux plots and toroidal current profiles. (author)

  8. Three-dimensional dose-response models of risk for radiation injury carcinogenesis

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1988-01-01

    The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies

  9. Induction of carcinoembryonic antigen expression in a three-dimensional culture system

    Science.gov (United States)

    Jessup, J. M.; Brown, D.; Fitzgerald, W.; Ford, R. D.; Nachman, A.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    MIP-101 is a poorly differentiated human colon carcinoma cell line established from ascites that produces minimal amounts of carcinoembryonic antigen (CEA), a 180 kDa glycoprotein tumor marker, and nonspecific cross-reacting antigen (NCA), a related protein that has 50 and 90 kDa isoforms, in vitro in monolayer culture. MIP-101 produces CEA when implanted into the peritoneum of nude mice but not when implanted into subcutaneous tissue. We tested whether MIP-101 cells may be induced to express CEA when cultured on microcarrier beads in three-dimensional cultures, either in static cultures as non-adherent aggregates or under dynamic conditions in a NASA-designed low shear stress bioreactor. MIP- 101 cells proliferated well under all three conditions and increased CEA and NCA production 3 - 4 fold when grown in three-dimensional cultures compared to MIP-101 cells growing logarithmically in monolayers. These results suggest that three-dimensional growth in vitro simulates tumor function in vivo and that three-dimensional growth by itself may enhance production of molecules that are associated with the metastatic process.

  10. Three-dimensional demonstration of liver and spleen by computer graphics technique

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Azuma, Masayoshi; Katayama, Kazuhiro; Yoshioka, Hiroaki; Ishizu, Hiromi; Mitsutani, Natsuki; Koizumi, Takao; Takayama, Ichiro

    1987-01-01

    Three-dimensional demonstration system of the liver and spleen has been developed using computer graphics technique. Three-dimensional models were constructed from CT images of the organ surface. The three-dimensional images were displayed as wire-frame and/or solid models on the color CRT. The anatomical surface of the liver and spleen was realistically viewed from any direction. In liver cirrhosis, atrophy of the right lobe, hypertrophy of the left lobe and splenomegaly were displayed vividly. The liver and hepatoma were displayed as wire-frame and solid models respectively on the same image. This combined display clarified the intrahepatic location of hepatoma together with configuration of liver and hepatoma. Furthermore, superimposed display of three dimensional models and celiac angiogram enabled us to understand the location and configuration of lesions more easily than the original CT data or angiogram alone. Therefore, it is expected that this system is clinically useful for noninvasive evaluation of patho-morphological changes of the liver and spleen. (author)

  11. Numerical Investigation of Three-dimensional Instability of Standing Waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  12. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  13. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin

    International Nuclear Information System (INIS)

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO–Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO–Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). - Graphical abstract: Direct electrochemistry of myoglobin was realized on a three-dimensional reduced graphene oxide and gold nanocomposite modified carbon ionic liquid electrode. - Highlights: • A three-dimensional reduced graphene oxide and gold composite was synthesized by electrodeposition. • Myoglobin was immobilized on the modified electrode to obtain an electrochemical sensor. • Direct electrochemistry of myoglobin was realized on the modified electrode. • The myoglobin modified electrode showed excellent electrocatalytic reduction to trichloroacetic acid.

  14. Three-dimensional simulation of triode-type MIG for 1 MW, 120 GHz gyrotron for ECRH applications

    Science.gov (United States)

    Singh, Udaybir; Kumar, Nitin; Kumar, Narendra; Kumar, Anil; Sinha, A. K.

    2012-01-01

    In this paper, the three-dimensional simulation of triode-type magnetron injection gun (MIG) for 120 GHz, 1 MW gyrotron is presented. The operating voltages of the modulating anode and the accelerating anode are 57 kV and 80 kV respectively. The high order TE 22,6 mode is selected as the operating mode and the electron beam is launched at the first radial maxima for the fundamental beam-mode operation. The initial design is obtained by using the in-house developed code MIGSYN. The numerical simulation is performed by using the commercially available code CST-Particle Studio (PS). The simulated results of MIG obtained by using CST-PS are validated with other simulation codes EGUN and TRAK, respectively. The results on the design output parameters obtained by using these three codes are found to be in close agreement.

  15. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)

    2013-07-01

    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  16. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1975-10-01

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  17. Final report on 3-D experiment project air-water upper plenum experiments

    International Nuclear Information System (INIS)

    Jacoby, J.K.; Mohr, C.M.

    1978-11-01

    The results are presented from upper plenum air-water reflood behavior testing performed as part of the program to investigate three-dimensional aspects of PWR LOCA research. Tests described were performed at near ambient temperature and pressure in a plexiglass vessel which included the important features of the upper core and upper plenum regions corresponding to a single fuel bundle in both Westinghouse Electric Corporation (Trojan) and Kraftwerk Union (KKU) PWR designs. The data included observed two-phase flow characteristics, particularly with regard to countercurrent flow, and cinematography of the characteristic upper plenum flow patterns

  18. US DOE Grand Challenge in Computational Accelerator Physics

    International Nuclear Information System (INIS)

    Ryne, R.; Habib, S.; Qiang, J.; Ko, K.; Li, Z.; McCandless, B.; Mi, W.; Ng, C.; Saparov, M.; Srinivas, V.; Sun, Y.; Zhan, X.; Decyk, V.; Golub, G.

    1998-01-01

    Particle accelerators are playing an increasingly important role in basic and applied science, and are enabling new accelerator-driven technologies. But the design of next-generation accelerators, such as linear colliders and high intensity linacs, will require a major advance in numerical modeling capability due to extremely stringent beam control and beam loss requirements, and the presence of highly complex three-dimensional accelerator components. To address this situation, the U.S. Department of Energy has approved a ''Grand Challenge'' in Computational Accelerator Physics, whose primary goal is to develop a parallel modeling capability that will enable high performance, large scale simulations for the design, optimization, and numerical validation of next-generation accelerators. In this paper we report on the status of the Grand Challenge

  19. Multi-slicing strategy for the three-dimensional discontinuity layout optimization (3D DLO).

    Science.gov (United States)

    Zhang, Yiming

    2017-03-01

    Discontinuity layout optimization (DLO) is a recently presented topology optimization method for determining the critical layout of discontinuities and the associated upper bound limit load for plane two-dimensional and three-dimensional (3D) problems. The modelling process (pre-processing) for DLO includes defining the discontinuities inside a specified domain and building the target function and the global constraint matrix for the optimization solver, which has great influence on the the efficiency of the computation processes and the reliability of the final results. This paper focuses on efficient and reliable pre-processing of the discontinuities within the 3D DLO and presents a multi-slicing strategy, which naturally avoids the overlapping and crossing of different discontinuities. Furthermore, the formulation of the 3D discontinuity considering a shape of an arbitrary convex polygon is introduced, permitting the efficient assembly of the global constraint matrix. The proposed method eliminates unnecessary discontinuities in 3D DLO, making it possible to apply 3D DLO for solving large-scale engineering problems such as those involving landslides. Numerical examples including a footing test, a 3D landslide and a punch indentation are considered, illustrating the effectiveness of the presented method. © 2016 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

  20. On boundary conditions in three-dimensional AdS gravity

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, Olivera [Instituto de Fisica, P. Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile) and Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)]. E-mail: olivera.miskovic@ucv.cl; Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile) and Centro Multidisciplinar de Astrofisica, CENTRA, Departamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: rolea@fisica.ist.utl.pt

    2006-09-07

    A finite action principle for three-dimensional gravity with negative cosmological constant, based on a boundary condition for the asymptotic extrinsic curvature, is considered. The bulk action appears naturally supplemented by a boundary term that is one half the Gibbons-Hawking term, that makes the Euclidean action and the Noether charges finite without additional Dirichlet counterterms. The consistency of this boundary condition with the Dirichlet problem in AdS gravity and the Chern-Simons formulation in three dimensions, and its suitability for the higher odd-dimensional case, are also discussed.

  1. Three-Dimensional Organization of Chromosome Territories in the Human Interphase Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); J. Langowski (Jörg)

    1999-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown. The regulation of genes has been shown to be connected closely to the three-dimensional organization of the genome in the cell nucleus. The nucleus of the cell has for a long

  2. Three-dimensional face shape in Fabry disease

    NARCIS (Netherlands)

    Cox-Brinkman, Josanne; Vedder, Anouk; Hollak, Carla; Richfield, Linda; Mehta, Atul; Orteu, Kate; Wijburg, Frits; Hammond, Peter

    2007-01-01

    Facial dysmorphology is an important feature in several lysosomal storage disorders. Although in Fabry disease facial dysmorphism is not a prominent sign, minor facial abnormalities have been previously reported. By analysing three-dimensional images of faces, we quantified facial dysmorphology in a

  3. Topology of Flow Separation on Three-Dimensional Bodies

    Science.gov (United States)

    Chapman, Gary T.; Yates, Leslie A.

    1991-01-01

    In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.

  4. A comparative study of three-dimensional reconstructive images of temporomandibular joint using computed tomogram

    International Nuclear Information System (INIS)

    Lim, Suk Young; Koh, Kwang Joon

    1993-01-01

    The purpose of this study was to clarify the spatial relationship of temporomandibular joint and to an aid in the diagnosis of temporomandibular disorder. For this study, three-dimensional images of normal temporomandibular joint were reconstructed by computer image analysis system and three-dimensional reconstructive program integrated in computed tomography. The obtained results were as follows : 1. Two-dimensional computed tomograms had the better resolution than three dimensional computed tomograms in the evaluation of bone structure and the disk of TMJ. 2. Direct sagittal computed tomograms and coronal computed tomograms had the better resolution in the evaluation of the disk of TMJ. 3. The positional relationship of the disk could be visualized, but the configuration of the disk could not be clearly visualized on three-dimensional reconstructive CT images. 4. Three-dimensional reconstructive CT images had the smoother margin than three-dimensional images reconstructed by computer image analysis system, but the images of the latter had the better perspective. 5. Three-dimensional reconstructive images had the better spatial relationship of the TMJ articulation, and the joint space were more clearly visualized on dissection images.

  5. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    Science.gov (United States)

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  6. FXG dosimeter response for three-dimensional conformal radiotherapy using different evaluation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, Christianne C.; Campos, Leticia L., E-mail: ccavinato@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B., E-mail: bhsouza@unifesp.b, E-mail: daros.kellen@unifesp.b, E-mail: rbitel-li.ddi@epm.b [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagem; Giordani, Adelmo J. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Servico de Radioterapia

    2011-07-01

    This work aims to compare the dose-response of the Fricke xylenol gel (FXG) dosimeter developed at IPEN using 270 Bloom gelatin from porcine skin made in Brazil evaluated using the magnetic resonance imaging (MRI) technique with the dosimetric response evaluated using the optical absorption (OA) spectrophotometry technique, in order to verify the possibility of quality assurance (QA) and reproducibility of FXG dosimeter to be carried out routinely using the OA technique for three-dimensional conformal radiotherapy (3DCRT) application using a 6 MV photons linear accelerator. The response in function of the absorbed dose of FXG dosimeter developed at IPEN presents linear behavior in clinical interest dose range when irradiated with Co-60 gamma radiation and 6 MV photons and evaluated using the MRI and OA techniques. The results indicate that the optical technique can be used for QA of FXG dosemeter when used in the possible application in QA of 3DCRT. (author)

  7. FXG dosimeter response for three-dimensional conformal radiotherapy using different evaluation techniques

    International Nuclear Information System (INIS)

    Cavinato, Christianne C.; Campos, Leticia L.; Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B.; Giordani, Adelmo J.

    2011-01-01

    This work aims to compare the dose-response of the Fricke xylenol gel (FXG) dosimeter developed at IPEN using 270 Bloom gelatin from porcine skin made in Brazil evaluated using the magnetic resonance imaging (MRI) technique with the dosimetric response evaluated using the optical absorption (OA) spectrophotometry technique, in order to verify the possibility of quality assurance (QA) and reproducibility of FXG dosimeter to be carried out routinely using the OA technique for three-dimensional conformal radiotherapy (3DCRT) application using a 6 MV photons linear accelerator. The response in function of the absorbed dose of FXG dosimeter developed at IPEN presents linear behavior in clinical interest dose range when irradiated with Co-60 gamma radiation and 6 MV photons and evaluated using the MRI and OA techniques. The results indicate that the optical technique can be used for QA of FXG dosemeter when used in the possible application in QA of 3DCRT. (author)

  8. Target shape effects on monoenergetic GeV proton acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen Min; Yu Tongpu; Pukhov, Alexander [Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany); Sheng Zhengming, E-mail: pukhov@tp1.uni-duesseldorf.d [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-04-15

    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose using a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in three-dimensional particle-in-cell simulations when a laser pulse with a focus intensity of 10{sup 22} W cm{sup -2} is used. The energy conversion efficiency of the laser pulse to the accelerated proton beam with the simulation parameters is more than 23%.

  9. Target shape effects on monoenergetic GeV proton acceleration

    International Nuclear Information System (INIS)

    Chen Min; Yu Tongpu; Pukhov, Alexander; Sheng Zhengming

    2010-01-01

    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose using a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in three-dimensional particle-in-cell simulations when a laser pulse with a focus intensity of 10 22 W cm -2 is used. The energy conversion efficiency of the laser pulse to the accelerated proton beam with the simulation parameters is more than 23%.

  10. Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion

    Science.gov (United States)

    Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya

    2018-04-01

    On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.

  11. Analytical Prediction of Three Dimensional Chatter Stability in Milling

    Science.gov (United States)

    Altintas, Yusuf

    The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.

  12. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  13. Three-dimensional imaging of hidden objects using positron emission backscatter

    International Nuclear Information System (INIS)

    Lee, Dongwon; Cowee, Misa; Fenimore, Ed; Galassi, Mark; Looker, Quinn; Mcneil, Wendy V.; Stonehill, Laura; Wallace, Mark

    2009-01-01

    Positron emission backscatter imaging is a technique for interrogation and three-dimensional (3-D) reconstruction of hidden objects when we only have access to the objects from one side. Using time-of-flight differences in detected direct and backscattered positron-emitted photons, we construct 3-D images of target objects. Recently at Los Alamos National Laboratory, a fully three-dimensional imaging system has been built and the experimental results are discussed in this paper. Quantitative analysis of images reconstructed in both two- and three-dimensions are also presented.

  14. Three-dimensional lagrangian approach to the classical relativistic dynamics of directly interacting particles

    International Nuclear Information System (INIS)

    Gaida, R.P.; Kluchkousky, Ya.B.; Tretyak, V.I.

    1987-01-01

    In the present report the main attention is paid to the interrelations of various three-dimensional approaches and to the relation of the latter to the Fokker-type action formalism; the problem of the correspondence between three-dimensional descriptions and singular Lagrangian formalism will be shortly concerned. The authors start with the three-dimensional Lagrangian formulation of the classical RDIT. The generality of this formalism enables, similarly as in the non-relativistic case, to consider it as a central link explaining naturally a number of features of other three-dimensional approaches, namely Newtonian (based directly on second order equations of motion) and Hamiltonian ones). It is also capable of describing four-dimensional manifestly covariant models using Fokker action integrals and singular Lagrangians

  15. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    Science.gov (United States)

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  16. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  17. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  18. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  19. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  20. A three-dimensional dose-distribution estimation system using computerized image reconstruction

    International Nuclear Information System (INIS)

    Nishijima, Akihiko; Kidoya, Eiji; Komuro, Hiroyuki; Tanaka, Masato; Asada, Naoki.

    1990-01-01

    In radiotherapy planning, three dimensional (3-D) estimation of dose distribution has been very troublesome and time-consuming. To solve this problem, a simple and fast 3-D dose distribution image using a computer and Charged Couple Device (CCD) camera was developed. A series of X-ray films inserted in the phantom using a linear accelerator unit was exposed. The degree of film density was degitized with a CCD camera and a minicomputer (VAX 11-750). After that these results were compared with the present depth dose obtained by a JARP type dosimeter, with a dose error being less than 2%. The 3-D dose distribution image could accurately depict the density changes created by aluminum and air put into the phantom. The contrast resolution of the CCD camera seemed to be superior to the convention densitometer in the low-to-intermediate contrast range. In conclusion, our method seem to be very fast and simple for obtaining 3-D dose distribution images and is very effective when compared with the conventional method. (author)

  1. Comparison of two three-dimensional cephalometric analysis computer software.

    Science.gov (United States)

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek

    2014-10-01

    Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

  2. Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification

    Energy Technology Data Exchange (ETDEWEB)

    Nayek, Kuntal; Roy, Shibaji [Saha Institute of Nuclear Physics, Calcutta (India); Homi Bhabha National Institute, Mumbai (India)

    2017-07-15

    Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H{sub 6}) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t{sub 0}, with t{sub 0} some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t{sub 0}) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H{sub 6}. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)

  3. Three-dimensional photon radiotherapy planning for laryngeal and hypopharyngeal tumours

    International Nuclear Information System (INIS)

    Esik, O.; Schlegel, W.; Doll, J.; Nemeth, G.; Lorenz, W.J.; Weil Emil Korhaz-Rendeloeintezet, Budapest; Deutsches Krebsforschungszentrum, Heidelberg

    1990-01-01

    Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypopharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation are analyzed and compared for a cobalt-60 gamma unit (GAMMATRON S80, Siemens), photon beams from a 6 MV (CLINAC 1800, VARIAN), an 8 MV (SATURNE, CGR) and a 15 MV (MEVATRON 77, Siemens) linear accelerator. Using open fields a somewhat non-uniform and partly insufficient dose in target volume of interest is obtained with all treatment units if sufficient protection of the spinal cord is provided. The X-ray plans are somewhat superior to the cobalt-60 ones. Depending on the quantum energy and wedge isodose angle, wedging only slightly improves or sometimes moderately decreases the homogeneity of the dose in the target volume. According to these small and/or controversial effects of wedges their application seems unnecessary and/or non-convenient. Simulations show that extreme care is needed in positioning the isocentre: An accuracy of ±3 mm is required in the median sagittal plane. (orig.)

  4. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  5. Three-dimensional analysis of mesiobuccal root canal of Japanese maxillary first molar using Micro-CT

    International Nuclear Information System (INIS)

    Yamada, Masashi; Ide, Yoshinobu; Matsunaga, Satoru; Kato, Hiroshi; Nakagawa, Kan-Ichi

    2011-01-01

    The objective of this study was to three-dimensionally observe the morphological characteristics of mesiobuccal root canals of Japanese maxillary first molars using microcomputed tomography (Micro-CT) and classify root canal variations. This study used 90 maxillary first molars. Three-dimensional reconstruction was performed using data obtained by Micro-CT, and cross-sections of the root canals were observed. Moreover, the root canal morphology was classified by the configuration and root canal diameter, and was evaluated for occurrence using the classification by Weine et al. (1969) as a reference. Overall, single root canals were observed in 44.4%, incomplete separation root canals in 22.3%, and completely separate root canals (upper and lower separation root canals) in 33.3%. Mesiobuccal root canals often had intricate configurations, and accessory root canals (lateral canals and apical ramifications) were observed in most of the mesiobuccal root canals (76.7%), irrespective of whether there were ramifications of the main root canals. While there were no marked differences in the incidence of root canal ramifications between this study and earlier reports, the incidence of accessory root canals was higher in this study. This result may be explained by the far more superior visualization ability of Micro-CT than conventional methods, which allowed the detection of microscopic apical ramifications previously difficult to observe. (author)

  6. Study of fission dynamics with the three-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2011-11-15

    The dynamics of fission has been studied by solving one- and three-dimensional Langevin equations with dissipation generated through the chaos weighted wall and window friction formula. The average prescission neutron multiplicities, fission probabilities and the mean fission times have been calculated in a broad range of the excitation energy for compound nuclei {sup 210}Po and {sup 224}Th formed in the fusion-fission reactions {sup 4}He+{sup 206}Pb, {sup 16}O+{sup 208}Pb and results compared with the experimental data. The analysis of the results shows that the average prescission neutron multiplicities, fission probabilities and the mean fission times calculated by one- and three-dimensional Langevin equations are different from each other, and also the results obtained based on three-dimensional Langevin equations are in better agreement with the experimental data. (orig.)

  7. Quantum field between moving mirrors: A three dimensional example

    Science.gov (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  8. Direct Linear Transformation Method for Three-Dimensional Cinematography

    Science.gov (United States)

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  9. Modelling three-dimensional distribution of photosynthetically active radiation in sloping coniferous stands

    International Nuclear Information System (INIS)

    Knyazikhin, Yu.; Kranigk, J.; Miessen, G.; Panfyorov, O.; Vygodskaya, N.; Gravenhorst, G.

    1996-01-01

    Solar irradiance is a major environmental factor governing biological and physiological processes in a vegetation canopy. Solar radiation distribution in a canopy and its effect are three-dimensional in nature. However, most of the radiation models up to now have been one-dimensional. They can be successfully applied to large-scale studies of forest functioning. The one-dimensional modelling technique, however, does not provide adequate interpretation of small scale processes leading to forest growth. In this article we discuss a modelling strategy for the simulation of three-dimensional radiation distribution in a vegetation canopy of a small area (about 0.25–0.3 ha). We demonstrate its realisation to predict the three-dimensional radiative regime of phytosynthetically active radiation in a real coniferous stand located on hilly surroundings. Our model can be used to investigate the influence of different climatic conditions, forest management methods and field sites on the solar energy available for forest growth in small heterogeneous areas. Further, a three-dimensional process-oriented model helps to derive global variables affecting bio-physiological processes in a vegetation canopy shifting from small scale studies of the functioning of forests to regional, continental, and global scale problems. (author)

  10. Three-dimensional MR imaging of the cerebrospinal system with the RARE technique

    International Nuclear Information System (INIS)

    Hennig, J.; Ott, D.; Ylayasski, J.

    1987-01-01

    Three-dimensional RARE myelography is a fast technique for high-resolution imaging of the cerebrospinal fluid. A data set with 1 x 1 x 1-mm resolution can be generated with a 12-minute acquisition time. Sophisticated three-dimensional display algorithms allow reconstruction of planes at arbitrary angles and full three-dimensional displays, which yield extremely useful information for neurosurgical planning. Additionally, the injection of contrast agent can be simulated on the computer and communication pathways between structures of interest can be found noninvasively

  11. Quasi-three-dimensional particle imaging with digital holography.

    Science.gov (United States)

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  12. Three-dimensional P velocity structure in Beijing area

    Science.gov (United States)

    Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De

    2003-01-01

    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  13. Three-dimensional MR imaging of congenital heart disease

    International Nuclear Information System (INIS)

    Laschinger, J.C.; Vannier, M.W.; Knapp, R.H.; Gutierrez, F.R.; Cox, J.L.

    1987-01-01

    Contiguous 5-mm thick ECG-gated MR images of the thorax were edited using surface reconstruction techniques to produce three-dimensional (3D) images of the heart and great vessels in four healthy individuals and 25 patients with congenital heart disease (aged 3 months-30 years). Anomalies studied include atrial and ventricular septal defects, aortic coarctation, AV canal defects, double outlet ventricles, hypoplastic left heart syndrome, and a wide spectrum of patients with tetralogy of Fallot. The results were correlated with echocardiographic and cineradiographic studies, and with surgical findings or pathologic specimens. Three-dimensional reconstructions accurately localized the dimensions and locations of all cardiac and great vessel anomalies and often displayed anatomic findings not diagnosed or visualized with other forms of diagnostic imaging

  14. On the size distribution of one-, two- and three-dimensional Voronoi cells

    International Nuclear Information System (INIS)

    Marthinsen, K.

    1994-03-01

    The present report gives a presentation of the different cell size distribution obtained by computer simulations of random Voronoi cell structures in one-, two- and three-dimensional space. The random Voronoi cells are constructed from cell centroids randomly distributed along a string, in the plane and in three-dimensional space, respectively. The size distributions are based on 2-3 · 10 4 cells. For the spacial polyhedra both the distribution of volumes, areas and radii are presented, and the two latter quantities are compared to the distributions of areas and radii from a planar section through the three-dimensional structure as well as to the corresponding distributions obtained from a pure two-dimensional cell structure. 11 refs., 11 figs

  15. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  16. Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media

    DEFF Research Database (Denmark)

    Cirpka, Olaf; Chiogna, Gabriele; Rolle, Massimo

    2015-01-01

    -dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise...

  17. Three-dimensional groundwater velocity field in an unconfined aquifer under irrigation

    International Nuclear Information System (INIS)

    Zlotnik, V.

    1990-01-01

    A method for three-dimensional flow velocity calculation has been developed to evaluate unconfined aquifer sensitivity to areal agricultural contamination of groundwater. The methodology of Polubarinova-Kochina is applied to an unconfined homogeneous compressible or incompressible anisotropic aquifer. It is based on a three-dimensional groundwater flow model with a boundary condition on the moving surface. Analytical solutions are obtained for a hydraulic head under the influence of areal sources of circular and rectangular shape using integral transforms. Two-dimensional Hantush formulas result from the vertical averaging of the three-dimensional solutions, and the asymptotic behavior of solutions is analyzed. Analytical expressions for flow velocity components are obtained from the gradient of the hydraulic head field. Areal and temporal variability of specific yield in groundwater recharge areas is also taken into account. As a consequence of linearization of the boundary condition, the operation of any irrigation system with respect to groundwater is represented by superposition of the operating wells and circular and rectangular source influences. Combining the obtained solutions with Dagan or Neuman well functions, one can develop computer codes for the analytical computation of the three-dimensional groundwater hydraulic head and velocity component distributions. Methods for practical implementation are discussed. (Author) (20 refs., 4 figs.)

  18. Three-dimensional x-ray diffraction detection and visualization

    International Nuclear Information System (INIS)

    Allahkarami, Masoud; Hanan, Jay C

    2014-01-01

    A new method of sensing and analyzing three-dimensional (3D) x-ray diffraction (XRD) cones was introduced. Using a two-dimensional area detector, a sequence of frames was collected while moving the detector away from the sample with small equally spaced steps and keeping all other parameters constant. A 3D dataset was created from the subsequent frames. The 3D x-ray diffraction (XRD 3 ) pattern contains far more information than a one-dimensional profile collected with the conventional diffractometer and 2D x-ray diffraction (XRD 2 ). The present work discusses some fundamentals about XRD 3 , such as the data collection method, 3D visualization, diffraction data interpretation and potential applications of XRD 3 . (paper)

  19. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  20. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  1. Foundations of the theory of three-dimensional quadrupolar mass spectrometry. 1

    International Nuclear Information System (INIS)

    Sheretov, Eh.P.

    1979-01-01

    The basic principles of the theory of three-dimensional quadrupolar mass spectrometry are developed. It is shown that the ''stretching'' of the electrode system of the sensor of a three-dimensional quadrupolar mass spectrometer in the direction of an axis (introduction of the system assymetry) leads to a sharp decrease of the high-frequency field effect on the particle trajectory in this direction. Presented are ratios determining the configuration of electrode systems of sensors of flight-type quadrupolar mass spectrometers. Specific features of the stability diagram for such analyzers are discussed. It is shown that the property detected makes it possible to develop new promising time-of-flight three-dimensional quadrupolar mass spectrometers

  2. Three dimensional visualization in support of Yucca Mountain Site characterization activities

    International Nuclear Information System (INIS)

    Brickey, D.W.

    1992-01-01

    An understanding of the geologic and hydrologic environment for the proposed high-level nuclear waste repository at Yucca Mountain, NV is a critical component of site characterization activities. Conventional methods allow visualization of geologic data in only two or two and a half dimensions. Recent advances in computer workstation hardware and software now make it possible to create interactive three dimensional visualizations. Visualization software has been used to create preliminary two-, two-and-a-half-, and three-dimensional visualizations of Yucca Mountain structure and stratigraphy. The three dimensional models can also display lithologically dependent or independent parametric data. Yucca Mountain site characterization studies that will be supported by this capability include structural, lithologic, and hydrologic modeling, and repository design

  3. Three-dimensional display techniques: description and critique of methods

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1982-01-01

    The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)

  4. Integrated microchannel cooling in a three dimensional integrated circuit: A thermal management

    Directory of Open Access Journals (Sweden)

    Wang Kang-Jia

    2016-01-01

    Full Text Available Microchannel cooling is a promising technology for solving the three-dimensional integrated circuit thermal problems. However, the relationship between the microchannel cooling parameters and thermal behavior of the three dimensional integrated circuit is complex and difficult to understand. In this paper, we perform a detailed evaluation of the influence of the microchannel structure and the parameters of the cooling liquid on steady-state temperature profiles. The results presented in this paper are expected to aid in the development of thermal design guidelines for three dimensional integrated circuit with microchannel cooling.

  5. Peripheral Vasculature: High-Temporal- and High-Spatial-Resolution Three-dimensional Contrast-enhanced MR Angiography1

    Science.gov (United States)

    Haider, Clifton R.; Glockner, James F.; Stanson, Anthony W.; Riederer, Stephen J.

    2009-01-01

    Purpose: To prospectively evaluate the feasibility of performing high-spatial-resolution (1-mm isotropic) time-resolved three-dimensional (3D) contrast material–enhanced magnetic resonance (MR) angiography of the peripheral vasculature with Cartesian acquisition with projection-reconstruction–like sampling (CAPR) and eightfold accelerated two-dimensional (2D) sensitivity encoding (SENSE). Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written informed consent was obtained from all participants. There were 13 volunteers (mean age, 41.9; range, 27–53 years). The CAPR sequence was adapted to provide 1-mm isotropic spatial resolution and a 5-second frame time. Use of different receiver coil element sizes for those placed on the anterior-to-posterior versus left-to-right sides of the field of view reduced signal-to-noise ratio loss due to acceleration. Results from eight volunteers were rated independently by two radiologists according to prominence of artifact, arterial to venous separation, vessel sharpness, continuity of arterial signal intensity in major arteries (anterior and posterior tibial, peroneal), demarcation of origin of major arteries, and overall diagnostic image quality. MR angiographic results in two patients with peripheral vascular disease were compared with their results at computed tomographic angiography. Results: The sequence exhibited no image artifact adversely affecting diagnostic image quality. Temporal resolution was evaluated to be sufficient in all cases, even with known rapid arterial to venous transit. The vessels were graded to have excellent sharpness, continuity, and demarcation of the origins of the major arteries. Distal muscular branches and the communicating and perforating arteries were routinely seen. Excellent diagnostic quality rating was given for 15 (94%) of 16 evaluations. Conclusion: The feasibility of performing high-diagnostic-quality time-resolved 3D

  6. Instantons, three-dimensional gauge theory, and the Atiyah-Hitchin manifold

    NARCIS (Netherlands)

    Dorey, N.; Khoze, V.V.; Mattis, M.P.; Tong, D.; Vandoren, S.

    1997-01-01

    We investigate quantum effects on the Coulomb branch of three-dimensional N = 4 supersymmetric gauge theory with gauge group SU(2). We calculate perturbative and one-instanton contributions to the Wilsonian effective action using standard weakcoupling methods. Unlike the four-dimensional case,

  7. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  8. Three-dimensional echocardiographic assessment of atrial septal defects

    Directory of Open Access Journals (Sweden)

    Charles German

    2015-01-01

    Full Text Available Echocardiography provides a useful tool in the diagnosis of many congenital heart diseases, including atrial septal defects, and aids in further delineating treatment options. Although two-dimensional echocardiography has been the standard of care in this regard, technological advancements have made three-dimensional echocardiography possible, and the images obtained in this new imaging modality are able to accurately portray the morphology, location, dimensions, and dynamic changes of defects and many other heart structures during the cardiac cycle.

  9. Three-dimensional coupled double-distribution-function lattice ...

    Indian Academy of Sciences (India)

    Ruo-Fan Qiu

    2017-11-14

    Nov 14, 2017 ... Abstract. Two three-dimensional (3D) lattice Boltzmann models in the framework of coupled double-distribution- function approach for compressible flows, in which specific-heat ratio and Prandtl number can be adjustable, are developed in this paper. The main differences between the two models are ...

  10. ENERGY RELEASE AND TRANSFER IN SOLAR FLARES: SIMULATIONS OF THREE-DIMENSIONAL RECONNECTION

    International Nuclear Information System (INIS)

    Birn, J.; Fletcher, L.; Hesse, M.; Neukirch, T.

    2009-01-01

    Using three-dimensional magnetohydrodynamic simulations we investigate energy release and transfer in a three-dimensional extension of the standard two-ribbon flare picture. In this scenario, reconnection is initiated in a thin current sheet (suggested to form below a departing coronal mass ejection) above a bipolar magnetic field. Two cases are contrasted: an initially force-free current sheet (low beta) and a finite-pressure current sheet (high beta), where beta represents the ratio between gas (plasma) and magnetic pressure. The energy conversion process from reconnection consists of incoming Poynting flux turned into up- and downgoing Poynting flux, enthalpy flux, and bulk kinetic energy flux. In the low-beta case, the outgoing Poynting flux is the dominant contribution, whereas the outgoing enthalpy flux dominates in the high-beta case. The bulk kinetic energy flux is only a minor contribution in the downward direction. The dominance of the downgoing Poynting flux in the low-beta case is consistent with an alternative to the thick target electron beam model for solar flare energy transport, suggested recently by Fletcher and Hudson, whereas the enthalpy flux may act as an alternative transport mechanism. For plausible characteristic parameters of the reconnecting field configuration, we obtain energy release timescales and energy output rates that compare favorably with those inferred from observations for the impulsive phase of flares. Significant enthalpy flux and heating are found even in the initially force-free case with very small background beta, resulting mostly from adiabatic compression rather than Ohmic dissipation. The energy conversion mechanism is most easily understood as a two-step process (although the two steps may occur essentially simultaneously): the first step is the acceleration of the plasma by Lorentz forces in layers akin to the slow shocks in the Petschek reconnection model, involving the conversion of magnetic energy to bulk kinetic

  11. Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility.

    Directory of Open Access Journals (Sweden)

    Inge A Hoevenaren

    Full Text Available Using three-dimensional (3D stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings.A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1. Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method.The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers than the female hand.This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored.

  12. Using Three-Dimensional Printing to Fabricate a Tubing Connector for Dilation and Evacuation.

    Science.gov (United States)

    Stitely, Michael L; Paterson, Helen

    2016-02-01

    This is a proof-of-concept study to show that simple instrumentation problems encountered in surgery can be solved by fabricating devices using a three-dimensional printer. The device used in the study is a simple tubing connector fashioned to connect two segments of suction tubing used in a surgical procedure where no commercially available product for this use is available through our usual suppliers in New Zealand. A cylindrical tubing connector was designed using three-dimensional printing design software. The tubing connector was fabricated using the Makerbot Replicator 2X three-dimensional printer. The connector was used in 15 second-trimester dilation and evacuation procedures. Data forms were completed by the primary operating surgeon. Descriptive statistics were used with the expectation that the device would function as intended in all cases. The three-dimensional printed tubing connector functioned as intended in all 15 instances. Commercially available three-dimensional printing technology can be used to overcome simple instrumentation problems encountered during gynecologic surgical procedures.

  13. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study.

    Science.gov (United States)

    Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Li, Jianyi; Huang, Wenhua

    2016-01-01

    Hepatic segment anatomy is difficult for medical students to learn. Three-dimensional visualization (3DV) is a useful tool in anatomy teaching, but current models do not capture haptic qualities. However, three-dimensional printing (3DP) can produce highly accurate complex physical models. Therefore, in this study we aimed to develop a novel 3DP hepatic segment model and compare the teaching effectiveness of a 3DV model, a 3DP model, and a traditional anatomical atlas. A healthy candidate (female, 50-years old) was recruited and scanned with computed tomography. After three-dimensional (3D) reconstruction, the computed 3D images of the hepatic structures were obtained. The parenchyma model was divided into 8 hepatic segments to produce the 3DV hepatic segment model. The computed 3DP model was designed by removing the surrounding parenchyma and leaving the segmental partitions. Then, 6 experts evaluated the 3DV and 3DP models using a 5-point Likert scale. A randomized controlled trial was conducted to evaluate the educational effectiveness of these models compared with that of the traditional anatomical atlas. The 3DP model successfully displayed the hepatic segment structures with partitions. All experts agreed or strongly agreed that the 3D models provided good realism for anatomical instruction, with no significant differences between the 3DV and 3DP models in each index (p > 0.05). Additionally, the teaching effects show that the 3DV and 3DP models were significantly better than traditional anatomical atlas in the first and second examinations (p < 0.05). Between the first and second examinations, only the traditional method group had significant declines (p < 0.05). A novel 3DP hepatic segment model was successfully developed. Both the 3DV and 3DP models could improve anatomy teaching significantly. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. Laser vacuum acceleration of a relativistic electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Glazyrin, I V; Karpeev, A V; Kotova, O G; Nazarov, K S [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Bychenkov, V Yu [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    With regard to the problem of laser acceleration of a relativistic electron bunch we present a scheme of its vacuum acceleration directly by a relativistic intensity laser pulse. The energy of the electron bunch injected into the laser pulse leading edge increases during its coaxial movement to a thin, pulse-reflecting target. The laser-accelerated electrons continue to move free forward, passing through the target. The study of this acceleration scheme in the three-dimensional geometry is verified in a numerical simulation by the particle-in-cell method, which showed that the energy of a part of the electrons can increase significantly compared to the initial one. Restrictions are discussed, which impose limiting values of energy and total charge of accelerated electrons. (superstrong light fields)

  15. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    Science.gov (United States)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  16. Impermeability effects in three-dimensional vesicles

    International Nuclear Information System (INIS)

    Biscari, P; Canevese, S M; Napoli, G

    2004-01-01

    We analyse the effects of the impermeability constraint on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles

  17. Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Michael-Lindhard, Jonas; Simons, Hugh

    2015-01-01

    cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.......32 ± 0.06) lm, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 ± 0.03) lm from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single...... sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes....

  18. Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Weber, F.J.; Briels, W.J.; Boom, R.M.; Rinzema, A.

    2002-01-01

    A previously published two-dimensional discrete particle simulation model for radial mixing behavior of various slowly rotating drums for solid-state fermentation (SSF) has been extended to a three-dimensional model that also predicts axial mixing. Radial and axial mixing characteristics were

  19. Three-dimensional effects of curved plasma actuators in quiescent air

    International Nuclear Information System (INIS)

    Wang Chincheng; Durscher, Ryan; Roy, Subrata

    2011-01-01

    This paper presents results on a new class of curved plasma actuators for the inducement of three-dimensional vortical structures. The nature of the fluid flow inducement on a flat plate, in quiescent conditions, due to four different shapes of dielectric barrier discharge (DBD) plasma actuators is numerically investigated. The three-dimensional plasma kinetic equations are solved using our in-house, finite element based, multiscale ionized gas (MIG) flow code. Numerical results show electron temperature and three dimensional plasma force vectors for four shapes, which include linear, triangular, serpentine, and square actuators. Three-dimensional effects such as pinching and spreading the neighboring fluid are observed for serpentine and square actuators. The mechanisms of vorticity generation for DBD actuators are discussed. Also the influence of geometric wavelength (λ) and amplitude (Λ) of the serpentine and square actuators on vectored thrust inducement is predicted. This results in these actuators producing significantly better flow mixing downstream as compared to the standard linear actuator. Increasing the wavelengths of serpentine and square actuators in the spanwise direction is shown to enhance the pinching effect giving a much higher vertical velocity. On the contrary, changing the amplitude of the curved actuator varies the streamwise velocity significantly influencing the near wall jet. Experimental data for a serpentine actuator are also reported for validation purpose.

  20. Fabrication of three-dimensional carbon microelectrodes for electrochemical sensing

    DEFF Research Database (Denmark)

    Hemanth, Suhith

    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. The aim of the research work carried out in this thesis was to develop three-dimensional (3D) carbon microelectrodes for electrochemical applications. Three different fabrica...

  1. Upper limb position control in fibromyalgia

    Directory of Open Access Journals (Sweden)

    Bardal Ellen

    2012-09-01

    Full Text Available Abstract Background Motor problems are reported by patients with fibromyalgia (FM. However, the mechanisms leading to alterations in motor performance are not well understood. In this study, upper limb position control during sustained isometric contractions was investigated in patients with FM and in healthy controls (HCs. Methods Fifteen female FM patients and 13 HCs were asked to keep a constant upper limb position during sustained elbow flexion and shoulder abduction, respectively. Subjects received real-time visual feedback on limb position and both tasks were performed unloaded and while supporting loads (1, 2, and 3 kg. Accelerations of the dominant upper limb were recorded, with variance (SD of mean position and power spectrum analysis used to characterize limb position control. Normalized power of the acceleration signal was extracted for three frequency bands: 1–3 Hz, 4–7 Hz, and 8–12 Hz. Results Variance increased with load in both tasks (P 0.001 but did not differ significantly between patients and HCs (P > 0.17. Power spectrum analysis showed that the FM patients had a higher proportion of normalized power in the 1–3 Hz band, and a lower proportion of normalized power in the 8–12 Hz band compared to HCs (P 0.05. The results were consistent for all load conditions and for both elbow flexion and shoulder abduction. Conclusion FM patients exhibit an altered neuromuscular strategy for upper limb position control compared to HCs. The predominance of low-frequency limb oscillations among FM patients may indicate a sensory deficit.

  2. Three-Dimensional Gauge Theories and ADE Monopoles

    OpenAIRE

    Tong, David

    1998-01-01

    We study three-dimensional N=4 gauge theories with product gauge groups constructed from ADE Dynkin diagrams. One-loop corrections to the metric on the Coulomb branch are shown to coincide with the metric on the moduli space of well-seperated ADE monopoles. We propose that this correspondence is exact.

  3. A three-dimensional model of a gap junction

    International Nuclear Information System (INIS)

    Xylouris, K.; Wittum, G.

    2009-01-01

    Gap junctions are effective electric couplings between neurons and form a very important way of communication between them. Since they can be considered as the points on the neuron's membrane on which for example dendrites of different cells become one piece, in three dimensions they can be modelled by observing this property in the created geometry. Thus they can be easily made part in an already existing 3-dimensional model for signal propagation on the neuron's membrane, if the geometries are chosen in such a way respect the blending of the membranes. A small network of two cells was created, which blend in their dendrites and a simulation of the three-dimensional model was carried out which reveals the fast transmission of the signal from one cell to the other.

  4. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  5. Doses to organs at cerebral risks: optimization by robotized stereotaxic radiotherapy and automatic segmentation atlas versus three dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.; Thariat, J.; Benezery, K.; Herault, J.; Dalmasso, C.; Marcie, S.; Malandain, G.

    2007-01-01

    The stereotaxic radiotherapy robotized by 'Cyberknife fourth generation' allows a dosimetric optimization with a high conformity index on the tumor and radiation doses limited on organs at risk. A cerebral automatic anatomic segmentation atlas of organs at risk are used in routine in three dimensions. This study evaluated the superiority of the stereotaxic radiotherapy in comparison with the three dimensional conformal radiotherapy on the preservation of organs at risk in regard of the delivered dose to tumors justifying an accelerated hypo fractionation and a dose escalation. This automatic segmentation atlas should allow to establish correlations between anatomy and cerebral dosimetry; This atlas allows to underline the dosimetry optimization by stereotaxic radiotherapy robotized for organs at risk. (N.C.)

  6. A three-dimensional neutron transport benchmark solution

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    1993-01-01

    For one-group neutron transport theory in one dimension, several powerful analytical techniques have been developed to solve the neutron transport equation, including Caseology, Wiener-Hopf factorization, and Fourier and Laplace transform methods. In addition, after a Fourier transform in the transverse plane and formulation of a pseudo problem, two-dimensional (2-D) and three-dimensional (3-D) problems can be solved using the techniques specifically developed for the one-dimensional (1-D) case. Numerical evaluation of the resulting expressions requiring an inversion in the transverse plane have been successful for 2-D problems but becomes exceedingly difficult in the 3-D case. In this paper, we show that by using the symmetry along the beam direction, a 2-D problem can be transformed into a 3-D problem in an infinite medium. The numerical solution to the 3-D problem is then demonstrated. Thus, a true 3-D transport benchmark solution can be obtained from a well-established numerical solution to a 2-D problem

  7. Three-dimensional reconstruction used in the diagnosis and treatment of depressed fracture of skull

    International Nuclear Information System (INIS)

    Li Liang; Luo Zhikun; Lin Xiaohui; Liu Shuyi; Chen Xu; Liu Chenghui

    2005-01-01

    Objective: To evaluate three-dimensional reconstruction used in the diagnosis and management of depressed fracture of skull. Methods: The images of CT scan and three-dimensional reconstruction in 23 patients with depressed fracture of skull were studied. The clinical treatment was guided by the images. Results: The fracture site and depth in all 23 cases were well demonstrated in the imaging of three-dimensional reconstruction, which successfully guided the clinical management in every case. Conclusion: Three-dimensional reconstruction is a valuable modality for the diagnosis and management of depressed fracture of skull. (authors)

  8. Experimental investigation of an actively controlled three-dimensional turret wake

    Science.gov (United States)

    Shea, Patrick R.

    Hemispherical turrets are bluff bodies commonly used to house optical systems on airborne platforms. These bluff bodies develop complex, three-dimensional flow fields that introduce high mean and fluctuating loads to the turret as well as the airframe support structure which reduce the performance of both the optical systems and the aircraft. An experimental investigation of the wake of a three-dimensional, non-conformal turret was performed in a low-speed wind tunnel at Syracuse University to develop a better understanding of the fundamental flow physics associated with the turret wake. The flow field was studied at a diameter based Reynolds number of 550,000 using stereoscopic particle image velocimetry and dynamic pressure measurements both with and without active flow control. Pressure measurements were simultaneously sampled with the PIV measurements and taken on the surrounding boundary layer plate and at several locations on the turret geometry. Active flow control of the turret wake was performed around the leading edge of the turret aperture using dynamic suction in steady open-loop, unsteady open-loop, and simple closed-loop configurations. Analysis of the uncontrolled wake provided insight into the complex three-dimensional wake when evaluated spatially using PIV measurements and temporally using spectral analysis of the pressure measurements. Steady open-loop suction was found to significantly alter the spatial and temporal nature of the turret wake despite the control being applied locally to the aperture region of the turret. Unsteady open-loop and simple closed-loop control were found to provide similar levels of control to the steady open-loop forcing with a 45% reduction in the control input as calculated using the jet momentum coefficient. The data set collected provides unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations. These data can be used to

  9. A three-dimensional correlation method for registration of medical images in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Michalakis; Sfakianakis, George N [Department of Radiology, University of Miami, Jackson Memorial Hospital, Miami, FL 33136 (United States); Nagel, Joachim H [Institute of Biomedical Engineering, University of Stuttgart, Stuttgart 70174 (Germany)

    1999-12-31

    The availability of methods to register multi-modality images in order to `fuse` them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as {sup p}olar Shells{sup .} The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors) 6 refs., 3 figs.

  10. A three-dimensional correlation method for registration of medical images in radiology

    International Nuclear Information System (INIS)

    Georgiou, Michalakis; Sfakianakis, George N.; Nagel, Joachim H.

    1998-01-01

    The availability of methods to register multi-modality images in order to 'fuse' them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as p olar Shells . The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors)

  11. A simple remark on three dimensional gauge theories

    International Nuclear Information System (INIS)

    Lemes, V.E.R.; Linhares de Jesus, C.; Sasaki, C.A.G.; Sorella, S.P.; Vilar, L.C.Q.; Ventura, O.S.

    1997-08-01

    Classical three dimensional Yang-Mills is seen to be related to the topological Chern-Simons term through a nonlinear but fully local and covariant gauge field redefinition. A classical recursive cohomological argument is proved. (author)

  12. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  13. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    International Nuclear Information System (INIS)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi; Tosca, Androniki

    2011-01-01

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  14. The effect of base image window level selection on the dimensional measurement accuracy of resultant three-dimensional image displays

    International Nuclear Information System (INIS)

    Kurmis, A.P.; Hearn, T.C.; Reynolds, K.J.

    2003-01-01

    Purpose: The aim of this study was to determine the effect of base image window level selection on direct linear measurement of knee structures displayed using new magnetic resonance (MR)-based three-dimensional reconstructed computer imaging techniques. Methods: A prospective comparative study was performed using a series of three-dimensional knee images, generated from conventional MR imaging (MRI) sections. Thirty distinct anatomical structural features were identified within the image series of which repeated measurements were compared at 10 different window grey scale levels. Results: Statistical analysis demonstrated an excellent raw correlation between measurements and suggested no significant difference between measurements made at each of the 10 window level settings (P>0.05). Conclusions: The findings of this study suggest that unlike conventional MR or CT applications, grey scale window level selection at the time of imaging does not significantly affect the visual quality of resultant three-dimensional reconstructed images and hence the accuracy of subsequent direct linear measurement. The diagnostic potential of clinical progression from routine two-dimensional to advanced three-dimensional reconstructed imaging techniques may therefore be less likely to be degraded by inappropriate MR technician image windowing during the capturing of image series

  15. Interface fracture in laminates at three-dimensional corners

    Energy Technology Data Exchange (ETDEWEB)

    Myhre Jensen, H.; Veluri, B. [Aarhus Univ.. Aarhus School of Engineering, Aarhus (Denmark)

    2012-07-01

    Interface failure close to corners has been observed in laminated layered structures. A fracture mechanics based approach focused on modelling the shape of such interface cracks and calculating the critical stress for steady-state propagation has been developed. The crack propagation is investigated by estimating the fracture mechanics parameters including the energy release rate and the three-dimensional mode-mixity along the crack front allowing determining the shape of the crack front profiles. A numerical approach is applied for coupling the far field solutions utilizing the capability of the Finite Element Method to the near field solutions at the crack front based on the J-integral. The developed two-dimensional numerical approach for the calculation of fracture mechanical properties has been validated with three-dimensional models for varying crack front shapes. In this study, a quantitative approach was formulated based on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stress as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses. (Author)

  16. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  17. Three-dimensional image signals: processing methods

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  18. Three-Dimensional Seismic Tomography Beneath Tangshan, China

    Science.gov (United States)

    Chang, J. C.; Keranen, K. M.; Keller, G.; Qu, G.; Harder, S. H.

    2010-12-01

    The 1976 earthquake in Tangshan, China ranks as the deadliest earthquake in modern times. Though the exact number of casualties remains disputed, it is widely accepted that at least a quarter of a million people died. The high casualty level is surprising since the earthquake was not unusually large (Mw 7.5). Amplification of ground motion by thick sediment fill in the basin underlying the city is a likely cause for the extensive destruction. However, the extent of the unconsolidated material and the broader subsurface geology beneath Tangshan and surrounding areas needs to be better-constrained to properly model predicted ground motion and mitigate the hazards of future earthquakes. From a broader perspective, the Tangshan area is at the northern edge of the Bohai Bay basin province that has experienced both Cenozoic extension and related strike-slip tectonism. In January 2010, our group conducted a three-dimensional seismic investigation centered on the city of Tangshan. In an area of approximately 40 km x 60 km, we deployed 500 REFTEK 125A (“Texan”) recorders at 500 m spacing. A number of different sources, 20 altogether, were recorded during the two-day listening window, which include our large shots, smaller explosive shots from a co-spatial reflection survey, blasts from nearby quarries, and a small (Mearthquake. Our preliminary analyses suggest that the sediment fill is, on average, less than 1 km thick. Sediment fill is thinner to the north, as evidenced by outcropping bedrock, and thickens to the south. Sediment seismic velocity is about 1.8 km/s. Upper crustal velocities are 5.2 to 6.6 km/s, and increase to 7.0 km/s at mid-crustal depths.

  19. Near-field three-dimensional radar imaging techniques and applications.

    Science.gov (United States)

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  20. Dose response study of PVA-Fx gel for three dimensional dose distribution

    International Nuclear Information System (INIS)

    Brindha, S.; Ayyangar, Komanduri M.; Shen, Bin; Saw, Cheng B.

    2001-01-01

    Modern radiotherapy techniques involve complex field arrangements using conformal and intensity modulated radiation that requires three dimensional treatment planning. The verification of these plans poses even more challenge. In 1984, Gore et al., proposed that ferrous gel dosimeters combined with magnetic resonance imaging (MRI) could be used to measure three dimensional radiation dose distributions. Since then, there has been much interest in the development of gel dosimetry to aid the determination of three dimensional dose distributions during field arrangements. In this work, preparation and study of the MR characteristics of a PVA-Fx gel reported in the literature is presented