WorldWideScience

Sample records for accelerated stem growth

  1. Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd. (Scion Research.)

    2005-11-30

    A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell

  2. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors.

    Directory of Open Access Journals (Sweden)

    Tea Soon Park

    Full Text Available Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC occurs in only rare fractions (~0.001%-0.5% of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB myeloid progenitors with bulk efficiencies of ~50% in purified episome-expressing cells. Lineage-committed CD33(+CD45(+CD34(- myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG(+TRA-1-81(+ hiPSC was mediated by synergies between hematopoietic growth factor (GF, stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC. Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly

  3. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing

    Directory of Open Access Journals (Sweden)

    Sabrina Valente

    2016-01-01

    Full Text Available Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs. hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki–67 assay, migration (scratch and transwell assays, and angiogenesis (Matrigel were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR. The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.

  4. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing.

    Science.gov (United States)

    Valente, Sabrina; Ciavarella, Carmen; Pasanisi, Emanuela; Ricci, Francesca; Stella, Andrea; Pasquinelli, Gianandrea

    2016-01-01

    Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs). hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL) from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki-67 assay), migration (scratch and transwell assays), and angiogenesis (Matrigel) were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR). The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.

  5. Accelerated Techniques in Stem Fault Simulation

    Institute of Scientific and Technical Information of China (English)

    石茵; 魏道政

    1996-01-01

    In order to cope with the most expensive stem fault simulation in fault simulation field.several accelerated techniques are presented in this paper.These techniques include static analysis on circuit structure in preprocessing stage and dynamic calculations in fault simulation stage.With these techniques,the area for stem for stem fault simulation and number of the stems requiring explicit fault simulation are greatly reduced,so that the entire fault simulation time is substantially decreased.Experimental results given in this paper show that the fault simulation algorithm using these techniques is of very high efficiency for both small and large numbers of test patterns.Especially with the increase of circuit gates,its effectiveness improves obviously.

  6. Accelerating proliferation of neural stem/progenitor cells in collagen sponges immobilized with engineered basic fibroblast growth factor for nervous system tissue engineering.

    Science.gov (United States)

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Han, Jin; Zhao, Yannan; Dai, Jianwu; Xu, Ruxiang

    2014-03-10

    Neural stem/progenitor cells (NS/PCs) play a therapeutic role in nervous system diseases and contribute to functional recovery. However, their efficacy is limited as the majority of cells die post-transplantation. In this study, collagen sponges were utilized as carriers for NS/PCs. Basic fibroblast growth factor (bFGF), a mitogen for NS/PCs, was incorporated into the collagen sponges to stimulate NS/PC proliferation. However, the effect of native bFGF is limited because it diffuses into the culture medium and is lost following medium exchange. To overcome this problem, a collagen-binding polypeptide domain, which has high affinity to collagen, was fused with bFGF to sustain the exposure of NS/PCs within the collagen sponges to bFGF. The results indicated that the number of NS/PCs was significantly higher in collagen sponges incorporating engineered bFGF than in those with native bFGF or the PBS control after 7 days in culture. Here, we designed a natural biological neural scaffold consisting of collagen sponges, engineered bFGF, and NS/PCs. In addition to the effect of proliferated NS/PCs, the engineered bFGF retained in the natural biological neural scaffolds could have a direct effect on nervous system reconstruction. The two aspects of the natural biological neural scaffolds may produce synergistic effects, and so they represent a promising candidate for nervous system repair.

  7. ACCELERATION GROWTH OF ICT MARKET

    Directory of Open Access Journals (Sweden)

    Drakulić Danica

    2007-06-01

    Full Text Available The wurk points to the importance of ICT (Information Communication Technologies, as one of the main trajectories by which advanced economies have come to the high dynamism and richness. How do the performsnces of these technological changes, determined mainly by ICT, exert influences on the economicgrowth or, in general, on production results at the aggregate, macroeconomic level. The U.S.A. supremacy in this field has faced challenges. It loses tempo, and the EU countries, after the multi-decade syndrome of technological catching up to U.S.A., go through faster into the future, giving an accelerating tone to the technological race.

  8. Emittance Growth in Linear Induction Accelerators

    OpenAIRE

    Ekdahl, Carl

    2017-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-ce...

  9. The Accelerating Growth of Online Social Systems

    CERN Document Server

    Wu, L; Lei, K; Mo, Q; Zhu, J J

    2011-01-01

    Research on the growth of online social systems not only is interesting in its own right, but also yields insights for website management and web crawling. Traditional models of growth of online systems can be divided between linear and nonlinear versions. Linear models, including the BA model, assume that the average activity of users in a system is a constant independent of system size. Hence the total activity is a linear function of the system size. On the contrary, nonlinear models suggest that the average activity is affected by the system size and the total activity is a nonlinear function of the system size. In the current study, we obtain supporting evidence for the nonlinear growth assumption from data on Internet users'file sharing and blogging behavior. We find that there is a power law relationship between the total activity F and the system size P, which can be expressed as F ~ P^gamma (gamma> 1). We call this pattern accelerating growth and attribute it to time-variant inequality in individual ...

  10. Emittance growth in linear induction accelerators

    CERN Document Server

    Ekdahl, C A; Schulze, M E; Carlson, C A; Frayer, D K; Mostrum, C; Thoma, C H

    2014-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT Axis-II LIA we measure an emittance higher than predicted by theoretical simulations, and even though this axis produces sub-millimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell (PIC) codes, although most of these are discounted based on beam measurements. The most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  11. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... habitats at contrasting altitude, microtopography, latitude, geographical location, and soil type, in both the sub- and High Arctic. We found that secondary growth has a modest sensitivity to the environment but with large differences among species. For example, the evergreen Cassiope tetragona is affected...... by altitude, microtopography, and latitude, whereas the evergreen Empetrum hermaphroditum has rather constant secondary growth in all environments. Deciduous species seem to be most affected by microtopography. Furthermore, the impact of the environment on secondary growth differed from the impact on primary...

  12. In vitro growth, differentiation and biological characteristics of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Meijiang Yun; Lianzhong Wang; Yongcai Wang; Xiaolian Jiang

    2006-01-01

    of NSCs, such as transforming growth factor (TGF) is an important player in repairing organs, NGF accelerates the process of growth, insulin-like growth factor serves importantly in the differentiation of stem cells into neuron-like cells.CONCLUSTON: As unipotent stem cells, NSCs have the abilities of self-renewal and potential of high differentiation. The method of mechanical dissociation is better than trypsin digestion in e separating ESCs. However,density gradient centrifuge separation is better than other methods in the separation of the BMSCs. NGF and other factors play an important role in the growth of NSCs.

  13. Surgical stress and accelerated tumor growth

    NARCIS (Netherlands)

    Kal, Henk B.; Struikmans, Henk; Rijbroek, Angelique D. Barten-van

    2008-01-01

    Background: Delay in the initiation of radiotherapy after surgery is associated with an increase in local regional recurrence. A possible mechanism might be that remaining tumor cells proliferate significantly faster as a result of induced angiogenic cytokines. The growth rate of tumors arising from

  14. [Stem cells and growth factors in wound healing].

    Science.gov (United States)

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  15. Evidence for super-exponentially accelerating atmospheric carbon dioxide growth

    CERN Document Server

    Hüsler, Andreas D

    2011-01-01

    We analyze the growth rates of atmospheric carbon dioxide and human population, by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model. Our empirical calibrations confirm that human population has decelerated from its previous super-exponential growth until 1960 to ``just' an exponential growth, but with no sign of more deceleration. As for atmospheric CO2 content, we find that it is at least exponentially increasing and most likely characterized by an accelerating growth rate as off 2009, consistent with an unsustainable FTS power law regime announcing a drastic change of regime. The coexistence of a quasi-exponential growth of human population with a super-exponential growth of carbon dioxide content in the atmosphere is a diagnostic of insignificant impr...

  16. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats.

    Science.gov (United States)

    Clough, Bret H; Ylostalo, Joni; Browder, Elizabeth; McNeill, Eoin P; Bartosh, Thomas J; Rawls, H Ralph; Nakamoto, Tetsuo; Gregory, Carl A

    2017-03-01

    Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg(-1) day(-1)). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period

  17. Scale-free network models with accelerating growth

    Institute of Scientific and Technical Information of China (English)

    Huan LI

    2009-01-01

    Complex networks are everywhere. A typical ex-ample is software network. Basing on analyzing evolutive structure of the software networks, we consider accelerat-ing growth of network as power-law growth, which can be more easily generalized to real systems than linear growth. For accelerating growth via a power law and scale-free state with preferential linking, we focus on exploring the generic property of complex networks. Generally, two scenarios are possible. In one of them, the links are undirected. In the other scenario, the links are directed. We propose two mod-els that can predict the emergence of power-law growth and scale-free state in good agreement with these two scenar-ios and can simulate much more real systems than existing scale-free network models. Moreover, we use the obtained predictions to fit accelerating growth and the connectivity distribution of software networks describing scale-free struc-ture. The combined analytical and numerical results indicate the emergence of a novel set of models that considerably enhance our ability to understand and characterize complex networks, whose applicability reaches far beyond the quoted examples.

  18. Inhibition of FGF signaling accelerates neural crest cell differentiation of human pluripotent stem cells.

    Science.gov (United States)

    Jaroonwitchawan, Thiranut; Muangchan, Pattamon; Noisa, Parinya

    2016-12-02

    Neural crest (NC) is a transient population, arising during embryonic development and capable of differentiating into various somatic cells. The defects of neural crest development leads to neurocristopathy. Several signaling pathways were revealed their significance in NC cell specification. Fibroblast growth factor (FGF) is recognized as an important signaling during NC development, for instance Xenopus and avian; however, its contributions in human species are remained elusive. Here we used human pluripotent stem cells (hPSCs) to investigate the consequences of FGF inhibition during NC cell differentiation. The specific-FGF receptor inhibitor, SU5402, was used in this investigation. The inhibition of FGF did not found to affect the proliferation or death of hPSC-derived NC cells, but promoted hPSCs to commit NC cell fate. NC-specific genes, including PAX3, SLUG, and TWIST1, were highly upregulated, while hPSC genes, such as OCT4, and E-CAD, rapidly reduced upon FGF signaling blockage. Noteworthy, TFAP-2α, a marker of migratory NC cells, abundantly presented in SU5402-induced cells. This accelerated NC cell differentiation could be due to the activation of Notch signaling upon the blockage of ERK1/2 phosphorylation, since NICD was increased by SU5402. Altogether, this study proposed the contributions of FGF signaling in controlling human NC cell differentiation from hPSCs, the crosstalk between FGF and Notch, and might imply to the influences of FGF signaling in neurocristophatic diseases.

  19. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea.

    Science.gov (United States)

    Chen, Jialin; Lan, Jie; Liu, Dongle; Backman, Ludvig J; Zhang, Wei; Zhou, Qingjun; Danielson, Patrik

    2017-03-09

    High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved. © Stem Cells Translational Medicine 2017.

  20. Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Junmei Zhou; Zhenfu Fang; Manxi Jiang; Xuejin Chen

    2013-01-01

    The difference between Noggin and basic fibroblast growth factor for the neural precursor differen-tiation from human embryonic stem cel s has not been studied. In this study, 100 µg/L Noggin or 20 µg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen-tiate human embryonic stem cel s H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro-scope. Immunofluorescence staining revealed expression levels of Nestin,β-III Tubulin and Sox-1 were higher in the induced cel s and reverse-transcription PCR showed induced cel s expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cel differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in-creases the differentiation of neural precursors.

  1. Simulating stem growth using topological optimisation

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Narváez

    2010-04-01

    Full Text Available Engineers are currently resorting to observations of nature for making new designs. Studying the functioning of bodies of plants and animals has required them to be modelled and simulated; however, some models born from engineering problems could be used for such purposes. This article shows how topological optimisation (a mathematical model for optimising designing structural elements can be used for modeling and simulating the way a stem grows in terms of carrying out its funtion of providing support for the leaves and a plant's other upper organs.

  2. Genomic imprinting in development, growth, behavior and stem cells.

    Science.gov (United States)

    Plasschaert, Robert N; Bartolomei, Marisa S

    2014-05-01

    Genes that are subject to genomic imprinting in mammals are preferentially expressed from a single parental allele. This imprinted expression of a small number of genes is crucial for normal development, as these genes often directly regulate fetal growth. Recent work has also demonstrated intricate roles for imprinted genes in the brain, with important consequences on behavior and neuronal function. Finally, new studies have revealed the importance of proper expression of specific imprinted genes in induced pluripotent stem cells and in adult stem cells. As we review here, these findings highlight the complex nature and developmental importance of imprinted genes.

  3. In vivo transplantation of bone marrow mesenchymal stem cells accelerates repair of injured gastric mucosa in rats

    Institute of Scientific and Technical Information of China (English)

    CHANG Qing; YAN Li; WANG Chang-zheng; ZHANG Wen-hui; HU Ya-zhuo; WU Ben-yan

    2012-01-01

    Background Adult stem cells provide a promising alternative for the treatment of injured tissues.We aimed to investigate the effect of in vivo transplantation of bone marrow mesenchymal stem cells (BMMSCs) on injured gastric mucosa in rats.Methods The gastric ulcer in rats was induced by indomethacin.BMMSCs from male rats,labeled with the fluorescent cell linker 5,6-carboxyfluorescein diacetate succinimidyl ester (CFDA SE),were transplanted into the female rats via tail vein injection.The healing process of gastric ulcers was monitored by HE staining.The protein levels of vascular endothelial growth factor (VEGF) and the epidermal growth factor receptor (EGFR) in the injured gastric mucosa were determined by immunohistochemistry.Results At 48 and 72 hours after BMMSCs transplantation,the CFDA SE labeled cells were found scattered in the injured gastric mucosa,but not in the gastric mucosa of control rats.At 72 hours after BMMSCs transplantation,the mean ulcer index was 12.67±2.16 in the BMMSCs transplanted group and 17.33±1.97 in vehicle-treated controls (P <0.01).Both VEGF and EGFR protein expression levels were significantly higher in the gastric section from the rats that received BMMSCs transplantation as compared to rats without BMMSCs transplantation.Conclusion Autologous BMMSCs transplantation can accelerate gastric ulcer healing in injured gastric mucosa in a rodent model.

  4. Structural change and growth accelerations in Asia and Latin America : a new sectoral data set

    NARCIS (Netherlands)

    Timmer, M.P.; de Vries, G.J.

    2009-01-01

    Recent studies of economic growth have moved from explaining average trends in long-term growth to study growth accelerations and decelerations. In this paper we argue that the standard shift-share analysis is inadequate to measure the contribution of sectors to accelerations in productivity. We pre

  5. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  6. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    Science.gov (United States)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  7. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  8. Sox4 Links Tumor Suppression to Accelerated Aging in Mice by Modulating Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Miguel Foronda

    2014-07-01

    Full Text Available Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4cKO in stratified epithelia. Sox4cKO mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer.

  9. BOREAS TE-2 Stem Growth and Sapwood Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of growth and sapwood of the stems conducted in the NSA during the growing season of 1994. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  11. Intrinsic normalized emittance growth in laser-driven electron accelerators

    Science.gov (United States)

    Migliorati, M.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Rossi, A. R.; Serafini, L.; Antici, P.

    2013-01-01

    Laser-based electron sources are attracting strong interest from the conventional accelerator community due to their unique characteristics in terms of high initial energy, low emittance, and significant beam current. Extremely strong electric fields (up to hundreds of GV/m) generated in the plasma allow accelerating gradients much higher than in conventional accelerators and set the basis for achieving very high final energies in a compact space. Generating laser-driven high-energy electron beam lines therefore represents an attractive challenge for novel particle accelerators. In this paper we show that laser-driven electrons generated by the nowadays consolidated TW laser systems, when leaving the interaction region, are subject to a very strong, normalized emittance worsening which makes them quickly unusable for any beam transport. Furthermore, due to their intrinsic beam characteristics, controlling and capturing the full beam current can only be achieved improving the source parameters.

  12. National health expenditure projections: modest annual growth until coverage expands and economic growth accelerates.

    Science.gov (United States)

    Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J

    2012-07-01

    For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans.

  13. Genetic correlates of early accelerated infant growth associated with juvenile-onset type 1 diabetes

    NARCIS (Netherlands)

    Kharagjitsingh, A.V.; de Ridder, M.A.J.; Alizadeh, B.Z.; Veeze, H.J.; Bruining, G.J.; Roep, B.O.; Koeleman, Bobby P.C.

    2012-01-01

    Objective: We previously showed that accelerated growth predisposing to development of childhood-onset type 1 diabetes (T1D) is restricted to the first year after birth. We assessed whether this phenomenon of increased early growth is associated with variants of two genes, insulin-like growth factor

  14. Genetic correlates of early accelerated infant growth associated with juvenile-onset type 1 diabetes

    NARCIS (Netherlands)

    Kharagjitsingh, Av; de Ridder, Maj; Alizadeh, Bz; Veeze, Hj; Bruining, Gj; Roep, Bo; Koeleman, Bobby Pc

    2012-01-01

    OBJECTIVE: We previously showed that accelerated growth predisposing to development of childhood-onset type 1 diabetes (T1D) is restricted to the first year after birth. We assessed whether this phenomenon of increased early growth is associated with variants of two genes, insulin-like growth factor

  15. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  16. Type 3 deiodinase: role in cancer growth, stemness and metabolism

    Directory of Open Access Journals (Sweden)

    Domenico eCiavardelli

    2014-12-01

    Full Text Available Deiodinases are selenoenzymes that catalyze thyroid hormones (THs activation (type 1 and type 2, D1 and D2 respectively or inactivation (type 3, D3. THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper we review recent advances in the role of D3 in cancer growth, stemness and metabolic phenotype. In particular we focus on the main signalling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.

  17. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    Science.gov (United States)

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  18. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  19. Cell longevity and sustained primary growth in palm stems.

    Science.gov (United States)

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  20. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    Science.gov (United States)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  1. Umbilical Cord Mesenchymal Stem Cells Combined With a Collagenfibrin Double-layered Membrane Accelerates Wound Healing.

    Science.gov (United States)

    Nan, Wenbin; Liu, Rui; Chen, Hongli; Xu, Zhihao; Chen, Jiannan; Wang, Manman; Yuan, Zhiqing

    2015-05-01

    The aim of this study was to examine the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) in combination with a collagen-fibrin double-layered membrane on wound healing in mice. A collagen-fibrin double-layered membrane was prepared, and the surface properties of the support material were investigated using a scanning electron microscope. Twenty-four mice were prepared for use as full-thickness skin wound models and randomly divided into 3 groups: group A, a control group in which the wounds were bound using a conventional method; group B, a group treated with hUCMSCs combined with a collagen membrane; and group C, a group treated with hUCMSCs combined with a collagen-fibrin double-layered membrane. The postoperative concrescence of the wounds was observed daily to evaluate the effects of the different treatments. Scanning electron microscope observation showed the collagen-fibrin scaffolds exhibited a highly porous and interconnected structure, and wound healing in the double-layered membrane group was better than in groups A or B. Treatment with hUCMSCs combined with a collagen-fibrin double-layered membrane accelerated wound healing.

  2. Accelerated Growth Programme with Polyherbal Formulations for Dairy Calves

    Directory of Open Access Journals (Sweden)

    K.Hadiya

    2009-04-01

    Full Text Available An experimental field study in approximately one month old, forty eight Jaffrabadi buffalo calves was carried out to evaluate efficacy of herbal formulations on growth & average daily gain. Calves were randomly divided into four groups, one control & three treatments. Treated groups were administered herbal formulations; Ruchamax, AV/DAC/16 @5gm/calf/day & Yakrifit @1 bolus/calf/day following treatment regimen of once a week per month for three consecutive months therapy. Growth related parameters were recorded for ninety days of experimental trial. It was observed that supplementation of herbal growth promoter & liver tonic products significantly improved liver function, feed assimilation & digestibility of ration ultimately leading to gain in body weight as compared to untreated control group. [Vet. World 2009; 2(2.000: 62-64

  3. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  4. Growth of Structure in Theories of Cosmic Acceleration

    DEFF Research Database (Denmark)

    Cataneo, Matteo

    Various astrophysical data sets support the current standard model of cosmology, in which our universe is well-described on large scales by a cosmological constant Lambda and cold dark matter (CDM). The Lambda-CDM paradigm rests on two assumptions: (i) the cosmological principle; and that (ii......, gravitation being the dominant force at large distances. Under these premises, to explain the observed late-time accelerated expansion of the universe we need an exotic form of energy with large negative pressure, named dark energy. Lambda is the simplest candidate for this obscure ingredient......, and is currently associated with the energy density of the vacuum. Cold dark matter is the second most abundant constituent of the universe, even though it has not been detected yet. This slowly moving collection of particles forms the scaffolding of the stunning, luminous structures we see with our telescopes...

  5. Fibroblast growth factors as regulators of stem cell self-renewal and aging

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; de Haan, Gerald

    2007-01-01

    Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells a

  6. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1

    NARCIS (Netherlands)

    de Haan, G; Weersing, E; Dontje, B; van Os, R; Bystrykh, LV; Vellenga, E; Miller, G

    2003-01-01

    The role of fibroblast growth factors and their receptors (FGFRs) in the regulation of normal hematopoietic stem cells is unknown. Here we show that, in mouse bone marrow, long-term repopulating stem cells are found exclusively in the FGFR(+) cell fraction. During differentiation toward committed pr

  7. Stem Cells in Tooth Development, Growth, Repair, and Regeneration.

    Science.gov (United States)

    Yu, Tian; Volponi, Ana Angelova; Babb, Rebecca; An, Zhengwen; Sharpe, Paul T

    2015-01-01

    Human teeth contain stem cells in all their mesenchymal-derived tissues, which include the pulp, periodontal ligament, and developing roots, in addition to the support tissues such as the alveolar bone. The precise roles of these cells remain poorly understood and most likely involve tissue repair mechanisms but their relative ease of harvesting makes teeth a valuable potential source of mesenchymal stem cells (MSCs) for therapeutic use. These dental MSC populations all appear to have the same developmental origins, being derived from cranial neural crest cells, a population of embryonic stem cells with multipotential properties. In rodents, the incisor teeth grow continuously throughout life, a feature that requires populations of continuously active mesenchymal and epithelial stem cells. The discrete locations of these stem cells in the incisor have rendered them amenable for study and much is being learnt about the general properties of these stem cells for the incisor as a model system. The incisor MSCs appear to be a heterogeneous population consisting of cells from different neural crest-derived tissues. The epithelial stem cells can be traced directly back in development to a Sox10(+) population present at the time of tooth initiation. In this review, we describe the basic biology of dental stem cells, their functions, and potential clinical uses.

  8. The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread

    Science.gov (United States)

    2014-12-01

    home to tissue injury. Monocyte polarization into the classically activated pro- inflam - matory macrophages (M1) occurs early on in tissue repair, whereas...AWARD NUMBER: W81XWH-12-1-0438 TITLE: The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread PRINCIPAL INVESTIGATOR...SUBTITLE The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0438 5c

  9. Absence of clinically relevant growth acceleration in untreated children with non-classical congenital adrenal hyperplasia.

    NARCIS (Netherlands)

    Pijnenburg-Kleizen, K.J.; Borm, G.F.; Otten, B.J.; Schott, D.A.; Akker, E.L. van den; Stokvis-Brantsma, W.H.; Voorhoeve, P.G.; Bakker, B.; Claahsen-van der Grinten, H.L.

    2012-01-01

    BACKGROUND/AIMS: In classical congenital adrenal hyperplasia (CAH), elevation of adrenal androgens leads to accelerated growth and bone maturation with compromised adult height. In untreated children with non-classical CAH (NC-CAH), in which adrenal androgens are generally only slightly increased, g

  10. Integrating Frameworks from Early Childhood Intervention and School Psychology to Accelerate Growth for All Young Children

    Science.gov (United States)

    VanDerHeyden, Amanda M.; Snyder, Patricia

    2006-01-01

    Knowing what behaviors adults can engage in to accelerate child growth toward desired outcomes is fundamental to achieving the promise of early education and intervention. Once adequate progress-monitoring measures are developed, patterns of child performance over time and in response to certain interventions can be quantified. The ability to…

  11. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Eap S

    2015-02-01

    therapeutic implant by adding human mesenchymal stem cells (hMSCs. The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials, in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.Keywords: regenerative nanomedicine, electrospun nanofibers implant, nanocontainers of growth factors, BMP-7

  12. MUC1* ligand, NM23-H1, is a novel growth factor that maintains human stem cells in a more naive state.

    Directory of Open Access Journals (Sweden)

    Benoit J Smagghe

    Full Text Available We report that a single growth factor, NM23-H1, enables serial passaging of both human ES and iPS cells in the absence of feeder cells, their conditioned media or bFGF in a fully defined xeno-free media on a novel defined, xeno-free surface. Stem cells cultured in this system show a gene expression pattern indicative of a more "naïve" state than stem cells grown in bFGF-based media. NM23-H1 and MUC1* growth factor receptor cooperate to control stem cell self-replication. By manipulating the multimerization state of NM23-H1, we override the stem cell's inherent programming that turns off pluripotency and trick the cells into continuously replicating as pluripotent stem cells. Dimeric NM23-H1 binds to and dimerizes the extra cellular domain of the MUC1* transmembrane receptor which stimulates growth and promotes pluripotency. Inhibition of the NM23-H1/MUC1* interaction accelerates differentiation and causes a spike in miR-145 expression which signals a cell's exit from pluripotency.

  13. Macrophage inflammatory protein-2 contributes to liver resection-induced acceleration of hepatic metastatic tumor growth

    Institute of Scientific and Technical Information of China (English)

    Otto Kollmar; Michael D Menger; Martin K Schilling

    2006-01-01

    AIM: To study the role of macrophage inflammatory protein (MIP)-2 in liver resection-induced acceleration of tumor growth in a mouse model of hepatic metastasis.METHODS: After a 50% hepatectomy, 1×105 CT26.WT cells were implanted into the left liver lobe of syngeneic balb/c mice (PHx). Additional animals were treated with a monoclonal antibody (MAB452) neutralizing MIP-2(PHx+mAB). Non-resected and non-mAB-treated mice (Con) served as controls. After 7 d, tumor angiogenesis and microcirculation as well as cell proliferation, tumor growth, and CXCR-2 expression were analyzed using intravital fluorescence microscopy, histology, immunohistochemistry, and flow cytometry.RESULTS: Partial hepatectomy increased (P<0.05) the expression of the MIP-2 receptor CXCR-2 on tumor cells when compared with non-resected controls, and markedly accelerated (P<0.05) angiogenesis and metastatic tumor growth. Neutralization of MIP-2 by MAB452 treatment significantly (P<0.05) depressed CXCR-2 expression. Further, the blockade of MIP-2 reduced the angiogenic response (P<0.05) and inhibited tumor growth (P< 0.05). Of interest, liver resection-induced hepatocyte proliferation was not effected by anti-MIP-2 treatment.CONCLUSION: MIP-2 significantly contributes to liver resection-induced acceleration of colorectal CT26.WT hepatic metastasis growth.

  14. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    Science.gov (United States)

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  15. Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

    Science.gov (United States)

    Delahaye, Fabien; Wijetunga, N Ari; Heo, Hye J; Tozour, Jessica N; Zhao, Yong Mei; Greally, John M; Einstein, Francine H

    2014-10-10

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.

  16. Making a tooth: growth factors, transcription factors, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Yah Ding ZHANG; Zhi CHEN; Yi Qiang SONG; Chao LIU; Yi Ping CHEN

    2005-01-01

    Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions.These processes involve a series of inductive and permissive interactions that result in the determination, differentiation,and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins,have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.

  17. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  18. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Directory of Open Access Journals (Sweden)

    Liu-lin Xiong

    2016-01-01

    Full Text Available Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 µg/L to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  19. Stem analysis program (GOAP for evaluating of increment and growth data at individual tree

    Directory of Open Access Journals (Sweden)

    Gafura Aylak Özdemir

    2016-07-01

    Full Text Available Stem analysis is a method evaluating in a detailed way data of increment and growth of individual tree at the past periods and widely used in various forestry disciplines. Untreated data of stem analysis consist of annual ring count and measurement procedures performed on cross sections taken from individual tree by section method. The evaluation of obtained this untreated data takes quite some time. Thus, a computer software was developed in this study to quickly and efficiently perform stem analysis. This computer software developed to evaluate untreated data of stem analysis as numerical and graphical was programmed as macro by utilizing Visual Basic for Application feature of MS Excel 2013 program currently the most widely used. In developed this computer software, growth height model is formed from two different approaches, individual tree volume depending on section method, cross-sectional area, increments of diameter, height and volume, volume increment percent and stem form factor at breast height are calculated depending on desired period lengths. This calculated values are given as table. Development of diameter, height, volume, increments of these variables, volume increment percent and stem form factor at breast height according to periodic age are given as chart. Stem model showing development of diameter, height and shape of individual tree in the past periods also can be taken from computer software as chart.

  20. Thymosin beta 4 induces hair growth via stem cell migration and differentiation.

    Science.gov (United States)

    Philp, Deborah; St-Surin, Sharleen; Cha, Hee-Jae; Moon, Hye-Sung; Kleinman, Hynda K; Elkin, Michael

    2007-09-01

    Thymosin beta 4 is a small 43-amino-acid molecule that has multiple biological activities, including promotion of cell migration angiogenesis, cell survival, protease production, and wound healing. We have found that thymosin beta 4 promotes hair growth in various rat and mice models including a transgenic thymosin beta 4 overexpressing mouse. We have also determined the mechanism by which thymosin beta 4 acts to promote hair growth by examining its effects on follicle stem cell growth, migration, differentiation, and protease production.

  1. Allogeneic Transplantation of an Adipose-Derived Stem Cell Sheet Combined With Artificial Skin Accelerates Wound Healing in a Rat Wound Model of Type 2 Diabetes and Obesity.

    Science.gov (United States)

    Kato, Yuka; Iwata, Takanori; Morikawa, Shunichi; Yamato, Masayuki; Okano, Teruo; Uchigata, Yasuko

    2015-08-01

    One of the most common complications of diabetes is diabetic foot ulcer. Diabetic ulcers do not heal easily due to diabetic neuropathy and reduced blood flow, and nonhealing ulcers may progress to gangrene, which necessitates amputation of the patient's foot. This study attempted to develop a new cell-based therapy for nonhealing diabetic ulcers using a full-thickness skin defect in a rat model of type 2 diabetes and obesity. Allogeneic adipose-derived stem cells (ASCs) were harvested from the inguinal fat of normal rats, and ASC sheets were created using cell sheet technology and transplanted into full-thickness skin defects in Zucker diabetic fatty rats. The results indicate that the transplantation of ASC sheets combined with artificial skin accelerated wound healing and vascularization, with significant differences observed 2 weeks after treatment. The ASC sheets secreted large amounts of several angiogenic growth factors in vitro, and transplanted ASCs were observed in perivascular regions and incorporated into the newly constructed vessel structures in vivo. These results suggest that ASC sheets accelerate wound healing both directly and indirectly in this diabetic wound-healing model. In conclusion, allogeneic ASC sheets exhibit potential as a new therapeutic strategy for the treatment of diabetic ulcers.

  2. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath; Yang, Sufang; Muttuvelu, Danson V.;

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth...... medium supplemented with serum (3T3 system) or without feeder cells in a dedicated serum-free medium (EpiLife). During the culture, the cells were maintained either at ambient oxygen tension (20%) or at different levels of hypoxia (15, 10, 5, and 2% oxygen). The effect of oxygen on cell growth......, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE...

  3. Growth hormone (GH), brain development and neural stem cells.

    Science.gov (United States)

    Waters, M J; Blackmore, D G

    2011-12-01

    A range of observations support a role for GH in development and function of the brain. These include altered brain structure in GH receptor null mice, and impaired cognition in GH deficient rodents and in a subgroup of GH receptor defective patients (Laron dwarfs). GH has been shown to alter neurogenesis, myelin synthesis and dendritic branching, and both the GH receptor and GH itself are expressed widely in the brain. We have found a population of neural stem cells which are activated by GH infusion, and which give rise to neurons in mice. These stem cells are activated by voluntary exercise in a GH-dependent manner. Given the findings that local synthesis of GH occurs in the hippocampus in response to a memory task, and that GH replacement improves memory and cognition in rodents and humans, these new observations warrant a reappraisal of the clinical importance of GH replacement in GH deficient states.

  4. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    Science.gov (United States)

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of

  5. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  6. Seasonal dynamics of mobile carbohydrates and stem growth in Scots pine (Pinus sylvestris) exposed to drought

    Science.gov (United States)

    Oberhuber, Walter; Kofler, Werner; Schuster, Roman; Swidrak, Irene; Gruber, Andreas

    2014-05-01

    Tree growth requires a continuous supply of carbon as structural material and as a source for metabolic energy. To detect whether intra-annual stem growth is related to changes in carbon allocation, we monitored seasonal dynamics of shoot and radial growth and concentrations of mobile carbohydrates (NSC) in above- and belowground organs of Scots pine (Pinus sylvestris L.). The study area is situated within an inner Alpine dry environment (750 m asl, Tyrol, Austria), which is characterized by recurring drought periods at the start of the growing season in spring and limited water holding capacity of nutrient deficient, shallow stony soils. Shoot elongation was monitored on lateral branches in the canopy and stem radius changes were continuously followed by electronic band dendrometers. Daily radial stem growth and tree water deficit (ΔW) were extracted from dendrometer records. ΔW is regarded a reliable measure of drought stress in trees and develops when transpirational water loss from leaves exceeds water uptake by the root system. Daily radial stem growth and ΔW were related to environmental variables and determination of NSC was performed using specific enzymatic assays. Results revealed quite early culmination of aboveground growth rates in late April (shoot growth) and late May (radial growth), and increasing accumulation of NSC in coarse roots in June. NSC content in roots peaked at the end of July and thereafter decreased again, indicating a shift in carbon allocation after an early cessation of aboveground stem growth. ΔW was found to peak in late summer, when high temperatures prevailed. That maximum growth rates of aboveground organs peaked quite before precipitation increased during summer is related to the finding that ΔW and radial stem growth were more strongly controlled by the atmospheric environment, than by soil water content. We conclude that as a response to the seasonal development of ΔW a shift in carbon allocation from aboveground

  7. Early rapid growth, early birth: Accelerated fetal growth and spontaneous late preterm birth

    Science.gov (United States)

    Kusanovic, Juan Pedro; Erez, Offer; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis; Hassan, Sonia; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2011-01-01

    The past two decades in the United States have seen a 24 % rise in spontaneous late preterm delivery (34 to 36 weeks) of unknown etiology. This study tested the hypothesis that fetal growth was identical prior to spontaneous preterm (n=221, median gestational age at birth 35.6 weeks) and term (n=3706) birth among pregnancies followed longitudinally in Santiago, Chile. The hypothesis was not supported: Preterm-delivered fetuses were significantly larger than their term-delivered peers by mid-second trimester in estimated fetal weight, head, limb and abdominal dimensions, and they followed different growth trajectories. Piecewise regression assessed time-specific differences in growth rates at 4-week intervals from 16 weeks. Estimated fetal weight and abdominal circumference growth rates faltered at 20 weeks among the preterm-delivered, only to match and/or exceed their term-delivered peers at 24–28 weeks. After an abrupt decline at 28 weeks attenuating growth rates in all dimensions, fetuses delivered preterm did so at greater population-specific sex and age-adjusted weight than their peers from uncomplicated pregnancies (p<0.01). Growth rates predicted birth timing: one standard score of estimated fetal weight increased the odds ratio for preterm birth from 2.8 prior to 23 weeks, to 3.6 (95% confidence interval, 1.82–7.11, p<0.05) between 23 and 27 weeks. After 27 weeks, increasing size was protective (OR: 0.56, 95% confidence interval, 0.38–0.82, p=0.003). These data document, for the first time, a distinctive fetal growth pattern across gestation preceding spontaneous late preterm birth, identify the importance of mid-gestation for alterations in fetal growth, and add perspective on human fetal biological variability. PMID:18988282

  8. On the effect of accelerated winds on the wave growth through detailed laboratory measurements.

    Science.gov (United States)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Hernández, Aldo

    2013-04-01

    The possible influence of accelerated winds on air-water momentum fluxes is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide information corresponding to rather short non-dimensional fetch not previously reported. Wave evolution along the tank is determined through a series of wave gauges, and the wind-induced surface drift is obtained at one of the first measuring stations at the beginning of the tank. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Data from the constant high winds provided us with reference equilibrium conditions for at least 3 different wind speed. We, nevertheless, focus in the recordings while wind was being constantly accelerated expecting some contribution to the understanding of gustiness, the implied wind wave growth and the onset of surface drift. Wind-wave growth is observed to lag behind the wind stress signal, and furthermore, a two regime wind stress is noticed, apparently well correlated with a) the incipient growth and appearance of the first waves and b) the arrival of waves from the up-wind section of the tank. Results of non-dimensional wave energy as a function of non-dimensional fetch represent an extension of at least 2 decades shorter non-dimensional fetch to the wave growth curves typically found in the literature. The linear tendency of wave growth compares very well only when wind is reaching its maximum, while during the accelerated wind

  9. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  10. Multi-layered environmental regulation on the homeostasis of stem cells: The saga of hair growth and alopecia

    OpenAIRE

    Chen, Chih-Chiang; Chuong, Cheng Ming

    2012-01-01

    Stem cells are fascinating because of their potential in regenerative medicine. Stem cell homeostasis has been thought to be mainly regulated by signals from their adjacent micro-environment named the “stem cell niche”. However, recent studies reveal that there can be multiple layers of environmental controls. Here we review these environmental controls using the paradigm of hair stem cells, because to observe and analyze the growth of hair is easier due to their characteristic cyclic regener...

  11. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold

    Institute of Scientific and Technical Information of China (English)

    Fei Huang; Qiang Shen; Jitong Zhao

    2013-01-01

    Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.

  12. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia.

    Science.gov (United States)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-13

    Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research.

  13. Understanding the role of growth factors in modulating stem cell tenogenesis.

    Directory of Open Access Journals (Sweden)

    Ana I Gonçalves

    Full Text Available Current treatments for tendon injuries often fail to fully restore joint biomechanics leading to the recurrence of symptoms, and thus resulting in a significant health problem with a relevant social impact worldwide. Cell-based approaches involving the use of stem cells might enable tailoring a successful tendon regeneration outcome. As growth factors (GFs powerfully regulate the cell biological response, their exogenous addition can further stimulate stem cells into the tenogenic lineage, which might eventually depend on stem cells source. In the present study we investigate the tenogenic differentiation potential of human- amniotic fluid stem cells (hAFSCs and adipose-derived stem cells (hASCs with several GFs associated to tendon development and healing; namely, EGF, bFGF, PDGF-BB and TGF-β1. Stem cells response to biochemical stimuli was studied by screening of tendon-related genes (collagen type I, III, decorin, tenascin C and scleraxis and proteins found in tendon extracellular matrix (ECM (Collagen I, III, and Tenascin C. Despite the fact that GFs did not seem to influence the synthesis of tendon ECM proteins, EGF and bFGF influenced the expression of tendon-related genes in hAFSCs, while EGF and PDGF-BB stimulated the genetic expression in hASCs. Overall results on cellular alignment morphology, immunolocalization and PCR analysis indicated that both stem cell source can be biochemically induced towards tenogenic commitment, validating the potential of hASCs and hAFSCs for tendon regeneration strategies.

  14. Growth related hormones in idiopathic scoliosis. An endocrine basis for accelerated growth.

    Science.gov (United States)

    Skogland, L B; Miller, J A

    1980-10-01

    In a total of 95 children with idiopathic scoliosis and 60 controls between the ages of 7 and 17 years, a prospective study of hormones related to growth and maturation was carried out. The pituitary release mechanism for growth hormone was evaluated using the propanolol/L-dopa stimulation test. In addition the blood levels of testosterone, sex hormone binding globulin, oestradiol, thyroxin, prolactin, cortisol, follicle stimulating hormone and luteinizing hormone were determined. The girls were divided into age groups and all results were evaluated according to chronological and skeletal age. The number of boys was too small (25) to allow subdivision into age groups. The girls with idiopathic scoliosis had a significantly higher response to the growth hormone stimulation test than had the controls between the ages of 7 and 12 years whereas no significant difference could be found for the older girls. In girls with a skeletal age between 9 and 12 years a significantly higher mean serum level of testosterone was found (P less than 0.05). No significant differences could be demonstrated for the remaining hormones. Growth hormone and testosterone are the most important growth factors in prepubertal and pubertal children. Thus, the present findings suggest a hormonal basis for the increased stature in children with idiopathic scoliosis which has previously been reported.

  15. Neural progenitor and hemopoietic stem cells inhibit the growth of low-differentiated glioma.

    Science.gov (United States)

    Baklaushev, V P; Grinenko, N F; Savchenko, E A; Bykovskaya, S N; Yusubalieva, G M; Viktorov, I V; Bryukhovetskii, A S; Bryukhovetskii, I S; Chekhonin, V P

    2012-02-01

    The effects of neural progenitor and hemopoietic stem cells on C6 glioma cells were studied in in vivo and in vitro experiments. Considerable inhibition of proliferation during co-culturing of glioma cells with neural progenitor cells was revealed by quantitative MTT test and bromodeoxyuridine incorporation test. Labeled neural progenitor and hemopoietic stem cells implanted into the focus of experimental cerebral glioma C6 survive in the brain of experimental animals for at least 7 days, migrate with glioma cells, and accumulate in the peritumoral space. Under these conditions, neural progenitor cells differentiate with the formation of long processes. Morphometric analysis of glioma cells showed that implantation of neural progenitor and hemopoietic stem cells is accompanied by considerable inhibition of the growth of experimental glioma C6 in comparison with the control. The mechanisms of tumor-suppressive effects of neural and hemopoietic stem cells require further investigation.

  16. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  17. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  18. Network effect of knowledge spillover: Scale-free networks stimulate R&D activities and accelerate economic growth

    Science.gov (United States)

    Konno, Tomohiko

    2016-09-01

    We study how knowledge spillover networks affect research and development (R&D) activities and economic growth. For this purpose, we extend a Schumpeterian growth model to the one on networks that depict the knowledge spillover relationships of R&D. We show that scale-free networks stimulate R&D activities and accelerate economic growth.

  19. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  20. Muller glia, vision-guided ocular growth, retinal stem cells, and a little serendipity: the Cogan lecture.

    Science.gov (United States)

    Fischer, Andy J

    2011-09-29

    Hypothesis-driven science is expected to result in a continuum of studies and findings along a discrete path. By comparison, serendipity can lead to new directions that branch into different paths. Herein, I describe a diverse series of findings that were motivated by hypotheses, but driven by serendipity. I summarize how investigations into vision-guided ocular growth in the chick eye led to the identification of glucagonergic amacrine cells as key regulators of ocular elongation. Studies designed to assess the impact of the ablation of different types of neurons on vision-guided ocular growth led to the finding of numerous proliferating cells within damaged retinas. These proliferating cells were Müller glia-derived retinal progenitors with a capacity to produce new neurons. Studies designed to investigate Müller glia-derived progenitors led to the identification of a domain of neural stem cells that form a circumferential marginal zone (CMZ) that lines the periphery of the retina. Accelerated ocular growth, caused by visual deprivation, stimulated the proliferation of CMZ progenitors. We formulated a hypothesis that growth-regulating glucagonergic cells may regulate both overall eye size (scleral growth) and the growth of the retina (proliferation of CMZ cells). Subsequent studies identified unusual types of glucagonergic neurons with terminals that ramify within the CMZ; these cells use visual cues to control equatorial ocular growth and the proliferation of CMZ cells. Finally, while studying the signaling pathways that stimulate CMZ and Müller glia-derived progenitors, serendipity led to the discovery of a novel type of glial cell that is scattered across the inner retinal layers.

  1. Stem growth of woody species at the Nkuhlu exclosures, Kruger National Park: 2006–2010

    Directory of Open Access Journals (Sweden)

    Peter F. Scogings

    2011-03-01

    Full Text Available An important aspect of managing African conservation areas involves understanding how large herbivores affect woody plant growth. Yet, data on growth rates of woody species in savannas are scarce, despite its critical importance for developing models to guide ecosystem management. What effect do browsing and season have on woody stem growth? Assuming no growth happens in the dry season, browsing should reduce stem growth in the wet season only. Secondly, do functional species groups differ in stem growth? For example, assuming fine-leaved, spiny species’ growth is not compromised by carbon-based chemical defences, they should grow faster than broad-leaved, chemically defended species. Dendrometers were fixed at 20 cm in height on the main stems of 244 random plants of six woody species in three plots (all large herbivores excluded, partial exclusion, and control and observed from late 2006 to early 2010. Average monthly increment (AMI per dendrometer and season (dry, wet was calculated and the interaction between plot and season tested per species, controlling for initial stem girth. AMIs of Combretum apiculatum, Dichrostachys cinerea and Grewia flavescens were zero in the dry season, whilst those of Acacia exuvialis, Acacia grandicornuta and Euclea divinorum were either positive or negative in the dry season. Wet-season AMI of D. cinerea and dry-season AMI of G. flavescens tended to be reduced by browser exclusion. Net AMI (sum of the seasonal AMIs was tested per species, but results suggested that only D. cinerea tended to be affected by browser exclusion. The results also suggested that stem radial growth of some fast-growing species is more prone to reduction by browser exclusion than the growth of other species, potentially reducing their competitiveness and increasing their risk of extirpation. Finally, the usefulness of grouping woody species into simple functional groups (e.g. fine-leaved vs. broad-leaved for ecosystem management

  2. Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism

    NARCIS (Netherlands)

    Schop, D.; Janssen, F.W.; Borgart, E.; Bruijn, de J.D.; Dijkhuizen-Radersma, van R.

    2008-01-01

    For the continuous and fast expansion of mesenchymal stem cells (MSCs), microcarriers have gained increasing interest. The aim of this study was to evaluate the growth and metabolism profiles of MSCs, expanded in a microcarrier-based cultivation system. We investigated various cultivation conditions

  3. Growth hormone treatment in Turner syndrome accelerates growth and skeletal maturation

    NARCIS (Netherlands)

    C. Rongen-Westerlaken (Ciska); J.M. Wit (Jan); S.M.P.F. de Muinck Keizer-Schrama (Sabine); B.J. Otten (Barto); W. Oostdijk (Wilma); H.A. Delemarre-van der Waal (H.); M.H. Gons (M.); A.G. Bot (Alice); J.L. van den Brande (J.)

    1992-01-01

    textabstractSixteen girls with Turner syndrome (TS) were treated for 4 years with biosynthetic growth hormone (GH). The dosage was 4IU/m2 body surface s.c. per day over the first 3 years. In the 4th year the dosage was increased to 61 U/m2 per day in the 6 girls with a poor height increment and in 1

  4. Transforming growth factor-β superfamily, implications in development and differentiation of stem cells.

    Science.gov (United States)

    Santibanez, Juan F; Kocic, Jelena

    2012-10-01

    Abstract Transforming growth factor-β (TGF-β) family members, including TGF-βs and bone morphogenetic proteins (BMPs), play important roles in directing the fate of stem cells. In embryonic stem cells, the TGF-β superfamily participates in almost all stages of cell development, such as cell maintenance, lineage selection, and progression of differentiation. In adult mesenchymal stem cells (MSCs), TGF-βs can provide competence for early stages of chondroblastic and osteoblastic differentiation, but they inhibit myogenesis, adipogenesis, and late-stage osteoblast differentiation. BMPs also inhibit adipogenesis and myogenesis, but they strongly promote osteoblast differentiation. The TGF-β superfamily members signal via specific serine/threonine kinase receptors and their nuclear effectors termed Smad proteins as well as through non-Smad pathways, which explain their pleiotropic effects in self-renewal and differentiation of stem cells. This review summarizes the current knowledge on the pleiotropic effects of the TGF-β superfamily of growth factors on the fate of stem cells and also discusses the mechanisms by which the TGF-β superfamily members control embryonic and MSCs differentiation.

  5. Accelerated fracture healing in transgenic mice overexpressing an anabolic isoform of fibroblast growth factor 2.

    Science.gov (United States)

    Hurley, Marja M; Adams, Douglas J; Wang, Liping; Jiang, Xi; Burt, Patience Meo; Du, Erxia; Xiao, Liping

    2016-03-01

    The effect of targeted expression of an anabolic isoform of basic fibroblast growth factor (FGF2) in osteoblastic lineage on tibial fracture healing was assessed in mice. Closed fracture of the tibiae was performed in Col3.6-18 kDaFgf2-IRES-GFPsaph mice in which a 3.6 kb fragment of type I collagen promoter (Col3.6) drives the expression of only the 18 kD isoform of FGF2 (18 kDaFgf2/LMW) with green fluorescent protein-sapphire (GFPsaph) as well as Vector mice (Col3.6-IRES-GFPsaph, Vector) that did not harbor the FGF2 transgene. Radiographic, micro-CT, DEXA, and histologic analysis of fracture healing of tibiae harvested at 3, 10 and 20 days showed a smaller fracture callus but accelerated fracture healing in LMWTg compared with Vector mice. At post fracture day 3, FGF receptor 3 and Sox 9 mRNA were significantly increased in LMWTg compared with Vector. Accelerated fracture healing was associated with higher FGF receptor 1, platelet derived growth factors B, C, and D, type X collagen, vascular endothelial cell growth factor, matrix metalloproteinase 9, tartrate resistant acid phosphatase, cathepsin K, runt-related transcription factor-2, Osterix and Osteocalcin and lower Sox9, and type II collagen expression at 10 days post fracture. We postulate that overexpression of LMW FGF2 accelerated the fracture healing process due to its effects on factors that are important in chondrocyte and osteoblast differentiation and vascular invasion.

  6. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  7. In vivo isolation and characterization of stem cells with diverse phenotypes using growth factor impregnated biomatrices.

    Directory of Open Access Journals (Sweden)

    Annalisa Grimaldi

    Full Text Available BACKGROUND: The stimulation to differentiate into specific cell types for somatic stem cells is largely due to a series of internal and external signals coming from the microenvironment that surrounds the stem cell. Even though intensive research has been made, the basic mechanisms of plasticity and/or the molecules regulating stem cells proliferation and differentiation are not completely determined. Potential answers concerning the problems could be derived from the studies of stem cells in culture. METHODOLOGY/PRINCIPLE FINDINGS: We combine a new procedure (using the matrigel biopolymer supplemented with a selected cytokine/growth factor with classic techniques such as light, confocal and electron microscopy, immunohistochemistry and cell culture, to perform an analysis on stem cells involved in the leech (Hirudo medicinalis repair tissues. The leech has a relative anatomical simplicity and is a reliable model for studying a variety of basic events, such as tissue repair, which has a striking similarity with vertebrate responses. Our data demonstrate that the injection of an appropriate combination of the matrigel biopolymer supplemented with a selected cytokine/growth factor in the leech Hirudo medicinalis is a remarkably effective tool for isolating a specific cell population in vivo. A comparative analysis of biopolymer in vivo sorted stem cells indicates that VEGF recruited cells of a hematopoietic/endothelial phenotype whereas MCP-1/CCL2 isolated cells that were of an early myeloid lineage. CONCLUSION: Our paper describes, for the first time, a method allowing not only the isolation of a specific cell population in relation to the cytokine utilized but also the possibility to culture a precise cell type whose isolation is otherwise quite difficult. This approach could be broadly applied to isolate stem cells of diverse origins based on the recruitment stimuli employed.

  8. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sandra Mjoll Jonsdottir-Buch

    Full Text Available BACKGROUND: Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose of this study was to produce human platelet lysates from expired, blood bank-approved platelet concentrates and evaluate their use as growth supplement in the culture of mesenchymal stem cells. METHODOLOGY/PRINCIPAL FINDINGS: In this study, bone marrow-derived mesenchymal stem cells were cultured with one of three culture supplements; fetal bovine serum, lysates from freshly prepared human platelet concentrates, or lysates from expired human platelet concentrates. The effects of these platelet-derived culture supplements on basic mesenchymal stem cell characteristics were evaluated. All cultures maintained the typical mesenchymal stem cell surface marker expression, trilineage differentiation potential, and the ability to suppress in vitro immune responses. However, mesenchymal stem cells supplemented with platelet lysates proliferated faster than traditionally cultured cells and increased the expression of the osteogenic marker gene RUNX-2; yet no difference between the use of fresh and expired platelet concentrates was observed. CONCLUSION/SIGNIFICANCE: Our findings suggest that human platelet lysates produced from expired platelet concentrates can be used as an alternative to fetal bovine serum for mesenchymal stem cell culture to the same extent as lysates from fresh platelets.

  9. Acceleration and localization of subcritical crack growth in a natural composite material.

    Science.gov (United States)

    Lennartz-Sassinek, S; Main, I G; Zaiser, M; Graham, C C

    2014-11-01

    Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault.

  10. Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions

    Indian Academy of Sciences (India)

    A Karthikeyan; K Chandrasekaran; M Geetha; R Kalaiselvi

    2013-11-01

    Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g−1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.

  11. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  12. Gibberellins and stem growth as related to photoperiod Silene armeria L

    Energy Technology Data Exchange (ETDEWEB)

    Talon, M.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (USA))

    1990-04-01

    Stem growth and flowering in the long-day plant Silene armeria L. are induced by exposure to a minimum of 3 to 6 long days (LD). Stem growth continues in subsequent short days (SD), albeit at a reduced rate. The growth retardant tetcyclacis inhibited stem elongation induced by LD, but had no effect on flowering. This indicates that photoperiodic control of stem growth in Silene is mediated by gibberellins (GA). The objective of this study was to analyze the effects of photoperiod on the levels and distribution of endogenous GAs in Silene and to determine the nature of the photoperiodic after-effect on stem growth in this plant. The GAs identified in extracts from Silene by full-scan combined gas chromatography-mass spectrometry are members of the early 13-hydroxylation pathway. All of these GAs were present in plants under SD as well as under LD conditions. The GA{sub 53} level was highest in plants in SD, and decreased in plants transferred to LD conditions. By contrast, GA{sub 19}, GA{sub 20}, and GA{sub 1} initially increased in plants transferred to LD, and then declined. Likewise, when Silene plants were returned from LD to SD, there was an increase in GA{sub 53}, and a decrease in GA{sub 19}, GA{sub 20}, and GA{sub 1} which ultimately reached levels similar to those found in plants kept in SD. Thus, measurements of GA levels in whole shoots of Silene as well as in individual parts of the plant suggest that the photoperiod modulates GA metabolism mainly through the rate of conversion of GA{sub 53}. As a result of LD induction, GA{sub 1} accumulates at its highest level in shoot tips which, in turn, results in stem elongation. In addition, LD also appear to increase the sensitivity of the tissue to GA, and this effect is presumably responsible for the photoperiodic after-effect on stem elongation in Silene.

  13. An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies.

    Science.gov (United States)

    Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick; Hölttä, Teemu; Choat, Brendan; Meir, Patrick; O'Grady, Anthony; Tissue, David; Zweifel, Roman; Sevanto, Sanna; Pfautsch, Sebastian

    2017-02-01

    Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale.

  14. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  15. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  16. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    Science.gov (United States)

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  17. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    Science.gov (United States)

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  18. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    Science.gov (United States)

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  19. Elastic modulus affects the growth and differentiation of neural stem cells

    Directory of Open Access Journals (Sweden)

    Xian-feng Jiang

    2015-01-01

    Full Text Available It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes.

  20. Elastic modulus affects the growth and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xian-feng Jiang; Kai Yang; Xiao-qing Yang; Ying-fu Liu; Yuan-chi Cheng; Xu-yi Chen; Yue Tu

    2015-01-01

    It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron speciifc enolase, glial ifbrillary acidic protein, and myelin basic protein expression was detected by immunolfuorescence. Moreover, lfow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These ifndings con-ifrm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re-sults in a more obvious trend of cell differentiation into astrocytes.

  1. Stem cells and biopharmaceuticals: vital roles in the growth of tissue-engineered small intestine.

    Science.gov (United States)

    Belchior, Gustavo Gross; Sogayar, Mari Cleide; Grikscheit, Tracy Cannon

    2014-06-01

    Tissue engineering currently constitutes a complex, multidisciplinary field exploring ideal sources of cells in combination with scaffolds or delivery systems in order to form a new, functional organ to replace native organ lack or loss. Short bowel syndrome (SBS) is a life-threatening condition with high morbidity and mortality rates in children. Current therapeutic strategies consist of costly and risky allotransplants that demand lifelong immunosuppression. A promising alternative is the implantation of autologous organoid units (OU) to create a tissue-engineered small intestine (TESI). This strategy is proven to be stem cell and mesenchyme dependent. Intestinal stem cells (ISCs) are located at the base of the crypt and are responsible for repopulating the cycling mucosa up to the villus tip. The stem cell niche governs the biology of ISCs and, together with the rest of the epithelium, communicates with the underlying mesenchyme to sustain intestinal homeostasis. Biopharmaceuticals are broadly used in the clinic to activate or enhance known signaling pathways and may greatly contribute to the development of a full-thickness intestine by increasing mucosal surface area, improving blood supply, and determining stem cell fate. This review will focus on tissue engineering as a means of building the new small intestine, highlighting the importance of stem cells and recombinant peptide growth factors as biopharmaceuticals.

  2. Basic fibroblast growth factor and its receptors in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Ales Hampl

    2005-12-01

    Full Text Available Human embryonic stem cells (hESCs are pluripotent stem cells with long-lasting capacity to self-renew and differentiate into various cell types of endodermal, ectodermal or mesodermal origin. Unlike mouse ESCs (mESCs, which can be maintained in an undifferentiated state simply by adding leukemia inhibitory factor (LIF into the culture medium, hESCs are notorious for the sustained willingness to differentiate and not yet clearly defined signaling pathways that are crucial for their "stemness". Presently, our knowledge involves only limited number of growth factor signaling pathways that appear to be biologically relevant for stem cell functions in vitro. These include BMP, TGFbeta, Wnt, and FGF signaling pathway. The purpose of this review is to summarize recent data on the expression of FGFs and their receptors in hESCs, and critically evaluate the potential effects of FGF signals for their undifferentiated growth and/or differentiation in context with our current understanding of FGF/FGFR biology.

  3. Endogenous gibberellins and stem growth as related to photoperiod in Silene armeria L

    Energy Technology Data Exchange (ETDEWEB)

    Talon, M.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (USA))

    1989-04-01

    The early 13-hydroxylation gibberellin (GA) pathway operates in the long-day plant Silene armeria grown under both long-day (LD) and short-day (SD) conditions. Thus, induction of stem growth must be related to quantitative changes in GA pattern. Using GC-SIM-MS and GAs labeled with stable isotopes as internal standards, the levels of GA{sub 53}, GA{sub 19}, GA{sub 20}, and GA{sub 1} were measured in shoots and various organs of plants grown under different photoperiods. Exposure to 8 LD decreased the levels of GA{sub 53} and GA{sub 19}, and increased the levels of GA{sub 20} and particularly of GA{sub 1}; the latter GA accumulated to very high levels in expanding leaves and tips. When plants were exposed to LD, followed by SD, GA levels decreased, and the relative increases in stem length were correlated with the level of GA{sub 1} at the time the plants were returned to SD. These observations suggest that GA{sub 53}-oxidase, and probable also GA{sub 19}-oxidase, are under photoperiodic control. Furthermore, GA{sub 1} appears to be active per se in Silene in causing stem growth, since its level was always correlated with the degree of stem elongation.

  4. Keratinocyte Growth Factor-2 on the Proliferation of Corneal Epithelial Stem Cells in Rabbit Alkali Burned Cornea

    Institute of Scientific and Technical Information of China (English)

    Liu; Yongping; Shuqi; Huang; Jianxian; Lin; Wenxin; Zhang

    2007-01-01

    Purpose: To determine whether the topical application of keratinocyte growth factor-2 (KGF-2) can enhance corneal epithelial healing in rabbit alkali burned cornea. In addition, the distribution and proliferation of corneal epithelial stem cells in KGF-2-treated and control corneas were investigated to explain their mechanisms of effects on the epithelium.Methods: Twenty-four New Zealand eyes were divided into four groups, treated with KGF-2 solution (1, 50, 100 μg/ml) and PBS solution. Eighth millimeter filter paper discs, produced by standard paper punch, were soaked for 15 sec in 0.5N NaOH solution. The alkali-soaked discs were applied to the central cornea, centered on the pupil and held gently in position with forceps for 1 min. The cornea was finally irrigated over 1 min with 100 ml balanced salt solution (BSS). Keratinocyte growth factor-2 was then applied topically three times a day. The phosphate-buffered saline (PBS) group was served as a control. Each corneal epithelial defect was subsequently photographed every 24 hours with a slit lamp and was measured by computer-assisted digitizer. In each group, two rabbits were sacrificed for light microscopic examination after the interval of 7, 14 and 21 days. Meanwhile, the cornea epithelium was examined by immunohistochemistry for P63, AE5, EGFR.Results: Topical application of 10 μg/ml to 100 μg/ml KGF-2 significantly accelerated corneal epithelial wound healing when compared with controls. After 24 hours,epithelial healing rate of the 100 μg/ml KGF-2 group and the PBS treated group was (74±6)% and (40±8)% (P < 0.05). After 48 hours, the rate of the C group was (94±6)%, whereas in the control group it was (73±12)% (P < 0.05). Epithelial defects were often recurrent, which happened only two times in the 100 μg/ml KGF-2-treated group, but many times in the control group. In the corneal epithelial stem cell analysis, the number of the P63 positive cells was higher in the KGF-2-treated corneal

  5. Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth

    Directory of Open Access Journals (Sweden)

    Revathi Shekar

    2012-01-01

    Conclusions: Permanent and deciduous teeth are both viable sources of stem cells. The permanent teeth were easier to culture because of a lower chance of contamination with oral microflora. The growth characteristics of the cells obtained from both these sources were similar. However, there was a difference in the ratio of fibroblastoid cells to epithelioid cells between the cultures obtained from the permanent and deciduous teeth.

  6. Platelet Lysates Produced from Expired Platelet Concentrates Support Growth and Osteogenic Differentiation of Mesenchymal Stem Cells

    OpenAIRE

    Sandra Mjoll Jonsdottir-Buch; Ramona Lieder; Olafur Eysteinn Sigurjonsson

    2013-01-01

    BACKGROUND: Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose ...

  7. Target disruption of ribosomal protein pNO40 accelerates aging and impairs osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Lin, Yen-Ming; Wu, Chih-Ching; Chang, Yu-Chen; Wu, Chu-Han; Ho, Hsien Li; Hu, Ji Wei; Chang, Ren-Chi; Wang, Chung-Ta; Ouyang, Pin

    2016-01-22

    pNO40/PS1D, a novel nucleolar protein, has been characterized as a core protein of eukaryotic 60S ribosome and at least two splicing forms of pNO40 mRNAs with alternative starting sites have been identified. Through production of knockout (ko) mice with either exon 2 (△E2), exon 4 (△E4) or △E2+E4 targeted disruption we identified a cryptic splicing product occurring in the ko tissues examined which in general cannot be observed in regular RT-PCR detection of wild-type (wt) animals. Among ko animals, △E4 null embryos exhibited prominent senescence-associated β-galactosidase (SA-β-gal) staining, a marker for senescent cells, in notochord, forelimbs and heart while bone marrow-derived mesenchymal stem cells (MSCs) from △E4 null mice developed accelerated aging and osteogenic differentiation defects compared to those from wt and other isoform mutant mice. Examination of the causal relationship between pNO40 deficiency and MSC-accelerated aging revealed △E4 null disruption in MSCs elicits high levels of ROS and elevated expression levels of p16 and Rb but not p53. Further analysis with iTraq identified CYP1B1, a component of the cytochrome p450 system, as a potential molecule mediating ROS generation in pNO40 deficient MSCs. We herein established a mouse model of MSC aging through pNO40-targeted depletion and demonstrated the effects of loss of pNO40 on bone homeostasis.

  8. Mesenchymal stem cells develop tumor tropism but do not accelerate breast cancer tumorigenesis in a somatic mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Lydia Usha

    Full Text Available The role of mesenchymal stem cells (MSCs on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves.

  9. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    Directory of Open Access Journals (Sweden)

    Michael J Smout

    2015-10-01

    Full Text Available Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA. Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world.

  10. Acceleration of Medpor implant fibrovascularization with local vascular endothelial growth-factor injections: An experimental study

    Directory of Open Access Journals (Sweden)

    Mert Demirel

    2015-12-01

    Full Text Available Objective: Medpor is a biocompatible, high-density porous polyethylene implant that is used for multiple indications in plastic surgery. The most frequent complications associated with the Medpor implant are infection and implant exposure. The primary cause of these complications is poor fibrovascularization of the Medpor implant and poor nourishment of the overlying skin. The present experimental study aimed to determine whether vascular endothelial growth factor (VEGF could accelerate and increase Medpor implant fibrovascularization in vivo, and thereby improve local nourishment and prevent complications. Materials and Methods: The Medpor implant was inserted under the dorsal skin area in 40 Sprague-Dawley rats. 20 rats receiving local VEGF injections comprised the study group. The control group received saline injections. Fibrovascularization of the Medpor implants was compared. Results: In the rats injected with VEGF, the Medpor implant fibrovascularized faster, and there were more newly formed blood vessels, as compared with those in the control group. Conclusion: These findings have led to our use of VEGF-like agents that the accelerate angiogenesis in the Medpor implant as a means to reduce the incidence of such complications as infection and implant exposure. [Arch Clin Exp Surg 2015; 4(4.000: 196-201

  11. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    Science.gov (United States)

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  12. C. elegans nucleostemin is required for larval growth and germline stem cell division.

    Directory of Open Access Journals (Sweden)

    Michelle M Kudron

    Full Text Available The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1 in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1 leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.

  13. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    Science.gov (United States)

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  14. Salinomycin inhibits the growth of colorectal carcinoma by targeting tumor stem cells.

    Science.gov (United States)

    Zhang, Chen; Tian, Yaping; Song, Feiyu; Fu, Changhao; Han, Bo; Wang, Yi

    2015-11-01

    Salinomycin is a monocarboxylic polyether antibiotic that has been reported to induce apoptosis in various types of cancer cells with specificity for cancer stem cells. However, its anticancer effect in colorectal cancer stem cells has never been reported. In the present study, we examined the ability of salinomycin to induce cell death in the colorectal cancer stem cell line CD44+EpCAM+ HCT-116, and we measured its in vivo tumor inhibition capacity. Salinomycin dose-dependently induced cytotoxicity in the CD44+EpCAM+ HCT-116 cells and inhibited colony formation. Salinomycin treatment was shown to induce apoptosis, as evidenced by nuclear fragmentation, an increase in the proportion of acridine orange/ethidium bromide-positive cells and an increase in the percentage of Annexin V-positive cells. Apoptosis was induced in colorectal cancer stem cells in a caspase-dependent manner, as shown by an increase in the levels of cleaved caspase-3, -8 and -9. JC-1 staining further revealed that salinomycin induced colorectal cancer cell apoptosis via the mitochondrial pathway. In addition, salinomycin treatment of xenograft mice inhibited the growth of tumors derived from the CD44+EpCAM+ HCT-116 cells. The present study demonstrated that the antibiotic salinomycin exerts an anti-colorectal cancer effect in vitro and in vivo, suggesting salinomycin as a potential drug for colorectal cancer therapy.

  15. The Hippo pathway regulates homeostatic growth of stem cell niche precursors in the Drosophila ovary.

    Science.gov (United States)

    Sarikaya, Didem P; Extavour, Cassandra G

    2015-02-01

    The Hippo pathway regulates organ size, stem cell proliferation and tumorigenesis in adult organs. Whether the Hippo pathway influences establishment of stem cell niche size to accommodate changes in organ size, however, has received little attention. Here, we ask whether Hippo signaling influences the number of stem cell niches that are established during development of the Drosophila larval ovary, and whether it interacts with the same or different effector signaling pathways in different cell types. We demonstrate that canonical Hippo signaling regulates autonomous proliferation of the soma, while a novel hippo-independent activity of Yorkie regulates autonomous proliferation of the germ line. Moreover, we demonstrate that Hippo signaling mediates non-autonomous proliferation signals between germ cells and somatic cells, and contributes to maintaining the correct proportion of these niche precursors. Finally, we show that the Hippo pathway interacts with different growth pathways in distinct somatic cell types, and interacts with EGFR and JAK/STAT pathways to regulate non-autonomous proliferation of germ cells. We thus provide evidence for novel roles of the Hippo pathway in establishing the precise balance of soma and germ line, the appropriate number of stem cell niches, and ultimately regulating adult female reproductive capacity.

  16. Multi-layered environmental regulation on the homeostasis of stem cells: the saga of hair growth and alopecia.

    Science.gov (United States)

    Chen, Chih-Chiang; Chuong, Cheng Ming

    2012-04-01

    Stem cells are fascinating because of their potential in regenerative medicine. Stem cell homeostasis has been thought to be mainly regulated by signals from their adjacent micro-environment named the "stem cell niche". However, recent studies reveal that there can be multiple layers of environmental controls. Here we review these environmental controls using the paradigm of hair stem cells, because to observe and analyze the growth of hair is easier due to their characteristic cyclic regeneration pattern. The length of hair fibers is regulated by the duration of the growth period. In the hair follicles, hair stem cells located in the follicle bulge interact with signals from the dermal papilla. Outside of the follicle, activation of hair stem cells has been shown to be modulated by molecules released from the intra-dermal adipose tissue as well as body hormone status, immune function, neural activities, and aging. The general physiological status of an individual is further influenced by circadian rhythms and changing seasons. The interactive networks of these environmental factors provide new understanding on how stem cell homeostasis is regulated, inspiring new insights for regenerative medicine. Therapies do not necessarily have to be achieved by using stem cells themselves which may constitute a higher risk but by modulating stem cell activity through targeting one or multiple layers of their micro- and macro-environments.

  17. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    Full Text Available Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs, and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2 acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI. UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31(+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.

  18. Apigenin accelerates lipopolysaccharide induced apoptosis in mesenchymal stem cells through suppressing vitamin D receptor expression

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huan-tian; ZHA Zhen-gang; CAOJia-hui; LIANG Zu-jian; WU Hao; HE Ming-tao; ZANG Xiao; YAO Ping; ZHANG Jia-qing

    2011-01-01

    Background Transplantation of mensenchymal stem cells (MSCs) has been proposed as a promising way for tissue engineering.However,the application of MSCs for transplantation will undergo apoptosis due to the extremely harsh microenvironment such as excessive inflammation.Apigenin (API) has been reported to protect cells against inflammatory damage and cell death by exhibiting anti-inflammatory and anti-oxidative capacity.Here we investigated the modulatory effects of API in lipopolysaccharide (LPS)-mediated inflammation and apoptosis of MSCs,and further defined the underlying mechanism.Methods Effects of different concentrations of API (0,5,10,20,40 and 80 μmol/L) for 24 hours,and LPS (0,0.5 and 5.0 μg/ml) for 6 hours and 24 hours on MSCs viability were assayed by MTT.Based on this,MSCs were pretreated with different concentrations of API (0-40 μmol/L) at the indicated times (6,12 and 24 hours) followed by exposure to 5 μg/ml LPS for 24 hours.MTT,phase-contrast microscopy,annexinV/propidium iodide (PI) double stain flow cytometry (FCM) and Hoechst staining were applied to explore the effects of API on MSCs induced by 5 μg/ml LPS for 24 hours.In addition,reverse-transcription polymerase chain reaction (RT-PCR) was applied to detect the mRNA expression of pro-inflammatory factors including cyclooxygenase-2 (COX-2),inducible nitric oxide synthase (iNOS),nuclear factor-kappa B (NF-KB),pro-apoptotic gene caspase-3,Bad,and anti-apoptotic gene Bcl-2.Moreover,AutoDock software was used to imitate the docking score of API and vitamin D receptor (VDR).In parallel,Western blotting and RT-PCR were used to investigate protein and mRNA expression of VDR.Results MSCs stimulated with LPS 5 μg/ml for 24 hours was used as a model of apoptosis induced by over inflammatory stimulus.API (0-40 μmol/L) had non-toxic effect on MSCs; however,it could decrease mRNA expression of COX-2,iNOS and NF-KB at different time points in MSCs induced by LPS,except for API at the concentration of

  19. Paternal Insulin-like Growth Factor 2 (Igf2 Regulates Stem Cell Activity During Adulthood

    Directory of Open Access Journals (Sweden)

    Vilma Barroca

    2017-02-01

    Full Text Available Insulin-like Growth Factor 2 (IGF2 belongs to the IGF/Insulin pathway, a highly conserved evolutionarily network that regulates growth, aging and lifespan. Igf2 is highly expressed in the embryo and in cancer cells. During mouse development, Igf2 is expressed in all sites where hematopoietic stem cells (HSC successively expand, then its expression drops at weaning and becomes undetectable when adult HSC have reached their niches in bones and start to self-renew. In the present study, we aim to discover the role of IGF2 during adulthood. We show that Igf2 is specifically expressed in adult HSC and we analyze HSC from adult mice deficient in Igf2 transcripts. We demonstrate that Igf2 deficiency avoids the age-related attrition of the HSC pool and that Igf2 is necessary for tissue homeostasis and regeneration. Our study reveals that the expression level of Igf2 is critical to maintain the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSC and their niche. Our data have major clinical interest for transplantation: understanding the changes in adult stem cells and their environments will improve the efficacy of regenerative medicine and impact health- and life-span.

  20. A critical point of male gonad development: neuroendocrine correlates of accelerated testicular growth in rats during early life.

    Directory of Open Access Journals (Sweden)

    Nikolay N Dygalo

    Full Text Available Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during "proportional" period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during "proportional" period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during "proportional" period but the same doses of this GnRH antagonist significantly inhibited "accelerated" testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during "accelerated" period of testicular growth than during "proportional" period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling.

  1. A critical point of male gonad development: neuroendocrine correlates of accelerated testicular growth in rats during early life.

    Science.gov (United States)

    Dygalo, Nikolay N; Shemenkova, Tatjana V; Kalinina, Tatjana S; Shishkina, Galina T

    2014-01-01

    Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH) receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during "proportional" period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during "proportional" period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during "proportional" period but the same doses of this GnRH antagonist significantly inhibited "accelerated" testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during "accelerated" period of testicular growth than during "proportional" period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling.

  2. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    Science.gov (United States)

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT.

  3. Deep Soil Conditions Make Mediterranean Cork Oak Stem Growth Vulnerable to Autumnal Rainfall Decline in Tunisia

    Directory of Open Access Journals (Sweden)

    Lobna Zribi

    2016-10-01

    Full Text Available Tree rings provide fruitful information on climate features driving annual forest growth through statistical correlations between annual tree growth and climate features. Indices built upon tree growth limitation by carbon sequestration (source hypothesis or drought-driven cambial phenology (sink hypothesis can be used to better identify underlying processes. We used both analytical frameworks on Quercus suber, a sparsely studied species due to tree ring methodological issues, and growing on a favorable sub-humid Mediterranean climate and deep soil conditions in Tunisia (North Africa. Statistical analysis revealed the major role of autumnal rainfall before the growing season on annual tree growth over the 1918–2008 time series. Using a water budget model, we were able to explain the critical role of the deep soil water refill during the wet season in affecting both the drought onset controlling growth phenology and the summer drought intensity affecting carbon assimilation. Analysis of recent climate changes in the region additionally illustrated an increase in temperatures enhancing the evaporative demand and advancing growth start, and a decline in rainfalls in autumn, two key variables driving stem growth. We concluded on the benefits of using process-based indices in dendrochronological analysis and identified the main vulnerability of this Mediterranean forest to autumnal rainfall decline, a peculiar aspect of climate change under summer-dry climates.

  4. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  5. Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Yu-li HUANG; Zhi-gao JIANG; Ruo-feng QIU; Wei-yi MAI; Jian KUANG; Xiao-yan CAI; Yu-gang DONG; Yun-zhao HU; Yuan-bin SONG; An-ping CAI

    2012-01-01

    Objective:To explore the effects of insulin-like growth factor-1 (IGF-1) on migration,proliferation and differentiation of mesenchymal stem cells (MSCs).Methods:MSCs were obtained from Sprague-Dawley rats by a combination of gradient centrifugation and cell culture techniques and treated with IGF-1 at concentrations of 5-20 ng/ml.Proliferation of MSCs was determined as the mean doubling time.Expression of CXC chemokine receptor 4 (CXCR4)and migration property were determined by flow cytometry and transwell migration essay,respectively.mRNA expression of GATA-4 and collagen ∥ was determined by reverse transcription-polymerase chain reaction (RT-PCR).Results:The mean doubling time of MSC proliferation was decreased,and the expression of CXCR4 on MSCs and migration of MSCs were increased by IGF-1,all in a dose-dependent manner,while the optimal concentration of IGF-1 on proliferation and migration was different.IGF-1 did not affect the expression of GATA-4 or collagen ∥ mRNA.Conclusions:IGF-1 dose-dependently stimulated the proliferation of MSCs,upregulated the expression of CXCR4,and accelerated migration.There was no apparent differentiation of MSCs to cardiomyocytes or chondrocytes after culturing with IGF-1 alone.

  6. The regulatory niche of intestinal stem cells.

    Science.gov (United States)

    Sailaja, Badi Sri; He, Xi C; Li, Linheng

    2016-09-01

    The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.

  7. Accelerated kinetics and mechanism of growth of boride layers on titanium under isothermal and cyclic diffusion

    Science.gov (United States)

    Sarma, Biplab

    2011-12-01

    The tendency of titanium (Ti) and its alloys to wear, gall and seize during high contact stresses between sliding surfaces severely limits their applications in bearings, gears etc. One way to mitigate these problems is to modify their surfaces by applying hard and wear resistant surface coatings. Boriding, which involves solid state diffusion of boron (B) into Ti, thereby forming hard surface layers consisting of TiB2 and TiB compounds has been shown to produce extremely high wear resistant surfaces in Ti and its alloys. The growth kinetics of these layers are, however, limited by the low diffusivities of B in the high melting TiB2 and TiB compounds. On the basis of the fact that HCP metals such as Ti show enhanced (anomalous) self-diffusion near the phase transition temperature, the first hypothesis of this work has been that the diffusivity enhancement should cause rapid ingress of B atoms, thereby accelerating the growth of the hard boride layers. Isothermal boriding experiments were performed close to phase transition temperature (890, 910, and 915°C) for time periods ranging from 3 to 24 hours. It was found that indeed a much deeper growth of TiB into the Ti substrate (˜75 mum) occurred at temperatures very close to the transition temperature (910°C), compared to that obtained at 1050°C. A diffusion model based on error-function solutions of Fick's second law was developed to quantitatively illustrate the combined effects of the normal B diffusion in the TiB phase and the anomalous B diffusion in Ti phase in accelerating TiB layer growth. Furthermore, isothermal boriding experiments close to transition temperature (900°C) for a period of 71 hours resulted in coating thickness well above 100 mum, while at 1050°C, the layer growth saturated after about 24 hours of treatment time. In the second part of this work, a novel approach named "cyclic-phase-changediffusion, (CPCD)," to create deeper TiB2 and TiB coating layers on CP-Ti by cyclic thermal processing

  8. Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere

    NARCIS (Netherlands)

    Laube, J.C.; Martinerie, P.; Witrant, E.; Brenninkmeijer, C.A.M.; Bolder, M.; Rockmann, T.; van der Veen, C; Sturges, W.T.

    2010-01-01

    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep f

  9. Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere

    DEFF Research Database (Denmark)

    Laube, J.C.; Martinerie, P.; Witrant, E.

    2010-01-01

    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep...

  10. Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon.

    Science.gov (United States)

    Hartati, Sri; Sudarmonowati, Enny; Park, Yong Woo; Kaku, Tomomi; Kaida, Rumi; Baba, Kei'ichi; Hayashi, Takahisa

    2008-06-01

    In this study, poplar (Populus alba) cellulase (PaPopCel1) was overexpressed in a tropical Leguminosae tree, sengon (Paraserianthes falcataria), by the Agrobacterium tumefaciens method. PaPopCel1 overexpression increased the length and width of stems with larger leaves, which showed a moderately higher density of green color than leaves of the wild type. The pairs of leaves on the transgenic plants closed more slowly during sunset than those on the wild-type plants. When main veins from each genotype were excised and placed on a paper towel, however, the leaves of the transgenic plants closed more rapidly than those of the wild-type plant. Based on carbohydrate analyses of cell walls, the leaves of the transgenic plants contained less wall-bound xyloglucan than those of the wild-type plants. In situ xyloglucan endotransglucosylase activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, occurred in the parenchyma cells (motor cells) of the petiolule pulvinus attached to the main vein, although the transgenic plant incorporated less whole xyloglucan than the wild-type plant. These observations support the hypothesis that the paracrystalline sites of cellulose microfibrils are attacked by poplar cellulase, which loosens xyloglucan intercalation, resulting in an irreversible wall modification. This process could be the reason why the overexpression of poplar cellulase both promotes plant growth and disturbs the biological clock of the plant by altering the closing movements of the leaves of the plant.

  11. TOR signaling regulates planarian stem cells and controls localized and organismal growth.

    Science.gov (United States)

    Peiris, T Harshani; Weckerle, Frank; Ozamoto, Elyse; Ramirez, Daniel; Davidian, Devon; García-Ojeda, Marcos E; Oviedo, Néstor J

    2012-04-01

    Target of Rapamycin (TOR) controls an evolutionarily conserved signaling pathway that modulates cellular growth and division by sensing levels of nutrients, energy and stress. As such, TOR signaling is a crucial component of tissues and organs that translates systemic signals into cellular behavior. The ubiquitous nature of TOR signaling, together with the difficulty of analyzing tissue during cellular turnover and repair, have limited our understanding of how this kinase operates throughout the body. Here, we use the planarian model system to address TOR regulation at the organismal level. The planarian TOR homolog (Smed-TOR) is ubiquitously expressed, including stem cells (neoblasts) and differentiated tissues. Inhibition of TOR with RNA interference severely restricts cell proliferation, allowing the study of neoblasts with restricted proliferative capacity during regeneration and systemic cell turnover. Strikingly, TOR signaling is required for neoblast response to amputation and localized growth (blastema). However, in the absence of TOR signaling, regeneration takes place only within differentiated tissues. In addition, TOR is essential for maintaining the balance between cell division and cell death, and its dysfunction leads to tissue degeneration and lack of organismal growth in the presence of nutrients. Finally, TOR function is likely to be mediated through TOR Complex 1 as its disruption recapitulates signs of the TOR phenotype. Our data reveal novel roles for TOR signaling in controlling adult stem cells at a systemic level and suggest a new paradigm for studying TOR function during physiological turnover and regeneration.

  12. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  13. Growth dynamics and cytoskeleton organization during stem maturation and gravity-induced stem bending in Zea mays L

    Science.gov (United States)

    Collings, D. A.; Winter, H.; Wyatt, S. E.; Allen, N. S.; Davies, E. (Principal Investigator)

    1998-01-01

    Characterization of gravitropic bending in the maize stem pulvinus, a tissue that functions specifically in gravity responses, demonstrates that the pulvinus is an ideal system for studying gravitropism. Gravistimulation during the second of three developmental phases of the pulvinus induces a gradient of cell elongation across the non-growing cells of the pulvinus, with the most elongation occurring on the lower side. This cell elongation is spatially and temporally separated from normal internodal cell elongation. The three characterized growth phases in the pulvinus correspond closely to a specialized developmental sequence in which structural features typical of cells not fully matured are retained while cell maturation occurs in surrounding internodal and nodal tissue. For example, the lignification of supporting tissue and rearrangement of transverse microtubules to oblique that occur in the internode when cell elongation ceases are delayed for up to 10 d in the adjacent cells of the pulvinus, and only occurs as a pulvinus loses its capacity to respond to gravistimulation. Gravistimulation does not modify this developmental sequence. Neither wall lignification nor rearrangement of transverse microtubules occurs in the rapidly elongating lower side or non-responsive upper side of the pulvinus until the pulvinus loses the capacity to bend further. Gravistimulation does, however, lead to the formation of putative pit fields within the expanding cells of the pulvinus.

  14. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems.

    Science.gov (United States)

    Heinrich, Maria; Hettenhausen, Christian; Lange, Theo; Wünsche, Hendrik; Fang, Jingjing; Baldwin, Ian T; Wu, Jianqiang

    2013-02-01

    Hormones play pivotal roles in regulating plant development, growth, and stress responses, and cross-talk among different hormones fine-tunes various aspects of plant physiology. Jasmonic acid (JA) is important for plant defense against herbivores and necrotic fungi and also regulates flower development; in addition, Arabidopsis mutants over-producing JA usually have stunted stems and wound-induced jasmonates suppress Arabidopsis growth, suggesting that JA is also involved in stem elongation. Gibberellins (GAs) promote stem and leaf growth and modulate seed germination, flowering time, and the development of flowers, fruits, and seeds. However, little is known about the interaction between the JA and GA pathways. Two calcium-dependent protein kinases, CDPK4 and CDPK5, are important suppressors of JA accumulation in a wild tobacco species, Nicotiana attenuata. The stems of N. attenuata silenced in CDPK4 and CDPK5 (irCDPK4/5 plants) had dramatically increased levels of JA and exhibited stunted elongation and had very high contents of secondary metabolites. Genetic analysis indicated that the high JA levels in irCDPK4/5 stems accounted for the suppressed stem elongation and the accumulation of secondary metabolites. Supplementation of GA(3) to irCDPK4/5 plants largely restored normal stem growth to wild-type levels. Measures of GA levels indicated that over-accumulation of JA in irCDPK4/5 stems inhibited the biosynthesis of GAs. Finally, we show that JA antagonizes GA biosynthesis by strongly inhibiting the transcript accumulation of GA20ox and possibly GA13ox, the key genes in GA production, demonstrating that high JA levels antagonize GA biosynthesis in stems.

  15. Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells

    Directory of Open Access Journals (Sweden)

    Davood Mehrabani

    2016-03-01

    Full Text Available One of the readily available sources of mesenchymal stem cells (MSCs is menstrual blood-derived stem cells (Men-SCs, which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL was obtained from 10 women on their third day of menstruation in 2 age groups of 30 to 40 and 40 to 50 years old. Ficoll was used to separate the mononuclear cell fraction. After the Men-SCs were cultured, they were subcultured up to passage 4. Growth behavior and population doubling time were evaluated by seeding 5×104 cells into 12- and 24-well culture plates, and the colonies were enumerated. The expression of CD44, CD90, and CD34 was evaluated. The osteogenic potential was assessed by alizarin red staining. The Men-SCs were shown to be plastic adherent and spindle-shaped. Regarding the growth curves in the 12- and 24-well culture plates, it was demonstrated that in the women aged between 30 and 40 years, population doubling time was 55.5 and 62 hours, respectively, while these values in the women aged between 40 and 50 years were 70.4 and 72.4 hours, correspondingly. Positive expression of CD44 and CD90 and negative expression of CD34 were noted. In the osteogenic differentiation medium, the cells differentiated toward osteoblasts. As human Men-SCs are easily collectable without any invasive procedure and are a safe and rapid source of MSCs, they can be a good candidate for stem cell banking and cell transplantation in women.

  16. A boost of BMP4 accelerates the commitment of human embryonic stem cells to the endothelial lineage.

    Science.gov (United States)

    Goldman, Orit; Feraud, Olivier; Boyer-Di Ponio, Julie; Driancourt, Catherine; Clay, Denis; Le Bousse-Kerdiles, Marie-Caroline; Bennaceur-Griscelli, Annelise; Uzan, Georges

    2009-08-01

    Embryoid bodies (EBs) generated during differentiation of human embryonic stem cells (hESCs) contain vascular-like structures, suggesting that commitment of mesoderm progenitors into endothelial cells occurs spontaneously. We showed that bone morphogenetic protein 4 (BMP4), an inducer of mesoderm, accelerates the peak expression of CD133/kinase insert domain-containing receptor (KDR) and CD144/KDR. Because the CD133(+)KDR(+) population could represent endothelial progenitors, we sorted them at day 7 and cultured them in endothelial medium. These cells were, however, unable to differentiate into endothelial cells. Under standard conditions, the CD144(+)KDR(+) population represents up to 10% of the total cells at day 12. In culture, these cells, if sorted, give rise to a homogeneous population with a morphology typical of endothelial cells and express endothelial markers. These endothelial cells derived from the day 12 sorted population were functional, as assessed by different in vitro assays. When EBs were stimulated by BMP4, the CD144(+)KDR(+) peak was shifted to day 7. Most of these cells, however, were CD31(-), becoming CD31(+) in culture. They then expressed von Willebrand factor and were functional. This suggests that, initially, the BMP4-boosted day 7, CD144(+)KDR(+)CD31(-) population represents immature endothelial cells that differentiate into mature endothelial cells in culture. The expression of OCT3/4, a marker of immaturity for hESCs decreases during EB differentiation, decreasing faster following BMP4 induction. We also show that BMP4 inhibits the global expression of GATA2 and RUNX1, two transcription factors involved in hemangioblast formation, at day 7 and day 12.

  17. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    Directory of Open Access Journals (Sweden)

    Phillip H Beske

    2015-04-01

    Full Text Available Botulinum neurotoxins (BoNTs are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ presynaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.

  18. β-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest

    Science.gov (United States)

    Begalli, Federica; Abballe, Luana; Catanzaro, Giuseppina; Vacca, Alessandra; Napolitano, Maddalena; Tafani, Marco; Giangaspero, Felice; Locatelli, Franco

    2017-01-01

    Cell development is regulated by a complex network of mRNA-encoded proteins and microRNAs, all funnelling onto the modulation of self-renewal or differentiation genes. How intragenic microRNAs and their host genes are transcriptionally coregulated and their functional relationships for the control of neural stem cells (NSCs) are poorly understood. We propose here the intragenic miR-326 and its host gene β-arrestin1 as novel players whose epigenetic silencing maintains stemness in normal cerebellar stem cells. Such a regulation is mediated by CpG islands methylation of the common promoter. Epigenetic derepression of β-arrestin1/miR-326 by differentiation signals or demethylating agents leads to suppression of stemness features and cell growth and promotes cell differentiation. β-Arrestin1 inhibits cell proliferation by enhancing the nuclear expression of the cyclin-dependent kinase inhibitor p27. Therefore, we propose a new mechanism for the control of cerebellar NSCs where a coordinated epigenetic mechanism finely regulates β-arrestin1/miR-326 expression and consequently NSCs stemness and cell growth. PMID:28298929

  19. Overexpression of insulin-like growth factor-II induces accelerated myoblast differentiation.

    Science.gov (United States)

    Stewart, C E; James, P L; Fant, M E; Rotwein, P

    1996-10-01

    Previous studies have shown that exogenous insulin-like growth factors (IGFs) can stimulate the terminal differentiation of skeletal myoblasts in culture and have established a correlation between the rate and the extent of IGF-II secretion by muscle cell lines and the rate of biochemical and morphological differentiation. To investigate the hypothesis that autocrine secretion of IGF-II plays a critical role in stimulating spontaneous myogenic differentiation in vitro, we have established C2 muscle cell lines that stably express a mouse IGF-II cDNA under control of the strong, constitutively active Moloney sarcoma virus promoter, enabling us to study directly the effects of IGF-II overproduction. Similar to observations with other muscle cell lines, IGF-II overexpressing myoblasts proliferated normally in growth medium containing 20% fetal serum, but they underwent enhanced differentiation compared with controls when incubated in low-serum differentiation medium. Accelerated differentiation of IGF-II overexpressing C2 cells was preceded by the rapid induction of myogenin mRNA and protein expression (within 1 h, compared with 24-48 h in controls) and was accompanied by an enhanced proportion of the retinoblastoma protein in an underphosphrylated and potentially active form, by a marked increase in activity of the muscle-specific enzyme, creatine phosphokinase, by extensive myotube formation by 48 h, and by elevated secretion of IGF binding protein-5 when compared with controls. These results confirm a role for IGF-II as an autocrine/paracrine differentiation factor for skeletal myoblasts, and they define a model cell system that will be useful in determining the biochemical mechanisms of IGF action in cellular differentiation.

  20. THE EMERGING ROLE OF INSULIN AND INSULIN-LIKE GROWTH FACTOR SIGNALING IN CANCER STEM CELLS

    Directory of Open Access Journals (Sweden)

    Roberta eMalaguarnera

    2014-02-01

    Full Text Available Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive crosstalk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing upregulation of various IGF signaling components. These findings may have novel translational implications.

  1. Three-dimentional growth of liver / stem cells in vitro under simulated microgravity

    Science.gov (United States)

    Feng, Mei Fu

    Liver is a important and largest parenchymatous organ in vivo, and have complex and diverse structures and functions. In the world, there are many peoples suffers from liver injury and dis-ease, especially in Asia, but serious shortage of donor organ, especially for organic pathological changes, is a big problem in the world. Stem cells have the capabilities to self-renew and differ-entiate into multiple lineages, and are very significant in both theoretical research and clinical applications. Compared with traditional cell culture, cells of 3D growth are more close to their situation in vivo. The specific physics environment in space provides a great opportunity for 3D growth of cells and tissues. Due to the chance for entering into the space is so scarce, to mimic microgravity effects using a rotating cell culture system (RCCS) designed by NASA, and some other methods were studied for cellular 3D growth in vitro. Neonatal mouse liver Cells, hepatic progenitor/stem cells from fetal liver and WB-F344 cells were cultured in a 1:1 mixture of DMEM and F-12 supplemented with 10 % FCS and several factors, and seeded into the RCCS, 6-well and 24-well plates. Their growth characteristic, metabolism, differentiation and gene expression were studied by SEM, Histochemistry, Flow Cytometry, RT-PCR and so on. The results showed: 1. Neonatal mouse liver Cells (1day after birth) seem easy to grow for a three-dimentional-like structure, when the cells were cultured in the RCCS, a cell aggregate formed after 1 day of culture and were kept during 10 days culture. The size of aggregate was about 1 2 mm in diameter. 2. Hepatic progenitor/stem cells from fetal liver seem a good cell resource for liver disease'cell therapy. They expressed AFP and CKs, and no mature hepato-cytes marker and bile duct epithelial cells marker were detected. When were transplanted into Nod-Scid mice, they had multi-potential differentiation. 3. WB-F344 cells, a liver epithelial cell line, could grew well on

  2. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    Science.gov (United States)

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  3. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest.

    Science.gov (United States)

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Fortner, Karen A; Viapiano, Mariano S; Jaworski, Diane M

    2015-08-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth.

  4. Maximum Inhibition of Breast Cancer/Stem Cell Growth by Concomitant Blockage of Key Receptors

    Directory of Open Access Journals (Sweden)

    Mossa Gardaneh

    2012-01-01

    Full Text Available The blockage of cancer cell growth and division is the prime objective in clinical cancer therapy both at early stages and for inhibition of minimal residual disease and relapse. The failure of conventional therapies in treating breast cancer (BC has prompted dissection of signalling pathways involved in BC cell growth and characterisation of cellular receptors. Specific sets of membrane-bound receptors promote disarrayed self-renewal of BC stem cells and deregulated BC cell proliferation. Individual blockage of each receptor promotes only incomplete inhibition of BC cell growth and partial regression of metastasis. Such monotherapies are based on either chemotherapy or monoclonal antibodies. However, they do not provide long-lasting benefits and are further compromised by increasing resistance the cancer cells acquire against therapeutic agents, by their evasion of receptor blockage and by adoption of alternative growth routes that are induced by cross-talks between key receptors. On the other hand, dual targeting approaches, including receptor blockage combined with chemotherapy, produce prolonged overall survival but, nevertheless, complicate treatment by inducing side effects. Based on the complex nature of BC, combined targeted strategies that potentially confer maximum coverage for treatment cannot be effective without overcoming drug resistance initiated and further induced by inter-receptor communications. This implies that a comprehensive strategy based on concomitant inhibition of key receptors could provide an ultimate solution for effective treatment of aggressive types of BC. Such a strategy would likely be capable of targeting breast tumour cells and BC stem cells alike eventually forcing the cancer to regress.

  5. Slug Controls Stem/Progenitor Cell Growth Dynamics during Mammary Gland Morphogenesis

    Science.gov (United States)

    Selmi, Abdelkader; Côme, Christophe; Faraldo, Maria-Luisa M.; Deugnier, Marie-Ange; Savagner, Pierre

    2012-01-01

    Background Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT) “master genes”. EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question. Methodology/Principal Findings Using a Slug–lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10–20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres. Conclusions/Significance We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism

  6. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.

    Directory of Open Access Journals (Sweden)

    Mayssa Nassour

    Full Text Available BACKGROUND: Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question. METHODOLOGY/PRINCIPAL FINDINGS: Using a Slug-lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10-20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres. CONCLUSIONS/SIGNIFICANCE: We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a

  7. Using Automated Point Dendrometers to Analyze Tropical Treeline Stem Growth at Nevado de Colima, Mexico

    Directory of Open Access Journals (Sweden)

    Franco Biondi

    2010-06-01

    Full Text Available The relationship between wood growth and environmental variability at the tropical treeline of North America was investigated using automated, solar-powered sensors (a meteorological station and two dendrometer clusters installed on Nevado de Colima, Mexico (19° 35’ N, 103° 37’ W, 3,760 m a.s.l.. Pure stands of Pinus hartwegii Lindl. (Mexican mountain pine were targeted because of their suitability for tree-ring analysis in low-latitude, high-elevation, North American Monsoon environments. Stem size and hydroclimatic variables recorded at half-hour intervals were summarized on a daily timescale. Power outages, insect outbreaks, and sensor failures limited the analysis to non-consecutive months during 2001–2003 at one dendrometer site, and during 2002–2005 at the other. Combined data from the two sites showed that maximum radial growth rates occur in late spring (May, as soil temperature increases, and incoming short-wave radiation reaches its highest values. Early season (April–May radial increment correlated directly with temperature, especially of the soil, and with solar radiation. Stem expansion at the start of the summer monsoon (June–July was mostly influenced by moisture, and revealed a drought signal, while late season relationships were more varied.

  8. Using automated point dendrometers to analyze tropical treeline stem growth at Nevado de Colima, Mexico.

    Science.gov (United States)

    Biondi, Franco; Hartsough, Peter

    2010-01-01

    The relationship between wood growth and environmental variability at the tropical treeline of North America was investigated using automated, solar-powered sensors (a meteorological station and two dendrometer clusters) installed on Nevado de Colima, Mexico (19° 35' N, 103° 37' W, 3,760 m a.s.l.). Pure stands of Pinus hartwegii Lindl. (Mexican mountain pine) were targeted because of their suitability for tree-ring analysis in low-latitude, high-elevation, North American Monsoon environments. Stem size and hydroclimatic variables recorded at half-hour intervals were summarized on a daily timescale. Power outages, insect outbreaks, and sensor failures limited the analysis to non-consecutive months during 2001-2003 at one dendrometer site, and during 2002-2005 at the other. Combined data from the two sites showed that maximum radial growth rates occur in late spring (May), as soil temperature increases, and incoming short-wave radiation reaches its highest values. Early season (April-May) radial increment correlated directly with temperature, especially of the soil, and with solar radiation. Stem expansion at the start of the summer monsoon (June-July) was mostly influenced by moisture, and revealed a drought signal, while late season relationships were more varied.

  9. Effect of Residual Accelerations on the Crystal Growth of II-VI Semiconductors in Low Earth Orbit

    Science.gov (United States)

    Gillies, D. C.; Su, C.-H.; Szofran, F. R.; Scripa, R. N.; Cobb, S. D.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper compares and summarizes the effects of residual acceleration during crystal growth on the compositional variation of two II-VI solid solution binary alloys (Hg(0.8)Cd(0.2)Te and Hg(0.84)Zn(0.16)Te). The crystals were grown by directional solidification on the second United States Microgravity Payload (USMP-2) and the first United States Microgravity Laboratory (USML-1) missions, respectively. For both alloys, changes in the direction and magnitude of the quasisteady acceleration vector (approximately 0.4- 1 mu g) caused large changes in the radial compositional distribution that demonstrates the importance of residual accelerations, even in the submicrogravity range, for large density gradients in the melt and slow solidification rates. The observed compositional variations will be correlated to changes in the radial flow velocities ahead of the solidification interface.

  10. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.

  11. Impact of carbohydrate supply on stem growth, wood and respired CO{sub 2} {delta}{sup 13}C : assessment by experimental girdling

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury-Danger, F. [Paris-Sud Univ., Orsay Cedex (France). Laboratoire Ecologie, Systematique et Evolution; Centre National de la Recherche Scientifique, Orsay CEDEX (France); AgroParisTech, Paris (France); Paul Verlaine-Metz Univ., Metz (France). Laboratoire des Interactions Ecotoxicologie Biodiversite Ecosystemes; Fresneau, C.; Eglin, T.; Berveiller, D.; Francois, C.; Damesin, C. [Paris-Sud Univ., Orsay Cedex (France). Laboratoire Ecologie, Systematique et Evolution; Centre National de la Recherche Scientifique, Orsay CEDEX (France); AgroParisTech, Paris (France); Lelarge-Trouverie, C. [Paris-Sud Univ., Orsay Cedex (France). Inst. de Biotechnologie des Plantes, Plateforme Metabolisme-Metabolome

    2010-07-15

    In trees, carbohydrate storage and remobilization may affect the carbon isotope signals of sugars exported from leaves, tree organic matter and respired carbon dioxide (CO{sub 2}). This study characterized the impact of a change in the carbon (C) source used for stem functioning on the {delta}{sup 13} C of stem organic matter and respired CO{sub 2}. Girdling experiments were carried out on 2-year old oaks that consisted in removing the bark and phloem around the stem so that the sap would cease to flow. The stem was therefore forced to use its own C reserves to maintain metabolic activity. Trees were girdled at 3 different periods, notably just after budburst, during stem growth, and just after cessation of stem radial growth. Stem radial growth and respiration rate were measured throughout the year. Other measured variables included {delta}{sup 13} C of respired CO{sub 2} and contents of starch and water-soluble fraction in stems and leaves. The study showed that girdling stopped growth, even early in the growing season, leading to a decrease in stem CO{sub 2} efflux. The study demonstrated that leaf carbohydrate supply versus reserve use could be an important factor controlling stem growth and {delta}{sup 13} C of both ring and stem CO{sub 2} efflux. 69 refs., 3 tabs., 5 figs.

  12. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells.

    Science.gov (United States)

    Kutsuzawa, K; Chowdhury, E H; Nagaoka, M; Maruyama, K; Akiyama, Y; Akaike, T

    2006-11-24

    Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.

  13. Accelerating System Development for the Food Chain: A Portfolio of over 30 Projects, Aiming at Impact and Growth

    Directory of Open Access Journals (Sweden)

    Harald Sundmaeker

    2016-08-01

    The FIWARE initiative is accelerating startups and supporting SME type technology developers that are realising solutions for real world business cases, which are serving as reference customers and test cases to assure an end-user acceptance and valid business models. This paper discusses the main food chain related topics and innovation potentials that are addressed as well as outlines the related methodological and technological approaches that are used to facilitate the realisation of impact and growth for commercial exploitation.

  14. Accelerating 21st Century Economic Growth by Implementation of the Lunar Solar Power System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    The World Energy Council (1) makes this declaration. "Given this dramatically uneven distribution and the limited evidence of improvement in economic growth in many developing countries, WEC at the 17th World Congress in Houston in September 1998 concluded that the number one priority in sustainable energy development today for all decision-makers in all countries is to extend access to commercial energy services to the people who do not now have it and to those who will come into the world in the next two decades, largely in developing countries, without such access." By ~2050 the global systems should supply 10 billion people approximately 6.7 kilowatts of thermal power per person or 61,360 kWt-h/y-person of energy. The economic equivalent is ~2 - 3 kWe of electric power per person. The energy must be environmentally clean. The energy must be sufficiently low in cost that the 2 billion poorest people, who now make 1,000 /y-person, can be provided with the new power. A survey of twenty-five options for providing adequate commercial electric power, including solar power satellites in orbit about Earth, concludes that only the Lunar Solar Power System can meet the WEC challenge (2, 3, 4, 5). Maurice Strong is the former CEO of Ontario Hydro and organizer of the 1992 Rio Environmental Summit. Quoting Strong - "I have checked it (LSP System) out with a number of experts, all of whom confirmed that the idea, which has been mooted for some time, may now be ripe to carry forward. --- The project would deliver net new energy to the Earth that is independent of the biosphere, would produce no CO2 or other polluting emissions and have minimal environmental impact compared with other energy sources." (6). Electric energy provided by the LSP System can accelerate terrestrial economic growth in several ways. A cost of less than 1 cent per kilowatt electric hour seems achievable. This allows poor nations to buy adequate energy. Increasing per capita use of electric power is

  15. The Evaluation of Testes Extracts on Spermatogonial Stem Cells’ Self-Renewal Property Compared to Their Specific Growth Factors

    Directory of Open Access Journals (Sweden)

    Sohrab Boozarpour

    2014-07-01

    Full Text Available Introduction: Spermatogonial stem cells are regarded as the continual generator of sperms in males. They possess the potential to regenerate themselves, provided by the niche, which is necessary for substituting the old sperms with the new ones and their population’s maintenance. There are demanding efforts conducted often on spermatogonial stem cells, and some special growth factors with the capability of reestablishment of this niche under experimental circumstances, but there have been few studies on poultries in this respect. Methods: In the present study, the impact of adult mice and roosters testes extracts on colony-formation potential of chicken spermatogonial stem cells in the course of four days, as compared to those of three conventional growth factors (LIF, bFGF and GDNF was investigated. After determination of the optimum concentrations of growth factors, OCT4 gene expression was measured as one of spermatogonial stem cell activities’ signature via Real-time RT-PCR technique during two weeks treatment. Results: The results of colony forming activity show that in vitro treatment by the mice and roosters testes extracts and the three mentioned growth factors (GDNF,bFGF and LIF had a considerably discrepancies in terms of the number of created colonies compared to the control group (without adding any factor after four days. Moreover, the OCT4 over-expressed extremely by these biological impulses after two weeks. Conclusion: The results indicated that the testes extract would be a valuable substitute for non-economical industrial growth factors.

  16. Fatigue crack growth rate does not depend on mantle thickness: an idealized cemented stem construct under torsional loading.

    Science.gov (United States)

    Hertzler, Justin; Miller, Mark A; Mann, Kenneth A

    2002-07-01

    Retrieval studies indicate that cemented stem loosening in femoral components of total hip replacement can initiate at the stem-cement interface. The etiology of the crack propagation process from the stem-cement interface is not well understood, but cracks are typically associated with thin cement mantles. In this study, a combination of experimental and computational methods was used to investigate the fatigue crack propagation process from the stem-PMMA cement interface using a novel torsional loading model. Constructs with thin (1 mm), medium (3 mm) or thick (7 mm) cement mantles were evaluated. Crack growth was stable for all cases and the rate of crack growth diminished with increasing crack length. Crack growth rate did not depend on mantle thickness (p > 0.05) over the first 1 mm of crack length, but cracks in thin mantles reached the full thickness of the mantle in the fewest number of loading cycles. The fracture mechanics-based finite element models indicated decreased stress intensity factors with increasing crack length and were consistent with the experimental findings. When combined with a fatigue crack growth Paris-law for PMMA cement, the finite element models provided reasonable predictions of the crack growth process.

  17. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition.

    Science.gov (United States)

    Han, Wei; He, Ming

    2010-05-01

    The effects of exogenous cellulase application on straw decomposition, soil fertility, and plant growth were investigated with nylon bag and pot experiments. Cellulase application promoted straw decomposition, and the decomposition rates of rice and wheat straw increased by 6.3-26.0% and 6.8-28.0%, respectively, in the nylon bag experiments. In pot experiments soil-available N and P contents, soil cellulase activity, and growth of rice seedlings increased. Soil respiration rate and microbial population were unaffected. Seventy Ug(-1) was the optimal cellulase concentration for plant growth. The exogenous cellulase persisted in soil for more than 100days. Although the data show that exogenous cellulase application can enhance soil fertility and plant growth in the short-term due to the acceleration of straw decomposition and has the potential to be an environment-friendly approach to manage straw, cellulase application to soil seems currently not economical.

  18. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  19. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  20. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  1. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  2. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Panayotov, Ivan; Secret, Emilie; Cunin, Frédérique; Gergely, Csilla; Cuisinier, Frédéric; Martin, Marta

    2014-10-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

  3. The Interleukin-6 and vascular endothelial growth factor in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Negar Azarpira

    2012-01-01

    Full Text Available We studied the correlation between changes in the serum levels of vascular endothelial growth factor (VEGF and interleukin-6 (IL-6 with complications such as acute graft versus host disease (aGVHD, veno-occlusive disease (VOD or occurrence of infection after hematopoietic stem cell transplantation (HSCT. Serum VEGF and IL-6 levels were sequentially measured by enzyme-linked immunosorbant assay (ELISA in 35 patients who had undergone HSCT. Serum levels of IL-6 in patients with aGVHD were increased in comparison with patients without aGVHD, but the difference was not statistically significant. Serum levels of VEGF were only increased in patients with aGVHD during the early days after transplantation. No signi-ficantly altered levels of IL-6 and VEGF were observed in patients with VOD or sepsis. These results demonstrate that rising levels of VEGF and IL-6 may be good and specific biomarkers for transplant aGVHD.

  4. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins.

  5. [Spontaneous rupture of the spleen in a patient treated with chemotherapy and growth factors for stem cell mobilization].

    Science.gov (United States)

    Rossitto, M; Versaci, A; Barbera, A; Broccio, M; Lepore, V; Ciccolo, A

    1998-05-01

    The Authors report a case of spontaneous spleen rupture in a woman with breast cancer treated with chemotherapy and growth factors for stem cell mobilization. After a wide review of the literature, they suppose this therapy, causing a considerable increase of immature cells, that promote the stasis of the splenic microcirculation, can sometime elicit a spontaneous rupture of the organ.

  6. HIGH-DOSE CHEMOTHERAPY WITH STEM-CELL REINFUSION AND GROWTH-FACTOR SUPPORT FOR SOLID TUMORS

    NARCIS (Netherlands)

    DEVRIES, EGE; DEGRAAF, H; VANDERGRAAF, WTA; MULDER, NH; Boonstra, A.

    1995-01-01

    With the help of stem cell reinfusion and hematopoietic growth factors, it is possible to get up to a ten-fold dose increase for certain chemotherapeutic drugs, A number of reasons may have made high-dose chemotherapy less dangerous and the fore more acceptable in a more upfront treatment setting, O

  7. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation.

    Science.gov (United States)

    Zhang, Jinlong; Lian, Min; Cao, Peipei; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Wang, Lingling; Chen, Jiajia; Wang, Yi; Feng, Guijuan; Cui, Zhiming

    2017-04-01

    Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.

  8. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    Science.gov (United States)

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-ichiro; Sazaki, Gen

    2017-01-01

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as ‘antifreeze’ in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing. PMID:28262787

  9. The effect of acceleration on the growth and shedding of laminar separation bubbles

    Science.gov (United States)

    Bhattacharya, Samik; Rival, David

    2015-11-01

    It has been observed that when a laminar boundary layer separates, the shear layer undergoes transition to turbulence and subsequently reattaches to form a laminar separation bubble (LSB). In this work, a SD7003 airfoil, held at an angle of attack of 8 degree, is towed with different acceleration profiles starting from rest. The separation region is then analyzed with time-resolved, planar PIV at short convective times during the initial acceleration phase. The aim of this work is to characterize the variation in size and shedding frequency of the laminar separation bubble with increasing acceleration. We show that the formation and shedding process in the LSB depends on the rate of vorticity-containing mass transported by the separated shear layer. Consequently, any changes in the structure of the shear layer affect the formation of the LSB downstream. Finally, attempts are also made to characterize the shedding frequency of the bubble with increasing acceleration. Here the unsteadiness of the LSB is found to be closely linked to the degree of boundary-layer acceleration on the airfoil surface.

  10. Flow cytometric detection of growth factor receptors in autografts and analysis of growth factor concentrations in autologous stem cell transplantation: possible significance for platelet recovery

    DEFF Research Database (Denmark)

    Schiødt, I; Jensen, Charlotte Harken; Kjaersgaard, E

    2000-01-01

    In order to improve prediction of hematopoietic recovery, we conducted a pilot study, analyzing the significance of growth factor receptor expression in autografts as well as endogenous growth factor levels in blood before, during and after stem cell transplantation. Three early acting (stem cell...... factor (SCF), Flt3 ligand (Flt3) and fetal antigen 1 (FA1)) and three lineage-specific growth factors (EPO, G-CSF and thrombopoietin (Tpo)) were analyzed by ELISA in 16 patients with multiple myeloma (MM) and 16 patients with non-Hodgkin's lymphoma (NHL). The relative number of SCF, Flt3, Tpo and G......-CSF receptor positive, CD34+ progenitor cells were measured by flow cytometry in the leukapheresis product used for transplantation in a subgroup of 15 patients (NHL, n = 8, MM, n = 7). Three factors were identified as having a significant impact on platelet recovery. First, the level of Tpo in blood...

  11. Platelet-Rich Plasma Increases Growth and Motility of Adipose Tissue-Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function.

    Science.gov (United States)

    D'Esposito, Vittoria; Passaretti, Federica; Perruolo, Giuseppe; Ambrosio, Maria Rosaria; Valentino, Rossella; Oriente, Francesco; Raciti, Gregory A; Nigro, Cecilia; Miele, Claudia; Sammartino, Gilberto; Beguinot, Francesco; Formisano, Pietro

    2015-10-01

    Adipose tissue-derived mesenchymal stem cells (Ad-MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet-rich plasma (PRP) on Ad-MSC and adipocyte function. PRP increased Ad-MSC viability, proliferation rate and G1-S cell cycle progression, by at least 7-, 2-, and 2.2-fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad-MSC growth. PRP also accelerated cell migration by at least 1.5-fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR-γ and AP-2 mRNAs, while it increased leptin production by 3.5-fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)-6, IL-8, IL-10, Interferon-γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad-MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro-angiogenic factors, which may facilitate tissue regeneration processes.

  12. Cloning of the Eukaryotic Expression Vector with Nerve Growth Factor in Rats and Its Effects on Proliferation and Differentiation of Mesencephal Neural Stem Cells of Fetal Rats

    Institute of Scientific and Technical Information of China (English)

    Minhua LIN; Lin YANG; Rong FU; Hongyang ZHAO

    2008-01-01

    Summary: The eukaryotic expression vector containing full-length cDNA sequence of rate nerve growth factor (NGF) β subunit was constructed and its effects on proliferation and differentiation of neural stem cells were observed. By using PCR, full-length cDNA sequence of NGF β subunit in rats was cloned and ligated into the eukaryotic expression vector pEGFP-N1-NGE The recombinant plasmid pEGFP-N1-NGF was transfected into the mesencephal neural stem cells of embryonic rats by Lipofectamin and transiently expressed. MTT method was used to determine the effects of NGF on proliferation of neural stem cells, and under phase-contrast microscopy, the effects of NGF on growth of nervous processes following differentiation of neural stem cells were observed. Sequence analysis indicated that the cloned full-length cDNA sequence of rat NGF β was identical to that of published sequence encoding NGF in gene GeneBank. The transfection of recombinant plasmid pEGFP-N1-NGF into mesencephal neural stem cells of embryonic rats could obviously promote proliferation of neural stem cells and faciliate the growth of neural stem cells-derived nerve cells. It was suggested that neural stem cells could be used as a vehicle of gene transfer, and the expression of NGF β subunit in the neural stem cells could promote the growth of nerve cells derived from neural stem cells.

  13. Bunched and Madm Function Downstream of Tuberous Sclerosis Complex to Regulate the Growth of Intestinal Stem Cells in Drosophila.

    Science.gov (United States)

    Nie, Yingchao; Li, Qi; Amcheslavsky, Alla; Duhart, Juan Carlos; Veraksa, Alexey; Stocker, Hugo; Raftery, Laurel A; Ip, Y Tony

    2015-12-01

    The Drosophila adult midgut contains intestinal stem cells that support homeostasis and repair. We show here that the leucine zipper protein Bunched and the adaptor protein Madm are novel regulators of intestinal stem cells. MARCM mutant clonal analysis and cell type specific RNAi revealed that Bunched and Madm were required within intestinal stem cells for proliferation. Transgenic expression of a tagged Bunched showed a cytoplasmic localization in midgut precursors, and the addition of a nuclear localization signal to Bunched reduced its function to cooperate with Madm to increase intestinal stem cell proliferation. Furthermore, the elevated cell growth and 4EBP phosphorylation phenotypes induced by loss of Tuberous Sclerosis Complex or overexpression of Rheb were suppressed by the loss of Bunched or Madm. Therefore, while the mammalian homolog of Bunched, TSC-22, is able to regulate transcription and suppress cancer cell proliferation, our data suggest the model that Bunched and Madm functionally interact with the TOR pathway in the cytoplasm to regulate the growth and subsequent division of intestinal stem cells.

  14. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Fan, Bo-Sheng; Lou, Ji-Yu

    2010-12-01

    Nerve growth factor (NGF) is required for the differentiation and maintenance of sympathetic and sensory neurons. In the present study, the recombinant expression of human nerve growth factor beta (hNGF-β) gene in rabbit bone marrow mesenchymal stem cells (rMSCs) was undertaken. Recombinant vector containing hNGF-β was constructed and transferred into rMSCs, the expressions of the exogenous in rMSCs were determined by reverse transcriptase PCR (RT-PCR), ELISA and Western blot, whereas the biological activity of recombinant hNGF-β was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. The results showed that the hNGF-β gene expressed successfully in the rMSCs, a polypeptide with a molecular weight of 13.2 kDa was detected. The maximal expression level of recombinant hNGF-β in rMSCs reached 126.8012 pg/10(6) cells, the mean concentration was 96.4473 pg/10(6) cells. The recombinant hNGF-β in the rMSCs showed full biological activity when compared to commercial recombinant hNGF-β.

  15. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs.

    Science.gov (United States)

    Myung, Jaewook; Kim, Minkyu; Pan, Ming; Criddle, Craig S; Tang, Sindy K Y

    2016-05-01

    Methane is a low-cost feedstock for the production of polyhydroxyalkanoate biopolymers, but methanotroph fermentations are limited by the low solubility of methane in water. To enhance mass transfer of methane to water, vigorous mixing or agitation is typically used, which inevitably increases power demand and operational costs. This work presents a method for accelerating methane mass transfer without agitation by growing methanotrophs in water-in-oil emulsions, where the oil has a higher solubility for methane than water does. In systems without agitation, the growth rate of methanotrophs in emulsions is five to six times that of methanotrophs in the medium-alone incubations. Within seven days, cells within the emulsions accumulate up to 67 times more P3HB than cells in the medium-alone incubations. This is achieved due to the increased interfacial area of the aqueous phase, and accelerated methane diffusion through the oil phase.

  16. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage

    NARCIS (Netherlands)

    Amps, Katherine; Andrews, Peter W.; Anyfantis, George; Armstrong, Lyle; Avery, Stuart; Baharvand, Hossein; Baker, Julie; Baker, Duncan; Munoz, Maria B.; Beil, Stephen; Benvenisty, Nissim; Ben-Yosef, Dalit; Biancotti, Juan-Carlos; Bosman, Alexis; Brena, Romulo Martin; Brison, Daniel; Caisander, Gunilla; Camarasa, Maria V.; Chen, Jieming; Chiao, Eric; Choi, Young Min; Choo, Andre B. H.; Collins, Daniel; Colman, Alan; Crook, Jeremy M.; Daley, George Q.; Dalton, Anne; De Sousa, Paul A.; Denning, Chris; Downie, Janet; Dvorak, Petr; Montgomery, Karen D.; Feki, Anis; Ford, Angela; Fox, Victoria; Fraga, Ana M.; Frumkin, Tzvia; Ge, Lin; Gokhale, Paul J.; Golan-Lev, Tamar; Gourabi, Hamid; Gropp, Michal; Lu Guangxiu, [No Value; Hampl, Ales; Harron, Katie; Healy, Lyn; Herath, Wishva; Holm, Frida; Hovatta, Outi; Hyllner, Johan; Inamdar, Maneesha S.; Irwanto, Astrid Kresentia; Ishii, Tetsuya; Jaconi, Marisa; Jin, Ying; Kimber, Susan; Kiselev, Sergey; Knowles, Barbara B.; Kopper, Oded; Kukharenko, Valeri; Kuliev, Anver; Lagarkova, Maria A.; Laird, Peter W.; Lako, Majlinda; Laslett, Andrew L.; Lavon, Neta; Lee, Dong Ryul; Lee, Jeoung Eun; Li, Chunliang; Lim, Linda S.; Ludwig, Tenneille E.; Ma, Yu; Maltby, Edna; Mateizel, Ileana; Mayshar, Yoav; Mileikovsky, Maria; Minger, Stephen L.; Miyazaki, Takamichi; Moon, Shin Yong; Moore, Harry; Mummery, Christine; Nagy, Andras; Nakatsuji, Norio; Narwani, Kavita; Oh, Steve K. W.; Oh, Sun Kyung; Olson, Cia; Otonkoski, Timo; Pan, Fei; Park, In-Hyun; Pells, Steve; Pera, Martin F.; Pereira, Lygia V.; Qi, Ouyang; Raj, Grace Selva; Reubinoff, Benjamin; Robins, Alan; Robson, Paul; Rossant, Janet; Salekdeh, Ghasem H.; Schulz, Thomas C.; Sermon, Karen; Mohamed, Jameelah Sheik; Shen, Hui; Sherrer, Eric; Sidhu, Kuldip; Sivarajah, Shirani; Skottman, Heli; Spits, Claudia; Stacey, Glyn N.; Strehl, Raimund; Strelchenko, Nick; Suemori, Hirofumi; Sun, Bowen; Suuronen, Riitta; Takahashi, Kazutoshi; Tuuri, Timo; Venu, Parvathy; Verlinsky, Yuri; Ward-van Oostwaard, Dorien; Weisenberger, Daniel J.; Wu, Yue; Yamanaka, Shinya; Young, Lorraine; Zhou, Qi

    2011-01-01

    The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphi

  17. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

    Directory of Open Access Journals (Sweden)

    Jane L. Tarry-Adkins

    2016-10-01

    Full Text Available ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’ in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb and an increased frequency of short telomeres (4.2-1.3 kb in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1 in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria, and increased xanthine oxidase (XO, p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB. Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD, copper-zinc superoxide dismutase (CuZnSOD, catalase and heme oxygenase-1 (HO1, all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by

  18. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

    Science.gov (United States)

    Fernandez-Twinn, Denise S.; Chen, Jian Hua; Hargreaves, Iain P.; Neergheen, Viruna; Aiken, Catherine E.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by

  19. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Directory of Open Access Journals (Sweden)

    Ángel Monteagudo

    Full Text Available Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  20. Silencing of CYP6 and APN genes affects the growth and development of rice yellow stem borer, Scirpophaga incertulas

    Directory of Open Access Journals (Sweden)

    Vijaya Sudhakara Rao eKola

    2016-02-01

    Full Text Available RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6 and Aminopeptidase N (APN of rice yellow stem borer (YSB on growth and development of insect. The bioassays involved injection of chemically synthesized 5ꞌ FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment. These results were further supported by observing the reduction in transcripts expression of these genes in treated larvae. Fluorescence detection in treated larvae also proved that dsRNA was readily taken by larvae when fed on dsRNA treated stems. These results from the present study clearly show that YSB larvae fed on dsRNA designed from Cytochrome P450 and Aminopeptidase N has detrimental effect on larval growth and development. These genes can be deployed to develop YSB resistance in rice using RNAi approach.

  1. Silencing of CYP6 and APN Genes Affects the Growth and Development of Rice Yellow Stem Borer, Scirpophaga incertulas.

    Science.gov (United States)

    Kola, Vijaya Sudhakara Rao; Renuka, P; Padmakumari, Ayyagari Phani; Mangrauthia, Satendra K; Balachandran, Sena M; Ravindra Babu, V; Madhav, Maganti S

    2016-01-01

    RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of chemically synthesized 5' FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment. These results were further supported by observing the reduction in transcripts expression of these genes in treated larvae. Fluorescence detection in treated larvae also proved that dsRNA was readily taken by larvae when fed on dsRNA treated stems. These results from the present study clearly show that YSB larvae fed on dsRNA designed from Cytochrome P450 and Aminopeptidase N has detrimental effect on larval growth and development. These genes can be deployed to develop YSB resistance in rice using RNAi approach.

  2. Effect of epidermal growth factor on the migration of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Faliang Duan; Guoping Yang; Junwu Wei; Jinglei Wu

    2006-01-01

    BACKGROUND:Recently,researches on neural stem cells(NSCs)are focus on differentiation and migration of stem cells.How to regulate and control differentiation and migration of NSCs based on human wills is still a hot topic.OBJECTIVE:To investigate the effct of epidermal growth factor (EGF) on the migration and proliferation of NSCs and analyze duration of the effect.DESIGN:Contrast study based on cells.SETFING:Department of Neurological Surgery,the First Hospital of Wuhan.MATERIALS:Healthy SD rats aged 13-14 embryonic days.EGF(Sigma Company).METHODS:The experiment was carried out in the Animal Laboratory of Experimental Center Affiliated to the First Hospital of Wuhan from October 2004 to July 2006.NSCs selected from embryonic striatum of rats with 13-14 embryonic days were cultured;7 days later,suspended neural sphere was used to make simple cell suspension and cultured once more.Then,DMEM-F12+20 μg/L EGF was added into culture medium;14 days latar.the rats were divided into experimental group and control group.Rats in the experimental group were cultured with the same medium mentioned above;however, rats in the control group were cultured with only DMEM-F12.Migration of cells was observed under microscope every day.MAIN OUTCOME MEASURES:NSCs migration in both experimental group and control group.RESULTS:Cell spheres in primary culture were NSCs.In addition,14 days later,proliferation of stem cells were observed remarkably in EGF culture.and size of cell sphere was about that of 100 cells.In exparimental group.proliferation of cell sphere was slow down on the 14th culture day,and apophysis was erupted to neighbor cell sphere.Moreover,NSCs migrated from big cell sphere to small cell sphere during 14-17 culture days.and then,cell migration was disappeared at 17 days after culture.In control group.cell migration was not observed.CONCLUSION:EGF can induce proliferation and migration of NSCs during a special time(14-17 days).However,NSCs do not immigrate over the

  3. Enhanced growth and osteogenic differentiation of Induced Pluripotent Stem cells by Extremely Low-Frequency Electromagnetic Field.

    Science.gov (United States)

    Ardeshirylajimi, A; Soleimani, M

    2015-03-09

    It is accepted that induced pluripotent stem cells (iPSCs) have a great osteogenic potential differentiation, in the present study, we tried to improve this potentials using mechanical and biological stimulation. To achieve this goal, the influence of prolonged pulsed extremely low frequency electromagnetic field (ELF—EMF) (50 Hz and 1.5 mT) was investigated on cultured iPSCs. After evaluation of iPSCs biological behavior under radiation using MTT assay, osteogenic differentiation of stem cells was investigated via common important osteogenic markers such as alkaline phosphatase (ALP) activity, calcium mineral deposition and important bone—related genes. MTT result showed that proliferation rate of iPSCs significantly increased followed by stimulate with ELF—EMF. Osteogenic differentiation characterization demonstrated that potential of stem cells also was significantly increased while these cells cultured under both ELF—EMF and osteogenic medium (OM) in comparison to cultured under ELF—EMF or OM alone. According to the results, concluded that combination of OM and ELF—EMF can be a great supplement for bone differentiation of stem cells and appropriate candidate for use in the treatment of bone defects and osteoporosis patients by accelerating healing process.

  4. Adult stem cells in small animal wound healing models.

    Science.gov (United States)

    Nauta, Allison C; Gurtner, Geoffrey C; Longaker, Michael T

    2013-01-01

    This chapter broadly reviews the use of stem cells as a means to accelerate wound healing, focusing first on the properties of stem cells that make them attractive agents to influence repair, both alone and as vehicles for growth factor delivery. Major stem cell reservoirs are described, including adult, embryonic, and induced pluripotent cell sources, outlining the advantages and limitations of each source as wound healing agents, as well as the possible mechanisms responsible for wound healing acceleration. Finally, the chapter includes a materials and methods section that provides an in-depth description of adult tissue harvest techniques.

  5. A stringent restriction from the growth of large-scale structure on apparent acceleration in inhomogeneous cosmological models

    CERN Document Server

    Ishak, Mustapha; Troxel, M A

    2013-01-01

    Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to uneven dynamics in the universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from the study of the growth rate of large-scale structure in the universe as modeled by the Szekeres inhomogeneous cosmological models. We use the models in all generality with no assumptions of spherical or axial symmetries. We find that Szekeres inhomogeneous models that fit well the observed expansion history fail to explain the observed late-time suppression of the growth of structure unless a cosmological constant is added to the dynamics.

  6. The growth of stem cells within {beta}-TCP scaffolds in a fluid-dynamic environment

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shanglong [School of Mechatronics Engineering, University of Electronic Science and Technology, Chengdu (China); State Key Laboratory of Mechanical Manufacture System Engineering, Xi' an Jiaotong University, Xi' an (China); Li Dichen [State Key Laboratory of Mechanical Manufacture System Engineering, Xi' an Jiaotong University, Xi' an (China)], E-mail: dcli@mail.xjtu.edu.cn; Xie Youzhuan; Lu Jianxi; Dai Kerong [Department of Orthopaedic Surgery, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2008-01-10

    A three-dimensional dynamic perfusion system was developed to provide mass transport and nutrient supply to permit the cell proliferation during the long-term culture inside a {beta}-tricalcium phosphate ({beta}-TCP) scaffold. Also the flow field throughout the scaffold was studied. The porous cylindrical scaffold with a central channel was seeded with the sheep mesenchymal stem cells (MSCs). Then the cell-seeded scaffolds were continuously perfused with the complete {alpha}-MEM medium by a peristaltic pump for 7, 14 and 28 days, respectively. Histological study showed that the cell proliferation rates were different throughout the whole scaffolds and the different cell coverage was shown in different positions of the scaffold. Unoccupied spaces were found in many macropores. A computational fluid dynamics (CFD) modeling was used to simulate the flow conditions within perfused cell-seeded scaffolds to give an insight into the mechanisms of these cell growth phenomena. Relating the simulation results to perfusion experiments, the even fluid velocity (approximately 0.52 mm/s) and shear stress (approximately 0.0055 Pa) were found to correspond to increased cell proliferation within the cell-scaffold constructs. Flow speeds were between 0.25 and 0.75 mm/s and shear stresses were between 0.003 and 0.008 Pa in approximately 75% of the regions. This method exhibits novel capabilities to compare the results obtained for different perfusion rates or different scaffold microarchitectures. It may allow specific fluid velocities and shear stresses to be determined to optimize the perfusion flow rate, porous scaffold architecture and distribution of in vitro tissue growth.

  7. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis.

    Science.gov (United States)

    Dafoe, Nicole J; Huffaker, Alisa; Vaughan, Martha M; Duehl, Adrian J; Teal, Peter E; Schmelz, Eric A

    2011-09-01

    Plants damaged by insect herbivory often respond by inducing a suite of defenses that can negatively affect an insect's growth and fecundity. Ostrinia nubilalis (European corn borer, ECB) is one of the most devastating insect pests of maize, and in the current study, we examined the early biochemical changes that occur in maize stems in response to ECB herbivory and how these rapidly induced defenses influence the growth of ECB. We measured the quantities of known maize defense compounds, benzoxazinoids and the kauralexin class of diterpenoid phytoalexins. ECB herbivory resulted in decreased levels of the benzoxazinoid, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (DIMBOA-Glc), and a corresponding increase in 2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (HDMBOA-Glc). Total quantities of benzoxazinoids and kauralexins were increased as early as 24 h after the initiation of ECB feeding. The plant hormones, jasmonic acid (JA) and ethylene (ET), and the transcripts encoding their key biosynthetic enzymes also accumulated in response to ECB herbivory, consistent with a role in defense regulation. The combined pharmacological application of JA and the ET precursor, 1-aminocyclopropane-1-carboxylic acid to stem internode tissue likewise resulted in changes in benzoxazinoids similar to that observed with ECB damage. Despite the fact that maize actively mounts a defense response to ECB stem feeding, no differences in percent weight gain were observed between ECB larvae that fed upon non-wounded control tissues compared to tissues obtained from plants previously subjected to 24 h ECB stem herbivory. These rapid defense responses in maize stems do not appear to negatively impact ECB growth, thus suggesting that ECB have adapted to these induced biochemical changes.

  8. [Effect of polymeric scaffolds on attachment and growth of bone marrow mesenchymal stem cells].

    Science.gov (United States)

    Ren, Jie; Jia, Xiaozhen; Wang, Shuhong; Wu, Zhigang; Pan, Kefeng

    2005-12-01

    To investigate the effect of three kinds of polymeric scaffolds on attachment, proliferation and differentiation of bone marrow mesenchymal stem cells, the cells were different polymeric scaffolds of PLA-PEG, PLA, PLGA, respectively. The proliferation of cell was evaluated by cell count; the attachment and morphology of BMSCs were observed by SEM; and differentiation was detected by alkaline phosphatase activity, fluorescence, and RT-PCR methods. Results showed that the cells in PLGA group spread better among BMSCs adhered to the three polymeric scaffolds. The activity of ALP was detected after 3 days culture in these three groups. There were no significant differences between PLA-PEG and PLGA groups, but the activity of ALP was higher than PLA group. The gene expressions of osteocalicin and collagen I were also observed in the early culture time. Calcium nodes formation in these polymeric scaffolds were detected. BMSC spreading first, then overlapping growth and secretion of matrix around the bottom and surface of scaffolds were observed through SEM. In summary, PLA-PEG and PLGA are better polymeric scaffolds for the bone tissue engineering, compared with PLA.

  9. Prox1 Promotes Expansion of the Colorectal Cancer Stem Cell Population to Fuel Tumor Growth and Ischemia Resistance

    Directory of Open Access Journals (Sweden)

    Zoltán Wiener

    2014-09-01

    Full Text Available Colorectal cancer (CRC initiation and growth is often attributed to stem cells, yet little is known about the regulation of these cells. We show here that a subpopulation of Prox1-transcription-factor-expressing cells have stem cell activity in intestinal adenomas, but not in the normal intestine. Using in vivo models and 3D ex vivo organoid cultures of mouse adenomas and human CRC, we found that Prox1 deletion reduced the number of stem cells and cell proliferation and decreased intestinal tumor growth via induction of annexin A1 and reduction of the actin-binding protein filamin A, which has been implicated as a prognostic marker in CRC. Loss of Prox1 also decreased autophagy and the survival of hypoxic tumor cells in tumor transplants. Thus, Prox1 is essential for the expansion of the stem cell pool in intestinal adenomas and CRC without being critical for the normal functions of the gut.

  10. Distribution and localization of fibroblast growth factor-8 in rat brain and nerve cells during neural stem/progenitor cell differentiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Lu; Dongsheng Li; Kehuan Lu

    2012-01-01

    The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor,fibroblast growth factor receptor-3,in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro.Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo.Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence.Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro.Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain,namely the substantia nigra,compact part,dorsal tier,substantia nigra and reticular part,but was not detected in the forebrain comprising the caudate putamen and striatum.Unusual results were obtained in retrosplenial locations of adult rat brain.We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses.We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8,a secretory factor.Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells.In contrast,addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons.Our study may help delineate the important roles of fibroblast growth factor-8 in brain

  11. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    Science.gov (United States)

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  12. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Chun; Ma, Xueqin; Li, Tao; Zhang, Qiqing

    2015-09-01

    Osteoarthritis, a common joint degeneration, can cause breakdown of articular cartilage with the presence of lubricin metabolic abnormalities. Lubricin is a multi-level chondroprotective mucinous glycoprotein in articular joints. Joint defect and infection is elevated and accompanied by accelerated cartilage lesions involving degradation and loss of lubricin. However, a novel, heterocyclic compound called kartogenin (KGN) was discovered to stimulate chondrogenic differentiation of bone-derived mesenchymal stem cells (BMSCs). And the synergistic effect of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7) could provoke lubricin accumulation. This paper attempted to explore the connection between accumulation of lubricin and the effect of TGF-β1, BMP-7 and/or KGN. Hence, we investigated the expression and secretion of lubricin in BMSCs treated with different combinations of TGF-β1, BMP-7, and/or KGN. Using an in vitro BMSCs system, we observed the content of lubricin from BMSCs treated with TGF-β1, BMP-7, and KGN was the highest at both the protein level and the gene level. The accumulation of lubricin was enhanced coordinately by the increase of synthesis and decrease of degradation possibly via c-Myc and adamts5 pathway. These results further suggested that supplementation of the defect parts with lubricin by using growth factors and small molecules showed a promising potential on preventing joint deterioration in patients with acquired or genetic deficiency of lubricin in the future of regenerative medicine.

  13. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway.

    Directory of Open Access Journals (Sweden)

    Mayumi Jijiwa

    Full Text Available Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6 in BTSC of a subset of glioblastoma multiforme (GBM. Patients with CD44(high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high GBM but not from CD44(low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN, increased expression of phosphorylated AKT in CD44(high GBM, but not in CD44(low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.

  14. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    OpenAIRE

    Li, Jun; Zhu, Kai; Yang, Shan; WANG, YULIN; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng; Lai, Hao

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothe...

  15. Growth Hormone Is Secreted by Normal Breast Epithelium upon Progesterone Stimulation and Increases Proliferation of Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Lombardi

    2014-06-01

    Full Text Available Using in vitro and in vivo experimental systems and in situ analysis, we show that growth hormone (GH is secreted locally by normal human mammary epithelial cells upon progesterone stimulation. GH increases proliferation of a subset of cells that express growth hormone receptor (GHR and have functional properties of stem and early progenitor cells. In 72% of ductal carcinoma in situ lesions, an expansion of the cell population that expresses GHR was observed, suggesting that GH signaling may contribute to breast cancer development.

  16. Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells.

    Science.gov (United States)

    Lombardi, Sara; Honeth, Gabriella; Ginestier, Christophe; Shinomiya, Ireneusz; Marlow, Rebecca; Buchupalli, Bharath; Gazinska, Patrycja; Brown, John; Catchpole, Steven; Liu, Suling; Barkan, Ariel; Wicha, Max; Purushotham, Anand; Burchell, Joy; Pinder, Sarah; Dontu, Gabriela

    2014-06-01

    Using in vitro and in vivo experimental systems and in situ analysis, we show that growth hormone (GH) is secreted locally by normal human mammary epithelial cells upon progesterone stimulation. GH increases proliferation of a subset of cells that express growth hormone receptor (GHR) and have functional properties of stem and early progenitor cells. In 72% of ductal carcinoma in situ lesions, an expansion of the cell population that expresses GHR was observed, suggesting that GH signaling may contribute to breast cancer development.

  17. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    Science.gov (United States)

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration.

  18. Areva 2007 results: accelerated growth and significantly improved profitability; Areva resultats 2007: acceleration de la croissance et hausse significative de la profitabilite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-15

    The AREVA group recorded accelerated growth and increased profitability in 2007, meeting both of its objectives for the year. The group made strategic inroads in fast growing markets. AREVA's integrated model met with record success in China, where GGNPC acquired two EPR nuclear islands in a combined order including both the reactors and the fuel, and the creation of a joint venture in engineering. Its T and D division was awarded the largest contract of its history in Qatar, making it the leader in a region where T and D was not even present a few years ago. For more than three years, AREVA has built up its capacity to meet surging demand in the nuclear power and T and D markets through an active policy of research and development and by capitalizing on the diversity and strength of its partnerships. Areva hired 8,600 people in 2006 and 11,500 people in 2007; this represents an investment in recruitment, training and integration of approximately euro 200 million per year. For 2008, the group foresees a further increase in its backlog, sales revenue and operating income. The Areva Group financial statements for 2007 are summarized below: - Backlog: euro 39.8 billion, up 55%; - Sales revenue: euro 11.9 billion, up 9.8% (up 10.4% like-for-like); - Operating income: euro 751 million, i.e. 6.3% operating margin, up 2.6 points compared with 2006; - Net income attributable to equity holders of the parent: euro 743 million (euro 20.95 per share), up from euro 649 million in 2006 (euro 18.31 per share); - Net debt: euro 1.954 billion, linked to the acquisition of UraMin; - Dividend: euro 6.77, to be proposed to the Annual General Meeting of Shareholders convening on April 17, 2008.

  19. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    Science.gov (United States)

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests.

  20. Soft Graphene Nanofibers Designed for the Acceleration of Nerve Growth and Development.

    Science.gov (United States)

    Feng, Zhang-Qi; Wang, Ting; Zhao, Bin; Li, Jiacheng; Jin, Lin

    2015-11-01

    Soft graphene nanofibers with recoverable electrical conductivity and excellent physicochemical stability are prepared by a controlled assembly technique. By using the soft graphene nanofibers for cellular electrical stimulation, the common inhibitory effect of long-term electrical stimulation on nerve growth and development is avoided, which usually happens with traditional 2D conductive materials.

  1. Asymptotic growth of cumulative and regenerative beam break-up instabilities in accelerators

    Science.gov (United States)

    Lau, Y. Y.

    1988-06-01

    It is found that the asymptotic growth of the cumulative beam break up instability is independent of the focusing magnetic field, according to the model of Panofsky and Bander. The analysis is extended to include the transition from the cumulative to the regenerative type, both in the presence and absence of a focusing magnetic field.

  2. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  3. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; LiyunZhong

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  4. Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila.

    Science.gov (United States)

    Song, Yan; Lu, Bingwei

    2011-12-15

    Cancer stem cells (CSCs) are postulated to be a small subset of tumor cells with tumor-initiating ability that shares features with normal tissue-specific stem cells. The origin of CSCs and the mechanisms underlying their genesis are poorly understood, and it is uncertain whether it is possible to obliterate CSCs without inadvertently damaging normal stem cells. Here we show that a functional reduction of eukaryotic translation initiation factor 4E (eIF4E) in Drosophila specifically eliminates CSC-like cells in the brain and ovary without having discernable effects on normal stem cells. Brain CSC-like cells can arise from dedifferentiation of transit-amplifying progenitors upon Notch hyperactivation. eIF4E is up-regulated in these dedifferentiating progenitors, where it forms a feedback regulatory loop with the growth regulator dMyc to promote cell growth, particularly nucleolar growth, and subsequent ectopic neural stem cell (NSC) formation. Cell growth regulation is also a critical component of the mechanism by which Notch signaling regulates the self-renewal of normal NSCs. Our findings highlight the importance of Notch-regulated cell growth in stem cell maintenance and reveal a stronger dependence on eIF4E function and cell growth by CSCs, which might be exploited therapeutically.

  5. Growth factor priming differentially modulates components of the extracellular matrix proteome in chondrocytes and synovium-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Elena Alegre-Aguarón

    Full Text Available To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs. However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies.

  6. Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Raquel Cuevas-Diaz Duran

    2013-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271, yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects.

  7. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure.

    Science.gov (United States)

    Snegireva, Anastasia; Chernova, Tatyana; Ageeva, Marina; Lev-Yadun, Simcha; Gorshkova, Tatyana

    2015-05-27

    Plant fibres-cells with important mechanical functions and a widely used raw material-are usually identified in microscopic sections only after reaching a significant length or after developing a thickened cell wall. We characterized the early developmental stages of hemp (Cannabis sativa) stem phloem fibres, both primary (originating from the procambium) and secondary (originating in the cambium), when they still had only a primary cell wall. We gave a major emphasis to the role of intrusive elongation, the specific type of plant cell growth by which fibres commonly attain large cell length. We could identify primary phloem fibres at a distance of only 1.2-1.5 mm from the shoot apical meristem when they grew symplastically with the surrounding tissues. Half a millimeter further downwards along the stem, fibres began their intrusive elongation, which led to a sharp increase in fibre numbers visible within the stem cross-sections. The intrusive elongation of primary phloem fibres was completed within the several distal centimetres of the growing stem, before the onset of their secondary cell wall formation. The formation of secondary phloem fibres started long after the beginning of secondary xylem formation. Our data indicate that only a small portion of the fusiform cambial initials (hemp, but may be applied to many other species.

  8. Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell

    Science.gov (United States)

    Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.

    1987-01-01

    During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.

  9. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    Science.gov (United States)

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  10. A Hydrogel Bridge Incorporating Immobilized Growth Factors and Neural Stem/Progenitor Cells to Treat Spinal Cord Injury.

    Science.gov (United States)

    Li, Hang; Ham, Trevor R; Neill, Nicholas; Farrag, Mahmoud; Mohrman, Ashley E; Koenig, Andrew M; Leipzig, Nic D

    2016-04-06

    Spinal cord injury (SCI) causes permanent, often complete disruption of central nervous system (CNS) function below the damaged region, leaving patients without the ability to regenerate lost tissue. To engineer new CNS tissue, a unique spinal cord bridge is created to deliver stem cells and guide their organization and development with site-specifically immobilized growth factors. In this study, this bridge is tested, consisting of adult neural stem/progenitor cells contained within a methacrylamide chitosan (MAC) hydrogel and protected by a chitosan conduit. Interferon-γ (IFN-γ) and platelet-derived growth factor-AA (PDGF-AA) are recombinantly produced and tagged with an N-terminal biotin. They are immobilized to streptavidin-functionalized MAC to induce either neuronal or oligodendrocytic lineages, respectively. These bridges are tested in a rat hemisection model of SCI between T8 and T9. After eight weeks treatments including chitosan conduits result in a significant reduction in lesion area and macrophage infiltration around the lesion site (p < 0.0001). Importantly, neither immobilized IFN-γ nor PDGF-AA increased macrophage infiltration. Retrograde tracing demonstrates improved neuronal regeneration through the use of immobilized growth factors. Immunohistochemistry staining demonstrates that immobilized growth factors are effective in differentiating encapsulated cells into their anticipated lineages within the hydrogel, while qualitatively reducing glial fibrillary acid protein expression.

  11. Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology.

    Science.gov (United States)

    Gomiero, Chiara; Bertolutti, Giulia; Martinello, Tiziana; Van Bruaene, Nathalie; Broeckx, Sarah Y; Patruno, Marco; Spaas, Jan H

    2016-03-01

    Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFβ3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT. Indeed, the supplement of bFGF2 and TGFβ3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFβ3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate.

  12. Warfarin-induced artery calcification is accelerated by growth and vitamin D.

    Science.gov (United States)

    Price, P A; Faus, S A; Williamson, M K

    2000-02-01

    The present studies demonstrate that growth and vitamin D treatment enhance the extent of artery calcification in rats given sufficient doses of Warfarin to inhibit gamma-carboxylation of matrix Gla protein, a calcification inhibitor known to be expressed by smooth muscle cells and macrophages in the artery wall. The first series of experiments examined the influence of age and growth status on artery calcification in Warfarin-treated rats. Treatment for 2 weeks with Warfarin caused massive focal calcification of the artery media in 20-day-old rats and less extensive focal calcification in 42-day-old rats. In contrast, no artery calcification could be detected in 10-month-old adult rats even after 4 weeks of Warfarin treatment. To directly examine the importance of growth to Warfarin-induced artery calcification in animals of the same age, 20-day-old rats were fed for 2 weeks either an ad libitum diet or a 6-g/d restricted diet that maintains weight but prevents growth. Concurrent treatment of both dietary groups with Warfarin produced massive focal calcification of the artery media in the ad libitum-fed rats but no detectable artery calcification in the restricted-diet, growth-inhibited group. Although the explanation for the association between artery calcification and growth status cannot be determined from the present study, there was a relationship between higher serum phosphate and susceptibility to artery calcification, with 30% higher levels of serum phosphate in young, ad libitum-fed rats compared with either of the groups that was resistant to Warfarin-induced artery calcification, ie, the 10-month-old rats and the restricted-diet, growth-inhibited young rats. This observation suggests that increased susceptibility to Warfarin-induced artery calcification could be related to higher serum phosphate levels. The second set of experiments examined the possible synergy between vitamin D and Warfarin in artery calcification. High doses of vitamin D are known to

  13. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    Science.gov (United States)

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  14. Detecting Direction of Pepper Stem by Using CUDA-Based Accelerated Hybrid Intuitionistic Fuzzy Edge Detection and ANN

    Directory of Open Access Journals (Sweden)

    Mahit Gunes

    2016-01-01

    Full Text Available In recent years, computer vision systems have been used in almost every field of industry. In this study, image processing algorithm has been developed by using CUDA (GPU which is 79 times faster than CPU. We had used this accelerated algorithm in destemming process of pepper. 65 percent of total national production of pepper is produced in our cities, Kahramanmaras and Gaziantep in Turkey. Firstly, hybrid intuitionistic fuzzy algorithm edge detection has been used for preprocessing of original image and Otsu method has been used for determining automatic threshold in this algorithm. Then the multilayer perceptron artificial neural network has been used for the classification of patterns in processed images. Result of ANN test for detection direction of pepper has shown high accuracy performance in CPU-based implementation and in GPU-based implementation.

  15. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs

    Energy Technology Data Exchange (ETDEWEB)

    May, J.D.; Burdette, S.B.; Gilliam, F.S. [Marshall Univ., Huntington, WV (United States). Dept. of Biological Sciences; Adams, M.B. [USDA Forest Service, Timber and Watershed Laboratory, Parsons, WV (United States)

    2005-05-01

    Atmospheric nitrogen deposition in deciduous forests can act as a fertilizer initially. However, at chronic elevated deposition levels, the nitrogen levels may exceed the demands of biota. This study examined the ecosystem response to nitrogen saturation. In particular, the effects of excessive nitrogen fertilization on foliar nutrient dynamics and stem growth was examined in 3 tree species in a mixed deciduous forest at Fernow Experimental Forest near Parsons, West Virginia. Two watersheds were used. The first acted as a control which did not receive any treatments, and the second received 3 aerial applications of ammonium sulfate annually since 1989. Foliage of red maple, tulip poplar and black cherry were sampled in 1992, 1997 and 2000. Stem diameter growth, foliar nitrogen concentrations, nitrogen-phosphorous ratios and nutrient resorption were studied. In the earliest study, foliar nitrogen concentration of all 3 species was 11 per cent higher in the fertilized watershed compared to the control watershed. By 2000, that was no longer the case. Nitrogen concentration and nitrogen-phosphorous ratios were higher in the control watershed. Nitrogen resorption efficiencies in red maple and black cherry were 30 per cent lower in the treated watershed. Stem diameter growth in the treated watershed was 55 per cent lower in the red maple and 30 per cent lower in the tulip poplar and black cherry compared to that of the control watershed. The results suggest that the fertilized watershed had slower growth in red maple and to a lesser extent, black cherry and tulip poplar. It was concluded that increasing nitrogen saturation can lead to changes in species composition. 32 refs., 1 tab., 5 figs.

  16. A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties.

    Science.gov (United States)

    Vahala, Jorma; Felten, Judith; Love, Jonathan; Gorzsás, András; Gerber, Lorenz; Lamminmäki, Airi; Kangasjärvi, Jaakko; Sundberg, Björn

    2013-10-01

    Ethylene Response Factors (ERFs) are a large family of transcription factors that mediate responses to ethylene. Ethylene affects many aspects of wood development and is involved in tension wood formation. Thus ERFs could be key players connecting ethylene action to wood development. We identified 170 gene models encoding ERFs in the Populus trichocarpa genome. The transcriptional responses of ERF genes to ethylene treatments were determined in stem tissues of hybrid aspen (Populus tremula × tremuloides) by qPCR. Selected ethylene-responsive ERFs were overexpressed in wood-forming tissues and characterized for growth and wood chemotypes by FT-IR. Fifty ERFs in Populus showed more than five-fold increased transcript accumulation in response to ethylene treatments. Twenty-six ERFs were selected for further analyses. A majority of these were induced during tension wood formation. Overexpression of ERFs 18, 21, 30, 85 and 139 in wood-forming tissues of hybrid aspen modified the wood chemotype. Moreover, overexpression of ERF139 caused a dwarf-phenotype with altered wood development, and overexpression of ERF18, 34 and 35 slightly increased stem diameter. We identified ethylene-induced ERFs that respond to tension wood formation, and modify wood formation when overexpressed. This provides support for their role in ethylene-mediated regulation of wood development.

  17. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  18. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var.alata

    Institute of Scientific and Technical Information of China (English)

    Anna Pick Kiong LING; Kinn Poay TAN; Sobri HUSSEIN

    2013-01-01

    Objective:Labisia pumi/a var.a/ata,commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia,is traditionally used by members of the Malay community because of its post-partum medicinal properties.Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat.Thus,this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L.pumila.Methods:The capabilities of callus,shoot,and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0,1,3,5,and 7 mg/L.Results:Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34± 19.55)% and (70.40± 14.14)% efficacy,respectively.IBA was also found to be the most efficient PGR for root induction.A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA,respectively.Shoot formation was only observed in stem explant,with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture.Conclusions:Callus,roots,and shoots can be induced from in vitro leaf and stem explants of L.pumila through the manipulation of types and concentrations of PGRs.

  19. Human Wharton's Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth.

    Directory of Open Access Journals (Sweden)

    Vikram Sabapathy

    Full Text Available Human mesenchymal stem cells (MSCs are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL. Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG at optimal concentration can be resourcefully used for labeling of stem cells

  20. Human Wharton's Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth.

    Science.gov (United States)

    Sabapathy, Vikram; Sundaram, Balasubramanian; V M, Sreelakshmi; Mankuzhy, Pratheesh; Kumar, Sanjay

    2014-01-01

    Human mesenchymal stem cells (MSCs) are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS) supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL). Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG) at optimal concentration can be resourcefully used for labeling of stem cells and in vivo

  1. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate-graphene composites.

    Science.gov (United States)

    Shie, Ming-You; Chiang, Wei-Hung; Chen, I-Wen Peter; Liu, Wen-Yi; Chen, Yi-Wen

    2017-04-01

    Recent exciting findings of the biological interactions of graphene materials have shed light on potential biomedical applications of graphene-containing composites. Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of biocomposites. In the present study, various ratios of graphene (0.25wt%, 0.5wt% and 1.0wt%) were reinforced into calcium silicate (CS) for bone graft application. Results show that the graphene was embedded in the composites homogeneously. Adding 1wt% graphene into CS increased the young's modulus by ~47.1%. The formation of bone-like apatite on a range of composites with graphene weight percentages ranging from 0 to 1 has been investigated in simulated body fluid. The presence of a bone-like apatite layer on the composites surface after immersion in simulated body fluid was considered by scanning electron microscopy. In vitro cytocompatibility of the graphene-contained CS composites was evaluated using human marrow stem cells (hMSCs). The proliferation and alkaline phosphatase, osteopontin and osteocalcin osteogenesis-related protein expression of the hMSCs on the 1wt% graphene-contained specimens showed better results than on the pure CS. In addition, the angiogenesis-related protein (vWF and ang-1) secretion of cells was significantly stimulated when the graphene concentration in the composites was increased. These results suggest that graphene-contained CS bone graft are promising materials for bone tissue engineering applications.

  2. Mesenchymal stem cells and endothelial progenitor cells accelerate intra-aneurysmal tissue organization after treatment with SDF-1α-coated coils.

    Science.gov (United States)

    Gao, Yuyuan; Lu, Ziming; Chen, Chengwei; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Jiang, Xiaodan; Zeng, Chi; Quan, Daping; Wang, Qiujing

    2016-04-01

    Recurrences of aneurysms remain the major drawback of detachable coils for the endovascular treatment of intracranial aneurysms. The aim of the present study is to develop new modified coils, coating the surface of platinum coils with silk fibroin (SF) consisting of stromal cell-derived factor-1α (SDF-1α), and evaluate its acceleration of organization of cavities and reduction of lumen size in a rat aneurysm model. The morphological characteristics of SDF-1α-coated coils were examined using scanning electron microscopy (SEM). Fifty experimental aneurysms were created and randomly divided into five groups: three groups were embolized with SDF-1α-coated coils (8 mm) and two of these groups need transplantation of mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs); one group was embolized with bare coils (8 mm) and another group severed as control. After coil implantation for 14 or 28 days, the coils were harvested and histological analysis was performed. SEM photographs showed that SF/SDF-1α-coated coils have uniform size and a thin film compared with bare coils. In the group treated with SDF-1α-coated coils, tissue organization was accelerated and the proliferation of α-smooth muscle actin positive cells was promoted in the aneurysmal sac. Compared with unmodified coils, on day 28, tissue organization was significantly greater in the group treated with SDF-1α-coated coils and MSC or EPC transplantation. These results suggest that SDF-1α-coated coils with MSC or EPC transplantation may be beneficial in the aneurysm healing and endothelialization at the orifice of embolized aneurysm.

  3. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe.

    Science.gov (United States)

    Morgan, Jack A; Milchunas, Daniel G; LeCain, Daniel R; West, Mark; Mosier, Arvin R

    2007-09-11

    A hypothesis has been advanced that the incursion of woody plants into world grasslands over the past two centuries has been driven in part by increasing carbon dioxide concentration, [CO(2)], in Earth's atmosphere. Unlike the warm season forage grasses they are displacing, woody plants have a photosynthetic metabolism and carbon allocation patterns that are responsive to CO(2), and many have tap roots that are more effective than grasses for reaching deep soil water stores that can be enhanced under elevated CO(2). However, this commonly cited hypothesis has little direct support from manipulative experimentation and competes with more traditional theories of shrub encroachment involving climate change, management, and fire. Here, we show that, although doubling [CO(2)] over the Colorado shortgrass steppe had little impact on plant species diversity, it resulted in an increasingly dissimilar plant community over the 5-year experiment compared with plots maintained at present-day [CO(2)]. Growth at the doubled [CO(2)] resulted in an approximately 40-fold increase in aboveground biomass and a 20-fold increase in plant cover of Artemisia frigida Willd, a common subshrub of some North American and Asian grasslands. This CO(2)-induced enhancement of plant growth, among the highest yet reported, provides evidence from a native grassland suggesting that rising atmospheric [CO(2)] may be contributing to the shrubland expansions of the past 200 years. Encroachment of shrubs into grasslands is an important problem facing rangeland managers and ranchers; this process replaces grasses, the preferred forage of domestic livestock, with species that are unsuitable for domestic livestock grazing.

  4. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae.

    Directory of Open Access Journals (Sweden)

    Craig S Young

    Full Text Available While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus. In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p0.05. The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001 and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic estuaries can be directly promoted by acidification, a process that will intensify in the coming decades.

  5. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae

    Science.gov (United States)

    Young, Craig S.; Gobler, Christopher J.

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic estuaries can be directly promoted by acidification, a process that will intensify in the coming decades. PMID:27176637

  6. The use of biomaterials for cell function enhancement: acceleration of fibroblast migration and promotion of stem cell proliferation

    Science.gov (United States)

    Qin, Sisi

    , while remained constant for the cells on the flat surfaces. The increased speed on the 8microm fiber surfaces could be correlated with a 20% increase in the nuclear deformation, and a decrease around 30% in the number of focal adhesion during the same observation period. RNA expression of Myosin IIA, a protein which complexes to the actin and is responsible for exertion of traction forces during migration was not upregulated during this process. On the other hand, histochemical staining of Myosin IIA showed that the protein had re-organized into large fibers which spanned the length of the cells. Observation of the cell morphology indicated that a new mode of motion had been established. Rather than the classical retraction of the cytoplasm followed by center of mass translation, which was observed on the flat surfaces, the cells were now moving by a contractile motion around the nucleus similar to that found in muscular motion. This mode was found to be more efficient when undergoing oriented motion. In addition to orientation, surface mechanics are also important in the tissue regeneration process. This study demonstrated that mechanical factors are important for the maintenance of pluripotency and control of proliferation rates. CD34+ hematopoietic stem cells (HSCs) were transduced with ICD (intracellular domain)-Notch and plated on gelatin hydrogels, whose moduli were controlled by the crosslinking ratio. On the softer hydrogel, a synergy was achieved which resulted in more than a five-fold increase in proliferation and a four-fold increase in the preservation of stemness, while HSCs maintained their ability to differentiate into multiple blood cell lineages. These results point the way for achieving clinically significant expansion of human HSCs.

  7. Assessing the Potential Stem Growth and Quality of Yellow Birch Prior to Restoration: A Case Study in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Alexis Achim

    2013-09-01

    Full Text Available Past silvicultural treatments have resulted in the high-grading mixed temperate forests of Québec, Canada. Despite recognition of this issue, the low occurrence of yellow birch (Betula alleghaniensis Britton within current stands raises questions about the potential of the species to grow and eventually constitute a high-quality forest resource. The objective of this study was to assess this potential using tree characteristics, forest structure and additional site and climatic conditions as predictors. A total of 145 trees were sampled in two areas located in the same bioclimatic zone. Lower-Saguenay-Charlevoix was chosen as an area where a restoration plan could be implemented, whereas Portneuf was selected as a reference. We used nonlinear mixed models to investigate which environmental factors are likely to influence the radial growth and stem quality of yellow birch sample trees. Our results suggest that topographic and climatic conditions, as well as the competitive environment of the trees, are important factors to consider in the evaluation of yellow birch production. Despite the limited occurrence of yellow birch, the potential for growth and quality was high in the Lower-Saguenay-Charlevoix area. For equivalent topographic, climatic, and competitive environment conditions, there was no significant difference in either radial growth or stem quality with Portneuf. We suggest that the economic interest of producing high quality timber should be used to justify the implementation of a restoration strategy in the Lower-Saguenay-Charlevoix area.

  8. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  9. The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture.

    Science.gov (United States)

    Haley, Elizabeth M; Kim, Yonghyun

    2014-04-28

    Glioblastoma multiforme (GBM) is the most malignant form of central nervous system tumor, and current therapies are largely ineffective at treating the cancer. Developing a more complete understanding of the mechanisms controlling the tumor is important in order to explore new possible treatment options. It is speculated that the presence of glioblastoma stem or stem-like cells (GSCs), a rare type of pluripotent cancer cell that possesses the ability to self-renew and generate tumors, could be an important factor contributing to the resistance to treatment and deadliness of the cancer. A comprehensive knowledge of the mechanisms controlling the expression and properties of GSCs is currently lacking, and one promising area for further exploration is in the influence of basic fibroblast growth factor (FGF-2) on GSCs. Recent studies reveal that FGF-2 plays a significant part in regulating GBM, and the growth factor is commonly included as a supplement in media used to culture GSCs in vitro. However, the particular role that FGF-2 plays in GSCs has not been as extensively explored. Therefore, understanding how FGF-2 is involved in GSCs and in GBMs could be an important step towards a more complete comprehension of the managing the disease. In this review, we look at the structure, signaling pathways, and specific role of FGF-2 in GBM and GSCs. In addition, we explore the use of FGF-2 in cell culture and using its synthetic analogs as a potential alternative to the growth factor in culture medium.

  10. Molecular Tissue Engineering:Applications for Modulation of Mesenchymal Stem Cells Proliferation by Transforming Growth Factor

    Institute of Scientific and Technical Information of China (English)

    GUO; Xiaodong(

    2001-01-01

    [1]郭晓东 杜靖远 郑启新等.组织工程学技术修复关节软骨缺损研究进展.国外医学生物医学工程分册 2000 23(6):330[2]郭晓东 杜靖远 郑启新等.骨关节炎基因治疗进展.国外医学老年医学分册 2001 22(1):29[3]Grande D Breitbart A Mason J et al.Cartilage tissue engineering:current limitations and solutions.Clin Orthop 1999 367S:S176[4]Brittberg M Lindahl A Nilsson A et al.Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.N Engl J Med 1994 331:889[5]Reddi A.Morphogenesis and tissue engineering of bone and cartilage:inductive signals stem cells and biomimetic biomaterials.Tissue Eng 2000 6(4) :351[6]Freed L Martin I Vunjak-Novakovic G.Frontiers in tissue engineering:in vitro modulation of chondrogene sis.Clin Orthop 1999 367S:S46[7]Evans C Ghivizzani S Smith P et al.Using gene therapy to protect and restore cartilage.Clin Orthop 2000 379 (Suppl) :S214[8]Fernandes J Martel-Pelletier J Pelletier J.Gene therapy for osteoarthritis:new perspectives for the twentyfirst century.Clin Orthop 2000 379(Suppl):S262[9]Mason J M Breitbart A S Barcia M et al.Cartilage and bone regeneration using gene-enhanced tissue engineering.Clin Orthop 2000 379 (Suppl):S171[10]郭晓东 杜靖远 郑启新等.分子生物学在组织工程学研究中的应用前景.中华实验外科杂志 2001 18(3):283[11]郭晓东 全大萍.组织工程与生物材料.见:生物医用材料导论.李世普主编.武汉:武汉工业大学出版社 2000.302[12]Liu Y Zheng Q X Du J Y et al.Cloning and expression of rat transforming growth factorβ1 cDNA in osteoblasts.J Tongji Med Univ 2000 20:63[13]Johnstone B Yoo J.Autologous mesenchymal progenitol cells in articular cartilage repair.Clin Orthop 1999 367S:S156[14]Yoo J Mandell I Angele P et al.Chondrogenitor cells and gene therapy.Clin Orthop 2000 379 (Suppl):S164[15]Caplan A I.Mesenchymal stem cells and gene

  11. Hepatocyte Growth Factor Prevents Acute Renal Failure of Accelerates Renal Regeneration in mice

    Science.gov (United States)

    Kawaida, Kouichi; Matsumoto, Kunio; Shimazu, Hisaaki; Nakamura, Toshikazu

    1994-05-01

    Although acute renal failure is encountered with administration of nephrotoxic drugs, ischemia, or unilateral nephrectomy, there has been no effective drug which can be used in case of acute renal failure. Hepatocyte growth factor (HGF) is a potent hepatotropic factor for liver regeneration and is known to have mitogenic, motogenic, and morphogenic activities for various epithelial cells, including renal tubular cells. Intravenous injection of recombinant human HGF into mice remarkably suppressed increases in blood urea nitrogen and serum creatinine caused by administration of cisplatin, a widely used antitumor drug, or HgCl_2, thereby indicating that HGF strongly prevented the onset of acute renal dysfunction. Moreover, exogenous HGF stimulated DNA synthesis of renal tubular cells after renal injuries caused by HgCl_2 administration and unilateral nephrectomy and induced reconstruction of the normal renal tissue structure in vivo. Taken together with our previous finding that expression of HGF was rapidly induced after renal injuries, these results allow us to conclude that HGF may be the long-sought renotropic factor for renal regeneration and may prove to be effective treatment for patients with renal dysfunction, especially that caused by cisplatin.

  12. [The influence of fibroblast growth factor (FGF2) on cardiomyocytes differentiation of mesenchymal stem cells of bone marrow ex vivo].

    Science.gov (United States)

    Lobanok, E S; Kvacheva, Z B; Pinchuk, S V; Volk, M V; Mezhevkina, L M; Fesenko, E E; Volotovski, I D

    2014-01-01

    The influence of FGF2 on the efficiency of cardiomyocytes differentiation of mesenchymal stem cells (MSC) of bone marrow induced by 5-azacetidine (5-aza) was studied. The effect of FGF2 developing by the 14th day after the combined action of a differentiating agent and growth factor was manifested in an increase in Mef2A, Mef2D and gene transcription and a rise of ionized Ca2+ concentration in cytoplasm keeping cell viability and proliferation activity. In the presence of FGF2 this approach provided cardiomyogenesis and the increase in the formation of early precursors of cardiomyocytes.

  13. Silencing of CYP6 and APN Genes Affects the Growth and Development of Rice Yellow Stem Borer, Scirpophaga incertulas

    OpenAIRE

    Vijaya Sudhakara Rao eKola; P eRenuka; Ayyagari Phani Padmakumari; Satendra Kumar Mangrauthia; Balachandran eS M; MAGANTI SHESHU MADHAV

    2016-01-01

    RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of ch...

  14. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  15. Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development.

    Science.gov (United States)

    Vidrich, Alda; Buzan, Jenny M; Brodrick, Brooks; Ilo, Chibuzo; Bradley, Leigh; Fendig, Kirstin Skaar; Sturgill, Thomas; Cohn, Steven M

    2009-07-01

    Fibroblast growth factor receptor 3 (FGFR-3) is expressed in the lower crypt epithelium, where stem cells of the intestine reside. The role of FGFR-3 signaling in regulating features of intestinal morphogenesis was examined in FGFR-3-null (FGFR-3(-/-)) mice. FGFR-3(-/-) mice had only about half the number of intestinal crypts and a marked decrease in the number of functional clonogenic stem cells, as assessed by an in vivo microcolony-forming assay, compared with wild-type littermates. A marked deficit in allocation of progenitor cells to Paneth cell differentiation was noted, although all the principal epithelial lineages were represented in FGFR-3(-/-) mice. The total cellular content and nuclear localization of beta-catenin protein were reduced in FGFR-3(-/-) mice, as was expression of cyclin D1 and matrix metalloproteinase-7, major downstream targets of beta-catenin/T cell factor-4 (Tcf-4) signaling. Activation of FGFR-3 in Caco-2 cells, an intestinal epithelial cell line, abrogated the fall in beta-catenin/Tcf-4 signaling activity that is normally observed in these cells as cultures become progressively more confluent. These findings are consistent with the hypothesis that, during intestinal development, FGFR-3 signaling regulates crypt epithelial stem cell expansion and crypt morphogenesis, as well as Paneth cell lineage specification, through beta-catenin/Tcf-4-dependent and -independent pathways.

  16. Deregulation of Flk-1/vascular endothelial growth factor receptor-2 in fibroblast growth factor receptor-1-deficient vascular stem cell development.

    Science.gov (United States)

    Magnusson, Peetra; Rolny, Charlotte; Jakobsson, Lars; Wikner, Charlotte; Wu, Yan; Hicklin, Daniel J; Claesson-Welsh, Lena

    2004-03-15

    We have employed embryoid bodies derived from murine embryonal stem cells to study effects on vascular development induced by fibroblast growth factor (FGF)-2 and FGF receptor-1, in comparison to the established angiogenic factor vascular endothelial growth factor (VEGF)-A and its receptor VEGF receptor-2. Exogenous FGF-2 promoted formation of morphologically distinct, long slender vessels in the embryoid bodies, whereas VEGF-A-treated bodies displayed a compact plexus of capillaries. FGF-2 stimulation of embryonal stem cells under conditions where VEGF-A/VEGFR-2 function was blocked, led to formation of endothelial cell clusters, which failed to develop into vessels. FGFR-1(-/-) embryoid bodies responded to VEGF-A by establishment of the characteristic vascular plexus, but FGF-2 had no effect on vascular development in the absence of FGFR-1. The FGFR-1(-/-) embryoid bodies displayed considerably increased basal level of vessel formation, detected by immunohistochemical staining for platelet-endothelial cell adhesion molecule (PECAM)/CD31. This basal vascularization was blocked by neutralizing antibodies against VEGFR-2 or VEGF-A and biochemical analyses indicated changes in regulation of VEGFR-2 in the absence of FGFR-1 expression. We conclude that VEGF-A/VEGFR-2-dependent vessel formation occurs in the absence of FGF-2/FGFR-1, which, however, serve to modulate vascular development.

  17. Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cell transplantation improves hypoxic-ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dengna Zhu; Yanjie Jia; Jun Wang; Boai Zhang; Guohui Niu; Yazhen Fan

    2011-01-01

    Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein.BrdU-positive cells at day 7post-transplantation,as well as nestin-and neuron specific enolase-positive cells at day 14 wereincreased compared with those of the single neural stem cell transplantation group.In addition,theproportion of neuronal differentiation was enhanced.The genetically modified cell-transplanted ratsexhibited enhanced performance in correctly crossing a Y-maze and climbing an angled slope compared with those of the single neural stem cell transplantation group.These results showed that human insulin-like growth factor 1-transfected neural stem cell transplantation promotes therecovery of the learning,memory and motor functions in hypoxic-ischemic rats.

  18. Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Payel Bhanja

    Full Text Available BACKGROUND: Radiation-induced gastrointestinal syndrome (RIGS results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1 acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of the irradiated intestine, thereby, ameliorating RIGS. METHODS AND FINDINGS: Male C57Bl/6 mice received recombinant adenovirus expressing human R-spondin1 (AdRspo1 or E.coli Lacz (AdLacz, 1-3 days before whole body irradiation (WBI or abdominal irradiation (AIR. Post-irradiation survival was assessed by Kaplan Meier analysis. RIGS was assessed by histological examination of intestine after hematoxilin and eosin staining, immunohistochemical staining of BrdU incorporation, Lgr5 and beta-catenin expression and TUNEL staining. The xylose absorption test (XAT was performed to evaluate the functional integrity of the intestinal mucosal barrier. In order to examine the effect of R-spondin1 on tumor growth, AdRspo1 and AdLacZ was administered in the animals having palpable tumor and then exposed to AIR. There was a significant increase in survival in AdRspo1 cohorts compared to AdLacZ (p<0.003 controls, following WBI (10.4 Gy. Significant delay in tumor growth was observed after AIR in both cohorts AdRspo1 and AdLacZ but AdRspo1 treated animals showed improved survival compared to AdLacZ. Histological analysis and XAT demonstrated significant structural and functional regeneration of the intestine in irradiated animals following AdRspo1 treatment. Immunohistochemical analysis demonstrated an increase in Lgr5+ve crypt cells and the translocation of beta-catenin from the cytosol to nucleus and upregulation of beta-catenin target genes in AdRspo1-treated mice, as

  19. Cdx2 is essential for embryonic axial growth and identity of the adult intestinal stem cells

    NARCIS (Netherlands)

    Simmini, Salvatore

    2015-01-01

    During mouse development, progenitor cells, allocated along the primitive streak and in the tailbud, lay down descendants that contribute to the generation of all primordia of the trunk and tail tissues of the embryo. Evidence suggested that a pool of these progenitor cells, with stem cell-like pote

  20. An off-target nucleostemin RNAi inhibits growth in human glioblastoma-derived cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Jon Gil-Ranedo

    Full Text Available Glioblastomas (GBM may contain a variable proportion of active cancer stem cells (CSCs capable of self-renewal, of aggregating into CD133(+ neurospheres, and to develop intracranial tumors that phenocopy the original ones. We hypothesized that nucleostemin may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Here we report that nucleostemin is expressed in GBM-CSCs isolated from patient samples, and that its expression, conversely to what it has been described for ordinary stem cells, does not disappear when cells are differentiated. The significance of nucleostemin expression in CSCs was addressed by targeting the corresponding mRNA using lentivirally transduced short hairpin RNA (shRNA. In doing so, we found an off-target nucleostemin RNAi (shRNA22 that abolishes proliferation and induces apoptosis in GBM-CSCs. Furthermore, in the presence of shRNA22, GBM-CSCs failed to form neurospheres in vitro or grow on soft agar. When these cells are xenotransplanted into the brains of nude rats, tumor development is significantly delayed. Attempts were made to identify the primary target/s of shRNA22, suggesting a transcription factor involved in one of the MAP-kinases signaling-pathways or multiple targets. The use of this shRNA may contribute to develop new therapeutic approaches for this incurable type of brain tumor.

  1. Growth and differentiation of adult hippocampal arctic ground squirrel neural stem cells.

    Science.gov (United States)

    Drew, Kelly L; McGee, Rebecca C; Wells, Matthew S; Kelleher-Andersson, Judith A

    2011-01-07

    Arctic ground squirrels (Urocitellus parryii, AGS) are unique in their ability to hibernate with a core body temperature near or below freezing. These animals also resist ischemic injury to the brain in vivo and oxygen-glucose deprivation in vitro. These unique qualities provided the impetus to isolate AGS neurons to examine inherent neuronal characteristics that could account for the capacity of AGS neurons to resist injury and cell death caused by ischemia and extremely cold temperatures. Identifying proteins or gene targets that allow for the distinctive properties of these cells could aid in the discovery of effective therapies for a number of ischemic indications and for the study of cold tolerance. Adult AGS hippocampus contains neural stem cells that continue to proliferate, allowing for easy expansion of these stem cells in culture. We describe here methods by which researchers can utilize these stem cells and differentiated neurons for any number of purposes. By closely following these steps the AGS neural stem cells can be expanded through two passages or more and then differentiated to a culture high in TUJ1-positive neurons (~50%) without utilizing toxic chemicals to minimize the number of dividing cells. Ischemia induces neurogenesis and neurogenesis which proceeds via MEK/ERK and PI3K/Akt survival signaling pathways contributes to ischemia resistance in vivo and in vitro (Kelleher-Anderson, Drew et al., in preparation). Further characterization of these unique neural cells can advance on many fronts, using some or all of these methods.

  2. Growth, endocrine function and quality of life after haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Bakker, Boudewijn

    2006-01-01

    This thesis contains the results of several studies on the long-term consequences of the myeloablative conditioning for haematopoietic stem cell transplantation (SCT) during infancy and childhood, with the emphasis on late effects on endocrine functions. After a general introduction, effects of tot

  3. Insulin-like growth factor-1 sustains stem cell mediated renal repair.

    NARCIS (Netherlands)

    Imberti, B.; Morigi, M.; Tomasoni, S.; Rota, C.; Corna, D.; Longaretti, L.; Rottoli, D.; Valsecchi, F.; Benigni, A.; Wang, J.; Abbate, M.; Zoja, C.; Remuzzi, G.

    2007-01-01

    In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments

  4. Angiogenesis-independent tumor growth mediated by stem-like cancer cells.

    NARCIS (Netherlands)

    Sakariassen, P.; Prestegarden, L.; Wang, J.; Skaftnesmo, K.O.; Mahesparan, R.; Molthoff, C.F.M.; Sminia, P.; Sundlisaeter, E.; Misra, A.; Tysnes, B.B.; Chekenya, M.; Peters, H.; Lende, G.; Kalland, K.H.; Oyan, A.M.; Petersen, K.; Jonassen, I.; Kogel, A.J. van der; Feuerstein, B.G.; Terzis, A.J.; Bjerkvig, R.; Enger, P.O.

    2006-01-01

    In this work, highly infiltrative brain tumors with a stem-like phenotype were established by xenotransplantation of human brain tumors in immunodeficient nude rats. These tumors coopted the host vasculature and presented as an aggressive disease without signs of angiogenesis. The malignant cells ex

  5. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    Science.gov (United States)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  6. Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system.

    Science.gov (United States)

    Ye, Ping; D'Ercole, A Joseph

    2006-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in normal development. Recent studies show that IGF-I exerts a wide variety actions in the central nervous system during development as well as in adulthood. This report reviews recent developments on IGF-I actions and its mechanisms in the central nervous system, with a focus on its actions during the development of neural stem cells and progenitors. Available data strongly indicate that IGF-I shortens the length of the cell cycle in neuron progenitors during embryonic life and has an influence on the growth of all neural cell types. The phosphatidylinositol-3 kinase/Akt and mitogen-activated protein kinase pathways seem to be the predominant mediators of IGF-I-stimulated neural cell proliferation and survival. IGF-I actions, however, likely depend on cell type, developmental stage, and microenvironmental milieu.

  7. Non-invasive plant growth measurements for detection of blue-light dose response of stem elongation in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    . In the present study a non-invasive plant growth sensor (PlantEye, Phenospex B.V, Heerlen, NL) was tested in analysing changes in diurnal stem elongation patterns and plant height in response to the spectral quality of the light environment. Plants were grown in four different LED supplemental lighting...... treatments with 0%, 12.5%, 18.5% and 22.5% blue light under greenhouse conditions in winter (18 h day/4 h night). The non-invasive measurements were carried out automatically every four hour with three repetitions, and supported by manual measurements of plant height every third day. A strong linear relation...... between the non-invasive measurements and manual measurements of plant height was achieved, and a blue-light dose-response showing a decrease in plant height in relation to an increase in blue light was demonstrated. However, the non-invasive plant growth sensor was not able to distinguish between diurnal...

  8. Impact of the 2013-2015 weather variability on seasonal growth dynamics and daily stem-size changes of three coexisting broadleaved tree species

    Science.gov (United States)

    van der Maaten, Ernst; Pape, Jonas; van der Maaten Theunissen, Marieke; Scharnweber, Tobias; Smiljanic, Marko; Wilmking, Martin

    2016-04-01

    Dendrometers are measurement devices that continuously monitor stem-size changes of trees without invasive sampling of the cambium. Dendrometers record both irreversible tree growth as well as reversible signals of stem water storage and depletion, making them important tools for studying tree water status, tree physiology and short-term growth responses of trees to weather fluctuations. In this study, a three-year dendrometer dataset (2013-2015) is used to study seasonal growth dynamics and daily stem-size changes of three coexisting broadleaved tree species (common hornbeam (Carpinus betulus L.), European beech (Fagus sylvatica L.), and pedunculate oak (Quercus robur L.)), growing in an unmanaged forest in northeastern Germany. Seasonal growth patterns (i.e. growth onset, cessation and duration) are analyzed in relation to environmental conditions, and forest meteorological factors driving daily stem-size changes are identified. Following dry conditions in 2014, especially the growth of beech was reduced. Oak was less affected, and displayed a distinct early growth onset for all study years.

  9. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells

    Science.gov (United States)

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris

    2016-01-01

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  10. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells.

    Science.gov (United States)

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris; Kiessling, Ann A

    2016-01-15

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  11. The changes in redox status of ascorbate in stem tissue cells during Scots pine tree growth

    Directory of Open Access Journals (Sweden)

    G. F. Antonova

    2017-02-01

    Full Text Available The contents of ascorbate (AsA and dehydroascorbate (DHA and their ratio, showing cellular redox state of AsA, were studied in the cells of the separate tissues at different levels of Pinus sylvestris L. stem during early- and latewood formation. Morphological status of the cells in the tissues and the content of soluble carbohydrates were also estimated. The cellular redox potential of AsA has been found to depend on the type of tissue, cell development degree, the level of stem and the type of forming wood. The content of AsA and AsA/DHA ratio in the cells of non-conducting phloem along the stem were higher than in mature xylem and less during earlywood than latewood formation. The cells of conducting phloem and forming xylem, as the principal tissues taking part in annual ring wood formation, differed in the content of acids in the course of early and late xylem formation. Along the stem, the content of AsA decreased in conducting phloem cells and increased in the cells of forming xylem during both early- and latewood formation. The AsA/DHA of conducting phloem during earlywood formation was greatest below the stem and diminished to the top of the tree, while in the course of latewood development it was similar at all levels. In forming xylem AsA/DHA increased to the top of tree during the early xylem formation and decreased in late xylem that indicates the differences in oxidation-reduction reactions into the cells of two type of forming wood. The data are discussed according to morphological development of cells and the content of carbohydrates.

  12. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine

    OpenAIRE

    2015-01-01

    Introduction Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor...

  13. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.

    Science.gov (United States)

    Liang, Zhe; Brown, Roy C; Fletcher, Jennifer C; Opsahl-Sorteberg, Hilde-Gunn

    2015-09-01

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells.

  14. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-κB

    Institute of Scientific and Technical Information of China (English)

    PengYao; YiqunZhan; WangxiangXu; ChangyanLi; PeibinYue; ChengwangXu; DarongHU; ChengkuiQu; XiaomingYang

    2005-01-01

    Background/Aims: Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-κB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-κB in HGF-mediated cellular proliferation responses in a rat liver.derived hepatic stem-like cell line WB.F344. Methods: Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IκBα by HGF stimulation was detected by Western blotting. NF-κB activation was determined by electrophoretic mobility shift assay and NF-κB.mediated SEAP reporter assay. NF-κB activation was inhibited by treatment with an IκBα dominant-negative vector or inhibitor BAY-11-7082. Results: We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-α. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-κB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-κB activity.Furthermore, it was demonstrated that IκB mutant that suppressed NF-κB activity completely blocked HGF-induced cell proliferation. Conclusions: NF-κB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.

  15. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    Science.gov (United States)

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.

  16. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    Science.gov (United States)

    Kitao, Mitsutoshi; Winkler, J Barbro; Löw, Markus; Nunn, Angela J; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M; Matyssek, Rainer

    2012-07-01

    The hypothesis was tested that O(3)-induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O(3) regime, as prevailing at the forest site (control), or under an experimental twice-ambient O(3) regime (elevated O(3)), as released through a free-air canopy O(3) fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O(3). As this outcome only partly accounts for the decline in stem growth, O(3)-induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth.

  17. Prolonged propagation of rat neural stem cells relies on inhibiting autocrine/paracrine bone morphogenetic protein and platelet derived growth factor signals

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Liangfu Zhou; Xing Wu; Hua Liu; Qiang Yuan; Ying Mao; Jin Hu

    2011-01-01

    Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.

  18. Growth and development of moringa (Moringa oleifera L. stem cuttings as affected by diameter magnitude, growth media, and indole-3-butyric acid

    Directory of Open Access Journals (Sweden)

    Shamsuddeen Rufai

    2016-12-01

    Full Text Available The acknowledged status of Moringa oleifera L. in sub-Saharan Africa, especially western Africa, has of recent accorded it the significance of being a good source of income to a large segment of many of its populace. Intensification of research into the realization of its full economic potential will be of utmost value to impoverished societies globally. One way to achieve this is the full exploration of all possible means that will facilitate its successful growth, propagation, and domestication. Even though it can be successfully raised through seeds, the high level outcrossing (64.3% observed is a hindrance to realization of true to type trees. Vegetative propagation can be employed as an option to tackle the noted limitation, ease the cultivation process, and achieve the required realization of its economic potential. Our trial was carried out to study the influence of two growth media and three levels of indole 3-butyric acid (IBA on root and shoot development in cuttings taken from a coppiced moringa tree existent in Universiti Putra Malaysia. Semi-hardwood cuttings of moringa, of between 20 and 30 mm diameter, cut into 25 cm length, were obtained, rinsed with a fungicide, then dipped, through their basal portion, inside varying levels (0, 1000, 2000, and 3000 ppm of indole-3-butyric acid (IBA for between 7 and 10 seconds. The treated cuttings were then transplanted into a polyethylene bags (23 cm × 36 cm, containing two growth media - a munchong series soil (M and a combination of a munchong series soil thoroughly mixed with biochar (MB in a 3:1 ratio sequence. The trial was conducted inside a shade house where the humidity of the experimental area was manipulated through a regular daily manual hand sprinkling. Plant height, percentage of primary branch produced, leaf area, and dry matter (DM were found to be significantly (P<0.05 influenced by variation in stem diameter magnitude, while the diameter of the primary branch and spad

  19. Mapping and validation of molecular markers of genes Dt1 and Dt2 to determine the type of stem growth in soybean

    Directory of Open Access Journals (Sweden)

    Dorival Vicente

    2016-01-01

    Full Text Available The type of stem growth in soybean is a distinguishing feature of cultivars. The genes Dt1 and Dt2 affect the termination of the stem, and the types of growth are classified as determinate, semi-determinate and indeterminate. Phenotypic characterization of the type of growth is complex and is occasionally erroneously described. The objective of this study was to map and validate molecular markers to classify the type of soybean growth to facilitate the description of cultivars and genotypic selection. Two populations were used for mapping and validation of molecular markers F2:3: T 117 (semi-determinate growth type x Igra RA 518 RR (indeterminate growth type and CD 235RR (determinate growth type x Igra RA 518 RR. The study demonstrates that the association of the molecular marker with the gene GmTFL1b was efficient in the classification of soybean growth types. The marker sat_064 is connected to the Dt2 gene, which is located in the Liaison Group G of the consensus map of soybeans with a recombination frequency of 19.4%. Molecular markers for Dt1 and Dt2 genes efficiently described the genotypes of soybean stem growth and selection.

  20. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    Directory of Open Access Journals (Sweden)

    Maria E. Gonzalez

    2017-01-01

    Full Text Available Increased collagen deposition by breast cancer (BC-associated mesenchymal stem/multipotent stromal cells (MSC promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2 is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with collagen deposition and induces pathological activation of DDR2 signaling in BC cells. Loss of DDR2 in MSCs impairs their ability to promote DDR2 phosphorylation in BC cells, as well as BC cell alignment, migration, and metastasis. Female ddr2-deficient mice homozygous for the slie mutation show inefficient spontaneous BC metastasis. These results point to a role for mesenchymal stem cell DDR2 in metastasis and suggest a therapeutic approach for metastatic BC.

  1. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth.

    Science.gov (United States)

    Gonzalez, Maria E; Martin, Emily E; Anwar, Talha; Arellano-Garcia, Caroline; Medhora, Natasha; Lama, Arjun; Chen, Yu-Chih; Tanager, Kevin S; Yoon, Euisik; Kidwell, Kelley M; Ge, Chunxi; Franceschi, Renny T; Kleer, Celina G

    2017-01-31

    Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with collagen deposition and induces pathological activation of DDR2 signaling in BC cells. Loss of DDR2 in MSCs impairs their ability to promote DDR2 phosphorylation in BC cells, as well as BC cell alignment, migration, and metastasis. Female ddr2-deficient mice homozygous for the slie mutation show inefficient spontaneous BC metastasis. These results point to a role for mesenchymal stem cell DDR2 in metastasis and suggest a therapeutic approach for metastatic BC.

  2. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance.

  3. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    OpenAIRE

    Gonzalez, Maria E.; Martin, Emily E.; Talha Anwar; Caroline Arellano-Garcia; Natasha Medhora; Arjun Lama; Yu-Chih Chen; Kevin S. Tanager; Euisik Yoon; Kidwell, Kelley M.; Chunxi Ge; Franceschi, Renny T.; Celina G. Kleer

    2017-01-01

    Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with co...

  4. Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment.

    Directory of Open Access Journals (Sweden)

    Yun Gyeong Kang

    Full Text Available The roles of limbal epithelial stem cells (LESCs are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together with neighboring cells, were isolated from the minced limbal tissues of rabbits. At days 8 and 9 of culture, the cells were exposed to a steady flow or intermittent flow for 2 h per day in a custom-designed bioreactor. The responses of LESCs and epithelial cells were assessed at days 12 and 14. LESCs and epithelial cells responded to both types of flow. Proliferation of LESCs, as assessed using a BrdU assay, was increased to a greater extent under steady flow conditions. Holoclones were found under intermittent flow, indicating that differentiation into transient amplifying cells had occurred. Immunofluorescent staining of Bmi-1 suggested that steady flow has a positive effect on the maintenance of stemness. This finding was confirmed by real-time PCR. Notch-1 and p63 were more sensitive to intermittent flow, but this effect was transient. K3 and K12 expression, indicative of differentiation of LESCs into epithelial cells, was induced by flow and lasted longer under intermittent flow conditions. In summary, culture of LESCs in a bioreactor under a steady flow paradigm, rather than one of intermittent flow, is beneficial for both increasing proliferation and maintaining stemness. Conversely, intermittent flow appears to induce differentiation of LESCs. This novel experimental method introduces micro-mechanical stimuli to traditional culture techniques, and has potential for regulating the proliferation and differentiation of LESCs in vitro, thereby

  5. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  6. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  7. Transforming Growth Factor-beta signal responding in hepatic stem-like cells

    Institute of Scientific and Technical Information of China (English)

    CUI Wei

    2008-01-01

    Objective To investigate the effects of TGF-β on the expressions and distribution of phosphorated Smad2/3 and Smad7 in hepatic stem-like cells. Methods Using immunogold transmission electron microscopy, we observed the expressions and distribution of phosphorated Smad2/3, and Smad7 before and after TGF-β1 (5 ng·mL-1) treatment for 4, 8, and 24 hours in hepatic stem-like cells (WB cells). In addition, we also detected the apoptosis status after TGF-β1 stimulation by transmission electron microscopy. Results TGF-β1 stimulation can result in expression increasing of phosphorated Smad2/3 in WB cells, and reach the peak at 8 h, especially in the nuclear. After treatment with TGF-β1 for 24 h, the nuclear expression of phosphorated Smad2/3 gradually decreased. Additionally, we found that TGF-β1 treatment also contributed to increasing in protein level and alteration in cellular distribution of Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. Furthermore, we observed apoptotic body in WB cells after TGF-β1 treatment for 8 h. Conclusions These results indicate that TGF-β stimulation can alter the expression and cellular distribution of phosphorated Srnad2/3 and Smad7 which are its downstream molecular, suggesting hepatic stem-like cells own intact responding to TGF-β.

  8. Derivation and growth characteristics of dental pulp stem cells from patients of different ages.

    Science.gov (United States)

    Wu, Wei; Zhou, Jian; Xu, Chong-Tao; Zhang, Jie; Jin, Yan-Jiao; Sun, Geng-Lin

    2015-10-01

    The dental pulp contains a relatively low number of stem cells; however, it is considered to be a promising source of stem cells for use in regenerative therapy. To date, it has remained elusive whether there are certain differences in the dental pulp stem cells (DPSCs) from donors of different ages. In the present study, DPSC lines were derived using teeth from children, adolescents, adults and aged donors. The derivation efficiency, the proliferative and apoptotic rate, cell marker expression and the differentiation capacity were investigated and compared among these DPSC lines. The derivation efficacy was decreased with increasing donor age. Although a large part of cell surface markers was expressed in all DPSC lines, the expression of CD29 was downregulated in the DPSCs from aged teeth. In addition, the doubling time of DPSCs from aged teeth was prolonged and the number of apoptotic cells was increased with the propagation. These DPSCs were able to differentiate into a neuronal linage, which positively expressed the neuron-specific class III beta-tubulin and microtubule‑associated protein 2, as well as into an osteogenic lineage, which positively expressed CD45; however, these DPSCs from aged teeth were completely or partially deprived of differentiation capacity. By contrast, DPSCs from younger teeth displayed significantly higher vitality and a higher potential for use in dental regenerative medicine.

  9. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injur y by promoting axonal growth and anti-autophagy

    Institute of Scientific and Technical Information of China (English)

    Fei Yin; Chunyang Meng; Rifeng Lu; Lei Li; Ying Zhang; Hao Chen; Yonggang Qin; Li Guo

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans-plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunolfuorescence with subsequent quantiifcation revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as-sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur-thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was signiifcantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro-iflament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes-enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  10. Low Intensity Laser Irradiation and Growth Factors Influence Differentiation of Adipose Derived Stem Cells into Smooth Muscle Cells in a Coculture Environment over a Period of 72 Hours

    Directory of Open Access Journals (Sweden)

    Bernard Mvula

    2014-01-01

    Full Text Available Stem cells have the ability to self-renew and differentiate into several specialised cells. Low intensity laser irradiation (LILI has been shown to have positive effects on cells including adipose derived stem cells (ADSCs. Growth factors such as retinoic acid and transforming growth factor (TGF-β1 play significant roles in the differentiation of cells. This study aimed at investigating the role of LILI and growth factors on differentiation of adipose derived stem cells cocultured with smooth muscle cells (SMCs. The study used isolated human adipose derived stem cells and smooth muscle commercial cells (SKUT-1. The cells were cocultured directly in the ratio 1 : 1 using the established methods with and without growth factors (retinoic acid and TGF-β1 and then exposed to LILI at a wavelength of 636 nm with 5 J/cm2 using a diode laser. The cellular proliferation and expression of the both cell type markers were assessed using optical density and flow cytometry at 24 h and 72 h. The study showed that LILI increased the proliferation of cocultured cells. The expression of the smooth muscle cell markers increased in the coculture groups that were exposed to LILI in the presence of growth factors while those of the ADSCs decreased.

  11. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development

    Science.gov (United States)

    Holoyda, Kathleen A.; Hou, Xiaogang; Fowler, Kathryn L.; Grikscheit, Tracy C.

    2016-01-01

    Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future

  12. Induction of Neuronal Differentiation of Rat Muscle-Derived Stem Cells in Vitro Using Basic Fibroblast Growth Factor and Ethosuximide

    Directory of Open Access Journals (Sweden)

    Jin Seon Kwon

    2013-03-01

    Full Text Available Several studies have demonstrated that basic fibroblast growth factor (bFGF can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs following treatment with bFGF and ethosuximide, a small molecule used as an anticonvulsant in humans. Stem cells isolated from rat skeletal muscle (rMDSCs were pre-induced by culturing with 25 ng/mL bFGF for 24 h and then were transferred to a medium supplemented with or without 4 mM ethosuximide. Neuronal differentiation was assessed by immunocytochemical and western blotting analyses of marker expression. Immunocytochemistry of rMDSCs treated with bFGF and ethosuximide identified abundant cells expressing neuronal markers (TuJ1, neuron-specific class III β-tubulin; NeuN, neuronal nuclear antigen; and NF-MH; neurofilament M and H. Olig2 (oligodendrocyte transcription factor 2-positive cells were also observed, indicating the presence of oligodendrocyte lineage cells. These findings were substantiated by western blotting analysis of marker proteins. In particular, the expression of NeuN and TuJ1 was significantly higher in rMDSCs treated with ethosuximide and bFGF than in cells stimulated with bFGF alone (NeuN, p < 0.05 and TuJ1, p < 0.001. Expression of the astrocyte marker GFAP (glial fibrillary acidic protein was not detected in this study. Collectively, the results showed that treatment with bFGF and ethosuximide induced effective transdifferentiation of rMDSCs into cells with a neural-like phenotype. Notably, rMDSCs treated with a combination of bFGF plus ethosuximide showed enhanced differentiation compared with cells treated with bFGF alone, implying that ethosuximide may stimulate neuronal differentiation.

  13. Mesenchymal stem cells modified with nerve growth factor improve recovery of the inferior alveolar nerve after mandibular distraction osteogenesis in rabbits.

    Science.gov (United States)

    Wang, L; Zhao, Y; Cao, J; Yang, X; Lei, D

    2015-03-01

    Distraction osteogenesis is widely used in the treatment of bony deformities and defects. However, injury to the inferior alveolar nerve is a concern. Our aim was to investigate the feasibility of using lentiviral-mediated human nerve growth factor beta (hNGFβ) of the inferior alveolar nerve in mandibular distraction osteogenesis in rabbits. To achieve this, mesenchymal stem cells (MSC) from the bone marrow of rabbit mandibles were isolated and genetically engineered using recombinant lentiviral vector containing hNGFβ. Twenty New Zealand white rabbits underwent mandibular distraction osteogenesis, and 5 million MSC transduced with hNGFβ-vector or control vector were transplanted around the nerve in the gap where the bone had been fractured during the operation (n=10 in each group). After gradual distraction, samples of the nerve were harvested for histological and histomorphometric analysis. We found that the genetically engineered MSC transduced by the lentiviral vector were able to secrete hNGFβ at physiologically relevant concentrations as measured by ELISA. Histological examination of the nerve showed more regenerating nerve fibres and less myelin debris in the group in which hNGFβ-modified MSC had been implanted than in the control group. Histomorphometric analysis of the nerve showed increased density of myelinated fibres in the group in which hNGFβ-modified MSC had been implanted than in the control group. The data suggest that implantation of hNGFβ-modified MSC can accelerate the morphological recovery of the inferior alveolar nerve during mandibular distraction osteogenesis in rabbits. The use of lentiviral-mediated gene treatment to deliver hNGFβ through MSC may be a promising way of minimising injury to the nerve.

  14. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  15. E-cadherin gene-engineered feeder systems for supporting undifferentiated growth of mouse embryonic stem cells.

    Science.gov (United States)

    Horie, Masanobu; Ito, Akira; Kiyohara, Takehiko; Kawabe, Yoshinori; Kamihira, Masamichi

    2010-11-01

    Conventionally, embryonic stem (ES) cells are cultured on a cell layer of mouse embryonic fibroblasts (MEFs) as feeder cells to support undifferentiated growth of ES cells. In this study, cell-cell interactions between mouse ES and feeder cells were artificially engineered via an epithelial cell adhesion molecule, E-cadherin, whose expression is considerable in ES cells. Mouse mesenchymal STO and NIH3T3 cells that were genetically engineered to express E-cadherin were used in ES cell cultures as feeder cells. ES cells cultured on the E-cadherin-expressing feeder cells maintained the expression of stem cell markers, alkaline phosphatase (AP), Oct3/4, Nanog and Sox2, and the efficiency of AP-positive colony formation was comparable to MEFs, and much better than parental STO and NIH3T3 cells. Furthermore, ES cells maintained on the E-cadherin-expressing feeder cells possessed the ability to differentiate into the three germ layers both in vitro and in vivo. The results indicated that E-cadherin expression in feeder cells could improve the performance of feeder cells, which may be further applicable to create new artificial feeder cell lines.

  16. Development of Hydrogel with Anti-Inflammatory Properties Permissive for the Growth of Human Adipose Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    R. Sánchez-Sánchez

    2016-01-01

    Full Text Available Skin wound repair requires the development of different kinds of biomaterials that must be capable of restoring the damaged tissue. Type I collagen and chitosan have been widely used to develop scaffolds for skin engineering because of their cell-related signaling properties such as proliferation, migration, and survival. Collagen is the major component of the skin extracellular matrix (ECM, while chitosan mimics the structure of the native polysaccharides and glycosaminoglycans in the ECM. Chitosan and its derivatives are also widely used as drug delivery vehicles since they are biodegradable and noncytotoxic. Regulation of the inflammatory response is crucial for wound healing and tissue regeneration processes; and, consequently, the development of biomaterials such as hydrogels with anti-inflammatory properties is very important and permissive for the growth of cells. In the last years, it has been shown that mesenchymal stem cells have clinical importance in the treatment of different pathologies, for example, skin injuries. In this paper, we describe the anti-inflammatory activity of collagen type 1/chitosan/dexamethasone hydrogel, which is permissive for the culture of human adipose-derived mesenchymal stem cells (hADMSC. Our results show that hADMSC cultured in the hydrogel are viable, proliferate, and secrete the anti-inflammatory cytokine interleukin-10 (IL-10 but not the inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α.

  17. LRP6 in mesenchymal stem cells is required for bone formation during bone growth and bone remodeling

    Institute of Scientific and Technical Information of China (English)

    Changjun Li; Bart O Williams; Xu Cao; Mei Wan

    2014-01-01

    Lipoprotein receptor-related protein 6 (LRP6) plays a critical role in skeletal development and homeostasis in adults. However, the role of LRP6 in mesenchymal stem cells (MSCs), skeletal stem cells that give rise to osteoblastic lineage, is unknown. In this study, we generated mice lacking LRP6 expression specifically in nestin1 MSCs by crossing nestin-Cre mice with LRP6flox mice and investigated the functional changes of bone marrow MSCs and skeletal alterations. Mice with LRP6 deletion in nestin1 cells demonstrated reductions in body weight and body length at 1 and 3 months of age. Bone architecture measured by microCT (mCT) showed a significant reduction in bone mass in both trabecular and cortical bone of homozygous and heterozygous LRP6 mutant mice. A dramatic reduction in the numbers of osteoblasts but much less significant reduction in the numbers of osteoclasts was observed in the mutant mice. Osterix1 osteoprogenitors and osteocalcin1 osteoblasts significantly reduced at the secondary spongiosa area, but only moderately decreased at the primary spongiosa area in mutant mice. Bone marrow MSCs from the mutant mice showed decreased colony forming, cell viability and cell proliferation. Thus, LRP6 in bone marrow MSCs is essential for their survival and proliferation, and therefore, is a key positive regulator for bone formation during skeletal growth and remodeling.

  18. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells

    Science.gov (United States)

    Corominas-Faja, Bruna; Cuyàs, Elisabet; Gumuzio, Juan; Bosch-Barrera, Joaquim; Leis, Olatz; Martin, Ángel G.; Menendez, Javier A.

    2014-01-01

    Cancer stem cells (CSC) may take advantage of the Warburg effect-induced siphoning of metabolic intermediates into de novo fatty acid biosynthesis to increase self-renewal growth. We examined the anti-CSC effects of the antifungal polyketide soraphen A, a specific inhibitor of the first committed step of lipid biosynthesis catalyzed by acetyl-CoA carboxylase (ACACA). The mammosphere formation capability of MCF-7 cells was reduced following treatment with soraphen A in a dose-dependent manner. MCF-7 cells engineered to overexpress the oncogene HER2 (MCF-7/HER2 cells) were 5-fold more sensitive than MCF-7 parental cells to soraphen A-induced reductions in mammosphere-forming efficiency. Soraphen A treatment notably decreased aldehyde dehydrogenase (ALDH)-positive CSC-like cells and impeded the HER2's ability to increase the ALDH+-stem cell population. The following results confirmed that soraphen A-induced suppression of CSC populations occurred through ACACA-driven lipogenesis: a.) exogenous supplementation with supraphysiological concentrations of oleic acid fully rescued mammosphere formation in the presence of soraphen A and b.) mammosphere cultures of MCF-7 cells with stably silenced expression of the cytosolic isoform ACACA1, which specifically participates in de novo lipogenesis, were mostly refractory to soraphen A treatment. Our findings reveal for the first time that ACACA may constitute a previously unrecognized target for novel anti-breast CSC therapies. PMID:25246709

  19. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice

    Institute of Scientific and Technical Information of China (English)

    Weihui Huang; Dawei Zang; Yi Lu; Ping Jiang

    2012-01-01

    This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) re-ceptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.

  20. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    Science.gov (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  1. Basic fibroblast growth factor-loaded, mineralized biopolymer-nanofiber scaffold improves adhesion and proliferation of rat mesenchymal stem cells.

    Science.gov (United States)

    Kim, Tae-Hyun; Kim, Jung-Ju; Kim, Hae-Won

    2014-02-01

    Nanofibrous matrices are attractive scaffolding platforms for tissue regeneration. Modification of the nanofiber surface, particularly with biological proteins, improves cellular interactions. Here, we loaded basic fibroblast growth factor (bFGF) onto mineralized nanofibers and investigated the effect on adhesion and proliferation of rat mesenchymal stem cells. bFGF loading was significantly higher on the mineralized nanofiber than on the non-mineralized one. Release of bFGF from the mineralized nanofibers was continuous over 2 weeks. Cells cultured on the bFGF-loaded nanofiber attached and proliferated in significantly higher numbers than those on the bFGF-free nanofiber. bFGF-receptor inhibition study confirmed the biological role played by the loaded bFGF. This study details the advantages of the mineralized nanofiber surface for the loading and delivery bFGF, and thus the bFGF-loaded nanofiber scaffold may be useful for tissue repair and regeneration.

  2. Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation.

    Science.gov (United States)

    Levenstein, Mark E; Berggren, W Travis; Lee, Ji Eun; Conard, Kevin R; Llanas, Rachel A; Wagner, Ryan J; Smith, Lloyd M; Thomson, James A

    2008-12-01

    Human embryonic stem (ES) cells can be maintained in an undifferentiated state if the culture medium is first conditioned on a layer of mouse embryonic fibroblast (MEF) feeder cells. Here we show that human ES cell proliferation is coordinated by MEF-secreted heparan sulfate proteoglycans (HSPG) in conditioned medium (CM). These HSPG and other heparinoids can stabilize basic fibroblast growth factor (FGF2) in unconditioned medium at levels comparable to those observed in CM. They also directly mediate binding of FGF2 to the human ES cell surface, and their removal from CM impairs proliferation. Finally, we have developed a purification scheme for MEF-secreted HSPG in CM. Using column chromatography, immunoblotting, and mass spectrometry-based proteomic analysis, we have identified multiple HSPG species in CM. The results demonstrate that HSPG are key signaling cofactors in CM-based human ES cell culture.

  3. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    Science.gov (United States)

    Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. PMID:25767192

  4. Common feature of concave growth pattern of oscillations in terms of speed, acceleration, fuel consumption and emission in car following: experiment and modeling

    CERN Document Server

    Tian, Junfang; Treiber, Martin; Ma, Shoufeng; Jia, Bin; Zhang, Wenyi

    2016-01-01

    This paper has investigated the growth pattern of traffic oscillations by using vehicle trajectory data in a car following experiment. We measured the standard deviation of acceleration, emission and fuel consumption of each vehicle in the car-following platoon. We found that: (1) Similar to the standard deviation of speed, these indices exhibit a common feature of concave growth pattern along vehicles in the platoon; (2) The emission and fuel consumption of each vehicle decrease remarkably when the average speed of the platoon increases from low value; However, when reaches 30km/h, the change of emission and fuel consumption with is not so significant; (3), the correlations of emission and fuel consumption with both the standard deviation of acceleration and the speed oscillation are strong. Simulations show that with the memory effect of drivers taken into account, the improved two-dimensional intelligent driver model is able to reproduce the common feature of traffic oscillation evolution quite well.

  5. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Mortazavi Yousef

    2016-07-01

    Full Text Available Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293 packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR. Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF, glial fibrillary acidic protein (GFAP and Microtubule-associated protein 2 (MAP2 genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this

  6. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  7. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  8. Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Jellesen, Morten Stendahl;

    2015-01-01

    The steam treatment of aluminium alloys with varying vapour pressure of steamresulted in the growth of aluminium oxyhydroxide films of thickness range between 450 - 825nm. The surface composition, corrosion resistance, and adhesion of the produced films was characterised by XPS, potentiodynamic...... of the vapour pressure of the steam. The accelerated corrosion and adhesion tests on steam generated oxide films with commercial powder coating verified that the performance of the oxide coating is highly dependent on the vapour pressure of the steam....

  9. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  10. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.

  11. The Effect of Potassium Nitrate on the Reduction of Phytophthora Stem Rot Disease of Soybeans, the Growth Rate and Zoospore Release of Phytophthora Sojae

    Science.gov (United States)

    The effects of potassium nitrate (KNO3) application on Phytophthora stem rot disease reduction of Glycine max (L.) Merr. cvs. Chusei-Hikarikuro and Sachiyutaka, and fungal growth and zoospore release of a Phytophthora sojae isolate were investigated under laboratory conditions. The application of 4-...

  12. Fibroblast growth factor-1 and-2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; van Os, Ronald; Weersing, Ellen; Ausema, Albertina; Dontje, Bert; Vellenga, Edo; de Haan, Gerald

    2006-01-01

    In this study, we demonstrate that extended culture of unfractionated mouse bone marrow (BM) cells, in serum-free medium, supplemented only with fibroblast growth factor (FGF)-1, FGF-2, or FGF-1 + 2 preserves long-term repopulating hematopoietic stem cells (HSCs). Using competitive repopulation assa

  13. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Ceylan, Ahmet; Mazzoni, Gianluca;

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed...

  14. Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis.

    Science.gov (United States)

    Sanvoranart, Tanwarat; Supokawej, Aungkura; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Poungvarin, Niphon; Sathornsumetee, Sith; Issaragrisil, Surapol

    2016-11-01

    Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.

  15. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.

    Science.gov (United States)

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders' rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.

  16. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.

    Directory of Open Access Journals (Sweden)

    Virginia Birlanga

    Full Text Available Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i during commercial production at a breeders' rooting station and (ii on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.

  17. Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors: clinical case reports.

    Science.gov (United States)

    Filho Cerruti, Humberto; Kerkis, Irina; Kerkis, Alexandre; Tatsui, Nelson Hidekazu; da Costa Neves, Adriana; Bueno, Daniela Franco; da Silva, Marcelo Cavenaghi Pereira

    2007-04-01

    In order to increase the amount of available bone where dental implants must be placed, the present study has associated platelet-rich plasma (PRP) and mononuclear cells (MNCs) from bone marrow aspirate and bone scaffold (BS) in 32 patients aged between 45 and 75 years old. The MNC attainment and the adherence to the BS were confirmed through histology, cell culture, and scanning electron microscopy. The clinical results, analyzed by computed tomography, have showed that the scaffolds were well integrated and adapted to the cortical bone. We can conclude that the process of healing observed in the patients was due to the presence of mesenchymal stem cell in MNC fraction in the bone grafts.

  18. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient ( c . 20 cm......-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records...

  19. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  20. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  1. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.

    Science.gov (United States)

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako

    2002-03-01

    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  2. Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages

    Directory of Open Access Journals (Sweden)

    Esha Mathew

    2016-03-01

    Significance: Targeting the stroma is emerging as a new paradigm in pancreatic cancer; however, efforts to that effect are hampered by our limited understanding of the nature and function of stromal components. Here, we uncover previously unappreciated heterogeneity within the stroma and identify interactions among stromal components that promote tumor growth and could be targeted therapeutically.

  3. Tumour cell–derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth

    Directory of Open Access Journals (Sweden)

    Hiroaki Haga

    2015-01-01

    Full Text Available The contributions of mesenchymal stem cells (MSCs to tumour growth and stroma formation are poorly understood. Tumour cells can transfer genetic information and modulate cell signalling in other cells through the release of extracellular vesicles (EVs. We examined the contribution of EV-mediated inter-cellular signalling between bone marrow MSCs and tumour cells in human cholangiocarcinoma, highly desmoplastic cancers that are characterized by tumour cells closely intertwined within a dense fibrous stroma. Exposure of MSCs to tumour cell–derived EVs enhanced MSC migratory capability and expression of alpha-smooth muscle actin mRNA, in addition to mRNA expression and release of CXCL-1, CCL2 and IL-6. Conditioned media from MSCs exposed to tumour cell–derived EVs increased STAT-3 phosphorylation and proliferation in tumour cells. These effects were completely blocked by anti-IL-6R antibody. In conclusion, tumour cell–derived EVs can contribute to the generation of tumour stroma through fibroblastic differentiation of MSCs, and can also selectively modulate the cellular release of soluble factors such as IL-6 by MSCs that can, in turn, alter tumour cell proliferation. Thus, malignant cells can “educate” MSCs to induce local microenvironmental changes that enhance tumour cell growth.

  4. Application of an interface failure model to predict fatigue crack growth in an implanted metallic femoral stem.

    Science.gov (United States)

    Chen, J; Browne, M; Taylor, M; Gregson, P J

    2004-03-01

    A novel computational modelling technique has been developed for the prediction of crack growth in load bearing orthopaedic alloys subjected to fatigue loading. Elastic-plastic fracture mechanics has been used to define a three-dimensional fracture model, which explicitly models the opening, sliding and tearing process. This model consists of 3D nonlinear spring elements implemented in conjunction with a brittle material failure function, which is defined by the fracture energy for each nonlinear spring element. Thus, the fracture energy criterion is implicit in the brittle material failure function to search for crack initiation and crack development automatically. A degradation function is employed to reduce interfacial fracture properties corresponding to the number of cycles; thus fatigue lifetime can be predicted. Unlike other failure modelling methods, this model predicts the failure load, crack path and residual stiffness directly without assuming any pre-flaw condition. As an example, fatigue of a cobalt based alloy (CoCrMo) femoral stem is simulated. Experimental fatigue data was obtained from four point bending tests. The finite element model simulated a fully embedded implant with a constant point load. Comparison between the model and mechanical test results showed good agreement in fatigue crack growth rate.

  5. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  6. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    Science.gov (United States)

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  7. Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand.

    Science.gov (United States)

    Sumida, Akihiro; Miyaura, Tomiyasu; Torii, Hitoshi

    2013-01-01

    Stem diameter at breast height (DBH) and tree height (H) are commonly used measures of tree growth. We examined patterns of height growth and diameter growth along a stem using a 20-year record of an even-aged hinoki cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl.) stand. In the region of the stem below the crown (except for the butt swell), diameter growth rates (ΔD) at different heights tended to increase slightly from breast height upwards. This increasing trend was pronounced in suppressed trees, but not as much as the variation in ΔD among individual trees. Hence, ΔD below the crown can be regarded as generally being represented by the DBH growth rate (ΔDBH) of a tree. Accordingly, the growth rate of the stem cross-sectional area increased along the stem upwards in suppressed trees, but decreased in dominant trees. The stem diameter just below the crown base (D(CB)), the square of which is an index of the amount of leaves on a tree, was an important factor affecting ΔDBH. D(CB) also had a strong positive relationship with crown length. Hence, long-term changes in the D(CB) of a tree were associated with long-term changes in crown length, determined by the balance between the height growth rate (ΔH) and the rising rate of the crown base (ΔH(CB)). Within the crown, ΔD's were generally greater than the rates below the crown. Even dying trees (ΔD ≈ 0 below the crown) maintained ΔD > 0 within the crown and ΔH > 0 until about 5 years before death. This growth within the crown may be related to the need to produce new leaves to compensate for leaves lost owing to the longevity of the lower crown. These results explain the different time trajectories in DBH-H relationships among individual trees, and also the long-term changes in the DBH-H relationships. The view that a rise in the crown base is strongly related to leaf turnover helps to interpret DBH-H relationships.

  8. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle.

    Science.gov (United States)

    Sato, Chisato; Iso, Yoshitaka; Mizukami, Takuya; Otabe, Koji; Sasai, Masahiro; Kurata, Masaaki; Sanbe, Takeyuki; Sekiya, Ichiro; Miyazaki, Akira; Suzuki, Hiroshi

    2016-02-12

    Although muscle wasting and/or degeneration are prevalent in patients with chronic kidney disease, it remains unknown whether FGF-23 influences muscle homeostasis and regeneration. Mesenchymal stem cells (MSCs) in skeletal muscle are distinct from satellite cells and have a known association with muscle degeneration. In this study we sought to investigate the effects of FGF-23 on MSCs isolated from human skeletal muscle in vitro. The MSCs expressed FGF receptors (1 through 4) and angiotensin-II type 1 receptor, but no traces of the Klotho gene were detected. MSCs and satellite cells were treated with FGF-23 and angiotensin-II for 48 h. Treatment with FGF-23 significantly decreased the number of MSCs compared to controls, while treatment with angiotensin-II did not. FGF-23 and angiotensin-II both left the cell counts of the satellite cells unchanged. The FGF-23-treated MSCs exhibited the senescent phenotype, as judged by senescence-associated β-galactosidase assay, cell morphology, and increased expression of p53 and p21 in western blot analysis. FGF-23 also significantly altered the gene expression of oxidative stress regulators in the cells. In conclusion, FGF-23 induced premature senescence in MSCs from skeletal muscle via the p53/p21/oxidative-stress pathway. The interaction between the MSCs and FGF-23 may play a key role in the impaired muscle reparative mechanisms of chronic kidney disease.

  9. Allelopathic Effects of Aqueous Extract of Leaf Stem and Root of Sorghum bicolor on Seed Germination and Seedling Growth of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Amir MOOSAVI

    2011-05-01

    Full Text Available Seed germination under field conditions is highly influenced by the presence of other plants. Allelopathy is an important mechanism of plant competition, by producing phytotoxins to the plant environment in order to decline other plants growth. Soil sickness problem in farm lands is also known as an allelopathic effect or even autotoxicity. The toxicity of released allelochemicals by a plant in the environment is attributed to its function of concentration, age and metabolic stage. In this study we investigate the effect (5, 20, 35 and 50 g l-1 of leaf, stem and root water extract of sorghum on seed germination and seedling growth of mung bean. The results of the experiment showed that allelopathic effect of different concentrations was not significant for germination percentage, but germination rate and mean germination time decreased significantly by increasing the concentration of allelopathic extracts; also, there was a clear allelopathic effect of sorghum extract on seedling growth of mung bean. 50 g l-1 sorghum stem extract exhibited the highest inhibitory effect on root and shoot growth of mung bean. Among all parts of sorghum, stem extracts showed the highest allelopatic effect on seedling growth. Root extract showed higher inhibitory effect than leaf extracts.

  10. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro.

    Science.gov (United States)

    Hu, Yang; Zhang, Yan; Tian, Kang; Xun, Chong; Wang, Shouyu; Lv, Decheng

    2016-01-01

    Recent studies regarding regenerative medicine have focused on bone marrow mesenchymal stem cells (BMSCs), which have the potential to undergo neural differentiation, and may be transfected with specific genes. BMSCs can differentiate into neuron‑like cells in certain neurotropic circumstances in vitro. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are often used to induce neural differentiation in BMSCs in vitro. However, previous studies regarding their combined actions are insufficient. The present study is the first, to the best of our knowledge, to thoroughly assess the enhancement of neural differentiation of BMSCs following transfection with bFGF and NGF. Sprague‑Dawley (SD) rat BMSCs were separated through whole bone marrow adherence, and were then passaged to the third generation. The cells were subsequently divided into five groups: The control group, which consisted of untransfected BMSCs; the plv‑blank‑transfected BMSCs group; the plv‑bFGF‑transfected BMSCs group; the plv‑NGF‑transfected BMSCs group; and the plv‑NGF‑bFGF co‑transfected BMSCs group. Cell neural differentiation was characterized in terms of stem cell molecular expression, and the neuronal morphology and expression of neural‑like molecules was detected in each of the groups. A total of 72 h post‑transfection, the expression levels of neuron‑specific enolase, glial fibrillary acidic protein, and nestin protein, were higher in the co‑transfected group, as compared with the other groups, the expression levels of β‑tubulin III were also increased in the co‑transfected cells, thus suggesting the maturation of differentiated neuron‑like cells. Furthermore, higher neuronal proliferation was observed in the co‑transfected group, as compared with the other groups at passages 2, 4, 6 and 8. Western blotting demonstrated that the transfected groups exhibited a simultaneous increase in phosphorylation of the AKT and extracellular signal

  11. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Weihui Huang; Yadan Li; Yufeng Lin; Xue Ye; Dawei Zang

    2012-01-01

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion,and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment.Results showed that following administration,the number of endogenous neural stem cells in the infarct area significantly increased,malondialdehyde content in brain tissue homogenates significantly decreased,nitric oxide content,glutathione peroxidase and superoxide dismutase activity significantly elevated,and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests.In particular,the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant.Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels,improving the quantity of endogenous neural stem cells,and promoting neurological function of mice with cerebral infarction.

  12. Fibroblast growth factor-20 increases the yield of midbrain dopaminergic neurons derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Ana Sofia Correia

    2007-12-01

    Full Text Available In the central nervous system, fibroblast growth factor (FGF-20 has been reported to act preferentially on midbrain dopaminergic neurons. It also promotes the dopaminergic differentiation of stem cells. We have analyzed the effects of FGF-20 on human embryonic stem cells (hESCs differentiation into dopaminergic neurons. We induced neuronal differentiation of hESCs by co-culturing those with PA6 mouse stromal cells for 3 weeks. When we supplemented the culture medium with FGF-20, the number of tyrosine hydroxylase (TH- expressing neurons increased fivefold, from 3% to 15% of the hESC-derived cells. The cultured cells also expressed other midbrain dopaminergic markers (PITX3, En1, Msx1, and Aldh1, suggesting that some had differentiated into midbrain dopaminergic neurons. We observed no effect of FGF-20 on the size of the soma area or neurite length of the TH-immunopositive neurons. Regardless of whether FGF-20 had been added or not, 17% of the hESC-derived cells expressed the pan-neuronal marker b-III-Tubulin. The proportion of proliferating cells positive for Ki-67 was also not affected by FGF-20 (7% of the hESC-derived cells. By contrast, after 3 weeks in culture FGF-20 significantly reduced the proportion of cells undergoing cell death, as revealed by immunoreactivity for cleaved caspase-8, Bcl-2 associated X protein (BAX and cleaved caspase-3 (2.5% to 1.2% of cleaved caspase-3-positive cells out of the hESC-derived cells. Taken together, our results indicate that FGF-20 specifically increases the yield of dopaminergic neurons from hESCs grown on PA6 feeder cells and at least part of this effect is due to a reduction in cell death.

  13. Bone morphogenetic protein 2 promotes transforming growth factor β3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    RUI Yun-feng; DU Lin; WANG You; WANG Yang; LUI Pauline po-yee; TANG Ting-ting; CHAN Kai-ming; DAI Ke-rong

    2010-01-01

    Background Synovium-derived stem cells (SDSCs) with higher chondrogenic potential are attracting considerable attention as a cell source for cartilage regeneration. We investigated the effect of bone morphogenetic protein 2 (BMP-2) on transforming growth factor beta3 (TGF-β3)-induced chondrogenesis of SDSCs isolated from human osteoarthritic synovium in a pellet culture system. Methods The clonogenicity, stem cell marker expression and multi-differentiation potential of isolated SDSCs were determined by colony forming unit assay, flow cytometry and specific staining including alizarin red S, Oil red O and alcian blue staining, respectively. SDSCs pellet was cultured in chondrogenic medium with or without TGF-β3 or/and BMP-2. At day 21, the diameter and the weight of the pellets were measured. Chondrogenic differentiation of SDSCs was evaluated by Safranin O staining, immunohistochemical staining of collagen type Ⅱ, sulfated glycosaminoglycan (sGAG) synthesis and mRNA expression of collagen type Ⅱ, aggrecan, SOX9, link-protein, collagen type X and BMP receptor Ⅱ. Results Cells isolated under the optimized culturing density (104/60 cm2) showed clonogenicity and multi-differentiation potential. These cells were positive (>99%) for CD44, CD90, CD105 and negative (<10%) for CD34 and CD71. SDSCs differentiated to a chondrocytic phenotype in chondrogenic medium containing TGF-β3 with or without BMP-2. Safranin O staining of the extracellular matrix was positive and the expression of collagen type Ⅱ was detected. Cell pellets treated with TGF-β3 and BMP-2 were larger in diameter and weight, produced more sGAGs, and expressed higher levels of collagen type Ⅱ and other chondrogenic markers, except COL10A1, than medium with TGF-β3 alone. Conclusions SDSCs could be isolated from human osteoarthritic synovium. Supplementation with BMP-2 significantly promoted the in vitro TGF-β3-induced chondrogenic differentiation of SDSCs.

  14. Recruitment of stem cells by hepatocyte growth factor via intracoronary gene transfection in the postinfarction heart failure

    Institute of Scientific and Technical Information of China (English)

    YANG; ZhiJian; WANG; Wei; MA; DongChao; ZHANG; YouRong; WANG; LianSheng; ZHANG; YuQing; XU; ShunLin; CHEN; Bo; MIAO; DengShun; CAO; KeJiang

    2007-01-01

    We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 groups of 6 pigs each: Ad5-HGF group and mock-vector Ad5 group. Four weeks after ligation of the left anterior descending coronary artery, Ad5-HGF was intracoronarily transferred into the myocardium. Simultaneously, gate cardiac perfusion imaging was performed to evaluate the heart function. Three weeks later, gate cardiac perfusion imaging was performed again, then the hearts were removed and sectioned for immunohistochemical examination to illustrate the effects of Ad5-HGF on infarcted myocardium. The expression of HGF was examined by ELISA. The results were: (1) compared with the mock-vector Ad5 group, high expression of human HGF was observed in the myocardium of Ad5-HGF group; (2) in the Ad5-HGF group, the number of CD117+ cells co-expressing c-Met per mm2 was significantly larger; (3) the improvement in LVEF was greater in the Ad5-HGF group than in the mock-vector Ad5 group. We concluded that: (1) high expression of human HGF was observed in the myocardium through intracoronary gene transfection; (2) HGF can improve the mobilization of CD117+/c-Met+ stem cells into ischemic myocardium. The amelioration effect of HGF on postinfarction heart failure could not be limited to stimulating angiogenesis, anti-apoptosis, anti-fibrosis, but was also involved in the recruitment of stem cells into myocardium.

  15. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    Science.gov (United States)

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (Psalinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (PSalinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (Psalinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  16. Effects of different intercropping on walnut growth and stem quality in a plantation close to Pesaro (Marche Region

    Directory of Open Access Journals (Sweden)

    Elisa Bianchetto

    2013-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 The experimental plantation, about 3.0 hectares, was set up in 1999 in a floodplain near Pesaro (Marche Region on a fertile crop land. Eight theses were compared: 1 thesis: pure walnut, 2: walnut intercropped with autumn olive (50% and 75%, and 5 theses: walnut intercropped with different nurse trees (elm, field maple, white willow, italian alder and plane. Each plot/ thesis was 3,500 m2 wide. Since 2000, the plantation has been monitored: dbh, tree height and stem quality of walnut trees have been measured. The estimate of biomass production has been undertaken for the 3 more competitive species (at the age of 6 for willow and elm and at the age of 7 for plane. Twelve years after planting, biomass production of all the intercropped nurse trees was estimated a second time. This dataset allowed a comparison among walnut trees grown according to different mixtures and in monoculture. In 2012 walnut grown in mixture with 75% of autumn olive tree (N-fixing shrub showed the best dbh performance reaching on average dbh of 25.8 cm, the same parameter being conversely 14.1cm in monoculture and 12.2 cm in combination with the most competitive spp. (i.e. elm. No strict relationship between walnut growth and stem quality was found. The best stem quality was attained in mixture with plane, while elm confirmed to be an unsuitable nurse tree for walnut. The same nurse trees showed to be interesting for biomass production, too. Especially plane resulted to be an interesting species able to nurse profitably walnut and to have an interesting biomass production around 12.2 t ha-1 in the first rotation and 29.6 t ha-1 in the following one. st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso

  17. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells.

    Science.gov (United States)

    Hutton, Daphne L; Moore, Erika M; Gimble, Jeffrey M; Grayson, Warren L

    2013-09-01

    Vasculature is essential to the functional integration of a tissue-engineered bone graft to enable sufficient nutrient delivery and viability after implantation. Native bone and vasculature develop through intimately coupled, tightly regulated spatiotemporal cell-cell signaling. The complexity of these developmental processes has been a challenge for tissue engineers to recapitulate, resulting in poor codevelopment of both bone and vasculature within a unified graft. To address this, we cultured adipose-derived stromal/stem cells (ASCs), a clinically relevant, single cell source that has been previously investigated for its ability to give rise to vascularized bone grafts, and studied the effects of initial spatial organization of cells, the temporal addition of growth factors, and the presence of exogenous platelet-derived growth factor-BB (PDGF-BB) on the codevelopment of bone and vascular tissue structures. Human ASCs were aggregated into multicellular spheroids via the hanging drop method before encapsulation and subsequent outgrowth in fibrin gels. Cellular aggregation substantially increased vascular network density, interconnectivity, and pericyte coverage compared to monodispersed cultures. To form robust vessel networks, it was essential to culture ASCs in a purely vasculogenic medium for at least 8 days before the addition of osteogenic cues. Physiologically relevant concentrations of exogenous PDGF-BB (20 ng/mL) substantially enhanced both vascular network stability and osteogenic differentiation. Comparisons with the bone morphogenetic protein-2, another pro-osteogenic and proangiogenic growth factor, indicated that this potential to couple the formation of both lineages might be unique to PDGF-BB. Furthermore, the resulting tissue structure demonstrated the close association of mineral deposits with pre-existing vascular structures that have been described for developing tissues. This combination of a single cell source with a potent induction factor

  18. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity.

    Science.gov (United States)

    Finetti, Federica; Terzuoli, Erika; Giachetti, Antonio; Santi, Raffaella; Villari, Donata; Hanaka, Hiromi; Radmark, Olof; Ziche, Marina; Donnini, Sandra

    2015-08-01

    There is evidence that an inflammatory microenvironment is associated with the development and progression of prostate cancer (PCa), although the determinants of intrinsic inflammation in PCa cells are not completely understood. Here we investigated whether expression of intrinsic microsomal PGE synthase-1 (mPGES-1) enhanced aggressiveness of PCa cells and might be critical for epidermal growth factor receptor (EGFR)-mediated tumour progression. In PCa, overexpression of EGFR promotes metastatic invasion and correlates with a high Gleason score, while prostaglandin E2 (PGE2) has been reported to modulate oncogenic EGFR-driven oncogenicity. Immunohistochemical studies revealed that mPGES-1 in human prostate tissues is correlated with EGFR expression in advanced tumours. In DU145 and PC-3 cell lines expressing mPGES-1 (mPGES-1(SC) cells), we demonstrate that silencing or 'knock down' of mPGES-1 (mPGES-1(KD)) or pharmacological inhibition by MF63 strongly attenuates overall oncogenic drive. Indeed, mPGES-1(SC) cells express stem-cell-like features (high CD44, β1-integrin, Nanog and Oct4 and low CD24 and α6-integrin) as well as mesenchymal transition markers (high vimentin, high fibronectin, low E-cadherin). They also show increased capacity to survive irrespective of anchorage condition, and overexpress EGFR compared to mPGES-1(KD) cells. mPGES-1 expression correlates with increased in vivo tumour growth and metastasis. Although EGFR inhibition reduces mPGES-1(SC) and mPGES-1(KD) cell xenograft tumour growth, we show that mPGES-1/PGE2 signalling sensitizes tumour cells to EGFR inhibitors. We propose mPGES-1 as a possible new marker of tumour aggressiveness in PCa.

  19. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    Science.gov (United States)

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  20. Oriented growth and transdifferentiation of mesenchymal stem cells towards a Schwann cell fate on micropatterned substrates.

    Science.gov (United States)

    Sharma, Anup D; Zbarska, Svitlana; Petersen, Emma M; Marti, Mustafa E; Mallapragada, Surya K; Sakaguchi, Donald S

    2016-03-01

    While Schwann cells (SCs) have a significant role in peripheral nerve regeneration, their use in treatments has been limited because of lack of a readily available source. To address this issue, this study focused on the effect of guidance cues by employing micropatterned polymeric films to influence the alignment, morphology and transdifferentiation of bone marrow-derived rat mesenchymal stem cells (MSCs) towards a Schwann cell-like fate. Two different types of polymers, biocompatible polystyrene (PS) and biodegradable poly(lactic acid) (PLA) were used to fabricate patterned films. Percentages of transdifferentiated MSCs (tMSCs) immunolabeled with SC markers (α-S100β and α-p75(NTR)) were found to be similar on patterned versus smooth PS and PLA substrates. However, patterning had a significant effect on the alignment and elongation of the tMSCs. More than 80% of the tMSCs were oriented in the direction of microgrooves (0°-20°), while cells on the smooth substrates were randomly oriented. The aspect ratio [AR, ratio of length (in direction of microgrooves) and breadth (in direction perpendicular to microgrooves)] of the tMSCs on patterned substrates had a value of approximately five, as compared to cells on smooth substrates where the AR was one. Understanding responses to these cues in vitro helps us in understanding the behavior and interaction of the cells with the 3D environment of the scaffolds, facilitating the application of these concepts to designing effective nerve guidance conduits for peripheral nerve regeneration.

  1. Relationship between the telomerase activity and the growth kinetics of the human umbilical cord derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Leila Hosseinzadeh Anvar

    2016-08-01

    Full Text Available Background: Telomerase as an enzyme with reverse transcriptase activity has an essential role in telomere maintenance by adding a telomere repeat sequence to the 3' end of chromosome and is important for regulating of many processes in embryonic development including cell proliferation and differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs with a self-renewal capacity are cells that can differentiate into various germ layer derivatives including neural cells and cardiomyocytes, and undergo biological changes during long-term cultivation. Hence, the passage number in which the cells expanded seems to be very important for proliferating and differentiating. This study was aimed at investigating the relationship between the telomerase activity and the growth rate of (hUC-MSCs at different passages. Methods: This experimental study was performed in Ardabil University of Medical Sciences, Iran, from March 2014 to December 2014. The umbilical cord samples were obtained from full-term neonate hospitalized in Alavi’s Hospital in Ardabil under sterile conditions. The umbilical vessels were clear off and the small pieces of the umbilical cord were cultured in Dulbecco's modified eagle's medium (DMEM supplemented with 20% fetal bovine serum (FBS. Then, the hUC-MSCs were harvested from passage one to three to calculate the population doubling time (PDT and extract proteins by using CHAPS lysis buffer. Finally, the telomerase activity of the cells at different passages was measured by telomeric repeat amplification protocol (TRAP and qRT-TRAP assays. Results: The hUC-MSCs population doubling time at passage from 1 to 3 were calculated as the average of 54.68±1.92, 55.03±1.71 and 69.41±2.54 hours, respectively, suggesting the higher cell passage number, the more extended PDT. The threshold cycles (CTs for the telomerase activity also showed 30.58±0.51, 27.24±0.74 and 32.13±0.75 for the cell passage from one to three

  2. Growth factors and feeder cells promote differentiation of human embryonic stem cell into dopaminergic neurons: a novel role of fibroblast growth factor-20

    Directory of Open Access Journals (Sweden)

    Ana Sofia Correia

    2008-07-01

    Full Text Available Human embryonic stem cells (hESCs are a potential source of dopaminergic neurons for treatment of Parkinson’s disease (PD. Dopaminergic neurons can be derived from hESCs and display a characteristic midbrain phenotype. Once transplanted, they can induce partial behavioral recovery in animal models of PD. The potential research field faces several challenges that need to be overcome before clinical application of hESCs in a transplantation therapy in PD can be considered. These include low survival of the hESC-derived, grafted dopaminergic neurons after transplantation; unclear functional integration of the grafted neurons in the host brain; and, the risk of teratoma/tumor formation from the transplanted cells. This review is focused on our recent efforts to improve the survival of hESC-dervied dopaminergic neurons. We have examined the effect of fibroblast growth factor (FGF-20 in the differentiation of hESCs into dopaminergic neurons. We supplemented cultures of hESCs with FGF-20 during differentiation on PA6 mouse stromal cells for three weeks. When we added FGF-20 the yield of neurons expressing tyrosine hydroxylase increased. We demonstrated that at least part of the effect is contributed by enhanced cell differentiation towards the dopaminergic phenotype as well as reduced cell death. We compare our results with those obtained in other published protocols using different sets of growth factors. Our data indicate that FGF-20 has potent effects to generate large number of dopaminergic neurons derived from hESCs, which may be useful for cell therapy in PD.

  3. Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth.

    Science.gov (United States)

    Huang, Chai-Cheng; Hung, Jia-Jang; Peng, Shao-Hung; Chen, Ching-Nen Nathan

    2012-05-01

    A photobioreactor was designed to evaluate the performance of a newly isolated thermo-tolerant microalga Desmodesmus sp. F2 in municipal wastewater under tropical outdoor conditions. The environmental parameters, levels of nutrients, and growth rates were monitored during the cultivations to elucidate the factors that contributed to accelerated growth after lag phase. Cultures bubbled with CO(2)-air had about 20% higher yields than the air-bubbled culture, and 2% of CO(2) at a flux rate of 5L/min was sufficient to reach this increased yield. In the cultures bubbled with CO(2)-air, the microalgal cells preferentially utilized ammonium and nitrate, while the air-bubbled culture made greater use of ammonium and organic nitrogen. In conclusion, the factors required for microalga Desmodesmus sp. F2 to achieve accelerated growth in tropical outdoor conditions include (1) 2% CO(2) bubbling; (2) a level of ammonium higher than 100 μM; and (3) a level of nitrate higher than 400 μM.

  4. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar

    Institute of Scientific and Technical Information of China (English)

    Sunyoung Choi; Tae-Jun Cho; Soon-Keun Kwon; Gene Lee; Jaejin Cho

    2013-01-01

    The periodontal ligament-derived mesenchymal stem cell is regarded as a source of adult stem cells due to its multipotency. However, the proof of chondrogenic potential of the cells is scarce. Therefore, we investigated the chondrogenic differentiation capacity of periodontal ligament derived mesenchymal stem cells induced by transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-6. After isolation of periodontal ligament stem cells (PDLSCs) from human periodontal ligament, the cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 20% fetal bovine serum (FBS). A mechanical force initiated chondrogenic differentiation of the cells. For chondrogenic differentiation, 10 μg ·L-1 TGF-β3 or 100 μg ·L-1 BMP-6 and the combination treating group for synergistic effect of the growth factors. We analyzed the PDLSCs by fluorescence-activated cell sorting and chondrogenesis were evaluated by glycosaminoglycans assay, histology, immunohistochemistry and genetic analysis. PDLSCs showed mesenchymal stem cell properties proved by FACS analysis. Glycosaminoglycans contents were increased 217% by TGF-β3 and 220% by BMP-6. The synergetic effect of TGF-β3 and BMP-6 were shown up to 281% compared to control. The combination treatment increased Sox9, aggrecan and collagen II expression compared with not only controls, but also TGF-β3 or BMP-6 single treatment dramatically. The histological analysis also indicated the chondrogenic differentiation of PDLSCs in our conditions. The results of the present study demonstrate the potential of the dental stem cell as a valuable cell source for chondrogenesis, which may be applicable for regeneration of cartilage and bone fracture in the field of cell therapy.

  5. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol

    Science.gov (United States)

    SONER, BURAK CEM; AKTUG, HUSEYIN; ACIKGOZ, EDA; DUZAGAC, FAHRIYE; GUVEN, UMMU; AYLA, SULE; CAL, CAG; OKTEM, GULPERI

    2014-01-01

    Flavopiridol is a flavone that inhibits several cyclin-dependent kinases and exhibits potent growth-inhibitory activity, apoptosis and G1-phase arrest in a number of human tumor cell lines. Flavopiridol is currently undergoing investigation in human clinical trials. The present study focused on the effect of flavopiridol in cell proliferation, cell cycle progression and apoptosis in prostate cancer stem cells (CSCs). Therefore, cluster of differentiation 133 (CD133)+high/CD44+high prostate CSCs were isolated from the DU145 human prostate cancer cell line. The cells were treated with flavopiridol in a dose- and time-dependent manner to determine the inhibitory effect. Cell viability and proliferation were analyzed and the efficiency of flavopiridol was assessed using the sphere-forming assay. Flavopiridol was applied to monolayer cultures of CD133high/CD44high human prostate CSCs at the following final concentrations: 100, 300, 500 and 1000 nM. The cultures were incubated for 24, 48 and 72 h. The half maximal inhibitory concentration (IC50) value of the drug was determined as 500 nM for monolayer cells. Dead cells were analyzed prior and subsequent to exposure to increasing flavopiridol doses. Annexin-V and immunofluorescence analyses were performed for the evaluation of apoptotic pathways. According to the results, flavopiridol treatment caused significant growth inhibition at 500 and 1000 nM when compared to the control at 24 h. G0/G1 analysis showed a statistically significant difference between 100 and 500 nM (P<0.005), 100 and 1000 nM (P<0.001), 300 and 1000 nM (P<0.001), and 500 and 1000 nM (P<0.001). Flavopiridol also significantly influenced the cells in the G2/M phase, particularly at high-dose treatments. Flavopiridol induced growth inhibition and apoptosis at the IC50 dose (500 nM), resulting in a significant increase in immunofluorescence staining of caspase-3, caspase-8 and p53. In conclusion, the present results indicated that flavopiridol could be a

  6. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ping, Yu; Liu, Shasha [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); School of Life Sciences, Zhengzhou University, Zhengzhou 450000 (China); Shi, Xiaojuan; Li, Lifeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Liping [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Huang, Lan [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Zhang, Bin [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Sun, Yan [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences (China); and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  7. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Mandel, Katharina; Yang, Yuanyuan; Schambach, Axel; Glage, Silke; Otte, Anna; Hass, Ralf

    2013-12-01

    Cellular interactions were investigated between human mesenchymal stem cells (MSC) and human breast cancer cells. Co-culture of the two cell populations was associated with an MSC-mediated growth stimulation of MDA-MB-231 breast cancer cells. A continuous expansion of tumor cell colonies was progressively surrounded by MSC(GFP) displaying elongated cell bodies. Moreover, some MSC(GFP) and MDA-MB-231(cherry) cells spontaneously generated hybrid/chimeric cell populations, demonstrating a dual (green fluorescent protein+cherry) fluorescence. During a co-culture of 5-6 days, MSC also induced expression of the GPI-anchored CD90 molecule in breast cancer cells, which could not be observed in a transwell assay, suggesting the requirement of direct cellular interactions. Indeed, MSC-mediated CD90 induction in the breast cancer cells could be partially blocked by a gap junction inhibitor and by inhibition of the notch signaling pathway, respectively. Similar findings were observed in vivo by which a subcutaneous injection of a co-culture of primary MSC with MDA-MB-231(GFP) cells into NOD/scid mice exhibited an about 10-fold increased tumor size and enhanced metastatic capacity as compared with the MDA-MB-231(GFP) mono-culture. Flow cytometric evaluation of the co-culture tumors revealed more than 90% of breast cancer cells with about 3% of CD90-positive cells, also suggesting an MSC-mediated in vivo induction of CD90 in MDA-MB-231 cells. Furthermore, immunohistochemical analysis demonstrated an elevated neovascularization and viability in the MSC/MDA-MB-231(GFP)-derived tumors. Together, these data suggested an MSC-mediated growth stimulation of breast cancer cells in vitro and in vivo by which the altered MSC morphology and the appearance of hybrid/chimeric cells and breast cancer-expressing CD90(+) cells indicate mutual cellular alterations.

  8. Stem cell factor-mediated wild-type KIT receptor activation is critical for gastrointestinal stromal tumor cell growth

    Institute of Scientific and Technical Information of China (English)

    Chen-Guang Bai; Xiao-Wei Hou; Feng Wang; Cen Qiu; Yan Zhu; Ling Huang; Jing Zhao

    2012-01-01

    AIM:To clarify the biological role of stem cell factor (SCF)-mediated wild-type KIT receptor activation in gastrointestinal stromal tumor (GIST) growth.METHODS:The co-expression of wild-type KIT receptor and SCF was evaluated in 51 GIST samples using mutation analysis and immunohistochemistry,and the results were correlated with clinicopathological parameters,including the mitotic count,proliferative index (Ki-67 immunohistochemical staining),mitotic index (phospho-histone H3 immunohistochemical staining)and apoptotic index (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling).Using primary cultured GIST cells,the effect of SCF-mediated wild-type KIT receptor activation was determined by western blotting,methyl thiazolyl tetrazolium (MTT),and apoptosis assays.RESULTS:We found that wild-type KIT receptor and SCF protein were expressed in 100% and 76.5% of the 51 GIST samples,respectively,and the co-expression of wild-type KIT receptor and SCF was associated with known indicators of poor prognosis,including larger tumor size (P =0.0118),higher mitotic count (P =0.0058),higher proliferative index (P =0.0012),higher mitotic index (P =0.0282),lower apoptosis index (P =0.0484),and increased National Institutes of Health risk level (P =0.0012).We also found that the introduction of exogenous SCF potently increased KIT kinase activity,stimulated cell proliferation (P < 0.01) and inhibited apoptosis (P < 0.01) induced by serum starvation,while a KIT immunoblocking antibody suppressed proliferation (P =0.01) and promoted apoptosis (P < 0.01)in cultured GIST cells.CONCLUSION:SCF-mediated wild-type KIT receptor activation plays an important role in GIST cell growth.The inhibition of SCF-mediated wild-type KIT receptor activation may prove to be particularly important for GIST therapy.

  9. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease.

    Science.gov (United States)

    McGinley, Lisa M; Sims, Erika; Lunn, J Simon; Kashlan, Osama N; Chen, Kevin S; Bruno, Elizabeth S; Pacut, Crystal M; Hazel, Tom; Johe, Karl; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.

  10. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review.

    Science.gov (United States)

    Freese, Kyle E; Kokai, Lauren; Edwards, Robert P; Philips, Brian J; Sheikh, M Aamir; Kelley, Joseph; Comerci, John; Marra, Kacey G; Rubin, J Peter; Linkov, Faina

    2015-04-01

    Obesity is a well recognized risk factor for several types of cancers, many of which occur solely or disproportionately in women. Adipose tissue is a rich source of adipose-derived stem cells (ASC), which have received attention for their role in cancer behavior. The purpose of this systematic review is to present the existing literature on the role of ASCs in the growth, development, progression, and metastasis of cancer, with an emphasis on malignancies that primarily affect women. To accomplish this goal, the bibliographic database PubMed was systematically searched for articles published between 2001 and 2014 that address ASCs' relationship to human cancer. Thirty-seven articles on ASCs' role in human cancer were reviewed. Literature suggests that ASCs exhibit cancer-promoting properties, influence/are influenced by the tumor microenvironment, promote angiogenesis, and may be associated with pathogenic processes through a variety of mechanisms, such as playing a role in hypoxic tumor microenvironment. ASCs appear to be important contributors to tumor behavior, but research in areas specific to women's cancers, specifically endometrial cancer, is scarce. Also, because obesity continues to be a major health concern, it is important to continue research in this area to improve understanding of the impact adiposity has on cancer incidence.

  11. Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    FANG Huang; WANG Junfang; CHEN Anmin

    2006-01-01

    To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubecco-modified Eagles medium (DMEM , Group Ⅰ), MSCs (Group Ⅱ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunocytochemical staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunocytochemical staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P<0.05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astrocytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.

  12. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response

    Directory of Open Access Journals (Sweden)

    Hira eZafar

    2016-04-01

    Full Text Available Nanoparticles (NPs have diverse properties in comparison to respective chemicals due to structure, surface area ratio, morphology, and reactivity. Toxicological effects of metallic NPs to organisms including plants have been reported. However, to the authors’ knowledge there is no report on the effect of NPs on in vitro culture of plant explants. In this study, ZnO NPs at 500-1500 mg/L badly affected Brassica nigra seed germination and seedling growth and raised antioxidative activities and antioxidants concentrations. On the other hand, culturing the stem explants of B. nigra on Murashige and Skoog (MS medium in presence of low concentration of ZnO NPs (1-20 mg/L produced white thin roots with thick root hairs. At 10 mg/L ZnO NPs shoots emergence was also observed. The developed calli/roots showed 79% DPPH (2,2-diphenyl-1-picryl hydrazyl radical scavenging activity at 10 mg/L. While total antioxidant and reducing power potential were also significantly different in presence of ZnO NPs. Non enzymatic antioxidative molecules, phenolics (up to 0.15 µg GAE/mg FW and flavonoids (up to 0.22 µg QE/mg FW, also raised and found NPs concentration dependent. We state that ZnO NPs may induce roots from explants cultured on appropriate medium and can be cultured for production of valuable secondary metabolites.

  13. Hip Osteoarthritis in Dogs: A Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors

    Directory of Open Access Journals (Sweden)

    Belen Cuervo

    2014-07-01

    Full Text Available Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs versus plasma rich in growth factors (PRGF as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA. Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM, owner’s and veterinary investigator visual analogue scale (VAS, and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months.

  14. Effects of an acute dose of gamma radiation exposure on stem diameter growth, carbon gain, and biomass partitioning in Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Thiede, M.E.

    1988-05-25

    Nineteen-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) received a variable dose (0-40 Gy) from a cobalt-60 gamma source. A very sensitive stem monitoring device, developed at Battelle's Pacific Northwest Laboratories, Richland, Washington was used to measure real-time changes in stem diameter. Exposure of plants caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that nonreversible morphological growth changes could be induced by very low doses of radiation. Carbohydrate analysis of 40-Gy irradiated plants demonstrated significantly more starch content in leaves and significantly less starch content in stems 18 days after exposure than did control plants. In contrast, the carbohydrate content in roots of 40-Gy irradiated plants were not significantly different from unirradiated plants 18 days after exposure. These results indicate that radiation either decreased phloem transport or reduced the availability of sugar reducing enzymes in irradiated plants. 44 refs., 12 figs.

  15. One-step growth of Si 3 N 4 stem-branch featured nanostructures: Morphology control by VS and VLS mode

    Science.gov (United States)

    Wang, Qiushi; Gao, Wei; Shan, Lianchen; Zhang, Jian; Jin, Yunxia; Cong, Ridong; Cui, Qiliang

    2011-09-01

    We report here one-step synthesis of Si 3N 4 nanodendrites by selectively applying a vapor-solid (VS) and vapor-liquid-solid (VLS) strategy via direct current arc discharge method. The resultant nanodendrites were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray powder diffraction. The spine-shaped nanodendrites were generated by a noncatalytic growth following a VS mode. The uniform secondary nanowire branches were epitaxial grown from two side surfaces of the nanowire stems. The pine-shaped nanodendrites were obtained through a catalytic growth in a VLS process. These branch nanowires were unsystematically grown from the nanocone-like stems. The photoluminescence spectra of the nanodendrites show a strong white light emission around 400-750 nm, suggesting their potential applications in light and electron emission devices.

  16. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    Science.gov (United States)

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  17. Accelerated development in johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition

    Science.gov (United States)

    Superior competitive ability is an expected characteristic of grassland invaders, but not all invaders exhibit traits that convey a persistent growth advantage. Here we examine priority, expressed as a brief seedling growth burst, as the driving mechanism through which the exotic weed Johnsongrass ...

  18. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth

    Directory of Open Access Journals (Sweden)

    Martyna Malgorzata Kotowska

    2015-03-01

    Full Text Available For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing towards the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density. We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia; three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, wood density showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and wood density. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation

  19. Synergistic effect of angiotensin II on vascular endothelial growth factor-A-mediated differentiation of bone marrow-derived mesenchymal stem cells into endothelial cells

    OpenAIRE

    Ikhapoh, Izuagie Attairu; Pelham, Christopher J; Agrawal, Devendra K.

    2015-01-01

    Introduction Increased levels of angiotensin II (Ang II) and activity of Ang II receptor type 1 (AT1R) elicit detrimental effects in cardiovascular disease. However, the role of Ang II receptor type 2 (AT2R) remains poorly defined. Mesenchymal stem cells (MSCs) replenish and repair endothelial cells in the cardiovascular system. Herein, we investigated a novel role of angiotensin signaling in enhancing vascular endothelial growth factor (VEGF)-A-mediated differentiation of MSCs into endotheli...

  20. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth.

    Science.gov (United States)

    Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.

  1. Climatic Triggers of Extremes in Daily Beech, Oak and Pine Stem Diameter Growth and Shrinkage in Northeastern Germany: An Event Coincidence Analysis

    Science.gov (United States)

    Siegmund, Jonatan; Sanders, Tanja; Heinrich, Ingo; Helle, Gerd; Donner, Reik

    2016-04-01

    Observed recent and expected future increases in frequency and intensity of climatic extremes in central Europe may pose critical challenges for domestic tree species. Continuous dendrometer recordings provide a valuable source of information on tree stem diameter growth and shrinkage, offering the possibility to study a tree's response to environmental influences at a high temporal resolution. In this study, we analyze stem diameter variations of three domestic tree species (beech, oak and pine) from 2012-2014. We use the novel statistical approach of event coincidence analysis (ECA) to investigate the simultaneous occurrence of extreme daily weather conditions and extreme daily stem variations, using a 60-days sliding window analysis covering the full growth period of each year. Besides defining extreme events based on individual meteorological variables, we test 105 different combinations of variables regarding their impact on tree growth and shrinkage, postulating conditional event coincidence analysis as a new extension of the original methodology. Our results reveal a strong susceptibility of all three species to extremes in several meteorological variables. Yet, the intra-species differences are comparatively low. The obtained results provide a thorough extension of previous correlation-based studies by emphasizing on the timings of climatic extremes only.We suggest that the employed methodological approach should be further promoted in forest research regarding the investigation of tree responses to changing environmental conditions.

  2. Mechano-growth factor peptide, the COOH terminus of unprocessed insulin-like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells.

    Science.gov (United States)

    Fornaro, Mara; Hinken, Aaron C; Needle, Saul; Hu, Erding; Trendelenburg, Anne-Ulrike; Mayer, Angelika; Rosenstiel, Antonia; Chang, Calvin; Meier, Viktor; Billin, Andrew N; Becherer, J David; Brace, Arthur D; Evans, William J; Glass, David J; Russell, Alan J

    2014-01-15

    A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed "mechano-growth factor" (MGF). Activities claimed for the MGF peptide included enhancing muscle satellite cell proliferation and delaying myoblast fusion. As such, MGF could represent a promising strategy to improve muscle regeneration. Thus, at our two pharmaceutical companies, we attempted to reproduce the claimed effect of MGF peptides on human and mouse muscle myoblast proliferation and differentiation in vitro. Concentrations of peptide up to 500 ng/ml failed to increase the proliferation of C2C12 cells or primary human skeletal muscle myoblasts. In contrast, all cell types exhibited a proliferative response to mature IGF-1 or full-length IGF-1Eb. MGF also failed to inhibit the differentiation of myoblasts into myotubes. To address whether the response to MGF was lost in these tissue culture lines, we measured proliferation and differentiation of primary mouse skeletal muscle stem cells exposed to MGF. This, too, failed to demonstrate a significant effect. Finally, we tested whether MGF could alter a separate documented in vitro effect of the peptide, activation of p-ERK, but not p-Akt, in cardiac myocytes. Although a robust response to IGF-1 was observed, there were no demonstrated activating responses from the native or a stabilized MGF peptide. These results call in to question whether there is a physiological role for MGF.

  3. Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Xin-Qin Kang; Wei-Jin Zang; Li-Jun Bao; Dong-Ling Li; Tu-Sheng Song; Xiao-Li Xu; Xiao-Jiang Yu

    2005-01-01

    AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases.METHODS: vSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining.RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20±1.16 μg/L (t = 2.884, P<0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P<0.01). Albumin increased significantly on d 16 (t = 6.68, P<0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P<0.01). Urea(4.72±1.03 μmol/L) was detected on d 20 (t = 4.272,P<0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P<0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of FGF-4 and HGF. HUCBderived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.

  4. Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst.

    Science.gov (United States)

    Braun, Sabine; Schindler, Christian; Rihm, Beat

    2014-09-01

    The estimate of growth losses by ozone exposure of forest trees is a significant part in current C sequestration calculations and will also be important in future modeling. It is therefore important to know if the relationship between ozone flux and growth reduction of young trees, used to derive a Critical Level for ozone, is also valid for mature trees. Epidemiological analysis of stem increment data from Fagus sylvatica L. and Picea abies Karst. observed in Swiss forest plots was used to test this hypothesis. The results confirm the validity of the flux-response relationship at least for beech and therefore enable estimating forest growth losses by ozone on a country-wide scale. For Switzerland, these estimates amount to 19.5% growth reduction for deciduous forests, 6.6% for coniferous forests and 11.0% for all forested areas based on annual ozone stomatal uptake during the time period 1991-2011.

  5. Construction of allometric relationships to predict growth parameters, stem biomass and carbon of Eucalyptus grandis growing in Sri Lanka

    Directory of Open Access Journals (Sweden)

    SMCUP Subasinghe

    2014-12-01

    Full Text Available Enhancement of carbon storage through the establishment of man-made forests has been considered as a mitigation option to reduce increasing atmospheric CO2 levels. Therefore the present study was carried out to estimate the biomass and carbon storages of the main stem of Eucalyptus grandis using allometric relationships using the plantations of Nuwara Eliya and Badulla districts. Tree diameter and total were measured for the samples trees and stem volume was estimated using a previously built individual model for the same species. Stem biomass was estimated using core samples and carbon was determined using Walkley-Black method. Finally the biomass values were converted separately to the carbon values.   Non-liner regression analysis was employed for the construction of models which had age as the explanatory variable. Linear regression was used in order to build the models to predict the above ground and stem biomass and carbon using volume as the explanatory variable. For both linear and non-linear types, the model quality was tested using R2 and fitted line plots.   According to the results, stem biomass and carbon values at the 7th year were 110.8 kg and 68.7 kg respectively. Stem biomass and carbon values at the 40th year were 1,095.8 kg and 679.4 kg respectively. The carbon content at the age 20 was 62.0% from the stem biomass.   Exponential models were proven to be better than the logistic models to predict the diameter, height, stem volume, biomass and carbon with age. R2 values and the fitted line plots indicated that the selected models are of high quality. Linear models built to predict the stem biomass and carbon using stem volume also showed the high accuracy of these models which had R2 values above 97.9%.

  6. Construction of Allometric Relationships to Predict Growth Parameters, Stem Biomass and Carbon of Eucalyptus grandis Growing in Sri Lanka

    Directory of Open Access Journals (Sweden)

    SMCUP Subasinghe

    2015-12-01

    Full Text Available             Enhancement of carbon storage through the establishment of man-made forests has been considered as a mitigation option to reduce increasing atmospheric CO2 levels. Therefore the present study was carried out to estimate the biomass and carbon storages of the main stem of Eucalyptus grandis using allometric relationships using the plantations of Nuwara Eliya and Badulla districts in Sri Lanka. Tree diameter and total height were measured for the samples trees and stem volume was estimated using a previously built individual model for the same species. Stem biomass was estimated using core samples and carbon was determined using Walkley-Black method. Finally the biomass values were converted separately to the carbon values. Non-liner regression analysis was employed for the construction of models which had age as the explanatory variable. Linear regression was used in order to build the models to predict the above ground and stem biomass and carbon using volume as the explanatory variable. For both linear and non-linear types, the model quality was tested using R2 and fitted line plots. According to the results, stem biomass and carbon values at the 7th year were 110.8 kg and 68.7 kg respectively. Stem biomass and carbon values at the 40th year were 1,095.8 kg and 679.4 kg respectively. Carbon content at the age 20 was 62.0% from the stem biomass. Exponential models were proven to be better than the logistic models to predict the diameter, height, stem volume, biomass and carbon with age. R2 values and the fitted line plots indicated that the selected models are of high quality. Linear models built to predict the stem biomass and carbon using stem volume also showed the high accuracy of these models which had R2 values above 97.9%.

  7. Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit.

    Science.gov (United States)

    Zhu, Mingku; Li, Yali; Chen, Guoping; Ren, Lijun; Xie, Qiaoli; Zhao, Zhiping; Hu, Zongli

    2015-01-09

    The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, and in response to biotic and abiotic stress. However, little is known about its roles in other plant species. Here, we study the function of an Elongator complex protein 2-like gene in tomato, here designated as SlELP2L, through RNAi-mediated gene silencing. Silencing SlELP2L in tomato inhibits leaf growth, accelerates leaf and sepal senescence, and produces dark-green fruit with reduced GA and IAA contents in leaves, and increased chlorophyll accumulation in pericarps. Gene expression analysis indicated that SlELP2L-silenced plants had reduced transcript levels of ethylene- and ripening-related genes during fruit ripening with slightly decreased carotenoid content in fruits, while the expression of DNA methyltransferase genes was up-regulated, indicating that SlELP2L may modulate DNA methylation in tomato. Besides, silencing SlELP2L increases ABA sensitivity in inhibiting seedling growth. These results suggest that SlELP2L plays important roles in regulating plant growth and development, as well as in response to ABA in tomato.

  8. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Seung Song; Jong-Tae Park; Joo Young Na; Man-Seok Park; Jeong-Kil Lee; Min-Cheol Lee; Hyung-Seok Kim

    2014-01-01

    Endogenous neural stem cells become “activated” after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible fac-tor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chrono-logical changes of neural stem cells by 5-bromo-2′-deoxyuridine (BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1αimmunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-in-farct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3-7 days. Nes-tin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neu-rons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and

  9. Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice.

    Science.gov (United States)

    Blackmore, Daniel G; Golmohammadi, Mohammad G; Large, Beatrice; Waters, Michael J; Rietze, Rodney L

    2009-08-01

    The exercise-induced enhancement of learning and memory, and its ability to slow age-related cognitive decline in humans led us to investigate whether running stimulates periventricular (PVR) neural stem cells (NSCs) in aging mice, thereby augmenting the regenerative capacity of the brain. To establish a benchmark of normal aging on endogenous NSCs, we harvested the PVR from serial vibratome sections through the lateral ventricles of juvenile (6-8 weeks), 6-, 12-, 18-, and 24-month-old mice, culturing the cells in the neural colony-forming cell assay. A significant decline in NSC frequency was apparent by 6 months ( approximately 40%), ultimately resulting in a approximately 90% reduction by 24 months. Concurrent with this decline was a progressive loss in regenerative capacity, as reflected by an incomplete repopulation of neurosphere-forming cells following gamma cell irradiation-induced depletion of the PVR. However, voluntary exercise (i.e., 21 days of running) significantly increased NSC frequency in mice > or = 18 months of age, augmenting the regeneration of irradiation-ablated periventricular cells and restoring NSC numbers to youthful levels. Importantly, and consistent with the demonstrated ability of growth hormone (GH) to increase NSC proliferation, and the elevated secretion of GH during exercise, exercise failed to stimulate NSCs in GH receptor-null mice. These findings now provide a novel basis for understanding the ability of exercise to delay the onset and rate of decline in neurodegenerative conditions not typically associated with the hippocampus and suggest that the GH-dependent activation of endogenous NSCs may be effective in reversing or preventing age-related neurodegeneration in humans.

  10. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  11. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Sung, Kuo-Li Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412 (United States)

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  12. Transforming Growth Factor β Induces Bone Marrow Mesenchymal Stem Cell Migration via Noncanonical Signals and N-cadherin.

    Science.gov (United States)

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2017-02-18

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. This article is protected by copyright. All rights reserved.

  13. Selective androgen receptor modulators (SARMs negatively regulate triple-negative breast cancer growth and epithelial:mesenchymal stem cell signaling.

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    Full Text Available The androgen receptor (AR is the most highly expressed steroid receptor in breast cancer with 75-95% of estrogen receptor (ER-positive and 40-70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC co-culture signaling studies were performed to understand the mechanisms of action.Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.

  14. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Susana Aguilar

    Full Text Available Many common diseases of the gas exchange surface of the lung have no specific treatment but cause serious morbidity and mortality. Idiopathic Pulmonary Fibrosis (IPF is characterized by alveolar epithelial cell injury, interstitial inflammation, fibroblast proliferation and collagen accumulation within the lung parenchyma. Keratinocyte Growth Factor (KGF, also known as FGF-7 is a critical mediator of pulmonary epithelial repair through stimulation of epithelial cell proliferation. During repair, the lung not only uses resident cells after injury but also recruits circulating bone marrow-derived cells (BMDC. Several groups have used Mesenchymal Stromal Cells (MSCs as therapeutic vectors, but little is known about the potential of Hematopoietic Stem cells (HSCs. Using an inducible lentiviral vector (Tet-On expressing KGF, we were able to efficiently transduce both MSCs and HSCs, and demonstrated that KGF expression is induced in a regulated manner both in vitro and in vivo. We used the in vivo bleomycin-induced lung fibrosis model to assess the potential therapeutic effect of MSCs and HSCs. While both populations reduced the collagen accumulation associated with bleomycin-induced lung fibrosis, only transplantation of transduced HSCs greatly attenuated the histological damage. Using double immunohistochemistry, we show that the reduced lung damage likely occurs through endogenous type II pneumocyte proliferation induced by KGF. Taken together, our data indicates that bone marrow transplantation of lentivirus-transduced HSCs can attenuate lung damage, and shows for the first time the potential of using an inducible Tet-On system for cell based gene therapy in the lung.

  15. Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    CHAI Wei; NI Ming; RUI Yun-feng; ZHANG Kai-yi; ZHANG Qiang; XU Liang-liang; CHAN Kai-ming

    2013-01-01

    Background Recent studies showed that bone marrow-derived mesenchymal stem cells (BMSCs) had risk of ectopic bone formation.In this study,we aimed to investigate the effect of growth and differentiation factor 6 (GDF-6) on the tenogenic differentiation of BMSCs in vitro,and then combined with small intestine submucous (SIS) to promote tendon regeneration in vivo.Methods The BMSCs were isolated from the green fluorescent protein (GFP) rats,and were characterized by multi-differentiation assays following our previous study protocol.BMSCs cultured with different concentrations of GDF-6,without growth factors served as control.After 2 weeks,mRNA expression and protein expression of tendon specific markers were examined by qRT-PCR and Western blotting to define an optimal concentration of GDF-6.Mann-Whitney U-test was used to compare the difference in relative mRNA expression among all groups; P ≤0.05 was regarded as statistically significant.The GDF-6 treated BMSCs combined with SIS were implanted in nude mice and SD rat acute patellar tendon injury model,the BMSCs combined with SIS served as control.After 12 and 4 weeks in nude mice and tendon injury model,the samples were collected for histology.Results After the BMSCs were treated with different concentration of GDF-6 for 2 weeks,the fold changes of the specific markers (Tenomodulin and Scleraxis) mRNA expression were significantly higher in GDF-6 (20 ng/ml) group (P ≤0.05),which was also confirmed by Western blotting result.The BMSCs became parallel in orientation after GDF-6 (20 ng/ml) treatment,but the BMSCs in control group were randomly oriented.The GDF-6 (20 ng/ml) treated BMSCs were combined with SIS,and were implanted in nude mice for 12 weeks,the histology showed neo-tendon formation.In the SD rat patellar tendon window injury model,the histology also indicated the GDF-6 (20 ng/ml) treated BMSCs combined with SIS could promote tendon regeneration.Conclusions GDF-6 has tenogenic effect on the tenogenic

  16. Hypoxic preconditioning enhances neural stem cell transplantation therapy after intracerebral hemorrhage in mice.

    Science.gov (United States)

    Wakai, Takuma; Narasimhan, Purnima; Sakata, Hiroyuki; Wang, Eric; Yoshioka, Hideyuki; Kinouchi, Hiroyuki; Chan, Pak H

    2016-12-01

    Previous studies have shown that intraparenchymal transplantation of neural stem cells ameliorates neurological deficits in animals with intracerebral hemorrhage. However, hemoglobin in the host brain environment causes massive grafted cell death and reduces the effectiveness of this approach. Several studies have shown that preconditioning induced by sublethal hypoxia can markedly improve the tolerance of treated subjects to more severe insults. Therefore, we investigated whether hypoxic preconditioning enhances neural stem cell resilience to the hemorrhagic stroke environment and improves therapeutic effects in mice. To assess whether hypoxic preconditioning enhances neural stem cell survival when exposed to hemoglobin, neural stem cells were exposed to 5% hypoxia for 24 hours before exposure to hemoglobin. To study the effectiveness of hypoxic preconditioning on grafted-neural stem cell recovery, neural stem cells subjected to hypoxic preconditioning were grafted into the parenchyma 3 days after intracerebral hemorrhage. Hypoxic preconditioning significantly enhanced viability of the neural stem cells exposed to hemoglobin and increased grafted-cell survival in the intracerebral hemorrhage brain. Hypoxic preconditioning also increased neural stem cell secretion of vascular endothelial growth factor. Finally, transplanted neural stem cells with hypoxic preconditioning exhibited enhanced tissue-protective capability that accelerated behavioral recovery. Our results suggest that hypoxic preconditioning in neural stem cells improves efficacy of stem cell therapy for intracerebral hemorrhage.

  17. Analysis of microRNA expression in canine mammary cancer stem-like cells indicates epigenetic regulation of transforming growth factor-beta signaling.

    Science.gov (United States)

    Rybicka, A; Mucha, J; Majchrzak, K; Taciak, B; Hellmen, E; Motyl, T; Krol, M

    2015-02-01

    Cancer stem cells (CSCs) display both unique self-renewal ability as well as the ability to differentiate into many kinds of cancer cells. They are supposed to be responsible for cancer initiation, recurrence and drug resistance. Despite the fact that a variety of methods are currently employed in order to target CSCs, little is known about the regulation of their phenotype and biology by miRNAs. The aim of our study was to assess miRNA expression in canine mammary cancer stem-like cells (expressing stem cell antigen 1, Sca-1; CD44 and EpCAM) sorted from canine mammary tumour cell lines (CMT-U27, CMT-309 and P114). In order to prove their stem-like phenotype, we conducted a colony formation assay that confirmed their ability to form colonies from a single cell. Profiles of miRNA expression were investigated using Agilent custom-designed microarrays. The results were further validated by real-time rt-PCR analysis of expression of randomly selected miRNAs. Target genes were indicated and analysed using Kioto Encyclopedia of Genes and Genomes (KEGG) and BioCarta databases. The results revealed 24 down-regulated and nine up-regulated miRNAs in cancer stem-like cells compared to differentiated tumour cells. According to KEGG and BioCarta databases, target genes (n=240) of significantly down-regulated miRNAs were involved in transforming growth factor-beta signaling, mitogen-activated protein kinases (MAPK) signaling pathway, anaplastic lymphoma receptor tyrosine kinase (ALK) and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A) pathways. The analysis of single-gene overlapping with different pathways showed that the most important genes were: TGFBR1, TGFBR2, SOS1, CHUK, PDGFRA, SMAD2, MEF2A, MEF2C and MEF2D. All of them are involved in tumor necrosis factor-beta signaling and may indicate its important role in cancer stem cell biology. Increased expression of TGFBR2, SMAD2, MEF2A and MEF2D in canine mammary cancer stem-like cells was further

  18. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  19. Hypoxic Conditioned Medium from Human Amniotic Fluid-Derived Mesenchymal Stem Cells Accelerates Skin Wound Healing through TGF-β/SMAD2 and PI3K/Akt Pathways

    Directory of Open Access Journals (Sweden)

    Eun Kyoung Jun

    2014-01-01

    Full Text Available In a previous study, we isolated human amniotic fluid (AF-derived mesenchymal stem cells (AF-MSCs and utilized normoxic conditioned medium (AF-MSC-norCM which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM, it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials. Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways.

  20. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate.

    Science.gov (United States)

    Jeon, Oju; Wolfson, David W; Alsberg, Eben

    2015-04-01

    The spontaneous formation of coacervate microdroplet-laden photo-crosslinked hydrogels derived from the simple mixing of oxidized, methacrylated alginate (OMA) and methacrylated gelatin (GelMA) enables simultaneous creation of drug-laden microdroplets and encapsulation of stem cells in photopolymerized coacervate hydrogels under physiological conditions. This can be utilized as a novel platform for in situ formation of localized, sustained bioactive molecule delivery to encapsulate stem cells for therapeutic applications.

  1. Effects of mesenchymal stem cells transfected with human hepatocyte growth factor gene on healing of burn wounds

    Institute of Scientific and Technical Information of China (English)

    HA Xiao-qin; L(U) Tong-de; HUI Ling; Dong Fang

    2010-01-01

    Objective: To explore the effects of bone marrow-derived mesenchymal stem cells (BMSCs)transfected with adenoviral vector carrying hepatocyte growth factor (HGF, Ad-HGF) on burn wound healing.Methods: BMSCs from male Wistar rats were separated and purified with Percoll separating medium by density gradient centrifugation and cultured with DMEM containing 20% fetal bovine serum (FBS). Then BMSCs were transfected with Ad-HGF at the optimal gene transduction efficiency of 100 multiplicity of infection (MOI). The efficiency of transfection and the expression of HGF in the suspension were detected by flow cytometry and enzyme linked immunosorbent assay (ELISA) respectively. Thirtytwo female rats were subjected to 90℃ water for 12 seconds to induce a partial thickness skin burn. The animals were randomly divided into mesenchymal stem cells (MSCs) treatment group (Group A), Ad-HGF treatment group (Group B),Ad-HGF-modified MSCs treatment group (Group C) and saline control group (Group D). On days 3, 5, 7, 14 and 21 postburn, HE and Sirius red stain were performed to observe the burn wound healing and collagen content. The content of hydroxyproline in wounds was also detected.Transplanted cells and the expression of(sex-determining region Y) SRY gene were detected by in situ hybridization and polymerase chain reaction (PCR), while the expression of HGF in wound tissues was detected by ELISA.Results: The result of flow cytometry showed that the transfection efficiency was 86.41% at 100 MOI. Compared with the control group, the content of HGF in the supernatant after transfection increased time-dependently and peaked at 48 h, showing significant differences at 24 h, 48 h,72 h and 96 h (P<0.01 ). Results of HE stain revealed that the range of re-epidermidalization in Group C was significantly larger than that in other groups in the first week. Three weeks postburn, the epidermis was significantly thicker in Group C than in other groups and the nails of dermis inserted into

  2. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  3. Perichondrium mesenchymal stem cells inhibit the growth of breast cancer cells via the DKK-1/Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Li, Min; Cai, Hui; Yang, Ya; Zhang, Jia; Sun, Kai; Yan, Yan; Qu, Hangying; Wang, Weiwei; Wang, Jiansheng; Duan, Xiaoyi

    2016-08-01

    In recent years, mesenchymal stem cells (MSCs), which possess the ability to specifically home to tumor sites, with the potential of multi-directional differentiation and low immunogenicity, have been reported to inhibit the growth of various types of tumors. In the present study, we isolated MSCs from the rib perichondrium (PMSCs). By comparing PMSCs with bone marrow‑derived mesenchymal stem cells (BMSCs), we demonstrated that PMSCs present biological characteristics similar to those of BMSCs. Furthermore, we explored the effect and antitumor mechanism of PMSCs in rat SHZ-88 breast cancer cells. The growth, migration and invasion of the SHZ-88 cells were significantly inhibited, and the Wnt/β-catenin pathway and its target genes were downregulated in the SHZ-88 cells by PMSC-conditioned medium. The expression level of dickkopf-1 (DKK-1) was higher in the PMSCs than that noted in the SHZ-88 cells. Neutralization of DKK-1 in the PMSC‑conditioned medium attenuated the inhibitory effects of PMSCs on SHZ-88 cells. Therefore, PMSC-secreted DKK-1 is involved in the inhibition of SHZ-88 cell growth, migration and invasion, via the Wnt/β‑catenin signaling pathway. In addition, we demonstrated that PMSCs inhibited the growth of breast cancer in vivo and prolonged the survival time of tumor‑bearing rats. PMSCs inhibited the growth of transplanted breast tumors through the Wnt/β-catenin signaling pathway. In conclusion, our data confirmed that MSCs derived from the perichondrium present biological characteristics similar to those of BMSCs and inhibit the growth of breast cancer cells through the Wnt/β-catenin signaling pathway in vitro and in vivo. DKK-1 secreted by PMSCs played a vital role in controlling the Wnt/β-catenin signaling pathway in breast cancer.

  4. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse.

    Science.gov (United States)

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2013-05-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (Pmuscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, Pmuscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (Pmuscles from damage and accelerating muscle repair and regeneration.

  5. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells.

    Science.gov (United States)

    Dvorak, Petr; Dvorakova, Dana; Koskova, Stanislava; Vodinska, Martina; Najvirtova, Miroslava; Krekac, Daniel; Hampl, Ales

    2005-09-01

    Although the detection of several components of the fibroblast growth factor (FGF) signaling pathway in human embryonic stem cells (hESCs) has been reported, the functionality of that pathway and effects on cell fate decisions are yet to be established. In this study we characterized expression of FGF-2, the prototypic member of the FGF family, and its receptors (FGFRs) in undifferentiated and differentiating hESCs; subsequently, we analyzed the effects of FGF-2 on hESCs, acting as both exogenous and endogenous factors. We have determined that undifferentiated hESCs are abundant in several molecular-mass isoforms of FGF-2 and that expression pattern of these isoforms remains unchanged under conditions that induce hESC differentiation. Significantly, FGF-2 is released by hESCs into the medium, suggesting an autocrine activity. Expression of FGFRs in undifferentiated hESCs follows a specific pattern, with FGFR1 being the most abundant species and other receptors showing lower expression in the following order: FGFR1 --> FGFR3 --> FGFR4 --> FGFR2. Initiation of differentiation is accompanied by profound changes in FGFR expression, particularly the upregulation of FGFR1. When hESCs are exposed to exogenous FGF-2, extracellular signal-regulated kinases are phosphorylated and thereby activated. However, the presence or absence of exogenous FGF-2 does not significantly affect the proliferation of hESCs. Instead, increased concentration of exogenous FGF-2 leads to reduced outgrowth of hESC colonies with time in culture. Finally, the inhibitor of FGFRs, SU5402, was used to ascertain whether FGF-2 that is released by hESCs exerts its activities via autocrine pathways. Strikingly, the resultant inhibition of FGFR suppresses activation of downstream protein kinases and causes rapid cell differentiation, suggesting an involvement of autocrine FGF signals in the maintenance of proliferating hESCs in the undifferentiated state. In conclusion from our data, we propose that this

  6. Delivery of a transforming growth factor β-1 plasmid to mesenchymal stem cells via cationized Pleurotus eryngii polysaccharide nanoparticles

    Directory of Open Access Journals (Sweden)

    Deng WW

    2012-03-01

    Full Text Available Wen Wen Deng*, Xia Cao*, Miao Wang*, Rui Qu, Wei Yan Su, Yan Yang, Ya Wei Wei, Xi Ming Xu, Jiang Nan YuDepartment of Pharmaceutics, School of Pharmacy and Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The objective of this study was to investigate the use of cationized Pleurotus eryngii polysaccharide (CPEPS as a nonviral gene delivery vehicle to transfer plasmid DNA encoding transforming growth factor beta-1 (pTGF-β1 into mesenchymal stem cells (MSCs in vitro. Crude P. eryngii polysaccharide was purified, and then cationized by grafting spermine onto the backbone of the polysaccharide. Agarose gel electrophoresis, transmission electron microscopy, and a Nano Sense Zetasizer (Malvern Instruments, Malvern, UK were used to characterize the CPEPS-pTGF-β1 nanoparticles. The findings of cytotoxicity analysis showed that when the nanoparticles were formulated with a CPEPS/pTGF-β1 weight ratio ≥ 10:1, a greater gel retardation effect was observed during agarose gel electrophoresis. The CPEPS-pTGF-β1 nanoparticles with a weight ratio of 20:1, respectively, possessed an average particle size of 80.8 nm in diameter and a zeta potential of +17.4 ± 0.1 mV. Significantly, these CPEPS-pTGF-β1 nanoparticles showed lower cytotoxicity and higher transfection efficiency than both polyethylenimine (25 kDa (P = 0.006, Student’s t-test and LipofectamineTM 2000 (P = 0.002, Student’st-test. Additionally, the messenger RNA expression level of TGF-β1 in MSCs transfected with CPEPS-pTGF-β1 nanoparticles was significantly higher than that of free plasmid DNA-transfected MSCs and slightly elevated compared with that of Lipofectamine 2000-transfected MSCs. Flow cytometry analysis demonstrated that 92.38% of MSCs were arrested in the G1 phase after being transfected with CPEPS-pTGF-β1 nanoparticles, indicating a tendency toward

  7. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction.

    Science.gov (United States)

    Wang, Li; Guo, Huijie; Yang, Liuqi; Dong, Lihua; Lin, Caiyu; Zhang, Jie; Lin, Ping; Wang, Xiujie

    2013-07-01

    Cancer stem cells (CSCs) are believed to be responsible for tumor metastasis, recurrence, and high mortality of cancer patients due to their high tumorigenicity resistance to chemo-radiotherapy. Morusin possesses anti-cancer activity through attenuation of NF-κB activity, which is up-regulated in cancer stem cells. The purpose of this study is to confirm the growth and migration inhibition effect of morusin on human cervical CSCs, and to clarify its partial mechanism of activity. Human cervical CSCs were enriched using non-adhesive culture system. Their stemness characteristics were identified with tumor sphere formation, self-renewal, toluidine blue staining, migration assays, RT-PCR analysis, and immunofluorescence staining of putative stem cell markers, Oct4, SOX2, and ALDH1; the epithelial-to-mesenchymal (EMT) transition markers and relevant transcription factors were evaluated with Western blotting. The growth and migration inhibition effects of morusin on human cervical CSCs were tested by cell proliferation, tumor sphere formation, and transwell assay; apoptotic death of human cervical CSCs in response to morusin was measured with DAPI staining, apoptotic DNA fragmentation; NF-κBp65, Bcl-2, Bax, and caspase-3 protein expressions were detected through Western blotting. Under this non-adhesive culture system, typical tumor spheres appeared within 5-7 days, the tumor sphere formation, self-renewal, and cell migration, expressions of putative stem cell markers, EMT markers, and relevant transcription factors of the tumor sphere cells were increased significantly. After morusin treatment, the proliferation, tumor sphere formation, and migration of human cervical CSCs were decreased significantly, DAPI-stained apoptotic cells increased, apoptotic DNA fragmentations formed evidently; the expression levels of NF-κBp65 and Bcl-2 decreased significantly, Bax, and caspase-3 increased significantly in a dose-dependent manner. Using the non-adhesive culture system

  8. Stem anatomical characteristics of the climbing palm Desmoncus orthacanthos (Arecaceae) under two natural growth conditions in a tropical forest.

    Science.gov (United States)

    Quiroz, Joaquín; Orellana, Roger; Canto, Gabriel; Rebollar, Silvia; Herrera-Franco, Pedro

    2008-06-01

    Desmoncus orthacanthos is a Neotropical climbing palm that resembles rattan and therefore has similar potential applications. The genus Desmoncus (subfamily Arecoideae, subtribe Bactridinae) is distributed throughout the Americas, from Veracruz, Mexico, to Brazil and Bolivia. The anatomical characteristics of its support tissue have not been thoroughly studied, although some observations from Central American artisans suggest that the stems collected from undisturbed sites possess better characteristics; these include a good capacity to withstand bending without breaking (i.e., higher fracture strength than plants from disturbed sites). Stem samples were collected from individuals from disturbed and undisturbed sites, at three points along the length of the stem (basal, medium and apical). Collections were made of one ramet from five individuals (n=5) at both sites. Each ramet was divided into three sections: basal, from soil surface to a height of 0.5 m; medium, from a height of 0.5 to 5.0 m; and apical, from a height 5.0 to 10.0 m. An anatomical analysis including vascular bundles, parenchyma elements and fibers was performed in the radial direction and also along the longitudinal direction of the stems. The amount of vascular bundles was greater for samples from undisturbed site stems; the amount of parenchyma cells differ between samples from both sites and the amount of fibers was greater for samples from disturbed site stems. The anatomical structural dimensions were smaller for samples from the undisturbed site stems. These findings partially confirm the artisans' belief and supports the conclusion that microclimatic conditions affect plant anatomical structure.

  9. Dietary supplementation with β-hydroxy-β-methylbutyrate calcium during the early postnatal period accelerates skeletal muscle fibre growth and maturity in intra-uterine growth-retarded and normal-birth-weight piglets.

    Science.gov (United States)

    Wan, Haifeng; Zhu, Jiatao; Su, Guoqi; Liu, Yan; Hua, Lun; Hu, Liang; Wu, Caimei; Zhang, Ruinan; Zhou, Pan; Shen, Yong; Lin, Yan; Xu, Shengyu; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De

    2016-04-01

    Intra-uterine growth restriction (IUGR) impairs postnatal growth and skeletal muscle development in neonatal infants. This study evaluated whether dietary β-hydroxy-β-methylbutyrate Ca (HMB-Ca) supplementation during the early postnatal period could improve muscle growth in IUGR neonates using piglets as a model. A total of twelve pairs of IUGR and normal-birth-weight (NBW) male piglets with average initial weights (1·85 (sem 0·36) and 2·51 (sem 0·39) kg, respectively) were randomly allotted to groups that received milk-based diets (CON) or milk-based diets supplemented with 800 mg/kg HMB-Ca (HMB) during days 7-28 after birth. Blood and longissimus dorsi (LD) samples were collected and analysed for plasma amino acid content, fibre morphology and the expression of genes related to muscle development. The results indicate that, regardless of diet, IUGR piglets had a significantly decreased average daily weight gain (ADG) compared with that of NBW piglets (Pgrowth factor-1 and myosin heavy-chain isoform IIb in the LD of piglets (Pmuscle growth and maturity by accelerating fast-twitch glycolytic fibre development in piglets.

  10. Growth factors in promoting the mineralization of dental pulp stem cells%生长因子对牙髓干细胞的矿化作用

    Institute of Scientific and Technical Information of China (English)

    吕陶红

    2011-01-01

    健康牙髓中含有的具有多向分化、高效增殖和自我更新潜能的牙髓干细胞,在牙髓损伤后牙本质修复再生和牙/骨组织工程中具有至关重要的作用.本文就牙髓干细胞的矿化潜能、生长因子及其在促牙髓干细胞矿化和作用机制方面的研究进展作一综述.%Stem cells in the healthy dental pulp possess multi-lineage differentiation capability, high proliferation rate and self-renewal capability, which are recognized being vital to the dentin regeneration after injuries and tooth/bone tissue engineering. Growth factors are a kind of cell factors that stimulate the growth activities of cells. This review is aimed at elaborating the role and mechanism of growth factors in promoting the mineralization of dental pulp stem cells.

  11. A novel experimental platform for investigating cancer growth and anti-cancer therapy in a human tissue microenvironment derived from human embryonic stem cells.

    Science.gov (United States)

    Tzukerman, Maty; Skorecki, Karl L

    2006-01-01

    There is no available experimental system wherein human cancer cells can be grown in the context of a mixed population of normal differentiated human cells for testing biological aspects of cancer cell growth (tumor cell invasion, angiogenesis) or response to anti-cancer therapies. Human embryonic stem cells when implanted into immunocompromised mice develop teratomas containing complex structures, comprising differentiated cell types representing the major germline-derived lineages. We sought to determine whether human cancer cells would grow within such teratomas and display properties associated with malignancy such as invasiveness and recruitment of blood vessels. Ovarian cancer cells (HEY), stably expressing an H2A-GFP fusion protein, which allows tracking of tumor cells, were injected into mature teratomas and developed into tumors. The growth, proliferation capacity, invasion, and induction of blood vessel formation were examined. We propose using the novel experimental platform we have described, consisting of human tumor cells growing within a human cellular microenvironment derived from human embryonic stem cells, to develop a preclinical model for investigating and manipulating the stromal response in tumor cell growth, as an additional tool in cancer research.

  12. Transforming Growth Factor-β1 (TGF-β1 Induces Mouse Precartilaginous Stem Cell Proliferation through TGF-β Receptor II (TGFRII-Akt-β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2014-07-01

    Full Text Available Precartilaginous stem cells (PSCs could self-renew or differentiate into chondrocytes to promote bone growth. In the current study, we aim to understand the role of transforming growth factor-β1 (TGF-β1 in precartilaginous stem cell (PSC proliferation, and to study the underlying mechanisms. We successfully purified and primary-cultured PSCs from the neonate mice’ perichondrial mesenchyme, and their phenotype was confirmed by the PSC marker fibroblast growth factor receptor-3 (FGFR-3 overexpression. We found that TGF-β1 induced Akt-glycogen synthase kinase-3β (GSK3β phosphorylation and β-catenin nuclear translocation in the mouse PSCs, which was almost blocked by TGF-β receptor-II (TGFRII shRNA knockdown. Further, perifosine and MK-2206, two Akt-specific inhibitors, suppressed TGF-β1-induced GSK3β phosphorylation and β-catenin nuclear translocation. Akt inhibitors, as well as β-catenin shRNA knockdown largely inhibited TGF-β1-stimulated cyclin D1/c-myc gene transcription and mouse PSC proliferation. Based on these results, we suggest that TGF-β1 induces Akt activation to promote β-catenin nuclear accumulation, which then regulates cyclin D1/c-myc gene transcription to eventually promote mouse PSC proliferation.

  13. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold

    Directory of Open Access Journals (Sweden)

    RS Nirmal

    2013-11-01

    Full Text Available Stem cell based tissue engineering has emerged as a promising strategy for articular cartilage regeneration. Foetal derived mesenchymal stem cells (MSCs with their ease of availability, pluripotency and high expansion potential have been demonstrated to be an attractive cell source over adult MSCs. However, there is a need for optimisation of chondrogenic signals to direct the differentiation of these multipotent MSCs to chondrogenic lineage. In this study we have demonstrated the in vitro chondrogenesis of human umbilical cord matrix MSCs in three dimensional PVA-PCL (polyvinyl alcohol-polycaprolactone scaffolds in the presence of the individual growth factors TGFβ1, TGFβ3, IGF, BMP2 and their combination with BMP2. Gene expression, histology and immunohistology were evaluated after 28 d culture. The induced cells showed the feature of chondrocytes in their morphology and expression of typical chondrogenic extracellular matrix molecules. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, SOX9, collagen type II and aggrecan. The expression of collagen type I and collagen type X was also evaluated. This study has demonstrated the successful chondrogenic induction of human umbilical cord MSCs in 3D scaffolds. Interestingly, the growth factor combination of TGF-β3 and BMP-2 was found to be more effective for chondrogenesis as shown by the real-time PCR studies. The findings of this study suggest the importance of using growth factor combinations for successful chondrogenic differentiation of umbilical cord MSCs.

  14. Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering

    Science.gov (United States)

    Kumar, Sandeep; Kulkarni, Rahul; Sen, Shamik

    2016-06-01

    Tumors consist of multiple cell sub-populations including cancer stem cells (CSCs), transiently amplifying cells and terminally differentiated cells (TDCs), with the CSC fraction dictating the aggressiveness of the tumor and drug sensitivity. In epithelial cancers, tumor growth is influenced greatly by properties of the extracellular matrix (ECM), with cancer progression associated with an increase in ECM density. However, the extent to which increased ECM confinement induced by an increase in ECM density influences tumor growth and post treatment relapse dynamics remains incompletely understood. In this study, we use a cellular automata-based discrete modeling approach to study the collective influence of ECM density, cell motility and ECM proteolysis on tumor growth, tumor heterogeneity, and tumor relapse after drug treatment. We show that while increased confinement suppresses tumor growth and the spatial scattering of CSCs, this effect can be reversed when cells become more motile and proteolytically active. Our results further suggest that, in addition to the absolute number of CSCs, their spatial positioning also plays an important role in driving tumor growth. In a nutshell, our study suggests that, in confined environments, cell motility and ECM proteolysis are two key factors that regulate tumor growth and tumor relapse dynamics by altering the number and spatial distribution of CSCs.

  15. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment.

    Science.gov (United States)

    Kim-Fuchs, Corina; Le, Caroline P; Pimentel, Matthew A; Shackleford, David; Ferrari, Davide; Angst, Eliane; Hollande, Frédéric; Sloan, Erica K

    2014-08-01

    Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer.

  16. Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy.

    Science.gov (United States)

    Cai, Yanli; Wang, Xiaoyan; Poh, Chye Khoon; Tan, Hark Chuan; Soe, Min Tun; Zhang, Sam; Wang, Wilson

    2014-04-01

    Titanium alloys have been widely used in orthopedic practice due to their inherent bioactivity, however it is still insufficient to truly and reliably incorporate into living bone. In this work, polydopamine film was employed to induce the growth of hydroxyapatite (HA) on titanium alloy to enhance its osteoconductivity. Bone morphogenetic protein-2 (BMP2) peptide was absorbed into the HA particles for osteoinductivity. The precipitation of HA and the existence of BMP2 peptide were examined by X-ray diffraction, X-ray photoelectron spectroscopy and fluorescence microscopy. The dissolution of HA and the release of BMP2 peptide were monitored by measuring the concentrations of calcium ions and BMP2 peptide in phosphate buffered saline solution, respectively. The effect of BMP2 peptide incorporated into HA coating on bone growth was evaluated in vitro by cell culture tests, including cell attachment, alkaline phosphatase (ALP) activity, and gene expression. The results show that the HA particles grown on the substrate are mediated by the polydopamine film. The BMP2 peptide is distributed uniformly on HA-coated substrate and released in a sustained manner. Moreover, the conjunction of HA and BMP2 peptide increases cell adhesion, ALP activity and gene expression of osteogenic markers, which are potentially useful in the development of enhanced orthopedic medical devices.

  17. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells

    Science.gov (United States)

    Somal, Anjali; Bhat, Irfan A.; B., Indu; Pandey, Sriti; Panda, Bibhudatta S. K.; Thakur, Nipuna; Sarkar, Mihir; Chandra, Vikash; Saikumar, G.; Sharma, G. Taru

    2016-01-01

    The present study was conducted with an objective of isolation, in vitro expansion, growth kinetics, molecular characterization and in vitro differentiation of fetal adnexa derived caprine mesenchymal stem cells. Mid-gestation gravid caprine uteri (2–3 months) were collected from abattoir to derive mesenchymal stem cells (MSCs) from fetal adnexa {amniotic fluid (cAF), amniotic sac (cAS), Wharton’s jelly (cWJ) and cord blood (cCB)} and expanded in vitro. These cultured MSCs were used at the 3rd passage (P3) to study growth kinetics, localization as well as molecular expression of specific surface antigens, pluripotency markers and mesenchymal tri-lineage differentiation. In comparison to cAF and cAS MSCs, cWJ and cCB MSCs showed significantly (P<0.05) higher clonogenic potency, faster growth rate and low population doubling (PDT) time. All the four types of MSCs were positive for alkaline phosphatase (AP) and differentiated into chondrogenic, osteogenic, and adipogenic lineages. These stem cells expressed MSC surface antigens (CD73, CD90 and CD105) and pluripotency markers (Oct4, Sox2, Nanog, KLF, cMyc, FoxD3) but did not express CD34, a hematopoietic stem cell marker (HSC) as confirmed by RT-PCR, immunocytochemistry and flow cytometric analysis. The relative mRNA expression of MSC surface antigens (CD73, CD90 and CD105) was significantly (P<0.05) higher in cWJ MSCs compared to the other cell lines. The mRNA expression of Oct4 was significantly (P<0.05) higher in cWJ, whereas mRNA expression of KLF and cMyc was significantly (P<0.05) higher in cWJ and cAF than that of cAS and cCB. The comparative assessment revealed that cWJ MSCs outperformed MSCs from other sources of fetal adnexa in terms of growth kinetics, relative mRNA expression of surface antigens, pluripotency markers and tri-lineage differentiation potential, hence, these MSCs could be used as a preferred source for regenerative medicine. PMID:27257959

  18. Paradoxical adverse culture conditions do not hamper the growth of human multipotent vascular wall-mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Carmen eCiavarella

    2015-06-01

    Full Text Available Background: Mesenchymal stem cells (MSCs with multilineage potential and anti-inflammatory property can be isolated from different human tissues, representing promising candidates in regenerative medicine. Despite the common criteria of characterization, many factors contribute to MSC heterogeneity (i.e. tissue origin, coexistence of cell subsets at different stage of differentiation, epigenetic and no standard methods have been approved to characterize MSCs in cell culture.Aim: The present study aimed to test whether MSCs resist adverse chemical and physical culture conditions, surviving MSC subpopulations are endowed with the stemness abilities; to characterize MMP expression in AAA-MSCs under the adverse experimental conditions. Methods and results: MSCs enzymatically isolated from human abdominal aortic aneurysm (AAA-MSCs were exposed to media acidification, hypoxia, starving, drying and hypothermia through the following strategies: 1 low-density seeding in closed flasks; 2 exposure to a chemical hypoxia inducer, cobalt chloride; 3 exposure to a dry environment with growing medium deprivation and culture at 4°C. None of these conditions affected MSC viability and stemness profile, as evidenced by NANOG, OCT-4 and Sox-2 mRNA expression in surviving cells. A significant MMP-9 decrease, especially when AAA-MSCs were exposed to hypothermia, was associated with stress resistant stem cells.Conclusions: AAA-MSCs survive to extremely adverse culture conditions, keeping their morphology and stemness features. Besides MMP-9 role in pathological tissue remodeling, this protease may be related to MSC survival. Future studies on MSCs derived from other tissues will be necessary to refine our culture protocol, which can represent an empirical method to demonstrate MSC stemness,, with potential implications for their clinical use.

  19. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Villingshøj, Mette; Poulsen, Hans Skovgaard;

    2013-01-01

    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions...... in the normal NSC population. Notch signaling is often deregulated in GBM and recent results suggest that this pathway plays a significant role in bCSC as well. We therefore wished to further elucidate the role of Notch activation in GBM-derived bCSC....

  20. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  1. Synthetic Resveratrol Analogue, 3,3',4,4',5,5'-Hexahydroxy-trans-Stilbene, Accelerates Senescence in Peritoneal Mesothelium and Promotes Senescence-Dependent Growth of Gastrointestinal Cancers

    Directory of Open Access Journals (Sweden)

    Krzysztof Książek

    2013-11-01

    Full Text Available 3,3',4,4',5,5'-Hexahydroxy-trans-stilbene (M8 is a synthetic resveratrol derivative, advertised as a candidate drug highly effective against numerous malignancies. Because multiple tumors prone to M8 frequently metastasize into the peritoneal cavity, this study was aimed at establishing the effect of M8 on the growth and senescence of human peritoneal mesothelial cells (HPMCs, the largest cell population within the peritoneum, actively involved in the intraperitoneal spread of cancer. The study showed that M8, used at the highest non-toxic dose of 10 μM, impairs proliferation and accelerates senescence in cultured HPMCs via an oxidative stress-dependent mechanism. At the same time, soluble factors released to the environment by HPMCs that senesced prematurely in response to M8 promoted growth of colorectal and pancreatic carcinomas in vitro. These findings indicate that M8 may indirectly—through the modification of normal (mesothelial cells phenotype—facilitate an expansion of cancer cells, which challenges the postulated value of this stilbene in chemotherapy.

  2. Neurons derived from human embryonic stem cells extend long–distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation.

    Directory of Open Access Journals (Sweden)

    Mark eDenham

    2012-03-01

    Full Text Available Human pluripotent stem cells have the capacity for directed differentiation into a wide variety of neuronal subtypes that may be useful for brain repair. While a substantial body of research has lead to a detailed understanding of the ability of neurons in fetal tissue grafts to structurally and functionally integrate after intra-cerebral transplantation, we are only just beginning to understand the in vivo properties of neurons derived from human pluripotent stem cells. Here we have utilised the human embryonic stem (ES cell line Envy, which constitutively expresses green fluorescent protein (GFP, in order to study the in vivo properties of neurons derived from human ES cells. Rapid and efficient neural induction, followed by differentiation as neurospheres resulted in a GFP+ neural precursor population with traits of neuroepithelial and dorsal forebrain identity. Ten weeks after transplantation into neonatal rats, GFP+ fibre patterns revealed extensive axonal growth in the host brain, particularly along host white matter tracts, although innervation of adjacent nuclei was limited. The grafts were composed of a mix of neural cell types including differentiated neurons and glia, but also dividing neural progenitors and migrating neuroblasts, indicating an incomplete state of maturation at 10 weeks. This was reflected in patch-clamp recordings showing stereotypical properties appropriate for mature functional neurons, including the ability to generate action potentials, as well profiles consistent for more immature neurons. These findings illustrate the intrinsic capacity for neurons derived from human ES cells to integrate at a structural and functional level following transplantation.

  3. Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness

    Directory of Open Access Journals (Sweden)

    Lukas Perkhofer

    2016-09-01

    Full Text Available Cell fate decisions and pluripotency, but also malignancy depend on networks of key transcriptional regulators. The T-box transcription factor TBX3 has been implicated in the regulation of embryonic stem cell self-renewal and cardiogenesis. We have recently discovered that forced TBX3 expression in embryonic stem cells promotes mesendoderm specification directly by activating key lineage specification factors and indirectly by enhancing paracrine NODAL signalling. Interestingly, aberrant TBX3 expression is associated with breast cancer and melanoma formation. In other cancers, loss of TBX3 expression is associated with a more aggressive phenotype e.g. in gastric and cervical cancer. The precise function of TBX3 in pancreatic ductal adenocarcinoma remains to be determined. In the current study we provide conclusive evidence for TBX3 overexpression in pancreatic cancer samples as compared to healthy tissue. While proliferation remains unaltered, forced TBX3 expression strongly increases migration and invasion, but also angiogenesis in vitro and in vivo. Finally, we describe the TBX3-dependency of cancer stem cells that perpetuate themselves through an autocrine TBX3–ACTIVIN/NODAL signalling loop to sustain stemness. Thus, TBX3 is a new key player among pluripotency-related genes driving cancer formation.

  4. Keratinocyte Growth Factor Prevents Radiation Damage to Salivary Glands by Expansion of the Stem/Progenitor Pool

    NARCIS (Netherlands)

    Lombaert, Isabelle M. A.; Brunsting, Jeanette F.; Wierenga, Pieter K.; Kampinga, Harm H.; De Haan, Gerald; Coppes, Robert P.

    2008-01-01

    Irradiation of salivary glands during radiotherapy treatment of patients with head and neck cancer evokes persistent hyposalivation. This results from depletion of stem cells, which renders the gland incapable of replenishing saliva to produce acinar cells. The aim of this study was to investigate w

  5. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  6. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Banks, Jessica M; Mozdzen, Laura C; Harley, Brendan A C; Bailey, Ryan C

    2014-10-01

    Biomaterial designs are increasingly incorporating multiple instructive signals to induce a desired cell response. However, many approaches do not allow orthogonal manipulation of immobilized growth factor signals and matrix stiffness. Further, few methods support patterning of biomolecular signals across a biomaterial in a spatially-selective manner. Here, we report a sequential approach employing carbodiimide crosslinking and benzophenone photoimmobilization chemistries to orthogonally modify the stiffness and immobilized growth factor content of a model collagen-GAG (CG) biomaterial. We subsequently examined the singular and combined effects of bone morphogenetic protein (BMP-2), platelet derived growth factor (PDGF-BB), and CG membrane stiffness on the bioactivity and osteogenic/adipogenic lineage-specific gene expression of adipose derived stem cells, an increasingly popular cell source for regenerative medicine studies. We found that the stiffest substrates direct osteogenic lineage commitment of ASCs regardless of the presence or absence of growth factors, while softer substrates require biochemical cues to direct cell fate. We subsequently describe the use of this approach to create overlapping patterns of growth factors across a single substrate. These results highlight the need for versatile approaches to selectively manipulate the biomaterial microenvironment to identify synergies between biochemical and mechanical cues for a range of regenerative medicine applications.

  7. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss.

    Science.gov (United States)

    Ager, Rahasson R; Davis, Joy L; Agazaryan, Andy; Benavente, Francisca; Poon, Wayne W; LaFerla, Frank M; Blurton-Jones, Mathew

    2015-07-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder, affecting over 35 million people worldwide. Pathologically, AD is characterized by the progressive accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Together, these pathologies lead to marked neuronal and synaptic loss and corresponding impairments in cognition. Current treatments, and recent clinical trials, have failed to modify the clinical course of AD; thus, the development of novel and innovative therapies is urgently needed. Over the last decade, the potential use of stem cells to treat cognitive impairment has received growing attention. Specifically, neural stem cell transplantation as a treatment for AD offers a novel approach with tremendous therapeutic potential. We previously reported that intrahippocampal transplantation of murine neural stem cells (mNSCs) can enhance synaptogenesis and improve cognition in 3xTg-AD mice and the CaM/Tet-DT(A) model of hippocampal neuronal loss. These promising findings prompted us to examine a human neural stem cell population, HuCNS-SC, which has already been clinically tested for other neurodegenerative disorders. In this study, we provide the first evidence that transplantation of research grade HuCNS-SCs can improve cognition in two complementary models of neurodegeneration. We also demonstrate that HuCNS-SC cells can migrate and differentiate into immature neurons and glia and significantly increase synaptic and growth-associated markers in both 3xTg-AD and CaM/Tet-DTA mice. Interestingly, improvements in aged 3xTg-AD mice were not associated with altered Aβ or tau pathology. Rather, our findings suggest that human NSC transplantation improves cognition by enhancing endogenous synaptogenesis. Taken together, our data provide the first preclinical evidence that human NSC transplantation could be a safe and effective therapeutic approach for treating AD.

  8. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells.

    Science.gov (United States)

    Pauwelyn, Karen; Roelandt, Philip; Notelaers, Tineke; Sancho-Bru, Pau; Fevery, Johan; Verfaillie, Catherine M

    2011-01-01

    Mouse embryonic stem cells (mESC) have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (h)ESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between lineage specific

  9. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells.

    Directory of Open Access Journals (Sweden)

    Karen Pauwelyn

    Full Text Available Mouse embryonic stem cells (mESC have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (hESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between

  10. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    Science.gov (United States)

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.

  11. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection.

    Science.gov (United States)

    Fridman, Rafael; Benton, Gabriel; Aranoutova, Irina; Kleinman, Hynda K; Bonfil, R Daniel

    2012-05-17

    This protocol requires 2-4 h and presents a method for injecting tumor cells, cancer stem cells or dispersed biopsy material into subcutaneous or orthotopic locations within recipient mice. The tumor cells or biopsy are mixed with basement membrane matrix proteins (CultrexBME or Matrigel) at 4 °C and then injected into recipient animals at preferred anatomical sites. Tumor cells can also be co-injected with additional cell types, such as fibroblasts, stromal cells, endothelial cells and so on. Details are given on appropriate cell numbers, handling and concentration of the basement membrane proteins, recipient animals, injection location and techniques. This procedure enables the growth of tumors from cells or biopsy material (tumor graft) with greater efficiency of take and growth, and with retention of the primary tumor phenotype based on histology. Co-injection with additional cell types provides more physiological models of human cancers for use in drug screening and studying cancer biology.

  12. 肿瘤干细胞生长相关的信号转导通路%Growth Signaling Pathways of Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    王洋; 张楠; 刘艳; 刘晶; 叶福秀; 邹伟

    2011-01-01

    Cancer stem cells ( CSCs) are the small population of cells involved in tumor possessing renewal and differentiation properties, also known as the stem cell-like cell subpopulations in tumors, which play an important role in tumor occurrence and development. Recent discoveries revealed that the growth regulation of tumor cells was significantly related to the Notch, Wnt and Hedgehog signaling pathways, etc. . To provide a theoretical basis for CSCs research and clinical application, we briefly reviewed the research advancements of the signal transduction pathways related to CSCs growth.%肿瘤干细胞是肿瘤中存在的一小群具有自我更新和分化潜能的细胞,也是存在于肿瘤组织中具有干细胞样能力的肿瘤细胞亚群,在肿瘤的发生、发展中起着非常重要的作用.近年来发现,肿瘤干细胞的生长调控与Wnt、Notch、Hedgehog等多种信号转导通路有关.本文简要综述了肿瘤干细胞生长相关信号转导通路的研究进展,旨在为肿瘤干细胞研究和临床应用提供理论依据.

  13. Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases.

    Science.gov (United States)

    Vila, Laura; Quilis, Jordi; Meynard, Donaldo; Breitler, Jean Christophe; Marfà, Victoria; Murillo, Isabel; Vassal, Jean Michel; Messeguer, Joaquima; Guiderdoni, Emmanuel; San Segundo, Blanca

    2005-03-01

    The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.

  14. A mutein of human basic fibroblast growth factor TGP-580 accelerates colonic ulcer healing by stimulating angiogenesis in the ulcer bed in rats.

    Science.gov (United States)

    Satoh, H; Szabo, S

    2015-10-01

    Previously, we reported that TGP-580, a mutein of human basic fibroblast growth factor (bFGF), accelerated the healing of gastric and duodenal ulcers in rats. In the present study, we examined the effect of TGP-580 on the healing of colonic ulcers. In male Sprague Dawley rats, ulcers were induced in the colon 6 cm from the anus by enema of 50 μl of 3% N-ethylmaleimide, a sulfhydryl alkylator. The lesions were examined under a dissecting microscope (x10). The concentration of bFGF in the ulcerated colon was measured by enzyme immunoassay, and both the distribution of bFGF and the density of microvessels in the ulcer bed were examined by immunohistochemical staining. The content of bFGF in the ulcerated colon was markedly increased associated with ulcer healing, and ulcer healing was significantly delayed by intravenous administration of a monoclonal antibody for bFGF (MAb 3H3) once daily for 10 days. In the ulcer bed, many cells such as fibroblasts, vascular endothelial cells and macrophages were positively stained with bFGF antiserum. TGP-580, human bFGF or dexamethasone was given intracolonally twice daily for 10 days, starting the day after ulcer induction. TGP-580 (0.2 - 20 μg/ml, 200 μl/rat) dose-dependently accelerated ulcer healing, and its effect was more than 10 times stronger than that of human bFGF. Density (μm/0.01 mm(2)) of microvessels in the ulcer bed was significantly increased by treatment with TGP-580, and there was a good correlation between the density of microvessels and the decrease of ulcerated area (R(2) = 0.633). On the other hand dexamethasone (20 μg/ml) inhibited angiogenesis in the ulcer bed and delayed ulcer healing. These results suggest that angiogenesis in the ulcer bed plays an important role in ulcer healing, and that bFGF mutein TGP-580 accelerated colonic ulcer healing, at least in part, by stimulating angiogenesis, whereas glucocorticoids may delay the healing by inhibiting angiogenesis.

  15. Accelerated Maturation of Human Stem Cell-Derived Pancreatic Progenitor Cells into Insulin-Secreting Cells in Immunodeficient Rats Relative to Mice

    Directory of Open Access Journals (Sweden)

    Jennifer E. Bruin

    2015-12-01

    Full Text Available Pluripotent human embryonic stem cells (hESCs are a potential source of transplantable cells for treating patients with diabetes. To investigate the impact of the host recipient on hESC-derived pancreatic progenitor cell maturation, cells were transplanted into immunodeficient SCID-beige mice or nude rats. Following the transplant, basal human C-peptide levels were consistently higher in mice compared with rats, but only rats showed robust meal- and glucose-responsive human C-peptide secretion by 19–21 weeks. Grafts from rats contained a higher proportion of insulin:glucagon immunoreactivity, fewer exocrine cells, and improved expression of mature β cell markers compared with mice. Moreover, ECM-related genes were enriched, the collagen network was denser, and blood vessels were more intricately integrated into the engrafted endocrine tissue in rats relative to mice. Overall, hESC-derived pancreatic progenitor cells matured faster in nude rats compared with SCID-beige mice, indicating that the host recipient can greatly influence the fate of immature pancreatic progenitor cells post-transplantation.

  16. Preliminary separation of the growth factors in platelet-rich plasma: effects on the proliferation of human marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    HUANG Qian; WANG Yun-dan; WU Tao; JIANG Shan; HU Yan-ling; PEI Guo-xian

    2009-01-01

    Background Platelet-rich plasma (PRP) as a storage vehicle of growth factors has been successfully used in clinical applications, but in most cases the platelets were autologous. However, the large volume of blood withdrawn has detrimental effects on patients with anemia or poor general health. To overcome these limitations, this study was designed to separate the growth factors in homologous platelet-rich plasma. Methods The gel chromatography with Superdex-75 column was applied to separate PRP supernatants into 4 major fractions. Then the four fractions were vacuumed freeze-dried and re-dissolved in phosphate buffered saline. Proteins concentrations in PRP and in four fractions were detected by bicinchoninic acid protein assay; platelet derived growth factor-AB (PDGF-AB) and transforming growth factor 131 (TGF-β1) levels were determined by sandwich enzyme-linked immunosorbent assays. The effects of fractions on the proliferation of human marrow-derived mesenchymal stem cells (MSCs) were determined by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results PRP supernatants were separated into four major fractions by gel chromatography. The proteins recovery was 96.72%. Of the four fractions, fraction B contained the highest TGF-β1 and PDGF-AB levels, and the highest proteins concentrations. Cell proliferation curves of MSC demonstrated that fraction B and C induced a remarkable increase of MTT values compared to the untreated culture (P 0.05). Fraction A and D showed no significant difference to the negative control group (P >0.05). Conclusions The growth factors in PRP supernatants could be preliminarily separated into four fractions by gel chromatography, and the freeze-drying fractions retained the biological activity of growth factors. The growth factors were mostly presented in fraction B and C, and they promoted cell proliferation effectively.

  17. THE EFFECT OF CLOVE STEM OIL (Oleum caryophylli ON THE GROWTH OF ESCHERICHIA COLI ISOLATED FROM NATIVE CHICKEN, CATTLE AND PIG

    Directory of Open Access Journals (Sweden)

    M. Poeloengan

    2014-10-01

    Full Text Available The objective of this study was to examine the effects of Clove Stem Oil (Oleum caryophylli orCSO extracts on the growth of Escherichia coli. A 4 x 3 Factorial Design was applied in this study. Thefirst factor was 4 types of E. coli isolates that collected from native chicken (C, young cattle (A, piglet(B1 and pig (B2, while the second factor was 3 concentrations of CSO extract, that was 50.00, 25.00and 12.50 percents. Fifteen micro liters of CSO extract was dropped in sterile paper disks. These diskwere laid on the MEU agar media previously inoculated with each of the four isolates and wereincubated overnight at 370C. The bacterial growth inhibition zones were observed and measured. Theresults demonstrated that the higher concentration of the CSO extracts, the higher bacterial growthinhibition effects obtained. Fhe growth inhibition effects of the CSO extracts on E. coli isolates C, A, B1and B2 were significantly different at P<0.05. It could be concluded that the CSO extracts were effectiveto control the E. coli growth.

  18. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    Science.gov (United States)

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  19. Sp100 as a potent tumor suppressor: accelerated senescence and rapid malignant transformation of human fibroblasts through modulation of an embryonic stem cell program.

    Science.gov (United States)

    Negorev, Dmitri G; Vladimirova, Olga V; Kossenkov, Andrew V; Nikonova, Elena V; Demarest, Renee M; Capobianco, Anthony J; Showe, Michael K; Rauscher, Frank J; Showe, Louise C; Maul, Gerd G

    2010-12-01

    Identifying the functions of proteins, which associate with specific subnuclear structures, is critical to understanding eukaryotic nuclear dynamics. Sp100 is a prototypical protein of ND10/PML nuclear bodies, which colocalizes with Daxx and the proto-oncogenic PML. Sp100 isoforms contain SAND, PHD, Bromo, and HMG domains and are highly sumoylated, all characteristics suggestive of a role in chromatin-mediated gene regulation. A role for Sp100 in oncogenesis has not been defined previously. Using selective Sp100 isoform-knockdown approaches, we show that normal human diploid fibroblasts with reduced Sp100 levels rapidly senesce. Subsequently, small rapidly dividing Sp100 minus cells emerge from the senescing fibroblasts and are found to be highly tumorigenic in nude mice. The derivation of these tumorigenic cells from the parental fibroblasts is confirmed by microsatellite analysis. The small rapidly dividing Sp100 minus cells now also lack ND10/PML bodies, and exhibit genomic instability and p53 cytoplasmic sequestration. They have also activated MYC, RAS, and TERT pathways and express mesenchymal to epithelial transdifferentiation (MET) markers. Reintroduction of expression of only the Sp100A isoform is sufficient to maintain senescence and to inhibit emergence of the highly tumorigenic cells. Global transcriptome studies, quantitative PCR, and protein studies, as well as immunolocalization studies during the course of the transformation, reveal that a transient expression of stem cell markers precedes the malignant transformation. These results identify a role for Sp100 as a tumor suppressor in addition to its role in maintaining ND10/PML bodies and in the epigenetic regulation of gene expression.

  20. Improved Transplanted Stem Cell Survival in a Polymer Gel Supplemented With Tenascin C Accelerates Healing and Reduces Scarring of Murine Skin Wounds.

    Science.gov (United States)

    Yates, Cecelia C; Nuschke, Austin; Rodrigues, Melanie; Whaley, Diana; Dechant, Jason J; Taylor, Donald P; Wells, Alan

    2017-01-24

    Mesenchymal stem cells (MSCs) remain of great interest in regenerative medicine because of their ability to home to sites of injury, differentiate into a variety of relevant lineages, and modulate inflammation and angiogenesis through paracrine activity. Many studies have found that despite the promise of MSC therapy, cell survival upon implant is highly limited and greatly reduces the therapeutic utility of MSCs. The matrikine tenascin C, a protein expressed often at the edges of a healing wound, contains unique EGF-like repeats that are able to bind EGFR at low affinities and induce downstream prosurvival signaling without inducing receptor internalization. In this study, we utilized tenascin C in a collagen/GAG-based polymer (TPolymer) that has been shown to be beneficial for skin wound healing, incorporating human MSCs into the polymer prior to application to mouse punch biopsy wound beds. We found that the TPolymer was able to promote MSC survival for 21 days in vivo, leading to associated improvements in wound healing such as dermal maturation and collagen content. This was most marked in a model of hypertrophic scarring, in which the scar formation was limited. This approach also reduced the inflammatory response in the wound bed, limiting CD3e+ cell invasion by approximately 50% in the early wound-healing process, while increasing the numbers of endothelial cells during the first week of wound healing as well. Ultimately, this matrikine-based approach to improving MSC survival may be of great use across a variety of cell therapies utilizing matrices as delivery vehicles for cells.

  1. Stem cell organization in Arabidopsis

    NARCIS (Netherlands)

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or mer

  2. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice.

    Science.gov (United States)

    Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F

    2015-12-01

    Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4.

  3. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  4. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  5. Efeitos de reguladores de crescimento na elongação do colmo de trigo = Effect of growth regulators on wheat stem elongation

    Directory of Open Access Journals (Sweden)

    Marcelo Curitiba Espindula

    2010-01-01

    Full Text Available Objetivou-se com este trabalho avaliar o efeito de doses e épocas deaplicação de três reguladores de crescimento na elongação do colmo de plantas de trigo. O experimento, conduzido em Viçosa, Estado de Minas Gerais, de maio a setembro de 2005, foi instalado com tratamentos em esquema fatorial e hierárquico com uma testemunha, no delineamento em blocos casualizados com quatro repetições. Os tratamentos foram 500; 1.000 e 1.500 g ha-1 de clormequat; 62,5; 125,0 e 187,5 g ha-1 detrinexapac-etil e 40; 80 e 120 g ha-1 de paclobutrazol, aplicados no estádio 6 ou 8 da escala Feeks e Large, e uma testemunha. O comprimento do colmo com trinexapac-etil foi menor do que com o clormequat, que, por sua vez, foi menor do que com o paclobutrazol. A aplicação de reguladores na época 1 promoveu maior redução dosentrenós basais, enquanto a aplicação na época 2 proporcionou maior influência no pedúnculo. O aumento das doses de clormequat e trinexapac-etil promoveu redução do comprimento do colmo e das partes que o formam. O aumento das doses de paclobutrazol promoveu respostas pouco expressivas no colmo e seus componentes.The objective of this work was to evaluate the effect of doses and times of application of three growth regulators on wheat stem elongation. The experiments were conducted in Viçosa, Minas Gerais State, from May to September 2005, in a factorial and hierarchicalrandomized block design with four repetitions and a control treatment. Treatments consisted of 500, 1000 and 1500 g ha-1 of chlormequat; 62.5, 125.0 and 187.5 g ha-1 of trinexapac-ethyl and 40, 80 and 120 g ha-1 of paclobutrazol, applied either at the 6 or 8stage of the Feeks and Large scale, with a control. Stem length with trinexapac-ethyl was smaller than with chlormequat, which was in its turn smaller than with paclobutrazol. Application of growth regulators at stage 1 produced shorter basal internodes, whereas the stage 2 application caused greater reduction

  6. Human CD34+ CD133+ hematopoietic stem cells cultured with growth factors including Angptl5 efficiently engraft adult NOD-SCID Il2rγ-/- (NSG mice.

    Directory of Open Access Journals (Sweden)

    Adam C Drake

    Full Text Available Increasing demand for human hematopoietic stem cells (HSCs in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34(+ CD133(+ cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg(-/- (NSG mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34(+ CD133(+ fraction of expanded cells and that CD34(+ CD133(+ cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.

  7. Growth and Development Symposium: Development, characterization, and use of a porcine epiblast-derived liver stem cell line: ARS-PICM-19.

    Science.gov (United States)

    Talbot, N C; Caperna, T J; Garrett, W M

    2013-01-01

    Totipotent embryonic stem cell lines have not been established from ungulates; however, we have developed a somatic stem cell line from the in vitro culture of pig epiblast cells. The cell line, ARS-PICM-19, was isolated via colony cloning and was found to spontaneously differentiate into hepatic parenchymal epithelial cell types, namely hepatocytes and bile duct cells. Hepatocytes form as monolayers and bile duct cells as 3-dimensional bile ductules. Transmission electron microscopy revealed that the ductules were composed of radially arranged, monociliated cells with their cilia projecting into the lumen of the ductule whereas hepatocytes were arranged in monolayers with lateral canalicular structures containing numerous microvilli and connected by tight junctions and desmosomes. Extensive Golgi and rough endoplasmic reticulum networks were also present, indicative of active protein synthesis. Analysis of conditioned medium by 2-dimensional electrophoresis and mass spectrometry indicated a spectrum of serum-protein secretion by the hepatocytes. The PICM-19 cell line maintains a range of inducible cytochrome P450 activities and, most notably, is the only nontransformed cell line that synthesizes urea in response to ammonia challenge. The PICM-19 cell line has been used for several biomedical- and agricultural-related purposes, such as the in vitro replication of hepatitis E virus, a zoonotic virus of pigs, and a spaceflight experiment to evaluate somatic stem cell differentiation and liver cell function in microgravity. The cell line was also evaluated as a platform for toxicity testing and has been used in a commercial artificial liver rescue device bioreactor. A PICM-19 subclone, PICM-19H, which only differentiates into hepatocytes, was isolated and methods are currently under development to grow PICM-19 cells without feeder cells. Feeder-cell-independent growth will facilitate the study of mesenchymal-parenchymal interactions that influence the divergent

  8. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    DEFF Research Database (Denmark)

    Hamerlik, Petra; Lathia, Justin D; Rasmussen, Rikke;

    2012-01-01

    glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2-Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF-VEGFR2-NRP1......, which is associated with VEGFR2-NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions...

  9. Prenylated flavonoids from the stems and leaves of Desmodium caudatum and evaluation of their inhibitory activity against the film-forming growth of Zygosaccharomyces rouxii F51.

    Science.gov (United States)

    Sasaki, Hisako; Shibata, Hirofumi; Imabayashi, Kiyoshi; Takaishi, Yoshihisa; Kashiwada, Yoshiki

    2014-07-09

    In order to provide scientific evidence for the relationship between the traditional usage, stems and leaves of Desmodium caudatum being used for protecting miso from spoilage, and its Japanese name (miso-naoshi), phytochemical study on the stems and leaves of this plant was carried out. Seven new prenylated flavonoids (1-3, 15-18), together with 19 known compounds (4-14, 19-26), were isolated, and the structures of new compounds were elucidated by extensive spectroscopic analyses. The minimum inhibitory concentrations (MICs) of 28 flavonoids, including 17 compounds (1, 2, 4, 5, 7-14, 20-22, 24, 25) isolated in this study and 11 flavonoids (27-37) previously isolated from the roots of this plant, against the film-forming yeast of Zygosaccharomyces rouxii F51 were determined. Fifteen compounds (2, 4, 5, 11, 12, 14, 21, 22, 25, 27, 28, 32-35) inhibited the film-forming growth of Z. rouxii F51 (MIC values, 7.8-62.5 μg/mL), among which 2",2"-dimethylpyran-(5",6":7,8)-5,2'-dihydroxy-4'-methoxy-(2R,3R)-dihydroflavonol (11) demonstrated potent inhibitory activity with an MIC value of 7.8 μg/mL.

  10. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yoon Hee [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Gupta, Mukesh Kumar, E-mail: goops@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Oh, Shin Hye [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of)

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  11. Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerillii are two distinct cell populations

    Directory of Open Access Journals (Sweden)

    Rebscher Nicole

    2012-04-01

    Full Text Available Abstract Background In the polychaete Platynereis, the primordial germ cells (PGCs emerge from the vasa, piwi, and PL10 expressing mesodermal posterior growth zone (MPGZ at the end of larval development, suggesting a post-embryonic formation from stem cells. Methods In order to verify this hypothesis, embryos and larvae were pulse labeled with the proliferation marker 5-ethynyl-2'-deoxyuridine (EdU at different stages of development. Subsequently, the PGCs were visualized in 7-day-old young worms using antibodies against the Vasa protein. Results Surprisingly, the primordial germ cells of Platynereis incorporate EdU only shortly before gastrulation (6-8 hours post fertilization (hpf, which coincides with the emergence of four small blastomeres from the mesoblast lineage. We conclude that these so-called 'secondary mesoblast cells' constitute the definitive PGCs in Platynereis. In contrast, the cells of the MPGZ incorporate EdU only from the pre-trochophore stage onward (14 hpf. Conclusion While PGCs and the cells of the MPGZ in Platynereis are indistinguishable in morphology and both express the germline markers vasa, nanos, and piwi, a distinct cluster of PGCs is detectable anterior of the MPGZ following EdU pulse-labeling. Indeed the PGCs form independently from the stem cells of the MPGZ prior to gastrulation. Our data suggest an early PGC formation in the polychaete by preformation rather than by epigenesis.

  12. Cosmic particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano; Perri, Silvia [Universita della Calabria, Dipartimento di Fisica, 87036 Rende (Italy)

    2014-07-01

    The most popular mechanism for the acceleration of cosmic rays, which is thought to operate in supernova remnant shocks as well as at heliospheric shocks, is the diffusive shock acceleration, which is a Fermi mechanism based on normal diffusion. On the other hand, in the last few years it has been shown that the transport of plasma particles in the presence of electric and magnetic turbulence can be superdiffusive rather than normal diffusive. The term 'superdiffusive' refers to the mean square displacement of particle positions growing superlinearly with time, as compared to the normal linear growth. In particular, superdiffusion is characterized by a non Gaussian statistical process called Levy random walk. We show how diffusive shock acceleration is modified by superdiffusion, and how this yields new predictions for the cosmic ray spectral index, for the acceleration time, and for the spatial profile of energetic particles. A comparison with observations of particle acceleration at heliospheric shocks and at supernova remnant shocks is done. We discuss how superdiffusive shock acceleration allows to explain the observations of hard ion spectra at the solar wind termination shock detected by Voyager 2, of hard radio spectra due to synchrotron emission of electrons accelerated at supernova remnant shocks, and how it can help to explain the observations of 'thin rims' in the X-ray synchrotron emission.

  13. Bone Marrow Stem Cells Response to Collagen/Single-Wall Carbon Nanotubes-COOHs Nanocomposite Films with Transforming Growth Factor Beta 1.

    Science.gov (United States)

    Wang, Jianhua; He, Chaolong; Cheng, Niangmei; Yang, Qiu; Chen, Mingmao; You, Lijun; Zhang, Qiqing

    2015-07-01

    Single-wall carbon nanotubes (SWNTs) have attractive biochemical properties such as strong cell adhesion and protein absorption, which are very useful for a cell cultivation scaffold. In this study, collagen/SWNT-COOHs nanocomposite films composed of regenerated fish collagen and SWNT-COOHs (0, 0.5, 1.0 and 2.0 weight percent) were prepared by mixing solubilized pepsin-soluble collagen with solutions of SWNT-COOHs. Morphological observation by SEM indicated the homogenous dispersion of SWNT-COOHs in the collagen matrix. The application of FTIR confirmed that the process we applied to prepare the composites did not destroy the native structures of collagen and composites were crosslinked by D-ribose. The biocompatibility was evaluated in vitro using SD rat bone marrow stem cells (BMSCs). Compared with films without transforming growth factor beta 1 (TGF-β1), films with TGF-β1 had superior performance on promotion of cell growth. Compared with pure collagen film with TGF-β1, SWNT-containing films might promote cellular functions by adsorbing more growth factors. In conclusion, the study suggested that the collagen/SWNT-COOHs nanocomposite films with TGF-β1 were expected to be useful scaffolds in cartilage tissue engineering.

  14. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    Science.gov (United States)

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  15. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Markus D. Schofer

    2009-01-01

    Full Text Available Growth factors like bone morphogenetic protein 2 (BMP-2 and vascular endothelial growth factor (VEGF play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid (PLLA nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers.

  16. [Time lag characteristics of stem sap flow of common tree species during their growth season in Beijing downtown].

    Science.gov (United States)

    Wang, Hua; Ouyang, Zhi-yun; Zheng, Hua; Wang, Xiao-ke; Ni, Yong-ming; Ren, Yu-fen

    2009-09-01

    From April to September in 2008, the stem sap flow velocity (Js) of several common tree species (Ginkgo biloba, Aesculus chinensis, Magnolia denudata, Robinia pseudoacacia, Pinus tabulaeformis and Cedrus deodara) in Beijing was measured by thermal dissipation method. Crosscorrelation analysis was used to estimate the time lag between the stem sap flow and the driving factors of canopy transpiration among the tree species. The Js of the six tree species was significantly correlated with the total radiation (Rs) and vapor pressure deficit (D), and the Js was lagged behind Rs but ahead of D. The maximum correlation coefficient of Js with Rs (0.74-0.93) was often higher than that of Js with D (0.57-0.79), indicating that the diurnal Js was more dependent on Rs than on D. The sampled tree species except P. tabulaeformis had a shorter time lag of Js with Rs (10-70 min) than with D (47-130 min), and there existed significant differences among R. pseudoacacia, P. tabulaeformis, and C. deodara. The time lag between the Js and the driving factors of canopy transpiration was mainly correlated with the tree features (DBH, tree height, canopy area, and sapwood area) and the nocturnal water recharge, regardless of tree species.

  17. Equine Adipose-Derived Mesenchymal Stem Cells: Phenotype and Growth Characteristics, Gene Expression Profile and Differentiation Potentials

    Directory of Open Access Journals (Sweden)

    Faezeh Alipour

    2015-01-01

    Full Text Available Objective: Because of the therapeutic application of stem cells (SCs, isolation and characterization of different types of SCs, especially mesenchymal stem cells (MSCs, have gained considerable attention in recent studies. Adipose tissue is an abundant and accessible source of MSCs which can be used for tissue engineering and in particular for treatment of musculoskeletal disorders. This study was aimed to isolate and culture equine adipose-derived MSCs (AT-MSCs from little amounts of fat tissue samples and determine some of their biological characteristics. Materials and Methods: In this descriptive study, only 3-5 grams of fat tissue were collected from three crossbred mares. Immediately, cells were isolated by mechanical means and enzymatic digestion and were cultured in optimized conditions until passage 3 (P3. The cells at P3 were evaluated for proliferative capacities, expression of specific markers, and osteogenic, chondrogenic and adipogenic differentiation potentials. Results: Results showed that the isolated cells were plastic adherent with a fibroblast-like phenotype. AT-MSCs exhibited expression of mesenchymal cluster of differentiation (CD markers (CD29, CD44 and CD90 and not major histocompatibility complex II (MHC-II and CD34 (hematopoietic marker. Cellular differentiation assays demonstrated the chondrogenic, adipogenic and osteogenic potential of the isolated cells. Conclusion: Taken together, our findings reveal that equine MSCs can be obtained easily from little amounts of fat tissue which can be used in the future for regenerative purposes in veterinary medicine.

  18. Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Park, Eun Jung; Kim, Min Jung; Kim, Geon A; Rhee, Sang Ho; Lim, Sang Hyun; Kang, Sung Keun; Lee, Byeong Chun

    2014-12-01

    In several laboratory animals and humans, adipose tissue-derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming-related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4-year-old female miniature pig. The ASC expressed cell-surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation-inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.

  19. 英国中小企业加速器计划的经验与启示%The Experience and Enlightenment of the SMEs GrowthAccelerator Programme in UK

    Institute of Scientific and Technical Information of China (English)

    王茜; 王文涛; 李振兴

    2016-01-01

    英国的中小企业成长加速器计划以提升企业的可持续发展能力为切入点,对企业提供个性化、专业化的辅导,帮助企业制定发展战略、提高企业的各方面能力和增长潜力。该计划的实施取得了良好效果,评估表明,参与该计划的中小企业发展速度平均提升了四倍。本文对该计划的设立背景和资助理念、评审过程和资助方式以及实施过程进行了详细介绍,并分析提出相应建议。%The GrowthAccelerator programme provides personalized, professional counseling to SMEs, in order to improve all aspects of capacity and growth potential. The implementation of the scheme achieves good results. Formative evaluation of GrowthAccelerator shows that the average development speed of SMEs participate in the programme has increased 4 times. The paper analyzes the background and idea, evaluation process and funding approaches, and implementation of GrowthAccelerator programme, based on which some suggestions are proposed.

  20. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair.

    Science.gov (United States)

    Chatzinikolaidou, Maria; Rekstyte, Sima; Danilevicius, Paulius; Pontikoglou, Charalampos; Papadaki, Helen; Farsari, Maria; Vamvakaki, Maria

    2015-03-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2h after seeding, and up to several days, and a proliferation increase after 14 and 21days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell-material combination in bone tissue engineering.

  1. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  2. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  3. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  4. The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo.

    Science.gov (United States)

    Yu, Feng; Zhao, Jing; Hu, Yunhui; Zhou, Yang; Guo, Rong; Bai, Jingchao; Zhang, Sheng; Zhang, Huilai; Zhang, Jin

    2016-07-01

    Deregulation of the phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is common in breast cancer and is frequently associated with resistance to both traditional chemotherapy and targeted drugs. There is a growing body of evidence indicating that a small subpopulation of self-renewing cells, the so called cancer stem cells (CSC), are responsible for the growth of drug resistant secondary tumors. As many CSCs have upregulated the PI3K/Akt signalling pathway, preclinical and clinical studies are addressing the inhibition of this axis to target drug resistance. We evaluated the susceptibility of breast CSCs to NVP-BKM120 (BKM120), a new generation of PI3K-specific inhibitor, when used individually or in combination with trastuzumab or RAD001 both in vitro and in vivo. For this, a stem-like cell population (SC) was enriched from breast cancer cell lines after mammosphere cultures. We demonstrated that BKM120 inhibits growth, generation of drug-resistant derivatives and SC formation in a panel of four breast cancer cell lines: MCF-7, MDA-MB-231, SK-BR-3 and CAL51. Importantly, BKM120 inhibits the PI3K/Akt signalling pathway in SCs from these cell lines. When BKM120 was used in combination with trastuzumab, a targeted therapy to treat HER2-positive breast cancer, we found synergistic cell growth inhibition, generation of drug resistant cells as well as SC formation from SK-BR-3 cells. Importantly, SK-BR-3 xenograft-derived tumors showed marginal growth when the drug combination was used. We also found a similar synergistic anticancer effect of BKM120 in combination with RAD001, an mTOR inhibitor, when treating triple-negative breast cancer cells in vitro and in both MDA-MB-231 and CAL51- mouse xenografts. Moreover, mouse data indicate that these drug combinations are well tolerated and provide the proof-of-concept and rationale to initiate clinical trials in both HER2-positive and triple-negative breast cancer.

  5. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair

    Energy Technology Data Exchange (ETDEWEB)

    Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Rekstyte, Sima; Danilevicius, Paulius [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Pontikoglou, Charalampos; Papadaki, Helen [Hematology Laboratory, School of Medicine, University of Crete (Greece); Farsari, Maria [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Vamvakaki, Maria [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece)

    2015-03-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50 mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2 h after seeding, and up to several days, and a proliferation increase after 14 and 21 days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell–material combination in bone tissue engineering. - Graphical abstract: Scanning electron microscopy image depicting cell adhesion of bone marrow mesenchymal stem cells into a pore of a hybrid Direct Laser Writing

  6. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  7. Repair of spinal cord injury by neural stem cells transfected with brain-derived neurotrophic factor-green fluorescent protein in rats A double effect of stem cells and growth factors

    Institute of Scientific and Technical Information of China (English)

    Yansong Wang; Gang Lü

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)can significantly promote nerve regeneration and repair.High expression of the BDNF-green fluorescent protein(GFP)gene persists for a long time after transfection into neural stem cells.Nevertheless,little is known about the biological characteristics of BDNF-GFP modified nerve stem cells in vivo and their ability to induce BDNF expression or repair spinal cord injury.In the present study,we transplanted BDNF-GFP transgenic neural stem cells into a hemisection model of rats.Rats with BDNF-GFP stem cells exhibited significantly increased BDNF expression and better locomotor function compared with stem cells alone.Cellular therapy with BDNF-GFP transgenic stem cells can improve outcomes better than stem cells alone and may have therapeutic potential for spinal cord injury.

  8. Differential effects of bone morphogenetic protein-2 and transforming growth factor-β1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Bank, R.A.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2009-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-β1 (TGF-β1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with

  9. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells.

    Science.gov (United States)

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.

  10. YAP controls retinal stem cell DNA replication timing and genomic stability.

    Science.gov (United States)

    Cabochette, Pauline; Vega-Lopez, Guillermo; Bitard, Juliette; Parain, Karine; Chemouny, Romain; Masson, Christel; Borday, Caroline; Hedderich, Marie; Henningfeld, Kristine A; Locker, Morgane; Bronchain, Odile; Perron, Muriel

    2015-09-22

    The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability.

  11. The targeted inhibitory effects of human amniotic fluid stem cells carrying CXCR4 promoter and DAL-1 on non-small cell lung carcinoma growth.

    Science.gov (United States)

    Li, L; Li, S; Cai, T; Wang, H; Xie, X; Liu, Z; Zhang, Y

    2016-02-01

    The differentially expressed in adenocarcinoma of the lung-1 (DAL-1) protein has been demonstrated to be suppressive to various types of tumors including lung cancer. This study aimed to determine the targeted effects of human amniotic fluid stem cells (hAFS cells) carrying CXCR4 promoter driven conditionally replicable adenovirus vector overexpressing DAL-1 (Ad-CXCR4-DAL-1) on non-small cell lung carcinoma (NSCLC) growth. The apoptotic effects of virus vectors were assessed using flow cytometry, and the cytotoxicity analyzed by CCK-8 assay. In vivo imaging system was used to determine the homing capability of hAFS cells. A549 cell xenograft mouse model was created to assess the in vivo effect of DAL-1 overexpression on NSCLC growth. We found that infection of Ad-CXCR4-DAL-1 increased the apoptosis of A549 NSCLC cells but not 16HBE normal human bronchial epithelial cells. Ad-CXCR4-DAL-1 administered via intratumoral injection led to significant reduced growth and greater necrosis of A549 xenograft tumors comparing to null vector treated animals. When infused via tail vein, hAFS cells carrying Ad-CXCR4-DAL-1 homed to lung cancer xenografts, caused virus replication and DAL-1 overexpression, and led to significant lower growth and greater necrosis of A549 cell xenografts comparing to non-treatment control. In conclusion, hAFS cells are capable of carrying Ad-CXCR4-DAL-1 vectors, specifically targeting to lung cancer, and causing oncolytic effects when administered in vivo.

  12. Cross-talk between the epidermal growth factor-like repeats/fibronectin 6-8 repeats domains of Tenascin-R and microglia modulates neural stem/progenitor cell proliferation and differentiation.

    Science.gov (United States)

    Liao, Hong; Huang, Wenhui; Niu, Rui; Sun, Lixin; Zhang, Luyong

    2008-01-01

    Mounting evidence has demonstrated that the microenvironment of stem/progenitor cells plays an important role in their proliferation and commitment to their fate. However, it remains unclear how all elements, such as astrocytes, microglia, extracellular matrix molecules, soluble factors, and their cross-talk interactions in the microenvironments, affect neural stem/progenitor cell fate. This work explored the influences of cross-talk between Tenascin-R (TN-R) and microglia on neural stem/progenitor cell proliferation and differentiation. Our results show that microglia triggered by TN-R distinct domains EGF-like repeats (EGFL) and fibronectin 6-8 repeats (FN6-8) significantly enhanced the proliferation of neural stem/progenitor cells and also obviously induced the differentiation into neurons but not oligodendrocytes. Neurite processes of neurons generated from neural progenitor cells were promoted by both EGFL and FN6-8 domains-activated microglia. Microglia triggered by EGFL and FN6-8 secreted brain-derived neurotrophic factor (BDNF) and transforming growth factor-beta (TGF-beta); interestingly, FN6-8 could activate microglia to secrete nerve growth factor in addition to BDNF and TGF-beta, but EGFL domain could not. All these data implied that the cross-talk between TN-R distinct domains EGFL/FN6-8 and microglia promoted neural stem/progenitor cell proliferation and induced their differentiation into neurons.

  13. Affordable Open-Source Data Loggers for Distributed Measurements of Sap-Flux, Stem Growth, Relative Humidity, Temperature, and Soil Water Content

    Science.gov (United States)

    Anderson, T.; Jencso, K. G.; Hoylman, Z. H.; Hu, J.

    2015-12-01

    Characterizing the mechanisms that lead to differences in forest ecosystem productivity across complex terrain remains a challenge. This difficulty can be partially attributed to the cost of installing networks of proprietary data loggers that monitor differences in the biophysical factors contributing to tree growth. Here, we describe the development and initial application of a network of open source data loggers. These data loggers are based on the Arduino platform, but were refined into a custom printed circuit board (PCB). This reduced the cost and complexity of the data loggers, which made them cheap to reproduce and reliable enough to withstand the harsh environmental conditions experienced in Ecohydrology studies. We demonstrate the utility of these loggers for high frequency, spatially-distributed measurements of sap-flux, stem growth, relative humidity, temperature, and soil water content across 36 landscape positions in the Lubrecht Experimental Forest, MT, USA. This new data logging technology made it possible to develop a spatially distributed monitoring network within the constraints of our research budget and may provide new insights into factors affecting forest productivity across complex terrain.

  14. Inhibition of the transcription factor Sp1 suppresses colon cancer stem cell growth and induces apoptosis in vitro and in nude mouse xenografts.

    Science.gov (United States)

    Zhao, Yingying; Zhang, Wenjing; Guo, Zheng; Ma, Feng; Wu, Yao; Bai, Yang; Gong, Wei; Chen, Ye; Cheng, Tianming; Zhi, Fachao; Zhang, Yali; Wang, Jide; Jiang, Bo

    2013-10-01

    The transcription factor specificity protein 1 (Sp1) plays a role in the development and progression of various types of human cancers, while cancer stem cells (CSCs) are important in cancer cell self-renewal, resistance to chemotherapy and metastatic potential. This study investigated the role of Sp1 in colon CSC growth and apoptosis. Colon CSCs were successfully enriched using special culture medium and identified by typical CSC gene expression. In a quiescent state, these CSCs formed spheres with slow proliferation; overexpressed Sp1, CD44, CD166 and CD133 proteins; upregulated mesenchymal markers; and a downregulated epithelial marker were noted. In ex vivo experiments, the Sp1 protein was expressed in 74.8% of colon cancer tissues, whereas it was expressed only in 42.2% of the distant normal colon mucosae. Furthermore, inhibition of SP1 expression using Sp1 siRNA or mithramycin A (MIT) led to marked suppression of CSC growth and induced apoptosis. In addition, the percentage of CD44+/CD166+ cells was significantly downregulated both in vivo and in vitro following Sp1 inhibition. In conclusion, Sp1 suppression attenuated the characteristics of colon CSCs. Thus, Sp1 inhibition may be potentially useful for the future development of a novel therapeutic strategy to control colon cancer.

  15. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  16. Differentiation of murine embryonic stem cells to thyrocytes requires insulin and insulin-like growth factor-1.

    Science.gov (United States)

    Arufe, Maria C; Lu, Min; Lin, Reigh-Yi

    2009-04-03

    The mechanisms controlling thyrocyte development during embryonic stem (ES) cell differentiation have only been partially elucidated, although previous studies have suggested the participation of thyroid stimulating hormone (TSH) in these processes. To further define the role of TSH in this context, we have studied a murine ES cell line in which green fluorescent protein (GFP) cDNA is targeted to the TSH receptor (TSHR) gene, linking the expression of GFP to the transcription of the endogenous TSHR gene. We demonstrate that, in the initial stages of embryoid body formation, activin A and TSH induce the differentiation of definitive endoderm and thyrocyte progenitors expressing Sox17, Foxa2, and TSHR. These thyrocyte progenitors are then converted into cellular aggregates that, in the presence of insulin and IGF-1, further differentiate into mature thyroglobulin-expressing thyrocytes. Our data suggest that, despite the fact that TSH is important for the induction and specification of thyrocytes from ES cells, insulin and IGF-1 are crucial for thyrocyte maturation. Our method provides a powerful in vitro differentiation model for studying the mechanisms of early thyrocyte lineage development.

  17. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    Science.gov (United States)

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  18. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues.

    Science.gov (United States)

    Kerscher, Petra; Turnbull, Irene C; Hodge, Alexander J; Kim, Joonyul; Seliktar, Dror; Easley, Christopher J; Costa, Kevin D; Lipke, Elizabeth A

    2016-03-01

    Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.

  19. Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness.

    Science.gov (United States)

    Lee, Jisoo; Kim, Yoo-Sun; Lee, JaeHwan; Heo, Seung Chul; Lee, Kook Lae; Choi, Sang-Woon; Kim, Yuri

    2016-07-21

    Walnut has been known for its health benefits, including anti-cardiovascular disease and anti-oxidative properties. However, there is limited evidence elucidating its effects on cancer stem cells (CSCs) which represent a small subset of cancer cells that provide resistance against chemotherapy. This study aimed to evaluate the anti-CSCs potential of walnut phenolic extract (WPE) and its bioactive compounds, including (+)-catechin, chlorogenic acid, ellagic acid, and gallic acid. In the present study, CD133⁺CD44⁺ cells were isolated from HCT116 cells using fluorescence-activated cell sorting (FACS) and then treated with WPE. As a result, survival of the CD133⁺CD44⁺ HCT116 cells was inhibited and cell differentiation was induced by WPE. In addition, WPE down-regulated the CSC markers, CD133, CD44, DLK1, and Notch1, as well as the β-catenin/p-GSK3β signaling pathway. WPE suppressed the self-renewal capacity of CSCs. Furthermore, the WPE exhibited stronger anti-CSC effects than its individual bioactive compounds. Finally, the WPE inhibited specific CSC markers in primary colon cancer cells isolated from primary colon tumor. These results suggest that WPE can suppress colon cancer by regulating the characteristics of colon CSCs.

  20. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury.

    Science.gov (United States)

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-02-12

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs.

  1. Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness

    Directory of Open Access Journals (Sweden)

    Jisoo Lee

    2016-07-01

    Full Text Available Walnut has been known for its health benefits, including anti-cardiovascular disease and anti-oxidative properties. However, there is limited evidence elucidating its effects on cancer stem cells (CSCs which represent a small subset of cancer cells that provide resistance against chemotherapy. This study aimed to evaluate the anti-CSCs potential of walnut phenolic extract (WPE and its bioactive compounds, including (+-catechin, chlorogenic acid, ellagic acid, and gallic acid. In the present study, CD133+CD44+ cells were isolated from HCT116 cells using fluorescence-activated cell sorting (FACS and then treated with WPE. As a result, survival of the CD133+CD44+ HCT116 cells was inhibited and cell differentiation was induced by WPE. In addition, WPE down-regulated the CSC markers, CD133, CD44, DLK1, and Notch1, as well as the β-catenin/p-GSK3β signaling pathway. WPE suppressed the self-renewal capacity of CSCs. Furthermore, the WPE exhibited stronger anti-CSC effects than its individual bioactive compounds. Finally, the WPE inhibited specific CSC markers in primary colon cancer cells isolated from primary colon tumor. These results suggest that WPE can suppress colon cancer by regulating the characteristics of colon CSCs.

  2. Winner of the Young Investigator Award of the Society for Biomaterials at the 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model.

    Science.gov (United States)

    Han, Li-Hsin; Conrad, Bogdan; Chung, Michael T; Deveza, Lorenzo; Jiang, Xinyi; Wang, Andrew; Butte, Manish J; Longaker, Michael T; Wan, Derrick; Yang, Fan

    2016-06-01

    Stem cell-based therapies hold great promise for enhancing tissue regeneration. However, the majority of cells die shortly after transplantation, which greatly diminishes the efficacy of stem cell-based therapies. Poor cell engraftment and survival remain a major bottleneck to fully exploiting the power of stem cells for regenerative medicine. Biomaterials such as hydrogels can serve as artificial matrices to protect cells during delivery and guide desirable cell fates. However, conventional hydrogels often lack macroporosity, which restricts cell proliferation and delays matrix deposition. Here we report the use of injectable, macroporous microribbon (μRB) hydrogels as stem cell carriers for bone repair, which supports direct cell encapsulation into a macroporous scaffold with rapid spreading. When transplanted in a critical-sized, mouse cranial defect model, μRB-based hydrogels significantly enhanced the survival of transplanted adipose-derived stromal cells (ADSCs) (81%) and enabled up to three-fold cell proliferation after 7 days. In contrast, conventional hydrogels only led to 27% cell survival, which continued to decrease over time. MicroCT imaging showed μRBs enhanced and accelerated mineralized bone repair compared to hydrogels (61% vs. 34% by week 6), and stem cells were required for bone repair to occur. These results suggest that paracrine signaling of transplanted stem cells are responsible for the observed bone repair, and enhancing cell survival and proliferation using μRBs further promoted the paracrine-signaling effects of ADSCs for stimulating endogenous bone repair. We envision μRB-based scaffolds can be broadly useful as a novel scaffold for enhancing stem cell survival and regeneration of other tissue types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1321-1331, 2016.

  3. MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5.

    Science.gov (United States)

    Wang, Jue; Huang, Weicong; Wu, Yihe; Hou, Jianfeng; Nie, Yu; Gu, Haiyong; Li, Jun; Hu, Shengshou; Zhang, Hao

    2012-09-01

    The enhanced proliferation of mesenchymal stem cells (MSCs) can be helpful for the clinical translation of cell therapy. Low-level laser irradiation (LLLI) has been demonstrated as regulating MSC proliferation. MicroRNAs (miRNAs) are involved in various pathophysiologic processes in stem cells, but the role of miRNAs in the LLLI-based promotion of MSC proliferation remains unclear. We found that the proliferation level and cell cycle-associated genes in MSCs were increased after LLLI treatment in a time-dependent manner. Microarray assays revealed subsets of miRNAs to be differentially regulated, and these dynamic changes were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) after LLLI. miR-193 was the most highly up-regulated miRNA, and the change in it was related with the proliferation level. Gain-loss function experiments demonstrated that miR-193 could regulate the proliferation of MSCs, including human's and rat's, but could not affect the apoptosis and differentiation level. Blockade of miR-193 repressed the MSC proliferation induced by LLLI. By qRT-PCR, we found that miR-193, in particular, regulated cyclin-dependent kinase 2 (CDK2) expression. Bioinformatic analyses and luciferase reporter assays revealed that inhibitor of growth family, member 5 (ING5) could be the best target of miR-193 to functionally regulate proliferation and CDK2 activity, and the mRNA and protein level of ING5 was regulated by miR-193. Furthermore, the ING5 inhibited by small interfering RNA (siRNA) could up-regulate the proliferation of MSCs and the expression of CDK2. Taken together, these results strongly suggest that miR-193 plays a critical part in MSC proliferation in response to LLLI stimulation, which is potentially amenable to therapeutic manipulation for clinical application.

  4. Ecophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest: growth, gas exchange, architecture and stem biomechanics.

    Science.gov (United States)

    Cordero, Roberto A.

    1999-03-01

    The hypothesis that the short, stunted development of elfin cloud forest trees is influenced by strong winds was tested by studying growth, gas exchange and biomechanics of potted saplings of Cecropia schreberiana Miq. ex. C. peltata L. (Cecropiaceae) exposed to two natural wind regimes (exposed and protected) at high elevation sites in the Luquillo Experimental Forest, Puerto Rico. The wind-exposure treatment produced several thigmomorphogenetic responses, including reductions in plant stature and crown area, changes in allocation patterns, and increased root to shoot ratio, leaf abrasion and leaf epinasty. Wind-exposure decreased maximum photosynthetic rate and respiration on an area basis, but not on a leaf-mass basis. Wind-exposed plants had lower apparent quantum yields, and higher light compensation points than wind-protected plants. Photosynthetic nitrogen-use efficiency was lower in wind-exposed plants, but such plants had higher leaf nitrogen concentration than wind-protected plants. There were no effects of treatments on stomatal conductance, transpiration rate and water-use efficiency. Stems of wind-exposed plants had lower second moment of area, apparent modulus of elasticity, flexural stiffness and stem density, but higher water content than wind-protected plants. Tissue-density-specific stiffness and the calculated critical height were not affected by the treatments. Wind-exposed plants were biomechanically less predisposed to bending and failing under their own weight than wind-protected plants because their safety factors were smaller, indicating that maintenance of an ontogenetically less developed structure enables plants to cope with wind loading. Windward trees showed a lower scaling component of the allometric relationship between diameter and height than leeward trees.

  5. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Shuai Wu

    Full Text Available Several studies suggest that mesenchymal stem cells (MSCs possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication.

  6. Impact of soil drainage to the radial stem growth of Norway spruce (Picea Abies L. Karst. in peatland forests

    Directory of Open Access Journals (Sweden)

    Klempířová Barbora

    2013-12-01

    Full Text Available Peatland Norway spruce (Picea abies L. Karst. forests represent very valuable ecosystems with considerable importance for nature conservation. However, a lot of peatland forests have been drained or used for opencast mining of peat. Since dendrochronological and dendroecological studies on trees growing on peatlands in Europe are not many, this study aimed to reconstruct the impact of drainage to the growth of trees in forest stands older than 100 years in the moment of drainage. Dendrochronological analysis was performed on two 0.25-ha square sampling plots (50*50 m in two pre-selected stands (control site vs. drained site with similar natural conditions and age. The mean-value functions of the ring indices, comparing the drained site with the control site, in the period after 1940 revealed very similar radial-growth trends. After the year 1992, when one site was substantially drained, the radial-growth trends not showed any significant change. Likewise, the result of the independent two sample t-test for the period after 1992 has not revealed any substantial statistically important difference in the mean index between the control site and the drained site.

  7. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration.

    Directory of Open Access Journals (Sweden)

    Alice Neal

    Full Text Available Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration.

  8. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a guinea pig model of acoustic trauma

    Directory of Open Access Journals (Sweden)

    Anna Rita Fetoni

    2014-10-01

    Full Text Available Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Several evidences indicate adipose-derived stem cells (ASCs as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features.This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASC transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASC implantation.These results indicate that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantantion, providing an original proof of principle, which could pave the way for further developments of ASC

  9. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille Univer