WorldWideScience

Sample records for accelerated fractionation radiotherapy

  1. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Rune, E-mail: rune333@gmail.com [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Claesson, Magnus [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Stangerup, Sven-Eric [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Roed, Henrik [Department of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark); Christensen, Ib Jarle [Finsen Laboratory, Rigshospitalet, Copenhagen (Denmark); Caye-Thomasen, Per [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Juhler, Marianne [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark)

    2012-08-01

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a 'wait-and-scan' group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  2. Fractionated stereotactic radiotherapy of vestibular schwannomas accelerates hearing loss

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Claesson, Magnus; Stangerup, Sven-Eric;

    2012-01-01

    To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hear...

  3. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Stiebel-Kalish, Hadas, E-mail: kalishhadas@gmail.com [Neuro-Ophthalmology Unit, Rabin Medical Center, Petah Tikva (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Reich, Ehud [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Ophthalmology, Rabin Medical Center, Petah Tikva (Israel); Gal, Lior [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Rappaport, Zvi Harry [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Neurosurgery, Rabin Medical Center, Petah Tikva (Israel); Nissim, Ouzi [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel); Pfeffer, Raphael [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Spiegelmann, Roberto [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel)

    2012-02-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  4. Prospective randomized trial to compare accelerated (six fractions a week radiotherapy against concurrent chemoradiotherapy (using conventional fractionation in locally advanced head and neck cancers

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2015-01-01

    Full Text Available Background: Concurrent chemoradiation (CCRT is currently considered to be the standard of care in locally advanced head and neck cancer. The optimum radiotherapy schedule for best local control and acceptable toxicity is not yet clear. We aimed at shortening of treatment time by using accelerated radiation, thereby comparing the disease response, loco-regional tumor control and tolerability of accelerated radiation (six fractions per week against CCRT in locally advanced head and neck cancer. Materials and Methods: We conducted the prospective randomized study for a period of 2 years from June 2011 to May 2013 in 133 untreated patients of histologically confirmed squamous cell carcinoma of head and neck. Study group (66 patients received accelerated radiotherapy with 6 fractions per week (66Gy/33#/5½ weeks. Control group (67 patients received CCRT with 5 fractions per week radiation (66 Gy/33#/6½ weeks along with intravenous cisplatin 30 mg/m 2 weekly. Tumor control, survival, acute and late toxicities were assessed. Results: Median overall treatment time was 38 days and 45 days in the accelerated radiotherapy and concurrent chemoradiation arm, respectively. At a median follow up of 12 months, 41 patients (62.1% in the accelerated radiotherapy arm and 47 patients (70.1% in the CCRT arm were disease free (P = 0.402. Local disease control was comparable in both the arms. Acute toxicities were significantly higher in the CCRT arm as compared with accelerated radiotherapy arm. There was no difference in late toxicities between the two arms. Conclusion: We can achieve, same or near to the same local control, with lower toxicities with accelerated six fractions per week radiation compared with CCRT especially for Indian population.

  5. Can pure accelerated radiotherapy given as six fractions weekly be an option in locally advanced carcinoma cervix: Results of a prospective randomized phase III trial

    Directory of Open Access Journals (Sweden)

    Mukesh Sharma

    2016-01-01

    Conclusions: Accelerated radiotherapy given as six fractions per week is an effective alternative to concomitant chemoradiation in locally advanced carcinoma cervix and has shown lesser toxicities in our study.

  6. Nelson's syndrome: single centre experience using the linear accelerator (LINAC) for stereotactic radiosurgery and fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Wilson, Peter J; Williams, Janet R; Smee, Robert I

    2014-09-01

    Nelson's syndrome is a unique clinical phenomenon of growth of a pituitary adenoma following bilateral adrenalectomies for the control of Cushing's disease. Primary management is surgical, with limited effective medical therapies available. We report our own institution's series of this pathology managed with radiation: prior to 1990, 12 patients were managed with conventional radiotherapy, and between 1990 and 2007, five patients underwent stereotactic radiosurgery (SRS) and two patients fractionated stereotactic radiotherapy (FSRT), both using the linear accelerator (LINAC). Tumour control was equivocal, with two of the five SRS patients having a reduction in tumour volume, one patient remaining unchanged, and two patients having an increase in volume. In the FSRT group, one patient had a decrease in tumour volume whilst the other had an increase in volume. Treatment related morbidity was low. Nelson's syndrome is a challenging clinical scenario, with a highly variable response to radiation in our series. PMID:24825407

  7. A Randomized Study of Accelerated Fractionation Radiotherapy with and Without Mitomycin C in the Treatment of Locally Advanced Head and Neck Cancer

    International Nuclear Information System (INIS)

    This single-institution study evaluates the feasibility of accelerated fractionation radiotherapy (AF) with and without mitomycin C (MMC) in thc treatment of locally advanced head and neck cancer. Patients and Methods: Between May 1998 and October 2001, sixty patients with locally advanced stage III and IV of head and neck cancer were randomized into three treatment arms: (I) conventional fractionation radiotherapy (CF) (5 fractions per week); (2) accelerated fractionation radiotherapy (AF) (6 fractions per week); and (3) AF plus Mitomycin C (MMC). The 2-year overall survival (OS) of the whole group was 21 %. The OS according to treatment arm was 23%, 20%. and 28% in CF. AF. and AF+MMC arms respectively (ρ<0. 19). The 2-year loco-regional control (LC) rate was 22% for the whole group of patients. The LC was 10%, 25%. and 30% for the CF, AF, and AF+MMC respectively (ρ=0.27). The only significant parameters for OS and LC were performance status and pre-treatment hemoglobin level. Mucositis grades 3 and 4 occurred in 70% and 90% of the patients in the AF and AF+MMC arm respectively compared to 55% of patients in the CF arm (ρ=0.04). However the addition of MMC did not significantly increase the incidence or severity of mucositis between AF and AF+MMC (ρ=0.13). Hematological toxicity grades 3 and 4 were significantly higher after MMC (occurred in 40% of patients versus 10% and 5% in CF and AF arms respectively, ρ=0.04). There was no statistically significant difference in the incidence of grade 3 dryness of mouth (ρ=0.06). fibrosis (ρ=0.6). or lymphoedema (ρ=0.39) among the three arms. There was a trend for improvement of LC and OS rates with the use or AF and the addition of MMC to AF compared to CF radiotherapy. although the difference was not statistically significant. The small number of the patients in each treatment arm and the inclusion or multiple tumor sites may contribute to these statistically insignificant results. Accordingly we advise to continue

  8. Three-year outcomes of a once daily fractionation scheme for accelerated partial breast irradiation (APBI) using 3-D conformal radiotherapy (3D-CRT)

    International Nuclear Information System (INIS)

    The aim of this study was to report 3-year outcomes of toxicity, cosmesis, and local control using a once daily fractionation scheme (49.95 Gy in 3.33 Gy once daily fractions) for accelerated partial breast irradiation (APBI) using three-dimensional conformal radiotherapy (3D-CRT). Between July 2008 and August 2010, women aged ≥40 years with ductal carcinoma in situ or node-negative invasive breast cancer ≤3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study. Women were treated with APBI using 3–5 photon beams, delivering 49.95 Gy over 15 once daily fractions over 3 weeks. Patients were assessed for toxicities, cosmesis, and local control rates before APBI and at specified time points. Thirty-four patients (mean age 60 years) with Tis 0 (n = 9) and T1N0 (n = 25) breast cancer were treated and followed up for an average of 39 months. Only 3% (1/34) patients experienced a grade 3 subcutaneous fibrosis and breast edema and 97% of the patients had good/excellent cosmetic outcome at 3 years. The 3-year rate of ipsilateral breast tumor recurrence (IBTR) was 0% while the rate of contralateral breast events was 6%. The 3-year disease-free survival (DFS), overall survival (OS), and breast cancer-specific survival (BCSS) was 94%, 100%, and 100%, respectively. Our novel accelerated partial breast fractionation scheme of 15 once daily fractions of 3.33 Gy (49.95 Gy total) is a remarkably well-tolerated regimen of 3D-CRT-based APBI. A larger cohort of patients is needed to further ascertain the toxicity of this accelerated partial breast regimen

  9. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study

    International Nuclear Information System (INIS)

    Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated

  10. A randomized study of accelerated fractionation radiotherapy with and without mitomycin C in the treatment of locally advanced head and neck cancer

    DEFF Research Database (Denmark)

    Ezzat, M.; Shouman, T.; Zaza, K.;

    2005-01-01

    in the incidence of grade 3 dryness of mouth (p=0.06), fibrosis (p=0.6), or lymphoedema (p=0.39) among the three arms. Conclusion: There was a trend for improvement of LC and OS rates with the use of AF and the addition of MMC to AF compared to CF radiotherapy, although the difference was not statistically....... Key Words: Head and Neck cancer , Radiotherapy , Altered fractionation , Mitomycin C....

  11. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: Evaluation of the randomised DAHANCA 6&7 trial

    DEFF Research Database (Denmark)

    Lassen, Pernille; Eriksen, Jesper Grau; Krogdahl, Annelise;

    2011-01-01

    BACKGROUND AND PURPOSE: Tumour HPV-positivity is a favourable prognostic factor in the radiotherapy of HNSCC, but the optimal radiotherapy regimen for HPV-positive HNSCC is not yet defined. Reducing overall treatment time is known to improve outcome in the radiotherapy of HNSCC as was also...... of radiotherapy. RESULTS: The significant and independent prognostic value of tumour p16-positivity in HNSCC radiotherapy was confirmed, with adjusted hazard ratios (HR) of 0.58 [0.43-0.78], 0.47 [0.33-0.67] and 0.54 [0.42-0.68] for loco-regional control, disease-specific and overall survival, respectively....... Accelerated radiotherapy significantly improved loco-regional tumour control compared to conventional radiotherapy, adjusted HR: 0.73 [0.59-0.92] and the benefit of the 6Fx/week regimen was observed both in p16-positive (HR: 0.56 [0.33-0.96]) as well as in p16-negative tumours (HR: 0.77 [0.60-0.99]). Disease...

  12. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: evaluation of the randomised DAHANCA 6&7 trial

    DEFF Research Database (Denmark)

    Lassen, Pernille; Eriksen, Jesper G; Krogdahl, Annelise;

    2011-01-01

    BACKGROUND AND PURPOSE: Tumour HPV-positivity is a favourable prognostic factor in the radiotherapy of HNSCC, but the optimal radiotherapy regimen for HPV-positive HNSCC is not yet defined. Reducing overall treatment time is known to improve outcome in the radiotherapy of HNSCC as was also...... of radiotherapy. RESULTS: The significant and independent prognostic value of tumour p16-positivity in HNSCC radiotherapy was confirmed, with adjusted hazard ratios (HR) of 0.58 [0.43-0.78], 0.47 [0.33-0.67] and 0.54 [0.42-0.68] for loco-regional control, disease-specific and overall survival, respectively....... Accelerated radiotherapy significantly improved loco-regional tumour control compared to conventional radiotherapy, adjusted HR: 0.73 [0.59-0.92] and the benefit of the 6Fx/week regimen was observed both in p16-positive (HR: 0.56 [0.33-0.96]) as well as in p16-negative tumours (HR: 0.77 [0.60-0.99]). Disease...

  13. Single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients: comparative effectiveness

    International Nuclear Information System (INIS)

    External beam radiotherapy (EBRT) is an effective treatment for symptomatic bone metastases from a variety of primary malignancies. Previous meta-analyses and systematic reviews have reported on the efficacy of EBRT on bone metastases from multiple primaries. This review is focused on the comparative effectiveness of single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients

  14. What next in fractionated radiotherapy

    International Nuclear Information System (INIS)

    Trends in models for predicting the total dose required to produce tolerable normal-tissue injury can be seen by the progression from the ''cube root law'', through Strandqvist's slope of 0.22, to NSD, TDF and CRE which have separate time and fraction number exponents, to even better approximations now available. The dose-response formulae that can be used to define the effect of fraction size (and number) include (1) the linear quadratic (LQ) model (2) the two-component (TC) multi-target model and (3) repair-misrepair models. The LQ model offers considerable convenience, requires only two parameters to be determined, and emphasizes the difference between late and early normal-tissue dependence on dose per fraction first shown by exponents greater than the NSD slope of 0.24. Exponents of overall time, e.g. Tsup(0.11), yield the wrong shape of time curve, suggesting that most proliferating occurs early, although it really occurs after a delay depending on the turnover time of the tissue. Improved clinical results are being sought by hyperfractionation, accelerated fractionation, or continuous low dose rate irradiation as in interstitial implants. (U.K.)

  15. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91-04

    International Nuclear Information System (INIS)

    Purpose: To evaluate neurocognitive outcome as measured by the Mini-Mental Status Examination (MMSE) among patients with unresectable brain metastases randomly assigned to accelerated fractionation (AF) vs. accelerated hyperfractionated (AH) whole-brain radiation therapy (WBRT). Methods and Materials: The Radiation Therapy Oncology Group (RTOG) accrued 445 patients with unresectable brain metastases to a Phase III comparison of AH (1.6 Gy b.i.d. to 54.4 Gy) vs. AF (3 Gy q.d. to 30 Gy). All had a KPS of ≥ 70 and a neurologic function status of 0-2. Three hundred fifty-nine patients had MMSEs performed and were eligible for this analysis. Changes in the MMSE were analyzed according to criteria previously defined in the literature. Results: The median survival was 4.5 months for both arms. The average change in MMSE at 2 and 3 months was a drop of 1.4 and 1.1, respectively, in the AF arm as compared to a drop of 0.7 and 1.3, respectively, in the AH arm (p=NS). Overall, 91 patients at 2 months and 23 patients at 3 months had both follow-up MMSE and computed tomography/magnetic resonance imaging documentation of the status of their brain metastases. When an analysis was performed taking into account control of brain metastases, a significant effect on MMSE was observed with time and associated proportional increase in uncontrolled brain metastases. At 2 months, the average change in MMSE score was a drop of 0.6 for those whose brain metastases were radiologically controlled as compared to a drop of 1.9 for those with uncontrolled brain metastases (p=0.47). At 3 months, the average change in MMSE score was a drop of 0.5 for those whose brain metastases were radiologically controlled as compared to a drop of 6.3 for those with uncontrolled brain metastases (p=0.02). Conclusion: Use of AH as compared to AF-WBRT was not associated with a significant difference in neurocognitive function as measured by MMSE in this patient population with unresectable brain metastases and

  16. Second Study of Hyper-Fractionated Radiotherapy

    Directory of Open Access Journals (Sweden)

    R. Jacob

    1999-01-01

    Full Text Available Purpose and Method. Hyper-fractionated radiotherapy for treatment of soft tissue sarcomas is designed to deliver a higher total dose of radiation without an increase in late normal tissue damage. In a previous study at the Royal Marsden Hospital, a total dose of 75 Gy using twice daily 1.25 Gy fractions resulted in a higher incidence of late damage than conventional radiotherapy using 2 Gy daily fractions treating to a total of 60 Gy. The current trial therefore used a lower dose per fraction of 1.2 Gy and lower total dose of 72 Gy, with 60 fractions given over a period of 6 weeks.

  17. Single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients: comparative effectiveness

    Directory of Open Access Journals (Sweden)

    Yoon F

    2014-11-01

    Full Text Available Frederick Yoon,1 Gerard C Morton2 1Simcoe Muskoka Regional Cancer Centre, Royal Victoria Regional Health Centre, Barrie, ON, Canada; 2Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada Abstract: External beam radiotherapy (EBRT is an effective treatment for symptomatic bone metastases from a variety of primary malignancies. Previous meta-analyses and systematic reviews have reported on the efficacy of EBRT on bone metastases from multiple primaries. This review is focused on the comparative effectiveness of single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients. Keywords: radiotherapy, bone, metastases, prostate, comparative effectiveness

  18. Dose escalation of accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in unresectable stage III non-small-cell lung cancer: a phase I trial

    International Nuclear Information System (INIS)

    Accelerated hypofractionated radiotherapy can shorten total treatment time and overcome the accelerated repopulation of tumour cells during radiotherapy. This therapeutic approach has demonstrated good efficacy in the treatment of locally advanced non-small-cell lung cancer (NSCLC). However, the optimal fractionation scheme remains uncertain. The purpose of this phase I trial was to explore the maximum tolerated dose (MTD) of accelerated hypofractionated three-dimensional conformal radiotherapy (3-DCRT) (at 3 Gy/fraction) administered in combination with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for unresectable stage III NSCLC. Previously untreated cases of unresectable stage III NSCLC received accelerated hypofractionated 3-DCRT, delivered at 3 Gy per fraction, once daily, with five fractions per week. The starting dose was 66 Gy and an increment of 3 Gy was utilized. Higher doses continued to be tested in patient groups until the emergence of dose-limiting toxicity (DLT). The MTD was regarded as the dose that was one step below the dose at which DLT occurred. Patients received at least one cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 13 patients were enrolled and progressed through three dose escalation groups: 66 Gy, 69 Gy, and 72 Gy. No treatment-related deaths occurred. The major adverse events included radiation oesophagitis, radiation pneumonitis, and neutropenia. Nausea, fatigue, and anorexia were commonly observed, although the magnitude of these events was typically relatively minor. Among the entire group, four instances of DLT were observed, including two cases of grade 3 radiation oesophagitis, one case of grade 3 radiation pneumonitis, and one case of grade 4 neutropenia. All of these cases of DLT occurred in the 72 Gy group. Therefore, 72 Gy was designated as the DLT dose level, and the lower dose of 69 Gy was regarded as the MTD. For unresectable stage III NSCLC 69 Gy (at 3 Gy/fraction) was

  19. Accelerated radiotherapy in advanced head and neck cancer

    International Nuclear Information System (INIS)

    The purpose of the study is to present the reasons for introducing concomitant boost accelerated radiotherapy (CBAR) and its practical aspects at advanced head and neck carcinomas (HNC). Accelerated clonogenic repopulation of the tumor during radiotherapy necessitates its termination within the shortest possible term. The differentiated effect of the fractionated dose on both early and late response of tissues requires the use of several smaller daily fractions with an interval between exceeding six hours during all the time of radiotherapy or a part of it. If there is no data about earlier kinetics of the tumor cells, schemes with total dose 69-72 Gy are given preference. The practical aspects of CBAR also are presented: 1. specificity of the clinical target volume (ICRU 50) considering the requirements for beam and fields; 2. irradiation techniques most frequently used and 3. the method of patient immobilization. The characteristic features of CBAR are also discussed: 1. The primary tumor and its subclinical diffusion are irradiated in standard fields or in such with exclusion of the spinal cord at dose up to 54 in 30 fractions for 5.5 weeks. During the first two days, two daily fractions at six-hours interval are delivered with partial exclusion of the spinal cord. The primary tumor is given during the last 2.5 weeks up to total dose 69-72 Gy with a second daily fraction of 1.5 Gy six hours after the first one; 2. The current concepts for spinal cord radiation tolerance and very high risk of transverse myelitis in some accelerated radiotherapeutical schemes are also discussed. The therapeutic approach described is based on the experience got from the conventional fractionation; 3. Without neglecting enhanced acute toxicity CBAR is recommended as a well tolerated radiotherapeutical method

  20. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy

    OpenAIRE

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-01-01

    Background Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the no...

  1. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis

    DEFF Research Database (Denmark)

    Bourhis, J.; Overgaard, Jens; Audry, H.;

    2006-01-01

    BACKGROUND: Several trials have studied the role of unconventional fractionated radiotherapy in head and neck squamous cell carcinoma, but the effect of such treatment on survival is not clear. The aim of this meta-analysis was to assess whether this type of radiotherapy could improve survival......-specified categories: hyperfractionated, accelerated, and accelerated with total dose reduction. FINDINGS: 15 trials with 6515 patients were included. The median follow-up was 6 years. Tumours sites were mostly oropharynx and larynx; 5221 (74%) patients had stage III-IV disease (International Union Against Cancer...... radiotherapy (2% with accelerated fractionation without total dose reduction and 1.7% with total dose reduction at 5 years, p=0.02). There was a benefit on locoregional control in favour of altered fractionation versus conventional radiotherapy (6.4% at 5 years; p<0.0001), which was particularly efficient in...

  2. Fractionated stereotactically guided radiotherapy for pharmacoresistant epilepsy

    International Nuclear Information System (INIS)

    Aim: This prospective study evaluated the efficiency of fractionated stereotactically guided radiotherapy as a treatment of pharmacoresistant temporal lobe epilepsy. Patients and Methods: Inclusion criteria were patients aged between 17 and 65 years with one-sided temporally located focus, without sufficient epilepsy control by, antiepileptic drugs or neurosurgery. Between 1997 and 1999, two groups of six patients each were treated with 21 Gy (7 times 3 Gy) and 30 Gy (15 times 2 Gy). Study end points were seizure frequency, intensity, seizure length and neuropsychological parameters. Results: All patients experienced a marked reduction in seizure frequency. The mean reduction of seizures was 37% (range 9-77%, i.e. seizures reduced from a monthly mean number of 11.75 to 7.52) at 18 months following radiation treatment and 46% (23-94%, i.e. 0.2-23 seizures per month) during the whole follow-up time. Seizure length was reduced in five out of eleven patients and intensity of seizures in seven out of eleven patients. Conclusion: Radiotherapy was identified as safe and effective for pharmacoresistant epilepsy since a very good reduction of seizure frequency was observed. It is no substitute for regular use of antiepileptic drugs, but means an appropriate alternative for patients with contraindication against neurosurgery or insufficient seizure reduction after neurosurgery. (orig.)

  3. Fractionated Stereotactic Radiotherapy for Facial Nerve Schwannomas.

    Science.gov (United States)

    Shi, Wenyin; Jain, Varsha; Kim, Hyun; Champ, Colin; Jain, Gaurav; Farrell, Christopher; Andrews, David W; Judy, Kevin; Liu, Haisong; Artz, Gregory; Werner-Wasik, Maria; Evans, James J

    2016-02-01

    Purpose Data on the clinical course of irradiated facial nerve schwannomas (FNS) are lacking. We evaluated fractionated stereotactic radiotherapy (FSRT) for FNS. Methods Eight consecutive patients with FNS treated at our institution between 1998 and 2011 were included. Patients were treated with FSRT to a median dose of 50.4 Gy (range: 46.8-54 Gy) in 1.8 or 2.0 Gy fractions. We report the radiographic response, symptom control, and toxicity associated with FSRT for FNS. Results The median follow-up time was 43 months (range: 10-75 months). All patients presented with symptoms including pain, tinnitus, facial asymmetry, diplopia, and hearing loss. The median tumor volume was 1.57 cc. On the most recent follow-up imaging, five patients were noted to have stable tumor size; three patients had a net reduction in tumor volume. Additionally, six patients had improvement in clinical symptoms, one patient had stable clinical findings, and one patient had worsened House-Brackmann grade due to cystic degeneration. Conclusion FSRT treatment of FNS results in excellent control of growth and symptoms with a small rate of radiation toxicity. Given the importance of maintaining facial nerve function, FSRT could be considered as a primary management modality for enlarging or symptomatic FNS. PMID:26949592

  4. Accelerator dynamics of a fractional kicked rotor

    OpenAIRE

    Iomin, A.

    2006-01-01

    It is shown that the Weyl fractional derivative can quantize an open system. A fractional kicked rotor is studied in the framework of the fractional Schrodinger equation. The system is described by the non-Hermitian Hamiltonian by virtue of the Weyl fractional derivative. Violation of space symmetry leads to acceleration of the orbital momentum. Quantum localization saturates this acceleration, such that the average value of the orbital momentum can be a direct current and the system behaves ...

  5. Immediate side effects of large fraction radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, S.; Hatton, M.Q.F.; Macbeth, F.R. [Glasgow Western Infirmary (United Kingdom)

    1997-09-01

    The use of hypofractionated radiotherapy regiments is becoming more widely recognized in the palliation of non-small cell lung carcinoma (NSCLC). Anecdoctal reports of chest pain, rigors and fevers in the hours that follow radiotherapy led us to perform a survey estimating the frequency and severity of these symptoms following treatment to the thorax. We conclude that patients receiving palliative radiotherapy for bronchial carcinoma often develop significant symptoms in the hours following treatment. The timing and duration suggest a relationship with the radiotherapy, and we feel that patients should be warned of the possible occurrence of these symptoms. (author).

  6. Treatment accuracy of fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: To assess the geometric accuracy of the delivery of fractionated stereotactic radiotherapy (FSRT) for brain tumours using the Gill-Thomas-Cosman (GTC) relocatable frame. Accuracy of treatment delivery was measured via portal images acquired with an amorphous silicon based electronic portal imager (EPI). Results were used to assess the existing verification process and to review the current margins used for the expansion of clinical target volume (CTV) to planning target volume (PTV). Patients and methods: Patients were immobilized in a GTC frame. Target volume definition was performed on localization CT and MRI scans and a CTV to PTV margin of 5 mm (based on initial experience) was introduced in 3D. A Brown-Roberts-Wells (BRW) fiducial system was used for stereotactic coordinate definition. The existing verification process consisted of an intercomparison of the coordinates of the isocentres and anatomy between the localization and verification CT scans. Treatment was delivered with 6 MV photons using four fixed non-coplanar conformal fields using a multi-leaf collimator. Portal imaging verification consisted of the acquisition of orthogonal images centred through the treatment isocentre. Digitally reconstructed radiographs (DRRs) created from the CT localization scans were used as reference images. Semi-automated matching software was used to quantify set up deviations (displacements and rotations) between reference and portal images. Results: One hundred and twenty six anterior and 123 lateral portal images were available for analysis for set up deviations. For displacements, the total errors in the cranial/caudal direction were shown to have the largest SD's of 1.2 mm, while systematic and random errors reached SD's of 1.0 and 0.7 mm, respectively, in the cranial/caudal direction. The corresponding data for rotational errors (the largest deviation was found in the sagittal plane) was 0.7 deg. SD (total error), 0.5 deg. (systematic) and 0

  7. Research on inter-fraction and intra-fraction motion of crystalline lens in radiotherapy

    Directory of Open Access Journals (Sweden)

    Shu-ming YANG

    2013-03-01

    Full Text Available Objective  To investigate the range of inter-fraction and intra-fraction motion of crystalline lens in radiotherapy. Methods  The CT and MRI images of 17 patients were registered, and the profile of crystalline lens was delineated to determine the respective center coordinates, thus simulating and analyzing inter-fraction and intra-fraction motion of lens in radiotherapy. Results  Both left and right lens moved in different degree during both inter-or intra-fraction phase. The range of lens movement was larger in inter-fraction than in intra-fraction phase in all directions. Conclusion  When radiotherapy is given in the free state, considering the distance of lens movement alone in inter-and intra-fraction and without considering the setup error, the lens planning organs at risk should increase 1.5mm outside the lens boundary.

  8. Local radiotherapeutic management of ependymomas with fractionated stereotactic radiotherapy (FSRT

    Directory of Open Access Journals (Sweden)

    Combs Stephanie E

    2006-09-01

    Full Text Available Abstract Background To assess the role of Fractionated Stereotactic Radiotherapy (FSRT in the management of ependymomas. Methods From January 1992 to July 2003, FSRT was performed in 19 patients with histologically confirmed ependymomas. The median age was 15 years, 5 patients were younger than 4 years of age. Twelve patients received FSRT as primary postoperative radiotherapy after surgical resection. In 6 patients irradiation of the posterior fossa was performed with a local boost to the tumor bed, and in 4 patients the tumor bed only was irradiated. In 7 patients FSRT was performed as re-irradiation for tumor progression. This patient group was analyzed separately. A median dose of 54 Gy was prescribed in a median fractionation of 5 × 1.8 Gy per week for primary RT using 6 MeV photons with a linear accelerator. For FSRT as re-irradiation, a median dose of 36 Gy was applied. All recurrent tumors were localized within the former RT-field. Results The 5- and 10-year overall survival rates were 77% and 64%, respectively. Patients treated with FSRT for primary irradiation showed an overall survival of 100% and 78% at 3 and 5 years after irradiation of the posterior fossa with a boost to the tumor bed, and a survival rate of 100% at 5 years with RT of the tumor bed only. After re-irradiation with FSRT, survival rates of 83% and 50% at 3-and 5 years, respectively, were obtained. Progression-free survival rates after primary RT as compared to re-irradiation were 64% and 60% at 5 years, respectively. FSRT was well tolerated by all patients and could be completed without interruptions due to side effects. No severe treatment related toxicity > CTC grade 2 for patients treated with FSRT could be observed. Conclusion The present analysis shows that FSRT is well tolerated and highly effective in the management of ependymal tumors. The rate of recurrences, especially at the field border, is not increased as compared to conventional radiotherapy consisting

  9. Challenges of Using High-Dose Fractionation Radiotherapy in Combination Therapy.

    Science.gov (United States)

    Yang, Ying-Chieh; Chiang, Chi-Shiun

    2016-01-01

    Radiotherapy is crucial and substantially contributes to multimodal cancer treatment. The combination of conventional fractionation radiotherapy (CFRT) and systemic therapy has been established as the standard treatment for many cancer types. With advances in linear accelerators and image-guided techniques, high-dose fractionation radiotherapy (HFRT) is increasingly introduced in cancer centers. Clinicians are currently integrating HFRT into multimodality treatment. The shift from CFRT to HFRT reveals different effects on the tumor microenvironment and responses, particularly the immune response. Furthermore, the combination of HFRT and drugs yields different results in different types of tumors or using different treatment schemes. We have reviewed clinical trials and preclinical evidence on the combination of HFRT with drugs, such as chemotherapy, targeted therapy, and immune therapy. Notably, HFRT apparently enhances tumor cell killing and antigen presentation, thus providing opportunities and challenges in treating cancer. PMID:27446811

  10. Dosimetric effect of intra-fractional and inter-fractional target motion in lung cancer radiotherapy techniques

    Directory of Open Access Journals (Sweden)

    Teerthraj Verma

    2015-12-01

    Full Text Available Purpose: The purpose of present study was to experimentally evaluate the dosimetric uncertainties in 3-dimensional conformal radiotherapy (3DCRT, dynamic intensity modulated radiotherapy (D-IMRT, step-shoot (SS-IMRT, and volumetric modulated arc therapy (VMAT treatment delivery techniques due to intra- and inter-fractional target motion. Methods: A previously treated lung patient was selected for this study and was replanned for 60 Gy in 30 fractions using four techniques (3DCRT, D-IMRT, SS-IMRT, and VMAT. These plans were delivered in a clinical linear accelerator equipped with HexaPOD™ evo RT System. The target dose of static QUASAR phantom was calculated that served as reference dose to the target. The QUASAR respiratory body phantom along with patients breathing wave form and HexaPOD™ evo RT System was used to simulate the intra-fraction and inter-fraction motions. Dose measurements were done by applying the intra-fractional and inter-fractional motions in all the four treatment delivery techniques.Results: The maximum percentage deviation in a single field was -4.3%, 10.4%, and -12.2% for 3DCRT, D-IMRT and SS-IMRT deliveries, respectively. Similarly, the deviation for a single fraction was -1.51%, -1.88%, -2.22%, and -3.03% for 3DCRT, D-IMRT, SS-IMRT and VMAT deliveries, respectively. Conclusion: The impact of inter-fractional and intra-fractional uncertainties calculated as deviation between dynamic and static condition dose was large in some fractions, however average deviation calculated for thirty fractions was well within 0.5% in all the four techniques. Therefore, inter- and intra-fractional uncertainties could be concern in fewer fraction treatments such as stereotactic body radiation therapy, and should be used in conjunction with intra- and inter-fractional motion management techniques.

  11. Fractionated stereotactic radiotherapy in the treatment of pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, C.; Theodorou, M.; Poullos, N.; Astner, S.T.; Geinitz, H.; Molls, M. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie; Stalla, G.K. [Max-Planck-Institut fuer Psychiatrie, Muenchen (Germany). Klinische Neuroendokrinologie; Meyer, B. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Neurochirurgische Klinik und Poliklinik; Nieder, C. [Nordland Hospital, Bodoe (Norway). Dept. of Oncology and Palliative Medicine; Tromsoe Univ. (Norway). Inst. of Clinical Medicine; Grosu, A.L [Freiburg Univ. (Germany). Klinik fuer Strahlenheilkunde

    2013-11-15

    Purpose: The purpose of this work was to evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent pituitary adenomas. Patients and methods: We report on 37 consecutive patients with pituitary adenomas treated with FSRT at our department. All patients had previously undergone surgery. Twenty-nine patients had nonfunctioning, 8 had hormone-producing adenoma. The mean total dose delivered by a linear accelerator was 49.4 Gy (range 45-52.2 Gy), 5 x 1.8 Gy weekly. The mean PTV was 22.8 ccm (range 2.0-78.3 ccm). Evaluation included serial imaging tests, endocrinologic and ophthalmologic examination. Results: Tumor control was 91.9 % for a median follow-up time of 57 months (range 2-111 months). Before FSRT partial hypopituitarism was present in 41 % of patients, while 35 % had anterior panhypopituitarism. After FSRT pituitary function remained normal in 22 %, 43 % had partial pituitary dysfunction, and 35 % had anterior panhypopituitarism. Visual acuity was stable in 76 % of patients, improved in 19 %, and deteriorated in 5 %. Visual fields remained stable in 35 patients (95 %), improved in one and worsened in 1 patient (2.7 %). Conclusion: FSRT is an effective and safe treatment for recurrent or residual pituitary adenoma. Good local tumor control and preservation of adjacent structures can be reached, even for large tumors. (orig.)

  12. Fractionated stereotactic radiotherapy in the treatment of pituitary adenomas

    International Nuclear Information System (INIS)

    Purpose: The purpose of this work was to evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent pituitary adenomas. Patients and methods: We report on 37 consecutive patients with pituitary adenomas treated with FSRT at our department. All patients had previously undergone surgery. Twenty-nine patients had nonfunctioning, 8 had hormone-producing adenoma. The mean total dose delivered by a linear accelerator was 49.4 Gy (range 45-52.2 Gy), 5 x 1.8 Gy weekly. The mean PTV was 22.8 ccm (range 2.0-78.3 ccm). Evaluation included serial imaging tests, endocrinologic and ophthalmologic examination. Results: Tumor control was 91.9 % for a median follow-up time of 57 months (range 2-111 months). Before FSRT partial hypopituitarism was present in 41 % of patients, while 35 % had anterior panhypopituitarism. After FSRT pituitary function remained normal in 22 %, 43 % had partial pituitary dysfunction, and 35 % had anterior panhypopituitarism. Visual acuity was stable in 76 % of patients, improved in 19 %, and deteriorated in 5 %. Visual fields remained stable in 35 patients (95 %), improved in one and worsened in 1 patient (2.7 %). Conclusion: FSRT is an effective and safe treatment for recurrent or residual pituitary adenoma. Good local tumor control and preservation of adjacent structures can be reached, even for large tumors. (orig.)

  13. Clinical commissioning of Laitinen Stereoadapter for fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Weidlich, G A; Gebert, J A; Fuery, J J

    1998-01-01

    The Laitinen Stereoadapter 5000 from Sandstroem Trade and Technology was acceptance tested and commissioned for clinical use in a Fractionated Stereotactic Radiotherapy Program at our facility. The frame was implemented to function as a localization device for target delineation rather than as an immobilization device. The frame is of non-invasive nature utilizing ear plugs and a nasion bridge adapter as the connecting points with the patient's head. The reproducibility of the head frame position with respect to external skull reference points was tested. CT and MRI imaging studies were performed on a patient phantom with the stereoadapter in place. The target was delineated and target coordinates were calculated for two implanted targets. The phantom was positioned according to the target coordinates on a Siemens MXE Linear Accelerator by aid of the target positioning lasers. Radiographic port film images were taken with the circular fields typically used in stereotactic radiosurgery. A complete treatment isodose plan was performed and dosimetric accuracy was tested by positioning a small volume ionization chamber at the center of the target volume in the head phantom. The results of these tests were found to be clinically acceptable. PMID:9863732

  14. Minimizing metastatic risk in radiotherapy fractionation schedules

    Science.gov (United States)

    Badri, Hamidreza; Ramakrishnan, Jagdish; Leder, Kevin

    2015-11-01

    Metastasis is the process by which cells from a primary tumor disperse and form new tumors at distant anatomical locations. The treatment and prevention of metastatic cancer remains an extremely challenging problem. This work introduces a novel biologically motivated objective function to the radiation optimization community that takes into account metastatic risk instead of the status of the primary tumor. In this work, we consider the problem of developing fractionated irradiation schedules that minimize production of metastatic cancer cells while keeping normal tissue damage below an acceptable level. A dynamic programming framework is utilized to determine the optimal fractionation scheme. We evaluated our approach on a breast cancer case using the heart and the lung as organs-at-risk (OAR). For small tumor α /β values, hypo-fractionated schedules were optimal, which is consistent with standard models. However, for relatively larger α /β values, we found the type of schedule depended on various parameters such as the time when metastatic risk was evaluated, the α /β values of the OARs, and the normal tissue sparing factors. Interestingly, in contrast to standard models, hypo-fractionated and semi-hypo-fractionated schedules (large initial doses with doses tapering off with time) were suggested even with large tumor α/β values. Numerical results indicate the potential for significant reduction in metastatic risk.

  15. Fractionated stereotactic radiotherapy in patients with acromegaly: an interim single-centre audit

    DEFF Research Database (Denmark)

    Roug, Anne Stidsholt; Rasmussen, Åse Krogh; Juhler, M;

    2010-01-01

    To evaluate the effect of fractionated stereotactic radiotherapy (FSRT) in acromegaly in a retrospective analysis.......To evaluate the effect of fractionated stereotactic radiotherapy (FSRT) in acromegaly in a retrospective analysis....

  16. Radiobiological modeling of interplay between accelerated repopulation and altered fractionation schedules in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Marcu Loredana

    2009-01-01

    Full Text Available Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

  17. Radiobiological modeling of interplay between accelerated repopulation and altered fractionation schedules in head and neck cancer.

    Science.gov (United States)

    Marcu, Loredana G; Bezak, Eva

    2009-10-01

    Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling) is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

  18. A Markovian approach to prostate cell survival under fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, Robin [Department of Medical Biophysics, University of Toronto, Toronto, ON, M4N 3M5 (Canada); Falou, Omar [Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, M5B 2K3 (Canada); Rodrigues, Matthew; El Kaffas, Ahmed [Department of Physics, Ryerson University, Toronto, ON, M5B 2K3 (Canada); Galiano, Eduardo, E-mail: egalianoriveros@laurentian.c [Department of Physics Laurentian University, Sudbury, ON, P3E 2C6 (Canada)

    2011-03-15

    In this work, the survival of clonogenic PC-3 and DU-145 prostate cell lines exposed to conventional fractionated radiotherapy are modeled using an iterated birth-death Markov process. The model consists of a birth-death Markov process where the states in the chain represent the number of surviving clonogenic cells, and are separated by radiation fractions in which the survival of tumor cells immediately following a fraction is described by the linear-quadratic model. The stochastic behavior of the cell population between fractions is described by a birth-death Markov process, which determines the number of cells present for the subsequent fraction. Results show that for an initial clonogen population of 10{sup 9} cells to reach zero at 2 Gy/fraction, 44 fractions must be delivered to DU-145 prostate cells, and 19 fractions to PC-3 prostate cells. At 2.75 Gy/fraction, 27 fractions must be delivered to DU-145 prostate cells and 13 fractions to PC-3 prostate cells for treatment termination. An advantage of the proposed model is that it can be used to simulate constant as well as variable radiation intervals and dosages. Model construction, validation, results, and applications are discussed.

  19. Quality assurance protocol for linear accelerators used in radiotherapy

    International Nuclear Information System (INIS)

    Radiotherapy is a modality of choice for treatment of malignant diseases. Linear accelerators are the most common devices for implementing external radiation therapy. Taking into account the fact during the treatment, healthy tissue will inevitably be exposed to ionizing radiation, predicted dose in each radiotherapy case should be delivered with the greatest possible accuracy. Medical requirement for quality treatment achieving means as mach as possible dose into volume of interest and the greatest possible healthy tissue protection. From radiation protection point of view, occupational exposure of the staff involved in radiotherapy process should be minimized. To be able to reach it, consistent adherence to the Quality Assurance Programme is necessary. It should be in accordance with higher national and international protocols, because they give guidelines on the necessary standards, procedures, processes, resources and responsibilities that should be defined in structuring the overall radiotherapy quality management. As a part of this Master thesis, quality management as well as Quality Assurance Programme that is necessary to be applied in each radiotherapy center have been prepared. Mandatory dosimetry measurements included in the internal recommendations are also emphasized. Measurement results and external audit by IAEA indicated high accuracy and quality radiotherapy dose delivering in Macedonia. Based on the measurements and analysis, the aim of this Master thesis is offering a Quality Assurance Protocol for external beam radiotherapy that can be used on the national level in Republic of Macedonia. (Author)

  20. Stereotactic Fractionated Radiotherapy in the Treatment of Juxtapapillary Choroidal Melanoma: The McGill University Experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wassia, Rolina; Dal Pra, Alan; Shun, Kitty; Shaban, Ahmed [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); Corriveau, Christine [Department of Ophthalmology, Notre Dame Hospital, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Edelstein, Chaim; Deschenes, Jean [Department of Ophthalmology, McGill University Health Centre, Montreal, Quebec (Canada); Ruo, Russel; Patrocinio, Horacio [Department of Medical Physics, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); Cury, Fabio L.B. [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); DeBlois, Francois [Department of Medical Physics, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Shenouda, George, E-mail: george.shenouda@muhc.mcgill.ca [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada)

    2011-11-15

    Purpose: To report our experience with linear accelerator-based stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma. Methods and Materials: We performed a retrospective review of 50 consecutive patients diagnosed with juxtapapillary choroidal melanoma and treated with linear accelerator-based stereotactic fractionated radiotherapy between April 2003 and December 2009. Patients with small to medium sized lesions (Collaborative Ocular Melanoma Study classification) located within 2 mm of the optic disc were included. The prescribed radiation dose was 60 Gy in 10 fractions. The primary endpoints included local control, enucleation-free survival, and complication rates. Results: The median follow-up was 29 months (range, 1-77 months). There were 31 males and 29 females, with a median age of 69 years (range, 30-92 years). Eighty-four percent of the patients had medium sized lesions, and 16% of patients had small sized lesions. There were four cases of local progression (8%) and three enucleations (6%). Actuarial local control rates at 2 and 5 years were 93% and 86%, respectively. Actuarial enucleation-free survival rates at 2 and 5 years were 94% and 84%, respectively. Actuarial complication rates at 2 and 5 years were 33% and 88%, respectively, for radiation-induced retinopathy; 9.3% and 46.9%, respectively, for dry eye; 12% and 53%, respectively, for cataract; 30% and 90%, respectively, for visual loss [Snellen acuity (decimal equivalent), <0.1]; 11% and 54%, respectively, for optic neuropathy; and 18% and 38%, respectively, for neovascular glaucoma. Conclusions: Linear accelerator-based stereotactic fractionated radiotherapy using 60 Gy in 10 fractions is safe and has an acceptable toxicity profile. It has been shown to be an effective noninvasive treatment for juxtapapillary choroidal melanomas.

  1. Radiotherapy using a laser proton accelerator

    CERN Document Server

    Murakami, Masao; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L; Abe, Mitsuyuki; Bulanov, Sergei V; Daido, Hiroyuki; Esirkepov, Timur Zh; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-01-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. The laser acceleration method provides many enhanced capabilities for the radiation oncologist. It reduces the overall system size and weight by more than one order of magnitude. The characteristics of the particle beams (protons) make them suitable for a class of therapy that might not be possible with the conventional accelerator, such as the ease for changing pulse intensity, the focus spread, the pinpointedness, and the dose delivery in general. A compact, uncluttered system allows a PET device to be located in the vicinity of the patient in concert with the compact gantry. The radiation oncologist may be able to irradiate a localized tumor by scanning with a pencil-like particle...

  2. SU-E-J-105: Stromal-Epithelial Responses to Fractionated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, M [Little Company of Mary Hospital, Ever Green Park, IL (United States)

    2014-06-01

    Purpose: The stromal-epithelial-cell interactions that are responsible for directing normal breast-tissue development and maintenance play a central role in the progression of breast cancer. In the present study, we developed three-dimensional (3-D) cell co-cultures used to study cancerous mammary cell responses to fractionated radiotherapy. In particular, we focused on the role of the reactive stroma in determining the therapeutic ratio for postsurgical treatment. Methods: Cancerous human mammary epithelial cells were cultured in a 3-D collagen matrix with human fibroblasts stimulated by various concentrations of transforming growth factor beta 1 (TGF-β1). These culture samples were designed to model the post-lumpectomy mammary stroma in the presence of residual cancer cells. We tracked over time the changes in medium stiffness, fibroblast-cell activation (conversion to cancer activated fibroblasts (CAF)), and proliferation of both cell types under a variety of fractionated radiotherapy protocols. Samples were exposed to 6 MV X-rays from a linear accelerator in daily fraction sizes of 90, 180 and 360 cGy over five days in a manner consistent with irradiation exposure during radiotherapy. Results: We found in fractionation studies with fibroblasts and CAF that higher doses per fraction may be more effective early on in deactivating cancer-harboring cellular environments. Higher-dose fraction schemes inhibit contractility in CAF and prevent differentiation of fibroblasts, thereby metabolically uncoupling tumor cells from their surrounding stroma. Yet, over a longer time period, the higher dose fractions may slow wound healing and increase ECM stiffening that could stimulate proliferation of surviving cancer cells. Conclusion: The findings suggest that dose escalation to the region with residual disease can deactivate the reactive stroma, thus minimizing the cancer promoting features of the cellular environment. Large-fraction irradiation may be used to sterilize

  3. Design of a dedicated heavy ion accelerator for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gough, R.; Alonso, J.; Elioff, T.

    1983-03-01

    A new heavy-ion accelerator facility for radiotherapy is being designed at the Lawrence Berkeley Laboratory. Performance requirements have been established. Ions from helium to argon can be accelerated to a maximum energy of 800 MeV/nucleon with intensities in the range 10/sup 8/ to 10/sup 9/ particles per second. The accelerator subsystems consist of a linac injector, a synchrotron, and a beam-delivery system. Specifications have been developed for many of the technical components, and some details of the technical design are presented.

  4. Fractionated radiotherapy of intracranial meningiomas and neurinomas; Radiotherapie fractionnee des meningiomes et des neurinomes intracraniens

    Energy Technology Data Exchange (ETDEWEB)

    Maire, J.P.; Vendrely, V.; Bonichon, N. [Hopital Saint-Andre, Service d' oncologie-Radiotherapie, 33 - Bordeaux (France); Dautheribes, M. [Hopital Saint-Andre, Service de Neurochirurgie, 33 - Bordeaux (France); Darrouzet, V. [Hopital Saint-Andre, Service d' Otorhinoloryngologie, 33 - Bordeaux (France)

    2000-12-01

    In lost institutions, surgical excision remains the standard treatment of meningiomas and neurinomas; the aim of surgery is complete resection. However, total removal is not always feasible without significant morbidity and in some cases, the patient's condition contraindicates surgery. For incompletely excised tumors, recurrences will have consequences on neurological functions. There are now many reports in the literature confirming the fact that radiotherapy significantly decreases the incidence of recurrence of incompletely resected benign tumors and that it can replace surgery in some situations where an operation would involve considerable danger or permanent neurological damage: about 80 to 90% of such tumors are controlled with fractionated radiotherapy. Stereotaxic and three-dimensional treatment planning techniques increase local control and central nervous system tolerance so that the respective place of surgery and radiotherapy needs to be redefined, considering efficacy and morbidity of these two therapeutic means. In this article, we limit our remarks to fractionated radiotherapy and, after a review of the literature, we discuss the indications, volume evaluations and the techniques currently used. (authors)

  5. Comparison between continuous accelerated hyperfractionated and late-course accelerated hyperfractionated radiotherapy for esophageal carcinoma

    International Nuclear Information System (INIS)

    Purpose: To compare the treatment results and toxicity of continuous accelerated hyperfractionated (CAHF) and late-course accelerated hyperfractionated (LCAF) radiotherapy (RT) for esophageal carcinoma. Methods and Materials: Between August 1996 and March 1999, 101 patients with squamous cell carcinoma of the esophagus were randomized into two groups: 49 to the CAHF group and 52 to the LCAF group. Patients in the CAHF group received RT at 1.5 Gy/fraction b.i.d. (6-h interval), 5 d/wk, to a total dose 66 Gy in 44 fractions during 4.4 weeks. The patients in the LCAF group received conventional fractionation RT, 1.8 Gy/fraction, to a dose of 41.4 Gy in 23 fractions during 4.6 weeks, followed by accelerated fractionation RT using reduced fields, b.i.d., at 1.5 Gy/fraction, with a minimal interval of 6 h between fractions. The total dose was 68.4 Gy in 41 fraction during 6.4 weeks. Patient age, gender, performance score, diet, lesion location, lesion length, stage, and fractionation (CAHF or LCAF) were entered into the univariate and multivariate analyses. Results: All patients finished the treatment course, except for 1 patient in the CAHF group because of severe acute esophagitis. The rate of Grade I, II, and III acute bronchitis was 18.4% (9 of 49), 30.6% (15 of 49), and 8.2% (4 of 49) in the CAHF group and 13.5% (7 of 52), 21.2% (11 of 52), and 3.8% (2 of 52) in the LCAF group, respectively. However, the difference between the two groups was not statistically significant (p=0.084). The rate of Grade I, II, III, and IV acute esophagitis was 6.1% (3 of 49), 32.7% (16 of 49), 46.9% (23 of 49), and 14.3% (7 of 49) in the CAHF group and 26.9% (14 of 52), 32.7% (17 of 52), 7.7% (4 of 52), and 1.9% (1 of 52) in the LCAF group, respectively. The difference was statistically significant (p<0.001). The local control rate at 1, 2, and 3 years was 88.7%, 83.9%, and 55.9% in the CAHF group and 80.7%, 71.4%, and 57.1% in the LCAF group, respectively (p=0.1251). The 1-, 2-, and 3

  6. Optimal fractionation in radiotherapy with multiple normal tissues.

    Science.gov (United States)

    Saberian, Fatemeh; Ghate, Archis; Kim, Minsun

    2016-06-01

    The goal in radiotherapy is to maximize the biological effect (BE) of radiation on the tumour while limiting its toxic effects on healthy anatomies. Treatment is administered over several sessions to give the normal tissue time to recover as it has better damage-repair capabilities than tumour cells. This is termed fractionation. A key problem in radiotherapy involves finding an optimal number of treatment sessions (fractions) and the corresponding dosing schedule. A major limitation of existing mathematically rigorous work on this problem is that it includes only a single normal tissue. Since essentially no anatomical region of interest includes only one normal tissue, these models may incorrectly identify the optimal number of fractions and the corresponding dosing schedule. We present a formulation of the optimal fractionation problem that includes multiple normal tissues. Our model can tackle any combination of maximum dose, mean dose and dose-volume type constraints for serial and parallel normal tissues as this is characteristic of most treatment protocols. We also allow for a spatially heterogeneous dose distribution within each normal tissue. Furthermore, we do not a priori assume that the doses are invariant across fractions. Finally, our model uses a spatially optimized treatment plan as input and hence can be seamlessly combined with any treatment planning system. Our formulation is a mixed-integer, non-convex, quadratically constrained quadratic programming problem. In order to simplify this computationally challenging problem without loss of optimality, we establish sufficient conditions under which equal-dosage or single-dosage fractionation is optimal. Based on the prevalent estimates of tumour and normal tissue model parameters, these conditions are expected to hold in many types of commonly studied tumours, such as those similar to head-and-neck and prostate cancers. This motivates a simple reformulation of our problem that leads to a closed

  7. Fractionated stereotactic radiotherapy with vagina carotica protection technique for local residual nasopharyngeal carcinoma after primary radiotherapy

    Institute of Scientific and Technical Information of China (English)

    LIU Feng; HUAN Fu-kui; FANG Hao; WAN Bao; LI Ye-xiong; XIAO Jian-ping; XU Ying-jie; ZHANG Ye; XU Guo-zhen; GAO Li; YI Jun-lin; LUO Jing-wei; HUANG Xiao-dong

    2012-01-01

    Background Local failure of nasopharyngeal carcinoma (NPC) after radiotherapy (RT) remains one of the major treatment failures.This study aimed to evaluate the clinical efficacy and complications of fractionated stereotactic radiotherapy (FSRT) with vagina carotica protection technique for local residual of NPC patients after the primary RT.Methods From August 2006 to August 2010,FSRT with vagina carotica protection technique was applied to 36 patients in our department,the patients aged between 13 and 76 years with a median of 41.3 years,25 of them were male and 11were female.According to 2002 Union for International Cancer Control (UICC) Staging System,the stages before primary radiotherapy were:Ⅱa 2,Ⅱb 5,Ⅲ 18,Ⅳa 7,Ⅳb 4.In the first course of radiotherapy,9 patients received conventional RT,27 patients received intensity modulated radiotherapy (IMRT) and 20 out of the 36 patients received concurrent chemoradiotherapy.The total dose in the first course of RT was 69.96-76.90 Gy (median,72.58 Gy).The intervals between the primary RT and FSRT ranged from 12 to 147 days (median,39.8 days).Target volumes ranged from 1.46 to 32.98 cm3 (median,14.94 cm3).The total FSRT doses were 10.0-24.0 Gy (median,16.5 Gy) with 2.0-5.0Gy per fraction.The most common regimen was 15 Gy in 5 fractions of 3 Gy,the irradiation dose to vagina carotica was less than 2 Gy per fraction.Results The median follow-up time was 34 months (range,12-59 months).The 3-year local control rate was 100%;the 3-year overall survival rate was 94.4%;the 3-year disease-free survival rate was 77.8%.In this study,we had one case of cranial nerve injury,two cases of temporal lobe necrosis,and no nasopharyngeal massive hemorrhage was observed.Conclusion FSRT with vagina carotica protection technique is an effective and safe RT regimen for local residual of NPC with reduction of radiation-related neurovascular lesions.

  8. Study of different dose fractionation in radiotherapy of larynx carcinoma

    International Nuclear Information System (INIS)

    In a clinical study the efficacy of a new fractionation scheme of radiotherapy of the carcinoma of the larynx was investigated. Radiation was applied every second day, three times a week, dose fractions being 4 Gy or 3.5 Gy, tumour doses 52 Gy, 52.5 Gy or 56 Gy. The results in 95 patients who were managed using this radiation scheme were compared with those in 129 patients, where the tumour dose, conventionally fractionated, was 60 Gy, 66 Gy or 70 Gy. The results in primarily cured patients, irrespective of the site and the stage of the tumour, were significantly better (p<0.05) with the new fractionation scheme. Statistically significant improvement of primary healing was proved in supraglottal carcinoma of the Ist and IInd stage and in the Ist and IIIrd stage of glottal carcinoma. In the new fractionation scheme higher occurrence of stronger reaction of the mucous membrane and of late radiation edema was found; complications of a more serious nature did not occur. (author)

  9. Quantifying intra- and inter-fractional motion in breast radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott, E-mail: scott.jones@health.qld.gov.au [Division of Cancer Services, Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia); Fitzgerald, Rhys [Division of Cancer Services, Princess Alexandra Hospital, Brisbane (Australia); Owen, Rebecca; Ramsay, Jonathan [Division of Cancer Services, Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia)

    2015-03-15

    The magnitude of intra- and inter-fractional variation in the set up of breast cancer patients treated with tangential megavoltage photon beams was investigated using an electronic portal imaging device (EPID). Daily cine-EPID images were captured during delivery of the tangential fields for ten breast cancer patients treated in the supine position. Measurements collected from each image included the central lung distance (CLD), central flash distance (CFD), superior axial measurement (SAM) and the inferior axial measurement (IAM). The variation of motion within a fraction (intra-fraction) and the variation between fractions (inter-fraction) was analysed to quantify set up variation and motion due to respiration. Altogether 3775 EPID images were collected from 10 patients. The effect of respiratory motion during treatment was <0.1 cm standard deviation (SD) in the anterior–posterior (AP) direction. The inter-fraction movement caused by variations in daily set up was larger at 0.28 cm SD in the AP direction. Superior–inferior (SI) variation was more difficult to summarise and proved unreliable as the measurements were taken to an ambiguous point on the images. It was difficult to discern true SI movement from that implicated by AP movement. There is minimal intra-fractional chest wall motion due to respiration during treatment. Inter-fractional variation was larger, however, on average it remained within departmental tolerance (0.5 cm) for set up variations. This review of our current breast technique provides confidence in the feasibility of utilising advanced treatment techniques (field-in-field, intensity modulated radiotherapy or volumetric modulated arc therapy) following a review of the current imaging protocol.

  10. Quantifying intra- and inter-fractional motion in breast radiotherapy

    International Nuclear Information System (INIS)

    The magnitude of intra- and inter-fractional variation in the set up of breast cancer patients treated with tangential megavoltage photon beams was investigated using an electronic portal imaging device (EPID). Daily cine-EPID images were captured during delivery of the tangential fields for ten breast cancer patients treated in the supine position. Measurements collected from each image included the central lung distance (CLD), central flash distance (CFD), superior axial measurement (SAM) and the inferior axial measurement (IAM). The variation of motion within a fraction (intra-fraction) and the variation between fractions (inter-fraction) was analysed to quantify set up variation and motion due to respiration. Altogether 3775 EPID images were collected from 10 patients. The effect of respiratory motion during treatment was <0.1 cm standard deviation (SD) in the anterior–posterior (AP) direction. The inter-fraction movement caused by variations in daily set up was larger at 0.28 cm SD in the AP direction. Superior–inferior (SI) variation was more difficult to summarise and proved unreliable as the measurements were taken to an ambiguous point on the images. It was difficult to discern true SI movement from that implicated by AP movement. There is minimal intra-fractional chest wall motion due to respiration during treatment. Inter-fractional variation was larger, however, on average it remained within departmental tolerance (0.5 cm) for set up variations. This review of our current breast technique provides confidence in the feasibility of utilising advanced treatment techniques (field-in-field, intensity modulated radiotherapy or volumetric modulated arc therapy) following a review of the current imaging protocol

  11. Improved immobilization and verification of fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Accepted radiobiological principles predict improved results in terms of late effects, when treatment is fractionated. With the advent of reliable relocatable stereotactic frames, fractionated stereotactic radiotherapy is becoming a standard tool in the treatment of brain malignancies. At the Ottawa Regional Cancer Centre we have developed a system for the delivery of fractionated stereotactic radiotherapy with the following unique features: 1) Very accurate, stable, reproducible, non-invasive BRW-compatible relocatable stereotactic frame, based on a custom made Cobalt-Chrome bite block with circumferential clasps that lock into the undercuts of the teeth. This design results in precise repositioning and virtually eliminates translational and rotational head motion. 2) Positional verification which consists of the following: a) CT verification: Following treatment planning the calculated Cartesian coordinates of the target centre are marked on the localizer frame with 0.5mm Pb shot. A CT slice is then obtained through the plane defined by the lead shots to verify the centre of the target volume. The lines connecting the opposed lead shots should intersect at the calculated isocentre. b) Check film: Patient setup is verified using 3 mm Pb shot placed on the patient's skin at each of the lateral laser crosses as well as the anterior laser cross. AP and lateral double exposure check films are then taken. The projected distances between the Pb shot at the isocentre (centre of the circular field) and the other Pb shot on the patient skin is measured and compared to the corresponding distances on the treatment plan and on the verification CT. c) PPMS: Our optically based Patient Position Monitoring system (PPM) is used to measure setup and treatment error. Measurements of patient and frame position are made in 3D with a resolution of better than 0.2 mm and accuracy of better than 0.4 mm. PPM is used to assist and verify setup and to record treatment position every 5

  12. Metastatic spinal cord compression: radiotherapy outcome and dose fractionation

    International Nuclear Information System (INIS)

    Background and purpose: No standard dose fractionation has been defined for metastatic spinal cord compression. This retrospective analysis was undertaken to explore the impact of hypo fractionated treatment compared to conventional multi fraction treatment. Materials and methods: One hundred and two consecutive patients referred to Mount Vernon Cancer Centre with metastatic spinal canal compression confirmed on MR scan in 95% with median age 68 years (range 32-90) and main primary tumour types breast (28%), prostate (28%) and lung (20%); 51% of patients were fully ambulant at diagnosis, 41% ambulant but with paraparesis and 9% had complete paraplegia. Spinal radiotherapy was given delivering a single dose in 32% and 20 Gy in five fractions in 64%. Results: The median survival was 3.5 months; survival was significantly related to primary site and motor function at presentation. Normal ambulation was achieved in 58% at 2 weeks and 71% up to 2 months after treatment. No patient who presented with paraplegia regained function. At presentation 59% of patients had severe pain, which fell to 8% at 2 weeks. Comparing those patients who received one or two dose treatments with those who received protracted fractionation, the two groups were matched for age, sex, primary site and site of compression. Relatively more patients treated with one or two doses had paraplegia; 19% vs. 3%. Despite this outcome in the two groups was equivalent for motor and sphincter function and pain control. Conclusions: Metastatic spinal canal compression carries a poor prognosis. Urgent treatment will maintain and improve motor function in patients presenting ambulant but those who have paraplegia at presentation do not improve and have a very short survival. In this series no difference in outcome was seen between patients treated with one or two radiation doses compared to multi fraction treatment; a randomised trial comparing fractionation schedules would be justified

  13. Late course accelerated hyperfractionated radiotherapy for clinical T1-2 esophageal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Kuai-Le Zhao; Yang Wang; Xue-Hui Shi

    2003-01-01

    AIM: This retrospective study was designed to analyze the results and the failure patterns of late course accelerated hyperfractionated radiotherapy for clinical T1-2NoMo esophageal carcinoma. METHODS: From Aug. 1994 to Feb. 2001, 56 patients with clinical T1-2 esophageal carcinoma received late course accelerated hyperfractionated radiotherapy in Cancer Hospital,Fudan University. All patients had been histologically proven to have squamous cell carcinoma (SCC) and were diagnosed to be T1-2NoMo by CT scan. All patients were treated with conventional fractionation (CF) irradiation during the first twothirds course of the treatment to a dose of about 41.4Gy/23fx/4 to 5 weeks, Which was then followed by accelerated hyperfractionation irradiation using reduced fields, twice daily at 1.SGy per fraction, to a dose about 27Gy/18 fx. Thus the total dose was 67-70Gy/40-43fx/40-49 d. RESULTS: The 1-, 3- and 5-year overall survival was 90.9 %,54.6 %, 47.8 % respectively. The 1-, 3- and 5-year local control rate was 90.9 %, 84.5 % and 84.5 %, respectively.Twenty-five percent (14/56) patients had distant metastasis and/or lymph nodes metastasis alone. Eight point nine percent (5/56) patients had local disease alone. Another 3.6 % (2/56) patients had regional relapse and distant metastasis. CONCLUSION: Late course accelerated hyperfractionated radiotherapy is effective on clinical T1-2 esophageal carcinoma.The main failure pattern is distant metastasis.

  14. Fractionated stereotactically guided radiotherapy for pharmacoresistant epilepsy; Fraktionierte, stereotaktisch gefuehrte Radiotherapie der pharmakoresistenten Epilepsie

    Energy Technology Data Exchange (ETDEWEB)

    Grabenbauer, G.G.; Reinhold, C.; Lambrecht, U.; Sauer, R. [Klinik und Poliklinik fuer Strahlentherapie, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Kerling, F.; Pauli, E.; Stefan, H. [Neurologische Klinik, Abt. Epileptologie, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Mueller, R.G. [Inst. fuer Medizinische Physik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Ganslandt, O. [Neurochirurgische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany)

    2003-01-01

    Aim: This prospective study evaluated the efficiency of fractionated stereotactically guided radiotherapy as a treatment of pharmacoresistant temporal lobe epilepsy. Patients and Methods: Inclusion criteria were patients aged between 17 and 65 years with one-sided temporally located focus, without sufficient epilepsy control by, antiepileptic drugs or neurosurgery. Between 1997 and 1999, two groups of six patients each were treated with 21 Gy (7 times 3 Gy) and 30 Gy (15 times 2 Gy). Study end points were seizure frequency, intensity, seizure length and neuropsychological parameters. Results: All patients experienced a marked reduction in seizure frequency. The mean reduction of seizures was 37% (range 9-77%, i.e. seizures reduced from a monthly mean number of 11.75 to 7.52) at 18 months following radiation treatment and 46% (23-94%, i.e. 0.2-23 seizures per month) during the whole follow-up time. Seizure length was reduced in five out of eleven patients and intensity of seizures in seven out of eleven patients. Conclusion: Radiotherapy was identified as safe and effective for pharmacoresistant epilepsy since a very good reduction of seizure frequency was observed. It is no substitute for regular use of antiepileptic drugs, but means an appropriate alternative for patients with contraindication against neurosurgery or insufficient seizure reduction after neurosurgery. (orig.) [German] Ziel: Diese prospektive Studie untersuchte die Effizienz einer fraktionierten stereotaktischen Radiotherapie (RT) bei therapieresistenter Temporallappenepilepsie. Patienten und Methoden: Einschlusskriterien waren Patienten im Alter von 17 bis 65 Jahren, die weder medikamentoes noch epilepsiechirurgisch anfallsfrei wurden und einen einseitigen Fokus aufwiesen. Zwei Patientenkohorten zu je sechs Patienten wurden zwischen 1997 und 1999 einer fraktionierten, stereotaktisch gefuehrten Radiotherapie mit 21 Gy (7 x 3 Gy) bzw. 30 Gy (15 x 2 Gy) unterzogen. Endpunkte der Untersuchung waren

  15. Dosimetric effect of intra-fractional and inter-fractional target motion in lung cancer radiotherapy techniques

    OpenAIRE

    Teerthraj Verma; Nirmal Painuly; Surendra Mishra; SA Yoganathansa; Gourav Jain; Ankit Srivastava; Navin Singh; MLB Bhatt; Naseem Jamal; MC Pant

    2015-01-01

    Purpose: The purpose of present study was to experimentally evaluate the dosimetric uncertainties in 3-dimensional conformal radiotherapy (3DCRT), dynamic intensity modulated radiotherapy (D-IMRT), step-shoot (SS-IMRT), and volumetric modulated arc therapy (VMAT) treatment delivery techniques due to intra- and inter-fractional target motion. Methods: A previously treated lung patient was selected for this study and was replanned for 60 Gy in 30 fractions using four techniques (3DCRT, D-IMRT, ...

  16. Stereotactic fractionated radiotherapy in patients with optic nerve sheath meningioma

    International Nuclear Information System (INIS)

    Purpose: To evaluate the effectiveness of stereotactic fractionated radiotherapy (SFRT) in the treatment of optic nerve sheath meningioma (ONSM). Methods and Materials: Between 1994 and 2000, a total of 39 patients with either primary (n=15) or secondary (n=24) ONSM were treated with SFRT and received a median total tumor dose of 54 Gy using 1.8 Gy/fraction. Results: The radiographic response to SFRT was documented in all patients as stable disease (no change) except for 1 patient with a partial response. After a median follow-up of 35.5 months, all patients with ONSM were alive without recurrence. The visual fields and visual acuity were improved in 6 of 15 and 1 of 16 examined eyes in patients with primary ONSM, respectively, and in 6 of 24 and 7 of 26 examined eyes in patients with secondary ONSM, respectively. Stable visual fields and visual acuity was observed in 8 of 14 and 15 of 16 patients with primary ONSM, respectively, and in 17 of 24 and 19 of 26 patients with secondary ONSM, respectively. Except for reversible alopecia and erythema, no other SFRT-related toxicity was observed. Conclusion: SFRT represents a very effective and low-toxic treatment modality for ONSM. Despite a median follow-up of 3 years, this series of primary ONSM holds promise for future studies. It adds substantial evidence that SFRT may definitely become a standard treatment approach in selected cases of ONSM

  17. Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects

    Science.gov (United States)

    Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip

    2007-01-01

    When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend

  18. Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas

    International Nuclear Information System (INIS)

    to assess the safety and efficacy of fractionated stereotactic radiotherapy (FSRT) for large skull base meningiomas. Fifty-two patients with large skull base meningiomas aged 34-74 years (median age 56 years) were treated with FSRT between June 2004 and August 2009. All patients received FSRT for residual or progressive meningiomas more than 4 centimeters in greatest dimension. The median GTV was 35.4 cm3 (range 24.1-94.9 cm3), and the median PTV was 47.6 cm3 (range 33.5-142.7 cm3). Treatment volumes were achieved with 5-8 noncoplanar beams shaped using a micromultileaf collimator (MLC). Treatment was delivered in 30 daily fractions over 6 weeks to a total dose of 50 Gy using 6 MV photons. Outcome was assessed prospectively. At a median follow-up of 42 months (range 9-72 months) the 3-year and 5-year progression-free survival (PFS) rates were 96% and 93%, respectively, and survival was 100%. Three patients required further debulking surgery for progressive disease. Hypopituitarism was the most commonly reported late complication, with a new hormone pituitary deficit occurring in 10 (19%) of patients. Clinically significant late neurological toxicity was observed in 3 (5.5%) patients consisting of worsening of pre-existing cranial deficits. FSRT as a high-precision technique of localized RT is suitable for the treatment of large skull base meningiomas. The local control is comparable to that reported following conventional external beam RT. Longer follow-up is required to assess long term efficacy and toxicity, particularly in terms of potential reduction of treatment-related late toxicity

  19. Changes in serum and salivary amylase during radiotherapy for head and neck cancer; A comparison of conventionally fractionated radiotherapy with CHART

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, M.D.; Dische, S. (Mount Vernon Hospital, Northwood (United Kingdom))

    1992-05-01

    The changes in serum amylase that occur when radiotherapy is given in the treatment of head and neck cancer has been studied in 41 patients, 29 treated by CHART and 12 by conventionally fractionated radiotherapy. The peak rise in serum amylase following the start of treatment is seen earlier and is greater in the patients receiving continuous hyperfractionated accelerated radiotherapy (CHART). The serum amylase returns to normal earlier in the CHART patients so that the area under the curve is the same for both groups. The difference probably reflects the more rapid delivery of treatment to the patients receiving CHART. A close correlation between the peak rise in serum amylase and the amount of parotid tissue in the treatment volume is demonstrated. For six patients the total amount of amylase secreted by the parotid gland during CHART was measured and found to decline rapidly within a few days of the start of radiotherapy. The rise in serum amylase that results from the irradiation of salivary tissue provides a unique biochemical measure of an early radiation effect in a normal tissue. This probably reflects the interphase cell death of serous salivary cells. Although these immediate changes are of considerable interest they may not relate to the late effects of radiation on salivary gland function. (author). 13 refs.; 4 figs.

  20. Endocrine and visual function after fractionated stereotactic radiotherapy of perioptic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Semrau, R.; Mueller, R.P. [Universitaetsklinikum Koeln (Germany). Klinik und Poliklinik fuer Strahlentherapie; Treuer, H.; Hoevels, M.; Sturm, V. [Koeln Univ. (Germany). Dept. of Stereotaxy and Functional Neurosurgery

    2013-02-15

    Purpose: To find out whether the use of stereotactic techniques for fractionated radiotherapy reduces toxicity to the endocrine and visual system in patients with benign perioptic tumors. Patients and methods: From 1993 to 2009, 29 patients were treated with fractionated stereotactic radiotherapy. The most frequent tumor types were grade I meningioma (n = 11) and pituitary adenoma (n = 10, 7 nonfunctioning, 3 growth hormone-producing). Patients were immobilized with the GTC frame (Radionics, USA) and the planning target volume (PTV; median 24.7, 4.6-58.6 ml) was irradiated with a total dose of 52.2 Gy (range, 45.0-55.8 Gy) in 1.8-Gy fractions using a linear accelerator (6 MeV photons) equipped with a micro-multileaf collimator. Maximum doses to the optic system and pituitary gland were 53.4 Gy (range, 11.5-57.6 Gy) and 53.6 Gy (range, 12.0-57.9 Gy). Results: Median follow-up was 45 months (range, 10-105 months). Local control was achieved in all but 1 patient (actuarial rate 92% at 5 years and 10 years). In 9 of 29 patients (31%), partial remission was observed (actuarial response rate 40% at 5 years and 10 years). In 4 of 26 patients (15%) with at least partial pituitary function, new hormonal deficits developed (actuarial rate 21% at 5 years and 10 years). This rate was significantly higher in patients treated for a larger PTV ( 25 ml: 0% vs. 42% at 5 years and 10 years, p = 0.028). Visual function improved in 4 of 15 patients (27%) who had prior impairment. None of the patients developed treatment-related optic neuropathy, but 2 patients experienced new disease-related visual deficits. Conclusion: Fractionated stereotactic radiotherapy for benign tumors of the perioptic and sellar region results in satisfactory response and local control rates and does not affect the visual system. The assumption that patients can be spared hypophyseal insufficiency only holds for small tumors. (orig.)

  1. Fractionated Stereotactic Radiotherapy in Patients With Optic Nerve Sheath Meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Frank, E-mail: frank.paulsen@med.uni-tuebingen.de [Department of Radiation Oncology, University of Tuebingen, Tuebingen (Germany); Doerr, Stefan [Department of Radiation Oncology, University of Tuebingen, Tuebingen (Germany); Wilhelm, Helmut [Department of Ophthalmology, University of Tuebingen, Tuebingen (Germany); Becker, Gerd [Department of Radiation Oncology, Klinik am Eichert, Goeppingen (Germany); Bamberg, Michael [Department of Radiation Oncology, University of Tuebingen, Tuebingen (Germany); Classen, Johannes [Department of Radiation Oncology, St. Vincentius-Kliniken, Karlsruhe (Germany)

    2012-02-01

    Purpose: To evaluate the effectiveness of fractionated stereotactic radiotherapy (SFRT) in the treatment of optic nerve sheath meningioma (ONSM). Methods and Materials: Between 1993 and 2005, 109 patients (113 eyes) with primary (n = 37) or secondary (n = 76) ONSM were treated according to a prospective protocol with SFRT to a median dose of 54 Gy. All patients underwent radiographic, ophthalmologic, and endocrine analysis before and after SFRT. Radiographic response, visual control, and late side effects were endpoints of the analysis. Results: Median time to last clinical, radiographic, and ophthalmologic follow up was 30.2 months (n = 113), 42.7 months (n = 108), and 53.7 months (n = 91), respectively. Regression of the tumor was observed in 5 eyes and progression in 4 eyes, whereas 104 remained stable. Visual acuity improved in 12, deteriorated in 11, and remained stable in 68 eyes. Mean visual field defects reduced from 33.6% (n = 90) to 17.8% (n = 56) in ipsilateral and from 10% (n = 94) to 6.7% (n = 62) in contralateral eyes. Ocular motility improved in 23, remained stable in 65, and deteriorated in 3 eyes. Radiographic tumor control was 100% at 3 years and 98% at 5 years. Visual acuity was preserved in 94.8% after 3 years and in 90.9% after 5 years. Endocrine function was normal in 90.8% after 3 years and in 81.3% after 5 years. Conclusions: SFRT represents a highly effective treatment for ONSM. Interdisciplinary counseling of the patients is recommended. Because of the high rate of preservation of visual acuity we consider SFRT the standard approach for the treatment of ONSM. Prolonged observation is warranted to more accurately assess late visual impairment. Moderate de-escalation of the radiation dose might improve the preservation of visual acuity and pituitary gland function.

  2. Not traditional regimes of radiotherapeutic dose fractionation as modifier of radiotherapy for carcinoma of lungs

    International Nuclear Information System (INIS)

    The efficiency of applying various of radiotherapeutic dose fractionation was analyzed. The results of the own studies performed at the Scientific and Research Institute of Oncology and Medical Radiology for elaborating not traditional regimes of radiotherapeutic dose fractionation (a dynamic fractionation applying enlarged regimes at the first stage and the classic ones at the second stage) were presented. Appliance of the modified radiotherapy for the epidermoid carcinoma of the lungs allowed to increase the objective response from 45,3+-3% to 80+-5% the tumor disappearing completely in 40+-6% of patients as compared with 10+-2%. Appliance of the intensive not traditional variant of the radiotherapy dynamic fractionation in case of a small cell carcinoma of the lungs resulted in the therapy duration reduction from 6 to 4 weeks. Thus the not traditional dose fractionation might become a mechanism for the improving the radiotherapy of persons suffering from the carcinoma of the lungs. (authors)

  3. HIGH DOSE FRACTION RADIOTHERAPY FOR MUCOSAL MALIGNANT MELANOMA OF THE HEAD AND NECK

    Institute of Scientific and Technical Information of China (English)

    Liu Xiuying; Li Huiling; Zheng Tianrong; Lin Xiangsong

    1998-01-01

    Objective:To evatuate the results of high dose fraction radiotherapy for mucosal malignant melanoma of the head and neck (HNMM). Methods: From 1984-1994, 35 patients with HNMM were enrolled in this study. Among them, 27 cases localized to the nasal cavity or para-nasal sinus, 8 to the oral cavity. All patients received high dose fraction radiotherapy (6--8 Gy/fraction)with the total dose ranged from 40 to 60 Gy. Results: The minimum follow-up was 2 years (ranged 2-7 years). The overall 3- and 5-year survival rate was 45.7% and 24%,respectively. Conclusion: High dose fraction radiotherapy is effective for local control of HNMM.

  4. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    Energy Technology Data Exchange (ETDEWEB)

    Hauptman, Jason S., E-mail: jhauptman@mednet.ucla.edu [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Tenn, Steven; Agazaryan, Nzhde; Selch, Michael [Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); De Salles, Antonio A.F. [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States)

    2012-06-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  5. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    International Nuclear Information System (INIS)

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  6. Five Year Outcome of 145 Patients With Ductal Carcinoma In Situ (DCIS) After Accelerated Breast Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ciervide, Raquel [Department of Radiation Oncology, New York University School of Medicine, NYU Langone Medical Center, New York, New York (United States); Dhage, Shubhada; Guth, Amber; Shapiro, Richard L.; Axelrod, Deborah M.; Roses, Daniel F. [Department of Surgery, New York University School of Medicine, NYU Langone Medical Center, New York, New York (United States); Formenti, Silvia C., E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, NYU Langone Medical Center, New York, New York (United States)

    2012-06-01

    Background: Accelerated whole-breast radiotherapy (RT) with tumor bed boost in the treatment of early invasive breast cancer has demonstrated equivalent local control and cosmesis when compared with standard RT. Its efficacy in the treatment of ductal carcinoma in situ (DCIS) remains unknown. Methods and Materials: Patients treated for DCIS with lumpectomy and negative margins were eligible for 2 consecutive hypofractionated whole-breast RT clinical trials. The first trial (New York University [NYU] 01-51) prescribed to the whole breast 42 Gy (2.8 Gy in 15 fractions) and the second trial (NYU 05-181) 40.5 Gy (2.7 Gy in 15 fractions) with an additional daily boost of 0.5 Gy to the surgical cavity. Results: Between 2002 and 2009, 145 DCIS patients accrued, 59 to the first protocol and 86 to the second trial. Median age was 56 years and 65% were postmenopausal at the time of treatment. Based on optimal sparing of normal tissue, 79% of the patients were planned and treated prone and 21% supine. At 5 years' median follow-up (60 months; range 2.6-105.5 months), 6 patients (4.1%) experienced an ipsilateral breast recurrence in all cases of DCIS histology. In 3/6 patients, recurrence occurred at the original site of DCIS and in the remaining 3 cases outside the original tumor bed. New contralateral breast cancers arose in 3 cases (1 DCIS and 2 invasive carcinomas). Cosmetic self-assessment at least 2 years after treatment is available in 125 patients: 91% reported good-to-excellent and 9% reported fair-to-poor outcomes. Conclusions: With a median follow-up of 5 years, the ipsilateral local recurrence rate is 4.1%, comparable to that reported from the NSABP (National Surgical Adjuvant Breast and Bowel Project) trials that employed 50 Gy in 25 fractions of radiotherapy for DCIS. There were no invasive recurrences. These results provide preliminary evidence that accelerated hypofractionated external beam radiotherapy is a viable option for DCIS.

  7. Initial experience of single fraction radiotherapy (8 Gy x 1) in the treatment of painful bone metastases

    International Nuclear Information System (INIS)

    Sixteen patients with painful bone metastases received single fraction radiotherapy of 8 Gy. Single fraction radiotherapy was effective in providing pain relief with response rate of 88.8%. There were no severe acute side effects. The therapeutic regimen was also safe and effective in patients with poor performance status and poor prognosis. Therefore single fraction radiotherapy should be considered to treat pain arising from bone metastases. (author)

  8. Effect of fractionated regional external beam radiotherapy on peripheral blood cell count

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to assess the need for obtaining weekly complete blood count (CBC) values and to identify the pattern of changes in CBC during regional conventional fractionated radiotherapy. Methods and Materials: A retrospective analysis of CBC data on 299 adult cancer patients who received definitive conventional radiotherapy to head and neck (n=95), chest (n=96), and pelvis (n=108) was performed. Temporal patterns and magnitude of change in white blood cells, neutrophils, lymphocytes, and platelets during radiotherapy were examined. Results: There were statistically significant declines in all counts, albeit not clinically significant. Notable differences between disease sites were found. The greatest weekly interval change in counts occurred during the first week of radiotherapy for all groups of patients. The mean WBC nadir values during treatment were 5.8 for head and neck, 6.8 for chest, and 5.4 for pelvis. The nadirs for all counts occurred toward the middle-to-end of radiotherapy. Lymphocytes were found to be more sensitive to radiotherapy than other leukocyte subcomponents. Conclusion: Our study suggests that weekly CBC monitoring is not necessary for all patients undergoing standard fractionated radiotherapy. Baseline blood counts may be used to determine an optimal schedule for monitoring CBCs in patients receiving conventional radiation alone. Reduced monitoring of CBC may result in significant financial savings

  9. Short treatment time and excellent treatment outcome in accelerated hyperfractionated radiotherapy for T1 glottic cancer.

    Science.gov (United States)

    Tamaki, Yukihisa; Hieda, Yoko; Yoshida, Rika; Yoshizako, Takeshi; Fuchiwaki, Takafumi; Aoi, Noriaki; Sekihara, Kazumasa; Kitajima, Kazuhiro; Kawauchi, Hideyuki; Kitagaki, Hajime; Sasaki, Ryohei; Inomata, Taisuke

    2015-11-01

    Accelerated hyperfractionated radiotherapy was performed as treatment for patients with T1 glottic cancer, and its utility was evaluated based on treatment outcomes and adverse effects. Fifty-eight men who had undergone radiotherapy were retrospectively reviewed. Tumor classification was Tis in 4 patients, T1a in 38, and T1b in 16. Histological examination revealed squamous cell carcinoma in 55 patients. Travel time from home to hospital was 0-1 hour for 24 patients, 1-2 hours for 9, and >2 hours for 25. Laser vaporization was performed prior to radiotherapy in 38 patients, and 19 patients received concurrent chemotherapy with an agent such as S-1. Patients were irradiated twice daily using an irradiation container. Most patients received a dose of 1.5 Gy/fraction up to a total of 60 Gy. The median overall treatment time was 30 days, with a median observation period of 59.6 months. A complete response was observed in all patients. The 5-year overall survival, disease-free survival, and local control rates were 97.2%, 93.2%, and 97.8%, respectively. Although grade 3 pharyngeal mucositis was observed in 2 patients, there were no other grade 3 or higher acute adverse events. As late toxicity, grade 2 laryngeal edema and grade 1 laryngeal hemorrhage were observed in 1 patient each, but no serious events such as laryngeal necrosis or laryngeal stenosis were observed. In conclusion, this treatment method brings excellent outcome and will substantially reduce the treatment duration among patients who need to stay at nearby hotels while undergoing treatment at hospitals in rural areas. PMID:26663937

  10. Cyberknife fractionated radiotherapy for adrenal metastases: Preliminary report from a multispecialty Indian cancer care center

    Directory of Open Access Journals (Sweden)

    Trinanjan Basu

    2015-03-01

    Full Text Available Purpose: Metastasis to adrenal gland from lung, breast, and kidney malignancies are quite common. Historically radiotherapy was intended for pain palliation. Recent studies with stereotactic body radiotherapy (SBRT including Cyberknife robotic radiosurgery aiming at disease control brings about encouraging results. Here we represent the early clinical experience with Cyberknife stereotactic system from an Indian cancer care center. The main purpose of this retrospective review is to serve as a stepping stone for future prospective studies with non- invasive yet effective technique compared to surgery. Methods: We retrospectively reviewed four cases of adrenal metastases (three: lung and one: renal cell carcinoma treated with Cyberknife SBRT. X sight spine tracking was employed for planning and treatment delivery. Patients were evaluated for local response clinically as well as with PETCT based response criteria.Results: With a median gross tumor volume of 20.5 cc and median dose per fraction of 10 Gy, two patients had complete response (CR and two had partial response (PR when assessed 8-12 weeks post treatment as per RECIST. There was no RTOG grade 2 or more acute adverse events and organs at risk dosage were acceptable. Till last follow up all the patients were locally controlled and alive. Conclusion: Cyberknife SBRT with its unique advantages like non- invasive, short duration outpatient treatment technique culminating in similar local control rates in comparison to surgery is an attractive option. World literature of linear accelerator based SBRT and our data with Cyberknife SBRT with small sample size and early follow up are similar in terms of local control in adrenal metastases. Future prospective data would reveal more information on the management of adrenal metastases.

  11. Alternating chemotherapy and hyperfractionated accelerated radiotherapy in non-metastatic inflammatory breast cancer; Radiotherapie hyperfractionnee acceleree alternee avec une chimiotherapie dans le cancer du sein inflammatoire non metastatique

    Energy Technology Data Exchange (ETDEWEB)

    Hasbini, A.; Le Pechoux, C.; Roche, B.; Pignol, J.P.; Abdulkarim, B.; Habrand, J.L. [Institut Gustave Roussy, Dept. de Radiotherapie, 94 - Villejuif (France); Zelek, L.; Spielmann, M. [Institut Gustave Roussy, Dept. d' oncologie Medicale, 94 - Villejuif (France); Arriagada, R. [Instituto de Radiomedicina, IRAM, Santiago, (Chile); Guinebretiere, J.M. [Institut Gustave Roussy, Dept. d' Anatomopothologie, 94 - Villejuif (France); Tardivon, A. [Institut Gustave Roussy, Dept. de Radiodiagnostic, 94 - Villejuif (France)

    2000-08-01

    Based on encouraging results reported in alternating radiotherapy and chemotherapy in inflammatory breast carcinoma, we have tried in this study to optimize locoregional treatment with a hyperfractionated accelerated radiotherapy schedule alternating with chemotherapy. From May 1991 to May 1995, 54 patients, previously untreated, with non-metastatic inflammatory breast cancer were entered in an alternating protocol consisting of eight courses of combined chemotherapy and two series of loco-regional hyperfractionated accelerated radiotherapy with a total dose of 66 Gy. Hyperfractionated accelerated radiotherapy was started after three courses of neo-adjuvant chemotherapy (Adriamycin, Vincristine, Cyclophosphamide, Methotrexate, 5-fluoro-uracil) administered every 21 days {+-}G.CSF. The first series delivered 45 Gy/three weeks to the breast, the axillary, sub-clavicular and internal mammary nodes, with two daily sessions of 1.5 Gy separated by an interval of eight hours, the second series consisted of a boost (21 Gy/14 fractions/10d) alternating with another regimen of anthracycline-based-chemotherapy (a total of five cycles every three weeks). Hormonal treatment was given to all patients. Of the 53 patients evaluated at the end of the treatment, 44(83%) had a complete clinical response, seven (13%) had a partial response (>50%) and two (4%) had tumoral progression. Of the 51 patients who were locally controlled, 18 (35%) presented a locoregional recurrence (LRR); eight(15 %) had to undergo a mastectomy. All the patients but two LRR developed metastases or died of local progressive disease and 26 (50%) developed metastases. With a median follow-up of 39 months (range: 4-74 months), survival rates at three and five years were respectively, 66 and 45% for overall survival and 45 and 36% for disease-free survival. Alternating a combination of chemotherapy and hyperfractionated accelerated radiotherapy is a well-tolerated regimen which provides acceptable local control

  12. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long-term results are needed to assess

  13. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Pedicini Piernicola

    2012-08-01

    Full Text Available Abstract Purpose To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr and the reduction of the effective doubling time (TD during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC. Methods A survey of the published papers comparing 3-years of local regional control rate (LCR for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of TD were obtained by a model incorporating the overall time corrected biologically effective dose (BED and a 3-year clinical LCR for high and low EGFr groups of patients (HEGFr and LEGFr, respectively. By obtaining the TD from the above analysis and the sub-sites’ potential doubling time (Tpot from flow cytometry and immunohistochemical methods, we were able to estimate the average TD for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (Dprolif, was estimated. Results The averages of TD were 77 (27-9095% days in LEGFr and 8.8 (7.3-11.095% days in HEGFr, if an onset of accelerated proliferation TK at day 21 was assumed. The correspondent HEGFr sub-sites’ TD were 5.9 (6.6, 5.9 (6.6, 4.6 (6.1, 14.3 (12.9 days, with respect to literature immunohistochemical (flow cytometry data of Tpot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The Dprolif for the HEGFr groups were 0.33 (0.29, 0.33 (0.29, 0.42 (0.31, 0.14 (0.15 Gy/day if α = 0.3 Gy-1 and α/β = 10 Gy were assumed. Conclusions A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced TD and Dprolif for each head and neck

  14. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr) and the reduction of the effective doubling time (TD) during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT) is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC). A survey of the published papers comparing 3-years of local regional control rate (LCR) for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of TD were obtained by a model incorporating the overall time corrected biologically effective dose (BED) and a 3-year clinical LCR for high and low EGFr groups of patients (HEGFr and LEGFr), respectively. By obtaining the TD from the above analysis and the sub-sites’ potential doubling time (Tpot) from flow cytometry and immunohistochemical methods, we were able to estimate the average TD for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (Dprolif), was estimated. The averages of TD were 77 (27-90)95% days in LEGFr and 8.8 (7.3-11.0)95% days in HEGFr, if an onset of accelerated proliferation TK at day 21 was assumed. The correspondent HEGFr sub-sites’ TD were 5.9 (6.6), 5.9 (6.6), 4.6 (6.1), 14.3 (12.9) days, with respect to literature immunohistochemical (flow cytometry) data of Tpot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The Dprolif for the HEGFr groups were 0.33 (0.29), 0.33 (0.29), 0.42 (0.31), 0.14 (0.15) Gy/day if α = 0.3 Gy-1 and α/β = 10 Gy were assumed. A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced TD and Dprolif for each head and neck sub-site

  15. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P. [IRCC, Candiolo (Italy)

    2011-10-15

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was < 10 mm in 33 patients (53%) and > 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long

  16. Fractionated stereotactic radiotherapy of glomus jugulare tumors. Local control, toxicity, symptomatology, and quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Henzel, M.; Gross, M.W.; Failing, T.; Strassmann, G.; Engenhart-Cabillic, R. [Marburg Univ. (Germany). Dept. of Radiation Oncology; Hamm, K.; Surber, G.; Kleinert, G. [HELIOS Klinikum Erfurt (Germany). Dept. of Stereotactic Neurosurgery and Radiosurgery; Sitter, H. [Marburg Univ. (Germany). Dept. of Theoretical Surgery

    2007-10-15

    Background and Purpose: For glomus jugulare tumors, the goal of treatment is microsurgical excision. To minimize postoperative neurologic deficits, stereotactic radiosurgery (SRS) was performed as an alternative treatment option. Stereotactic fractionated radiotherapy (SRT) could be a further alternative. This study aims at the assessment of local control, side effects, and quality of life (QoL). Patients and Methods: Between 1999-2005, 17 patients were treated with SRT. 11/17 underwent previous operations. 6/17 received primary SRT. Treatment was delivered by a linear accelerator with 6-MV photons. Median cumulative dose was 57.0 Gy. Local control, radiologic regression, toxicity, and symptomatology were evaluated half-yearly by clinical examination and MRI scans. QoL was assessed by Short Form-36 (SF-36). Results: Median follow-up was 40 months. Freedom from progression and overall survival for 5 years were 100% and 93.8%. Radiologic regression was seen in 5/16 cases, 11/16 patients were stable. Median tumor shrinkage was 17.9% (p = 0.14). Severe acute toxicity (grade 3-4) or any late toxicity was never seen. Main symptoms improved in 9/16 patients, 7/16 were stable. QoL was not affected in patients receiving primary SRT. Conclusion: SRT offers an additional treatment option of high efficacy with less side effects, especially in cases of large tumors, morbidity, or recurrences after incomplete resections. (orig.)

  17. Short-Course Accelerated Radiotherapy in Palliative Treatment of Advanced Pelvic Malignancies: A Phase I Study

    Energy Technology Data Exchange (ETDEWEB)

    Caravatta, Luciana [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Padula, Gilbert D.A. [Department of Radiation Oncology, Lacks Cancer Center Saint Mary' s Health Care, Grand Rapids, MI (United States); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Ferrandina, Gabriella [Department of Gynecologic Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Bonomo, Pierluigi; Deodato, Francesco; Massaccesi, Mariangela [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Mignogna, Samantha; Tambaro, Rosa [Department of Palliative Therapies, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Rossi, Marco [Department of Anaesthesia, Intensive Care, and Pain Medicine, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Flocco, Mariano [' Madre Teresa di Calcutta' Hospice, Larino (Italy); Scapati, Andrea [Department of Radiation Oncology, ' San Francesco' Hospital, Nuoro (Italy); and others

    2012-08-01

    Purpose: To define the maximum tolerated dose of a conformal short-course accelerated radiotherapy in patients with symptomatic advanced pelvic cancer. Methods and Materials: A phase I trial in 3 dose-escalation steps was designed: 14 Gy (3.5-Gy fractions), 16 Gy (4-Gy fractions), and 18 Gy (4.5-Gy fractions). The eligibility criteria included locally advanced and/or metastatic pelvic cancer and Eastern Cooperative Oncology Group performance status of {<=}3. Treatment was delivered in 2 days with twice-daily fractionation and at least an 8-hour interval. Patients were treated in cohorts of 6-12 to define the maximum tolerated dose. The dose-limiting toxicity was defined as any acute toxicity of grade 3 or greater, using the Radiation Therapy Oncology Group scale. Pain was recorded using a visual analog scale. The effect on quality of life was evaluated according to Cancer Linear Analog Scale (CLAS). Results: Of the 27 enrolled patients, 11 were male and 16 were female, with a median age of 72 years (range 47-86). The primary tumor sites were gynecologic (48%), colorectal (33.5%), and genitourinary (18.5%). The most frequent baseline symptoms were bleeding (48%) and pain (33%). Only grade 1-2 acute toxicities were recorded. No patients experienced dose-limiting toxicity. With a median follow-up time of 6 months (range 3-28), no late toxicities were observed. The overall (complete plus partial) symptom remission was 88.9% (95% confidence interval 66.0%-97.8%). Five patients (41.7%) had complete pain relief, and six (50%) showed >30% visual analog scale reduction. The overall response rate for pain was 91.67% (95% confidence interval 52.4%-99.9%). Conclusions: Conformal short course radiotherapy in twice-daily fractions for 2 consecutive days was well tolerated up to a total dose of 18 Gy. A phase II study is ongoing to confirm the efficacy on symptom control and quality of life indexes.

  18. Accelerated Partial Breast Irradiation with Intensity-Modulated Radiotherapy Is Feasible for Chinese Breast Cancer Patients

    OpenAIRE

    He, Zhenyu; Wu, Sangang; Zhou, Juan; Li, Fengyan; Sun, Jiayan; Lin, Qin; Lin, Huanxin; Guan, Xunxing

    2014-01-01

    Purpose Several accelerated partial breast irradiation (APBI) techniques are being investigated in patients with early-stage breast cancer. The present study evaluated the feasibility, early toxicity, initial efficacy, and cosmetic outcomes of accelerated partial breast intensity-modulated radiotherapy (IMRT) for Chinese female patients with early-stage breast cancer after breast-conserving surgery. Methods A total of 38 patients met the inclusion criteria and an accelerated partial breast in...

  19. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation

    OpenAIRE

    Prokopiou, Sotiris; Eduardo G Moros; Poleszczuk, Jan; Caudell, Jimmy; Torres-Roca, Javier F.; Latifi, Kujtim; Lee, Jae K.; Myerson, Robert; Harrison, Louis B.; Enderling, Heiko

    2015-01-01

    Background Although altered protocols that challenge conventional radiation fractionation have been tested in prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize that the proportion of radiosensitive pro...

  20. Effect of patient variation on standard- and hypo-fractionated radiotherapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, W; Li, J; Ma, C-M [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States)

    2005-04-07

    Recent publications suggested that the {alpha}/{beta} ratio in the well-known linear quadratic (LQ) model could be as low as 1.5 Gy for prostate cancer, indicating that prostate cancer control might be very sensitive to changes in the dose fractionation scheme. This also suggests that the standard-fractionation scheme based on large {alpha}/{beta} ratios may not be optimal for the radio-therapeutic management of prostate cancer. Hypo-fractionated radiotherapy for prostate cancer has received more attention recently as an alternative treatment strategy, which may lead to reduced treatment time and cost. However, hypo-fractionated radiotherapy may be more sensitive to patient variation in terms of disease control than standard-fractionated radiotherapy. The variation of LQ parameters {alpha} and {beta} for a patient population may compromise the outcome of the treatment. This effect can be studied by the introduction of the {sigma}{sub {alpha}} and {sigma}{sub {beta}} parameters, which are the standard deviations of Gaussian distributions around {alpha}{sub 0} and {beta}{sub 0}. The purpose of this study is to examine the effect of patient variation in {alpha} and {beta} on tumour control probability for standard- and hypo-fractionated radiotherapy of prostate cancer. The tumour control probability based on the LQ model is calculated using parameters {alpha}, {beta}, {sigma}{sub {alpha}} and {sigma}{sub {beta}}. Our results show that {sigma}{sub {alpha}} is an important parameter for radiotherapy fractionation, independent of the {alpha}/{beta} ratio. A large {sigma}{sub {alpha}} will result in a significant increase in the radiation dose required to achieve the same 95% TCP. Compared with the standard-fractionated scheme, {sigma}{sub {alpha}} has a smaller effect on hypo-fractionated treatment at lower {alpha}/{beta} ratios. On the other hand, for lower {alpha}/{beta} ratios, the {beta} term also plays a more important role in cell-killing and therefore the patient

  1. Accelerated split-course radiotherapy and concomitant cis-platinum and 5-fluorouracil chemotherapy with folinic acid enhancement in unresectable head and neck cancer

    International Nuclear Information System (INIS)

    In patients suffering from locally advanced, unresectable squamous cell carcinoma (SCC) of the base of the tongue, the floor of the mouth, the mobile part of the tongue, the tonsils, the hypopharynx and the larynx radiotherapy yields poor results, due to local failure rather than to distant metastases. Since toxicity of radiotherapy and cytotoxic chemotherapy do not overlap entirely efforts were made to achieve better results combining these two treatment modalities. Clinical trials on simultaneous radiotherapy/chemotherapy focussed on two cytotoxic agents: Cis-dichlorodiammineplatinum(II) (cis-DDP) and 5-flourouracil (5-FU). Another approach to overcome the radioresistance of large SCC adopts accelerated fractionation. The potential tumor doubling time of sqamous cell carcinomas is about four days, and thus repopulation of surviving clonogenic tumor cells during fractionated radiotherapy may be the cause of poor treatment results. In this pilot study a twice daily fractionated split-course radiotherapy is combined with simultaneous administration of cis-DDP and 5-FU with folinic acid (FA) enhancement. (orig.)

  2. Accelerated split-course radiotherapy and concomitant cis-platinum and 5-fluorouracil chemotherapy with folinic acid enhancement in unresectable head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, T.G.; Wustrow, T.P.U.; Hartenstein, R.C.; Trott, K.R.

    1988-01-01

    In patients suffering from locally advanced, unresectable squamous cell carcinoma (SCC) of the base of the tongue, the floor of the mouth, the mobile part of the tongue, the tonsils, the hypopharynx and the larynx radiotherapy yields poor results, due to local failure rather than to distant metastases. Since toxicity of radiotherapy and cytotoxic chemotherapy do not overlap entirely efforts were made to achieve better results combining these two treatment modalities. Clinical trials on simultaneous radiotherapy/chemotherapy focussed on two cytotoxic agents: Cis-dichlorodiammineplatinum(II) (cis-DDP) and 5-flourouracil (5-FU). Another approach to overcome the radioresistance of large SCC adopts accelerated fractionation. The potential tumor doubling time of sqamous cell carcinomas is about four days, and thus repopulation of surviving clonogenic tumor cells during fractionated radiotherapy may be the cause of poor treatment results. In this pilot study a twice daily fractionated split-course radiotherapy is combined with simultaneous administration of cis-DDP and 5-FU with folinic acid (FA) enhancement.

  3. Intensity Modulated Radiotherapy (IMRT and Fractionated Stereotactic Radiotherapy (FSRT for children with head-and-neck-rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Huber Peter E

    2007-09-01

    Full Text Available Abstract Background The present study evaluates the outcome of 19 children with rhabdomyosarcoma of the head-and-neck region treated with Intensity Modulated Radiotherapy (IMRT or Fractionated Stereotactic Radiotherapy (FSRT between August 1995 and November 2005. Methods We treated 19 children with head-and-neck rhabdomyosarcoma with FSRT (n = 14 or IMRT (n = 5 as a part of multimodal therapy. Median age at the time of radiation therapy was 5 years (range 2–15 years. All children received systemic chemotherapy according to the German Soft Tissue Sarcoma Study protocols. Median size of treatment volume for RT was 93,4 ml. We applied a median total dose of 45 Gy (range 32 Gy – 54 Gy using a median fractionation of 5 × 1,8 Gy/week (range 1,6 Gy – 1,8 Gy. The median time interval between primary diagnosis and radiation therapy was 5 months (range 3–9 months. Results After RT, the 3- and 5-year survival rate was 94%. The 3- and 5-year actuarial local control rate after RT was 89%. The actuarial freedom of distant metastases rate at 3- and 5-years was 89% for all patients. Radiotherapy was well tolerated in all children and could be completed without interruptions > 4 days. No toxicities >CTC grade 2 were observed. The median follow-up time after RT was 17 months. Conclusion IMRT and FSRT lead to excellent outcome in children with head-and-neck RMS with a low incidence of treatment-related side effects.

  4. Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Guckenberger, Matthias; Mayer, Mario; Sweeney, Reinhart A.; Flentje, Michael [University Hospital Wuerzburg (Germany). Dept. of Radiation Oncology; Buttmann, Mathias [University Hospital Wuerzburg (Germany). Dept. of Neurology; Vince, Giles H. [University Hospital Wuerzburg (Germany). Dept. of Neurosurgery

    2011-09-15

    The goal of this study was to evaluate accelerated radiotherapy with and without temozolomide (TMZ) for glioblastoma multiforme (GBM). This retrospective analysis evaluated 86 patients with histologically proven GBM who were treated with accelerated radiotherapy of 1.8 Gy twice daily to a total dose of 54 Gy within 3 weeks. Median age was 62 years and median Karnofsky index was 90. A total of 41 patients received radiotherapy only from 2002-2005 and 45 patients were treated with TMZ concomitantly and after radiotherapy from 2005-2007. Median overall survival (OS) was 12.5 months and 2-year OS was 15.4%. Patient characteristics were well balanced between the two groups except for better performance status (p = 0.05) and higher frequency of retreatment for the first recurrence (p = 0.02) in the TMZ group. Age at diagnosis (HR 2.83) and treatment with TMZ (HR 0.60) were correlated with OS in the multivariate analysis: treatment with and without TMZ resulted in median OS of 16 months and 11.3 months, respectively. Hematological toxicity grade > II was observed in 2/45 patients and 5/37 patients during simultaneous radiochemotherapy and adjuvant TMZ. TMZ added to accelerated radiotherapy for GBM resulted in prolonged overall survival with low rates of severe hematological toxicity. (orig.)

  5. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Directory of Open Access Journals (Sweden)

    Leeman Jonathan E

    2012-07-01

    Full Text Available Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SRT/SRS of brainstem metastases. Methods We retrospectively reviewed 38 tumors in 36 patients treated with SRT/SRS between February 2003 and December 2011. Treatment was delivered with the Cyberknife™ or Trilogy™ radiosurgical systems. The median age of patients was 62 (range: 28–89. Primary pathologies included 14 lung, 7 breast, 4 colon and 11 others. Sixteen patients (44% had received whole brain radiation therapy (WBRT prior to SRT/SRS; ten had received prior SRT/SRS at a different site (28%. The median tumor volume was 0.94 cm3 (range: 0.01-4.2 with a median prescription dose of 17 Gy (range: 12–24 delivered in 1–5 fractions. Results Median follow-up for the cohort was 3.2 months (range: 0.4-20.6. Nineteen patients (52% had an MRI follow-up available for review. Of these, one patient experienced local failure corresponding to an actuarial 6-month local control of 93%. Fifteen of the patients with available follow-up imaging (79% experienced intracranial failure outside of the treatment volume. The median time to distant intracranial failure was 2.1 months. Six of the 15 patients with distant intracranial failure (40% had received previous WBRT. The actuarial overall survival rates at 6- and 12-months were 27% and 8%, respectively. Predictors of survival included Graded Prognostic Assessment (GPA score, greater number of treatment fractions, and higher prescription dose. Three patients experienced acute treatment-related toxicity consisting of

  6. Single fraction versus multiple fraction radiotherapy for palliation of painful vertebral bone metastases: A prospective study

    Directory of Open Access Journals (Sweden)

    Dipanjan Majumder

    2012-01-01

    Conclusions: Different fractionation of radiation has same response and toxicity in treatment of vertebral bone metastasis. Single fraction RT may be safely used to treat these cases as this is more cost effective and less time consuming. Studies may be conducted to find out particular subgroup of patients to be benefitted more by either fractionation schedule; however, our study cannot comment on that issue.

  7. Evolution of Hypofractionated Accelerated Radiotherapy for Prostate Cancer – The Sunnybrook Experience

    Directory of Open Access Journals (Sweden)

    Hima Bindu Musunuru

    2014-11-01

    Full Text Available Stereotactic Ablative Body Radiotherapy (SABR is a newer method of ultra hypo fractionated radiotherapy that uses combination of image guided radiotherapy (IGRT and intensity modulated radiotherapy(IMRT or volumetric modulated arc therapy(VMAT, to deliver high doses of radiation in a few fractions to a target, at the same time sparing the surrounding organs at risk(OAR.SABR is ideal for treating small volumes of disease and has been introduced in a number of disease sites including brain, lung, liver, spine and prostate. Given the radiobiological advantages of treating prostate cancer with high doses per fraction, SABR is becoming a standard of care for low and intermediate risk prostate cancer patients based upon the results from Sunny Brook and also the US-based prostate SABR consortium. This review examines the development of moderate and ultra hypo fractionation schedules at the Odette Cancer centre, Sunnybrook Health Sciences. Moderate hypo fractionation protocol was first developed in 2001 for intermediate risk prostate cancer and from there on different treatment schedules including SABR evolved for all risk groups.

  8. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    OpenAIRE

    Leeman Jonathan E; Clump David A; Wegner Rodney E; Heron Dwight E; Burton Steven A; Mintz Arlan H

    2012-01-01

    Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SR...

  9. Late course accelerated hyperfractionation radiotherapy for elderly patients with esophageal carcinoma

    International Nuclear Information System (INIS)

    Objective: To study the clinical results and prognostic factors of late course accelerated hyperfractionation radiotherapy (LCAHR) in the treatment of esophageal carcinoma in the elderly. Methods: 105 over 60 year-old patients with esophageal carcinoma who received radical LCAHR, were retrospectively analysed. Radical tumoricidal dose of 67.9-72.0 Gy was delivered in 39-43 fractions over 42-53 days. Results: The 5-year local control rate was 63.7%. The 5-year disease-free survival and overall survival rate were 22.6% and 34.4%. Acute esophagitis and bronchitis were the most common but acceptable radioreactions Grade 1-2. No significant differences were found either in the clinical response or complication, between the 60-69 year and 70-80 year groups. By multivariate analysis, T stage and KPS score were two independent prognostic factors. Of 67 death cases, 31 died of local relapse, 23 of distant metastases, 8 of both and 5 of other causes. Conclusions: LCAHR toxicity, being tolerable for the older esophageal carcinoma patients, may improve their survival and quality of life

  10. The treatment of a large acoustic tumor with fractionated stereotactic radiotherapy

    OpenAIRE

    McClelland, Shearwood; Gerbi, Bruce J.; Cho, Kwan H.; Hall, Walter A.

    2007-01-01

    The treatment of acoustic neuromas (AN) usually involves surgical excision or stereotactic radiosurgery. However, for large AN (mean diameter > 3 cm), stereotactic radiosurgery is rarely used, leaving patients with limited noninvasive treatment options. Recently, the use of fractionated stereotactic radiotherapy (FSRT) has been effective in treating small to medium-sized AN. We present a patient with a large AN treated with FSRT. The patient was a 43-year-old man presenting with imbalance, ti...

  11. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    OpenAIRE

    Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-01-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. I...

  12. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation

    International Nuclear Information System (INIS)

    Although altered protocols that challenge conventional radiation fractionation have been tested in prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize that the proportion of radiosensitive proliferating cells is dependent on the saturation of the tumor carrying capacity. This may serve as a prognostic factor for personalized radiotherapy (RT) fractionation. We introduce a proliferation saturation index (PSI), which is defined as the ratio of tumor volume to the host-influenced tumor carrying capacity. Carrying capacity is as a conceptual measure of the maximum volume that can be supported by the current tumor environment including oxygen and nutrient availability, immune surveillance and acidity. PSI is estimated from two temporally separated routine pre-radiotherapy computed tomography scans and a deterministic logistic tumor growth model. We introduce the patient-specific pre-treatment PSI into a model of tumor growth and radiotherapy response, and fit the model to retrospective data of four non-small cell lung cancer patients treated exclusively with standard fractionation. We then simulate both a clinical trial hyperfractionation protocol and daily fractionations, with equal biologically effective dose, to compare tumor volume reduction as a function of pretreatment PSI. With tumor doubling time and radiosensitivity assumed constant across patients, a patient-specific pretreatment PSI is sufficient to fit individual patient response data (R2 = 0.98). PSI varies greatly between patients (coefficient of variation >128 %) and correlates inversely with radiotherapy response. For this study, our simulations suggest that only patients with intermediate PSI (0.45–0.9) are

  13. A retrospective analysis of survival outcomes for two different radiotherapy fractionation schedules given in the same overall time for limited stage small cell lung cancer

    International Nuclear Information System (INIS)

    To compare survival outcomes for two fractionation schedules of thoracic radiotherapy, both given over 3 weeks, in patients with limited stage small cell lung cancer (LS-SCLC). At Radiation Oncology Mater Centre (ROMC) and the Royal Brisbane and Women's Hospital (RBWH), patients with LS-SCLC treated with curative intent are given radiotherapy (with concurrent chemotherapy) to a dose of either 40Gy in 15 fractions ('the 40Gy/15⧣group') or 45Gy in 30 fractions ('the 45Gy/30⧣group'). The choice largely depends on institutional preference. Both these schedules are given over 3 weeks, using daily and twice-daily fractionation respectively. The records of all such patients treated from January 2000 to July 2009 were retrospectively reviewed and survival outcomes between the two groups compared. Of 118 eligible patients, there were 38 patients in the 40Gy/15⧣ group and 41 patients in the 45Gy/30⧣ group. The median relapse-free survival time was 12 months in both groups. Median overall survival was 21 months (95% CI 2–37 months) in the 40Gy/15⧣ group and 26 months (95% CI 1–48 months) in the 45Gy/30⧣ group. The 5-year overall survival rates were 20% and 25%, respectively (P=0.24). On multivariate analysis, factors influencing overall survival were: whether prophylactic cranial irradiation (PCI) was given (P=0.01) and whether salvage chemotherapy was given at the time of relapse (P=0.057). Given the small sample size, the potential for selection bias and the retrospective nature of our study it is not possible to draw firm conclusions regarding the efficacy of hypofractionated thoracic radiotherapy compared with hyperfractionated accelerated thoracic radiotherapy however hypofractionated radiotherapy may result in equivalent relapse-free survival.

  14. Particle-beam accelerators for radiotherapy and radioisotopes

    International Nuclear Information System (INIS)

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  15. Quality Assesment Of Photon And Electron Beams From Siemens PRIMUS Radiotherapy Accelerator

    International Nuclear Information System (INIS)

    There are two types of radiation from SIEMENS Primus Radiotherapy Accelerator at the National Cancer Hospital (K Hospital): electron and photon beams. Electron beams with four different energies of 6; 9; 12 and 15 MeV. Photon beams with two different energies: 6 MV and 15 MV. The symmetry as well as flatness of profiles created by all these beams are very important factors using in clinical practice. This report presents the method using water phantom to define absorbed dose distribution in medium of all beams. This is an effective and accurate method to define quality of radiation beams with different field sizes using in radiotherapy. (author)

  16. Carbon Ion Radiotherapy in Advanced Hypofractionated Regimens for Prostate Cancer: From 20 to 16 Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Tohru [National Institute of Radiological Sciences, Chiba (Japan); Tsuji, Hiroshi, E-mail: h_tsuji@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Kamada, Tadashi [National Institute of Radiological Sciences, Chiba (Japan); Akakura, Koichiro; Suzuki, Hiroyoshi; Shimazaki, Jun [Department of Urology, Graduate School of Medicine, Chiba University, Chiba (Japan); Tsujii, Hirohiko [National Institute of Radiological Sciences, Chiba (Japan)

    2012-11-15

    Purpose: To assess the effects of differences in dose fractionation on late radiation toxicity and biochemical control in patients with prostate cancer treated with carbon ion radiotherapy (C-ion RT). Methods and Materials: A total of 740 prostate cancer patients who received C-ion RT between April 2000 and February 2009 were analyzed. Of those, 664 patients followed for at least 1 year were analyzed with regard to late radiation toxicity. Biochemical relapse-free (BRF) and overall survival (OS) rates in patient subgroups with each dose-fractionation were analyzed. Results: Only 1 case of grade 3 genitourinary (GU) morbidity was observed in 20 fractions, and none of the patients developed higher grade morbidities. The incidence of late GU toxicity in patients treated with 16 fractions was lower than that of patients treated with 20 fractions. The OS rate and BRF rate of the entire group at 5 years were 95.2% and 89.7%, respectively. The 5-year BRF rate of the patients treated with 16 fractions of C-ion RT (88.5%) was comparable to that of the patients treated with 20 fractions (90.2%). Conclusion: C-ion RT of 57.6 GyE (the physical C-ion dose [Gy] Multiplication-Sign RBE) in 16 fractions could offer an even lower incidence of genitourinary toxicity and comparable BRF rate than that in 20 fractions. Advancement in hypofractionation could be safely achieved with C-ion RT for prostate cancer.

  17. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

    Energy Technology Data Exchange (ETDEWEB)

    Droege, L.H.; Hinsche, T.; Hess, C.F.; Wolff, H.A. [University Hospital of Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Canis, M. [University of Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Alt-Epping, B. [University of Goettingen, Department of Palliative Medicine, Goettingen (Germany)

    2014-02-15

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting. (orig.)

  18. Accelerated ray tracing for radiotherapy dose calculations on a GPU

    NARCIS (Netherlands)

    M. de Greef; J. Crezee; J.C. van Eijk; R. Pool; A. Bel

    2009-01-01

    PURPOSE: The graphical processing unit (GPU) on modern graphics cards offers the possibility of accelerating arithmetically intensive tasks. By splitting the work into a large number of independent jobs, order-of-magnitude speedups are reported. In this article, the possible speedup of PLATO's ray t

  19. Study of inter-fractional variations and adaptive radiotherapy in pancreatic cancer

    International Nuclear Information System (INIS)

    Objective: To quantitatively characterize the inter-fractional anatomy variations and advantages of dosimetry for the adaptive radiotherapy in pancreatic cancer. Methods: A total of 226 daily CT images acquired from 10 patients with pancreatic cancer treated with image-guided radiotherapy were analyzed retrospectively. Targets and organs at risk (OARs) were delineated by the atlas-based automatic segmentation and modified by the skilled physician. Various parameters,including the center of mass (COM) distance, the maximal overlap ratio (MOR) and the Dice coefficient (DC), were used to quantify the inter-fractional organ displacement and deformation. The adaptive radiation therapy (ART) was applied to handle the daily GT images. The dose distributions parameters from the ART plan were compared with those from the repositioning plan. Results: The inter-fractional anatomy variations of pancreas head were obvious in the pancreatic cancer irradiation. The mean COM distance, MOR and DC of pancreas head after the bony or soft tissue alignment and registration was (7.8 ± 1.3)mm, (87.2 ± 8.4)% and (77.2 ±7.9)% respectively. Compared with the repositioning plan, the ART plan had better target coverage and OARs sparing. For example, the mean V100 of PTV was improved from (93.32 ± 2.89) % for repositioning plan to (96.03 ± 1.42)% for ART plan with t =2.79, P =0.008 and the mean V50.4 for duodenum was reduced from (43.4 ± 12.71)% for the repositioning plan to (15.6 ± 6.25)% for the ART plan with t =3.52, P=0.000. Conclusions: The ART can effectively account for the obvious inter-fractional anatomy variations in pancreatic cancer irradiation and be used to escalate the radiotherapy dose for the pancreatic cancer, which will lead to a promising higher local control rate. (authors)

  20. Optimum radiotherapy schedule for uterine cervical cancer based-on the detailed information of dose fractionation and radiotherapy technique

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Ho; Kim, Hyun Chang; Suh, Chang Ok [Yonsei University Medical School, Seoul (Korea, Republic of)] (and others)

    2005-09-15

    The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of 23.4 {approx} 59.4 Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-ICBT) was also performed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of 14.4{approx} 43.2 Gy (Median 36.0) of EBRT in 495 patients, while in the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder and rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ({alpha} / {beta} = 10) and late-responding tissues ({alpha} /{beta} = 3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED Gy{sub 3} and the risk of complication was assessed using serial multiple logistic regressions models. The associations between R

  1. Radiation myelopathy in patients treated for carcinoma of bronchus using a six fraction regime of radiotherapy

    International Nuclear Information System (INIS)

    The adoption of a six-fraction regime of radiotherapy for patients with locally advanced carcinoma of the bronchus was followed by the appearance of radiation myelitis in eight cases. These were among a group of 130 patients given radiotherapy with anterior and posterior treatment fields, without shielding of the spinal cord. Radiation myelitis was found only in those where the calculated spinal-cord dose exceeded 3350 cGy(rad). The possible precipitating factors in the eight patients who suffered myelopathy were compared with those in the remaining 62 patients who also received spinal-cord doses calculated to be greater than 3350 cGy(rad). Only one difference was found - the haemoglobin concentration was significantly higher in those who suffered neuropathy compared with those who did not (P=0.05). (U.K.)

  2. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  3. Stereotactic radiotherapy (SRT) for acoustic neuroma by linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Tooru; Shirato, Hiroki; Fukuda, Satoshi [Hokkaido Univ., Sapporo (Japan). School of Medicine] [and others

    1997-10-01

    We analyzed forty one patients with acoustic neuroma treated by SRT giving 36 Gy in 20 fractions to 48 Gy in 23 fractions during 1991 and 1997, and found a sterilization of tumor size in 97.6%. Twenty-six patients had measurable hearing before and after SRT and 43.5% of patients showed change in pure tone average less than 10 dB, 82.6% less than 20 dB at the last follow-up examination. Facial and trigeminal nerve function was evaluated in 41 patients. Transient facial weakness developed in 4.8% and trigeminal neuropathy in 9.6% of irradiated cases. We consider that SRT complications are less than that of gamma-knife, although the longer follow-up period should be needed. (author)

  4. Investigating the dosimetric effect of inter-fraction deformation in lung cancer stereotactic body radiotherapy (SBRT

    Directory of Open Access Journals (Sweden)

    Jing Jia

    2014-03-01

    Full Text Available Purpose: We studied on the negative dosimetric effect of inter-fraction deformation in lung stereotactic body radiotherapy (SBRT, in order to see whether there is a need for adaptive re-planning of lung SBRT cases.Methods: Six lung cancer patients with different treatment fractions were retrospectively investigated. All the patients were immobilized and localized with a stereotactic body frame and were treated with cone-beam CT guidance for each fraction. We calculated the actual delivered dose of the treatment plan using the up-to-date patient geometry of each fraction, and compared the dose with the intended plan dose to investigate the dosimetric effect of the inter-fraction deformation. Due to the relatively poor image quality of CBCT, deformable registration was carried out between treatment planning CT and CBCT of each fraction to obtain deformed planning CT for more accurate dose calculation of delivered dose. The extent of the inter-fraction deformation was also evaluated by calculating the dice similarity coefficient between the contours on planning CT and those on deformed planning CT.Results: The average dice coefficients for PTV, spinal cord, esophagus were 0.87, 0.83 and 0.69, respectively. The volume of PTV covered by prescription dose was decreased by 23.78% on average for all fractions of all patients. For spinal cord and esophagus, the volumes covered by the constraint dose were increased by 4.57% and 3.83% in most fractions. The maximum dose was also increased by 4.11% for spinal cord and 4.29% for esophagus.Conclusion: Due to inter-fraction deformation, large deterioration was found in both PTV coverage and OAR sparing, which demonstrated the need for adaptive re-planning of lung SBRT cases to improve target coverage while reducing radiation dose to nearby normal tissues.----------------------------------------Cite this article as: Jia J, Tian Z, Gu X, Yan H, Jia X, Jiang S. Investigating the dosimetric effect of inter-fraction

  5. Low or High Fractionation Dose β-Radiotherapy for Pterygium? A Randomized Clinical Trial

    International Nuclear Information System (INIS)

    Purpose: Postoperative adjuvant treatment using β-radiotherapy (RT) is a proven technique for reducing the recurrence of pterygium. A randomized trial was conducted to determine whether a low fractionation dose of 2 Gy within 10 fractions would provide local control similar to that after a high fractionation dose of 5 Gy within 7 fractions for surgically resected pterygium. Methods: A randomized trial was conducted in 200 patients (216 pterygia) between February 2006 and July 2007. Only patients with fresh pterygium resected using a bare sclera method and given RT within 3 days were included. Postoperative RT was delivered using a strontium-90 eye applicator. The pterygia were randomly treated using either 5 Gy within 7 fractions (Group 1) or 2 Gy within 10 fractions (Group 2). The local control rate was calculated from the date of surgery. Results: Of the 216 pterygia included, 112 were allocated to Group 1 and 104 to Group 2. The 3-year local control rate for Groups 1 and 2 was 93.8% and 92.3%, respectively (p = .616). A statistically significant difference for cosmetic effect (p = .034), photophobia (p = .02), irritation (p = .001), and scleromalacia (p = .017) was noted in favor of Group 2. Conclusions: No better local control rate for postoperative pterygium was obtained using high-dose fractionation vs. low-dose fractionation. However, a low-dose fractionation schedule produced better cosmetic effects and resulted in fewer symptoms than high-dose fractionation. Moreover, pterygia can be safely treated in terms of local recurrence using RT schedules with a biologic effective dose of 24–52.5 Gy10.

  6. Low or High Fractionation Dose {beta}-Radiotherapy for Pterygium? A Randomized Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Viani, Gustavo Arruda, E-mail: gusviani@gmail.com [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil); De Fendi, Ligia Issa; Fonseca, Ellen Carrara [Department of Ophthalmology, Marilia Medicine School, Sao Paulo, SP (Brazil); Stefano, Eduardo Jose [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil)

    2012-02-01

    Purpose: Postoperative adjuvant treatment using {beta}-radiotherapy (RT) is a proven technique for reducing the recurrence of pterygium. A randomized trial was conducted to determine whether a low fractionation dose of 2 Gy within 10 fractions would provide local control similar to that after a high fractionation dose of 5 Gy within 7 fractions for surgically resected pterygium. Methods: A randomized trial was conducted in 200 patients (216 pterygia) between February 2006 and July 2007. Only patients with fresh pterygium resected using a bare sclera method and given RT within 3 days were included. Postoperative RT was delivered using a strontium-90 eye applicator. The pterygia were randomly treated using either 5 Gy within 7 fractions (Group 1) or 2 Gy within 10 fractions (Group 2). The local control rate was calculated from the date of surgery. Results: Of the 216 pterygia included, 112 were allocated to Group 1 and 104 to Group 2. The 3-year local control rate for Groups 1 and 2 was 93.8% and 92.3%, respectively (p = .616). A statistically significant difference for cosmetic effect (p = .034), photophobia (p = .02), irritation (p = .001), and scleromalacia (p = .017) was noted in favor of Group 2. Conclusions: No better local control rate for postoperative pterygium was obtained using high-dose fractionation vs. low-dose fractionation. However, a low-dose fractionation schedule produced better cosmetic effects and resulted in fewer symptoms than high-dose fractionation. Moreover, pterygia can be safely treated in terms of local recurrence using RT schedules with a biologic effective dose of 24-52.5 Gy{sub 10.}.

  7. Radiotherapy of the rhabdomyosarcoma R1H of the rat: Split-course versus continuous fractionation

    International Nuclear Information System (INIS)

    Fractionated split-course treatments were given with gaps of different length and the effect on tumor response was studied using the rhabdomyosarcoma R1H of the rat. Total doses of 68, 75 and 82 Gy were applied in 30 fractions (five fractions per week). After four weeks, that is after 20 fractions, treatment was interrupted for one or two weeks followed by another ten fractions. The results were compared to those of continuous treatment given in six consecutive weeks. Tumor response was quantified by TCD37% and net growth delay. The TCD37% increased with increasing duration of the gap. A mean repopulated dose of 0.72 Gy per day was obtained. This corresponds to a doubling time of tumor clonogens of 4.2 days during the gap, which is somewhat slower than the volume doubling time of unperturbed tumors (2.5 days) of the same size. The results obtained for the net growth delay support the results of the TCD37% data. It is concluded that a gap during fractionated radiotherapy leads to poorer results since the dose required for tumor control is enhanced and sparing of normal tissue can only be expected for early but not for late reacting tissues. (orig.)

  8. In Vivo Dosimetry for Single-Fraction Targeted Intraoperative Radiotherapy (TARGIT) for Breast Cancer

    International Nuclear Information System (INIS)

    Purpose: In vivo dosimetry provides an independent check of delivered dose and gives confidence in the introduction or consistency of radiotherapy techniques. Single-fraction intraoperative radiotherapy of the breast can be performed with the Intrabeam compact, mobile 50 kV x-ray source (Carl Zeiss Surgical, Oberkochen, Germany). Thermoluminescent dosimeters (TLDs) can be used to estimate skin doses during these treatments. Methods and Materials: Measurements of skin doses were taken using TLDs for 72 patients over 3 years of clinical treatments. Phantom studies were also undertaken to assess the uncertainties resulting from changes in beam quality and backscatter conditions in vivo. Results: The mean measured skin dose was 2.9 ± 1.6 Gy, with 11% of readings higher than the prescription dose of 6 Gy, but none of these patients showed increased complications. Uncertainties due to beam hardening and backscatter reduction were small compared with overall accuracy. Conclusions: TLDs are a useful and effective method to measure in vivo skin doses in intraoperative radiotherapy and are recommended for the initial validation or any modification to the delivery of this technique. They are also an effective tool to show consistent and safe delivery on a more frequent basis or to determine doses to other critical structures as required.

  9. High-dose weekly fractionation radiotherapy in advanced cancer of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Browde, S.; Nissenbaum, M.; De Moor, N.G. (University of the Witwatersrand, Johannesburg (South Africa))

    1984-07-07

    A trial comparing two different radiotherapy techniques and schedules is the treatment of 83 patients with advanced cancer of the uterine cervix (stage IIIB) employing external irradiation alone is described. The one technique, used routinely in this department, employed a conventional daily fractionation schedule while the other used a high-dose weekly fractionation regimen. The techniques are described. The aim of the trial was to compare the efficacy and morbidity of these two methods of treatment. Dose distribution curves in cross-section and midsagittal planes are shown and calculations or equivalent doses at various selected points using Ellis's nominal single-dose formula are tabulated. The 2-year survival figures were 33% for the daily fractionation technique and 22% for the weekly regimen. Serious late complication rates were 6% for the daily regimen and 22% for the weekly schedule. These differences are not statistically significant. Late complication rates in the weekly fractionation regimen appeared to be lower than figures quoted by other authors. Local control within the irradiated volume was better in the group treated by the daily fractionation method.

  10. Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience

    Energy Technology Data Exchange (ETDEWEB)

    Collen, Christine, E-mail: ccollen@uzbrussel.be [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Ampe, Ben [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Gevaert, Thierry [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Moens, Maarten [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Linthout, Nadine; De Ridder, Mark; Verellen, Dirk [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); D' Haens, Jean [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Storme, Guy [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium)

    2011-11-15

    Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessions of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.

  11. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Amini Arya

    2012-03-01

    Full Text Available Abstract Background While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. Methods This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1 and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2. Results There were 119 (39.7% patients in the ACRT group, 90 (30.0% in STRT1 and 91 (30.3% in STRT2. More patients in the ACRT group had KPS ≤ 60 (p 5% (p = 0.002, and had stage 3B disease (p Conclusions Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC.

  12. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    CERN Document Server

    Kanematsu, Nobuyuki

    2016-01-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. In this study, we reformulate the extrapolated response dose (ERD), or synonymously BED, which normalizes the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a single model cell system and a typical treating radiation in carbon-ion RT. The ERD distribution virtually represents the biological effect of the treatment regardless of radiation modality or fractionation scheme. We applied the ERD formulation to simplistic model treatments and to a preclinical su...

  13. Intra-fractional bladder motion and margins in adaptive radiotherapy for urinary bladder cancer

    DEFF Research Database (Denmark)

    Grønborg, Caroline; Vestergaard, Anne; Høyer, Morten;

    2015-01-01

    BACKGROUND: The bladder is a tumour site well suited for adaptive radiotherapy (ART) due to large inter-fractional changes, but it also displays considerable intra-fractional motion. The aim of this study was to assess target coverage with a clinically applied method for plan selection ART...... were added to account for intra-fractional changes. Pre-treatment and weekly repeat magnetic resonance imaging (MRI) series were acquired in which a full three-dimensional (3D) volume was scanned every second min for 10 min (a total of 366 scans in 61 series). Initially, the bladder clinical target...... by the selected PTV. Population-based margins of 14 mm Sup/Ant, 9 mm Post and 5 mm Inf/Lat were sufficient to cover the bladder. Using patient-specific margins, the overlap between PTV and bowel-cavity was reduced from 137 cm(3) with the plan selection strategy to 24 cm(3). CONCLUSION: In this phase II ART trial...

  14. Hypo-fractionated treatment in radiotherapy: radio-biological models Tcp and NTCP

    International Nuclear Information System (INIS)

    At the present time the breast cancer in Mexico has the first place of incidence of the malignant neoplasia s in the women, and represents 11.34% of all the cancer cases. On the other hand, the treatments for cancer by means of ionizing radiations have been dominated under the approaches of the medical radio-oncologists which have been based on test and error by many years. The radio-biological models, as the Tcp, NTCP and dosimetric variables, for their clinical application in the conventional radiotherapy with hypo-fractionation have as purpose predicting personalized treatment plans that they present most probability of tumor control and minor probability of late reactions, becoming this way support tools in the decisions taking for the patient treatments planning of Medical Physicists and Radio-oncologists. (Author)

  15. Micronuclei in cytokinesis-blocked lymphocytes of cancer patients following fractionated partial-body radiotherapy

    International Nuclear Information System (INIS)

    The cytokinesis-block micronucleus assay was used to measure chromosome damage in lymphocytes of 11 cancer patients undergoing fractionated partial-body irradiation. Measurements performed before, during and after cessation of radiotherapy showed a dose-related increase in micronucleus frequency in each patient studied. When results for micronucleus frequency (Y) were plotted against estimated equivalent whole-body dose (X) the dose-response relationship obtained was Y = 75.8X + 49.5 (r = 0.783, P<0.0001). A general decline in MN frequency was observed during the post-treatment period down to 57% (±10) after 12 months but with considerable variation between individuals. Advantages and disadvantages of the application of the cytokinesis-block micronucleus assay as a biological dosemeter for lymphocytes irradiated in vivo are discussed. (author)

  16. Dose-Escalation Study of Single-Fraction Stereotactic Body Radiotherapy for Liver Malignancies

    International Nuclear Information System (INIS)

    Purpose: We performed a Phase I dose-escalation study to explore the feasibility and safety of treating primary and metastatic liver tumors with single-fraction stereotactic body radiotherapy (SBRT). Methods and Materials: Between February 2004 and February 2008, 26 patients were treated for 40 identifiable lesions. Nineteen patients had hepatic metastases, 5 had intrahepatic cholangiocarcinomas, and 2 had recurrent hepatocellular carcinomas. The prescribed radiation dose was escalated from 18 to 30 Gy at 4-Gy increments with a planned maximum dose of 30 Gy. Cumulative incidence functions accounted for competing risks to estimate local failure (LF) incidence over time under the competing risk of death. Results: All patients tolerated the single-fraction SBRT well without developing a dose-limiting toxicity. Nine acute Grade 1 toxicities, one acute Grade 2 toxicity, and two late Grade 2 gastrointestinal toxicities were observed. After a median of 17 months follow-up (range, 2-55 months), the cumulative risk of LF at 12 months was 23%. Fifteen patients have died: 11 treated for liver metastases and 4 with primary liver tumors died. The median survival was 28.6 months, and the 2-year actuarial overall survival was 50.4%. Conclusions: It is feasible and safe to deliver single-fraction, high-dose SBRT to primary or metastatic liver malignancies measuring ≤5 cm. Moreover, single-fraction SBRT for liver lesions demonstrated promising local tumor control with minimal acute and long-term toxicity. Single-fraction SBRT appears to be a viable nonsurgical option, but further studies are warranted to evaluate both control rates and impact on quality of life.

  17. Vertical mammaplasty associated with accelerated partial breast radiotherapy: how oncoplastic surgery techniques associated with modern techniques of radiotherapy can improve the aesthetic outcome in selected patients

    International Nuclear Information System (INIS)

    Breast cancer is the second most common type of cancer in the world, being the most common among women, responsible for 22% of new cases each year. It's surgical and radiation treatment evolved from radical procedures (Halsted radical mastectomy and total external breast radiotherapy) to less radical and more conservative procedures. With the use of modern oncoplastic surgery techniques and accelerated partial breast radiotherapy, selected patients can benefit with better aesthetic results, fewer side effects, and more comfortable and brief treatments. (author)

  18. Vertical mammaplasty associated with accelerated partial breast radiotherapy: how oncoplastic surgery techniques associated with modern techniques of radiotherapy can improve the aesthetic outcome in selected patients

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Henrique Lima, E-mail: enriquecouto@hotmail.com [Santa Fe Women' s and Maternity Hospital, Belo Horizonte, MG (Brazil); Amorim, Washington Cancado; Guimaraes, Rodrigo [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Hospital Geral; Ramires, Leandro Cruz; Castilho, Marcus Simoes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina; Dominguez, Lorena Lima Coto [Universidade Estacio de Sa (UNESA), Rio de Janeiro, EJ (Brazil)

    2014-07-15

    Breast cancer is the second most common type of cancer in the world, being the most common among women, responsible for 22% of new cases each year. It's surgical and radiation treatment evolved from radical procedures (Halsted radical mastectomy and total external breast radiotherapy) to less radical and more conservative procedures. With the use of modern oncoplastic surgery techniques and accelerated partial breast radiotherapy, selected patients can benefit with better aesthetic results, fewer side effects, and more comfortable and brief treatments. (author)

  19. Fractionated External Beam Radiotherapy as a Suitable Preparative Regimen for Hepatocyte Transplantation After Partial Hepatectomy

    International Nuclear Information System (INIS)

    Purpose: Hepatocyte transplantation is strongly considered to be a promising option to correct chronic liver failure through repopulation of the diseased organ. We already reported on extensive liver repopulation by hepatocytes transplanted into rats preconditioned with 25-Gy single dose selective external beam irradiation (IR). Herein, we tested lower radiation doses and fractionated protocols, which would be applicable in clinical use. Methods and Material: Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with partial liver external beam single dose IR at 25 Gy, 8 Gy, or 5 Gy, or fractionated IR at 5 x 5 Gy or 5 x 2 Gy. Four days after completion of IR, a partial hepatectomy (PH) was performed to resect the untreated liver section. Subsequently, 12 million wild-type (DPPIV+) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor cell integration and liver repopulation was studied 16 weeks after transplantation by means of immunofluorescence and DPPIV-luminescence assay. Results: Donor hepatocyte integration and liver repopulation were more effective in the irradiated livers following pretreatment with the IR doses 1 x 25 Gy and 5 x 5 Gy (formation of large DPPIV-positive cell clusters) than single-dose irradiation at 8 Gy or 5 Gy (DPPIV-positive clusters noticeably smaller and less frequent). Quantitative analysis of extracted DPPIV revealed signals exceeding the control level in all transplanted animals treated with IR and PH. Compared with the standard treatment of 1 x 25 Gy, fractionation with 5 x 5 Gy was equally efficacious, the Mann-Whitney U test disclosing no statistically significant difference (p = 0.146). The lower doses of 1 x 5 Gy, 1 x 8 Gy, and 5 x 2 Gy were significantly less effective with p < 0.05. Conclusion: This study suggests that fractionated radiotherapy in combination with PH is a conceivable pretreatment approach to prime the host liver for hepatocyte transplantation, thus

  20. Immunologic changes after loco-regional radiotherapy and fractionated total body irradiation (TBI) in mice

    International Nuclear Information System (INIS)

    The immunologic effects of fractionated irradiation to both hind limbs and the tail of adult mice were investigated. A dose of 34 Gy given in 17 fractions of 2 Gy, 1 fraction per day, 5 days per week, was delivered with a 60Co source. A significant decrease of the total splenocyte count and of the PHA(phytohemagglutinin)-induced proliferation of T cells was found immediately after irradiation. Both parameters normalized within 30 days after irradiation. Immediately after irradiation, the MLC (mixed lymphocyte culture) was supranormal, dropped to 45% 1 week later, and normalized within 1 month after radiotherapy. The NK (natural killer) activity was significantly decreased only the first week after loco-regional irradiation, while the LAK (lymphokine activated killer) activity was not altered at all. The percentage of goat-anti-mouse+ cells (mainly B lymphocytes) was not changed immediately after loco-regional irradiation, but rose to supranormal values (175% of control level) 3 months after irradiation. A persistent decrease of the percentage and the absolute numbers of the Lyt2+ cells (= CD8+ cells, suppressor/cytotoxic phenotype) was observed up to 3 months after irradiation, while the percentage of L3T4+ cells (= CD4+ cells, helper phenotype) remained normal for the total follow-up. No differences in allogeneic skin graft survival could be demonstrated between irradiated and control animals. The observed immunological effects could not be explained by the scatter irradiation to the whole body as total body irradiation (TBI) administered in a dose and dose rate similar to the scatter dose did not result in persistent immunologic changes. No dose-rate effect could be demonstrated in a low dose fractionated total body irradiation schedule. A total body irradiation similar to the scatter dose in humans did not result in significant immunologic changes

  1. Continuous hyperfractionated accelerated radiotherapy with/without mitomycin C in head and neck cancer

    NARCIS (Netherlands)

    Dobrowsky, W; Naude, J; Widder, J; Dobrowsky, E; Millesi, W; Pavelka, R; Grasl, C; Reichel, M

    1998-01-01

    Purpose: To evaluate the effect of mitomycin C to an accelerated hyperfractionated radiation therapy. The aim was to test a very short schedule with/without mitomycin C (MMC) with conventional fractionation in histologically verified squamous cell carinoma of the head and neck region. Methods and Ma

  2. Hypo-fractionated radiotherapy of breast cancer: long term results of a set of 80 cases treated in the radiotherapy department of the Oran university hospital

    International Nuclear Information System (INIS)

    The authors report the assessment of the local and locoregional control and of the acute and late toxicity of adjuvant hypo-fractionated radiotherapy in breast cancer treatment. During 1998, 80 women have been treated by conservative or radical surgery and hypo-fractionated tele-cobalto-therapy (36 Gy in five fractions of 3 Gy a week, and a boost of 15 Gy in five fractions in case of conservative surgery). Results are discussed in terms of local and locoregional recurrence, tolerance, late toxicity, global survival, and tumour classification. The irradiation scheme seems perfectly achievable but a greater number of patients and a longer follow-up are required to better assess the efficiency and aesthetic results. Short communication

  3. Acute toxicity profile and compliance to accelerated radiotherapy plus carbogen and nicotinamide for clinical stage T2-4 laryngeal cancer: results of a phase III randomized trial.

    NARCIS (Netherlands)

    Janssens, G.O.R.J.; Terhaard, C.H.J.; Doornaert, P.A.; Bijl, H.P.; Ende, P. van den; Chin, A.; Pop, L.A.M.; Kaanders, J.H.A.M.

    2012-01-01

    PURPOSE: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. METHODS AND MATERIALS: From April 2001 to February 2008, 345 patients with

  4. ACUTE TOXICITY PROFILE AND COMPLIANCE TO ACCELERATED RADIOTHERAPY PLUS CARBOGEN AND NICOTINAMIDE FOR CLINICAL STAGE T2-4 LARYNGEAL CANCER : RESULTS OF A PHASE III RANDOMIZED TRIAL

    NARCIS (Netherlands)

    Janssens, Geert O.; Terhaard, Chris H.; Doornaert, Patricia A.; Bijl, Hendrik P.; van den Ende, Piet; Chin, Alim; Pop, Lucas A.; Kaanders, Johannes H.

    2012-01-01

    Purpose: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. Methods and Materials: From April 2001 to February 2008, 345 patients with

  5. A Phase I Study of Chemoradiotherapy With Use of Involved-Field Conformal Radiotherapy and Accelerated Hyperfractionation for Stage III Non-Small Cell Lung Cancer: WJTOG 3305

    International Nuclear Information System (INIS)

    Purpose: A Phase I study to determine a recommended dose of thoracic radiotherapy using accelerated hyperfractionation for unresectable non–small-cell lung cancer was conducted. Methods and Materials: Patients with unresectable Stage III non–small-cell lung cancer were treated intravenously with carboplatin (area under the concentration curve 2) and paclitaxel (40 mg/m2) on Days 1, 8, 15, and 22 with concurrent twice-daily thoracic radiotherapy (1.5 Gy per fraction) beginning on Day 1 followed by two cycles of consolidation chemotherapy using carboplatin (area under the concentration curve 5) and paclitaxel (200 mg/m2). Total doses were 54 Gy in 36 fractions, 60 Gy in 40 fractions, 66 Gy in 44 fractions, and 72 Gy in 48 fractions at Levels 1 to 4. The dose-limiting toxicity, defined as Grade ≥4 esophagitis and neutropenic fever and Grade ≥3 other nonhematologic toxicities, was monitored for 90 days. Results: Of 26 patients enrolled, 22 patients were assessable for response and toxicity. When 4 patients entered Level 4, enrollment was closed to avoid severe late toxicities. Dose-limiting toxicities occurred in 3 patients. They were Grade 3 neuropathy at Level 1 and Level 3 and Grade 3 infection at Level 1. However, the maximum tolerated dose was not reached. The median survival time was 28.6 months for all patients. Conclusions: The maximum tolerated dose was not reached, although the dose of radiation was escalated to 72 Gy in 48 fractions. However, a dose of 66 Gy in 44 fractions was adopted for this study because late toxicity data were insufficient.

  6. A Phase I Study of Chemoradiotherapy With Use of Involved-Field Conformal Radiotherapy and Accelerated Hyperfractionation for Stage III Non-Small Cell Lung Cancer: WJTOG 3305

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Takuhito, E-mail: tada@msic.med.osaka-cu.ac.jp [Department of Radiology, Osaka City University Graduate School of Medicine, Osaka (Japan); Department of Radiology, Izumi Municipal Hospital, Izumi (Japan); Chiba, Yasutaka [Department of Environmental Medicine and Behavioural Science, Kinki University Faculty of Medicine, Osaka-sayama (Japan); Tsujino, Kayoko [Department of Radiation Oncology, Hyogo Cancer Center, Akashi (Japan); Fukuda, Haruyuki [Department of Radiology, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino (Japan); Nishimura, Yasumasa [Department of Radiation Oncology, Kinki University Faculty of Medicine, Osaka-sayama (Japan); Kokubo, Masaki [Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Kobe (Japan); Negoro, Shunichi [Department of Medical Oncology, Hyogo Cancer Center, Akashi (Japan); Kudoh, Shinzoh [Department of Respiratory Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Fukuoka, Masahiro [Department of Medical Oncology, Izumi Municipal Hospital, Izumi (Japan); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-sayama (Japan); Nakanishi, Yoichi [Research Institute for Disease of the Chest, Graduate School of Medical Science, Kyusyu University, Fukuoka (Japan)

    2012-05-01

    Purpose: A Phase I study to determine a recommended dose of thoracic radiotherapy using accelerated hyperfractionation for unresectable non-small-cell lung cancer was conducted. Methods and Materials: Patients with unresectable Stage III non-small-cell lung cancer were treated intravenously with carboplatin (area under the concentration curve 2) and paclitaxel (40 mg/m{sup 2}) on Days 1, 8, 15, and 22 with concurrent twice-daily thoracic radiotherapy (1.5 Gy per fraction) beginning on Day 1 followed by two cycles of consolidation chemotherapy using carboplatin (area under the concentration curve 5) and paclitaxel (200 mg/m{sup 2}). Total doses were 54 Gy in 36 fractions, 60 Gy in 40 fractions, 66 Gy in 44 fractions, and 72 Gy in 48 fractions at Levels 1 to 4. The dose-limiting toxicity, defined as Grade {>=}4 esophagitis and neutropenic fever and Grade {>=}3 other nonhematologic toxicities, was monitored for 90 days. Results: Of 26 patients enrolled, 22 patients were assessable for response and toxicity. When 4 patients entered Level 4, enrollment was closed to avoid severe late toxicities. Dose-limiting toxicities occurred in 3 patients. They were Grade 3 neuropathy at Level 1 and Level 3 and Grade 3 infection at Level 1. However, the maximum tolerated dose was not reached. The median survival time was 28.6 months for all patients. Conclusions: The maximum tolerated dose was not reached, although the dose of radiation was escalated to 72 Gy in 48 fractions. However, a dose of 66 Gy in 44 fractions was adopted for this study because late toxicity data were insufficient.

  7. Accelerated superfractionated radiotherapy for inflammatory breast carcinoma: complete response predicts outcome and allows for breast conservation

    International Nuclear Information System (INIS)

    Purpose: Chemotherapy and accelerated superfractionated radiotherapy were prospectively applied for inflammatory breast carcinoma with the intent of breast conservation. The efficacy, failure patterns, and patient tolerance utilizing this approach were analyzed. Methods and Materials: Between 1983 and 1996, 52 patients with inflammatory breast carcinoma presented to the Medical College of Virginia Hospitals of VCU and the New England Medical Center. Thirty-eight of these patients were jointly evaluated in multidisciplinary breast clinics and managed according to a defined prospectively applied treatment policy. Patients received induction chemotherapy, accelerated superfractionated radiotherapy, selected use of mastectomy, and concluded with additional chemotherapy. The majority were treated with 1.5 Gy twice daily to field arrangements covering the entire breast and regional lymphatics. An additional 18-21 Gy was then delivered to the breast and clinically involved nodal regions. Total dose to clinically involved areas was 63-66 Gy. Following chemoradiotherapy, patients were evaluated with physical examination, mammogram, and fine needle aspiration x 3. Mastectomy was reserved for those patients with evidence of persistent or progressive disease in the involved breast. All patients received additional chemotherapy. Results: Median age was 51 years. Median follow-up was 23.9 months (6-86) months. The breast preservation rate at the time of last follow-up was 74%. The treated breast or chest wall as the first site of failure occurred in only 13%, and the ultimate local control rate with the selected use of mastectomy was 74%. Ten patients underwent mastectomy, 2 of which had pathologically negative specimens despite a clinically palpable residual mass. Response to chemotherapy was predictive of treatment outcome. Of the 15 patients achieving a complete response, 87% remain locoregionally controlled without the use of mastectomy. Five-year overall survival for

  8. Prevalence and peak incidence of acute and late normal tissue morbidity in the DAHANCA 6&7 randomised trial with accelerated radiotherapy for head and neck cancer

    DEFF Research Database (Denmark)

    Mortensen, Hanna R; Overgaard, Jens; Specht, Lena;

    2012-01-01

    included 1476 patients eligible for primary radiotherapy alone. Patients were randomised between five or six weekly fractions of conventional radiotherapy. The prescribed dose was 66-68Gy in 33-34 fractions. All patients were seen weekly during treatment and at regular intervals after completion where...

  9. Neuropsychological outcome after fractionated stereotactic radiotherapy (FSRT) for base of skull meningiomas: a prospective 1-year follow-up

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to evaluate the cognitive outcome after fractionated stereotactic radiotherapy (FSRT) in patients with base of skull meningiomas. Methods and material: A total of 40 patients with base of skull meningiomas were neuro psychologically evaluated before, after the first fraction (1.8 Gy), at the end of FSRT (n=37), 6 weeks (n=24), 6 (n=18) and 12 months (n=14) after FSRT. A comprehensive test battery including assessment of general intelligence, attention and memory functions was used. Alternate forms were used and current mood state was controlled. Results: After the first fraction a transient decline in memory function and simultaneous improvements in attention functions were observed. No cognitive deteriorations were seen during further follow-up, but increases in attention and memory functions were observed. Mood state improved after the first fraction, at the end of radiotherapy and 6 weeks after radiotherapy. Conclusion: The present data support the conclusion that the probability for the development of permanent cognitive dysfunctions appears to be very low after FSRT. The transient memory impairments on day 1 are interpreted as most likely related to an increase of a preexisting peritumoral edema, whereas the significant acute improvements in attention functions are interpreted as practice effects. An analysis of localization specific effects of radiation failed to show clear hemisphere specific cognitive changes

  10. Radiotherapy

    International Nuclear Information System (INIS)

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  11. An intercomparison of neutron measurments for a 25 MV x-ray radiotherapy accelerator.

    Science.gov (United States)

    Nath, R; Price, K W; Holeman, G R

    1980-01-01

    High-energy x-ray radiotherapy machines produce neutrons by photonuclear reactions which present a potential radiation hazard to the personnel and patient. A series of measurements of the neutron flux from a 25 MV x-ray linear accelerator, inside and outside the treatment room, have been performed using a multisphere spectrometer, Nemo dosimeter, and activation detectors. These results are compared with other mixed photon-neutron field measurements for the same machine performed using an argon/propane ionization chamber, silicon diode, track-etching detectors, and Monte Carlo calculations. It is found that these measurements agree with each other within a factor of two except for silicon diode measurements in the photon beam. Measured neutron spectra at various locations in the treatment room are also compared with the results of Monte Carlo transport calculations.

  12. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.H.; Lim, D.H.; Kim, S.; Hong, S.; Kim, B.K.; Kang, W-S.; Wu, H.G.; Ha, S.W.; Park, C.I. [Seoul National University College of Medicine, Department of Therapeutic Radiology (Korea)

    2000-05-01

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07{+-}4.27 Gy (0.31{+-}0.16% Mean{+-}S.D.) at the upper eyelids, 6.13{+-}4.32 Gy (0.24{+-}0.16%) at the submental jaw, 7.80{+-}5.44 Gy (0.33{+-}0.26%) at thyroid, 1.78{+-}0.64 Gy (0.07{+-}0.02%) at breast, 0.75{+-}0.38 Gy (0.03{+-}0.02%) at umbilicus, 0.40{+-}0.07 Gy (0.02{+-}0.01%) at perineum, and 0.46{+-}0.39 Gy (0.02{+-}0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures

  13. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    International Nuclear Information System (INIS)

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07±4.27 Gy (0.31±0.16% Mean±S.D.) at the upper eyelids, 6.13±4.32 Gy (0.24±0.16%) at the submental jaw, 7.80±5.44 Gy (0.33±0.26%) at thyroid, 1.78±0.64 Gy (0.07±0.02%) at breast, 0.75±0.38 Gy (0.03±0.02%) at umbilicus, 0.40±0.07 Gy (0.02±0.01%) at perineum, and 0.46±0.39 Gy (0.02±0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures, dose ranged 1.7 to 4.0 Gy in the

  14. Can exhaled NO fraction predict radiotherapy-induced lung toxicity in lung cancer patients?

    International Nuclear Information System (INIS)

    A large increase in nitric oxide fraction (FeNO) after radiotherapy (RT) for lung cancer may predict RT-induced lung toxicity. In this study, we assessed the relationships between FeNO variations and respiratory symptoms, CT scan changes or dose volume histogram (DVH) parameters after RT. We measured FeNO before RT, 4, 5, 6, 10 weeks, 4 and 7.5 months after RT in 65 lung cancer patients. Eleven lung cancer patients (17%) complained of significant respiratory symptoms and 21 (31%) had radiation pneumonitis images in >1/3 of the irradiated lung after RT. Thirteen patients (20%) showed increases in FeNO >10 ppb. The sensitivity and specificity of a >10 ppb FeNO increase for the diagnosis of RT-associated respiratory symptoms were 18% and 83%, respectively. There was no correlation between DVH parameters or CT scan changes after RT and FeNO variations. Three patients (5%) showed intriguingly strong (2 or 3-fold, up to 55 ppb) and sustained increases in FeNO at 4 and 5 weeks, followed by significant respiratory symptoms and/or radiation-pneumonitis images. Serial FeNO measurements during RT had a low ability to identify lung cancer patients who developed symptoms or images of radiation pneumonitis. However, three patients presented with a particular pattern which deserves to be investigated

  15. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial

    DEFF Research Database (Denmark)

    Overgaard, Jens; Hansen, Hanne Sand; Specht, Lena;

    2003-01-01

    -cell carcinoma. METHODS: We did a multicentre, controlled, randomised trial. Between January, 1992, and December, 1999, of 1485 patients treated with primary radiotherapy alone, 1476 eligible patients were randomly assigned five (n=726) or six (n=750) fractions per week at the same total dose and fraction number......% of the patients received the planned total dose. Median overall treatment times were 39 days (six-fraction group) and 46 days (five-fraction group). Overall 5-year locoregional control rates were 70% and 60% for the six-fraction and five-fraction groups, respectively (p=0.0005). The whole benefit of shortening......BACKGROUND: Although head and neck cancer can be cured by radiotherapy, the optimum treatment time for locoregional control is unclear. We aimed to find out whether shortening of treatment time by use of six instead of five radiotherapy fractions per week improves the tumour response in squamous...

  16. Procedure to measure the neutrons spectrum around a lineal accelerator for radiotherapy

    International Nuclear Information System (INIS)

    An experimental procedure was developed, by means of Bonner spheres, to measure the neutrons spectrum around Linacs of medical use that only requires of a single shot of the accelerator; to this procedure we denominate Planetary or Isocentric method. One of the problems associated to the neutrons spectrum measurement in a radiotherapy room with lineal accelerator is because inside the room a mixed, intense and pulsed radiation field takes place affecting the detection systems based on active detector; this situation is solved using a passive detector. In the case of the Bonner spheres spectrometer the active detector has been substituted by activation detectors, trace detectors or thermoluminescent dosimeters. This spectrometer uses several spheres that are situated one at a time in the measurement point, this way to have the complete measurements group the accelerator should be operated, under the same conditions, so many times like spheres have the spectrometer, this activity can consume a long time and in occasions due to the work load of Linac to complicate the measurement process too. The procedure developed in this work consisted on to situate all the spectrometer spheres at the same time and to make the reading by means of a single shot, to be able to apply this procedure, is necessary that before the measurements two characteristics are evaluated: the cross-talking of the spheres and the symmetry conditions of the neutron field. This method has been applied to determine the photo-neutrons spectrum produced by a lineal accelerator of medical use Varian ix of 15 MV to 100 cm of the isocenter located to 5 cm of depth of a solid water mannequin of 30 x 30 x 15 cm. The spectrum was used to determine the total flow and the environmental dose equivalent. (Author)

  17. Impact on cellular immunocompetence by late course accelerated hyperfractionation radiotherapy assisted with cisplatin in the treatment of esophageal carcinoma

    International Nuclear Information System (INIS)

    Objective: To investigate the therapeutic results of late course accelerated hyperfractionation radiotherapy (LCAHR) combined with concomitant cisplatin administration as a sensitizer, and to assess the effects on cell-mediated immunocompetence in the treatment of esophageal carcinoma. Methods: From Jan. to Nov. 199, 104 patients with squamous cell carcinoma (SCC) of the esophagus were randomized to receive LCAHR alone (Group A, 53 patients) or LCAHR plus cisplatin (Group B, 51 patients). For both groups, the same radiation technic was given with the conventional fractionation in the first 3 weeks and 1.5 Gy twice daily, a minimum inter fraction interval of 6 hours, 5 days per week in the final 2 weeks. The total dose was 60 Gy/35 fs/5 wk. For the B group patients, cisplatin was given synchronously with 20 mg once daily for 5 days in the 1 st and 5 th weeks. The CD4, CD8 and CD56 expressions in peripheral blood lymphocytes (PBL) were quantitatively assessed with flow cytometry before and during the treatment. Results: The CD4/CD8 ratio of PBL decreased significantly after treatment completion (P < 0.01 in Group A and P < 0.01 in Group B). Whereas the percentage of positive CD56 PBL increased dramatically (P < 0.01 in two groups). There were no evidence that CD expression difference had any statistical or clinical significance. Conclusion: Immunosuppression may be present on cell-mediated immuno-activity (CD4/CD8) and NK cell (CD56)immuno-enhancement may be obtainable on immuno-surveillance, when esophageal carcinoma is being treated by LCAHR with or without cisplatin

  18. Salvage Fractionated Stereotactic Radiotherapy with or without Chemotherapy and Immunotherapy for Recurrent Glioblastoma Multiforme: A Single Institution Experience

    OpenAIRE

    Hasan, Shaakir; Chen, Eda; Lanciano, Rachelle; Yang, Jun; Hanlon, Alex; Lamond, John; Arrigo, Stephen; Ding, William; Mikhail, Michael; Ghaneie, Arezoo; Brady, Luther

    2015-01-01

    Background The current standard of care for salvage treatment of glioblastoma multiforme (GBM) is gross total resection and adjuvant chemoradiation for operable patients. Limited evidence exists to suggest that any particular treatment modality improves survival for recurrent GBM, especially if inoperable. We report our experience with fractionated stereotactic radiotherapy (fSRT) with and without chemo/immunotherapy, identifying prognostic factors associated with prolonged survival. ...

  19. Single- versus multiple-fraction radiotherapy in patients with painful bone metastases: cost-utility analysis based on a randomized trial.

    NARCIS (Netherlands)

    Hout, W.B. van den; Linden, Y.J.M. van der; Steenland, E.; Wiggenraad, R.G.; Kievit, J.; Haes, J.C.J.M. de; Leer, J.W.H.

    2003-01-01

    BACKGROUND: Radiotherapy is an effective palliative treatment for cancer patients with painful bone metastases. Although single- and multiple-fraction radiotherapy are thought to provide equal palliation, which treatment schedule provides better value for the money is unknown. We compared quality-ad

  20. Palonosetron and prednisolone for the prevention of nausea and emesis during fractionated radiotherapy and 5 cycles of concomitant weekly cisplatin-a phase II study

    DEFF Research Database (Denmark)

    Ruhlmann, Christina H; Belli, Charlotte; Dahl, Tina;

    2013-01-01

    Recommendations for antiemetic prophylaxis supportive to radiotherapy and concomitant chemotherapy are not evidence-based. The purpose of this study was to evaluate the efficacy of the antiemetic regimen concurrent to fractionated radiotherapy and concomitant weekly cisplatin in two Danish depart...

  1. Quality of life assessment in advanced non-small-cell lung cancer patients undergoing an accelerated radiotherapy regimen: report of ECOG study 4593

    International Nuclear Information System (INIS)

    Purpose: To prospectively evaluate the quality of life (QOL) before, at completion, and after therapy for patients receiving an accelerated fractionation schedule of radiotherapy for advanced, unresectable non-small-cell lung cancer in a Phase II multi-institutional trial. Methods and Materials: The Functional Assessment of Cancer Therapy-Lung (FACT-L) patient questionnaire was used to score the QOL in patients enrolled in the Eastern Cooperative Oncology Group Phase II trial (ECOG 4593) of hyperfractionated accelerated radiotherapy in non-small-cell lung cancer. Radiotherapy (total dose 57.6 Gy in 36 fractions) was delivered during 15 days, with three radiation fractions given each treatment day. The protocol was activated in 1993, and 30 patients had accrued by November 1995. The FACT-L questionnaire was administered at study entry (baseline), on the last day of radiotherapy (assessment 2), and 4 weeks after therapy (assessment 3). The FACT-L includes scores for physical, functional, emotional, and social well-being (33 items), and a subscale of lung cancer symptoms (10 additional items). The summation of the physical, functional, and lung cancer symptom subscales (21 items) constitutes the Trial Outcome Index (TOI), considered the most clinically relevant outcome measure in lung cancer treatment trials. Results: The FACT-L completion rates at the designated study time points were as follows: baseline, 30 of 30 (100%); assessment 2, 29 (97%) of 30; and assessment 3, 24 (80%) of 30. At treatment completion, statistically significant declines in QOL scores were noted, compared with baseline for physical and functional well-being. Emotional well-being scores improved at both assessment 2 and assessment 3. The physical and functional scores returned approximately to baseline values at assessment 3. The change in TOI score was evaluated as a function of the clinical response to treatment, toxicity grade, and survival; no clear association was noted. A trend for the

  2. Quantification of intra-fraction motion in breast radiotherapy using supine magnetic resonance imaging

    Science.gov (United States)

    van Heijst, Tristan C. F.; Philippens, Mariëlle E. P.; Charaghvandi, Ramona K.; den Hartogh, Mariska D.; Lagendijk, Jan J. W.; Desirée van den Bongard, H. J. G.; van Asselen, Bram

    2016-02-01

    In early-stage breast-cancer patients, accelerated partial-breast irradiation techniques (APBI) and hypofractionation are increasingly implemented after breast-conserving surgery (BCS). For a safe and effective radiation therapy (RT), the influence of intra-fraction motion during dose delivery becomes more important as associated fraction durations increase and targets become smaller. Current image-guidance techniques are insufficient to characterize local target movement in high temporal and spatial resolution for extended durations. Magnetic resonance imaging (MRI) can provide high soft-tissue contrast, allow fast imaging, and acquire images during longer periods. The goal of this study was to quantify intra-fraction motion using MRI scans from 21 breast-cancer patients, before and after BCS, in supine RT position, on two time scales. High-temporal 2-dimensional (2D) MRI scans (cine-MRI), acquired every 0.3 s during 2 min, and three 3D MRI scans, acquired over 20 min, were performed. The tumor (bed) and whole breast were delineated on 3D scans and delineations were transferred to the cine-MRI series. Consecutive scans were rigidly registered and delineations were transformed accordingly. Motion in sub-second time-scale (derived from cine-MRI) was generally regular and limited to a median of 2 mm. Infrequently, large deviations were observed, induced by deep inspiration, but these were temporary. Movement on multi-minute scale (derived from 3D MRI) varied more, although medians were restricted to 2.2 mm or lower. Large whole-body displacements (up to 14 mm over 19 min) were sparsely observed. The impact of motion on standard RT techniques is likely small. However, in novel hypofractionated APBI techniques, whole-body shifts may affect adequate RT delivery, given the increasing fraction durations and smaller targets. Motion management may thus be required. For this, on-line MRI guidance could be provided by a hybrid MRI/RT modality, such as the

  3. Intracranial tumours after external fractionated radiotherapy for pituitary adenomas in northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Lars; Johansson, Robert; Rasmuson, Torgny (Dept. of Radiation Sciences, Oncology, Umeaa Univ., Umeaa (Sweden)), E-mail: Torgny.Rasmuson@onkologi.umu.se

    2010-11-15

    We analysed the incidence of second primary intracranial tumours in patients with pituitary adenomas treated with radiotherapy compared to the risk of patients not exposed to irradiation and to the general population. Materials and methods. This retrospective cohort study includes 298 patients with pituitary adenomas that received radiotherapy to the pituitary from 1960 to 2007. The patients were recruited from the Cancer Registry of northern Sweden and the local radiotherapy-registry of the Univ. Hospital in Umeaa. Only patients with =12 months follow-up after diagnosis of pituitary adenoma were included. A cohort of 131 patients with pituitary adenomas not treated with radiotherapy was used as reference. Standard incidence ratios (SIR) between observed and expected number of second primary intracranial tumours were calculated. Results. The median observation time after diagnosis of pituitary adenoma in 298 patients treated with radiotherapy was 14 years, and the total number of person-years at risk was 4 784. Six (2.0%) of the patients developed second primary intracranial tumours between 7 and 31 years after radiotherapy. Two patients had gliomas and four had meningiomas. The expected number of intracranial tumours was 1.15 giving a SIR of 5.20 (95% CI 1.90-11.31). No significant correlations were found between radiation technique or administered dose and the risk of developing a second primary intracranial tumour. The cumulative risk for second intracranial tumours at 10 and 20 years was 1.3%. Patients not treated with radiotherapy were followed 1 601 years and no second primary intracranial tumour occurred. Discussion. The results indicate an increased risk of second primary intracranial tumours in patients treated with radiotherapy for pituitary adenomas, compared to patients not exposed to irradiation and to the general population. Meningiomas were more frequent than gliomas and the median time interval between radiotherapy and second intracranial tumour was

  4. Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial

    Directory of Open Access Journals (Sweden)

    Haselmann Renate

    2010-10-01

    Full Text Available Abstract Background Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT, a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE, which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons. First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective. Methods Design In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy. Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival. Discussion The

  5. Clinical role of18F-FDG PET/CT-based simultaneous modulated accelerated radiotherapy treatment plan-ning for locally advanced nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jianshe Wang; Tianyou Tang Co-first author; Jing Xu; Andrew Z Wang; Liang Li; Junnian Zheng; Longzhen Zhang

    2015-01-01

    Objective The aim of this study was to compare the long-term local control, overal survival, and late toxicities of positron emission tomography/computed tomography (PET/CT)-guided dose escalation radio-therapy versus conventional radiotherapy in the concurrent chemoradiotherapy treatment of local y ad-vanced nasopharyngeal carcinoma (NPC). Methods A total of 48 patients with stage III–IVa NPC were recruited and randomly administered PET/CT-guided dose escalation chemoradiotherapy (group A) or conventional chemoradiotherapy (group B). The dose-escalation radiotherapy was performed using the simultaneous modulated accelerated radiotherapy technique at prescribed doses of 77 gray (Gy) in 32 fractions (f) to the gross target volume (GTV): planning target volume (PTV) 1 received 64 Gy/32 f, while PTV2 received 54.4 Gy/32 f. Patients in group B received uniform-dose intensity-modulated radiotherapy, PTV1 received 70 Gy/35 f and PTV2 received 58 Gy/29 f. Concurrent chemotherapy consisted of cisplatin [20 mg/m2 intravenous (IV) on days 1–4] and docetaxel (75 mg/m2 IV on days 1 and 8) administered during treatment weeks 1 and 4. Al patients received 2–4 cycles of adjuvant chemotherapy of the same dose and drug regimen. Results The use of fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT significantly reduced the treat-ment volume delineation of the GTV in 83.3% (20/24) of patients. The 5-year local recurrence-free survival rates of the two groups were 100% and 79.2%, respectively (P = 0.019). The 5-year disease free survival (DFS) rates were 95.8% and 75.0%, respectively (P = 0.018). The 5-year local progression-free survival and DFS rates were significantly dif erent. The 5-year overal survival (OS) rates were 95.8% and 79.2%, re-spectively. Dif erences in OS improvement were insignificant (P = 0.079). Late toxicities were similar in the two groups. The most common late toxicities of the two arms were grade 1–2 skin dystrophy, xerostomia, subcutaneous fibrosis, and

  6. Radiobiological Characterization of Two Photon-Beam Energies 6 and 15 MV used in Radiotherapy From Linear Accelerator

    International Nuclear Information System (INIS)

    The main objective of this study is to perform radiobiological characterization of two different photon beam energies, 6 MV and 15 MV, from linear accelerator used in radiotherapy, with special regard to late effects of radiation. Two end-points, namely cell survival and micronucleus induction were used for the characterization. Chinese hamster V 79 lung fibroblast cell line to prepare cell culture and to perform the innervate experiments. chromosomes number was counted and found to be 22 chromosomes per cell, this result is in complete agreement with expected 11 pairs of chromosomes representing the genome of this species. Cells were kept in confluent growth for two days and then exposed to two photon beam energies, 6 and 15 MV respectively. Different dose rates were used for the two beam energies, 0.25, 0.5, 1.0, 2.0, 4.0, 7.0 Gy. Cells were counted immediately after irradiation and re seeded, the seeded number of cells was calculated to the dose rate used. Another set of unirradiated cells treated the same as the experimental set was used as a control group. The plating efficiency (PE) was calculated for the control group, then cells were incubated at 37oC for 6 days to construct the survival curve, five samples were counted per dose and the mean was calculated. The two survival curves are similar for photon beam energies (6 and 15 MV) and the surviving fraction was decreased with dose rate. The two curves showed similar values of α and β parameters, this result is expected for the same radiation type (X-ray). For the micronuclei assay three samples for each dose were seeded and incubated at 37oC for 24 hours then Cytochalasin-B was added to block cells in cytokinesis phase of the mitosis. The micronuclei number was counted and plotted with dose. A significant positive correlation was found between dose and micronuclei frequency (P=0.00), moreover, the micronuclei frequency is relatively higher with 15 MV compared with 6 MV energy. This indicates the presence

  7. Cyberknife fractionated radiotherapy for adrenal metastases: Preliminary report from a multispecialty Indian cancer care center

    OpenAIRE

    Trinanjan Basu; Tejinder Kataria; Ashu Abhishek; Deepak Gupta; Shikha Goyal; Shyam S. Bisht; Karthick K Payaliappan; Vikraman Subhramani

    2015-01-01

    Purpose: Metastasis to adrenal gland from lung, breast, and kidney malignancies are quite common. Historically radiotherapy was intended for pain palliation. Recent studies with stereotactic body radiotherapy (SBRT) including Cyberknife robotic radiosurgery aiming at disease control brings about encouraging results. Here we represent the early clinical experience with Cyberknife stereotactic system from an Indian cancer care center. The main purpose of this retrospective review is to serve as...

  8. Fractional resonances in the atom-optical δ-kicked accelerator

    DEFF Research Database (Denmark)

    Saunders, Mark; Halkyard, P.L.; Gardiner, S.A.;

    2009-01-01

    We consider resonant dynamics in a dilute atomic gas falling under gravity through a periodically pulsed standing-wave laser field. Our numerical calculations are based on a Monte Carlo method for an incoherent mixture of noninteracting plane waves, and we show that quantum resonances are highly...... sensitive to the relative acceleration between the atomic gas and the pulsed optical standing wave. For particular values of the atomic acceleration, we observe fractional resonances. We investigate the effect of the initial atomic momentum width on the fractional resonances and quantify the sensitivity...

  9. Theoretical aspects of implementation of kilovoltage cone-beam CT onboard linear accelerator for image-guided radiotherapy.

    Science.gov (United States)

    Rodríguez Cordón, Marta; Ferrer Albiach, Carlos

    2009-08-01

    The main objective of image-guided radiation therapy (IGRT) equipment is to reduce and correct inherent errors in external radiotherapy processes. At the present time, there are different IGRT systems available, but here we will refer exclusively to the kilovoltage cone-beam CT onboard linear accelerator (CBkVCT) and the different aspects that, from a clinical point of view, should be taken into consideration before the implementation of this equipment.

  10. Retrospective study on therapy options of brain metastases surgery versus stereotactic radiotherapy with the linear accelerator

    CERN Document Server

    Fortunati, M K S

    2001-01-01

    Background: in the therapy of brain metastases there has been a great progress in the last years. It was shown, that more aggressive therapies can not only extend the survival of the patients, but also improve quality of life. The major question of this study was, whether surgery or stereotactic radiotherapy with the linear accelerator show better results in behalf of the survival. Beside this major question many parameters regarding the patient or his primary cancer were examined. Methods: from the 1st of January 1995 until the 30th of June 2000 233 patients with one or more brain metastases have been treated in the Wagner Jauregg Landesnervenkrankenhaus Oberoesterreich (WJ LNKH OeO). The LINAC has been established on the 1st of July 1997. The patients have been distributed in three groups: 1. LINAC-group: 81 patients have been treated from the 1st of July 1997 until the 30th of June 2000 with the LINAC. 2. Surgery-group: 81 patients have been operated from the 1st of July 1997 until the 30th June 2000. 3 Co...

  11. Determining optimization of the initial parameters in Monte Carlo simulation for linear accelerator radiotherapy

    Science.gov (United States)

    Chang, Kwo-Ping; Wang, Zhi-Wei; Shiau, An-Cheng

    2014-02-01

    Monte Carlo (MC) method is a well known calculation algorithm which can accurately assess the dose distribution for radiotherapy. The present study investigated all the possible regions of the depth-dose or lateral profiles which may affect the fitting of the initial parameters (mean energy and the radial intensity (full width at half maximum, FWHM) of the incident electron). EGSnrc-based BEAMnrc codes were used to generate the phase space files (SSD=100 cm, FS=40×40 cm2) for the linac (linear accelerator, Varian 21EX, 6 MV photon mode) and EGSnrc-based DOSXYZnrc code was used to calculate the dose in the region of interest. Interpolation of depth dose curves of pre-set energies was proposed as a preliminary step for optimal energy fit. A good approach for determination of the optimal mean energy is the difference comparison of the PDD curves excluding buildup region, and using D(10) as a normalization method. For FWHM fitting, due to electron disequilibrium and the larger statistical uncertainty, using horn or/and penumbra regions will give inconsistent outcomes at various depths. Difference comparisons should be performed in the flat regions of the off-axis dose profiles at various depths to optimize the FWHM parameter.

  12. Randomized trial of palliative two-fraction versus more intensive 13-fraction radiotherapy for patients with inoperable non-small cell lung cancer and good performance status

    Energy Technology Data Exchange (ETDEWEB)

    Macbeth, F.R. [Glasgow Western Infirmary (United Kingdom); Bolger, J.J. [Weston Park Hospital, Sheffield (United Kingdom); Hopwood, P. [Christie Hospital and Holt Radium Inst., Manchester (United Kingdom); Bleehen, N.M. [Addenbrooke`s Hospital, Cambridge (United Kingdom); Cartmell, J.; Girling, D.J.; Machin, D.; Stephens, R.J.; Bailey, A.J. [Medical Research Council, Cambridge (United Kingdom)

    1996-11-01

    In patients with non-metastatic but inoperable non-small lung cancer that is locally too extensive for radical radiotherapy (RT), but who have good performance status, it is important to determine whether thoracic RT should be the minimum that is required to palliate thoracic symptoms or whether treatment should be more intensive, with the aim of prolonging survival. A total of 509 such patients from 11 centres in the UK between November 1989 and October 1992 were admitted to a trial comparing palliative versus more intensive RT with respect to survival and quality of life. They were allocated at random to receive thoracic RT with either 17 Gy in two fractions (F2) 1 week apart (255 patients) or 39 Gy in 13 fractions (F13) 5 days per week (254 patients). (author).

  13. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    NARCIS (Netherlands)

    Unkelbach, J.; Zeng, C.; Engelsman, M.

    2013-01-01

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities. Meth

  14. Locoregionally advanced carcinoma of the oropharynx: conventional radiotherapy vs. accelerated hyperfractionated radiotherapy vs. concomitant radiotherapy and chemotherapy - a multicenter randomized trial

    International Nuclear Information System (INIS)

    Purpose: To compare conventional fractionation radiation therapy (RT), Arm A, vs. split-course accelerated hyperfractionated RT (S-AHF), Arm B, vs. conventional fractionation RT plus concomitant chemotherapy (CT), Arm C, in terms of survival and toxicity for advanced, unresectable epidermoid tumors of oropharynx. Methods and Materials: Between January 1993 and June 1998, 192 previously untreated patients affected with Stage III and IV oropharyngeal carcinoma (excluding T1N1 and T2N1) were accrued in a multicenter, randomized Phase III trial (ORO 93-01). For Arms A and C, 66-70 Gy in 33-35 fractions, 5 days a week, were administered in 6.5-7 weeks to tumor and positive nodes. In Arm B, the dose delivered to tumor and involved nodes was 64-67.2 Gy, giving 2 fractions of 1.6 Gy every day with an interfraction interval of at least 4 h and preferably 6 h, 5 days a week. At 38.4 Gy, a 2-week split was planned; after the split, RT was resumed with the same modality. In Arm C, CT regimen consisted of carboplatin and 5-fluorouracil (CBDCA 75 mg/m2, Days 1-4; 5-FU 1,000 mg/m2 i.v. over 96 h, Days 1-4, recycling every 28 days (at 1st, 5th, and 9th week). Results: No statistically significant difference was detected in overall survival (p=0.129): 40% Arm A vs. 37% Arm B vs. 51% Arm C were alive at 24 months. Similarly, there was no statistically significant difference in terms of event-free survival (p=0.196): 20% for Arm A, 19% for Arm B, and 37% for Arm C were event free at 24 months. On the contrary, the 2-year disease-free survival was significantly different among the three arms (p = 0.022), with a superiority for Arm C. At 24 months, the proportion of patients without relapse was 42% for Arm C vs. 23% for Arm A and 20% for Arm B. Patients in Arm A less frequently developed G3+ acute mucositis than their counterparts in Arm B or C (14.7% vs. 40.3% vs. 44%). Regarding the CT-related acute toxicity, apart from 1 case of fatal nephrotoxicity, only hematologic G3+ (Grade 3 or

  15. 18F-EF5 PET Is Predictive of Response to Fractionated Radiotherapy in Preclinical Tumor Models

    OpenAIRE

    Rehan Ali; Sandeep Apte; Marta Vilalta; Murugesan Subbarayan; Zheng Miao; Chin, Frederick T.; Graves, Edward E.

    2015-01-01

    We evaluated the relationship between pre-treatment positron emission tomography (PET) using the hypoxic tracer 18F-[2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide] (18F-EF5) and the response of preclinical tumor models to a range of fractionated radiotherapies. Subcutaneous HT29, A549 and RKO tumors grown in nude mice were imaged using 18F-EF5 positron emission tomography (PET) in order to characterize the extent and heterogeneity of hypoxia in these systems. Based ...

  16. Three-dimensional conformal arc radiotherapy using a C-arm linear accelerator with a computed tomography on-rail system for prostate cancer: clinical outcomes

    International Nuclear Information System (INIS)

    We report the feasibility and treatment outcomes of image-guided three-dimensional conformal arc radiotherapy (3D-CART) using a C-arm linear accelerator with a computed tomography (CT) on-rail system for localized prostate cancer. Between 2006 and 2011, 282 consecutive patients with localized prostate cancer were treated with in-room CT-guided 3D-CART. Biochemical failure was defined as a rise of at least 2.0 ng/ml beyond the nadir prostate-specific antigen level. Toxicity was scored according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0. A total of 261 patients were analyzed retrospectively (median follow-up: 61.6 months). The median prescribed 3D-CART dose was 82 Gy (2 Gy/fraction, dose range: 78–86 Gy), and 193 of the patients additionally received hormonal therapy. The 5-year overall survival rate was 93.9 %. Among low-, intermediate-, and high-risk patients, 5-year rates of freedom from biochemical failure were 100, 91.5 and 90.3 %, respectively. Rates of grade 2–3 late gastrointestinal and genitourinary toxicities were 2.3 and 11.4 %, respectively. No patient experienced late grade 4 or higher toxicity. In-room CT-guided 3D-CART was feasible and effective for localized prostate cancer. Treatment outcomes were comparable to those previously reported for intensity-modulated radiotherapy

  17. Fractionated stereotactic radiotherapy of benign skull-base tumors: a dosimetric comparison of volumetric modulated arc therapy with Rapidarc® versus non-coplanar dynamic arcs

    OpenAIRE

    Martin, Fanny; Magnier, Florian; Berger, Lucie; Miroir, Jessica; Chautard, Emmanuel; Verrelle, Pierre; Lapeyre, Michel; Biau, Julian

    2016-01-01

    Background Benign tumors of the skull base are a challenge when delivering radiotherapy. An appropriate choice of radiation technique may significantly improve the patient’s outcomes. Our study aimed to compare the dosimetric results of fractionated stereotactic radiotherapy between non-coplanar dynamic arcs and coplanar volumetric modulated arctherapy (Rapidarc®). Methods Thirteen patients treated with Novalis TX® were analysed: six vestibular schwannomas, four pituitary adenomas and three m...

  18. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo V, A.; Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Resendiz G, G.; Posadas V, A. [Hospital Angeles Lomas, Av. Vialidad de la Barranca s/n, Col. Valle de las Palmas, 52763 Huixquilucan de Degallado, Estado de Mexico (Mexico); Mitsoura, E. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan, Esq. Jesus Carranza s/n, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico (Mexico); Rodriguez L, A.; Flores C, J. M., E-mail: armando.astudillo@inin.gob.mx [Hospital Medica Sur, Puente de Piedra 150, Col. Toriello Guerra, 14050 Tlalpan, Mexico D. F. (Mexico)

    2015-10-15

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)

  19. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    Science.gov (United States)

    Hossain, Murshed

    2014-01-01

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  20. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Ning J.; Haffty, Bruce G.; Goyal, Sharad [Department of Radiation Oncology, Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903 (United States); Kearney, Thomas; Kirstein, Laurie [Division of Surgical Oncology, Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903 (United States); Chen Sining [Department of Biostatistics, Cancer Institute of New Jersey, UMDNJ/School of Public Health, New Brunswick, NJ 08901 (United States)

    2013-02-15

    Purpose: The purpose of the present study was to perform an analysis of the changes in the dynamic seroma cavity based on fiducial markers in early stage breast cancer patients treated with accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy (3D-CRT). Methods: A prospective, single arm trial was designed to investigate the utility of gold fiducial markers in image guided APBI using 3D-CRT. At the time of lumpectomy, four to six suture-type gold fiducial markers were sutured to the walls of the cavity. Patients were treated with a fractionation scheme consisting of 15 fractions with a fractional dose of 333 cGy. Treatment design and planning followed NSABP/RTOG B-39 guidelines. During radiation treatment, daily kV imaging was performed and the markers were localized and tracked. The change in distance between fiducial markers was analyzed based on the planning CT and daily kV images. Results: Thirty-four patients were simulated at an average of 28 days after surgery, and started the treatment on an average of 39 days after surgery. The average intermarker distance (AiMD) between fiducial markers was strongly correlated to seroma volume. The average reduction in AiMD was 19.1% (range 0.0%-41.4%) and 10.8% (range 0.0%-35.6%) for all the patients between simulation and completion of radiotherapy, and between simulation and beginning of radiotherapy, respectively. The change of AiMD fits an exponential function with a half-life of seroma shrinkage. The average half-life for seroma shrinkage was 15 days. After accounting for the reduction which started to occur after surgery through CT simulation and treatment, radiation was found to have minimal impact on the distance change over the treatment course. Conclusions: Using the marker distance change as a surrogate for seroma volume, it appears that the seroma cavity experiences an exponential reduction in size. The change in seroma size has implications in the size of

  1. Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed tomography for non-operative lung cancer during adaptive intensity-modulated radiotherapy or fractionated stereotactic radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Jian Hu; Ximing Xu; Guangjin Yuan; Wei Ge; Liming Xu; Aihua Zhang; Junjian Deng

    2015-01-01

    Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modulated radiotherapy (IMRT) or fractionated stereotactic radiotherapy. Methods Eighteen patients with non-operative lung cancer who received IMRT consisting of 1.8-2.2 Gy/fraction and five fractions per week or stereotactic radiotherapy with 5-8 Gy/fraction and three fractions a week were studied. kV-CBCT was performed once per week during IMRT and at every fraction during stereotactic radiotherapy. The gross tumor volume (GTV) was contoured on the kV-CBCT images, and adaptive treatment plans were created using merged kV-CBCT and primary planning computed tomogra-phy image sets. Tumor volume changes and dosimetric parameters, including the minimum dose to 95%(D95) or 1% (D1) of the planning target volume (PTV), mean lung dose (MLD), and volume of lung tissue that received more than 5 (V5), 10 (V10), 20 (V20), and 30 (V30) Gy were retrospectively analyzed. Results The average maximum change in GTV observed during IMRT or fractionated stereotactic radio-therapy was -25.85% (range, -13.09% --56.76%). The D95 and D1 of PTV for the adaptive treatment plans in all patients were not significantly different from those for the initial or former adaptive treatment plans. In patients with tumor volume changes of >20% in the third or fourth week of treatment during IMRT, adap-tive treatment plans offered clinically meaningful decreases in MLD and V5, V10, V20, and V30; however, in patients with tumor volume changes of 20% in the third or fourth week of treatment.

  2. Preoperative Single Fraction Partial Breast Radiotherapy for Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Palta, Manisha; Yoo, Sua; Adamson, Justus D.; Prosnitz, Leonard R. [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Horton, Janet K., E-mail: janet.horton@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2012-01-01

    Purpose: Several recent series evaluating external beam accelerated partial breast irradiation (PBI) have reported adverse cosmetic outcomes, possibly related to large volumes of normal tissue receiving near-prescription doses. We hypothesized that delivery of external beam PBI in a single fraction to the preoperative tumor volume would be feasible and result in a decreased dose to the uninvolved breast compared with institutional postoperative PBI historical controls. Methods and Materials: A total of 17 patients with unifocal Stage T1 breast cancer were identified. Contrast-enhanced subtraction magnetic resonance images were loaded into an Eclipse treatment planning system and used to define the target volumes. A 'virtual plan' was created using four photon beams in a noncoplanar beam arrangement and optimized to deliver 15 Gy to the planning target volume. Results: The median breast volume was 1,713 cm{sup 3} (range: 1,014-2,140), and the median clinical target volume was 44 cm{sup 3} (range: 26-73). In all cases, 100% of the prescription dose covered 95% of the clinical target volume. The median conformity index was 0.86 (range: 0.70-1.12). The median percentage of the ipsilateral breast volume receiving 100% and 50% of the prescribed dose was 3.8% (range: 2.2-6.9) and 13.3% (range: 7.5-20.8) compared with 18% (range: 3-42) and 53% (range: 24-65) in the institutional historical controls treated with postoperative external beam PBI (p = .002). The median maximum skin dose was 9 Gy. The median dose to 1 and 10 cm{sup 3} of skin was 6.7 and 4.9 Gy. The doses to the heart and ipsilateral lung were negligible. Conclusion: Preoperative PBI resulted in a substantial reduction in ipsilateral breast tissue dose compared with postoperative PBI. The skin dose appeared reasonable, given the small volumes. A prospective Phase I trial evaluating this technique is ongoing.

  3. Rapidly alternating combination of cisplatin-based chemotherapy and hyperfractionated accelerated radiotherapy in split course for Stage IIIA and Stage IIIB non-small cell lung cancer: results of a Phase I-II study by the GOTHA group

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, P.; Mermillod, B. [Hopital Cantonal Geneve, Geneva (Switzerland); Mirimanoff, R.O.; Leyvraz, S.; Nagy-Mignotte, H.; Bolla, M.; Wellmann, D.; Moro, D.; Brambilla, E. [Hopital Cantonal Universitaire, Lausanne (Switzerland)

    1995-08-01

    The prognosis of stage III non-small cell lung cancer (NSCLC) can be improved by a combination of radiotherapy (RT) and chemotherapy (CT). In this study, the GOTHA group evaluated the feasibility, tolerance, tumour response, pattern of failure and effect on survival of a combination alternating accelerated hyperfractionated (AH) RT and CT in patients with tumour stage III NSCLC. Toxic effects were leucopenia, nausea and vomiting, mucositis, diarrhoea, alopecia and peripheral neuropathy. Alternating CT and AHRT, as used in this study, were well tolerated and allowed full dose delivery within less than 12 weeks. Initial response was not predictive of survival. The survival curve is encouraging and the 5 year survival is superior to the 5% generally observed with conventionally fractionated radiotherapy. (author).

  4. Results on accelerator production of innovative radionuclides for metabolic radiotherapy and PET and on related nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, Flavia [LASA, Radiochemistry Laboratory, Universita degli Studi di Milano and INFN-Milano, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy)]. E-mail: Flavia.Groppi@mi.infn.it; Bonardi, Mauro L. [LASA, Radiochemistry Laboratory, Universita degli Studi di Milano and INFN-Milano, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Menapace, Enzo [ENEA, Division for Advanced Physics Technologies, Via Don Fiammelli 2, I-40128 Bologna (Italy); Morzenti, Sabrina [LASA, Radiochemistry Laboratory, Universita degli Studi di Milano and INFN-Milano, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Zona, Cristiano [LASA, Radiochemistry Laboratory, Universita degli Studi di Milano and INFN-Milano, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Canella, Lea [LASA, Radiochemistry Laboratory, Universita degli Studi di Milano and INFN-Milano, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Alfassi, Zeev B. [Department Nuclear Engineering, Ben Gurion University, Beer Sheva (Israel)

    2006-06-23

    A range of high specific activity accelerator-produced radionuclides in no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET, has been investigated. To this aim it was necessary optimizing the irradiation parameters by determining the excitation functions of the nuclear reactions involved, as needed for the following selective radiochemical separations of the radionuclides of interest. For the NCA radionuclides investigated, the spectrometry measurements, done at LASA-INFN on {gamma}, X and on {alpha} spectra are discussed together with the measurements of radionuclidic, radiochemical and chemical purities by analytical and radioanalytical techniques.

  5. 18F-EF5 PET Is Predictive of Response to Fractionated Radiotherapy in Preclinical Tumor Models.

    Science.gov (United States)

    Ali, Rehan; Apte, Sandeep; Vilalta, Marta; Subbarayan, Murugesan; Miao, Zheng; Chin, Frederick T; Graves, Edward E

    2015-01-01

    We evaluated the relationship between pre-treatment positron emission tomography (PET) using the hypoxic tracer 18F-[2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide] (18F-EF5) and the response of preclinical tumor models to a range of fractionated radiotherapies. Subcutaneous HT29, A549 and RKO tumors grown in nude mice were imaged using 18F-EF5 positron emission tomography (PET) in order to characterize the extent and heterogeneity of hypoxia in these systems. Based on these results, 80 A549 tumors were subsequently grown and imaged using 18F-EF5 PET, and then treated with one, two, or four fraction radiation treatments to a total dose of 10-40 Gy. Response was monitored by serial caliper measurements of tumor volume. Longitudinal post-treatment 18F-EF5 PET imaging was performed on a subset of tumors. Terminal histologic analysis was performed to validate 18F-EF5 PET measures of hypoxia. EF5-positive tumors responded more poorly to low dose single fraction irradiation relative to EF5-negative tumors, however both groups responded similarly to larger single fraction doses. Irradiated tumors exhibited reduced 18F-EF5 uptake one month after treatment compared to control tumors. These findings indicate that pre- treatment 18F-EF5 PET can predict the response of tumors to single fraction radiation treatment. However, increasing the number of fractions delivered abrogates the difference in response between tumors with high and low EF5 uptake pre-treatment, in agreement with traditional radiobiology. PMID:26431331

  6. 18F-EF5 PET Is Predictive of Response to Fractionated Radiotherapy in Preclinical Tumor Models.

    Directory of Open Access Journals (Sweden)

    Rehan Ali

    Full Text Available We evaluated the relationship between pre-treatment positron emission tomography (PET using the hypoxic tracer 18F-[2-(2-nitro-1-H-imidazol-1-yl-N-(2,2,3,3,3- pentafluoropropyl acetamide] (18F-EF5 and the response of preclinical tumor models to a range of fractionated radiotherapies. Subcutaneous HT29, A549 and RKO tumors grown in nude mice were imaged using 18F-EF5 positron emission tomography (PET in order to characterize the extent and heterogeneity of hypoxia in these systems. Based on these results, 80 A549 tumors were subsequently grown and imaged using 18F-EF5 PET, and then treated with one, two, or four fraction radiation treatments to a total dose of 10-40 Gy. Response was monitored by serial caliper measurements of tumor volume. Longitudinal post-treatment 18F-EF5 PET imaging was performed on a subset of tumors. Terminal histologic analysis was performed to validate 18F-EF5 PET measures of hypoxia. EF5-positive tumors responded more poorly to low dose single fraction irradiation relative to EF5-negative tumors, however both groups responded similarly to larger single fraction doses. Irradiated tumors exhibited reduced 18F-EF5 uptake one month after treatment compared to control tumors. These findings indicate that pre- treatment 18F-EF5 PET can predict the response of tumors to single fraction radiation treatment. However, increasing the number of fractions delivered abrogates the difference in response between tumors with high and low EF5 uptake pre-treatment, in agreement with traditional radiobiology.

  7. Single-Fraction Intraoperative Radiotherapy for Breast Cancer: Early Cosmetic Results

    International Nuclear Information System (INIS)

    Purpose: To evaluate the cosmetic outcome of patients treated with wide local excision and intraoperative radiotherapy for early-stage breast cancer. Methods and Materials: A total of 50 women were treated on a pilot study to evaluate the feasibility of intraoperative radiotherapy at wide local excision. The eligibility criteria included age >60, tumor size ≤2.0 cm, clinically negative lymph nodes, and biopsy-established diagnosis. After wide local excision, a custom breast applicator was placed in the excision cavity, and a dose of 20 Gy was prescribed to a depth of 1 cm. After 18 patients were treated, the dose was constrained laterally to 18 Gy. The cosmetic outcome was evaluated by photographs at baseline and at 6 and 12 months postoperatively. Four examiners graded the photographs for symmetry, edema, discoloration, contour, and scarring. The grades were evaluated in relationship to the volume of irradiated tissue, tumor location, and dose at the lateral aspects of the cavity. Results: The median volume of tissue receiving 100% of the prescription dose was 47 cm3 (range, 20-97 cm3). Patients with ≤47 cm3 of treated tissue had better cosmetic outcomes than did the women who had >47 cm3 of treated tissue. Women who had received 18 Gy at the lateral aspects of their cavities had better cosmetic outcomes than did women who had received 20 Gy at the lateral aspects. When comparing the 6- and 12-month results, the scores remained stable for 63%, improved for 17%, and worsened for 20%. Conclusion: Intraoperative radiotherapy appears feasible for selected patients. A favorable cosmetic outcome appears to be related to a smaller treatment volume. The cosmetic outcome is acceptable, although additional follow-up is necessary

  8. A study on the potential of cell kinetically directed fractionation schemes in radiotherapy

    International Nuclear Information System (INIS)

    In this thesis, the phenomenon of radiation-induced synchronization of cells into the radiosensitive G2 phase of the cell cycle and the exploitation of this phenomenon to enhance the efficacy of frationated radiotherapy was investigated. A nude mouse model was used to investigate the cell kinetics of 6 human xenotransplanted tumours before and after irradiation. In the second part of the investigation it was tested whether split dose irradiation intervals, based on cell kinetic data of the tumours (i.e. timing of maximal accumulation of cells in G2) would result in an enhanced response compared with those at non optimal intervals (author), 297 refs.; 35 figs.; 25 tabs

  9. Impact of Schedule Duration on Head and Neck Radiotherapy: Accelerated Tumor Repopulation Versus Compensatory Mucosal Proliferation

    International Nuclear Information System (INIS)

    Purpose: To determine how modelled maximum tumor control rates, achievable without exceeding mucositis tolerance (tcpmax-early) vary with schedule duration for head and neck squamous cell carcinoma (HNSCC). Methods and materials: Using maximum-likelihood techniques, we have fitted a range of tcp models to two HNSCC datasets (Withers’ and British Institute of Radiology [BIR]), characterizing the dependence of tcp on duration and equivalent dose in 2 Gy fractions (EQD2). Models likely to best describe future data have been selected using the Akaike information criterion (AIC) and its quasi-AIC extension to overdispersed data. Setting EQD2s in the selected tcp models to levels just tolerable for mucositis, we have plotted tcpmax-early against schedule duration. Results: While BIR dataset tcp fits describe dose levels isoeffective for tumor control as rising significantly with schedule protraction, indicative of accelerated tumor repopulation, repopulation terms in fits to Withers’ dataset do not reach significance after accounting for overdispersion of the data. The tcpmax-early curves calculated from tcp fits to the overall Withers’ and BIR datasets rise by 8% and 0-4%, respectively, between 20 and 50 days duration; likewise, tcpmax-early curves calculated for stage-specific cohorts also generally rise slowly with increasing duration. However none of the increases in tcpmax-early calculated from the overall or stage-specific fits reach significance. Conclusions: Local control rates modeled for treatments which lie just within mucosal tolerance rise slowly but insignificantly with increasing schedule length. This finding suggests that whereas useful gains may be made by accelerating unnecessarily slow schedules until they approach early reaction tolerance, little is achieved by shortening schedules further while reducing doses to remain within mucosal tolerance, an approach that may slightly worsen outcomes.

  10. Accelerated hyperfractionated intensity-modulated radiotherapy for recurrent/unresectable rectal cancer in patients with previous pelvic irradiation: results of a phase II study

    International Nuclear Information System (INIS)

    This study was conducted to investigate the local effects and toxicity of accelerated hyperfractionated intensity-modulated radiotherapy for recurrent/unresectable rectal cancer in patients with previous pelvic irradiation. Twenty-two patients with recurrent/unresectable rectal cancer who previously received pelvic irradiation were enrolled in our single-center trial between January 2007 and August 2012. Reirradiation was scheduled for up to 39 Gy in 30 fractions using intensity-modulated radiotherapy plans. The dose was delivered via a hyperfractionation schedule of 1.3 Gy twice daily. Patient follow-up was performed by clinical examination, CT/MRI, or PET/CT every 3 months for the first 2 years and every 6 months thereafter. Tumor response was evaluated 1 month after reirradiation by CT/MRI based on the RECIST criteria. Adverse events were assessed using the National Cancer Institute (NCI) common toxicity criteria (version 3.0). The median time from the end of the initial radiation therapy to reirradiation was 30 months (range, 18-93 months). Overall local responses were observed in 9 patients (40.9%). None of the patients achieved a complete response (CR), and 9 patients (40.9%) had a partial response (PR). Thirteen patients failed to achieve a clinical response: 12 (54.5%) presented with stable disease (SD) and 1 (4.5%) with progressive disease (PD). Among all the patients who underwent reirradiation, partial or complete symptomatic relief was achieved in 6 patients (27.3%) and 13 patients (59.1%), respectively. Grade 4 acute toxicity and treatment-related deaths were not observed. The following grade 3 acute toxicities were observed: diarrhea (2 patients, 9.1%), cystitis (1 patient, 4.5%), dermatitis (1 patient, 4.5%), and intestinal obstruction (1 patient, 4.5%). Late toxicity was infrequent. Chronic severe diarrhea, small bowel obstruction, and dysuria were observed in 2 (9.1%), 1 (4.5%) and 2 (9.1%) of the patients, respectively. This study showed that

  11. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan; Zeng, Chuan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Engelsman, Martijn [Faculty of Applied Physics, Delft University of Technology/HollandPTC, 2628 CJ Delft (Netherlands)

    2013-09-15

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities.Methods: This is performed by allowing for distinct pencil beam intensities in each fraction, which are optimized using objective and constraint functions based on biologically equivalent dose (BED). The paper presents a model that mimics an IMPT treatment with a single incident beam direction for which the optimal fractionation scheme can be determined despite the nonconvexity of the BED-based treatment planning problem.Results: For this model, it is shown that a small α/β ratio in the tumor gives rise to a hypofractionated treatment, whereas a large α/β ratio gives rise to hyperfractionation. It is further demonstrated that, for intermediate α/β ratios in the tumor, a nonuniform fractionation scheme emerges, in which it is optimal to deliver different dose distributions in subsequent fractions. The intuitive explanation for this phenomenon is as follows: By varying the dose distribution in the tumor between fractions, the same total BED can be achieved with a lower physical dose. If it is possible to achieve this dose variation in the tumor without varying the dose in the normal tissue (which would have an adverse effect), the reduction in physical dose may lead to a net reduction of the normal tissue BED. For proton therapy, this is indeed possible to some degree because the entrance dose is mostly independent of the range of the proton pencil beam.Conclusions: The paper provides conceptual insight into the interdependence of optimal fractionation schemes and the spatial optimization of dose distributions. It demonstrates the emergence of nonuniform fractionation schemes that arise from the standard BED model when IMPT fields and fractionation scheme are optimized

  12. Clinical analysis of different fractionated doses for radiotherapy of metastatic brain tumors%不同分割剂量放射治疗脑转移瘤的疗效

    Institute of Scientific and Technical Information of China (English)

    石玉生; 林水苗; 刘英

    2013-01-01

    目的 为评价不同分割放疗方法对脑转移鳞癌病人的治疗效果.方法 对55例鳞癌脑转移瘤病人先进行全脑照射30 Gy/10F·2W,再随机分为两个治疗组:加速分割照射组(28例)转移灶局部推量24~27 Gy/8~9F· 2~3W,肿瘤体积累积总剂量54~57 Gy/18~19F·4W;低分割照射组(27例)转移灶推量24 Gy/3F· 1W,肿瘤体积累积总剂量30 Gy/10F·2W+ 24 Gy/3F· 1W.结果 1年内病灶复发率两组分别为26.1%和9.8% (P=0.035).两组脑转移瘤治疗有效率与中位生存时间无统计学差异(均P >0.05).加速分割照射组1年生存率31%,2年生存率12%;低分割照射组1年生存率42%,2年生存率18%.两组均无RTOG3级以上的放射性损伤发生.结论 低分割放疗可作为脑转移放射治疗的一种方式.%Objective To analyze clinical efficacy of radiotherapy with different fractionated doses for brain metastasis of squamous carcinoma.Methods Fifty-five patients received whole-brain radiotherapy with 30 Gy in 10 fractions (F) over 2 weeks (W),and then they were divided into two groups:accelerated fractionation group (28 patients) received boost 24-27Gy/8-9F· 2-3W and gross tumor volume (GTV)-based total dose was 54-57 Gy/18-19F·4W and low fractionated group (27 patients) received boost 24 Gy/3F· 1W and GTV total dose was 30 Gy/10F ·2W +24Gy/3F ·1W.Results The recurrence rates of accelerated fractionation group and low fractionated group were 26.1% and 9.8% respectively in one year (P =0.035).The treatment efficiency and median survival time showed no significant differences between the accelerated fractionation group and low fractionated group (both P > 0.05).The probability of survival at 1,2 years was 31%,12% and 42%,18% respectively for the accelerated fractionation group and low fractionated group.Both groups had no incidence of RTOG Grade 3 or worse toxicity.Conclusions Low fractionated radiotherapy provides an alternative method for

  13. Clinical radiobiology of glioblastoma multiforme. Estimation of tumor control probability from various radiotherapy fractionation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola [I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Nuclear Medicine, Department of Radiation and Metabolic Therapies, Rionero-in-Vulture (Italy); Department of Radiation and Metabolic Therapies, I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Radiotherapy, Rionero-in-Vulture (Italy); Fiorentino, Alba [Sacro Cuore - Don Calabria Hospital, Radiation Oncology Department, Negrar, Verona (Italy); Simeon, Vittorio [I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Laboratory of Preclinical and Translational Research, Rionero-in-Vulture (Italy); Tini, Paolo; Pirtoli, Luigi [University of Siena and Tuscany Tumor Institute, Unit of Radiation Oncology, Department of Medicine Surgery and Neurological Sciences, Siena (Italy); Chiumento, Costanza [Department of Radiation and Metabolic Therapies, I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Radiotherapy, Rionero-in-Vulture (Italy); Salvatore, Marco [I.R.C.C.S. SDN Foundation, Unit of Nuclear Medicine, Napoli (Italy); Storto, Giovanni [I.R.C.C.S.-Regional-Cancer-Hospital-C.R.O.B, Unit of Nuclear Medicine, Department of Radiation and Metabolic Therapies, Rionero-in-Vulture (Italy)

    2014-10-15

    The aim of this study was to estimate a radiobiological set of parameters from the available clinical data on glioblastoma (GB). A number of clinical trial outcomes from patients affected by GB and treated with surgery and adjuvant radiochemotherapy were analyzed to estimate a set of radiobiological parameters for a tumor control probability (TCP) model. The analytical/graphical method employed to fit the clinical data allowed us to estimate the intrinsic tumor radiosensitivity (α), repair capability (b), and repopulation doubling time (T{sub d}) in a first phase, and subsequently the number of clonogens (N) and kick-off time for accelerated proliferation (T{sub k}). The results were used to formulate a hypothesis for a scheduleexpected to significantly improve local control. The 95 % confidence intervals (CI{sub 95} {sub %}) of all parameters are also discussed. The pooled analysis employed to estimate the parameters summarizes the data of 559 patients, while the studies selected to verify the results summarize data of 104 patients. The best estimates and the CI{sub 95} {sub %} are α = 0.12 Gy{sup -1} (0.10-0.14), b = 0.015 Gy{sup -2} (0.013-0.020), α/b = 8 Gy (5.0-10.8), T{sub d} = 15.4 days (13.2-19.5), N = 1 . 10{sup 4} (1.2 . 10{sup 3} - 1 . 10{sup 5}), and T{sub k} = 37 days (29-46). The dose required to offset the repopulation occurring after 1 day (D{sub prolif}) and starting after T{sub k} was estimated as 0.30 Gy/day (0.22-0.39). The analysis confirms a high value for the α/b ratio. Moreover, a high intrinsic radiosensitivity together with a long kick-off time for accelerated repopulation and moderate repopulation kinetics were found. The results indicate a substantial independence of the duration of the overall treatment and an improvement in the treatment effectiveness by increasing the total dose without increasing the dose fraction. (orig.) [German] Schaetzung eines strahlenbiologischen Parametersatzes auf der Grundlage klinischer Daten bei

  14. Hyperfractionated Accelerated Radiotherapy (HART) with maintenance chemotherapy for metastatic (M1–3) Medulloblastoma – A safety/feasibility study

    International Nuclear Information System (INIS)

    Background and purpose: To evaluate feasibility and toxicity of Hyperfractionated Accelerated Radiotherapy (HART) 1.24 Gy b.i.d. followed by chemotherapy for M1–3 Medulloblastoma (MB). The aim of HART was to use hyperfractionation to improve therapeutic ratio combined with acceleration to minimise tumour cell repopulation during radiotherapy (RT). Materials and methods: Between February 2002 and May 2008, 34 eligible patients (22 male, 12 female) aged 3–15 years (median 7) with metastatic MB (M1–9; M2–3, M3–22) received HART with a craniospinal radiotherapy (CSRT) dose of 39.68 Gy followed by 22.32 Gy boost to the whole posterior fossa and 9.92 Gy metastatic boosts. The 8th and subsequent patients received vincristine (VCR) 1.5 mg/m2 weekly × 8 doses over 8 weeks starting during the 1st week of RT. Maintenance chemotherapy comprised 8 six-weekly cycles of VCR 1.5 mg/m2 weekly × 3, CCNU 75 mg/m2 and cisplatin 70 mg/m2. Results: Median duration of HART was 34 days (range 31–38). Grade 3–4 toxicities included mucositis (8), nausea (10), anaemia (5), thrombocytopaenia (2), leucopaenia (24). With 4.5-year median follow-up, 3-year EFS and OS were 59% and 71%, respectively. Of 10 relapses, 1 was outside the central nervous system (CNS), 1 posterior fossa alone and 8 leptomeningeal with 3 also associated with posterior fossa. Conclusion: HART with or without VCR was well tolerated and may have a place in the multi-modality management of high-risk MB

  15. Radiotherapy fractionation for the palliation of uncomplicated painful bone metastases – an evidence-based practice guideline

    Directory of Open Access Journals (Sweden)

    Bezjak Andrea

    2004-10-01

    Full Text Available Abstract Background This practice guideline was developed to provide recommendations to clinicians in Ontario on the preferred standard radiotherapy fractionation schedule for the treatment of painful bone metastases. Methods A systematic review and meta-analysis was performed and published elsewhere. The Supportive Care Guidelines Group, a multidisciplinary guideline development panel, formulated clinical recommendations based on their interpretation of the evidence. In addition to evidence from clinical trials, the panel also considered patient convenience and ease of administration of palliative radiotherapy. External review of the draft report by Ontario practitioners was obtained through a mailed survey, and final approval was obtained from the Practice Guidelines Coordinating Committee. Results Meta-analysis did not detect a significant difference in complete or overall pain relief between single treatment and multifraction palliative radiotherapy for bone metastases. Fifty-nine Ontario practitioners responded to the mailed survey (return rate 62%. Forty-two percent also returned written comments. Eighty-three percent of respondents agreed with the interpretation of the evidence and 75% agreed that the report should be approved as a practice guideline. Minor revisions were made based on feedback from the external reviewers and the Practice Guidelines Coordinating Committee. The Practice Guidelines Coordinating Committee approved the final practice guideline report. Conclusion For adult patients with single or multiple radiographically confirmed bone metastases of any histology corresponding to painful areas in previously non-irradiated areas without pathologic fractures or spinal cord/cauda equine compression, we conclude that: • Where the treatment objective is pain relief, a single 8 Gy treatment, prescribed to the appropriate target volume, is recommended as the standard dose-fractionation schedule for the treatment of symptomatic and

  16. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Fredberg; Logadottir, Ashildur;

    2012-01-01

    Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate in...... intra- and inter-fractional translational and rotational errors in patient and target positions....

  17. Fast dose algorithm for generation of dose coverage probability for robustness analysis of fractionated radiotherapy

    International Nuclear Information System (INIS)

    A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan.For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel.Compared to full dose calculations the algorithm demonstrates a speedup factor of ∼1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable. (paper)

  18. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, S; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2014-06-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, within various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction

  19. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  20. Predicting Chest Wall Pain From Lung Stereotactic Body Radiotherapy for Different Fractionation Schemes

    International Nuclear Information System (INIS)

    Purpose: Recent studies with two fractionation schemes predicted that the volume of chest wall receiving >30 Gy (V30) correlated with chest wall pain after stereotactic body radiation therapy (SBRT) to the lung. This study developed a predictive model of chest wall pain incorporating radiobiologic effects, using clinical data from four distinct SBRT fractionation schemes. Methods and Materials: 102 SBRT patients were treated with four different fractionations: 60 Gy in three fractions, 50 Gy in five fractions, 48 Gy in four fractions, and 50 Gy in 10 fractions. To account for radiobiologic effects, a modified equivalent uniform dose (mEUD) model calculated the dose to the chest wall with volume weighting. For comparison, V30 and maximum point dose were also reported. Using univariable logistic regression, the association of radiation dose and clinical variables with chest wall pain was assessed by uncertainty coefficient (U) and C statistic (C) of receiver operator curve. The significant associations from the univariable model were verified with a multivariable model. Results: 106 lesions in 102 patients with a mean age of 72 were included, with a mean of 25.5 (range, 12–55) months of follow-up. Twenty patients reported chest wall pain at a mean time of 8.1 (95% confidence interval, 6.3–9.8) months after treatment. The mEUD models, V30, and maximum point dose were significant predictors of chest wall pain (p < 0.0005). mEUD improved prediction of chest wall pain compared with V30 (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.11). The mEUD with moderate weighting (a = 5) better predicted chest wall pain than did mEUD without weighting (a = 1) (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.14). Body mass index (BMI) was significantly associated with chest wall pain (p = 0.008). On multivariable analysis, mEUD and BMI remained significant predictors of chest wall pain (p = 0.0003 and 0.03, respectively). Conclusion: mEUD with moderate weighting better predicted chest wall pain

  1. A feasibility study: Selection of a personalized radiotherapy fractionation schedule using spatiotemporal optimization

    International Nuclear Information System (INIS)

    Purpose: To investigate the impact of using spatiotemporal optimization, i.e., intensity-modulated spatial optimization followed by fractionation schedule optimization, to select the patient-specific fractionation schedule that maximizes the tumor biologically equivalent dose (BED) under dose constraints for multiple organs-at-risk (OARs). Methods: Spatiotemporal optimization was applied to a variety of lung tumors in a phantom geometry using a range of tumor sizes and locations. The optimal fractionation schedule for a patient using the linear-quadratic cell survival model depends on the tumor and OAR sensitivity to fraction size (α/β), the effective tumor doubling time (Td), and the size and location of tumor target relative to one or more OARs (dose distribution). The authors used a spatiotemporal optimization method to identify the optimal number of fractions N that maximizes the 3D tumor BED distribution for 16 lung phantom cases. The selection of the optimal fractionation schedule used equivalent (30-fraction) OAR constraints for the heart (Dmean ≤ 45 Gy), lungs (Dmean ≤ 20 Gy), cord (Dmax ≤ 45 Gy), esophagus (Dmax ≤ 63 Gy), and unspecified tissues (D05 ≤ 60 Gy). To assess plan quality, the authors compared the minimum, mean, maximum, and D95 of tumor BED, as well as the equivalent uniform dose (EUD) for optimized plans to conventional intensity-modulated radiation therapy plans prescribing 60 Gy in 30 fractions. A sensitivity analysis was performed to assess the effects of Td (3–100 days), tumor lag-time (Tk = 0–10 days), and the size of tumors on optimal fractionation schedule. Results: Using an α/β ratio of 10 Gy, the average values of tumor max, min, mean BED, and D95 were up to 19%, 21%, 20%, and 19% larger than those from conventional prescription, depending on Td and Tk used. Tumor EUD was up to 17% larger than the conventional prescription. For fast proliferating tumors with Td less than 10 days, there was no significant increase in

  2. A feasibility study: Selection of a personalized radiotherapy fractionation schedule using spatiotemporal optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsun, E-mail: mk688@uw.edu; Stewart, Robert D. [Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 (United States); Phillips, Mark H. [Departments of Radiation Oncology and Neurological Surgery, University of Washington, Seattle, Washington 98195-6043 (United States)

    2015-11-15

    Purpose: To investigate the impact of using spatiotemporal optimization, i.e., intensity-modulated spatial optimization followed by fractionation schedule optimization, to select the patient-specific fractionation schedule that maximizes the tumor biologically equivalent dose (BED) under dose constraints for multiple organs-at-risk (OARs). Methods: Spatiotemporal optimization was applied to a variety of lung tumors in a phantom geometry using a range of tumor sizes and locations. The optimal fractionation schedule for a patient using the linear-quadratic cell survival model depends on the tumor and OAR sensitivity to fraction size (α/β), the effective tumor doubling time (T{sub d}), and the size and location of tumor target relative to one or more OARs (dose distribution). The authors used a spatiotemporal optimization method to identify the optimal number of fractions N that maximizes the 3D tumor BED distribution for 16 lung phantom cases. The selection of the optimal fractionation schedule used equivalent (30-fraction) OAR constraints for the heart (D{sub mean} ≤ 45 Gy), lungs (D{sub mean} ≤ 20 Gy), cord (D{sub max} ≤ 45 Gy), esophagus (D{sub max} ≤ 63 Gy), and unspecified tissues (D{sub 05} ≤ 60 Gy). To assess plan quality, the authors compared the minimum, mean, maximum, and D{sub 95} of tumor BED, as well as the equivalent uniform dose (EUD) for optimized plans to conventional intensity-modulated radiation therapy plans prescribing 60 Gy in 30 fractions. A sensitivity analysis was performed to assess the effects of T{sub d} (3–100 days), tumor lag-time (T{sub k} = 0–10 days), and the size of tumors on optimal fractionation schedule. Results: Using an α/β ratio of 10 Gy, the average values of tumor max, min, mean BED, and D{sub 95} were up to 19%, 21%, 20%, and 19% larger than those from conventional prescription, depending on T{sub d} and T{sub k} used. Tumor EUD was up to 17% larger than the conventional prescription. For fast proliferating

  3. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung City, Taiwan (China); Chou, Kuei-Ting [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Yang, Shih-Neng [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung City, Taiwan (China); Chang, Chih-Kai [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Liang, Ji-An [Department of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan (China); Zhang, Geoffrey [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States)

    2015-10-01

    The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.

  4. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography

    International Nuclear Information System (INIS)

    The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer

  5. Effectiveness of surgery and individualized high-dose hyperfractionated accelerated radiotherapy on survival in clinical stage I non-small cell lung cancer. A propensity score matched analysis

    International Nuclear Information System (INIS)

    Background and purpose: Surgery is considered the treatment of choice for early-stage non-small cell lung cancer (NSCLC). Patients with poor pulmonary function or other comorbidities are treated with radiotherapy. The objective of this investigation is to compare the 3-year survival of two early-stage NSCLC populations treated in two different hospitals, either by surgical resection (lobectomy) or by individualized high-dose accelerated radiotherapy, after matching patients by propensity scoring analysis. Methods: A retrospective comparative study has been performed on two series of consecutive patients with cytohistological diagnosis of NSCLC, clinically staged IA by means of PET-scan (radiotherapy group) and pathologically staged IA (surgery group). Results: A total of 157 cases were initially selected for the analysis (110 operated and 47 treated by radiotherapy). Patients in the radiotherapy group were older, with higher comorbidity and lower FEV1% with 3-years probability of survival for operated patients higher than that found for patients treated by radiotherapy. After matching by propensity scoring (using age and FEV1%), differences disappear and 3-years probability of survival had no statistical differences. Conclusions: Although this is a non-randomized retrospective analysis, we have not found 3-years survival differences after matching cases between surgery and radiotherapy. Nevertheless, data presented here support the continuous investigation for non-surgical alternatives in this disease.

  6. Surgical management of combined intramedullary arteriovenous malformation and perimedullary arteriovenous fistula within the hybrid operating room after five years of performing focus fractionated radiotherapy: case report.

    Science.gov (United States)

    Gekka, Masayuki; Seki, Toshitaka; Hida, Kazutoshi; Osanai, Toshiya; Houkin, Kiyohiro

    2014-01-01

    Perimedullary arteriovenous fistula (AVF) shunts occur on the spinal cord surface and can be treated surgically or by endovascular embolization. In contrast, the nidus of an intramedullary arteriovenous malformation (AVM) is located in the spinal cord and is difficult to treat surgically or by endovascular techniques. The benefits of radiotherapy for treating intramedullary AVM have been published, but are anecdotal and consist largely of case reports. We present a case of combined cervical intramedullary AVM and perimedullary AVF which received surgical treatment within a hybrid operating room (OR) after 5 years of focus fractionated radiotherapy. A 37-year-old male presented with stepwise worsening myelopathy. Magnetic resonance imaging and spinal angiography revealed intramedullary AVM and perimedullary AVF at the C3 to C5 levels. In order to reduce nidus size and blood flow, we first performed focal fractionated radiotherapy. Five years later, the lesion volume was reduced. Following this, direct surgery was performed by an anterior approach using corpectomy in the hybrid OR. The spinal cord was monitored by motor-evoked potential throughout the surgery. Complete obliteration of the fistulous connection was confirmed by intraoperative indocyanine green video-angiography and intraoperative angiography, preserving the anterior spinal artery. We conclude that surgical treatment following focal fractionated radiotherapy may become one strategy for patients who are initially deemed ineligible for endovascular embolization and surgical treatment. Furthermore, the hybrid OR enables safe and precise treatment for spinal vascular disorders in the fields of endovascular treatment and neurosurgery.

  7. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Science.gov (United States)

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements.

  8. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Science.gov (United States)

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. PMID:24949649

  9. Whole-abdomen radiotherapy for non-Hodgkin's lymphoma using twice-daily fractionation

    International Nuclear Information System (INIS)

    Purpose: To report the tolerability and efficacy of twice-daily whole-abdomen irradiation (WAI) for non-Hodgkin's lymphoma (NHL). Methods and Materials: Of 123 patients treated for NHL with WAI, 37% received previous chemotherapy, 28% received WAI as part of comprehensive lymphatic irradiation (CLI), and 32% received WAI for palliation. The median dose to the whole abdomen was 25.0 Gy, followed by a median tumor boost of 9.8 Gy in 58 patients. Fractionation was 1.0 Gy once daily (54%) or 0.8 Gy twice daily (46%). Blood counts were measured weekly. Results: At a median follow-up of 4.3 years, local control was 72% and overall survival was 55% at 5 years. Median time of WAI was 42 days for once-daily treatment and 32 days for twice-daily treatment. Patients receiving twice-daily WAI did not have a significantly higher rate of acute side effects (e.g., nausea, diarrhea, platelet or red blood cell toxicity). Overall, acute thrombocytopenia was the most frequent side effect of treatment; 24 of 96 patients (25%) with available hematologic data had Grade 3+ toxicity. There was no acute Grade 3 gastrointestinal toxicity and no late small bowel obstruction. Multiple regression indicated that patients with four or less involved sites and disease size ≤6 cm had improved local control and overall survival. Conclusions: Twice-daily WAI using 0.8 Gy/fraction does not appear to have any greater toxicity compared with once-daily treatment using 1 Gy/fraction. Small doses per fraction (0.8-1 Gy/fx) are effective, tolerated well in the acute setting, and associated with a low rate of late toxicity

  10. Hypo-fractionated stereotactic radiotherapy alone using volumetric modulated arc therapy for patients with single, large brain metastases unsuitable for surgical resection

    OpenAIRE

    Navarria, Pierina; Pessina, Federico; Cozzi, Luca; Ascolese, Anna Maria; De Rose, Fiorenza; Fogliata, Antonella; Franzese, Ciro; Franceschini, Davide; Tozzi, Angelo; D’Agostino, Giuseppe; Comito, Tiziana; Iftode, Cristina; Maggi, Giulia; Reggiori, Giacomo; Bello, Lorenzo

    2016-01-01

    Background Hypo-fractionated stereotactic radiotherapy (HSRT) is emerging as a valid treatment option for patients with single, large brain metastases (BMs). We analyzed a set of our patients treated with HSRT. The aim of this study was to evaluate local control (LC), brain distant progression (BDP), toxicity and overall survival (OS). Methods From July 2011 to May 2015, 102 patients underwent HSRT consisting of 27Gy/3fractions for lesions 2.1–3 cm and 32Gy/4 fractions for lesions 3.1–5 cm. L...

  11. Combined modality treatment of the rhabdomyosarcoma R1H of the rat: tumor and normal tissue response after cisplatin and conventional or accelerated irradiation treatment

    International Nuclear Information System (INIS)

    Purpose: To test the importance of the sequence of cisplatin and irradiation, either conventional or accelerated fractionated. Methods and Materials: 30 fractions of 2 Gy were given in 6 or 3 weeks preceded or followed by (time interval between cisplatin and radiotherapy: 3 days) a single IP dose of 5 mg/kg cisplatin in the rhabdomyosarcoma R1H of the rat. Survival curves were generated, and comparisons were made by the log-rank test. Results: After 60 Gy in 6 weeks, no local tumor controls were observed. If cisplatin was injected 3 days before start of 60 Gy/6 weeks, 11 ± 10% (mean ± SE) of the tumors were controlled. Cisplatin after radiotherapy resulted in 50 ± 14% local controls. The difference was significant (p 0.01) for cisplatin after radiotherapy in comparison to radiotherapy alone where no local controls were observed. After accelerated fractionation, 57 ± 19% of the animals were cured with or without cisplatin before radiotherapy. If the drug was injected after end of 60 Gy/3 weeks, 86 ± 13% survived recurrence free. The difference to accelerated radiotherapy alone was not significant. Accelerated radiotherapy produced significantly higher control rates than conventional radiotherapy (p < 0.001). Conclusions: Accelerated radiotherapy resulted in higher local tumor control rates as compared to conventional fractionated irradiation. Cisplatin combined with radiotherapy showed significantly better results if given after but not before irradiation, either conventional or accelerated fractionated

  12. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gondi, Vinai [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Hermann, Bruce P. [Department of Neurology, University of Wisconsin, Madison, WI (United States); Mehta, Minesh P. [Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States); Tome, Wolfgang A., E-mail: tome@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Department of Biomedical Engineering, University of Wisconsin, Madison, WI (United States)

    2013-02-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold

  13. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test–retest interval. NCF impairment was defined as a z score ≤−1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose–volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD2) assuming an α/β ratio of 2 Gy were computed. Fisher’s exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose–response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD2 to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD2 to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD2 to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in

  14. Supratentorial primitive neuroectodermal tumors (S-PNET) in children: A prospective experience with adjuvant intensive chemotherapy and hyperfractionated accelerated radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Supratentorial primitive neuroectodermal tumors (S-PNET) are rare and have a grim prognosis, frequently taking an aggressive course with local relapse and metastatic spread. We report the results of a mono-institutional therapeutic trial. Methods and Materials: We enrolled 15 consecutive patients to preradiation chemotherapy (CT) consisting of high-dose methotrexate, high-dose etoposide, high-dose cyclophosphamide, and high-dose carboplatin, craniospinal irradiation (CSI) with hyperfractionated accelerated radiotherapy (HART) plus focal boost, maintenance with vincristine/lomustine or consolidation with high-dose thiotepa followed by autologous stem-cell rescue. Results: Median age was 9 years; 7 were male, 8 female. Site of disease was pineal in 3, elsewhere in 12. Six patients were had no evidence of disease after surgery (NED). Of those with evidence of disease after surgery (ED), 2 had central nervous system spread. Of the 9 ED patients, 2 had complete response (CR) and 2 partial response (PR) after CT, 4 stable disease, and 1 progressive disease. Of the 7 ED patients before radiotherapy, 1 had CR, 4 PR, and 2 minor response, thus obtaining a 44% CR + PR after CT and 71% after HART. Because of rapid progression in 2 of the first 5 patients, high-dose thiotepa was systematically adopted after HART in the subsequent 10 patients. Six of 15 patients relapsed (4 locally, 1 locally with dissemination, 1 with dissemination) a mean of 6 months after starting CT, 2 developed second tumors; 5 of 6 relapsers died at a median of 13 months. Three-year progression-free survival, event-free survival, and overall survival were 54%, 34%, and 61%, respectively. Conclusion: Hyperfractionated accelerated RT was the main tool in obtaining responses in S-PNET; introducing the myeloablative phase improved the prognosis (3/10 vs. 3/5 relapses), though the outcome remained unsatisfactory despite the adoption of this intensive treatment

  15. Locally advanced head and neck cancer treated with accelerated radiotherapy, the hypoxic modifier nimorazole and weekly cisplatin

    DEFF Research Database (Denmark)

    Bentzen, Jens; Toustrup, Kasper; Eriksen, Jesper Grau;

    2015-01-01

    , and 149 patients (66%) received the full dose of nimorazole. The five-year actuarial LRC, EFS and OS rates were 80%, 67% and 72%, respectively. The LRC rates according to site were: oropharynx: 88%, larynx: 77%, hypopharynx 72% and oral cavity 49%, respectively. HPV/p16 staining was obtained in 141...... with stage III or IV HNSCC of the larynx, oropharynx, hypopharynx, or oral cavity where included between January 2007 and December 2010. The prescribed radiotherapy (RT) dose was 66-68 Gy in 2 Gy fractions, 6 F/W. The hypoxic radiosensitiser nimorazole was given orally at a dose of 1200 mg/m(2) before each....... Human papillomavirus (HPV)-status was estimated by immunohistochemical staining of p16. RESULTS: Included were 178 (78%) men and 49 (22%) women with a median age of 57 years. All except five patients received RT as prescribed. At least five series of cisplatin was given to 164 (72%) of the patients...

  16. Comparison of stereotactic radiosurgery and fractionated stereotactic radiotherapy of acoustic neurinomas according to 3-D tumor volume shrinkage and quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Henzel, Martin; Engenhart-Cabillic, Rita [Dept. of Radiation Oncology, Philipps Univ. Marburg (Germany); Hamm, Klaus; Surber, Gunnar; Kleinert, Gabriele [Dept. of Stereotactic Neurosurgery and Radiosurgery, HELIOS Klinikum, Erfurt (Germany); Sitter, Helmut [Dept. of Theoretical Surgery, Philipps Univ. Marburg (Germany); Gross, Markus W. [Dept. of Radiation Oncology, Philipps Univ. Marburg (Germany); Dept. of Radio-Oncology, Univ. Hospital of Basel (Switzerland)

    2009-09-15

    Background and purpose: stereotactic radiosurgery (SRS) and also fractionated stereotactic radiotherapy (SRT) offer high local control (LC) rates (> 90%). This study aimed to evaluate three-dimensional (3-D) tumor volume (TV) shrinkage and to assess quality of life (QoL) after SRS/SRT. Patients and methods: from 1999 to 2005, 35/74 patients were treated with SRS, and 39/74 with SRT. Median age was 60 years. Treatment was delivered by a linear accelerator. Median single dose was 13 Gy (SRS) or 54 Gy (SRT). Patients were followed up {>=} 12 months after SRS/SRT. LC and toxicity were evaluated by clinical examinations and magnetic resonance imaging. 3-D TV shrinkage was evaluated with the planning system. QoL was assessed using the questionnaire Short Form-36. Results: Median follow-up was 50/36 months (SRS/SRT). Actuarial 5-year freedom from progression/overall survival was 88.1%/100% (SRS), and 87.5%/87.2% (SRT). TV shrinkage was 15.1%/40.7% (SRS/SRT; p = 0.01). Single dose (< 13 Gy) was the only determinant factor for TV shrinkage after SRS (p = 0.001). Age, gender, initial TV, and previous operations did not affect TV shrinkage. Acute or late toxicity ({>=} grade 3) was never seen. Concerning QoL, no significant differences were observed after SRS/SRT. Previous operations and gender did not affect QoL (p > 0.05). Compared with the German normal population, patients had worse values for all domains except for mental health. Conclusion: TV shrinkage was significantly higher after SRT than after SRS. Main symptoms were not affected by SRS/SRT. Retrospectively, QoL was neither affected by SRS nor by SRT. (orig.)

  17. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    DEFF Research Database (Denmark)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-01-01

    by Cone-Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US......Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined...... system (Clarity® Model 310C00). Uterine positional shifts based on soft-tissue match using US was performed and compared to bone match shifts for the three directions. Mean value (±1 SD) of the US shifts were (mm); anterior-posterior (A/P): (3.8±5.5), superior-inferior (S/I) (-3.5±5.2), and left-right (L...

  18. Technologies of image guidance and the development of advanced linear accelerator systems for radiotherapy.

    Science.gov (United States)

    Wu, Vincent W C; Law, Maria Y Y; Star-Lack, Josh; Cheung, Fion W K; Ling, C Clifton

    2011-01-01

    As advanced radiotherapy approaches for targeting the tumor and sparing the normal tissues have been developed, the image guidance of therapy has become essential to directing and confirming treatment accuracy. To approach these goals, image guidance devices now include kV on-board imagers, kV/MV cone-beam CT systems, CT-on-rails, and mobile and in-room radiographic/fluoroscopic systems. Nonionizing sources, such as ultrasound and optical systems, and electromagnetic devices have been introduced to monitor or track the patient and/or tumor positions during treatment. In addition, devices have been designed specifically for monitoring and/or controlling respiratory motion. Optimally, image-guided radiation therapy systems should possess 3 essential elements: (1) 3D imaging of soft tissues and tumors, (2) efficient acquisition and comparison of the 3D images, and (3) an efficacious process for clinically meaningful intervention. Understanding and using these tools effectively is central to current radiotherapy practice. The implementation and integration of these devices continue to carry practical challenges, which emphasize the need for further development of the technologies and their clinical applications.

  19. Hypo-fractionated radiotherapy of breast cancer: long term results of a set of 80 cases treated in the radiotherapy department of the Oran university hospital; Radiotherapie hypofractionnee dans le cancer du sein: resultats a long terme d'une serie de 80 cas traites dans le service de radiotherapie du centre hospitalier universitaire d'Oran

    Energy Technology Data Exchange (ETDEWEB)

    Boukerche, A.; Yahia, A.; Madouri, R.; Belmiloud, H.; Dali-Youcef, A.F. [Service de radiotherapie, CHU d' Oran, Oran (Algeria)

    2011-10-15

    The authors report the assessment of the local and locoregional control and of the acute and late toxicity of adjuvant hypo-fractionated radiotherapy in breast cancer treatment. During 1998, 80 women have been treated by conservative or radical surgery and hypo-fractionated tele-cobalto-therapy (36 Gy in five fractions of 3 Gy a week, and a boost of 15 Gy in five fractions in case of conservative surgery). Results are discussed in terms of local and locoregional recurrence, tolerance, late toxicity, global survival, and tumour classification. The irradiation scheme seems perfectly achievable but a greater number of patients and a longer follow-up are required to better assess the efficiency and aesthetic results. Short communication

  20. The role of MRI in patients with astrocytoma WHO II treated with fractionated stereotactic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian; Zuna, Ivan [Division of Radiation Oncology, German Cancer Research Center, INF 280, 69120, Heidelberg (Germany); Division of Diagnostic Radiology, German Cancer Research Center, INF 280, 69120, Heidelberg (Germany); Lichy, Matthias Philipp; Bachert, Peter; Kauczor, Hans-Ulrich [Division of Diagnostic Radiology, German Cancer Research Center, INF 280, 69120, Heidelberg (Germany)

    2004-04-01

    Aim of this study was to evaluate the role of pre-therapeutic and follow-up MRI in the clinical treatment and outcome in patients with astrocytoma WHO grade II after fractionated stereotactic radiation therapy (FSRT). One hundred thirty-nine patients with histologically proven astrocytoma WHO grade II were treated with FSRT and retrospectively evaluated. All patients had follow-up MRI studies (Gd-DTPA-enhanced T1- and T2-weighted MR images). Progression-free survival (PFS) and overall survival (OS) rates were calculated using the Kaplan-Meier method. Multivariate analysis was performed on five potential MRI related prognosticators. Median follow-up was 3.8 years. Positive contrast enhancement (CM+) prior to FSRT proved to be a significant prognosticator for PFS and OS (p<0.01). Pre-therapeutic oedema on T2-weighted images and multifocality of contrast medium (CM) enhancement did not prove to be significant prognosticators. Also, diameter and volume of CM enhancement showed no significance on clinical outcome. Negative contrast enhancing (CM-) patients developing a de novo CM enhancement during follow-up showed a significantly worse clinical outcome compared with generally CM- patients (p<0.05). Pre-therapeutic CM enhancement and the development of CM-enhancing areas during follow-up are negative prognosticators for PFS and OS. They must be interpreted as signs of secondary malignity. (orig.)

  1. Implementation of intraoperative radiotherapy in a linear accelerator Varian 21EX; Implementacao da radioterapia intraoperatoria em um acelerador linear VARIAN 21EX

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, Gustavo H.; Lozano, Enrique; Banguero, Yolma; Varon, Carlos Fernando; Mancilla, Claudio S. [Instituto Nacional del Cancer, Santiago (Chile). Radioterapia; Parra, Cristian [Universidad de la Frontera, Temuco (Chile); Pacheco, P. [Universidad Nacional Mayor de San Marcos, Lima (Peru)

    2011-07-01

    The aim of this paper is to present the experience on intraoperative radiotherapy, which has as the reference center the network of radiotherapy in Chile. It is detailed the construction of a system of applicators with an easy coupling on a linear accelerator collimator. It is also detailed the cost and the measurements set up with their corresponding percentage depth dose and isodose curves. This technique was implemented in a Varian Clinac 21EX for beams with 6, 9 and 12 MeV electron energy. The coupling system provides a good dose distribution both laterally and in depth for different energies. This provides a good coverage of treatment planning volume. (author)

  2. IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique

    OpenAIRE

    Benassi Marcello; Pedrini Massimo; Abate Armando; Bruzzaniti Vicente; Strigari Lidia

    2011-01-01

    Abstract Background An advantage of the Intensity Modulated Radiotherapy (IMRT) technique is the feasibility to deliver different therapeutic dose levels to PTVs in a single treatment session using the Simultaneous Integrated Boost (SIB) technique. The paper aims to describe an automated tool to calculate the dose to be delivered with the SIB-IMRT technique in different anatomical regions that have the same Biological Equivalent Dose (BED), i.e. IsoBED, compared to the standard fractionation....

  3. A randomised phase II trial of Stereotactic Ablative Fractionated radiotherapy versus Radiosurgery for Oligometastatic Neoplasia to the lung (TROG 13.01 SAFRON II)

    OpenAIRE

    Siva, Shankar; Kron, Tomas; Bressel, Mathias; Haas, Marion; Mai, Tao; Vinod, Shalini; Sasso, Giuseppe; Wong, Wenchang; Le, Hien; Eade, Thomas; Hardcastle, Nicholas; Chesson, Brent; Pham, Daniel; Høyer, Morten; Montgomery, Rebecca

    2016-01-01

    Background Stereotactic ablative body radiotherapy (SABR) is emerging as a non-invasive method for precision irradiation of lung tumours. However, the ideal dose/fractionation schedule is not yet known. The primary purpose of this study is to assess safety and efficacy profile of single and multi-fraction SABR in the context of pulmonary oligometastases. Methods/Design The TROG 13.01/ALTG 13.001 clinical trial is a multicentre unblinded randomised phase II study. Eligible patients have up to ...

  4. A survival model for fractionated radiotherapy with an application to prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, Marco [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)]. E-mail: Zaiderm@mskcc.org; Zelefsky, Michael J.; Leibel, Steven A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Hanin, Leonid G. [Department of Mathematics, Idaho State University, Pocatello, ID (United States); Tsodikov, Alexander D.; Yakovlev, Andrei Y. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States)

    2001-10-01

    This paper explores the applicability of a mechanistic survival model, based on the distribution of clonogens surviving a course of fractionated radiation therapy, to clinical data on patients with prostate cancer. The study was carried out using data on 1100 patients with clinically localized prostate cancer who were treated with three-dimensional conformal radiation therapy. The patients were stratified by radiation dose (group 1: <67.5 Gy; group 2: 67.5-72.5 Gy; group 3: 72.5-77.5 Gy; group 4: 77.5-87.5 Gy) and prognosis category (favourable, intermediate and unfavourable as defined by pre-treatment PSA and Gleason score). A relapse was recorded when tumour recurrence was diagnosed or when three successive prostate specific antigen (PSA) elevations were observed from a post-treatment nadir PSA level. PSA relapse-free survival was used as the primary end point. The model, which is based on an iterated Yule process, is specified in terms of three parameters: the mean number of tumour clonogens that survive the treatment, the mean of the progression time of post-treatment tumour development and its standard deviation. The model parameters were estimated by the maximum likelihood method. The fact that the proposed model provides an excellent description both of the survivor function and of the hazard rate is prima facie evidence of the validity of the model because closeness of the two survivor functions (empirical and model-based) does not generally imply closeness of the corresponding hazard rates. The estimated cure probabilities for the favourable group are 0.80, 0.74 and 0.87 (for dose groups 1-3, respectively); for the intermediate group: 0.25, 0.51, 0.58 and 0.78 (for dose groups 1-4, respectively) and for the unfavourable group: 0.0, 0.27, 0.33 and 0.64 (for dose groups 1-4, respectively). The distribution of progression time to tumour relapse was found to be independent of prognosis group but dependent on dose. As the dose increases the mean progression

  5. Accelerated hyperfractionated radiotherapy combined with induction and concomitant chemotherapy for inoperable non-small-cell lung cancer. Impact of total treatment time

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, J.; Mercke, C. [Sahlgrenska Univ. Hospital, Gothenburg (Sweden). Dept. of Oncology; Bergman, B. [Sahlgrenska Univ. Hospital, Gothenburg (Sweden). Dept. of Respiratory Medicine

    1998-12-31

    Tumour cell proliferation during conventionally fractionated radiotherapy (RT) can negatively influence the treatment outcome in patients with unresectable non-small-cell lung cancer (NSCLC). Accelerated and hyperfractionated RT may therefore have an advantage over conventional RT. Moreover, earlier studies have suggested improved survival with addition of cisplatin-based chemotherapy (CT). We present here the results of combined treatment with induction and concomitant CT and accelerated hyperfractionated RT in a retrospective series of patients with advanced NSCLS. Between August 1990 and August 1995, 90 consecutive patients, aged 42-77 years (median 63 years), with locally advanced unresectable or medically inoperable NSCLC and good performance status were referred for treatment: stage: I 23%, IIIa 37%, IIIb 40%. Patient histologies included: squamous cell carcinoma 52%, adenocarcinoma 34% and large cell carcinoma 13%. The treatment consisted of two courses of CT (cisplatin 100 mg/m{sup 2} day 1 and etoposide 100 mg/m{sup 2} day 1-3 i.v.), the second course given concomitantly with RT. The total RT dose was 61.2-64.6 Gy, with two daily fractions of 1.7 Gy. A one-week interval was introduced after 40.8 Gy to reduce acute toxicity, making the total treatment time 4.5 weeks. Concerning toxicity, 33 patients had febrile neutropenia, 10 patients suffered from grade III oesophagitis and 7 patients had grade III pneumonitis. There were two possible treatment-related deaths, one due to myocardial infarction and the other due to a pneumocystis carinii infection. The 1-, 2- and 3-year overall survival rates were 72%, 46% and 34%, respectively; median survival was 21.3 months. Fifty-nine patients had progressive disease: 21 failed locoregionally, 29 had distant metastases and 9 patients had a combination of these. Pretreatment weight loss was the only prognostic factor found, except for stage. However, the results for stage IIIb were no different from those for stage IIIa

  6. A Feasibility Study of a Tilted Head Position in Helical Tomotherapy for Fractionated Stereotactic Radiotherapy of Intracranial Malignancies.

    Science.gov (United States)

    Chung, Yoonsun; Yoon, Hong In; Ha, Jin Sook; Kim, Seijoon; Lee, Ik Jae

    2015-08-01

    Herein, we evaluated the feasibility of placing patients in a tilted head position as part of routine clinical practice for fractionated stereotactic radiotherapy (FSRT) of intracranial tumors using helical tomotherapy (HT), by assessing its dosimetric benefit and setup accuracy. We reviewed treatment plans of four cases that were to receive FSRT for brain lesions in normal and head-tilted positions. These patients underwent two computed tomography (CT) scans: first in the normal supine position and then in the supine position with the head tilted at a 458 angle. Two separate HT plans for each position were generated in these four patients, using the same planning parameters. Plans were compared for target conformity and dose homogeneity. Maximum and average doses to critical organs, including normal brain, brain stem, optic chiasm, optic nerves, and the eyes, were considered. To evaluate setup accuracy, patient movement during treatment was assessed by post-treatment megavoltage CT scans. Both HT plans achieved similar conformal and homogeneous dose coverage to the target. Head-tilted HT delivered lower average and maximum doses to critical organs in the cases where the tumor was located on the same plane with critical organs, particularly when they were not directly attached. Placement in the head-tilted position without a mouthpiece allowed for increased patient movement during treatment, while use of a mouthpiece reduced patient movement to even less than that observed for normal setup in the supine position. This pilot study showed that placement in a tilted head position for FSRT of intracranial tumors using HT may be of clinical use, but depends on the tumor location.

  7. Low-dose fractionated radiotherapy and concomitant chemotherapy for recurrent or progressive glioblastoma. Final report of a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, M.; Diletto, B.; Chiesa, S.; D' Agostino, G.R.; Gambacorta, M.A.; Ferro, M.; Valentini, V. [Catholic University of the Sacred Heart, Department of Radiation Oncology, Rome (Italy); Colosimo, C. [Catholic University of the Sacred Heart, Department of Radiology, Rome (Italy); Maira, G.; Anile, C. [Catholic University of the Sacred Heart, Department of Neurosurgery, Rome (Italy)

    2014-04-15

    Evaluated in this study were the feasibility and the efficacy of concurrent low dose fractionated radiotherapy (LD-FRT) and chemotherapy as palliative treatment for recurrent/progressive glioblastoma multiforme (GBM). Eligible patients had recurrent or progressive GBM, Karnofsky performance status ≥70, prior surgery, and standard radiochemotherapy treatment. Recurrence/progression disease during temozolomide (TMZ) received cisplatin (CDDP; 30 mg/m{sup 2} on days 1, 8, 15), fotemustine (FTM; 40 mg/m{sup 2} on days 2, 9, 16), and concurrent LD-FRT (0.3 Gy twice daily); recurrence/progression after 4 months from the end of adjuvant TMZ were treated by TMZ (150/200 mg/m{sup 2} on days 1-5) concomitant with LD-FRT (0.4 Gy twice daily). Primary endpoints were safety and toxicity. A total of 32 patients were enrolled. Hematologic toxicity G1-2 was observed in 18.7% of patients and G3-4 in 9.4%. One patient (3.1%) had complete response, 3 (9.4%) had partial response, 8 (25%) had stable disease for at least 8 weeks, while 20 patients (62.5%) experienced progressive disease. The clinical benefit was 37.5%. Median progression-free survival (PFS) and overall survival (OS) were 5 and 8 months, respectively. Survival rate at 12 months was of 27.8%. LD-FRT and chemotherapy for recurrent/progressive GBM have a good toxicity profile and clinical outcomes, even though further investigation of this novel palliative treatment approach is warranted. (orig.)

  8. Report on a randomized trial comparing two forms of immobilization of the head for fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Bednarz, Greg; Machtay, Mitchell; Werner-Wasik, Maria; Downes, Beverly; Bogner, Joachim; Hyslop, Terry; Galvin, James; Evans, James; Curran, Walter; Andrews, David

    2009-01-01

    Fractionated stereotactic radiotherapy (SRT) requires accurate and reproducible immobilization of the patient's head. This randomized study compared the efficacy of two commonly used forms of immobilization used for SRT. Two routinely used methods of immobilization, which differ in their approach to reproduce the head position from day to day, are the Gill-Thomas-Cosman (GTC) frame and the BrainLab thermoplastic mask. The GTC frame fixates on the patient's upper dentition and thus is in direct mechanical contact with the cranium. The BrainLab mask is a two-part masking system custom fitted to the front and back of the patient's head. After patients signed an IRB-approved informed consent form, eligible patients were randomized to either GTC frame or mask for their course of SRT. Patients were treated as per standard procedure; however, prior to each treatment a set of digital kilovolt images (ExacTrac, BrainLabAB, Germany) was taken. These images were fused with reference digitally reconstructed radiographs obtained from treatment planning CT to yield lateral, longitudinal, and vertical deviations of isocenter and head rotations about respective axes. The primary end point of the study was to compare the two systems with respect to mean and standard deviations using the distance to isocenter measure. A total of 84 patients were enrolled (69 patients evaluable with detailed positioning data). A mixed-effect linear regression and two-tiled t test were used to compare the distance measure for both the systems. There was a statistically significant (p < 0.001) difference between mean distances for these systems, suggesting that the GTC frame was more accurate. The mean 3D displacement and standard deviations were 3.17+1.95 mm for mask and 2.00+1.04 mm for frame. Both immobilization techniques were highly effective, but the GTC frame was more accurate. To optimize the accuracy of SRT, daily kilovolt image guidance is recommended with either immobilization system. PMID

  9. 3D quantitative assessment of response to fractionated stereotactic radiotherapy and single-session stereotactic radiosurgery of vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States); University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); Chapiro, J. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Interventional Radiology, Baltimore, MD (United States); Lin, M. [Philips Research North America, Ultrasound Imaging and Interventions (UII), Briarcliff Manor, NY (United States); Geschwind, J.F. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Interventional Radiology, Baltimore, MD (United States); Yale University School of Medicine, Department of Radiology and Imaging Science, New Haven, CT (United States); Kleinberg, L. [The Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (United States); Rigamonti, D.; Jusue-Torres, I.; Marciscano, A.E. [The Johns Hopkins University School of Medicine, Department of Neurological Surgery, Baltimore, MD (United States); Yousem, D.M. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States)

    2016-03-15

    To determine clinical outcome of patients with vestibular schwannoma (VS) after treatment with fractionated stereotactic radiotherapy (FSRT) and single-session stereotactic radiosurgery (SRS) by using 3D quantitative response assessment on MRI. This retrospective analysis included 162 patients who underwent radiation therapy for sporadic VS. Measurements on T1-weighted contrast-enhanced MRI (in 2-year post-therapy intervals: 0-2, 2-4, 4-6, 6-8, 8-10, 10-12 years) were taken for total tumour volume (TTV) and enhancing tumour volume (ETV) based on a semi-automated technique. Patients were considered non-responders (NRs) if they required subsequent microsurgical resection or developed radiological progression and tumour-related symptoms. Median follow-up was 4.1 years (range: 0.4-12.0). TTV and ETV decreased for both the FSRT and SRS groups. However, only the FSRT group achieved significant tumour shrinkage (p < 0.015 for TTV, p < 0.005 for ETV over time). The 11 NRs showed proportionally greater TTV (median TTV pre-treatment: 0.61 cm{sup 3}, 8-10 years after: 1.77 cm{sup 3}) and ETV despite radiation therapy compared to responders (median TTV pre-treatment: 1.06 cm{sup 3}; 10-12 years after: 0.81 cm{sup 3}; p = 0.001). 3D quantification of VS showed a significant decrease in TTV and ETV on FSRT-treated patients only. NR had significantly greater TTV and ETV over time. (orig.)

  10. Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system

    Directory of Open Access Journals (Sweden)

    Montagnoli Roberto

    2010-01-01

    Full Text Available Abstract Background To assess the accuracy of fractionated stereotactic radiotherapy (FSRT using a stereotactic mask fixation system. Patients and Methods Sixteen patients treated with FSRT were involved in the study. A commercial stereotactic mask fixation system (BrainLAB AG was used for patient immobilization. Serial CT scans obtained before and during FSRT were used to assess the accuracy of patient immobilization by comparing the isocenter position. Daily portal imaging were acquired to establish day to day patient position variation. Displacement errors along the different directions were calculated as combination of systematic and random errors. Results The mean isocenter displacements based on localization and verification CT imaging were 0.1 mm (SD 0.3 mm in the lateral direction, 0.1 mm (SD 0.4 mm in the anteroposterior, and 0.3 mm (SD 0.4 mm in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.4 mm, being maximum 1.4 mm. No significant differences were found during the treatment (P = 0.4. The overall isocenter displacement as calculated by 456 anterior and lateral portal images were 0.3 mm (SD 0.9 mm in the mediolateral direction, -0.2 mm (SD 1 mm in the anteroposterior direction, and 0.2 mm (SD 1.1 mm in the craniocaudal direction. The largest displacement of 2.7 mm was seen in the cranio-caudal direction, with 95% of displacements Conclusions The results indicate that the setup error of the presented mask system evaluated by CT verification scans and portal imaging are minimal. Reproducibility of the isocenter position is in the best range of positioning reproducibility reported for other stereotactic systems.

  11. Standard-Fractionated Radiotherapy for Optic Nerve Sheath Meningioma: Visual Outcome Is Predicted by Mean Eye Dose

    International Nuclear Information System (INIS)

    Purpose: Radiotherapy has shown its efficacy in controlling optic nerve sheath meningiomas (ONSM) tumor growth while allowing visual acuity to improve or stabilize. However, radiation-induced toxicity may ultimately jeopardize the functional benefit. The purpose of this study was to identify predictive factors of poor visual outcome in patients receiving radiotherapy for ONSM. Methods and Materials: We conducted an extensive analysis of 10 patients with ONSM with regard to clinical, radiologic, and dosimetric aspects. All patients were treated with conformal radiotherapy and subsequently underwent biannual neuroophthalmologic and imaging assessments. Pretreatment and posttreatment values of visual acuity and visual field were compared with Wilcoxon’s signed rank test. Results: Visual acuity values significantly improved after radiotherapy. After a median follow-up time of 51 months, 6 patients had improved visual acuity, 4 patients had improved visual field, 1 patient was in stable condition, and 1 patient had deteriorated visual acuity and visual field. Tumor control rate was 100% at magnetic resonance imaging assessment. Visual acuity deterioration after radiotherapy was related to radiation-induced retinopathy in 2 patients and radiation-induced mature cataract in 1 patient. Study of radiotherapy parameters showed that the mean eye dose was significantly higher in those 3 patients who had deteriorated vision. Conclusions: Our study confirms that radiotherapy is efficient in treating ONSM. Long-term visual outcome may be compromised by radiation-induced side effects. Mean eye dose has to be considered as a limiting constraint in treatment planning.

  12. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    Science.gov (United States)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  13. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    Science.gov (United States)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  14. Accelerated partial breast irradiation using 3D conformal radiotherapy: initial clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, M.; Madeddu, A.; Malinverni, G.; Delmastro, E.; Bona, C.; Gabriele, P. [IRCC-Radiotherapy, Candiolo, TO (Italy); Baiotto, B.; Stasi, M. [IRCC-Medical Physics, Candiolo, TO (Italy); Ponzone, R.; Siatis, D. [IRCC-Surgery, Candiolo, TO (Italy)

    2006-11-15

    Accelerated partial breast irradiation using 3D-C.R.T. is technically sophisticate but feasible and acute toxicity to date has been minimal. A C.T.V.-to-P.T.V. margin of 10 mm seems to provide coverage for analyzed patients. However, more patients and additional studies will be needed to validate the accuracy of this margin, and longer follow-up will be needed to assess acute and chronic toxicity, tumor control, and cosmetic results. (author)

  15. Intra-fraction prostate displacement in radiotherapy estimated from pre- and post-treatment imaging of patients with implanted fiducial markers

    International Nuclear Information System (INIS)

    Purpose: To determine intra-fraction displacement of the prostate gland from imaging pre- and post-radiotherapy delivery of prostate cancer patients with three implanted fiducial markers. Methods and materials: Data were collected from 184 patients who had two orthogonal X-rays pre- and post-delivery on at least 20 occasions using a Varian On Board kV Imaging system. A total of 5778 image pairs covering time intervals between 3 and 30 min between pre- and post-imaging were evaluated for intra-fraction prostate displacement. Results: The mean three dimensional vector shift between images was 1.7 mm ranging from 0 to 25 mm. No preferential direction of displacement was found; however, there was an increase of prostate displacement with time between images. There was a large variation in typical shifts between patients (range 1 ± 1 to 6 ± 2 mm) with no apparent trends throughout the treatment course. Images acquired in the first five fractions of treatment could be used to predict displacement patterns for individual patients. Conclusion: Intra-fraction motion of the prostate gland appears to be a limiting factor when considering margins for radiotherapy. Given the variation between patients, a uniform set of margins for all patients may not be satisfactory when high target doses are to be delivered.

  16. Long-term results of low dose daily cisplatin chemotherapy used concurrently with modestly accelerated radiotherapy in locally advanced squamous cell carcinomas of the head neck cancer region

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Gupta

    2014-01-01

    Full Text Available Introduction: Concurrent single agent cisplatin (CDDP with radiotherapy (RT improves outcomes in locally advanced squamous cell carcinomas of the head neck (LA-SCCHN. CDDP at 100 mg/m 2 at 3 weekly intervals raise compliance, hospitalization, and supportive care issues. Low dose daily CDDP was delivered with RT to evaluate its compliance, long-term safety and efficacy. Patients and Methods: During the period of month between November 2005 and May 2007, 52 patients of stage III/IV LA-SCCHN were given with conventional RT in a phased manner (dose-70 Gy/35 fractions/6 weeks along with daily CDDP (6 mg/m 2 ; capped 10 mg-30 cycles over 6 weeks. No hospitalization or antiemetic cover was planned. Compliance, acute and late toxicity were recorded as per Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer grading system and survival outcomes were evaluated. Results : The median follow-up was 63 months. 43 (83% cases complied with RT schedule and >28 cycles of CDDP was administered in 38 (73% cases. Confluent mucositis was seen in 65%, Grade III/IV dysphagia in 67%; 77% required enteral feed and hospitalization in 15%. There were four treatment related deaths. At 5 years, the loco-regional control was 25% (median-11 months and the overall survival was 31% (median-11 months. The 5 years actuarial rates of late Grade III/IV toxicity was 24%. Late swallowing difficulty/aspiration were seen in 17%; xerostomia-40%; ototoxicity-6%; nephrotoxicity-4%; and no second malignancy. Conclusion: Low dose cisplatin with moderately accelerated RT schedule appears feasible and logistically suitable "out-patient" option without increasing long-term toxicity in LA-SCCHN cancer region.

  17. Dose volume histogram analysis of normal structures associated with accelerated partial breast irradiation delivered by high dose rate brachytherapy and comparison with whole breast external beam radiotherapy fields

    Directory of Open Access Journals (Sweden)

    Mutyala Subhakar

    2008-11-01

    Full Text Available Abstract Purpose To assess the radiation dose delivered to the heart and ipsilateral lung during accelerated partial breast brachytherapy using a MammoSite™ applicator and compare to those produced by whole breast external beam radiotherapy (WBRT. Materials and methods Dosimetric analysis was conducted on patients receiving MammoSite breast brachytherapy following conservative surgery for invasive ductal carcinoma. Cardiac dose was evaluated for patients with left breast tumors with a CT scan encompassing the entire heart. Lung dose was evaluated for patients in whom the entire lung was scanned. The prescription dose of 3400 cGy was 1 cm from the balloon surface. MammoSite dosimetry was compared to simulated WBRT fields with and without radiobiological correction for the effects of dose and fractionation. Dose parameters such as the volume of the structure receiving 10 Gy or more (V10 and the dose received by 20 cc of the structure (D20, were calculated as well as the maximum and mean doses received. Results Fifteen patients were studied, five had complete lung data and six had left-sided tumors with complete cardiac data. Ipsilateral lung volumes ranged from 925–1380 cc. Cardiac volumes ranged from 337–551 cc. MammoSite resulted in a significantly lower percentage lung V30 and lung and cardiac V20 than the WBRT fields, with and without radiobiological correction. Conclusion This study gives low values for incidental radiation received by the heart and ipsilateral lung using the MammoSite applicator. The volume of heart and lung irradiated to clinically significant levels was significantly lower with the MammoSite applicator than using simulated WBRT fields of the same CT data sets. Trial registration Dana Farber Trial Registry number 03-179

  18. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    International Nuclear Information System (INIS)

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.)

  19. Germline glutathione S-transferase variants in breast cancer: Relation to diagnosis and cutaneous long-term adverse effects after two fractionation patterns of radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To explore whether certain glutathione S-transferase (GST) polymorphisms are associated with an increased risk of breast cancer or the level of radiation-induced adverse effects after two fractionation patterns of adjuvant radiotherapy. Methods and Materials: The prevalence of germline polymorphic variants in GSTM1, GSTP1, and GSTT1 was determined in 272 breast cancer patients and compared with that in a control group of 270 women from the general population with no known history of breast cancer. The genetic variants were determined using multiplex polymerase chain reaction followed by restriction enzyme fragment analysis. In 253 of the patients surveyed for radiotherapy-induced side effects after a median observation time of 13.7 years (range, 7-22.8 years), the genotypes were related to the long-term effects observed after two fractionation patterns (treatment A, 4.3 Gy in 10 fractions for 156 patients; and treatment B, 2.5 Gy in 20 fractions for 97; both administered within a 5-week period). Results: None of the GST polymorphisms conferred an increased risk of breast cancer, either alone or in combination. Compared with treatment B, treatment A was followed by an increased level of moderate to severe radiation-induced side effects for all the endpoints studied (i.e., degree of telangiectasia, subcutaneous fibrosis and atrophy, lung fibrosis, costal fractures, and pleural thickening; p <0.001 for all endpoints). A significant association was found between the level of pleural thickening and the GSTP1 Ile105Val variant. Conclusion: The results of this study have illustrated the impact of hypofractionation on the level of adverse effects and indicated that the specific alleles of GSTP1, M1, and T1 studied here may be significant in determining the level of adverse effects after radiotherapy

  20. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy.

    Science.gov (United States)

    Zahnreich, Sebastian; Ebersberger, Anne; Kaina, Bernd; Schmidberger, Heinz

    2015-04-01

    The aim of this current study was to quantitatively describe radiation-induced DNA damage and its distribution in leukocytes of cancer patients after fractionated partial- or total-body radiotherapy. Specifically, the impact of exposed anatomic region and administered dose was investigated in breast and prostate cancer patients receiving partial-body radiotherapy. DNA double-strand breaks (DSBs) were quantified by γ-H2AX immunostaining. The frequency of unstable chromosomal aberrations in stimulated lymphocytes was also determined and compared with the frequency of DNA DSBs in the same samples. The frequency of radiation-induced DNA damage was converted into dose, using ex vivo generated calibration curves, and was then compared with the administered physical dose. This study showed that 0.5 h after partial-body radiotherapy the quantity of radiation-induced γ-H2AX foci increased linearly with the administered equivalent whole-body dose for both tumor entities. Foci frequencies dropped 1 day thereafter but proportionality to the equivalent whole-body dose was maintained. Conversely, the frequency of radiation-induced cytogenetic damage increased from 0.5 h to 1 day after the first partial-body exposure with a linear dependence on the administered equivalent whole-body dose, for prostate cancer patients only. Only γ-H2AX foci assessment immediately after partial-body radiotherapy was a reliable measure of the expected equivalent whole-body dose. Local tumor doses could be approximated with both assays after one day. After total-body radiotherapy satisfactory dose estimates were achieved with both assays up to 8 h after exposure. In conclusion, the quantification of radiation-induced γ-H2AX foci, but not cytogenetic damage in peripheral leukocytes was a sensitive and rapid biodosimeter after acute heterogeneous irradiation of partial body volumes that was able to primarily assess the absorbed equivalent whole-body dose.

  1. Report on a randomized trial comparing two forms of immobilization of the head for fractionated stereotactic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, Greg; Machtay, Mitchell; Werner-Wasik, Maria; Downes, Beverly; Bogner, Joachim; Hyslop, Terry; Galvin, James; Evans, James; Curran, Walter Jr.; Andrews, David [Department of Radiation Oncology, Kimmel Cancer Center of the Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States) and Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15232 (United States); Department of Radiation Oncology, Kimmel Cancer Center of the Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States); Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Department of Radiotherapy and Radiobiology, Medical University of Vienna, 1010 Vienna (Austria); Department of Biostatistics, Kimmel Cancer Center of the Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States); Department of Radiation Oncology, Kimmel Cancer Center of the Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States); Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Department of Radiation Oncology, Kimmel Cancer Center of the Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States) and Department of Radiation Oncology, Emory University, Atlanta, Georgia 30322 (United States); Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States)

    2009-01-15

    Fractionated stereotactic radiotherapy (SRT) requires accurate and reproducible immobilization of the patient's head. This randomized study compared the efficacy of two commonly used forms of immobilization used for SRT. Two routinely used methods of immobilization, which differ in their approach to reproduce the head position from day to day, are the Gill-Thomas-Cosman (GTC) frame and the BrainLab thermoplastic mask. The GTC frame fixates on the patient's upper dentition and thus is in direct mechanical contact with the cranium. The BrainLab mask is a two-part masking system custom fitted to the front and back of the patient's head. After patients signed an IRB-approved informed consent form, eligible patients were randomized to either GTC frame or mask for their course of SRT. Patients were treated as per standard procedure; however, prior to each treatment a set of digital kilovolt images (ExacTrac, BrainLabAB, Germany) was taken. These images were fused with reference digitally reconstructed radiographs obtained from treatment planning CT to yield lateral, longitudinal, and vertical deviations of isocenter and head rotations about respective axes. The primary end point of the study was to compare the two systems with respect to mean and standard deviations using the distance to isocenter measure. A total of 84 patients were enrolled (69 patients evaluable with detailed positioning data). A mixed-effect linear regression and two-tiled t test were used to compare the distance measure for both the systems. There was a statistically significant (p<0.001) difference between mean distances for these systems, suggesting that the GTC frame was more accurate. The mean 3D displacement and standard deviations were 3.17+1.95 mm for mask and 2.00+1.04 mm for frame. Both immobilization techniques were highly effective, but the GTC frame was more accurate. To optimize the accuracy of SRT, daily kilovolt image guidance is recommended with either immobilization

  2. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Mozsa, Emoeke [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Landesklinikum Wiener Neustadt, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Meszaros, Norbert; Major, Tibor; Froehlich, Georgina; Stelczer, Gabor; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Sulyok, Zoltan [National Institute of Oncology, Centre of Surgery, Budapest (Hungary)

    2014-05-15

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.) [German] Evaluation der 5-Jahres-Ergebnisse bezueglich Ueberleben, Tumorkontrolle, Nebenwirkungen und Kosmetik nach Teilbrustbestrahlung (APBI) mittels 3-D-konformaler, akzelerierter Radiotherapie (3D-CRT). Zwischen 2006 und 2011 wurden 44 Patienten mit Brustkrebs im Stadium I-II und niedrigem Risikoprofil brusterhaltend operiert. Die adjuvante, 3-D-konformale APBI wurde mittels 3-5 nonkoplanarer Feldern durchgefuehrt. Die Gesamtdosis betrug 36,9 Gy bei 9 -mal 4,1 Gy b.i.d.. Nach

  3. TLD Intercomparison in accelerators for radiotherapy in three Latin american countries; Intercomparacion TLD en aceleradores para radioterapia en tres paises latinoamericanos

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Azorin N, J.; Perez, M.A.; Picon, C.; Castellanos, E.; Plazas, M.C.; Murcia, G.; Archundia, L. [Depto. El Hombre y su Ambiente. Universidad Autonoma Metropolitana, Calz. Del Hueso 1100, 04960 Mexico D.F. (Mexico)

    1998-12-31

    In Radiotherapy one of the objectives is to establish and to give follow up to quality assurance programs which make sure that the doses administered to the patients with cancer are a high probability of a success in external radiation. Likewise, one of the present preoccupations of the United Nations Agencies as well as the International Atomic Energy Agency and the Pan-American Health Organization is the optimal employment of the radiations in the treatment of cancer patients since the administered dose in Radiotherapy suffers considerable variations by the lack of quality assurance programs. The use of Electron linear accelerators requires a program of quality assurance that includes expert personnel, equipment and adequate facilities. The more used methodology for the dosimetry calibration and characterization of X-ray beams and high energy electrons for radiotherapy use is using a ionization chamber dosemeter calibrated in a regional secondary standardization laboratory. However, to establish and give follow up to the quality assurance programs it is necessary the dosimetric intercomparison through TLD. In this study it was designed plastic phantoms with TLD crystals and it was made its characterization to realize an absorbed dose analysis in the crystals exposed at X-ray beams 6 MV and high energy electrons 10 and 12 MeV to standardize the dosimetric procedures and proceeding to realize an International Pilot intercomparison of absorbed doses in TLD crystals in three Latin American countries: Mexico, Peru and Colombia with the participation of accelerators of five different institutions. The found results show that the majority of the measured doses with TLD in the different accelerators were in the 0.95-1.05 range though it had two cases outside of this range. The use of the phantoms with TLD crystals shows that they are of excellent aid to make analysis of the doses administered to the patients and an intercomparison of results to standardize procedures at

  4. 肺癌超分割同步放化疗致急性放射性食管炎的研究%Research on Hyperfractionated Accelerated Radiotherapy-induced Acute Radiation Esophagitis in Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    蓝柳; 杨春旭; 莫玉珍; 苏毅; 宁四海

    2011-01-01

    目的 观察超分割同步放化疗治疗局部晚期非小细胞肺癌(NSCLC)患者放射性食管炎的发生情况,评价其安全性,探讨超分割放疗导致放射性食管炎损伤的有效预测指标.方法 初治NSCLC 48例,采用超分割同步放化疗24例,放疗剂量:56.0~64.4 Gy/40~46次,1.4 Gy/次,2次/d;常规分割同步放化疗24例,放疗剂量:60.0~66 Gy/30~33次,2.0 Gy/次,1次/d.两组均接受依托泊苷+顺铂(EP)方案同步化疗.采用RTOG标准评价急性放射性食管炎发生情况,分析急性放射性食管炎的相关临床及物理因素.结果 48例患者均完成治疗计划.超分割组≥2级和≥3急性放射性食管炎发生率高于对照组(P<0.05).急性放射性食管炎最早在第10天发生,累计剂量为22.4 Gy,在疗程的第17天后其发生率明显上升.超分割组中食管LETT30、LETT35、V35与≥2级急性放射性食管炎显著相关(P<0.01).结论 超分割同步放化疗治疗NSCLC急性放射性食管炎的发生率及严重程度较常规分割同步放化疗明显增加,并且发生时间早;食管LETT30、LETT35、V35和周累计剂量是预测超分割同步放化疗致急性放射性食管炎的可靠指标.%Objective To observed the incidence of acute radiation esophagitis and analyze the factors as predictors of acute radiotherapy-induced acute radiation esophagitis for locally advanced non-small cell lung cancer( LA-NSCLC )patients treated with 3DCRT were reviewed. To analyze the efficacy and safety of hyperfractionated accelerated radiotherapy for the treatment of lung cancer and assess effective indexes in those patient. Methods Forty eight patients with LA-NSCLC were allocated to treatment group( 24 cases ), treated with hyperfractionated accelerated radiotherapy.Radiotherapy was delivered at 1. 4 Gy/fraction ,56. 0 - 64. 4 Gy/40 - 45 fractions , twice a day. The control group( 24 cases )treated with conventional fractionation , with delivered at 2 Gy fraction , 60. 0

  5. Study of the characteristics of neutron monitor area applied to the evaluation of dose rates in a 15 MeV radiotherapy accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Candido M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica]. E-mail: candido_1998@yahoo.com; Patrao, Karla C.S.; Pereira, Walsan W.; Fonseca, Evaldo S.; Giannoni, Ricardo A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons]. E-mails: karla@ird.gov.br; walsan@ird.gov.br; Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Setor de Fisica Medica]. E-mail: delano@inca.gov.br

    2007-07-01

    Currently, in Radiotherapy, the use of linear accelerators is becoming each time more common. From Radiation Protection point of view, these instruments represent an advance in relation to the cobalt and caesium irradiators, mainly due to absence of the radioactive material. On the other hand, accelerators with the energies superior to 10 MeV produce contamination of the therapeutic beam with the presence of neutrons generated in the interaction of high-energy photons with high atomic number materials from the own irradiator. The present work carries through measurements in a linear accelerator of 15 MeV using three neutron area monitors for a comparison of the response of these instruments, evaluating its adequacy to this measurement. Characteristics of use and operation associates to parameters such as: monitor dead time, monitor gamma rejection, and calibration results are also analyzed in this study. (author)

  6. A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external-beam radiotherapy for localized prostate adenocarcinoma. A report on acute toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Norkus, Darius; Miller, Albert; Kurtinaitis, Juozas; Valuckas, Konstantinas Povilas [Dept. of Radiotherapy, Inst. of Oncology, Vilnius Univ. (Lithuania); Haverkamp, Uwe [Dept. of Radiology, Clemenshospital, Muenster (Germany); Popov, Sergey [Dept. of Radiotherapy, Riga Eastern Hospital, Latvian Oncology Center, Riga (Latvia); Prott, Franz-Josef [Inst. of Radiology and Radiotherapy (RNS), St. Josefs Hospital, Wiesbaden (Germany)

    2009-11-15

    Purpose: to compare acute gastrointestinal (GI) and genitourinary (GU) toxicity between patient groups with localized prostate adenocarcinoma, treated with conventionally fractionated (CFRT) and hypofractionated (HFRT) three-dimensional conformal external-beam radiotherapy (3D-CRT). Patients and methods: 91 patients were enrolled into a randomized study with a minimum follow-up of 3 months. 44 men in the CFRT arm were irradiated with 74 Gy in 37 fractions at 2 Gy per fraction for 7.5 weeks. 47 men in the HFRT arm were treated with 57 Gy in 17 fractions for 3.5 weeks, given as 13 fractions of 3 Gy plus four fractions of 4.5 Gy. The clinical target volume (CTV) included the prostate and the base of seminal vesicles. The CTV-to-PTV (planning target volume) margin was 8-10 mm. Study patients had portal imaging and/or simulation performed on the first fractions and repeated at least weekly. Results: no acute grade 3 or 4 toxicities were observed. The grade 2 GU acute toxicity proportion was significantly lower in the HFRT arm: 19.1% versus 47.7% ({chi}{sup 2}-test, p = 0.003). The grade 2 GU acute toxicity-free survival was significantly better in the HFRT arm (log-rank test, p = 0.008). The median duration of overall GI acute toxicity was shorter with HFRT: 3 compared to 6 weeks with CFRT (median test, p = 0.017). Conclusion: in this first evaluation, the HFRT schedule is feasible and induces acceptable or even lower acute toxicity compared with the toxicities in the CFRT schedule. Extended follow-up is needed to justify this fractionation schedule's safety in the long term. (orig.)

  7. On-Board Imaging Validation of Optically Guided Stereotactic Radiosurgery Positioning System for Conventionally Fractionated Radiotherapy for Paranasal Sinus and Skull Base Cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positional error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 ± 1.1 mm and 3.9 ± 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.

  8. [Whole Brain Irradiation and Hypo-fractionation Radiotherapy for the Metastases in Non-small Cell Lung Cancer].

    Science.gov (United States)

    Gu, Xingting; Zhao, Yaqin; Xu, Feng

    2016-04-20

    Up to 40% non-small cell lung cancer patients developed brain metastasis during progression. Multiple brain metastases are common in non-small cell lung cancer. The prognosis of brain metastasis is poor with median survival of less than 1 year. Radio therapy for brain metastases has gradually developed from whole brain radiotherapy (WBRT) to various radiation strategies. WBRT, surgery+WBRT, stereotactic radiotherapy+WBRT or WBRT with simultaneous integrated boost (SIB), etc. have better overall survival than those untreated patients. The damage of the cognitive function from WBRT has been realized recently, however, options of radiation strategies for long expected survival patients remain controversial. This paper will discuss different WBRT strategies and treatment side effects of non-small cell lung cancer with brain metastases. PMID:27118651

  9. IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB technique

    Directory of Open Access Journals (Sweden)

    Benassi Marcello

    2011-05-01

    Full Text Available Abstract Background An advantage of the Intensity Modulated Radiotherapy (IMRT technique is the feasibility to deliver different therapeutic dose levels to PTVs in a single treatment session using the Simultaneous Integrated Boost (SIB technique. The paper aims to describe an automated tool to calculate the dose to be delivered with the SIB-IMRT technique in different anatomical regions that have the same Biological Equivalent Dose (BED, i.e. IsoBED, compared to the standard fractionation. Methods Based on the Linear Quadratic Model (LQM, we developed software that allows treatment schedules, biologically equivalent to standard fractionations, to be calculated. The main radiobiological parameters from literature are included in a database inside the software, which can be updated according to the clinical experience of each Institute. In particular, the BED to each target volume will be computed based on the alpha/beta ratio, total dose and the dose per fraction (generally 2 Gy for a standard fractionation. Then, after selecting the reference target, i.e. the PTV that controls the fractionation, a new total dose and dose per fraction providing the same isoBED will be calculated for each target volume. Results The IsoBED Software developed allows: 1 the calculation of new IsoBED treatment schedules derived from standard prescriptions and based on LQM, 2 the conversion of the dose-volume histograms (DVHs for each Target and OAR to a nominal standard dose at 2Gy per fraction in order to be shown together with the DV-constraints from literature, based on the LQM and radiobiological parameters, and 3 the calculation of Tumor Control Probability (TCP and Normal Tissue Complication Probability (NTCP curve versus the prescribed dose to the reference target.

  10. Comparative analysis of radiotherapy toxicity of conventional fractionation and larger fractionation after breast cancer modified radical surgery%乳腺癌改良根治术后常规分割与大分割放疗毒性对比分析

    Institute of Scientific and Technical Information of China (English)

    张伟

    2015-01-01

    目的:观察局部晚期乳腺癌改良根治术后常规分割放疗与大分割放疗的不良反应。方法:收治局部晚期乳腺癌患者66例,随机分为常规分割放射治疗组和大分割放射治疗组。大分割放射治疗组2.9 Gy/次,5次/周,总剂量43.5 Gy,常规分割治疗组2 Gy/次,5次/周,总剂量50 Gy。结果:中位随诊24个月,大分割放射治疗组和常规分割放射治疗组的急性及晚期损伤无明显差异。结论:大分割放射治疗缩短了治疗时间,可作为局部晚期乳腺癌改良根治术后常规放疗方法。%Objective:To observe the adverse reactions of conventional fractionation radiotherapy and larger fractionation radiotherapy after locally advanced breast cancer modified radical surgery.Methods:66 patients with locally advanced breast cancer were selected.They were randomly divided into the conventional fractionation radiotherapy group and the larger fractionation radiotherapy group.The larger fractionation radiotherapy group was given 2.9 Gy one time,5 times one week,the total dose of 43.5 Gy.The conventional fractionation radiotherapy group was given 2 Gy one time,5 times one week,the total dose of 50 Gy.Results:The median follow-up was 24 months.The larger fractionation radiotherapy group and the conventional fractionation radiotherapy group had not significantly different on the acute and late injury.Conclusion:Larger fractionation radiotherapy can shorten the treatment time,and it can be used as a conventional radiotherapy method for locally advanced breast cancer after modified radical surgery.

  11. Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Tao HM

    2016-03-01

    Full Text Available Hengmin Tao,1,2 Yumei Wei,1 Wei Huang,1 Xiujuan Gai,1,2 Baosheng Li11Department of 6th Radiation Oncology, Shandong Cancer Hospital and Institute, 2School of Medicine and Life Sciences, Jinan University-Shandong Academy of Medical Sciences, Jinan, People’s Republic of ChinaAim: In recent years, the intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB and intensity-modulated radiotherapy with conventional fractionation (IMRT-CF have been involved in the treatment of nasopharyngeal carcinoma (NPC. However, the potential clinical effects and toxicities are still controversial.Methods: Here, 107 patients with biopsy-proven locally advanced NPC between March 2004 and January 2011 were enrolled in the retrospective study. Among them, 54 patients received IMRT-SIB, and 53 patients received IMRT-CF. Subsequently, overall survival (OS, 5-year progression-free survival (PFS, 5-year locoregional recurrence-free survival (LRFS, and relevant toxicities were analyzed.Results: In the present study, all patients completed the treatment, and the overall median follow-up time was 80 months (range: 8–126 months. The 5-year OS analysis revealed no significant difference between the IMRT-SIB and IMRT-CF groups (80.9% vs 80.5%, P=0.568. In addition, there were also no significant between-group differences in 5-year PFS (73.3% vs 74.4%, P=0.773 and 5-year LRFS (88.1% vs 90.8%, P=0.903. Notably, the dose to critical organs (spinal cord, brainstem, and parotid gland in patients treated by IMRT-CF was significantly lower than that in patients treated by IMRT-SIB (all P<0.05.Conclusion: Both IMRT-SIB and IMRT-CF techniques are effective in treating locally advanced NPC, with similar OS, PFS, and LRFS. However, IMRT-CF has more advantages than IMRT-SIB in protecting spinal cord, brainstem, and parotid gland from acute and late toxicities, such as xerostomia. Further prospective study is warranted to confirm our findings.Keywords: intensity

  12. Randomized multicenter follow-up trial on the effect of radiotherapy for plantar fasciitis (painful heels spur) depending on dose and fractionation – a study protocol

    International Nuclear Information System (INIS)

    An actual clinical trial showed the effect of low dose radiotherapy in painful heel spur (plantar fasciitis) with single doses of 1.0 Gy and total doses of 6.0 Gy applied twice weekly. Furthermore, a lot of animal experimental and in vitro data reveals the effect of lower single doses of 0.5 Gy which may be superior in order to ease pain and reduce inflammation in patients with painful heel spur. Our goal is therefore to transfer this experimentally found effect into a randomized multicenter trial. This was a controlled, prospective, two-arm phase III-multicenter trial. The standard arm consisted of single fractions of 1.0 Gy applied two times a week, for a total dose of 6.0 Gy (total therapy time: 3 weeks). The experimental arm consisted of single fractions of 0.5 Gy applied 3 times a week, for a total dose of 6.0 Gy (total therapy time: 4 weeks). Following a statistical power calculation, there were 120 patients for each investigation arm. The main inclusion criteria were: age > = 40 years, clinical and radiologically diagnosed painful heel spur (plantar fasciitis), and current symptoms for at least 6 months. The main exclusion criteria were: former local trauma, surgery or radiotherapy of the heel; pregnant or breastfeeding women; and a pre-existing severe psychiatric or psychosomatic disorder. After approving a written informed consent the patients are randomized by a statistician into one of the trial arms. After radiotherapy, the patients are seen after six weeks, after twelve weeks and then every twelve weeks up to 48 weeks. Additionally, they receive a questionnaire every six weeks after the follow-up examinations up to 48 weeks. The effect is measured using the visual analogue scale of pain (VAS), the calcaneodynia score according to Rowe and the SF-12 score. The primary endpoint is the pain relief three months after therapy. Patients of both therapy arms with an insufficient result are offered a second radiotherapy series applying the standard dose

  13. Study of efficacy and toxicity of hypofractionated thoracic radiotherapy 17 gray in 2 fractions for palliation in advanced non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Objective: To determine the efficacy and toxicity of hypofractionated thoracic radiotherapy 17 Gray (Gy) in 2 fractions for palliation in advanced non-small-cell lung carcinoma. Study design: A quasi-experimental study. Place and duration of study: Oncology department, Combined Military Hospital, Rawalpindi, from 4th July 2008 to 4th Nov 2009. Material and Methods: Fifty four patients with histologically and/or cytologically confirmed unresectable stages III and IV non small cell lung cancer, with performance status 2 or 3 and expected survival > 2 months were treated with megavoltage radiation therapy 17 Gy in 2 fractions one week apart, with symptoms due to intrathoracic disease (cough, dyspnea and hemoptysis) and toxicity due to radiation therapy (dysphagia secondary to esophagitis) assessed as per common toxicity criteria adverse event version 3.0 on day 0 before treatment and day 30 after start of treatment. Results: Grades of cough, hemoptysis and dyspnea showed significant improvement after treatment (p<0.001). A total of 42.68% patients showed an improvement in grade of cough (23 out of 54 patients), 85.7% of patients showed improvement in grade of hemoptysis (36 out of 42 patients) and 55.65% patients showed improvement in grade of dyspnea (30 out of 54 patients). Twenty two point two percent patients (12 out of 54) showed increase in grade of dysphagia. Although, there was a statistically significant increase in grade of dysphagia after treatment but it was limited to grade 1 and 2 only. Considering that no patient had grade 3 or 4 dysphagia, this toxicity was acceptable. Conclusion: Based on our results hypofractionated thoracic radiotherapy, 17 Gy in 2 fractions, is effective with acceptable toxicity in palliation in advanced non small cell lung cancer and is recommended as it will result in shorter duration of hospital stay and low hospital stay charges. (author)

  14. Preliminary Experience in Treatment of Papillary and Macular Retinoblastoma: Evaluation of Local Control and Local Complications After Treatment With Linear Accelerator-Based Stereotactic Radiotherapy With Micromultileaf Collimator as Second-Line or Salvage Treatment After Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Pica, Alessia, E-mail: Alessia.Pica@chuv.ch [Department of Radiation Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Moeckli, Raphael [University Institute for Radiation Physics, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Balmer, Aubin [Department of Radiation Oncology, Jules Gonin Eye Hospital, Lausanne (Switzerland); Beck-Popovic, Maja [Unit of Pediatric Oncology, University of Lausanne, Lausanne (Switzerland); Chollet-Rivier, Madeleine [Department of Anesthesiology, University of Lausanne, Lausanne (Switzerland); Do, Huu-Phuoc [University Institute for Radiation Physics, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Weber, Damien C. [Department of Radiation Oncology, Geneva University Hospital, University of Geneva, Geneva (Switzerland); Munier, Francis L. [Department of Radiation Oncology, Jules Gonin Eye Hospital, Lausanne (Switzerland)

    2011-12-01

    Purpose: To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator. Methods and Materials: Between 2004 and 2008, 11 children (15 eyes) with macular and/or papillary retinoblastoma were treated with SRT. The mean age was 19 months (range, 2-111). Of the 15 eyes, 7, 6, and 2 were classified as International Classification of Intraocular Retinoblastoma Group B, C, and E, respectively. The delivered dose of SRT was 50.4 Gy in 28 fractions using a dedicated micromultileaf collimator linear accelerator. Results: The median follow-up was 20 months (range, 13-39). Local control was achieved in 13 eyes (87%). The actuarial 1- and 2-year local control rates were both 82%. SRT was well tolerated. Late adverse events were reported in 4 patients. Of the 4 patients, 2 had developed focal microangiopathy 20 months after SRT; 1 had developed a transient recurrence of retinal detachment; and 1 had developed bilateral cataracts. No optic neuropathy was observed. Conclusions: Linear accelerator-based SRT for papillary and/or macular retinoblastoma in children resulted in excellent tumor control rates with acceptable toxicity. Additional research regarding SRT and its intrinsic organ-at-risk sparing capability is justified in the framework of prospective trials.

  15. Searching for the optimal radiotherapy treatment time, dose and fractionation - the role of hypoxia and reoxygenation : A modelling study

    OpenAIRE

    Lindblom, Emely

    2014-01-01

    The search for the optimal choice of treatment time, dose and fractionation regimen is one of the major challenges in radiation therapy. Several aspects of the radiation response of tumours and normal tissues give different indications of how the parameters defining a fractionation schedule should be altered relative to each other which often results in contradictory conclusions. For example, the increased sensitivity to fractionation in late-reacting as opposed to early-reacting tissues indi...

  16. Fractionated stereotactic radiotherapy of benign skull-base tumors: a dosimetric comparison of volumetric modulated arc therapy with Rapidarc® versus non-coplanar dynamic arcs

    International Nuclear Information System (INIS)

    Benign tumors of the skull base are a challenge when delivering radiotherapy. An appropriate choice of radiation technique may significantly improve the patient’s outcomes. Our study aimed to compare the dosimetric results of fractionated stereotactic radiotherapy between non-coplanar dynamic arcs and coplanar volumetric modulated arctherapy (Rapidarc®). Thirteen patients treated with Novalis TX® were analysed: six vestibular schwannomas, four pituitary adenomas and three meningioma. Two treatment plans were created for each case: dynamic arcs (4–5 non coplanar arcs) and Rapidarc® (2 coplanar arcs). All tumors were >3 cm and accessible to both techniques. Patients had a stereotactic facemask (Brainlab) and were daily repositioned by Exactrac®. GTV and CTV were contoured according to tumor type. A 1-mm margin was added to the CTV to obtain PTV. Radiation doses were 52.2–54 Gy, using 1.8 Gy per fraction. Treatment time was faster with Rapidarc®. The mean PTV V95 % was 98.8 for Rapidarc® and 95.9 % for DA (p = 0.09). Homogeneity index was better with Rapidarc®: 0.06 vs. 0.09 (p = 0.01). Higher conformity index values were obtained with Rapidarc®: 75.2 vs. 67.9 % (p = 0.04). The volume of healthy brain that received a high dose (V90 %) was 0.7 % using Rapidarc® vs. 1.4 % with dynamic arcs (p = 0.05). Rapidarc® and dynamic arcs gave, respectively, a mean D40 % of 10.5 vs. 18.1 Gy (p = 0.005) for the hippocampus and a Dmean of 25.4 vs. 35.3 Gy (p = 0.008) for the ipsilateral cochlea. Low-dose delivery with Rapidarc® and dynamic arcs were, respectively, 184 vs. 166 cm3 for V20 Gy (p = 0.14) and 1265 vs. 1056 cm3 for V5 Gy (p = 0.67). Fractionated stereotactic radiotherapy using Rapidarc® for large benign tumors of the skull base provided target volume coverage that was at least equal to that of dynamics arcs, with better conformity and homogeneity and faster treatment time. Rapidarc® also offered better sparing of the ipsilateral cochlea and hippocampus

  17. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    Science.gov (United States)

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1. PMID:17555261

  18. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    Science.gov (United States)

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  19. Fractionated and single-dose radiotherapy for heterotopic bone formation in patients with spinal cord injury. A phase-I/II study

    International Nuclear Information System (INIS)

    Background: Heterotopic ossification occur in about 20% of patients with spinal cord injury and may seriously compromise the rehabilitation process. Aim of the present study was to evaluate if radiotherapy administered early in the course of the disease prevents the manifestation of heterotopic ossification and if in patients whose bone formations have been resected recurrence can be avoided. Patients and Methods: 52 patients (44 males, eight females, median age 33 years) and 75 joints were irradiated between December 1989 and March 2000. 49 patients (70 joints, 65 hips, three knees, one shoulder, one elbow) were evaluable. Median follow-up was 11 months. In 58 joints radiotherapy was performed as a primary treatment in the inflammatory phase of soft tissue swelling that precedes manifestation of heterotopic ossifications. Twelve joints were treated after resection of manifest heterotopic bone, two patients had primary and postoperative irradiation in different joints. The dose was 10 Gy in single fractions of 2-2,5 Gy in 34 joints and 7.5-20 Gy in six joints. From July 1996 on, 30 joints received single-dose irradiation with 8 Gy. Results: 50/70 joints (71%) remained free from progression. This was the case for 47/65 (72%) hips, whereas in 18 hips (27%) the Brooker score increased for 1-2 grades and caused a moderate decrease of mobility in five joints. Out of the other five joints, two knees developed progression. No relevant side effects occurred. Conclusion: The present results suggest that radiotherapy is an effective local treatment option for spinal cord injured patients with heterotopic ossifications. (orig.)

  20. Tumor Shrinkage Assessed by Volumetric MRI in Long-Term Follow-Up After Fractionated Stereotactic Radiotherapy of Nonfunctioning Pituitary Adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Christine, E-mail: Christine.Kopp@lrz.tu-muenchen.de [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich (Germany); Theodorou, Marilena; Poullos, Nektarios; Jacob, Vesna; Astner, Sabrina T.; Molls, Michael [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich (Germany); Grosu, Anca-Ligia [Klinik fuer Strahlenheilkunde, Universitaet Freiburg, Freiburg (Germany)

    2012-03-01

    Purpose: To evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent nonfunctioning pituitary adenomas (NFPAs). Methods and Materials: We assessed exact tumor volume shrinkage in 16 patients with NFPA after FSRT. All patients had previously undergone surgery. Gross tumor volume (GTV) was outlined on contrast-enhanced magnetic resonance imaging (MRI) before and median 63 months (range, 28-100 months) after FSRT. MRI was performed as an axial three-dimensional gradient echo T1-weighted sequence at 1.6-mm slice thickness without gap (3D MRI). Results: Mean tumor size of all 16 pituitary adenomas before treatment was 7.4 mL (3.3-18.9 mL). We found shrinkage of the treated pituitary adenoma in all patients. Within a median follow-up of 63 months (28-100 months) an absolute mean volume reduction of 3.8 mL (0.9-12.4 mL) was seen. The mean relative size reduction compared with the volume before radiotherapy was 51% (22%-95%). Shrinkage measured by 3D MRI was greater at longer time intervals after radiotherapy. A strong negative correlation between the initial tumor volume and the absolute volume reduction after FSRT was found. There was no correlation between tumor size reduction and patient age, sex, or number of previous surgeries. Conclusions: By using 3D MRI in all patients undergoing FSRT of an NFPA, tumor shrinkage is detected. Our data demonstrate that volumetric assessment based on 3D MRI adds additional information to routinely used radiological response measurements. After FSRT a mean relative size reduction of 51% can be expected within 5 years.

  1. Tumor Shrinkage Assessed by Volumetric MRI in Long-Term Follow-Up After Fractionated Stereotactic Radiotherapy of Nonfunctioning Pituitary Adenoma

    International Nuclear Information System (INIS)

    Purpose: To evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent nonfunctioning pituitary adenomas (NFPAs). Methods and Materials: We assessed exact tumor volume shrinkage in 16 patients with NFPA after FSRT. All patients had previously undergone surgery. Gross tumor volume (GTV) was outlined on contrast-enhanced magnetic resonance imaging (MRI) before and median 63 months (range, 28–100 months) after FSRT. MRI was performed as an axial three-dimensional gradient echo T1-weighted sequence at 1.6-mm slice thickness without gap (3D MRI). Results: Mean tumor size of all 16 pituitary adenomas before treatment was 7.4 mL (3.3–18.9 mL). We found shrinkage of the treated pituitary adenoma in all patients. Within a median follow-up of 63 months (28–100 months) an absolute mean volume reduction of 3.8 mL (0.9–12.4 mL) was seen. The mean relative size reduction compared with the volume before radiotherapy was 51% (22%–95%). Shrinkage measured by 3D MRI was greater at longer time intervals after radiotherapy. A strong negative correlation between the initial tumor volume and the absolute volume reduction after FSRT was found. There was no correlation between tumor size reduction and patient age, sex, or number of previous surgeries. Conclusions: By using 3D MRI in all patients undergoing FSRT of an NFPA, tumor shrinkage is detected. Our data demonstrate that volumetric assessment based on 3D MRI adds additional information to routinely used radiological response measurements. After FSRT a mean relative size reduction of 51% can be expected within 5 years.

  2. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54–56 Gy given in 9–7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size

    International Nuclear Information System (INIS)

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003–2008, 41 patients with 42 lung tumors were treated with SBRT to 54–56 Gy in 9–7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16–48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10–55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures

  3. Exclusive radiotherapy and concurrent endocrine therapy for the management of elderly breast cancer patients: Case study and review of hypo-fractionated schemes; Hormonoradiotherapie exclusive dans la prise en charge du cancer du sein de la personne agee: cas clinique et revue de la litterature des schemas hypofractionnes

    Energy Technology Data Exchange (ETDEWEB)

    Auberdiac, P.; Cartier, L.; Malkoun, N.; Chauleur, C.; De Laroche, G.; Magne, N. [Departement de radiotherapie, institut de cancerologie de la Loire, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex (France); Chargari, C. [Service d' oncologie radiotherapie, hopital d' instruction des armees du Val-de-Grace, 74, boulevard de Port-Royal, 75230 Paris cedex 5 (France); Melis, A.; Jacquin, J.P. [Departement d' oncologie medicale, institut de cancerologie de la Loire, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex (France)

    2011-12-15

    Normo-fractionated radiotherapy is standard for adjuvant management of patients treated with breast conservative surgery for breast cancer. However, many elderly patients are not eligible to such strategy, either because of concurrent diseases, or because the tumor is inoperable. Several protocols of exclusive radiotherapy have been reported in the literature, frequently using hypo-fractionated radiotherapy and endocrine therapy. We report a case of a patient treated with exclusive endocrine and radiotherapy and address the state of the art on hypo-fractionated schemes for the management of elderly breast cancer patients. While hypo-fractionated radiotherapy does not compromise the oncologic or cosmetic outcome, there is no prospective data that assesses the place of radiotherapy for the exclusive treatment of elderly patients. This strategy should be further assessed in clinical randomized trial. (authors)

  4. Advances in conformal radiotherapy using Monte Carlo Code to design new IMRT and IORT accelerators and interpret CT numbers

    CERN Document Server

    Wysocka-Rabin, A

    2013-01-01

    The introductory chapter of this monograph, which follows this Preface, provides an overview of radiotherapy and treatment planning. The main chapters that follow describe in detail three significant aspects of radiotherapy on which the author has focused her research efforts. Chapter 2 presents studies the author worked on at the German National Cancer Institute (DKFZ) in Heidelberg. These studies applied the Monte Carlo technique to investigate the feasibility of performing Intensity Modulated Radiotherapy (IMRT) by scanning with a narrow photon beam. This approach represents an alternative to techniques that generate beam modulation by absorption, such as MLC, individually-manufactured compensators, and special tomotherapy modulators. The technical realization of this concept required investigation of the influence of various design parameters on the final small photon beam. The photon beam to be scanned should have a diameter of approximately 5 mm at Source Surface Distance (SSD) distance, and the penumbr...

  5. Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma

    Science.gov (United States)

    Tao, Hengmin; Wei, Yumei; Huang, Wei; Gai, Xiujuan; Li, Baosheng

    2016-01-01

    Aim In recent years, the intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and intensity-modulated radiotherapy with conventional fractionation (IMRT-CF) have been involved in the treatment of nasopharyngeal carcinoma (NPC). However, the potential clinical effects and toxicities are still controversial. Methods Here, 107 patients with biopsy-proven locally advanced NPC between March 2004 and January 2011 were enrolled in the retrospective study. Among them, 54 patients received IMRT-SIB, and 53 patients received IMRT-CF. Subsequently, overall survival (OS), 5-year progression-free survival (PFS), 5-year locoregional recurrence-free survival (LRFS), and relevant toxicities were analyzed. Results In the present study, all patients completed the treatment, and the overall median follow-up time was 80 months (range: 8–126 months). The 5-year OS analysis revealed no significant difference between the IMRT-SIB and IMRT-CF groups (80.9% vs 80.5%, P=0.568). In addition, there were also no significant between-group differences in 5-year PFS (73.3% vs 74.4%, P=0.773) and 5-year LRFS (88.1% vs 90.8%, P=0.903). Notably, the dose to critical organs (spinal cord, brainstem, and parotid gland) in patients treated by IMRT-CF was significantly lower than that in patients treated by IMRT-SIB (all Pxerostomia. Further prospective study is warranted to confirm our findings. PMID:27099518

  6. Dosimetric consequences of inter-fraction breathing-pattern variation on radiotherapy with personalized motion-assessed margins

    Science.gov (United States)

    Kavanagh, A.; McQuaid, D.; Evans, P.; Webb, S.; Guckenberger, M.

    2011-11-01

    The data from eight patients who had undergone stereotactic body radiotherapy were selected due to their 4D-CT planning scans showing that their tumours had respiratory induced motion trajectories of large amplitude (greater than 9 mm in cranio-caudal direction). Radiotherapy plans with personalized motion-assessed margins were generated for these eight patients. The margins were generated by inverse 4D planning on an eight-bin phase-sorted 4D-CT scan. The planning was done on an in-house software system with a non-rigid registration stage being completed using freely available software. The resultant plans were then recalculated on a 4D-CT scan taken later during the course of treatment. Simulated image-guided patient set-up was used to align the geometric centres of the tumour region and minimize any misalignment between the two reconstructions. In general, the variation in the patient breathing patterns was found to be very small. Consequently, the degradation of the mean dose to the tumour region was found to be around a few percent (<3%) and hence was not a large effect.

  7. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste.

    Science.gov (United States)

    Matthies, R; Krahé, L; Blowes, D W

    2014-07-15

    Accelerated oxidative weathering in a reaction cell (ASTM D 5744 standard protocol) was performed over a 33 week period on well characterized, sulfidic mine waste from the Kidd Creek Cu-Zn volcanogenic massive sulfide deposit, Canada. The cell leachate was monitored for physicochemical parameters, ion concentrations and stable isotope ratios of zinc. Filtered zinc concentrations (weathering processes in complex multi-phase matrices.

  8. Hypo-fractionated treatment in radiotherapy: radio-biological models Tcp and NTCP; Tratamiento hipofraccionado en radioterapia: modelos radiobiologicos TCP y NTCP

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo V, A. J.; Mitsoura, E. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan s/n, 50180 Toluca, Estado de Mexico (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Resendiz G, G., E-mail: lydia.paredes@inin.gob.mx [Hospital Medica Sur, Departamento de Radioterapia, Puente de Piedra 150, Col. Toriello Guerra, 14050 Mexico D. F. (Mexico)

    2014-08-15

    At the present time the breast cancer in Mexico has the first place of incidence of the malignant neoplasia s in the women, and represents 11.34% of all the cancer cases. On the other hand, the treatments for cancer by means of ionizing radiations have been dominated under the approaches of the medical radio-oncologists which have been based on test and error by many years. The radio-biological models, as the Tcp, NTCP and dosimetric variables, for their clinical application in the conventional radiotherapy with hypo-fractionation have as purpose predicting personalized treatment plans that they present most probability of tumor control and minor probability of late reactions, becoming this way support tools in the decisions taking for the patient treatments planning of Medical Physicists and Radio-oncologists. (Author)

  9. Concurrent hyperfractionated accelerated radiotherapy with 5-FU and once weekly cisplatin in locally advanced head and neck cancer. The 10-year results of a prospective phase II trial

    Energy Technology Data Exchange (ETDEWEB)

    Budach, V.; Boehmer, D.; Badakhshi, H.; Jahn, U.; Stromberger, C. [Campus Virchow Klinikum, Charite Universitaetsmedizin Berlin, Department for Radiooncology, Clinic for Radiooncology, Berlin (Germany); Becker, E.T. [Charite Universitaetsmedizin, Department of Otorhinolaryngology, Berlin (Germany); Wernecke, K.D. [Sostana Statistics GmbH, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2014-03-15

    In this study, the acute toxicity and long-term outcome of a hyperfractionated accelerated chemoradiation regimen with cisplatin/5-fluorouracil (5-FU) in patients with locally advanced squamous cell carcinomas of head and neck were evaluated. From 2000-2002, 38 patients with stage III (5.3 %) and stage IV (94.7 %) head and neck cancer were enrolled in a phase II study. Patients received hyperfractionated-accelerated radiotherapy with 72 Gy in 15 fractions of 2 Gy followed by 1.4 Gy twice daily with concurrent, continuous infusion 5-FU of 600 mg/m{sup 2} on days 1-5 and 6 cycles of weekly cisplatin (30 mg/m{sup 2}). Acute toxicities (CTCAEv2.0), locoregional control (LRC), metastases-free (MFS), and overall survival (OS) were analyzed and exploratively compared with the ARO 95-06 trial. Median follow-up was 11.4 years (95 % CI 8.6-14.2) and mean dose 71.6 Gy. Of the patients, 82 % had 6 (n = 15) or 5 (n = 16) cycles of cisplatin, 5 and 2 patients received 4 and 3 cycles, respectively. Grade 3 anemia, leukopenia, and thrombocytopenia were observed in 15.8, 15.8, and 2.6 %, respectively. Grade 3 mucositis in 50 %, grade 3 and 4 dysphagia in 55 and 13 %. The 2-, 5-, and 10-year LRC was 65, 53.6, and 48.2 %, the MFS was 77.5, 66.7, and 57.2 % and the OS 59.6, 29.2, and 15 %, respectively. Chemoradiation with 5-FU and cisplatin seems feasible and superior in terms of LRC and OS to the ARO 95-06C-HART arm at 2 years. However, this did not persist at the 5- and 10-year follow-ups. (orig.) [German] Untersuchung der Akuttoxizitaet und des Langzeitueberlebens einer hyperfraktioniert-akzelerierten simultanen Radiochemotherapie mit Cisplatin/5-Fluorouracil (5-FU) bei Patienten mit lokal fortgeschrittenen Kopf-Hals-Tumoren. Von 2000 bis 2002 wurden 38 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region im Stadium III (5,3 %) und IV (94,7 %) eingeschlossen. Es erfolgte eine simultane hyperfraktionierte akzelerierte Radiochemotherapie mit 72 Gy in 15 Fraktionen a 2 Gy

  10. A prospective randomized comparative clinical trial comparing the efficacy between ondansetron and metoclopramide for prevention of nausea and vomiting in patients undergoing fractionated radiotherapy to the abdominal region

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Chul; Suh, Chang Ok; Seong, Jin Sil; Cho, Jae Ho; Lim, John Jihoon; Park, Won; Song, Jae Seok; Kim, Gwi Eon [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    This study is a prospective randomized clinical trial comparing the efficacy and complication of anti-emetic drugs for prevention of nausea and vomiting after radiotherapy which has moderate emetogenic potential. The aim of this study was to investigate whether the anti-emetic efficacy at ondansetron(Zofran) 8 mg bid dose (Group O) is better than the efficacy of metoclopramide 5 mg tid dose (Group M) in patients undergoing fractionated radiotherapy to the abdominal region. Study entry was restricted to those patients who met the following eligibility criteria: histologically confirmed malignant disease; no distant metastasis; performance status of not more than ECOG grade 2; no previous chemotherapy and radiotherapy. Between March 1997 and February 1998, 60 patients enrolled in this study. All patients signed a written statement of informed consent prior to enrollment. Blinding was maintained by dosing identical number of tables including one dose of matching placebo for Group O. The extent of nausea, appetite loss, and the number of emetic episodes were recorded everyday using diary card. The mean score of nausea, appetite loss and the mean number of emetic episodes were obtained in a weekly interval. Prescription error occurred in one patient. And diary cards have not returned in 3 patients due to premature refusal of treatment. Card from one patient was excluded from the analysis because she had a history of treatment for neurosis. As a result, the analysis consisted of 55 patients. Patient characteristics and radiotherapy characteristics were similar except mean age was 52.9{+-} 11.2 in group M, 46.5{+-}9.6 in group O. The difference of age was statistically significant. The mean score of nausea, appetite loss and emetic episodes in a weekly interval was higher in group M than O. In group M, the symptoms were most significant at 5th week. In a panel data analysis using mixed procedure, treatment group was only significant factor detecting the difference of

  11. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report

    International Nuclear Information System (INIS)

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon

  12. Retarding Sub- and Accelerating Super-Diffusion Governed by Distributed Order Fractional Diffusion Equations

    OpenAIRE

    Chechkin, A. V.; Gorenflo, R.; I. M. Sokolov

    2002-01-01

    We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equations and establish the relation to the Continuous Time Random Walk theory. We show that the distri...

  13. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  14. Palliative radiotherapy in locally advanced head and neck cancer after failure of induction chemotherapy: Comparison of two fractionation schemes

    Directory of Open Access Journals (Sweden)

    Kailash Chandra Pandey

    2013-01-01

    Full Text Available Context: Among patients with locally advanced head and neck squamous cell cancers (LAHNSCC, the prognosis after nonresponse or progression despite induction chemotherapy (IC is dismal, and further treatment is often palliative in intent. Given that nonresponse to chemotherapy could indicate subsequent radioresistance, we intended to assess the outcomes with two different fractionation schemes. Aims: To compare the outcomes of two fractionation schemes- ′standard′ (consisting 3GyX5 daily fractions for 2 consecutive weeks versus ′hybrid′ (6GyX3 fractions on alternate days during the 1 st week, followed by 2GyX5 daily fractions in the 2 nd week. Settings and Design: Prospective randomized controlled two-arm unblinded trial. Materials and Methods: Patients with locally advanced oropharyngeal, laryngeal, and hypopharyngeal cancers treated with a minimum of two cycles of taxane, platinum, and fluorouracil-based IC were eligible if residual disease volume amounted >30 cm 3 . Kaplan-Meier survival curves were compared by the log-rank test. Response rates were compared using the unpaired t-test. Quality of life (QOL was measured via patient reported questionnaires. Results: Of the initially enrolled 51 patients, 45 patients (24 from standard arm, and 21 from the hybrid arm were eligible for analysis. Despite being underpowered to attain statistical significance, there still seemed to be a trend towards improvement in progression-free (Hazard ratio (HR for progression: 0.5966; 95% CI 0.3216-1.1066 and overall survival (HR for death: 0.6062; 95% CI 0.2676-1.3734 with the hybrid arm when compared to the standard arm. Benefits were also observed with regards to response rates and QOL. Rate of complications were similar in both arms. Conclusions: In comparison to the routinely used palliative fractionation scheme of 30 Gray (Gy in 10 fractions (Fr, the use of hybrid fractionation which integrates hypofractionation in the 1 st week, followed by

  15. Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Despite a multimodal therapy consisting of resection followed by fractionated radiotherapy (RT) combined with the chemotherapeutic agent (CT) temozolomide (TMZ), its recurrence is almost inevitable. Since the immune system is capable of eliminating small tumor masses, a therapy should also aim to stimulate anti-tumor immune responses by induction of immunogenic cell death forms. The histone deacetylase inhibitor valproic acid (VPA) might foster this. Reflecting therapy standards, we applied in our in vitro model fractionated RT with a single dose of 2Gy and clinically relevant concentrations of CT. Not only the impact of RT and/or CT with TMZ and/or VPA on the clonogenic potential and cell cycle of the glioblastoma cell lines T98G, U251MG, and U87MG was analyzed, but also the resulting cell death forms and release of danger signals such as heat-shock protein70 (Hsp70) and high-mobility group protein B1 (HMGB1). The clonogenic assays revealed that T98G and U251MG, having mutated tumor suppressor protein p53, are more resistant to RT and CT than U87MG with wild type (WT) p53. In all glioblastoma cells lines, fractionated RT induced a G2 cell cycle arrest, but only in the case of U87MG, TMZ and/or VPA alone resulted in this cell cycle block. Further, fractionated RT significantly increased the number of apoptotic and necrotic tumor cells in all three cell lines. However, only in U87MG, the treatment with TMZ and/or VPA alone, or in combination with fractionated RT, induced significantly more cell death compared to untreated or irradiated controls. While necrotic glioblastoma cells were present after VPA, TMZ especially led to significantly increased amounts of U87MG cells in the radiosensitive G2 cell cycle phase. While CT did not impact on the release of Hsp70, fractionated RT resulted in significantly increased extracellular concentrations of Hsp70 in p53 mutated and WT glioblastoma

  16. Breast cancer radiotherapy: controversies and prospectives

    Institute of Scientific and Technical Information of China (English)

    YU Jin-ming; WANG Yong-sheng

    2008-01-01

    @@ Despite consensus on breast cancer radiotherapy, there are still some controversies over post-mastectomy radiotherapy (PMRT) in patients with 1-3 positive lymph nodes, accelerated partial breast irradiation (APBI), appropriate sequence of radiotherapy, chemotherapy and hormonal treatment, and radiotherapy after preoperative systemic therapy.

  17. The influence of epidermal growth factor receptor and tumor differentiation on the response to accelerated radiotherapy of squamous cell carcinomas of the head and neck in the randomized DAHANCA 6 and 7 study

    DEFF Research Database (Denmark)

    Eriksen, Jesper Grau; Steiniche, Torben; Overgaard, Jens

    2005-01-01

    to the repopulation taking place during radiotherapy. The aim of the current study was to address the influence of EGFr and histopathological differentiation when the overall treatment time of radiotherapy was moderately reduced. PATIENTS AND METHODS: Eight hundred and three patients with representative pretreatment...... tissue samples from the randomized DAHANCA 6 and 7 study of 5 vs. 6 fx/wk of radiotherapy. EGFr was visualized using immunohistochemistry and separated into high and low expression before correlation with clinical data. RESULTS: Tumors with high EGFr (84%) responded better to moderately accelerated...... radiotherapy, than carcinomas with low EGFr, using locoregional control as endpoint and a similar pattern was seen, stratifying by well/moderate vs. poor tumor differentiation. Therefore, a combined parameter was constructed showing a more prominent separation of response: tumors with high EGFr and well/moderate...

  18. Dosimetric Characteristics of Circular 6-MeV X-Ray Beams for Stereotactic Radiotherapy with a Linear Accelerator

    Science.gov (United States)

    Wysocka, A.; Rostkowska, J.; Kania, M.; Bulski, W.; Fijuth, J.

    2000-01-01

    Dosimetric characteristics of 6 MeV circular X-ray beams of diameters ranging from 7.5 to 35.0 mm are reported. The 6-MeV X-ray beam from Clinac 2300CD was formed using additional cylindrical BrainLAB's collimators. The mechanical stability of the entire system was verified. Specific quantities measured include tissue maximum ratios (TMR), beam profiles (off-axis ratios OAR) and relative output factors. Measurements of these parameters were performed in a water phantom using small cylindrical ionization chambers and a diamond detector. Comparison of TMR values measured with the ionization chamber and the diamond detector showed no significant differences. It was shown that the latter yields more accurate results for beam profiles than ionization chambers. The mechanical and dosimetric characteristics of this radiotherapy unit are found to be suitable for stereotactic radiosurgery and radiotherapy.

  19. Solutions that enable ablative radiotherapy for large liver tumors: Fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance.

    Science.gov (United States)

    Crane, Christopher H; Koay, Eugene J

    2016-07-01

    The emergence and success of stereotactic body radiation therapy (SBRT) for the treatment of lung cancer have led to its rapid adoption for liver cancers. SBRT can achieve excellent results for small liver tumors. However, the vast majority of physicians interpret SBRT as meaning doses of radiation (range, 4-20 Gray [Gy]) that may not be ablative but are delivered within about 1 week (ie, in 3-6 fractions). Adherence to this approach has limited the effectiveness of SBRT for large liver tumors (>7 cm) because of the need to reduce doses to meet organ constraints. The prognosis for patients who present with large liver tumors is poor, with a median survival ≤12 months, and most of these patients die from tumor-related liver failure. Herein, the authors present a comprehensive solution to achieve ablative SBRT doses for patients with large liver tumors by using a combination of classic, modern, and novel concepts of radiotherapy: fractionation, dose painting, motion management, image guidance, and simultaneous integrated protection. The authors discuss these concepts in the context of large, inoperable liver tumors and review how this approach can substantially prolong survival for patients, most of whom otherwise have a very poor prognosis and few effective treatment options. Cancer 2016;122:1974-86. © 2016 American Cancer Society. PMID:26950735

  20. Early Treatment Response Monitoring Using 2-Deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography Imaging during Fractionated Radiotherapy of Head Neck Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jiayi Huang

    2014-01-01

    Full Text Available Background. To determine the optimal timing and analytic method of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (PET imaging during fractionated radiotherapy (RT to predict tumor control. Methods. Ten head neck squamous cell carcinoma xenografts derived from the UT-14-SCC cell line were irradiated with 50 Gy at 2 Gy per day over 5 weeks. Dynamic PET scans were acquired over 70 minutes at baseline (week 0 and weekly for seven weeks. PET data were analyzed using standard uptake value (SUV, retention index (RI, sensitivity factor (SF, and kinetic index (Ki. Results. Four xenografts had local failure (LF and 6 had local control. Eighty scans from week 0 to week 7 were analyzed. RI and SF after 10 Gy appeared to be the optimal predictors for LF. In contrast, SUV and Ki during RT were not significant predictors for LF. Conclusion. RI and SF of PET obtained after the first week of fractionated RT were the optimal methods and timing to predict tumor control.

  1. Normal tissue complication models for clinically relevant acute esophagitis (≥ grade 2) in patients treated with dose differentiated accelerated radiotherapy (DART-bid)

    International Nuclear Information System (INIS)

    One of the primary dose-limiting toxicities during thoracic irradiation is acute esophagitis (AE). The aim of this study is to investigate dosimetric and clinical predictors for AE grade ≥ 2 in patients treated with accelerated radiotherapy for locally advanced non-small cell lung cancer (NSCLC). 66 NSCLC patients were included in the present analysis: 4 stage II, 44 stage IIIA and 18 stage IIIB. All patients received induction chemotherapy followed by dose differentiated accelerated radiotherapy (DART-bid). Depending on size (mean of three perpendicular diameters) tumors were binned in four dose groups: <2.5 cm 73.8 Gy, 2.5–4.5 cm 79.2 Gy, 4.5–6 cm 84.6 Gy, >6 cm 90 Gy. Patients were treated in 3D target splitting technique. In order to estimate the normal tissue complication probability (NTCP), two Lyman models and the cutoff-logistic regression model were fitted to the data with AE ≥ grade 2 as statistical endpoint. Inter-model comparison was performed with the corrected Akaike information criterion (AICc), which calculates the model’s quality of fit (likelihood value) in relation to its complexity (i.e. number of variables in the model) corrected by the number of patients in the dataset. Toxicity was documented prospectively according to RTOG. The median follow up was 686 days (range 84–2921 days), 23/66 patients (35 %) experienced AE ≥ grade 2. The actuarial local control rates were 72.6 % and 59.4 % at 2 and 3 years, regional control was 91 % at both time points. The Lyman-MED model (D50 = 32.8 Gy, m = 0.48) and the cutoff dose model (Dc = 38 Gy) provide the most efficient fit to the current dataset. On multivariate analysis V38 (volume of the esophagus that receives 38 Gy or above, 95 %-CI 28.2–57.3) was the most significant predictor of AE ≥ grade 2 (HR = 1.05, CI 1.01–1.09, p = 0.007). Following high-dose accelerated radiotherapy the rate of AE ≥ grade 2 is slightly lower than reported for concomitant radio-chemotherapy with the

  2. Studies on serum protein fractions of patients with maxillary sinus cancer undergoing a combination of radiotherapy and chemotherapy. 2. Relationship between changes in serum protein fractions and prognosis

    International Nuclear Information System (INIS)

    We examined the correlations between changes in serum protein fractions and the prognosis of the patients. The levels of 21 protein components of the sera of 36 patients with maxillary sinus cancer were determined by a single radial immunodiffusion method before and after radiation therapy. The patients with maxillary sinus cancer were treated with combined intra-arterial infusion of bleomycin and external irradiation of 60 Co gamma-rays, and were concurrently treated with 5-fluorouracil at 200 mg/day p.o. The levels of the same protein components were also measured in 34 normal adult as a control. All patients were observed 5 years and 12 years after radiation therapy. In patients who had survived at least 5 years after radiation therapy, the Alb, Tf, Hx, IgG and IgM levels measured before radiation therapy were elevated significantly compared with those who had died within 5 years. In those who had survived at least 5 years, the Alb, Tf, Hx, IgG, IgM, IgA and IαI levels measured after radiation therapy were elevated significantly compared with those who had died within 5 years, and AT III was reduced. In cases of maxillary sinus cancer following a period of 5 to 12 years after radiation therapy, multiple regression analysis was used to determine whether increased concentrations of serum protein fractions were associated with good prognosis for the original disease. α2HS, IgM, HX, α1AT and α1X before radiation therapy were positively correlated with survival, whereas AT III, Pmg, Cp, IgA, and α1AG showed negative correlations. After radiation therapy, Pmg, Hx, Cp, Cl inh and Fib were found to be positive factors of survival rate, whereas α2M, α2PI, IαI, IgA, α1AG and C3 were negative factors. (author). 54 refs

  3. [Prostate cancer external beam radiotherapy].

    Science.gov (United States)

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  4. Analysis of quality control data of eight modern radiotherapy linear accelerators: the short- and long-term behaviours of the outputs and the reproducibility of quality control measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kapanen, Mika [Radiation and Nuclear Safety Authority (STUK), Laippatie 4, 00881 Helsinki (Finland); Tenhunen, Mikko [Department of Oncology, Helsinki University Central Hospital, Haartmaninkatu 4, 00029 Helsinki (Finland); Haemaelaeinen, Tuomo [Department of Oncology, Helsinki University Central Hospital, Haartmaninkatu 4, 00029 Helsinki (Finland); Sipilae, Petri [Radiation and Nuclear Safety Authority (STUK), Laippatie 4, 00881 Helsinki (Finland); Parkkinen, Ritva [Radiation and Nuclear Safety Authority (STUK), Laippatie 4, 00881 Helsinki (Finland); Jaervinen, Hannu [Radiation and Nuclear Safety Authority (STUK), Laippatie 4, 00881 Helsinki (Finland)

    2006-07-21

    Quality control (QC) data of radiotherapy linear accelerators, collected by Helsinki University Central Hospital between the years 2000 and 2004, were analysed. The goal was to provide information for the evaluation and elaboration of QC of accelerator outputs and to propose a method for QC data analysis. Short- and long-term drifts in outputs were quantified by fitting empirical mathematical models to the QC measurements. Normally, long-term drifts were well ({<=}1%) modelled by either a straight line or a single-exponential function. A drift of 2% occurred in 18 {+-} 12 months. The shortest drift times of only 2-3 months were observed for some new accelerators just after the commissioning but they stabilized during the first 2-3 years. The short-term reproducibility and the long-term stability of local constancy checks, carried out with a sealed plane parallel ion chamber, were also estimated by fitting empirical models to the QC measurements. The reproducibility was 0.2-0.5% depending on the positioning practice of a device. Long-term instabilities of about 0.3%/month were observed for some checking devices. The reproducibility of local absorbed dose measurements was estimated to be about 0.5%. The proposed empirical model fitting of QC data facilitates the recognition of erroneous QC measurements and abnormal output behaviour, caused by malfunctions, offering a tool to improve dose control.

  5. Analysis of quality control data of eight modern radiotherapy linear accelerators: the short- and long-term behaviours of the outputs and the reproducibility of quality control measurements

    International Nuclear Information System (INIS)

    Quality control (QC) data of radiotherapy linear accelerators, collected by Helsinki University Central Hospital between the years 2000 and 2004, were analysed. The goal was to provide information for the evaluation and elaboration of QC of accelerator outputs and to propose a method for QC data analysis. Short- and long-term drifts in outputs were quantified by fitting empirical mathematical models to the QC measurements. Normally, long-term drifts were well (≤1%) modelled by either a straight line or a single-exponential function. A drift of 2% occurred in 18 ± 12 months. The shortest drift times of only 2-3 months were observed for some new accelerators just after the commissioning but they stabilized during the first 2-3 years. The short-term reproducibility and the long-term stability of local constancy checks, carried out with a sealed plane parallel ion chamber, were also estimated by fitting empirical models to the QC measurements. The reproducibility was 0.2-0.5% depending on the positioning practice of a device. Long-term instabilities of about 0.3%/month were observed for some checking devices. The reproducibility of local absorbed dose measurements was estimated to be about 0.5%. The proposed empirical model fitting of QC data facilitates the recognition of erroneous QC measurements and abnormal output behaviour, caused by malfunctions, offering a tool to improve dose control

  6. Clinical Study of the Necessity of Replanning Before the 25th Fraction During the Course of Intensity-Modulated Radiotherapy for Patients With Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Purpose: To quantify the target and normal structures on dose distributing variations during intensity-modulated radiotherapy (IMRT) and to assess the value of replanning for nasopharyngeal carcinoma (NPC) patients. Methods and Materials: Twenty-eight NPC patients treated with IMRT were recruited. The IMRT was delivered in 33 fractions, to 70 to 76Gy, to the gross tumor volume (GTV). Before the 25th fraction of IMRT, a new simulation computed tomography (CT) scan was acquired for all patients. According to the dose constraint criterion in the Radiation Therapy Oncology Group (RTOG) 0225 protocol, the replanning was generated on the new simulation CT. With the Quality Assessment Center of a CORVUS 6.3 treatment planning system, a phantom plan was generated for each patient by applying the beam configurations of the initial plan to the anatomy of the new simulation CT. The dose-volume histograms of the phantom plan were compared with the replanning. Results: The percentage of prescription dose delivered to the clinical target volume (CTV1) was significantly increased by 4.91% ± 10.89%, whereas the maximum dose to the spinal cord, mean dose to the left parotid, and V30 to the right parotid were significantly decreased by 5.00 ± 9.23Gy, 4.23 ± 10.03Gy, and 11.47% ± 18.89% respectively in the replanning, compared with the phantom plan (p < 0.05). Based on the dose constraint criterion in the RTOG0225 protocol, 50% of phantom plans (14/28) were out of limit for the dose to the normal critical structures, whereas no plan was out of limit in replanning (p < 0.001). Conclusion: Replanning for patients with NPC before the 25th fraction during IMRT helps to ensure adequate dose to the target volumes and safe doses to critical normal structures.

  7. Later Outcomes and Alpha/Beta Estimate From Hypofractionated Conformal Three-Dimensional Radiotherapy Versus Standard Fractionation for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Leborgne, Felix [Department of Radiation Oncology, Hospital Italiano, Montevideo (Uruguay); Fowler, Jack, E-mail: jackfowlersbox@gmail.com [Department of Human Oncology, University of Wisconsin Medical School, Madison, WI (United States); Leborgne, Jose H.; Mezzera, Julieta [Department of Radiation Oncology, Hospital Italiano, Montevideo (Uruguay)

    2012-03-01

    Purpose: Now that the follow-up time has exceeded 5 years, an estimate of the {alpha}/{beta} ratio can be presented. The additional late outcomes in patients treated with three-dimensional conformal external beam radiotherapy for localized prostate cancer using a hypofractionated vs. a standard fractionation regimen are reported from this prospective nonrandomized contemporary comparison. Methods and Materials: A total of 114 nonrandomized patients chose hypofractionation delivered in 20 fractions of 3 Gy or 3.15 Gy (mean 3.06 Gy) for localized prostate cancer within a median overall time of 32 days (range, 29-49) using four fractions weekly. A total of 160 comparable patients were contemporarily treated within a median of 55 days (range 49-66). The median follow-up was 66 months (range, 24-95) for the hypofractionated arm and 63 months (range, 36-92) for the standard arm. The percentage of patients in the low-, medium-, and high-risk groups was 36%, 46%, and 18% in the hypofractionated arm and 44%, 50%, and 6% in standard arm (2 Gy), respectively. Results: The 5-year actuarial biochemical absence of disease (prostate-specific antigen nadir + 2 ng/mL) and disease-free survival rate was the same at 89% in both arms, making the {alpha}/{beta} calculation unambiguous. The point ratio of {alpha}/{beta} was 1.86 (95% confidence interval, 0.7-5.1 Gy). The 95% confidence interval was determined entirely by the binomial confidence limits in the numbers of patients. Rectal reactions of grade 3 and 4 occurred in 1 of 114 (hypofractionated) and 2 of 160 (standard) patients. Conclusions: The presented three-dimensional conformal regimen was acceptable, and the {alpha}/{beta} value was 1.8, in agreement with other very recent low meta-analyses (reviewed in the '' section).

  8. Later Outcomes and Alpha/Beta Estimate From Hypofractionated Conformal Three-Dimensional Radiotherapy Versus Standard Fractionation for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: Now that the follow-up time has exceeded 5 years, an estimate of the α/β ratio can be presented. The additional late outcomes in patients treated with three-dimensional conformal external beam radiotherapy for localized prostate cancer using a hypofractionated vs. a standard fractionation regimen are reported from this prospective nonrandomized contemporary comparison. Methods and Materials: A total of 114 nonrandomized patients chose hypofractionation delivered in 20 fractions of 3 Gy or 3.15 Gy (mean 3.06 Gy) for localized prostate cancer within a median overall time of 32 days (range, 29–49) using four fractions weekly. A total of 160 comparable patients were contemporarily treated within a median of 55 days (range 49-66). The median follow-up was 66 months (range, 24–95) for the hypofractionated arm and 63 months (range, 36–92) for the standard arm. The percentage of patients in the low-, medium-, and high-risk groups was 36%, 46%, and 18% in the hypofractionated arm and 44%, 50%, and 6% in standard arm (2 Gy), respectively. Results: The 5-year actuarial biochemical absence of disease (prostate-specific antigen nadir + 2 ng/mL) and disease-free survival rate was the same at 89% in both arms, making the α/β calculation unambiguous. The point ratio of α/β was 1.86 (95% confidence interval, 0.7–5.1 Gy). The 95% confidence interval was determined entirely by the binomial confidence limits in the numbers of patients. Rectal reactions of grade 3 and 4 occurred in 1 of 114 (hypofractionated) and 2 of 160 (standard) patients. Conclusions: The presented three-dimensional conformal regimen was acceptable, and the α/β value was 1.8, in agreement with other very recent low meta-analyses (reviewed in the “” section).

  9. Commissioning and quality assurance of the X-ray volume Imaging system of an image-guided radiotherapy capable linear accelerator

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available An Image-Guided Radiotherapy-capable linear accelerator (Elekta Synergy was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI system and electronic portal imaging device (iViewGT. The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer′s specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality. These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy.

  10. Acute Toxicity Profile and Compliance to Accelerated Radiotherapy Plus Carbogen and Nicotinamide for Clinical Stage T2–4 Laryngeal Cancer: Results of a Phase III Randomized Trial

    International Nuclear Information System (INIS)

    Purpose: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. Methods and Materials: From April 2001 to February 2008, 345 patients with cT2–4 squamous cell laryngeal cancer were randomized to AR (n = 174) and ARCON (n = 171). Acute toxicity was scored weekly until Week 8 and every 2–4 weeks thereafter. Compliance to carbogen and nicotinamide was reported. Results: Between both treatment arms (AR vs. ARCON) no statistically significant difference was observed for incidence of acute skin reactions (moist desquamation: 56% vs. 58%, p = 0.80), acute mucosal reactions (confluent mucositis: 79% vs. 85%, p = 0.14), and symptoms related to acute mucositis (severe pain on swallowing: 53% vs. 58%, p = 0.37; nasogastric tube feeding: 28% vs. 28%, p = 0.98; narcotic medicines required: 58% vs. 58%, p = 0.97). There was a statistically significant difference in median duration of confluent mucositis in favor of AR (2.0 vs 3.0 weeks, p = 0.01). There was full compliance with carbogen breathing and nicotinamide in 86% and 80% of the patients, with discontinuation in 6% and 12%, respectively. Adjustment of antiemesis prophylaxis was needed in 42% of patients. Conclusion: With the exception of a slight increase in median duration of acute confluent mucositis, the present data reveal a similar acute toxicity profile between both regimens and a good compliance with ARCON for clinical stage T2–4 laryngeal cancers. Treatment outcome and late morbidity will determine the real therapeutic benefit.

  11. Acute Toxicity Profile and Compliance to Accelerated Radiotherapy Plus Carbogen and Nicotinamide for Clinical Stage T2-4 Laryngeal Cancer: Results of a Phase III Randomized Trial

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, Geert O., E-mail: g.janssens@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Terhaard, Chris H. [Department of Radiation Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Doornaert, Patricia A. [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Bijl, Hendrik P. [Department of Radiation Oncology, University Medical Center Groningen, Groningen (Netherlands); Ende, Piet van den [Department of Radiation Oncology, Maastricht University Medical Centre, Maastricht (Netherlands); Chin, Alim [Department of Clinical Oncology, Leiden University Medical Centre, Leiden (Netherlands); Pop, Lucas A.; Kaanders, Johannes H. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-02-01

    Purpose: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. Methods and Materials: From April 2001 to February 2008, 345 patients with cT2-4 squamous cell laryngeal cancer were randomized to AR (n = 174) and ARCON (n = 171). Acute toxicity was scored weekly until Week 8 and every 2-4 weeks thereafter. Compliance to carbogen and nicotinamide was reported. Results: Between both treatment arms (AR vs. ARCON) no statistically significant difference was observed for incidence of acute skin reactions (moist desquamation: 56% vs. 58%, p = 0.80), acute mucosal reactions (confluent mucositis: 79% vs. 85%, p = 0.14), and symptoms related to acute mucositis (severe pain on swallowing: 53% vs. 58%, p = 0.37; nasogastric tube feeding: 28% vs. 28%, p = 0.98; narcotic medicines required: 58% vs. 58%, p = 0.97). There was a statistically significant difference in median duration of confluent mucositis in favor of AR (2.0 vs 3.0 weeks, p = 0.01). There was full compliance with carbogen breathing and nicotinamide in 86% and 80% of the patients, with discontinuation in 6% and 12%, respectively. Adjustment of antiemesis prophylaxis was needed in 42% of patients. Conclusion: With the exception of a slight increase in median duration of acute confluent mucositis, the present data reveal a similar acute toxicity profile between both regimens and a good compliance with ARCON for clinical stage T2-4 laryngeal cancers. Treatment outcome and late morbidity will determine the real therapeutic benefit.

  12. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if

  13. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    Science.gov (United States)

    Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.

    2015-05-01

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the

  14. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University.

    Science.gov (United States)

    Oike, Takahiro; Sato, Hiro; Noda, Shin-Ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  15. External beam radiotherapy plus single-fraction high dose rate brachytherapy in the treatment of locally advanced prostate cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy and toxicity of external beam radiation therapy (EBRT) plus high-dose-rate brachytherapy (HDRB) as a boost in patients (pts) with intermediate or high-risk prostate cancer. Methods and materials: From 2002 to July 2012, 377 pts with a diagnosis of intermediate or high-risk prostate cancer were treated with EBRT plus HDRB. Median patient age was 66 years (range, 41–86). Most patients (347 pts; 92%) were classified as high-risk (stage T2c–T3, or PSA > 20 ng/mL, or GS ⩾ 8), with 30 patients (8%) considered intermediate risk. All patients underwent EBRT at a prescribed dose of 60.0 Gy (range, 45–70 Gy) to the prostate and seminal vesicles. A total of 120 pts (31%) received a dose of 46 Gy (45–50 Gy) to the true pelvis. All pts received a single-fraction 9 Gy (9–15 Gy) HDR boost. Most patients (353; 94%) were prescribed complete androgen deprivation therapy (ADT). Overall survival (OS), cause-specific survival (CSS), and biochemical relapse-free survival (BRFS) rates were calculated. In the case of BRFS, patients with <26 months of follow-up (n = 106) were excluded to minimize the impact of ADT. Results: The median follow-up for the entire sample was 50 months (range, 12–126), with 5-year actuarial OS and CSS, respectively, of 88% (95% confidence interval [CI]: 84–92) and 98% (95% CI: 97–99). The 5-year BRFS was 91% (95% CI: 87–95) in the 271 pts with ⩾26 months (median, 60 months) of follow-up. Late toxicity included grade 2 and 3 gastrointestinal toxicity in 17 (4.6%) and 6 pts (1.6%), respectively, as well as grades 2 and 3 genitourinary toxicity in 46 (12.2%) and 3 pts (0.8%), respectively. Conclusion: These long-term outcomes confirm that EBRT plus a single-fraction HDRB boost provides good results in treatment-related toxicity and biochemical control. In addition to the excellent clinical results, this fractionation schedule reduces physician workload, treatment-related expenses, patient discomfort and risks

  16. Hypofractionated Prostate Radiotherapy with or without Conventionally Fractionated Nodal Irradiation: Clinical Toxicity Observations and Retrospective Daily Dosimetry

    Directory of Open Access Journals (Sweden)

    Andrew M. McDonald

    2012-01-01

    Methods and Materials. Fifty-seven patients received pelvic image-guided IMRT to 50.4 Gy in 28 fractions with a hypofractionated simultaneous boost to the prostate to 70 Gy. Thirty-one patients received prostate-only treatment to 70 Gy in 28 fractions. Results. Median followup was 41.1 months. Early grade ≥2 urinary toxicity rates were 49% (28 of 57 for patients receiving ENI and 58% (18 of 31 for those not (P=0.61. Early grade ≥2 rectal toxicity rates were 40% (23 of 57 and 23% (7 of 31, respectively (P=0.09. The addition of ENI resulted in a 21% actuarial rate of late grade ≥2 rectal toxicity at 4 years, compared to 0% for patients treated to the prostate only (P=0.02. Retrospective daily dosimetry of patients experiencing late rectal toxicity revealed an average increase of 2.67% of the rectal volume receiving 70 Gy compared to the original plan. Conclusions. The addition of ENI resulted in an increased risk of late rectal toxicity. Grade ≥2 late rectal toxicity was associated with worse daily rectal dosimetry compared to the treatment plan.

  17. Procedure to measure the neutrons spectrum around a lineal accelerator for radiotherapy; Procedimiento para medir el espectro de los neutrones en torno a un acelerador lineal para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M.; Letechipia de L, C. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Benites R, J. L. [Servicios de Salud de Nayarit, Centro Estatal de Cancerologia, Calzada de la Cruz 116 Sur, 63000 Tepic, Nayarit (Mexico); Salas L, M. A., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Agronomia, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2013-10-15

    An experimental procedure was developed, by means of Bonner spheres, to measure the neutrons spectrum around Linacs of medical use that only requires of a single shot of the accelerator; to this procedure we denominate Planetary or Isocentric method. One of the problems associated to the neutrons spectrum measurement in a radiotherapy room with lineal accelerator is because inside the room a mixed, intense and pulsed radiation field takes place affecting the detection systems based on active detector; this situation is solved using a passive detector. In the case of the Bonner spheres spectrometer the active detector has been substituted by activation detectors, trace detectors or thermoluminescent dosimeters. This spectrometer uses several spheres that are situated one at a time in the measurement point, this way to have the complete measurements group the accelerator should be operated, under the same conditions, so many times like spheres have the spectrometer, this activity can consume a long time and in occasions due to the work load of Linac to complicate the measurement process too. The procedure developed in this work consisted on to situate all the spectrometer spheres at the same time and to make the reading by means of a single shot, to be able to apply this procedure, is necessary that before the measurements two characteristics are evaluated: the cross-talking of the spheres and the symmetry conditions of the neutron field. This method has been applied to determine the photo-neutrons spectrum produced by a lineal accelerator of medical use Varian ix of 15 MV to 100 cm of the isocenter located to 5 cm of depth of a solid water mannequin of 30 x 30 x 15 cm. The spectrum was used to determine the total flow and the environmental dose equivalent. (Author)

  18. Salvage fractionated Stereotactic Radiotherapy (fSRT with or without chemotherapy and immunotherapy for recurrent Glioblastoma Multiforme: A single institution experience

    Directory of Open Access Journals (Sweden)

    Shaakir eHasan

    2015-05-01

    Full Text Available Background: The current standard of care for salvage treatment of Glioblastoma Multiforme (GBM is gross total resection and adjuvant chemoradiation for operable patients. Limited evidence exists to suggest that any particular treatment modality improves survival for recurrent GBM, especially if inoperable. We report our experience with fractionated stereotactic radiotherapy (fSRT with and without chemo/immunotherapy, identifying prognostic factors associated with prolonged survival. Methods: From 2007 to 2014, 19 patients between 29 and 78 years old (median 55 with recurrent GBM following resection and chemoradiation for their initial tumor, received 18 – 35 Gy (median 25 in 3 – 5 fractions via Cyberknife fSRT. Clinical target volume (CTV ranged from 0.9 to 152 cc. Sixteen patients received adjuvant systemic therapy with bevacizumab (BEV, temozolomide (TMZ, anti-epidermal growth factor receptor (125I-mAb 425, or some combination thereof. Results: The median overall survival (OS from date of recurrence was 8 months (2.5 – 61 and 5.3 months (0.6 – 58 from the end of fSRT. The OS at 6 and 12 months was 47% and 32%, respectively. Three of 19 patients were alive at the time of this review at 20, 49 and 58 months from completion of fSRT. Hazard ratios for survival indicated that patients with a frontal lobe tumor, adjuvant treatment with either BEV or TMZ, time to first recurrence >16 months, CTV < 36 cc, Recursive Partitioning Analysis (RPA < 5, and ECOG (Eastern Cooperative Oncology Group performance status < 2 were all associated with improved survival (P <0.05. There was no evidence of radionecrosis for any patient.Conclusions: Radiation Therapy Oncology Group (RTOG 1205 will establish the role of reirradiation for recurrent GBM, however our study suggests that cyberknife with chemotherapy can be safely delivered, and is most effective in patients with smaller frontal lobe tumors, good performance status or long interval from diagnosis.

  19. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: First clinical trial results

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility and toxicity of stereotactic hypofractionated accurate radiotherapy (SHARP) for localized prostate cancer. Methods and Materials: A Phase I/II trial of SHARP performed for localized prostate cancer using 33.5 Gy in 5 fractions, calculated to be biologically equivalent to 78 Gy in 2 Gy fractions (α/β ratio of 1.5 Gy). Noncoplanar conformal fields and daily stereotactic localization of implanted fiducials were used for treatment. Genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated by American Urologic Association (AUA) score and Common Toxicity Criteria (CTC). Prostate-specific antigen (PSA) values and self-reported sexual function were recorded at specified follow-up intervals. Results: The study includes 40 patients. The median follow-up is 41 months (range, 21-60 months). Acute toxicity Grade 1-2 was 48.5% (GU) and 39% (GI); 1 acute Grade 3 GU toxicity. Late Grade 1-2 toxicity was 45% (GU) and 37% (GI). No late Grade 3 or higher toxicity was reported. Twenty-six patients reported potency before therapy; 6 (23%) have developed impotence. Median time to PSA nadir was 18 months with the majority of nadirs less than 1.0 ng/mL. The actuarial 48-month biochemical freedom from relapse is 70% for the American Society for Therapeutic Radiology and Oncology definition and 90% by the alternative nadir + 2 ng/mL failure definition. Conclusions: SHARP for localized prostate cancer is feasible with minimal acute or late toxicity. Dose escalation should be possible

  20. Accelerated partial breast irradiation using once-daily fractionation: analysis of 312 cases with four years median follow-up

    Directory of Open Access Journals (Sweden)

    Shaikh Arif Y

    2012-02-01

    Full Text Available Abstract Background There are limited data on accelerated partial breast irradiation (APBI using external beam techniques. Moreover, there are recent reports of increased fibrosis and unacceptable cosmesis with APBI using external beam with BID fractionation. We adopted a once daily regimen of APBI with fractionation similar to that shown to be effective in a Canadian randomized trial of whole breast irradiation. It is unclear whether patients with DCIS or invasive lobular carcinoma (ILC are suitable for APBI. Methods The retrospective cohort included 310 patients with 312 tumors of T1-T2N0-N1micM0 invasive ductal carcinoma (IDC, ILC, or Tis (DCIS treated with APBI via external beam. Most patients were treated using IMRT with 16 daily fractions of 270 cGy to a dose of 4320 cGy. The target volume included the lumpectomy cavity plus 1.0 cm to account for microscopic disease and an additional 0.5 to 1.0 cm for setup uncertainty and breathing motion. Ipsilateral breast failure (IBF was pathologically confirmed as a local failure (LF or an elsewhere failure (EF. Results Median follow-up was 49 months. Among the 312 cases, 213 were IDC, 31 ILC, and 68 DCIS. Median tumor size was 1.0 cm. There were 9 IBFs (2.9% including 5 LFs and 4 EFs. The IBF rates among patients with IDC, ILC, and DCIS were 2.4%, 3.2%, and 4.4%, respectively, with no significant difference between histologies. When patients were analyzed by the ASTRO APBI consensus statement risk groups, 32% of treated cases were considered suitable, 50% cautionary, and 18% unsuitable. The IBF rates among suitable, cautionary, and unsuitable patients were 4.0%, 2.6%, and 1.8%, respectively, with no significant difference between risk groups. Acute skin reactions were rare and long-term cosmetic outcome was very good to excellent. Conclusions External beam APBI with once daily fractionation has a low rate of IBF consistent with other published APBI studies. The ASTRO risk stratification did not

  1. Large fraction radiotherapy plus misonidazole for treatment of advanced lung cancer: report of a phase I/II trial

    International Nuclear Information System (INIS)

    From August 1978 through December 1979, 51 patients with advanced non-oat cell carcinoma of the lung were enrolled in a Phase I/II trial sponsored by the Radiation Therapy Oncology Group (RTOG) employing misonidazole (a 2-nitroimidazole) as a hypoxic cell sensitizer and radiation. The purpose of this study was to test drug and radiation tolerance and to assess the short term efficacy of this unconventional treatment. Tumor doses of 600 rad were given twice weekly for three weeks for a total of 3600 rad, preceded four to six hours by misonidazole in a dose of 2 gm/m2 or 1.75 gm/m2, administered orally. Forty-nine patients were evaluable. Serious toxicity from this treatment was rare. Grade 2 or 3 peripheral neuro-toxicity occurred in eight of 24 patients (33%) with drug doses of 2 gm/m2 and in four of 26 patients (15%) who received 1.75 gm/m2. Grade 3 or 4 central nervous system toxicity occurred in two patients. Two patients developed serious late radiation complications: one patient had a transverse myelitis that appeared one year following delivery of 3600 rad to the spinal cord; a second patient developed a tracheoesophageal fistula and pericarditis eight months following treatment. Objective responses were reported in 67% of patients (complete in 18%); 70% of the patients died with a median survival time of nine months. Of 32 patients eligible for 12 month follow-up, 34% survived more than one year. Patterns of relapse after initial treatment and comparison with results from other RTOG trials using conventional fractionation are discussed

  2. Large fraction radiotherapy plus misonidazole for treatment of advanced lung cancer: report of a phase I/II trial

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.R. (Mallinckrodt Inst. of Radiology, St. Louis, MO); Perez, C.A.; Phillips, T.L.; Concannon, J.P.; Carella, R.J.

    1982-02-01

    From August 1978 through December 1979, 51 patients with advanced non-oat cell carcinoma of the lung were enrolled in a Phase I/II trial sponsored by the Radiation Therapy Oncology Group (RTOG) employing misonidazole (a 2-nitroimidazole) as a hypoxic cell sensitizer and radiation. The purpose of this study was to test drug and radiation tolerance and to assess the short term efficacy of this unconventional treatment. Tumor doses of 600 rad were given twice weekly for three weeks for a total of 3600 rad, preceded four to six hours by misonidazole in a dose of 2 gm/m/sup 2/ or 1.75 gm/m/sup 2/, administered orally. Forty-nine patients were evaluable. Serious toxicity from this treatment was rare. Grade 2 or 3 peripheral neuro-toxicity occurred in eight of 24 patients (33%) with drug doses of 2 gm/m/sup 2/ and in four of 26 patients (15%) who received 1.75 gm/m/sup 2/. Grade 3 or 4 central nervous system toxicity occurred in two patients. Two patients developed serious late radiation complications: one patient had a transverse myelitis that appeared one year following delivery of 3600 rad to the spinal cord; a second patient developed a tracheoesophageal fistula and pericarditis eight months following treatment. Objective responses were reported in 67% of patients (complete in 18%); 70% of the patients died with a median survival time of nine months. Of 32 patients eligible for 12 month follow-up, 34% survived more than one year. Patterns of relapse after initial treatment and comparison with results from other RTOG trials using conventional fractionation are discussed.

  3. Poster — Thur Eve — 28: Enabling trajectory-based radiotherapy on a TrueBeam accelerator with the Eclipse treatment planning system

    International Nuclear Information System (INIS)

    The TrueBeam linear accelerator platform has a developer's mode which permits the user dynamic control over many of the machine's mechanical and radiation systems. Using this research tool, synchronous couch and gantry motion can be programmed to simulate isocentric treatment with a shortened SAD, with benefits such as smaller projected MLC leaf widths and an increased dose rate. In this work, water tank measurements were used to commission a virtual linear accelerator with an 85 cm SAD in Eclipse, from which several arc-based radiotherapy treatments were generated, including an inverse optimized VMAT delivery. For each plan, the pertinent treatment delivery information was extracted from control points specified in the Eclipse-exported DICOM files using the pydicom package in Python, allowing construction of an XML control file. The dimensions of the jaws and MLC positions, defined for an 85 cm SAD in Eclipse, were scaled for delivery on a conventional SAD linear accelerator, and translational couch motion was added as a function of gantry angle to simulate delivery at 85 cm SAD. Ionization chamber and Gafchromic film measurements were used to compare the radiation delivery to dose calculations in Eclipse. With the exception of the VMAT delivery, ionization chamber measurements agreed within 3.3% of the Eclipse calculations. For the VMAT delivery, the ionization chamber was located in an inhomogeneous region, but gamma evaluation of the Gafchromic film plane resulted in a 94.5% passing rate using criteria of 3 mm/3%. The results indicate that Eclipse calculation infrastructure can be used

  4. A new concept of radiotherapy: space fractionation in proton therapy; Un nuevo concepto en radioterapia: fraccionamiento espacial en terapia con protones

    Energy Technology Data Exchange (ETDEWEB)

    Prezado Alonso, Y.; Fois, G.

    2013-07-01

    In recent years several experiments with animals have shown that the combination of small field sizes and a spatial neighborhood of the dose of radiation therapy with synchrotron radiation techniques lead to a significant increase of the dose of tolerance of healthy tissues. The aim of this study is to evaluate the feasibility of a new form of radiotherapy: radiotherapy with proton minibeams. (Author)

  5. Fractionated and single-dose radiotherapy for heterotopic bone formation in patients with spinal cord injury. A phase-I/II study

    Energy Technology Data Exchange (ETDEWEB)

    Sautter-Bihl, M.L.; Hueltenschmidt, B.; Liebermeister, E. [Staedtisches Klinikum Karlsruhe (Germany). Klinik fuer Strahlentherapie und Nuklearmedizin; Nanassy, A. [Klinikum Karlsbad-Langensteinbach (Germany). Orthopaedie I

    2001-04-01

    Background: Heterotopic ossification occur in about 20% of patients with spinal cord injury and may seriously compromise the rehabilitation process. Aim of the present study was to evaluate if radiotherapy administered early in the course of the disease prevents the manifestation of heterotopic ossification and if in patients whose bone formations have been resected recurrence can be avoided. Patients and Methods: 52 patients (44 males, eight females, median age 33 years) and 75 joints were irradiated between December 1989 and March 2000. 49 patients (70 joints, 65 hips, three knees, one shoulder, one elbow) were evaluable. Median follow-up was 11 months. In 58 joints radiotherapy was performed as a primary treatment in the inflammatory phase of soft tissue swelling that precedes manifestation of heterotopic ossifications. Twelve joints were treated after resection of manifest heterotopic bone, two patients had primary and postoperative irradiation in different joints. The dose was 10 Gy in single fractions of 2-2,5 Gy in 34 joints and 7.5-20 Gy in six joints. >From July 1996 on, 30 joints received single-dose irradiation with 8 Gy. Results: 50/70 joints (71%) remained free from progression. This was the case for 47/65 (72%) hips, whereas in 18 hips (27%) the Brooker score increased for 1-2 grades and caused a moderate decrease of mobility in five joints. Out of the other five joints, two knees developed progression. No relevant side effects occurred. Conclusion: The present results suggest that radiotherapy is an effective local treatment option for spinal cord injured patients with heterotopic ossifications. (orig.) [German] Hintergrund: Heterotope Ossifikationen treten bei bis zu 20% von Patienten mit verletzungsbedingter Querschnittslaehmung auf und koennen die Rehabilitation erheblich erschweren. Ziel der vorliegenden Studie war zu evaluieren, ob durch eine primaer im Anfangsstadium der Erkrankung eingesetzte Strahlentherapie die Manifestation heterotoper

  6. Accelerated high-dose radiotherapy alone or combined with either concomitant or sequential chemotherapy; treatments of choice in patients with Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Pieters Bradley R

    2007-07-01

    Full Text Available Abstract Background Results of high-dose chemo-radiotherapy (CRT, using the treatment schedules of EORTC study 08972/22973 or radiotherapy (RT alone were analyzed among all patients (pts with Non Small Cell Lung Cancer (NSCLC treated with curative intent in our department from 1995–2004. Material Included are 131 pts with medically inoperable or with irresectable NSCLC (TNM stage I:15 pts, IIB:15 pts, IIIA:57 pts, IIIB:43 pts, X:1 pt. Treatment Group I: Concomitant CRT: 66 Gy/2.75 Gy/24 fractions (fx/33 days combined with daily administration of cisplatin 6 mg/m2: 56 pts (standard. Group II: Sequential CRT: two courses of a 21-day schedule of chemotherapy (gemcitabin 1250 mg/m2 d1, cisplatin 75 mg/m2 d2 followed by 66 Gy/2.75 Gy/24 fx/33 days without daily cisplatin: 26 pts. Group III: RT: 66 Gy/2.75 Gy/24 fx/33 days or 60 Gy/3 Gy/20 fx/26 days: 49 pts. Results The 1, 2, and 5 year actuarial overall survival (OS were 46%, 24%, and 15%, respectively. At multivariate analysis the only factor with a significantly positive influence on OS was treatment with chemo-radiation (P = 0.024 (1-, 2-, and 5-yr OS 56%, 30% and 22% respectively. The incidence of local recurrence was 36%, the incidence of distant metastases 46%. Late complications grade 3 were seen in 21 pts and grade 4 in 4 patients. One patient had a lethal complication (oesophageal. For 32 patients insufficient data were available to assess late complications. Conclusion In this study we were able to reproduce the results of EORTC trial 08972/22973 in a non-selected patient population outside of the setting of a randomised trial. Radiotherapy (66 Gy/24 fx/33 days combined with either concomitant daily low dose cisplatin or with two neo-adjuvant courses of gemcitabin and cisplatin are effective treatments for patients with locally advanced Non-Small Cell Lung Cancer. The concomitant schedule is also suitable for elderly people with co-morbidity.

  7. Risk-adapted single or fractionated stereotactic high-precision radiotherapy in a pooled series of nonfunctioning pituitary adenomas. High local control and low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Jan Patrick [MediClin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Meyer, Almuth [HELIOS Klinikum Erfurt, Department of Endocrinology, Erfurt (Germany); Pintea, Bogdan [University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Gerlach, Ruediger [HELIOS Klinikum Erfurt, Department of Neurosurgery, Erfurt (Germany); Surber, Gunnar; Hamm, Klaus [HELIOS Klinikum Erfurt, Department of Radiosurgery, Erfurt (Germany); Lammering, Guido [MediClin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); Heinrich-Heine-University of Duesseldorf, Department of Radiotherapy and Radiation Oncology, Duesseldorf (Germany)

    2014-12-15

    The purpose of this work was to evaluate a prospectively initiated two-center protocol of risk-adapted single-fraction (SRS) or fractionated radiotherapy (SRT) in patients with nonsecretory pituitary adenomas (NSA). A total of 73 NSA patients (39 men/34 women) with a median age of 62 years were prospectively included in a treatment protocol of SRS [planning target volume (PTV) < 4 ccm, > 2 mm to optic pathways = low risk] or SRT (PTV ≥ 4 ccm, ≤ 2 mm to optic pathways = high risk) in two Novalis registered centers. Mean tumor volume was 7.02 ccm (range 0.58-57.29 ccm). Based on the protocol guidelines, 5 patients were treated with SRS and 68 patients with SRT. Median follow-up (FU) reached 5 years with 5-year overall survival (OS) of 90.4 % (CI 80.2-95 %) and 5-year local control and progression-free survival rates of 100 % (CI 93.3-100 %) and 90.4 % (CI 80.2-95 %), respectively. A post-SRS/SRT new visual disorder occurred in 2 patients (2.7 %), a new oculomotor nerve palsy in one pre-irradiated patient, in 3 patients (4.1 %) a pre-existing visual disorder improved. New complete hypopituitarism occurred in 4 patients (13.8 %) and in 3 patients (25 %) with pre-existing partial hypopituitarism. Pituitary function in 26 % of patients retained normal. Patients with tumor shrinkage (65.75 %) had a significantly longer FU (p = 0.0093). Multivariate analysis confirmed correlation of new hypopituitarism with duration of FU (p = 0.008) and correlation of new hypopituitarism and tumor volume (p = 0.023). No significant influence factors for occurrence of visual disorders were found. Our SRS/SRT protocol proved to be safe and successful in terms of tumor control and protection of the visual system, especially for large tumors located close to optic pathways. (orig.) [German] Evaluation eines prospektiv angelegten Behandlungsprotokolls einer risikoadaptierten Radiochirurgie (SRS) oder stereotaktischen Radiotherapie (SRT) von Patienten mit hormoninaktiven Hypophysenadenomen

  8. Dosimetric comparison between three dimensional conformal radiotherapy, tomo-therapy and treatment by Cyberknife: about one case of a ponto cerebellar meningioma; Comparaison dosimetrique entre radiotherapie conformationnelle tridimensionnelle, tomotherapie et traitement par cyberknife: a propos d'un cas de meningiome de l'angle pontocerebelleux

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, F.; Rezvoy, N.; Lacornerie, T.; Lartigau, E. [Centre Oscar-Lambret, Dept. Universitaire de Radiotherapie, 59 - Lille (France)

    2009-10-15

    In order to illustrate the evolution of techniques in radiotherapy we compare the dose distributions calculated for the exclusive treatment of a ponto-cerebellar angle meningioma by a linear accelerator (clinac 2100) by helical irradiation and by cyberknife in radiosurgery mode and in fractionated mode. In conclusion: according to our first results, the tomo-therapy or the fractionated stereotactic radiotherapy appear as the treatments conjugating the advantages of stereotactic radiotherapy ( conformation of the dose to the target volume) and the fractionated radiotherapy ( protection of sane tissues by the fractionation). This study highlights the saving of sane tissues that allows these techniques. this better tolerance is to be evaluated. If it was confirmed, an increasing of the dose prescribed on the target volume could be considered. (N.C.)

  9. Determination of the neutron spectra in the treatment room of a linear accelerator for radiotherapy; Determinacion de los espectros de neutrones en la sala de tratamiento de un acelerador lineal para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [Universidad Autonoma de Zacatecas, Cuerpo Academico de Radiobiologia, A.P. 336, 98000 Zacatecas (Mexico); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Mendez, R.; Iniguez, M.P. [Depto. de Fisica Teorica, Atomica, Molecular y Nuclear, Universidad de Valladolid, 47011 Valladolid (Spain)

    2003-07-01

    By means of a series of measures and Monte Carlo calculations the dosimetric characteristics of the photoneutrons have been determined that take place in volume to a linear accelerator of radiotherapy of 18 MV, LINAC, mark Siemens Mevatron model. The measures were carried out with thermoluminescent dosemeters TLD 600 and TLD 700 that were naked exposed and confined with cover of Cd and Sn, inside a sphere of paraffin and inside spheres Bonner. (Author)

  10. Be aware of neutrons outside short mazes from 10-MV linear accelerators X-rays in radiotherapy facilities.

    Science.gov (United States)

    Brockstedt, S; Holstein, H; Jakobsson, L; Tomaszewicz, A; Knöös, T

    2015-07-01

    During the radiation survey of a reinstalled 10-MV linear accelerator in an old radiation treatment facility, high dose rates of neutrons were observed. The area outside the maze entrance is used as a waiting room where patients, their relatives and staff other than those involved in the actual treatment can freely pass. High fluence rates of neutrons would cause an unnecessary high effective dose to the staff working in the vicinity of such a system, and it can be several orders higher than the doses received due to X-rays at the same location. However, the common knowledge appears to have been that the effect of neutrons at 10-MV X-ray linear accelerator facilities is negligible and shielding calculations models seldom mention neutrons for this operating energy level. Although data are scarce, reports regarding this phenomenon are now emerging. For the future, it is advocated that contributions from neutrons are considered already during the planning stage of new or modified facilities aimed for 10 MV and that estimated dose levels are verified.

  11. Accelerated split-course radiotherapy and simultaneous cis-dichlorodiammine-platinum and 5-fluorouracil chemotherapy with folinic acid enhancement for unresectable carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Thirty-four (6 stage III, 28 stage IV) patients with advanced squamous cell carcinoma of the head and neck were treated by simultaneous radio-chemotherapy. Treatment was divided into three cycles. Chemotherapy consisted of cis-diamminedichloroplatinum(II) (cis-DDP) 60 mg/sqm i.v., 5-fluorouracil (5-FU) 350 mg/sqm i.v. and folinic acid (FA)-50 mg/sqm i.v. on day 2 and 5-FU 350 mg/sqm per 24 h and FA 100 mg/sqm/24 h on days 2-5. Radiotherapy consisted of 23.4 Gy/9 days divided in 13 fractions of 1.8 Gy delivered twice a day from day 3 through day 11. This regimen was repeated on days 22 and 44. Total radiation dose amounted to 70.2 Gy/51 days. Mean follow-up of surviving patients was 21 (14-34) months. 28/32 patients achieved complete response, 4/32 partial response. Actuarial one and two years survival were 88 and 58% including two early deaths from tumour bleeding. Local control rates at one and two years were 87 and 81%, respectively. This protocol produces excellent palliation and the chance of improved long term tumour control. Two patients developed distant metastases. Overall toxicity was tolerable. Since the treatment breaks were inserted after low radiation doses, acute mucositis healed rapidly and was not a limiting factor. 39 refs.; 3 figs.; 3 tabs

  12. Feasibility Study of Moderately Accelerated Intensity-Modulated Radiotherapy Plus Concurrent Weekly Cisplatin After Induction Chemotherapy in Locally Advanced Head-and Neck Cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility and efficacy of moderately accelerated intensity-modulated radiation therapy (IMRT) along with weekly cisplatin, after induction chemotherapy, in patients with locally advanced unresectable head and neck cancer (HNC). Methods and Materials: Patients with Stage III or IV locally advanced HNC, without progressive disease after three courses of induction chemotherapy, received concurrent chemo-IMRT (weekly cisplatin 30 mg/m2 plus simultaneous integrated boost IMRT). A total of 67.5 Gy in 30 fractions were delivered to primary tumor and involved nodes, 60 Gy in 30 fractions to high-risk nodal areas, and 55.5 Gy in 30 fractions to low-risk nodal areas. Results: In all, 36 patients (median age, 56 years) with International Union Against Cancer (UICC) Stage III (n = 5) and IV (n = 31) were included. Of the 36 patients, 17 had received CF (cisplatin and 5-fluorouracil (CF) and 19 had received docetaxel cisplatin and 5-fluorouracil (DCF). During concurrent chemoradiation, 11 of 36 patients (30.5%) experienced Grade III mucositis (CF, 47%; DCF, 15%; p < 0.04). Grade III pharyngeal-esophageal toxicity was observed in 5 of 19 patients (26.3%; CF, 0.0%; DCF, 26.3%; p = 0.02). Two patients died of complications (5.5%). After chemoradiation, the complete response rate was 63.8%. Two-year local control was 88.7%. Two-year progression free survival and overall survival were 74.5% and 60.9%, respectively. Conclusions: In our experience, a moderately accelerated chemo-IMRT was feasible after induction chemotherapy. However, a noteworthy early death rate of 5.5% was observed. Intensive supportive care strategies should be defined to better manage radiation-induced toxic effects. Longer follow-up is required to determine the incidence of late radiation toxicities and tumor control rates.

  13. Postmastectomy radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Naoto; Koguchi, Masahiko; Sasaki, Shigeru; Kaneko, Tomoki; Shinoda, Atsunori; Nishikawa, Atsushi [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-10-01

    Since there have been few reports on postmastectomy radiotherapy having a high evidence level in Japan, the significance of postoperative radiotherapy and the irradiation techniques were reviewed based on reports from Western countries. Authors focused on the indications for postoperative irradiation, irradiation methods (irradiation sites, irradiation techniques; prosthetics, methods of irradiating the chest wall and lymph nodes, timing of irradiation), and complications, and discuss them. The factors thought to be adaptable to postmastectomy radiotherapy have been listed. Axillary lymph node metastasis and the size of the primary focus are thought to be important factors in locoregional recurrence. The chest wall and the supraclavicular lymph nodes are the usual sites of irradiation after mastectomy. The irradiation method consists of tangential irradiation of the chest wall and single-field irradiation of the supraclavicular lymph nodes, with 46-50 Gy in fractional doses of 1.8-2 Gy x 5/w is administered for 4.5-5.5 weeks. The timing of irradiation in the West is generally after chemotherapy. Adverse radiation effects include ischemic heart disease, pneumonitis, arm edema, rib fractures, and brachial plexus paralysis. The frequency of these complications is increased by the combined use of chemotherapy or surgery. The breast cancer cure rate in Japan is generally better than in the West. It remains to be determined whether the clinical data from Europe and America are applicable to the treatment of breast cancer in Japan. To address this issue, a clinical investigation should be performed in Japan with close cooperation between surgeons, physicians, pathologists, and radiotherapists. (K.H.)

  14. Accelerated repopulation as a cause of radiation treatment failure in non-small cell lung cancer: review of current data and future clinical strategies.

    Science.gov (United States)

    Yom, Sue S

    2015-04-01

    Despite convincing evidence that the principles of accelerated repopulation would open up additional therapeutic opportunities in the treatment of advanced-stage non-small cell lung cancer, this strategy has been generally underexplored. The implementation of accelerated radiotherapy schedules has been hampered by logistical barriers, concerns about acute toxicity, and the prioritization of integrating concurrent chemotherapy into the standard treatment platform. At present, it is unclear to what extent accelerated fractionation will influence future treatment paradigms in non-small cell lung cancer, although technical advances in radiotherapy, allowing higher dose delivery with reduced toxicity, could permit the development of more convenient and tolerable forms of accelerated schedules. PMID:25771413

  15. SU-E-T-190: First Integration of Steriotactic Radiotherapy Planning System Iplan with Elekta Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biplab, S; Soumya, R; Paul, S; Jassal, K; Munshi, A; Giri, U; Kumar, V; Roy, S; Ganesh, T; Mohanti, B

    2014-06-01

    Purpose: For the first time in the world, BrainLAB has integrated its iPlan treatment planning system for clinical use with Elekta linear accelerator (Axesse with a Beam Modulator). The purpose of this study was to compare the calculated and measured doses with different chambers to establish the calculation accuracy of iPlan system. Methods: The iPlan has both Pencil beam (PB) and Monte Carlo (MC) calculation algorithms. Beam data include depth doses, profiles and output measurements for different field sizes. Collected data was verified by vendor and beam modelling was done. Further QA tests were carried out in our clinic. Dose calculation accuracy verified point, volumetric dose measurement using ion chambers of different volumes (0.01cc and 0.125cc). Planner dose verification was done using diode array. Plans were generated in iPlan and irradiated in Elekta Axesse linear accelerator. Results: Dose calculation accuracies verified using ion chamber for 6 and 10 MV beam were 3.5+/-0.33(PB), 1.7%+/-0.7(MC) and 3.9%+/-0.6(PB), 3.4%+/-0.6(MC) respectively. Using a pin point chamber, dose calculation accuracy for 6MV and 10MV was 3.8%+/-0.06(PB), 1.21%+/-0.2(MC) and 4.2%+/-0.6(PB), 3.1%+/-0.7(MC) respectively. The calculated planar dose distribution for 10.4×10.4 cm2 was verified using a diode array and the gamma analysis for 2%-2mm criteria yielded pass rates of 88 %(PB) and 98.8%(MC) respectively. 3mm-3% yields 100% passing for both MC and PB algorithm. Conclusion: Dose calculation accuracy was found to be within acceptable limits for MC for 6MV beam. PB for both beams and MC for 10 MV beam were found to be outside acceptable limits. The output measurements were done twice for conformation. The lower gamma matching was attributed to meager number of measured profiles (only two profiles for PB) and coarse measurement resolution for diagonal profile measurement (5mm). Based on these measurements we concluded that 6 MV MC algorithm is suitable for patient treatment.

  16. Mucosal regeneration during radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: Regeneration of the aerodigestive mucosa is known to occur during conventionally fractionated radiotherapy. The circumstances surrounding its time of onset and magnitude are not well understood, however. Material and methods: Mucosal reactions were observed in 100 patients undergoing conventionally fractionated treatment at 2 Gy/day over 7 weeks and 88 receiving accelerated treatment at 1.8 Gy twice daily over 3(1(2)) weeks on the Trans Tasman Radiation Oncology Group head and neck cancer trials. Similar observations in 61 patients treated palliatively at dose rates between 0.8 and 240 Gy/h using ten 3.0-4.2 Gy fractions over 2 weeks are compared. Results: Several findings emerged from these studies: 1. Reactions evolved more quickly at oropharyngeal sites than in the hypopharynx. 2. Reactions at both sites evolved more rapidly at greater rates of dose accumulation. 3. The timing of reactions suggested the presence of a strong regenerative mucosal response that started before the manifestation of 'patchy' (grade II) mucosal reactions. 4. The regenerative response was strong enough to 'make good' damage accumulated at a rate of 2 Gy/day in over a third of cases. 5. The linear quadratic model without time correction failed to provide an adequate prediction of the frequency or intensity of mucosal reactions produced by any of the regimes. A simple model of the regenerative response is presented. Conclusions: This study suggests that the timing and magnitude of the regenerative response vary between sites and individuals but are linked to the amount of epithelial cellular depletion occurring during treatment

  17. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: effect of ion chamber calibration and long-term stability

    International Nuclear Information System (INIS)

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL 'dose intercomparison' for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy and uncertainities are within reported values. (author)

  18. Main of probabilistic safety assessment (PSA) of the radiotherapy treatment process with a linear accelerator for medical purposes (linac)

    International Nuclear Information System (INIS)

    The radiation safety assessments traditionally have been based on analyzing the lessons you learn of new events that are becoming known. Although these methods are very valuable, their main limitation is that only cover known events and leave without consider other possible failures that have occurred or have not been published, This does not mean they can not occur. Other tools to analyze prospectively the safety, among which found Probabilistic Safety Assessment (PSA). This paper summarizes the project of American Forum of agencies radiological and nuclear regulators aimed at applying the methods of APS treatment process with a linear accelerator. We defined as unintended consequences accidental exposures both single patient and multiple patients. FMEA methodology was used to define events initiators of accidents and methods of event trees and trees failure to identify the accident sequences that may occur. A Once quantified the frequency of occurrence of accidental sequences Analyses of importance in determining the most recent events significant from the point of view of safety. We identified 158 of equipment failure modes and 295 errors human if they occurred would have the potential to cause the accidental exposures defined. We studied 118 of initiating events accident and 120 barriers. We studied 434 accident sequences. The accidental exposure of a single patient were 40 times likely that multiple patients. 100% of the total frequency of accidental exposures on a single patient is caused by human errors . 8% of the total frequency of accidental exposures on multiple patients initiating events may occur by equipment failure (Computerized tomography, treatment planning system, throttle linear) and 92% by human error. As part of the and recommendations of the study presents the events that are more contribution on the reduction of risk of accidental exposure. (author)

  19. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X.; Garg, Madhur; Lasala, Patrick; Kim, Mimi; Mah, Dennis; Chen, Chin-Cheng; Yaparpalvi, Ravindra; Mynampati, Dinesh; Kuo, Hsiang-Chi; Guha, Chandan; Kalnicki, Shalom [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Epidemiology and Population Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2011-03-15

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems, Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group

  20. Induction Chemotherapy and Continuous Hyperfractionated Accelerated Radiotherapy (CHART) for Patients With Locally Advanced Inoperable Non-Small-Cell Lung Cancer: The MRC INCH Randomized Trial

    International Nuclear Information System (INIS)

    Purpose: Recent clinical trials and meta-analyses have shown that both CHART (continuous hyperfractionated accelerated radiation therapy) and induction chemotherapy offer a survival advantage over conventional radical radiotherapy for patients with inoperable non-small cell-lung cancer (NSCLC). This multicenter randomized controlled trial (INCH) was set up to assess the value of giving induction chemotherapy before CHART. Methods and Materials: Patients with histologically confirmed, inoperable, Stage I-III NSCLC were randomized to induction chemotherapy (ICT) (three cycles of cisplatin-based chemotherapy followed by CHART) or CHART alone. Results: Forty-six patients were randomized (23 in each treatment arm) from 9 UK centers. As a result of poor accrual, the trial was closed in December 2007. Twenty-eight patients were male, 28 had squamous cell histology, 34 were Stage IIIA or IIIB, and all baseline characteristics were well balanced between the two treatment arms. Seventeen (74%) of the 23 ICT patients completed the three cycles of chemotherapy. All 42 (22 CHART + 20 ICT) patients who received CHART completed the prescribed treatment. Median survival was 17 months in the CHART arm and 25 months in the ICT arm (hazard ratio of 0.60 [95% CI 0.31-1.16], p = 0.127). Grade 3 or 4 adverse events (mainly fatigue, dysphagia, breathlessness, and anorexia) were reported for 13 (57%) CHART and 13 (65%) ICT patients. Conclusions: This small randomized trial indicates that ICT followed by CHART is feasible and well tolerated. Despite closing early because of poor accrual, and so failing to show clear evidence of a survival benefit for the additional chemotherapy, the results suggest that CHART, and ICT before CHART, remain important options for the treatment of inoperable NSCLC and deserve further study.

  1. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Wenz, Frederik; Bulsara, Max;

    2014-01-01

    The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival....

  2. WE-G-BRE-09: Targeted Radiotherapy Enhancement During Accelerated Partial Breast Irradiation (ABPI) Using Controlled Release of Gold Nanoparticles (GNPs)

    Energy Technology Data Exchange (ETDEWEB)

    Cifter, G; Ngwa, W [University of Massachusetts (United States); Harvard Medical School, Dana Farber Cancer Institute (United States); Chin, J; Cifter, F; Sajo, E [University of Massachusetts (United States); Sinha, N [Wentworth Institute of Technology, Boston, MA (United States); Bellon, J [Harvard Medical School, Dana Farber Cancer Institute (United States)

    2014-06-15

    Purpose: Several studies have demonstrated low rates of local recurrence with brachytherapy-based accelerated partial breast irradiation (APBI). However, long-term outcomes on toxicity (e.g. telangiectasia), and cosmesis remain a major concern. The purpose of this study is to investigate the dosimetric feasibility of using targeted non-toxic radiosensitizing gold nanoparticles (GNPs) for localized dose enhancement to the planning target volume (PTV) during APBI while reducing dose to normal tissue. Methods: Two approaches for administering the GNPs were considered. In one approach, GNPs are assumed to be incorporated in a micrometer-thick polymer film on the surface of routinely used mammosite balloon applicators, for sustained controlled in-situ release, and subsequent treatment using 50-kVp Xoft devices. In case two, GNPs are administered directly into the lumpectomy cavity e.g. via injection or using fiducials coated with the GNP-loaded polymer film. Recent studies have validated the use of fiducials for reducing the PTV margin during APBI with 6 MV beams. An experimentally determined diffusion coefficient was used to determine space-time customizable distribution of GNPs for feasible in-vivo concentrations of 43 mg/g. An analytic calculational approach from previously published work was employed to estimate the dose enhancement due to GNPs (2 and 10 nm) as a function of distance up to 1 cm from lumpectomy cavity. Results: Dose enhancement due to GNP was found to be about 130% for 50-kVp x-rays, and 110% for 6-MV external beam radiotherapy, 1 cm away from the lumpectomy cavity wall. Higher customizable dose enhancement could be achieved at other distances as a function of nanoparticle size. Conclusion: Our preliminary results suggest that significant dose enhancement can be achieved to residual tumor cells targeted with GNPs during APBI with electronic brachytherapy or external beam therapy. The findings provide a useful basis for developing nanoparticle

  3. Linear Correlation Between Patient Survival and Decreased Percentage of Tumor [18F]Fluorodeoxyglucose Uptake for Late-Course Accelerated Hyperfractionated Radiotherapy for Esophageal Cancer

    International Nuclear Information System (INIS)

    Purpose: The aims of this trial were to study whether a decreased percentage of tumor fluorodeoxyglucose (FDG) uptake (%DeltaSUVmax) correlated with overall survival and local control times for patients with esophageal cancer and which patients would benefit from a late-course accelerated hyperfractionated (LCHF) radiation scheme. Methods and Materials: A total of 50 eligible patients with squamous esophageal cancer received positron-emission tomography examinations three times and were treated with the LCHF radiation scheme, with a dose of 68.4 Gy/41 fractions in 6.5 weeks. A %DeltaSUVmax value was calculated, and patients were stratified as highly radiosensitive (HR), moderately radiosensitive (MR), and low radiosensitivity (LR) according to %DeltaSUVmax values in the conventional fraction (CF) scheme. Then, a linear correlation was calculated between patients’ survival time and %DeltaSUVmax. Local control and overall survival rates were compared after stratification. Results: In the MR subgroup, there was no linear correlation between %DeltaSUVmax and the CF and LCHF schemes (correlation coefficient, R 0.05). In the other subgroups (HR and LR), %DeltaSUVmax values between the CF and LCHF schemes were correlated. Also, in the HR and LR subgroups, %DeltaSUVmax after radiation correlated with overall survival or local control rates (correlation coefficient, R >0.5, and p < 0.05). Three-year local control rates in the HR, MR, and LR subgroups were 100%, 81.5%, and 0%, respectively (p < 0.001). Also, 3-year overall survival rates were 92.4%, 58.8%, and 0% for HR, MR, and LR subgroups, respectively (p < 0.001). Conclusions: Postradiation %DeltaSUVmax was positively correlated with survival time for patients’ with esophageal cancer. Patients who benefited from LCHF schedules were those with a decrease of 30% to 60% in tumor FDG uptake after the completion of CF radiation.

  4. Performance characterization of siemens primus linear accelerator under small monitor unit and small segments for the implementation of step-and-shoot intensitymodulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Reena P

    2006-01-01

    Full Text Available Implementation of step-and-shoot intensity-modulated radiotherapy (IMRT needs careful understanding of the accelerator start-up characteristic to ensure accurate and precise delivery of radiation dose to patient. The dosimetric characteristic of a Siemens Primus linear accelerator (LA which delivers 6 and 18 MV x-rays at the dose rate of 300 and 500 monitor unit (MU per minutes (min respectively was studied under the condition of small MU ranging from 1 to 100. Dose monitor linearity was studied at different dose calibration parameter (D1_C0 by measuring ionization at 10 cm depth in a solid water phantom using a 0.6 cc ionization chamber. Monitor unit stability was studied from different intensity modulated (IM groups comprising various combinations of MU per field and number of fields. Stability of beam flatness and symmetry was investigated under normal and IMRT mode for 20x20 cm2 field under small MU using a 2D Profiler kept isocentrically at 5 cm depth. Inter segment response was investigated form 1 to 10 MU by measuring the dose per MU from various IM groups, each consisting of four segments with inter-segment separation of 2 cm. In the range 1-4 MU, the dose linearity error was more than 5% (max -32% at 1 MU for 6 MV x-rays at factory calibrated D1_C0 value of 6000. The dose linearity error was reduced to -10.95% at 1 MU, within -3% for 2 and 3 MU and ±1% for MU ≥4 when the D1_C0 was subsequently tuned at 4500. For 18 MV x-rays, the dose linearity error at factory calibrated D1_C0 value of 4400 was within ±1% for MU ≥ 3 with maximum of -13.5 observed at 1 MU. For both the beam energies and MU/field ≥ 4, the stability of monitor unit tested for different IM groups was within ±1% of the dose from the normal treatment field. This variation increases to -2.6% for 6 MV and -2.7% for 18 MV x-rays for 2 MU/field. No significant variation was observed in the stability of beam profile measured from normal and IMRT mode. The beam flatness

  5. Quantitative analysis of results of quality control tests in linear accelerators used in radiotherapy; Analise quantitativa dos resultados de testes de controle de qualidade em aceleradores lineares usados em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Passaro, Bruno M.; Rodrigues, Laura N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Videira, Heber S., E-mail: bruno.passaro@gmail.com [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas

    2013-04-15

    The aim of this study is to assess and analyze the stability of the calibration factor of three linear accelerators, as well as the other dosimetric parameters normally included in a program of quality control in radiotherapy. The average calibration factors of the accelerators for the period of approximately four years for the Clinac 600C and Clinac 6EX were (0.998±0.012) and (0.996±0.014), respectively. For the Clinac 2100CD 6 MV and 15 MV was (1.008±0.009) and (1.006±0.010), respectively, in a period of approximately four years. The data of the calibration factors were divided into four subgroups for a more detailed analysis of behavior over the years. Through statistical analysis of calibration factors, we found that for the 600C and Clinacs 2100CD, is an expected probability that more than 90% of cases the values are within acceptable ranges according to TG-142, while for the Clinac 6EX is expected around 85% since this had several exchanges of accelerator components. The values of TPR20,10 of three accelerators are practically constant and within acceptable limits according to the TG-142. It can be concluded that a detailed study of data from the calibration factor of the accelerators and TPR{sub 20},{sub 10} from a quantitative point of view, is extremely useful in a quality assurance program. (author)

  6. Randomized multicenter follow-up trial on the effect of radiotherapy on painful heel spur (plantar fasciitis) comparing two fractionation schedules with uniform total dose: first results after three months’ follow-up

    International Nuclear Information System (INIS)

    Our first trial on radiotherapy for painful heel spur published in 2012 comparing the analgesic effect of a standard dose (6 × 1.0Gy within three weeks) to that of a very low one (6 × 0.1Gy within three weeks) resulted in a highly significant superiority of the standard dose arm. In the meantime, experimental data have shown that lower single doses in the range of 0.5 – 0.7Gy might be even more effective than the current standard dose of 1.0 Gy. Therefore, we conducted a second trial comparing the analgesic effect of standard single doses of 1.0Gy to that of low single doses of 0.5Gy using uniform total doses of 6Gy. One hundred twenty-seven patients were randomized to receive radiation therapy either with a total dose of 6.0Gy applied in 6 fractions of 1.0Gy twice weekly (standard dose) or with the same total dose applied in 12 fractions of 0.5Gy three times weekly (experimental dose). In all patients lateral opposing 6MV photon beams were used. The results were measured using Visual analogue scale (VAS), Calcaneodynia score (CS) and SF-12 health survey. The first phase of this trial ended after a three months’ follow-up; it will be continued up to 48 weeks. Nine patients had to be excluded after randomization either due to the withdrawal of informed consent to radiotherapy by the patients or radiotherapy with an incorrect dosage. The groups were comparable concerning biographical and disease data. The mean calcaneodynia score (CS) was higher in the experimental group (p = 0.002). After three months’ follow-up, we saw a very favorable pain relief in both arms (decline of VAS score: standard arm 42 points, experimental arm 44 points (n.s.), but we did not notice any statistically significant difference between the arms neither concerning the pain parameters nor the quality of life parameters. No relevant acute side effects were recorded. Favorable laboratory results could not be translated into an enhanced pain relief in our patients. This trial was

  7. Long-Term Outcome and Morbidity After Treatment With Accelerated Radiotherapy and Weekly Cisplatin for Locally Advanced Head-and-Neck Cancer: Results of a Multidisciplinary Late Morbidity Clinic

    International Nuclear Information System (INIS)

    Purpose: To evaluate the long-term outcome and morbidity after intensified treatment for locally advanced head-and-neck cancer. Methods and Materials: Between May 2003 and December 2007, 77 patients with Stage III to IV head-and-neck cancer were treated with curative intent. Treatment consisted of accelerated radiotherapy to a dose of 68 Gy and concurrent cisplatin. Long-term survivors were invited to a multidisciplinary outpatient clinic for a comprehensive assessment of late morbidity with special emphasis on dysphagia, including radiological evaluation of swallowing function in all patients. Results: Compliance with the treatment protocol was high, with 87% of the patients receiving at least five cycles of cisplatin and all but 1 patient completing the radiotherapy as planned. The 5-year actuarial disease-free survival and overall survival rates were 40% and 47%, respectively. Locoregional recurrence–free survival at 5 years was 61%. The 5-year actuarial rates of overall late Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) Grade 3 and Grade 4 toxicity were 52% and 25% respectively. Radiologic evaluation after a median follow-up of 44 months demonstrated impaired swallowing in 57% of the patients, including 23% with silent aspiration. Subjective assessment using a systematic scoring system indicated normalcy of diet in only 15.6% of the patients. Conclusion: This regimen of accelerated radiotherapy with weekly cisplatin produced favorable tumor control rates and survival rates while compliance was high. However, comprehensive assessment by a multidisciplinary team of medical and paramedical specialists revealed significant long-term morbidity in the majority of the patients, with dysphagia being a major concern.

  8. Long-Term Outcome and Morbidity After Treatment With Accelerated Radiotherapy and Weekly Cisplatin for Locally Advanced Head-and-Neck Cancer: Results of a Multidisciplinary Late Morbidity Clinic

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, Heidi, E-mail: h.rutten@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Pop, Lucas A.M.; Janssens, Geert O.R.J. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Takes, Robert P. [Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Knuijt, Simone [Department of Rehabilitation/Speech Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Rooijakkers, Antoinette F. [Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Berg, Manon van den [Department of Gastroenterology-Dietetics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Merkx, Matthias A. [Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Herpen, Carla M.L. van [Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2011-11-15

    Purpose: To evaluate the long-term outcome and morbidity after intensified treatment for locally advanced head-and-neck cancer. Methods and Materials: Between May 2003 and December 2007, 77 patients with Stage III to IV head-and-neck cancer were treated with curative intent. Treatment consisted of accelerated radiotherapy to a dose of 68 Gy and concurrent cisplatin. Long-term survivors were invited to a multidisciplinary outpatient clinic for a comprehensive assessment of late morbidity with special emphasis on dysphagia, including radiological evaluation of swallowing function in all patients. Results: Compliance with the treatment protocol was high, with 87% of the patients receiving at least five cycles of cisplatin and all but 1 patient completing the radiotherapy as planned. The 5-year actuarial disease-free survival and overall survival rates were 40% and 47%, respectively. Locoregional recurrence-free survival at 5 years was 61%. The 5-year actuarial rates of overall late Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) Grade 3 and Grade 4 toxicity were 52% and 25% respectively. Radiologic evaluation after a median follow-up of 44 months demonstrated impaired swallowing in 57% of the patients, including 23% with silent aspiration. Subjective assessment using a systematic scoring system indicated normalcy of diet in only 15.6% of the patients. Conclusion: This regimen of accelerated radiotherapy with weekly cisplatin produced favorable tumor control rates and survival rates while compliance was high. However, comprehensive assessment by a multidisciplinary team of medical and paramedical specialists revealed significant long-term morbidity in the majority of the patients, with dysphagia being a major concern.

  9. Patients with a favourable prognosis are equally palliated with single and multiple fraction radiotherapy: Results on survival in the Dutch Bone Metastasis Study

    NARCIS (Netherlands)

    van der Linden, Y.M.; Steentand, E.; van Houwelingen, H.C.; Post, W.J.; Oei, B.; Marijnen, C.A.M.; Leer, J.W.H.

    2006-01-01

    Background and purpose: In the prospectively, randomized Dutch Bone Metastasis Study on the effect of a single fraction of 8 Gy versus 24 Gy in six fractions on painful bone metastases, 28% of the patients survived for more than 1 year. Purpose of the present study was to analyze the palliative effe

  10. Patients with a favourable prognosis are equally palliated with single and multiple fraction radiotherapy: results on survival in the Dutch Bone Metastasis Study.

    NARCIS (Netherlands)

    Linden, Y.M. van der; Steenland, E.; Houwelingen, H.C. van; Post, W.J.; Oei, B.; Marijnen, C.A.M.; Leer, J.W.H.

    2006-01-01

    BACKGROUND AND PURPOSE: In the prospectively, randomized Dutch Bone Metastasis Study on the effect of a single fraction of 8 Gy versus 24 Gy in six fractions on painful bone metastases, 28% of the patients survived for more than 1 year. Purpose of the present study was to analyze the palliative effe

  11. Patients with a favourable prognosis are equally palliated with single and multiple fraction radiotherapy : Results on survival in the Dutch Bone Metastasis Study

    NARCIS (Netherlands)

    van der Linden, Y.M.; Steentand, E.; van Houwelingen, H.C.; Post, W.J.; Oei, B.; Marijnen, C.A.M.; Leer, J.W.H.

    2006-01-01

    Background and purpose: In the prospectively, randomized Dutch Bone Metastasis Study on the effect of a single fraction of 8 Gy versus 24 Gy in six fractions on painful bone metastases, 28% of the patients survived for more than 1 year. Purpose of the present study was to analyze the palliative effe

  12. Factors associated with acute and late dysphagia in the DAHANCA 6 & 7 randomized trial with accelerated radiotherapy for head and neck cancer

    DEFF Research Database (Denmark)

    Mortensen, Hanna Rahbek; Overgaard, Jens; Jensen, Kenneth;

    2013-01-01

    Dysphagia is a common and debilitating side effect in head and neck radiotherapy (RT). Prognostic factors are numerous and their interrelationship not well understood. The aim of this study was to establish a multivariate prognostic model for acute and late dysphagia after RT, based on informatio...

  13. Performance of different radiotherapy workload models

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to evaluate the performance of different radiotherapy workload models using a prospectively collected dataset of patient and treatment information from a single center. Methods and Materials: Information about all individual radiotherapy treatments was collected for 2 weeks from the three linear accelerators (linacs) in our department. This information included diagnosis code, treatment site, treatment unit, treatment time, fields per fraction, technique, beam type, blocks, wedges, junctions, port films, and Eastern Cooperative Oncology Group (ECOG) performance status. We evaluated the accuracy and precision of the original and revised basic treatment equivalent (BTE) model, the simple and complex Addenbrooke models, the equivalent simple treatment visit (ESTV) model, fields per hour, and two local standards of workload measurement. Results: Data were collected for 2 weeks in June 2001. During this time, 151 patients were treated with 857 fractions. The revised BTE model performed better than the other models with a mean vertical bar observed - predicted vertical bar of 2.62 (2.44-2.80). It estimated 88.0% of treatment times within 5 min, which is similar to the previously reported accuracy of the model. Conclusion: The revised BTE model had similar accuracy and precision for data collected in our center as it did for the original dataset and performed the best of the models assessed. This model would have uses for patient scheduling, and describing workloads and case complexity

  14. Radiotherapy of Langerhans' cell histiocytosis. Results and Implications of a national patterns-of-care study

    International Nuclear Information System (INIS)

    Purpose: This patterns-of-care study was performed to define the current clinical experience with radiotherapy of Langerhans' cell histiocytosis in adults in Germany and to define open questions resulting from this study. Material and Methods: A standardized questionnaire was sent to 198 German radiotherapy institutions. Data about patient characteristics, stage of disease, practice and fractionation of radiotherapy, outcome of therapy, etc. were systematically evaluated. 123 of 198 institutions answered the complete questionnaire (62.1%). Results: Only 23 of the 123 institutions (18.7%) reported experience with radiotherapy of Langerhans' cell histiocytosis of adults. 18 institutions with 98 patients were evaluable. The majority of patients (72 of 98) was treated on a linear accelerator. The median single dose of radiotherapy was 2 Gy, while the median total dose was 24 Gy. 81 of 89 evaluable patients (91%) reached a local control of the treated lesion(s), 69 of those had a complete remission. Eight of 89 patients (9%) developed an in-field recurrence. 87.8% of patients experienced no acute and 97% of patients no late side effects of radiotherapy. Conclusion: Clinical experience with radiotherapy of Langerhans' cell histiocytosis in adults in Germany is still very limited. Nevertheless, the clinical results - with high remission and local control rates - confirm the effectiveness of radiotherapy in the multidisciplinary treatment of this disease. Due to the small number of patients in this study despite higher incidence rates, the knowledge of this disease has to be multiplied in Germany. Future patients should be systematically included into a prospective radiotherapy registry. (orig.)

  15. Impact of the target volume (prostate alone vs. prostate with seminal vesicles) and fraction dose (1.8 Gy vs. 2.0 Gy) on quality of life changes after external-beam radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Eble, Michael J. [Dept. of Radiotherapy, RWTH Aachen (Germany); Pinkawa, Michael; Piroth, Marc D.; Fischedick, Karin; Holy, Richard; Klotz, Jens; Nussen, Sandra; Krenkel, Barbara

    2009-11-15

    Purpose: to evaluate the impact of the clinical target volume (CTV) and fraction dose on quality of life (QoL) after external-beam radiotherapy (EBRT) for prostate cancer. Patients and methods: a group of 283 patients has been surveyed prospectively before, at the last day, at a median time of 2 months and 15 months after EBRT (70.2-72 Gy) using a validated questionnaire (Expanded Prostate Cancer Index Composite). FBRT of prostate alone (P, n = 70) versus prostate with seminal vesicles (PS, n = 213) was compared. Differences of fraction doses (1.8 Gy, n = 80, vs. 2.0 Gy, n = 69) have been evaluated in the patient group receiving a total dose of 72 Gy. Results: significantly higher bladder and rectum volumes were found at all dose levels for the patients with PS versus P within the CTV (p < 0.001). Similar volumes resulted in the groups with different fraction doses. Paradoxically, bowel function scores decreased significantly less 2 and 15 months after EBRT of PS versus P. 2 months after EBRT, patients with a fraction dose of 2.0 Gy versus 1.8 Gy reported pain with urination ({>=} once a day in 12% vs. 3%; p = 0.04) and painful bowel movements ({>=} rarely in 46% vs. 29%; p = 0.05) more frequently. No long-term differences were found. Conclusion: the risk of adverse QoL changes after EBRT for prostate cancer cannot be derived from the dose-volume histogram alone. Seminal vesicles can be included in the CTV up to a moderate total dose without adverse effects on QoL. Apart from a longer recovery period, higher fraction doses were not associated with higher toxicity. (orig.)

  16. Aggressive simultaneous radiochemotherapy with cisplatin and paclitaxel in combination with accelerated hyperfractionated radiotherapy in locally advanced head and neck tumors. Results of a phase I-II trial

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnt, T.; Pigorsch, S.; Pelz, T.; Haensgen, G.; Dunst, J. [Dept. of Radiotherapy, Martin Luther Univ., Halle (Germany); Becker, A. [Dept. of Radiotherapy, Martin Luther Univ., Halle (Germany); Dept. of Radiotherapy, Municipial Hospital, Dessau (Germany); Bloching, M.; Passmann, M. [Dept. of Head and Neck Surgery, Martin Luther Univ., Halle (Germany); Lotterer, E. [Dept. of Internal Medicine I, Martin Luther Univ., Halle (Germany)

    2003-10-01

    We have tested a very aggressive combination protocol with cisplatin and escalated paclitaxel in combination with accelerated hyperfractionated radiotherapy to assess the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), overall toxicity, and response rate. Patients and Methods: The trial recruited 24 patients (21 males, three females, mean age 57 years) treated at our department from 1998 through 2001. Irradiation was administered in daily doses of 2 Gy up to 30 Gy followed by 1.4 Gy twice daily up to 70.6 Gy to the primary tumor and involved nodes and 51 Gy to the clinically negative regional nodes. The chemotherapy schedule included cisplatin in a fixed dose of 20 mg/m{sup 2} on days 1-5 and 29-33 and paclitaxel at increasing dose levels of 20, 25, 30 mg/m{sup 2} twice weekly over the whole treatment time. Patients were recruited in cohorts of three to six, and the MTD was reached if two out of six patients in one cohort developed DLT. DLT was defined as any grade 4 toxicity or any grade 3 toxicity requiring treatment interruption or unplanned hospitalization or any grade 3 neurotoxicity. We recruited mainly patients with large tumors for this protocol; all patients were stage IV, and the mean tumor volume (primary + metastases) amounted to 72 {+-} 61 cm{sup 3}. The mean follow-up was 30 months (range 4-39 months). Results: One early death (peritonitis and sepsis a t day 10) occurred, and 23 patients were evaluable for acute toxicity and response. The MTD of paclitaxel was reached at the third dose level (30 mg/m{sup 2} paclitaxel twice weekly). The DLT was severe mucositis grade 3 (n = 1) and skin erythema grade 4 (n = 2). After determining the MTD, another 14 patients were treated at the recommended dose level of paclitaxel with 25 mg/m{sup 2} twice weekly. In summary, 13/23 patients (57%) developed grade 3 and 10/23 (43%) grade 2 mucositis. Two patients (9%) had grade 4, five (22%) grade 3, and 16 (69%) grade 2 dermatitis. One patient died at day 30

  17. Radiotherapy for craniopharyngioma.

    Science.gov (United States)

    Aggarwal, Ajay; Fersht, Naomi; Brada, Michael

    2013-03-01

    Radiotherapy remains the mainstay of multidisciplinary management of patients with incompletely resected and recurrent craniopharyngioma. Advances in imaging and radiotherapy technology offer new alternatives with the principal aim of improving the accuracy of treatment and reducing the volume of normal brain receiving significant radiation doses. We review the available technologies, their technical advantages and disadvantages and the published clinical results. Fractionated high precision conformal radiotherapy with image guidance remains the gold standard; the results of single fraction treatment are disappointing and hypofractionation should be used with caution as long term results are not available. There is insufficient data on the use of protons to assess the comparative efficacy and toxicity. The precision of treatment delivery needs to be coupled with experienced infrastructure and more intensive quality assurance to ensure best treatment outcome and this should be carried out within multidisciplinary teams experienced in the management of craniopharyngioma. The advantages of the combined skills and expertise of the team members may outweigh the largely undefined clinical gain from novel radiotherapy technologies.

  18. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  19. Customized mold radiotherapy with prosthetic apparatus for oral cancers

    International Nuclear Information System (INIS)

    Eight patients (6 males, 2 females; median age, 78 years; age range, 31-94 years) were treated by mold radiotherapy with a prosthetic apparatus for oral cancers between October 2006 and March 2013. The primary sites were the tongue in 3 cases, hard palate and buccal mucosa in 2 cases each, and oral floor in 1 case. The type of treatment consisted of radical radiotherapy and palliative radiotherapy in 2 cases each, and preoperative radiotherapy, postoperative radiotherapy, additional radiotherapy after external beam radiotherapy and systemic chemotherapy in 1 case each. Patients received 40-50 Gy in 8-10 fractions with mold radiotherapy. Two patients who received radical radiotherapy showed no signs of recurrence or metastasis. The present therapy contributed to patients' palliative, postoperative, and preoperative therapy. Mold radiotherapy with a prosthetic appliance was performed safely and was a useful treatment for several types of oral cancer. (author)

  20. The incidence of bladder cancer recurrences and metastases after radical radiotherapy

    International Nuclear Information System (INIS)

    The authors compare the incidence of bladder carcinoma recurrences and dissemination after long-distance gamma-beam therapy, carried out according to a traditional method, and in an accelerated hyperfractionation mode combined with metronidazole therapy. The recurrences were most frequently detected at the site of the primary tumor (62-67 % of cases) in 6 to 18 months after the treatment. They come to a conclusion that accelerated hyperfractionation and local metronidazole radiomodification were conductive to a reduction of the incidence of recurrences from 45 to 28 % as against the traditional split radiotherapy course in the classical fractionation mode

  1. [Radiotherapy of breast cancer].

    Science.gov (United States)

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  2. Construction of a remote radiotherapy planning system

    International Nuclear Information System (INIS)

    We constructed a remote radiotherapy planning system, and we examined the usefulness of and faults in our system in this study. Two identical radiotherapy planning systems, one installed at our institution and the other installed at an affiliated hospital, were used for radiotherapy planning. The two systems were connected by a wide area network (WAN), using a leased line. Beam data for the linear accelerator at the affiliated hospital were installed in the two systems. During the period from December 2001 to December 2002, 43 remote radiotherapy plans were made using this system. Data were transmitted using a file transfer protocol (FTP) software program. The 43 radiotherapy plans examined in this study consisted of 13 ordinary radiotherapy plans, 28 radiotherapy plans sent to provide assistance for medical residents, and 2 radiotherapy plans for emergency cases. There were ten minor planning changes made in radiotherapy plans sent to provide assistance for medical residents. Our remote radiotherapy planning system based on WAN using a leased line is useful for remote radiotherapy, with advantages for both radiation oncologists and medical residents. (author)

  3. A prospective randomized double-blind trial comparing ondansetron versus prochlorperazine for the prevention of nausea and vomiting in patients undergoing fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Priestman, T.J. (Royal Hospital, Wolverhampton (United Kingdom)); Roberts, J.T. (Newcastle General Hospital (United Kingdom)); Upadhyaya, B.K. (Glaxo Group Research Ltd., Greenford (United Kingdom))

    1993-01-01

    In a multicentre, international double-blind trial, patients undergoing courses of five or more daily radiotherapy treatments to the upper abdomen were randomized to receive either oral ondansetron 8 mg t.d.s. or oral prochlorperazine 10 mg t.d.s. throughout their radiation course in order to try to prevent nausea and vomiting. A total of 192 patients were recruited, 135 of whom were included in the efficacy analysis; of these, 70 received ondansetron and 65 prochlorperazine. Forty-three (61%) of the patients prescribed ondansetron and 23 (35%) of those given prochlorperazine had a complete response, with no emetic episodes throughout their treatment course. There was, however, no significant difference between the two groups with respect to the incidence and severity of nausea. Seventeen (24%) of the patients on ondansetron and 19 (29%) of those given prochlorperazine were treatment failures, experiencing more than five emetic episodes on their worst day during the study. Both drugs were well tolerated, although constipation was seen more commonly with ondansetron. (author).

  4. Phase 2 Trial of Accelerated, Hypofractionated Whole-Breast Irradiation of 39 Gy in 13 Fractions Followed by a Tumor Bed Boost Sequentially Delivering 9 Gy in 3 Fractions in Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja Young [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Jung, So-Youn; Lee, Seeyoun; Kang, Han-Sung; Lee, Eun Sook; Park, In Hae; Lee, Keun Seok; Ro, Jungsil [Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Lee, Nam Kwon [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Department of Radiation Oncology, Korea University Medical Center, Collage of Medicine, Seoul (Korea, Republic of); Shin, Kyung Hwan, E-mail: radiat@ncc.re.kr [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Department of Radiation Oncology, Korea University Medical Center, Collage of Medicine, Seoul (Korea, Republic of)

    2013-12-01

    Purpose: To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Methods and Materials: Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks. Results: After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). Conclusions: AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery.

  5. Phase 2 Trial of Accelerated, Hypofractionated Whole-Breast Irradiation of 39 Gy in 13 Fractions Followed by a Tumor Bed Boost Sequentially Delivering 9 Gy in 3 Fractions in Early-Stage Breast Cancer

    International Nuclear Information System (INIS)

    Purpose: To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Methods and Materials: Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks. Results: After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). Conclusions: AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery

  6. The effect of UCN-01 (7-hydroxystaurosporine), a potent inhibitor of protein kinase C, on fractionated radiotherapy or daily chemotherapy of a murine fibrosarcoma

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of UCN-01 (7-hydroxystaurosporine), a potent and selective protein kinase C inhibitor, on fractionated irradiation or daily chemotherapy; cis-diamminedichloroplatinum(II) (cis-DDP) or 5-fluorouracil (5-FU) in vivo. Radiosensitivity and chemosensitivity given in combination with UCN-01 were further studied in vitro to analyze these in vivo results. Methods and Materials: For in vivo studies, single-cell suspension was prepared from fourth generation FSa-II tumors and transplanted subcutaneously into the leg of 8-10-week-old C3Hf/Sed mice. Treatments were initiated when tumors reached an average diameter of 4 mm. Tumor response was studied using tumor growth and growth delay time assays. UCN-01 was given continuously for 7 days using Alzet osmotic pump (4.0 μg/μl/h or ∼3.2 mg/kg/day). A daily gamma-ray dose of 10 Gy each was given in air for 7 days. Cis-DDP (0.7 mg/kg/day) or 5-FU (20 mg/kg/day) was given by an i.p. injection for 7 days. For in vitro studies, an established FSa-II cell line was used and cell survival was studied by colony formation assay. Results: UCN-01 acted synergistically with fractionated irradiation, though it was slightly radioprotective in vitro and had no effect on SLD repair. The surviving fraction of the FSa-II cells treated with both UCN-01 and cis-DDP in vitro was lower than the calculated additive effect; however, the sensitizing effect of UCN-01 was not found when combined with either of the chemotherapeutic agents in vivo. Possible causes of synergism of combined UCN-01 and fractionated radiation may be that a continuous UCN-01 treatment inhibited clonogen repopulation during the course of fractionated irradiation and accumulated cells in the G2-M phase where cells are most sensitive to irradiation. Conclusion: UCN-01 is a promising agent that may indirectly interact with fractionated irradiation in vivo but may not with chemotherapeutic agents

  7. Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study.

    Science.gov (United States)

    Shiinoki, Takehiro; Kawamura, Shinji; Uehara, Takuya; Yuasa, Yuki; Fujimoto, Koya; Koike, Masahiro; Sera, Tatsuhiro; Emoto, Yuki; Hanazawa, Hideki; Shibuya, Keiko

    2016-01-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time, tumor-tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory-gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory-gated radiotherapy using SyncTraX, the following were performed:1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor-driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half-value layer (HVL in mm AL), effective kVp, and air kerma, using a solid-state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤ 4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was lung cancer patient. The air-kerma rates from one fluoroscopy direction were 1.93 ± 0.01, 2.86 ± 0.01, 3.92 ± 0.04, 5.28 ± 0.03, and 6.60 ± 0.05 mGy/min for 70, 80, 90, 100, and 110 kV X-ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible. PMID:27455483

  8. Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study.

    Science.gov (United States)

    Shiinoki, Takehiro; Kawamura, Shinji; Uehara, Takuya; Yuasa, Yuki; Fujimoto, Koya; Koike, Masahiro; Sera, Tatsuhiro; Emoto, Yuki; Hanazawa, Hideki; Shibuya, Keiko

    2016-07-08

    A combined system comprising the TrueBeam linear accelerator and a new real-time, tumor-tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory-gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory-gated radiotherapy using SyncTraX, the following were performed:1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor-driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half-value layer (HVL in mm AL), effective kVp, and air kerma, using a solid-state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤ 4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was < 227 ms for each photon beam. The mean of the positional tracking error was < 0.4 mm for sinusoidal patterns and for the pattern in the case of a lung cancer patient. The air-kerma rates from one fluoroscopy direction were 1.93 ± 0.01, 2.86 ± 0.01, 3.92 ± 0.04, 5.28 ± 0.03, and 6.60 ± 0.05 mGy/min for 70, 80, 90, 100, and 110 kV X-ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible.

  9. The representitativeness of patient position during the first treatment fractions

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Nielsen, Morten; Westberg, Jonas;

    2009-01-01

    BACKGROUND: During external radiotherapy daily or even weekly image verification of the patient position might be problematic due to the resulting workload. Therefore it has been customary to perform image verification only at the first treatment fraction. In this study it is investigated whether...... the patient position uncertainty at the initial three treatment fractions is representative for the uncertainty throughout the treatment course. METHODS: Seventy seven patients were treated using Elekta Synergy accelerators. The patients were immobilized during treatment by use of a customized VacFix bag...... and a mask of AquaPlast. Cone beam CT (CBCT) scans were performed at fractions 1, 2, and 3 and at the 10th and 20th treatment fractions. Displacements in patient position, translational and rotational, have been measured by an image registration of the CBCT and the planning CT scan. The displacements data...

  10. Treatment of acromegaly patients with risk-adapted single or fractionated stereotactic high-precision radiotherapy. High local control and low toxicity in a pooled series

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Jan Patrick [Mediclin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Kinfe, Thomas; Pintea, Bogdan [University Hospital of Bonn, Department of Neurosurgery, Bonn (Germany); Meyer, Almuth [HELIOS Klinikum Erfurt, Department of Endocrinology, Erfurt (Germany); Gerlach, Ruediger [HELIOS Klinikum Erfurt, Department of Neurosurgery, Erfurt (Germany); Surber, Gunnar; Hamm, Klaus [HELIOS Klinikum Erfurt, Department of Radiosurgery, Erfurt (Germany); Lammering, Guido [Mediclin Robert Janker Clinic and MediClin MVZ Bonn, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); Heinrich-Heine-University of Duesseldorf, Department of Radiotherapy and Radiation Oncology, Duesseldorf (Germany)

    2015-01-10

    The purpose of this work was to evaluate a prospectively initiated two-center protocol of risk-adapted stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) in patients with acromegaly. In total 35 patients (16 men/19 women, mean age 54 years) were prospectively included in a treatment protocol of SRS [planning target volume (PTV) < 4 ccm, > 2 mm to optic pathways = low risk] or SRT (PTV ≥ 4 ccm, ≤ 2 mm to optic pathways = high risk). The mean tumor volume was 3.71 ccm (range: 0.11-22.10 ccm). Based on the protocol guidelines, 21 patients were treated with SRS and 12 patients with SRT, 2 patients received both consecutively. The median follow-up (FU) reached 8 years with a 5-year overall survival (OS) of 87.3 % [confidence interval (CI): 70.8-95.6 %] and 5-year local control rate of 97.1 % (CI: 83.4-99.8 %). Almost 80 % (28/35) presented tumor shrinkage during FU. Endocrinological cure was achieved in 23 % and IGF-1 normalization with reduced medication was achieved in 40 % of all patients. An endocrinological response was generally achieved within the first 3 years, but endocrinological cure can require more than 8 years. A new adrenocorticotropic hypopituitarism occurred in 13 patients (46.4 %). A new visual field disorder and a new oculomotor palsy occurred in 1 patient, respectively. Patients with occurrence of visual/neurological impairments had a longer FU (p = 0.049). Our SRS/SRT protocol proved to be safe and successful in terms of tumor control and protection of the visual system. The timing and rate of endocrine improvements are difficult to predict. One has to accept an unavoidable rate of additional adrenocorticotropic hypopituitarism in the long term. (orig.) [German] Zielsetzung dieser Arbeit ist die Evaluation eines prospektiv angelegten Behandlungsprotokolls einer risikoadaptierten stereotaktischen Radiochirurgie (SRS) oder stereotaktischen Radiotherapie (SRT) von Patienten mit Akromegalie aus 2 Zentren. Insgesamt 35 Patienten (16

  11. Treatment of acromegaly patients with risk-adapted single or fractionated stereotactic high-precision radiotherapy. High local control and low toxicity in a pooled series

    International Nuclear Information System (INIS)

    The purpose of this work was to evaluate a prospectively initiated two-center protocol of risk-adapted stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) in patients with acromegaly. In total 35 patients (16 men/19 women, mean age 54 years) were prospectively included in a treatment protocol of SRS [planning target volume (PTV) < 4 ccm, > 2 mm to optic pathways = low risk] or SRT (PTV ≥ 4 ccm, ≤ 2 mm to optic pathways = high risk). The mean tumor volume was 3.71 ccm (range: 0.11-22.10 ccm). Based on the protocol guidelines, 21 patients were treated with SRS and 12 patients with SRT, 2 patients received both consecutively. The median follow-up (FU) reached 8 years with a 5-year overall survival (OS) of 87.3 % [confidence interval (CI): 70.8-95.6 %] and 5-year local control rate of 97.1 % (CI: 83.4-99.8 %). Almost 80 % (28/35) presented tumor shrinkage during FU. Endocrinological cure was achieved in 23 % and IGF-1 normalization with reduced medication was achieved in 40 % of all patients. An endocrinological response was generally achieved within the first 3 years, but endocrinological cure can require more than 8 years. A new adrenocorticotropic hypopituitarism occurred in 13 patients (46.4 %). A new visual field disorder and a new oculomotor palsy occurred in 1 patient, respectively. Patients with occurrence of visual/neurological impairments had a longer FU (p = 0.049). Our SRS/SRT protocol proved to be safe and successful in terms of tumor control and protection of the visual system. The timing and rate of endocrine improvements are difficult to predict. One has to accept an unavoidable rate of additional adrenocorticotropic hypopituitarism in the long term. (orig.)

  12. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy

    OpenAIRE

    Rajesh Ashok Kinhikar; Ghadi, Yogesh G.; Priyadarshini Sahoo; Sarbani Ghosh Laskar; Deshpande, Deepak D; Shrivastava, Shyam K.; Jaiprakash Agarwal

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription d...

  13. Hypofractionated radiotherapy for early breast cancer: Review of phase III studies

    OpenAIRE

    Kacprowska, Agata; Jassem, Jacek

    2012-01-01

    Breast-conserving surgery including whole breast irradiation has long been a recommended procedure for early breast cancer. However, conventionally fractionated radiotherapy requires a lengthy hospitalisation or prolonged commuting to a hospital for radiotherapy. In recent years, hypofractionated radiotherapy has increasingly been used. This method involves higher fraction doses (above 2 Gy) as compared to conventional radiotherapy, so the total dose can be delivered in fewer fractions and in...

  14. Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position

    Science.gov (United States)

    Hugo, Geoffrey D.; Yan, Di; Liang, Jian

    2007-01-01

    In this work, five 4D image-guidance strategies (two population, an offline adaptive and two online strategies) were evaluated that compensated for both inter- and intra-fraction variability such as changes to the baseline tumour position and respiratory pattern. None of the strategies required active motion compensation such as gating or tracking; all strategies simulated a free-breathing-based treatment technique. Online kilovoltage fluoroscopy was acquired for eight patients with lung tumours, and used to construct inter- and intra-fraction tumour position variability models. Planning was performed on a mid-ventilation image acquired from a respiration-correlated CT scan. The blurring effect of tumour position variability was included in the dose calculation by convolution. CTV to PTV margins were calculated for variability in the cranio-caudal direction. A population margin of 9.0 ± 0.7 mm was required to account for setup error and respiration in the study population without the use of image-guidance. The greatest mean margin reduction was introduced by the offline adaptive strategy. A daily online correction strategy produced a small reduction (1.6 mm) in the mean margin from the offline strategy. Adaptively correcting for an inter-fraction change in the respiratory pattern had little effect on margin size due to most patients having only small daily changes in the respiratory pattern. A daily online correction strategy would be useful for patients who exhibit large variations in the daily mean tumour position, while an offline adaptive strategy is more applicable to patients with less variation.

  15. Two-fraction high-dose-rate brachytherapy within a single day combined with external beam radiotherapy for prostate cancer: single institution experience and outcomes

    OpenAIRE

    Liu, Junyang; Kaidu, Motoki; Sasamoto, Ryuta; Ayukawa, Fumio; Yamana, Nobuko; Sato, Hiraku; Tanaka, Kensuke; Kawaguchi, Gen; Ohta, Atsushi; Maruyama, Katsuya; Abe, Eisuke; Kasahara, Takashi; Nishiyama, Tsutomu; Tomita, Yoshihiko; Aoyama, Hidefumi

    2016-01-01

    We investigated the outcomes of treatment for patients with localized prostate cancer (PCa) treated with 3D conformal radiation therapy (3D-CRT) followed by two-fraction high-dose-rate brachytherapy within a single day (2-fr.-HDR-BT/day) at a single institution. A total of 156 consecutive Asian males (median age, 67 years) were enrolled. To compare our findings with those of other studies, we analyzed our results using the D'Amico classification, assigning the patients to low- ( n =5; 3.2%), ...

  16. Radiotherapy of Langerhans' cell histiocytosis. Results and Implications of a national patterns-of-care study

    Energy Technology Data Exchange (ETDEWEB)

    Seegenschmiedt, M.H. [Alfried Krupp Krankenhaus, Essen (Germany). Dept. of Radiation Oncology and Radiotherapy; Olschewski, T.

    2006-11-15

    Purpose: This patterns-of-care study was performed to define the current clinical experience with radiotherapy of Langerhans' cell histiocytosis in adults in Germany and to define open questions resulting from this study. Material and Methods: A standardized questionnaire was sent to 198 German radiotherapy institutions. Data about patient characteristics, stage of disease, practice and fractionation of radiotherapy, outcome of therapy, etc. were systematically evaluated. 123 of 198 institutions answered the complete questionnaire (62.1%). Results: Only 23 of the 123 institutions (18.7%) reported experience with radiotherapy of Langerhans' cell histiocytosis of adults. 18 institutions with 98 patients were evaluable. The majority of patients (72 of 98) was treated on a linear accelerator. The median single dose of radiotherapy was 2 Gy, while the median total dose was 24 Gy. 81 of 89 evaluable patients (91%) reached a local control of the treated lesion(s), 69 of those had a complete remission. Eight of 89 patients (9%) developed an in-field recurrence. 87.8% of patients experienced no acute and 97% of patients no late side effects of radiotherapy. Conclusion: Clinical experience with radiotherapy of Langerhans' cell histiocytosis in adults in Germany is still very limited. Nevertheless, the clinical results - with high remission and local control rates - confirm the effectiveness of radiotherapy in the multidisciplinary treatment of this disease. Due to the small number of patients in this study despite higher incidence rates, the knowledge of this disease has to be multiplied in Germany. Future patients should be systematically included into a prospective radiotherapy registry. (orig.)

  17. Solid state tuneable power RF source for S-band klystron used in the indigenous development of medical linear accelerator for radiotherapy

    International Nuclear Information System (INIS)

    Medical Linear Accelerators (LINAC) are being widely used in the treatment of the cancer patients. The requirement of the energy and the particle type depends on the tumour site and its volume. Hence, it is a necessary to design and develop the multiple energy electron medical accelerators. We have successfully indigenously developed, installed and commissioned the 4 MV (Jeevan-Jyoti) and 6 MV (Siddarth) machines for this purpose. The said machines have been type approved by Atomic Energy Regulatory Board (AERB), Mumbai for the treatment of cancer patient. After this achievement we have taken up the project to design and develop the dual mode (Photon and Electron) multiple energy Medical Accelerator. This LINAC will deliver the two photon energies of 6 and 10 MV, whereas five electron energies viz. 6, 9, 12, 15 and 18 MeV. The system has various sub system such as Linear accelerator (radiation source), High power Modulator, Microwave system based on Klystron, Gantry, Patient Support Assembly, Dosimetry, Beam limiting system, control console, etc. In conclusion, we have successfully achieved the precise variation of RF power using this RF source which will be input to klystron amplifier and the accelerator will produce the different energies as per the treatment requirement using the FPGA based control system

  18. SU-C-210-07: Assessment of Intra-/Inter-Fractional Internal Tumor and Organ Movement in Radiotherapy of Head and Neck Cancer Using On-Board Cine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Dolly, S; Anastasio, M; Fischer-Valuck, B; Kashani, R; Green, O; Rodriguez, V; Mutic, S; Gay, H; Thorstad, W; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Victoria, J; Dempsey, J [ViewRay Incorporated, Oakwood Village, OH (United States); Ruan, S [University of Rouen, QuantIF - EA 4108 LITIS, Rouen (France); Low, D [University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Head and neck (H&N) internal organ motion has previously been determined with low frequency and temporary nature based on population-based pre- and post-treatment studies. Using immobilization masks and adding a 4–6 mm planning-tumor-volume margin, geometric uncertainties of patients are routinely considered clinically inconsequential in H&N radiotherapy. Using the first commercially-available MR-IGRT system, we conducted the first quantitative study on inter-patient, intra- and inter-fractional H&N internal motion patterns to evaluate the necessity of individualized asymmetric internal margins. Methods: Ninety cine sagittal MR image sequences were acquired during the entire treatment course (6–7 weeks) of three H&N cancer patients using the ViewRay™ MR-IGRT system. The images were 5 mm thick and acquired at 4 frames/per second. One of the patients had a tracheostomy tube. The cross-sectional H&N airway (nasopharynx, oropharynx, and laryngopharynx portions) movement was analyzed comprehensively using in-house developed motion detection software. Results: Large inter-patient variations of swallowing frequency (0–1 times/per fraction), swallowing duration (1–3 seconds), and pharyngeal cross-sectional area (238–2516 mm2) were observed. Extensive pharyngeal motion occurred during swallowing, while nonzero and periodic change of airway geometry was observed in resting. For patient 1 with tracheostomy tube replacement, 30.3%, 30.0%, 48.7% and 0.3% of total frames showed ≥ 4 mm displacements in the anterior, posterior, inferior, and superior airway boundaries, respectively; similarly, (5.7%, 0.0%, 0.0%, 0.3%) and (23.3%, 0.0%, 35.7%, 1.7%) occurred for patients 2 and 3. Area overlapping coefficients with respect to the first frame were 76.3+/−6.4%, 90.3+/−0.6%, and 92.3+/−1.2% for the three patients, respectively. Conclusion: Both the resting and swallowing motions varied in frequency and amplitude among the patients and across fractions of a

  19. Palliative radiotherapy: current status and future directions.

    Science.gov (United States)

    Sharma, Sonam; Hertan, Lauren; Jones, Joshua

    2014-12-01

    For nearly 100 years, palliative radiotherapy has been a time-efficient, effective treatment for patients with metastatic or advanced cancer in any area where local tumors are causing symptoms. Short courses including a single fraction of radiotherapy may be effective for symptom relief with minimal side effects and maximization of convenience for patient and family. With recent advances in imaging, surgery, and other local therapies as well as systemic cancer therapies, palliative radiotherapy has been used frequently in patients who may not yet have symptoms of advanced or metastatic cancer. In this setting, more prolonged radiotherapy courses and advanced radiotherapy techniques including intensity-modulated radiotherapy (IMRT) or stereotactic radiotherapy (SRT) may be useful in obtaining local control and durable palliative responses. This review will explore the use of radiotherapy across the spectrum of patients with advanced and metastatic cancer and delineate an updated, rational approach for the use of palliative radiotherapy that incorporates symptoms, prognosis, and other factors into the delivery of palliative radiotherapy. PMID:25499634

  20. Advanced Accelerator Applications in Medicine

    International Nuclear Information System (INIS)

    besides the original purpose on development of particle acceleratora as research tools in nuclear and high-energy physics, there are large variety of accelerators used in various fileds from fundamental research to industrial usesand applications chemistry, biology and medicine. Pratical accelators used in various field of medical applications since serveral decades. Even through, a large fraction of applications is emphasized on cancer therappy, the number of accelerators used in midicine for other diagnostics and treatments has increased steady over the years. Several types of accelerated particles are used including electron, proton, neutron and ions. Presently, relativistic electron beams and radiation from linear accelerators (linas) are widely used. A combination of positron emission tomography (PRT) and radiotherapy is an example of excellent invention early detection and treat of cancer tumors. The most developments for proton and heavy ion therapy as well as a modern boron neutron capture therapy (BNCT) are also great incoming effective systems. This talk will focus on developments of the accelrator systems as well as overview on biophysical properties and medical aspects of the diacnostics and treatments.

  1. Washing Process of Accelerator CBS Based on Fractionated Concentration%分浓度水洗促进剂CBS工艺

    Institute of Scientific and Technical Information of China (English)

    李明; 秦怀光; 杨小岗

    2014-01-01

    The washing process of accelerator CBS was improved by fractionation method. The semi-ifnished product was separated by centrifuge into high concentration part and low concentration part. The one with high concentration was then further processed by distillation and the solvent, cyclohexylamine, was recycled. The one having low concentration was used as part of the washing water. With this improved process, the water consumption was reduced by 2~3 m3 for 1 t production of CBS. Thus the waste water treatment cost was reduced, and the proiftability was improved.%介绍分浓度水洗促进剂CBS工艺:通过对促进剂CBS半成品离心脱水得到的母液按照高、低浓度分别存放,分类使用;高浓度母液在蒸馏釜蒸馏回收环己胺,低浓度母液进行二次利用,代替部分工艺水水洗半成品。采用分浓度水洗工艺,生产1 t促进剂CBS的洗水用量可减小2~3 m3,废水处理费用降低,效益提高。

  2. Technical and functional considerations of the portable electron accelerator, mobetron, for intraoperative radiotherapy; Consideraciones tecnicas y funcionales del acelerador de electrones portatil, mobetron, para radioterapia intraoperatoria

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Cases, F. J.; Javier de Luis, F.; Herranz Gonzalez, M.; Canon Rodriguez, R.; Munoz Miguelanez, T.; Aakki, L.; Azinovic Gamo, I.; Brugarolas Masllorens, A.

    2013-07-01

    This work reveals the peculiarities which must be taken into account for the clinical use of this type of accelerators, regarding its operational stability and describe the problems that arise in the logistics work, both from the point of view of the physical dosimetry and radiation protection. (Author)

  3. Accelerated hyperfractionation plus temozolomide in glioblastoma

    International Nuclear Information System (INIS)

    Hyperfractionated (HFRT) or accelerated hyperfractionated radiotherapy (AHFRT) have been discussed as a potential treatment for glioblastoma based on a hypothesized reduction of late radiation injury and prevention of repopulation. HFRT and AHFRT have been examined extensively in the pre-Temozolomide era with inconclusive results. In this study we examined the role of accelerated hyperfractionation in the Temozolomide era. Sixty-four patients who underwent AHFRT (62 of which received Temozolomide) were compared to 67 patients who underwent normofractionated radiotherapy (NFRT) (64 of which received TMZ) between 02/2009 and 10/2014. Follow-up data were analyzed until 01/2015. Median progression-free survival (PFS) was 6 months for the entire cohort. For patients treated with NFRT median PFS was 7 months, for patients treated with AHFRT median PFS was 6 months. Median overall survival (OS) was 13 months for all patients. For patients treated with NFRT median OS was 15 months, for patients treated with AHFRT median OS was 10 months. The fractionation regimen was not a predictor of PFS or OS in univariable- or multivariable analysis. There was no difference in acute toxicity profiles between the two treatment groups. Univariable and multivariable analysis did not show significant differences between NFRT and AHFRT fractionation regimens in terms of PFS or OS. The benefits are immanent: the regimen does significantly shorten hospitalization time in a patient collective with highly impaired life expectancy. We propose that the role of AHFRT + TMZ should be further examined in future prospective trials

  4. Treatment outcome in patients with vulvar cancer: comparison of concurrent radiotherapy to postoperative radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ja Young; Kim, Sung Hwan; Kim, Ki Won; Park, Dong Choon; Yoon, Joo Hee; Yoon, Sei Chul [St. Vincent' s Hospital, The Catholic University of Korea School of Medicine, Seoul (Korea, Republic of); Yu, Mina [St. Mary' s Hospital, The Catholic University of Korea School of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    To evaluate outcome and morbidity in patients with vulvar cancer treated with radiotherapy, concurrent chemoradiotherapy or postoperative radiotherapy. The records of 24 patients treated with radiotherapy for vulvar cancer between July 1993 and September 2009 were retrospectively reviewed. All patients received once daily 1.8-4 Gy fractions external beam radiotherapy to median 51.2 Gy (range, 19.8 to 81.6 Gy) on pelvis and inguinal nodes. Seven patients were treated with primary concurrent chemoradiotherapy, one patient was treated with primary radiotherapy alone, four patients received palliative radiotherapy, and twelve patients were treated with postoperative radiotherapy. Twenty patients were eligible for response evaluation. Response rate was 55% (11/20). The 5-year disease free survival was 42.2% and 5-year overall survival was 46.2%, respectively. Fifty percent (12/24) experienced with acute skin complications of grade III or more during radiotherapy. Late complications were found in 8 patients. 50% (6/12) of patients treated with lymph node dissection experienced severe late complications. One patient died of sepsis from lymphedema. However, only 16.6% (2/12) of patients treated with primary radiotherapy developed late complications. Outcome of patients with vulvar cancer treated with radiotherapy showed relatively good local control and low recurrence. Severe late toxicities remained higher in patients treated with both node dissection and radiotherapy.

  5. CyberKnife radiotherapy for pediatric recurrent gliomas and medulloblastomas

    International Nuclear Information System (INIS)

    CyberKnife (CK), the linear accelerator mounted on the robot arm, is a novel stereotactic irradiation system. Children with recurrent tumors including 6 low-grade and 4 high-grade gliomas and 3 medulloblastomas were treated with hypofractionated stereotactic radiotherapy using with the CK. The patient ages were 4-15 years, with average of 10.3 years. The tumor sizes were 0.11-28.5 cm3. Marginal doses were set at 17.2-31.1 Gy. When the total dose was over 20 Gy, the treatment was divided into 2-5 fractions. Among 6 patients with low grade-glima, 2 patients were controlled and others required further therapies. Four patients followed over 2 years were still alive. Six out of 7 patients with high-grade glioma or medulloblastoma survived between 11 and 48 months after the CK radiotherapy. No treatment complication was observed. The safety and less invasiveness indicate that the CK is a useful tool when it adds to the standard tumor treatments. However, long period of tumor control was not achieved. Indication and application of the CK radiotherapy for these invasion tumors should be explored. (author)

  6. Conventionally-fractionated image-guided intensity modulated radiotherapy (IG-IMRT: a safe and effective treatment for cancer spinal metastasis

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoqin

    2008-04-01

    Full Text Available Abstract Background Treatments for cancer spinal metastasis were always palliative. This study was conducted to investigate the safety and effectiveness of IG-IMRT for these patients. Methods 10 metastatic lesions were treated with conventionally-fractionated IG-IMRT. Daily kilovoltage cone-beam computed tomography (kV-CBCT scan was applied to ensure accurate positioning. Plans were evaluated by the dose-volume histogram (DVH analysis. Results Before set-up correction, the positioning errors in the left-right (LR, superior-inferior (SI and anterior-posterior (AP axes were 0.3 ± 3.2, 0.4 ± 4.5 and -0.2 ± 3.9 mm, respectively. After repositioning, those errors were 0.1 ± 0.7, 0 ± 0.8 and 0 ± 0.7 mm, respectively. The systematic/random uncertainties ranged 1.4–2.3/3.0–4.1 before and 0.1–0.2/0.7–0.8 mm after online set-up correction. In the original IMRT plans, the average dose of the planning target volume (PTV was 61.9 Gy, with the spinal cord dose less than 49 Gy. Compared to the simulated PTVs based on the pre-correction CBCT, the average volume reduction of PTVs was 42.3% after online correction. Also, organ at risk (OAR all benefited from CBCT-based set-up correction and had significant dose reduction with IGRT technique. Clinically, most patients had prompt pain relief within one month of treatment. There was no radiation-induced toxicity detected clinically during a median follow-up of 15.6 months. Conclusion IG-IMRT provides a new approach to treat cancer spinal metastasis. The precise positioning ensures the implementation of optimal IMRT plan, satisfying both the dose escalation of tumor targets and the radiation tolerance of spinal cord. It might benefit the cancer patient with spinal metastasis.

  7. Determination of radiation levels by neutrons in an accelerator for radiotherapy; Determinacion de niveles de radiacion por neutrones en un acelerador para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Salazar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico); Genis S, R. [Fundacion Clinica Medica Sur, Puente de Piedra 150, Col. Torriello Guerra, Tlalpan 14050, Mexico D.F. (Mexico)

    1998-12-31

    It was determined the radiation levels by neutrons due to photonuclear reactions ({gamma}, n) which occur in the target, levelling filter, collimators and the small pillow blinding of a medical accelerator Varian Clinac 2100C of 18 MeV, using thermoluminescent dosemeters UD-802AS and US-809AS. The experimental values were presented for the patient level, inside and outside of the radiation field, as well as for the small pillow. (Author)

  8. Study of inter-fractional variations and adaptive radiotherapy in pancreatic cancer%胰腺癌放疗分次间解剖变化及自适应放疗研究

    Institute of Scientific and Technical Information of China (English)

    杨成梁; X.Allen Li; 王建华; 李定杰; 毛荣虎

    2012-01-01

    目的 定量描述胰腺癌放疗分次间解剖位置变化及自适应放疗剂量优势.方法 回顾分析图像引导放疗的10例胰腺癌患者的226套治疗当天CT图像,自动勾画软件勾画靶器官和危及器官轮廓后由经验丰富的医师修改.应用质心距离、最大重叠率和Dice系数定量分析分次间器官移位和变形.应用自适应放疗技术处理治疗当天CT图像,比较自适应治疗计划和校位治疗计划的剂量参数.结果 胰腺癌放疗过程中胰头分次间解剖变化显著,经骨性或软组织对齐配准后胰头质心距离、最大重叠率和Dice系数分别为(7.8±1.3)mm、(87.2±8.4)%和(77.2±7.9)%.自适应治疗计划靶体积(PTy)包绕和危及器官保护方面均优于校位治疗计划,自适应治疗计划将校位治疗计划PTV的V100从(93.32 ±2.89)%提高至(96.03±1.42)%(t=2.79,P=0.008),同时将校位治疗计划的十二指肠V50.4从(43.4±12.71)%降至(15.6±6.25)%(t =3.52,P=0.000).结论 自适应放疗能有效应对胰腺癌放疗中分次间的解剖变化,可提高胰腺癌放疗剂量,这为提高胰腺癌局部控制率带来了希望.%Objective To quantitatively characterize the inter-fractional anatomy variations and advantages of dosimetry for the adaptive radiotherapy in pancreatic cancer.Methods A total of 226 daily CT images acquired from 10 patients with pancreatic cancer treated with image-guided radiotherapy were analyzed retrospectively.Targets and organs at risk (OARs) were delineated by the atlas-based automatic segmentation and modified by the skilled physician.Various parameters,including the center of mass (COM) distance,the maximal overlap ratio (MOR) and the Dice coefficient (DC),were used to quantify the inter-fractional organ displacement and deformation.The adaptive radiation therapy (ART) was applied to handle the daily GT images.The dose distributions parameters from the ART plan were compared with those from the repositioning plan

  9. Radiotherapy for pain management of bone metastases

    International Nuclear Information System (INIS)

    Purpose: This is the first Brazilian study intended to evaluate the response of pain relief with radiotherapy in three different fractionation and the clinical differences in managing pain in patients with painful bone metastases. Methods: Prospective study of patients with painful bone metastases referred to the Radiotherapy Sector of the Hospital de Cancer de Barretos for pain-relieving radiotherapy between March and December 2010. It is known that radiotherapy seems to alter the activation of osteoclast-mediated bone resorption, relieving pain in cases of painful bone metastases. Patients were assessed in relation to the status of pain intensity before and after the initiation of radiotherapy. Either a single fraction of 8Gy, five fractions of 4Gy or ten fractions of 3Gy were given. A visual analog scale (VAS) was applied by doctors, nurses and nursing technicians to assess pain intensity at each session of radiotherapy, and follow-up at 8, 30 and 90 days from the end of treatment. Results: We evaluated 92 consecutive patients, 48 male and 44 female, with a median age of 58 years. We found that 14% of patients referred from the Palliative Care or Clinical Oncology sectors need better pharmacological analgesia due to severe pain, compared with 40.5% of patients from the other sectors (p = 0.004). We also found that the onset of pain relief to patients receiving 10 fractions of 300cGy analgesia without changing the pre-radiotherapy analgesia occurred with significance after the fifth fraction. Improvement in pain experienced within 90 days of follow-up was found in eighty percent of patients, independent of fractionated radiotherapy, site of metastases and the clinical condition of the patient. Discussion/Conclusion: The Palliative Care and Clinical Oncology sectors expressed greater concern in regards to analgesia for the patient with painful bone metastases. Radiotherapy is an effective pain-relieving treatment in different fractionation studied, even though the

  10. Radiotherapy for pain management of bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Rezende Junior, Ismar de; Mattos, Marcos Duarte de; Nakamura, Ricardo; Lemes Junior, Joaquim; Vanzelli, Talita Lozano, E-mail: rezende.med@terra.com.br [Radioterapia do Hospital de Cancer de Barretos, SP (Brazil)

    2011-07-01

    Purpose: This is the first Brazilian study intended to evaluate the response of pain relief with radiotherapy in three different fractionation and the clinical differences in managing pain in patients with painful bone metastases. Methods: Prospective study of patients with painful bone metastases referred to the Radiotherapy Sector of the Hospital de Cancer de Barretos for pain-relieving radiotherapy between March and December 2010. It is known that radiotherapy seems to alter the activation of osteoclast-mediated bone resorption, relieving pain in cases of painful bone metastases. Patients were assessed in relation to the status of pain intensity before and after the initiation of radiotherapy. Either a single fraction of 8Gy, five fractions of 4Gy or ten fractions of 3Gy were given. A visual analog scale (VAS) was applied by doctors, nurses and nursing technicians to assess pain intensity at each session of radiotherapy, and follow-up at 8, 30 and 90 days from the end of treatment. Results: We evaluated 92 consecutive patients, 48 male and 44 female, with a median age of 58 years. We found that 14% of patients referred from the Palliative Care or Clinical Oncology sectors need better pharmacological analgesia due to severe pain, compared with 40.5% of patients from the other sectors (p = 0.004). We also found that the onset of pain relief to patients receiving 10 fractions of 300cGy analgesia without changing the pre-radiotherapy analgesia occurred with significance after the fifth fraction. Improvement in pain experienced within 90 days of follow-up was found in eighty percent of patients, independent of fractionated radiotherapy, site of metastases and the clinical condition of the patient. Discussion/Conclusion: The Palliative Care and Clinical Oncology sectors expressed greater concern in regards to analgesia for the patient with painful bone metastases. Radiotherapy is an effective pain-relieving treatment in different fractionation studied, even though the

  11. External Beam Accelerated Partial-Breast Irradiation Using 32 Gy in 8 Twice-Daily Fractions: 5-Year Results of a Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Pashtan, Itai M. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Brachtel, Elena [Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (United States); Abi-Raad, Rita F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); D' Alessandro, Helen A. [Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Levy, Antonin; Wo, Jennifer Y. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Kachnic, Lisa A. [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Goldberg, Saveli [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michelle; Smith, Barbara L. [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2012-11-01

    Purpose: External beam accelerated partial breast irradiation (APBI) is an increasingly popular technique for treatment of patients with early stage breast cancer following breast-conserving surgery. Here we present 5-year results of a prospective trial. Methods and Materials: From October 2003 through November 2005, 98 evaluable patients with stage I breast cancer were enrolled in the first dose step (32 Gy delivered in 8 twice-daily fractions) of a prospective, multi-institutional, dose escalation clinical trial of 3-dimensional conformal external beam APBI (3D-APBI). Median age was 61 years; median tumor size was 0.8 cm; 89% of tumors were estrogen receptor positive; 10% had a triple-negative phenotype; and 1% had a HER-2-positive subtype. Median follow-up was 71 months (range, 2-88 months; interquartile range, 64-75 months). Results: Five patients developed ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial IBTR rate of 5% (95% confidence interval [CI], 1%-10%). Three of these cases occurred in patients with triple-negative disease and 2 in non-triple-negative patients, for 5-year actuarial IBTR rates of 33% (95% CI, 0%-57%) and 2% (95% CI, 0%-6%; P<.0001), respectively. On multivariable analysis, triple-negative phenotype was the only predictor of IBTR, with borderline statistical significance after adjusting for tumor grade (P=.0537). Conclusions: Overall outcomes were excellent, particularly for patients with estrogen receptor-positive disease. Patients in this study with triple-negative breast cancer had a significantly higher IBTR rate than patients with other receptor phenotypes when treated with 3D-APBI. Larger, prospective 3D-APBI clinical trials should continue to evaluate the effect of hormone receptor phenotype on IBTR rates.

  12. Cosmetic Outcomes for Accelerated Partial Breast Irradiation Before Surgical Excision of Early-Stage Breast Cancer Using Single-Dose Intraoperative Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Determine cosmetic outcome and toxicity profile of intraoperative radiation delivered before tumor excision for patients with early-stage breast cancer. Methods and Materials: Patients age 48 or older with ultrasound-visible invasive ductal cancers <3 cm and clinically negative lymph nodes were eligible for treatment on this institutional review board-approved Phase II clinical trial. Treatment planning ultrasound was used to select an electron energy and cone size sufficient to cover the tumor plus a 1.5- to 2.0-cm circumferential margin laterally and a 1-cm-deep margin with the 90% isodose line. The dose was prescribed to a nominal 15 Gy and delivered using a Mobetron electron irradiator before tumor excision by segmental mastectomy. Physician- and patient-assessed cosmetic outcome and patient satisfaction were determined by questionnaire. Results: From March 2003 to July 2007, 71 patients were treated with intraoperative radiation therapy. Of those, 56 patients were evaluable, with a median follow-up of 3.1 years (minimum 1 year). Physician and patient assessment of cosmesis was 'good or excellent' (Radiation Therapy Oncology Group cosmesis scale) in 45/56 (80%) and 32/42 (76%) of all patients, respectively. Eleven patients who received additional whole breast radiation had similar rates of good or excellent cosmesis: 40/48 (83%) and 29/36 (81%), respectively). Grade 1 or 2 acute toxicities were seen in 4/71 (6%) patients. No Grade 3 or 4 toxicities or serious adverse events have been seen. Conclusion: Intraoperative radiotherapy delivered to an in situ tumor is feasible with acceptable acute tolerance. Patient and physician assessment of the cosmetic outcome is good to excellent.

  13. State of accelerator for therapy

    CERN Document Server

    Maruhashi, A

    2002-01-01

    21 facilities carry out particle radiotherapy in the world and 6 facilities will start in the next year. They are shown in the table. 6 facilities of them exist in Japan. Small accelerator for proton therapy is developed. The area of them becomes smaller than 100 m sup 2. 5 makers, form, kinds of accelerator, length of track, beam energy of them are shown. States of particle radiotherapy in 4 facilities in Japan are explained by the kinds of particle, energy, beam intensity, time structure and radiation room. The important problems are reconsideration of building and compact rotating gantry. The problems of radiotherapy are explained. (S.Y.)

  14. Biological and medical research with accelerated heavy ions at the Bevalac, 1974--1977. [Planning for use for radiotherapy and as radiation source for diagnostic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Elam, S. (ed.)

    1977-04-01

    The Bevalac, a versatile high-energy heavy-ion accelerator complex, has been in operation for less than two years. A major purpose for which the Bevalac was constructed was to explore the possibility of heavy-ion teams for therapy for certain forms of cancer. Significant progress has been made in this direction. The National Cancer Institute has recognized the advantages that these and other accelerated particles offer, and heavy ions have been included in a long-term plan for particle therapy that will assess by means of controlled therapeutic tests the value of various modalities. Since accelerated heavy ions became available, the possibility of other contributions, not planned, became apparent. We are developig a new diagnostic method known as heavy-ion radiography that has greatly increased sensitivity for soft-tissue detail and that may become a powerful tool for localizing early tumors and metastases. We have discovered that radioactive beams are formed from fragmentation of stable deflected beams. Use of these autoradioactive beams is just beginning; however, we know that these beams will be helpful in localizing the region in the body where therapy is being delivered. In addition, it has been demonstrated that instant implantation of the radioactive beam allows direct measurements of blood perfusion rates in inaccessible parts of the body, and such a technique may become a new tool for the study of fast hot atom reactions in biochemistry, tracer biology and nuclear medicine. The Bevalac will also be useful for the continuation of previously developed methods for the control of acromegaly, Cushing's disease and, on a research basis, advanced diabetes mellitus with vascular disease. The ability to make small bloodless lesions in the brain and elsewhere with heavy-ion beams has great potential for nervous-system studies and perhaps later for radioneurosurgery.

  15. High Dose-Per-Fraction Irradiation of Limited Lung Volumes Using an Image-Guided, Highly Focused Irradiator: Simulating Stereotactic Body Radiotherapy Regimens in a Small-Animal Model

    International Nuclear Information System (INIS)

    Purpose: To investigate the underlying biology associated with stereotactic body radiotherapy (SBRT), both in vivo models and image-guided, highly focal irradiation systems are necessary. Here, we describe such an irradiation system and use it to examine normal tissue toxicity in a small-animal model at lung volumes similar to those associated with human therapy. Methods and Materials: High-dose radiation was delivered to a small volume of the left lung of C3H/HeJCr mice using a small-animal stereotactic irradiator. The irradiator has a collimation mechanism to produce focal radiation beams, an imaging subsystem consisting of a fluorescent screen coupled to a charge-coupled device camera, and a manual positioning stage. Histopathologic examination and micro-CT were used to evaluate the radiation response. Results: Focal obliteration of the alveoli by fibrous connective tissue, hyperplasia of the bronchiolar epithelium, and presence of a small number of inflammatory cells are the main reactions to low-volume/high-dose irradiation of the mouse lung. The tissue response suggested a radiation dose threshold for early phase fibrosis lying between 40 and 100 Gy. The irradiation system satisfied our requirements of high-dose-rate, small beam diameter, and precise localization and verification. Conclusions: We have established an experimental model and image-guided animal irradiation system for the study of high dose per fraction irradiations such as those used with SBRT at volumes analogous to those used in human beings. It will also allow the targeting of specific anatomical structures of the thorax or ultimately, orthotopic tumors of the lung.

  16. Accuracy of relocation, evaluation of geometric uncertainties and clinical target volume (CTV) to planning target volume (PTV) margin in fractionated stereotactic radiotherapy for intracranial tumors using relocatable Gill-Thomas-Cosman (GTC) frame.

    Science.gov (United States)

    Das, Saikat; Isiah, Rajesh; Rajesh, B; Ravindran, B Paul; Singh, Rabi Raja; Backianathan, Selvamani; Subhashini, J

    2011-01-01

    The present study is aimed at determination of accuracy of relocation of Gill-Thomas-Cosman frame during fractionated stereotactic radiotherapy. The study aims to quantitatively determine the magnitudes of error in anteroposterior, mediolateral and craniocaudal directions, and determine the margin between clinical target volume to planning target volume based on systematic and random errors. Daily relocation error was measured using depth helmet and measuring probe. Based on the measurements, translational displacements in anteroposterior (z), mediolateral (x), and craniocaudal (y) directions were calculated. Based on the displacements in x, y and z directions, systematic and random error were calculated and three-dimensional radial displacement vector was determined. Systematic and random errors were used to derive CTV to PTV margin. The errors were within ± 2 mm in 99.2% cases in anteroposterior direction (AP), in 99.6% cases in mediolateral direction (ML), and in 97.6% cases in craniocaudal direction (CC). In AP, ML and CC directions, systematic errors were 0.56, 0.38, 0.42 mm and random errors were 1.86, 1.36 and 0.73 mm, respectively. Mean radial displacement was 1.03 mm ± 0.34. CTV to PTV margins calculated by ICRU formula were 1.86, 1.45 and 0.93 mm; by Stroom's formula they were 2.42, 1.74 and 1.35 mm; by van Herk's formula they were 2.7, 1.93 and 1.56 mm (AP, ML and CC directions). Depth helmet with measuring probe provides a clinically viable way for assessing the relocation accuracy of GTC frame. The errors were within ± 2 mm in all directions. Systematic and random errors were more along the anteroposterior axes. According to the ICRU formula, a margin of 2 mm around the tumor seems to be adequate. PMID:21587166

  17. Five-Year Results From a Scandinavian Sarcoma Group Study (SSG XIII) of Adjuvant Chemotherapy Combined With Accelerated Radiotherapy in High-Risk Soft Tissue Sarcoma of Extremities and Trunk Wall

    Energy Technology Data Exchange (ETDEWEB)

    Jebsen, Nina L. [Department of Surgical Sciences, University of Bergen Faculty of Medicine, Bergen, Norway and Department of Oncology, Haukeland University Hospital, Bergen (Norway); Bruland, Oyvind S. [Cancer Clinic, Norwegian Radium Hospital, Oslo University Hospital and University of Oslo Faculty Division, Clinical Medicine, Oslo (Norway); Eriksson, Mikael; Engellau, Jacob [Department of Oncology, Skane University Hospital, Lund (Sweden); Turesson, Ingela [Department of Oncology, Uppsala University Hospital, Uppsala (Sweden); Folin, Annika [Department of Oncology, Karolinska Hospital, Stockholm (Sweden); Trovik, Clement S. [Departments of Oncology and of Orthopedics, Haukeland University Hospital, Bergen (Norway); Hall, Kirsten Sundby [Cancer Clinic, Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway)

    2011-12-01

    Purpose: To evaluate adjuvant chemotherapy and interpolated accelerated radiotherapy (RT) for adult patients with high-risk soft tissue sarcoma in the extremities or trunk wall. Methods and Materials: High-risk soft tissue sarcoma was defined as high-grade malignancy and at least two of the following criteria: size {>=}8 cm, vascular invasion, or necrosis. Six cycles of doxorubicin and ifosfamide were prescribed for all patients. RT to a total dose of 36 Gy (1.8 Gy twice daily) was inserted between two chemotherapy cycles after marginal margin resection regardless of tumor depth or after wide-margin resection for deep-seated tumors. RT was boosted to 45 Gy in a split-course design in the case of intralesional margin resection. Results: A total of 119 patients were eligible, with a median follow-up of 5 years. The 5-year estimate of the local recurrence, metastasis-free survival, and overall survival rate was 12%, 59%, and 68%, respectively. The group receiving RT to 36 Gy had a local recurrence rate of 10%. In contrast, the local recurrence rate was 29% in the group treated with RT to 45 Gy. The presence of vascular invasion and low chemotherapy dose intensity had a negative effect on metastasis-free and overall survival. Toxicity was moderate after both the chemotherapy and the RT. Conclusions: Accelerated RT interposed between chemotherapy cycles in a selected population of patients with high-risk soft tissue sarcoma resulted in good local and distant disease control, with acceptable treatment-related morbidity. The greater radiation dose administered after intralesional surgery was not sufficient to compensate for the poorer surgical margin. Vascular invasion was the most important prognostic factor for metastasis-free and overall survival.

  18. Five-Year Results From a Scandinavian Sarcoma Group Study (SSG XIII) of Adjuvant Chemotherapy Combined With Accelerated Radiotherapy in High-Risk Soft Tissue Sarcoma of Extremities and Trunk Wall

    International Nuclear Information System (INIS)

    Purpose: To evaluate adjuvant chemotherapy and interpolated accelerated radiotherapy (RT) for adult patients with high-risk soft tissue sarcoma in the extremities or trunk wall. Methods and Materials: High-risk soft tissue sarcoma was defined as high-grade malignancy and at least two of the following criteria: size ≥8 cm, vascular invasion, or necrosis. Six cycles of doxorubicin and ifosfamide were prescribed for all patients. RT to a total dose of 36 Gy (1.8 Gy twice daily) was inserted between two chemotherapy cycles after marginal margin resection regardless of tumor depth or after wide-margin resection for deep-seated tumors. RT was boosted to 45 Gy in a split-course design in the case of intralesional margin resection. Results: A total of 119 patients were eligible, with a median follow-up of 5 years. The 5-year estimate of the local recurrence, metastasis-free survival, and overall survival rate was 12%, 59%, and 68%, respectively. The group receiving RT to 36 Gy had a local recurrence rate of 10%. In contrast, the local recurrence rate was 29% in the group treated with RT to 45 Gy. The presence of vascular invasion and low chemotherapy dose intensity had a negative effect on metastasis-free and overall survival. Toxicity was moderate after both the chemotherapy and the RT. Conclusions: Accelerated RT interposed between chemotherapy cycles in a selected population of patients with high-risk soft tissue sarcoma resulted in good local and distant disease control, with acceptable treatment-related morbidity. The greater radiation dose administered after intralesional surgery was not sufficient to compensate for the poorer surgical margin. Vascular invasion was the most important prognostic factor for metastasis-free and overall survival.

  19. Efficacy of intensified hyperfractionated and accelerated radiotherapy and concurrent chemotherapy with carboplatin and 5-fluorouracil: Updated results of a randomized multicentric trial in advanced head-and-neck cancer

    International Nuclear Information System (INIS)

    Purpose: To prove an expected benefit of concurrent radiochemotherapy (RCT), a two-arm randomized multicentric study was performed. In a subgroup analysis the influence of pretherapeutical hemoglobin level (p-Hb) on survival under locoregional control (SLC) was tested. Patients and Methods: The study included primarily untreated Stage III/IV (International Union Against Cancer [UICC]) oropharyngeal and hypopharyngeal carcinomas. Patients were randomized to receive either hyperfractionated (hf) and accelerated (acc) RCT with two cycles 5-fluorouracil (600 mg/m2/day) and carboplatin (70 mg/m2/day) on Days 1-5 and 29-33 or hf-acc radiotherapy (RT) alone. Total RT dose in both arms was 69.9 Gy in 38 days in concomitant boost technique. Results: After a median follow-up time of 57 months, SLC is significantly better in RCT than in RT (p = 0.01), with median SLC of 17 months and 11 months, respectively. Also overall survival (OS) shows a benefit for RCT (p 0.016), with a median survival of 23 months for RCT and 16 months for RT. However, the benefit in SLC and OS is not seen in hypopharyngeal carcinomas. In a multivariate analysis of oropharyngeal cancer patients, p-Hb levels lower than 12.7 g/dL resulted in lower SLC compared with higher p-Hb levels up to 13.8 g/dL. P-Hb levels >13.8 g/dL did not further improve SLC. Conclusions: Hyperfractionated-accelerated RCT is superior to hf-acc RT in oropharyngeal carcinomas. P-Hb levels >13.8 g/dL do not further improve SLC

  20. 未成熟网织红细胞分数对评估38例恶性肿瘤患者放疗后造血功能恢复情况的分析%Evaluation of haematopoietic function recovery in 38 malignant tumor cases after radiotherapy by immature reticulocyte fraction

    Institute of Scientific and Technical Information of China (English)

    董磊; 刘娟; 全首祯; 马红雨; 冯戟; 朱美财

    2013-01-01

    Objective To investigate the clinical value of immature reticulocyte fraction(IRF) in evaluating the recovery of blood-producing function after radiotherapy.Methods Count number of absoluteneutrophilic granulocyte count(ANC) , percentage of reticulocyte(RKT%) and IRF in 38 patients with malignant tumor before and after radiotherapy was detected by Sysmex XE-2100 automated hematology analyzer and the results were compared.Results After radiotherapy, IRF, ANC and RET% were significantly decreased(P0.05).While ANC and RET% were still significantly lower than those of pre-radiotherapy(P0.05),而ANC及RET%仍显著低于放疗前水平(P<0.05).结论 IRF是恶性肿瘤患者放疗后造血功能恢复较敏感的指标,可用于造血功能恢复的监测、病情观察及指导临床治疗.

  1. Clinical advantages of carbon-ion radiotherapy

    Science.gov (United States)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  2. Adverse effects and treatment on palliative radiotherapy for bone metastases

    International Nuclear Information System (INIS)

    Adverse effects on palliative radiotherapy for bone metastases are generally mild. Acute and late adverse effects are similar between 8 Gy single fraction and multi-fraction radiotherapy (e.g. 30 Gy in 10 fractions). Both external beam radiotherapy and radiopharmaceutical therapy with strontium-89 may cause pain flare. A randomized controlled trial is currently performed to confirm the effectiveness of dexamethasone for the prevention of pain flare. Reirradiation for the same site is widely used. However, its safeness has not been confirmed enough. Radiation myelitis is an unrecoverable severe adverse effect. However, the tolerated accumulated dose for the spinal cord is not fully understood. Stereotactic body radiotherapy may be considered to deliver reirradiation for spinal metastases without exposing too much dose for the spinal cord. Another solution to prevent radiation myelitis after reirradiation may use dose fractionations of 8 Gy single or 20 Gy in 5 fractions instead of 30 Gy in 10 fractions. (author)

  3. Commissioning and quality assurance of the X-ray volume Imaging system of an image-guided radiotherapy capable linear accelerator

    Science.gov (United States)

    Muralidhar, K. R.; Murthy, P. Narayana; Kumar, Rajneesh

    2008-01-01

    An Image-Guided Radiotherapy–capable linear accelerator (Elekta Synergy) was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI) system and electronic portal imaging device (iViewGT). The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer's specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality). These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy. PMID:19893694

  4. Radiotherapy for solitary plasmacytoma and multiple myeloma

    International Nuclear Information System (INIS)

    Solitary plasmacytoma and multiple myeloma require a differentiated radiotherapy. The irradiation for plasmacytoma with an adequate total dose (medullary 40-50 Gy or extramedullary 50-60 Gy) leads to a high degree of local control with a low rate of side effects. In cases of multiple myeloma radiotherapy will achieve effective palliation, both in terms of recalcification as well as reduction of neurological symptoms and analgesia. In terms of analgesia the rule is the higher the single dose fraction the faster the reduction of pain. As part of a conditioning treatment prior to stem cell transplantation radiotherapy contributes to the establishment of a graft versus myeloma effect (GVM). (orig.)

  5. Dosimetric comparison on tissue interfaces with TLD dosimeters, L-alanine, EDR2 films and Penelope simulation for a Co-60 source and linear accelerator in radiotherapy

    International Nuclear Information System (INIS)

    Percentage depth dose curves were obtained with TLD-100 dosimeters, EDR2 films and Penelope simulation at the interfaces in an inhomogeneous mannequin, composed by equivalent materials to the human body built for this study, consisting of cylindrical plates of solid water-bone-lung-bone-solid water of 15 cm in diameter and 1 cm in height; plates were placed in descending way (4-2-8-2-4). Irradiated with Co-60 source (Theratron Equinox-100) for small radiation fields 3 x 3 cm2 and 1 x 1 cm2 at a surface source distance of 100 cm from mannequin. The TLD-100 dosimeters were placed in the center of each plate of mannequin irradiated at 10 Gy. The results were compared between these measurement techniques, giving good agreement in interfaces better than 97%. This study was compared with the same characteristics of another study realized with other equivalent materials to human body not homogeneous acrylic-bone-cork-bone-acrylic. The percentage depth dose curves were obtained with mini-dosimeters L-alanine of 1 mm in diameter and 3 mm in height and 3.5 to 4.0 mg of mass with spectrometer band K (EPR). The mini-dosimeters were irradiated with a lineal accelerator PRIMUS Siemens 6 MV. The results of percentage depth dose of L-alanine mini-dosimeters show a good agreement with the percentage depth dose curves of Penelope code, better than 97.7% in interfaces of tissues. (Author)

  6. Phase II Study of Accelerated High-Dose Radiotherapy With Concurrent Chemotherapy for Patients With Limited Small-Cell Lung Cancer: Radiation Therapy Oncology Group Protocol 0239

    International Nuclear Information System (INIS)

    Purpose: To investigate whether high-dose thoracic radiation given twice daily during cisplatin-etoposide chemotherapy for limited small-cell lung cancer (LSCLC) improves survival, acute esophagitis, and local control rates relative to findings from Intergroup trial 0096 (47%, 27%, and 64%). Patients and Methods: Patients were accrued over a 3-year period from 22 US and Canadian institutions. Patients with LSCLC and good performance status were given thoracic radiation to 61.2 Gy over 5 weeks (daily 1.8-Gy fractions on days 1-22, then twice-daily 1.8-Gy fractions on days 23-33). Cisplatin (60 mg/m2 IV) was given on day 1 and etoposide (120 mg/m2 IV) on days 1-3 and days 22-24, followed by 2 cycles of cisplatin plus etoposide alone. Patients who achieved complete response were offered prophylactic cranial irradiation. Endpoints included overall and progression-free survival; severe esophagitis (Common Toxicity Criteria v 2.0) and treatment-related fatalities; response (Response Evaluation Criteria in Solid Tumors); and local control. Results: Seventy-two patients were accrued from June 2003 through May 2006; 71 were evaluable (median age 63 years; 52% female; 58% Zubrod 0). Median survival time was 19 months; at 2 years, the overall survival rate was 36.6% (95% confidence interval [CI] 25.6%-47.7%), and progression-free survival 19.7% (95% CI 11.4%-29.6%). Thirteen patients (18%) experienced severe acute esophagitis, and 2 (3%) died of treatment-related causes; 41% achieved complete response, 39% partial response, 10% stable disease, and 6% progressive disease. The local control rate was 73%. Forty-three patients (61%) received prophylactic cranial irradiation. Conclusions: The overall survival rate did not reach the projected goal; however, rates of esophagitis were lower, and local control higher, than projected. This treatment strategy is now one of three arms of a prospective trial of chemoradiation for LSCLC (Radiation Therapy Oncology Group 0538/Cancer and

  7. Changes in serum and salivary amylase during radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    The changes in serum amylase that occur when radiotherapy is given in the treatment of head and neck cancer has been studied in 41 patients, 29 treated by CHART and 12 by conventionally fractionated radiotherapy. The peak rise in serum amylase following the start of treatment is seen earlier and is greater in the patients receiving continuous hyperfractionated accelerated radiotherapy (CHART). The serum amylase returns to normal earlier in the CHART patients so that the area under the curve is the same for both groups. The difference probably reflects the more rapid delivery of treatment to the patients receiving CHART. A close correlation between the peak rise in serum amylase and the amount of parotid tissue in the treatment volume is demonstrated. For six patients the total amount of amylase secreted by the parotid gland during CHART was measured and found to decline rapidly within a few days of the start of radiotherapy. The rise in serum amylase that results from the irradiation of salivary tissue provides a unique biochemical measure of an early radiation effect in a normal tissue. This probably reflects the interphase cell death of serous salivary cells. Although these immediate changes are of considerable interest they may not relate to the late effects of radiation on salivary gland function. (author). 13 refs.; 4 figs

  8. Hypofractionated whole breast radiotherapy: current perspectives

    OpenAIRE

    Koulis TA; Phan T; Olivotto IA

    2015-01-01

    Theodora A Koulis, Tien Phan, Ivo A Olivotto Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, AB, Canada Abstract: Adjuvant radiotherapy (RT) is an important part of breast cancer management but the dose and fractionation schedules used are variable. A total of 50 Gy in 25 daily fractions delivered over 5 weeks is often considered the "standard" adjuvant RT prescription. Hypofractionated regimes such as 42.5 Gy in 16 daily fractions or 40 Gy ...

  9. Simplified geometric model for the calculation of neutron yield in an accelerator of 18 MV for radiotherapy; Modelo geometrico simplificado para el calculo del rendimiento de neutrones en un acelerador de 18 MV para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C.; Balcazar G, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Francois L, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico); Azorin N, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2008-07-01

    The results of the neutrons yield in different components of the bolster of an accelerator Varian Clinac 2100C of 18 MV for radiotherapy are presented, which contribute to the radiation of flight of neutrons in the patient and bolster planes. For the calculation of the neutrons yield, a simplified geometric model of spherical cell for the armor-plating of the bolster with Pb and W was used. Its were considered different materials for the Bremsstrahlung production and of neutrons produced through the photonuclear reactions and of electro disintegration, in function of the initial energy of the electron. The theoretical result of the total yield of neutrons is of 1.17x10{sup -3} n/e, considering to the choke in position of closed, in the patient plane with a distance source-surface of 100 cm; of which 15.73% corresponds to the target, 58.72% to the primary collimator, 4.53% to the levelled filter of Fe, 4.87% to the levelled filter of Ta and 16.15% to the closed choke. For an initial energy of the electrons of 18 MeV, a half energy of the neutrons of 2 MeV was obtained. The calculated values for radiation of experimental neutrons flight are inferior to the maxima limit specified in the NCRP-102 and IEC-60601-201.Ed.2.0 reports. The absorbed dose of neutrons determined through the measurements with TLD dosemeters in the isocenter to 100 cm of the target when the choke is closed one, is approximately 3 times greater that the calculated for armor-plating of W and 1.9 times greater than an armor-plating of Pb. (Author)

  10. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    Science.gov (United States)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus

  11. Radiotherapy Treatment Planning for Testicular Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, Richard B., E-mail: richardbwilder@yahoo.com [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Efstathiou, Jason A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Beard, Clair J. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States)

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  12. Successful non-typical radiotherapy of a recurrent and metastasizing malignant melanoma of the vulva

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, W.; Dietz, R.

    1982-02-01

    A report is given about the successful, ambulatory, non-typical radiotherapy of a malignant vulvar melanoma producing recurrences and metastases after surgery. The problems of radiotherapy are discussed under special consideration of this case. With regard to the communications found in literature, the author underlines the efficiency of radiotherapy, especially if it is fractionated into high individual doses.

  13. Successful non-typical radiotherapy of a recurrent and metastasizing malignant melanoma of the vulva

    International Nuclear Information System (INIS)

    A report is given about the successful, ambulatory, non-typical radiotherapy of a malignant vulvar melanoma producing recurrences and metastases after surgery. The problems of radiotherapy are discussed under special consideration of this case. With regard to the communications found in literature, the author underlines the efficiency of radiotherapy, especially if it is fractionated into high individual doses. (orig.)

  14. The development of radiotherapy in Slovenia

    International Nuclear Information System (INIS)

    The historical data on the development of radiotherapy in Slovenia are presented from its first use in this county in 1902 until the present. The Institute of Oncology in Ljubljana was established in 1938 with the intention of providing a sound development of radium and roentgen cancer treatment. After World War II, the development of radiotherapy was dynamic, which is evident from the data on new radiation sources in external beam therapy (accelerators, telecobalt units), in brachytherapy (various sealed radioisotopes) as well as in the introduction of therapy with unsealed radioisotopes. In 1947, a Chair of Oncology and Radiotherapy was instituted at the Medical Faculty of the University of Ljubljana (with the seat at the Institute of Oncology). In 1955, radiotherapy and oncology were officially recognized as separate branches of medicine requiring special obligatory postgraduate residency training. Within the Medical Society of Slovenia, the Section for Radiotherapy was established in 1987. The following year, the Section for Radiotherapy of Slovenia became a member of the European Society for Therapeutic Radiology and Oncology. Considering the size of population of Slovenia (nearly 2 million), it was reasonable that by this time radiotherapy became almost completely concentrated in one central institution, the Institute of Oncology, whose core and cohesive activity were represented in the multidisciplinary cancer treatment approach

  15. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings

    International Nuclear Information System (INIS)

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  16. Fractional Dynamical Systems

    CERN Document Server

    Edelman, Mark

    2014-01-01

    In this paper the author presents the results of the preliminary investigation of fractional dynamical systems based on the results of numerical simulations of fractional maps. Fractional maps are equivalent to fractional differential equations describing systems experiencing periodic kicks. Their properties depend on the value of two parameters: the non-linearity parameter, which arises from the corresponding regular dynamical systems; and the memory parameter which is the order of the fractional derivative in the corresponding non-linear fractional differential equations. The examples of the fractional Standard and Logistic maps demonstrate that phase space of non-linear fractional dynamical systems may contain periodic sinks, attracting slow diverging trajectories, attracting accelerator mode trajectories, chaotic attractors, and cascade of bifurcations type trajectories whose properties are different from properties of attractors in regular dynamical systems. The author argues that discovered properties s...

  17. Dosimetric absorption of intensity-modulated radiotherapy compared with conventional radiotherapy in breast-conserving surgery

    OpenAIRE

    Lin, Yang; WANG, BENZHONG

    2014-01-01

    The aim of this study was to investigate the dosimetric benefits between intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CR) among patients receiving breast-conserving surgery. A dosimetric comparison of IMRT and CR was evaluated in 20 patients with early-stage breast cancer using a three-dimensional treatment planning system. The prescribed mammary gland dose was completed in 25 fractions with a total dose of 5,000 cGy. Homogeneity of the planning target volume (PTV), ...

  18. Fractionation schedules for cancers of the head and neck

    International Nuclear Information System (INIS)

    Purpose/Objective: This refresher course reviews current research activity and treatment results in the field of radiation therapy fractionation. The presentation emphasizes worldwide studies of altered fractionation, highlighting head and neck cancer as the primary teaching model. Basic radiobiological principles guiding the development of altered fractionation regimens, and advancing the understanding of fractionation effects on normal and tumor tissue are reviewed. A 'standard' prescription of 2 Gy x 35 fractions = 70 Gy may not provide the optimal balance between primary tumor control and late normal tissue effects for all patients with squamous cell carcinoma of the head and neck. The last decade has witnessed the treatment of thousands of head and neck cancer patients with curative radiotherapy using altered fractination schedules designed to improve overall treatment results. Although the number of different fractionation regimens currently being investigated continues to increase, the common guiding principles behind their design are relatively simple. Common fractionation terminology (i.e., accelerated hyperfractionation) will be reviewed, as well as a brief summary of radiobiological concepts pertaining to tumor potential doubling time, tumor proliferation kinetics, overall treatment time and fraction size-dependence of acute and late tissue effects. Several well known head and neck fractionation schedules from around the world (Manchester Christie Hospital-United Kingdom, Princess Margaret Hospital-Canada, Massachusetts General Hospital-USA, MD Anderson Hospital-USA, University of Florida-USA, Mount Vernon Hospital CHART-United Kingdom, RTOG and EORTC trials-USA and Europe) will be summarized with regard to design-rationale, treatment technique and results. The design of several current cooperative group trials investigating altered head and neck fractionation will be presented, as well as concepts prompting the pilot evaluation of several brand new

  19. The future of breast cancer radiotherapy: From one size fits all to taylor-made treatment; L'avenir de la radiotherapie du cancer du sein: de la taille unique au sur-mesure

    Energy Technology Data Exchange (ETDEWEB)

    Hennequin, C. [Service de cancerologie-radiotherapie, hopital Saint-Louis, 1, avenue Claude-Vellefaux, 75475 Paris (France); Azria, D. [Departement de cancerologie radiotherapie, CRLC Val-d' Aurelle-Paul-Lamarque, rue Croix-Verte, 34298 Montpellier cedex 5 (France); Universite de Montpellier I, 5, boulevard Henri-IV, CS 19044, 34967 Montpellier cedex 2 (France); Inserm U896, institut de recherche en cancerologie de Montpellier, CRLC Val-d' Aurelle-Paul-Lamarque, rue Croix-Verte, 34298 Montpellier cedex 5 (France)

    2011-10-15

    Various subgroups of breast tumours have been identified during the last 10 years according to the risk of local relapse. Prognostic factors for local relapse are age, surgical margins, tumour size, Her2 expression and hormonal receptors status. For tumours with a high risk of local relapse, an increased in boost dose or the addition of new drugs (trastuzumab, anti-angiogenics, PARP inhibitors) could be considered. For low risk tumours, hypo-fractionated, accelerated partial breast and intraoperative radiotherapy are being evaluated. The classical schedule (45-50 Gy to the whole gland followed by a boost dose of 16 Gy) is no longer the universal rule. Treatment individualization, according to clinical and biological characteristics of the tumour and - possibly - to the radiobiological profile of the patient, is likely to be the future of breast cancer radiotherapy. (authors)

  20. Radiotherapy in stage 1 testicular seminoma: retrospective study and review of literature; Radiotherapie des seminomes testiculaires de stade 1: etude retrospective et revue de la litterature

    Energy Technology Data Exchange (ETDEWEB)

    Bauduceau, O.; Le-Moulec, S.; Bernard, O. [Hopital des Armees du Val-de-Grace, Service de Radiotherapie et Oncologie, 75 - Paris (France); Souleau, B. [Hopital des Armees Percy, Service d' Hematologie, 92 - Clamart (France); Houlgatte, A. [Hopital des Armees du Val-de-Grace, Service d' Urologie, 75 - Paris (France)

    2003-12-01

    Introduction. - Seminoma accounts for about 40% of germ cell tumours of the testicle. In this retrospective analysis, we review literature concerning management of stage I seminoma. Materials and methods. - Between March 1987 and April 2001, 65 patients with stage I pure testicular seminoma received adjuvant radiotherapy with a 25 MV linear accelerator. Results. - Median age was 33 years. Testicular tumour has been found on the right testis in 39 patients and on the left one in 24 patients. Patients have been treated using an anterior-posterior parallel pair and have received 20-25 Gy in 10-14 fractions. The target volume consisted of paraaortic, and paraaortic + homolateral iliac lymph nodes in 17 and 46 patients, respectively. Acute toxicity was mainly digestive, 38% of patients presenting nausea and vomiting. Median follow-up time was 37 months. All patients are alive in complete remission. Discussion. - Because of good radio-sensitivity of seminoma, radiotherapy is regarded as standard adjuvant treatment (5 years relapse rate: 3-5%). Acute toxicity is dominated by moderate gastro-intestinal side effects. Secondary neoplasia represents one of the worst possible long-term complications of therapy. Waiting for ongoing randomized trials, the modern literature for seminoma reflects a trend toward lower radiation doses (20-25 Gy) and smaller treatment volumes (paraaortic field). Adjuvant chemotherapy with two courses of carbo-platin, might be equivalent to radiotherapy but must be investigated in randomized trials. A surveillance policy is one of the other management options less recommended. (author)

  1. Growth Laws in Cancer: Implications for Radiotherapy

    CERN Document Server

    Castorina, P; Gabriele, P; Guiot, C

    2006-01-01

    Comparing both, the more conventional Gompertz tumor growth law (GL) and the ``Universal'' law (UL), recently proposed and applied to cancer,we have investigated the growth law's implications on various radiotherapy regimen. According to GL, the surviving tumor cell fraction could be reduced 'ad libidum', independently of the initial tumor mass,simply by increasing the number of treatments. On the contrary, if tumor growth dynamics would indeed follow the Universal scaling law, there is a lower limit of the survival fraction that cannot be reduced any further regardless of the total number of treatments. This finding can explain the so called ``tumor size effect'' and re-emphasizes the importance of early diagnosis as it implies that radiotherapy may be successful provided the tumor mass at treatment onset is rather small. Taken together with our previous works, implications of these findings include revisiting standard radiotherapy regimen and overall treatment protocols.

  2. Overview of radiotherapy resources in Beijing in 2010

    International Nuclear Information System (INIS)

    Objective: To investigate and analyze the resources of radiotherapy in Beijing, in order to provide reference for the subject development, resources allocation and professional training of radiotherapy. Methods: A questionnaire survey was conducted by on-site inspection, supplemented by telephone or e-mail investigation among the 33 hospitals with radiotherapy facilities to know the current status of distribution of radiotherapy institutions, radiotherapy facilities, human resources and number of patients treated. Results: There were 52 linear accelerators, 1 spiral CT machine, and 2 intraoperative radiotherapy machines in these 33 hospitals up to June 2010. Three-dimensional conformal or stereotactic radiotherapy was carried out in 31 hospitals, intensity modulated radiation therapy (IMRT) in 19, image guided radiation therapy (IGRT) in 6, and volumetric modulated arc therapy (VMRT) in 2. The number of professional personnel (except nurses) was 495, including 214 radiation oncologists, 78 radiotherapy physicists, and 203 radiotherapy technologists, and those with senior professional titles accounted for 52.3%, 17.9%, and 1.5%, respectively. Conclusions: Compared to the national level, the radiotherapy resources level is higher in Beijing, but the distribution of resources is imbalanced. The resource allocation should be optimized and training of the personnel should be strengthened so as to meet the growing needs of patients. (authors)

  3. Stereotactic radiotherapy and radiosurgery in pediatric patients: analysis of indications and outcome

    DEFF Research Database (Denmark)

    Mirza, Bilal; Mønsted, Anne; Jensen, Josephine Harding;

    2010-01-01

    We describe indications, outcomes, and risk profiles of fractionated stereotactic radiotherapy (SRT) and single fraction "radiosurgery" (SRS) in pediatric patients compared to the adult population and evaluate the causal role of SRS and SRT in inducing new neurological complications....

  4. Technical advances in external radiotherapy for hepatocellular carcinoma.

    Science.gov (United States)

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-08-28

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  5. Technical advances in external radiotherapy for hepatocellular carcinoma

    Science.gov (United States)

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  6. Advances in radiotherapy

    International Nuclear Information System (INIS)

    Radiation therapy is in the midst of a rebirth largely driven by the use of computers for treatment planning and beam delivery. The first edge of this renaissance was the advent of three-dimensional conformal radiation therapy (3-D CRT). This was enabled by the widespread availability and utilization of three-dimensional imaging such as computed tomography and magnetic resonance scanning, themselves products of the computer revolution. For the first time this allowed radiation oncologists to segment and visualize the tumor in association with it neighboring sensitive soft-tissue structures. Software tools to visualize the beam paths through the body enabled the beam directions and beam shapes to be manually optimized. Simultaneously, improved dose calculations utilizing the CT images of the patient anatomy produced more accurate distributions of dose. The dose was delivered with custom-shaped blocks or recently collimators with multiple leaves that allow complex shaped fields to be delivered without the need for block fabrication. In the last couple of decades new treatment delivery methodologies have emerged. The first has been stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) which is the purview of neurosurgeons (who call it SRS) as well as radiation oncologists (who usually call it SRT). SRS and SRT are premised on multiple beams focusing on one location typically with circular aperture collimators but increasingly with fields shaped by multi-leaved collimators. Often only a single treatment session (the usual for SRS) is used when the treatment volume is small, but for larger lesions several treatment sessions, or fractions, are used (most often for SRT) to allow for normal tissue repair. The new equipment market for SRS and SRT is about 10% of the total for radiation therapy. Intensity-modulated radiation therapy (IMRT) is the latest treatment methodology and its adoption has been extremely rapid, particularly in the United States. IMRT uses

  7. Higher toxicity with 42 Gy in 10 fractions as a total dose for 3D-conformal accelerated partial breast irradiation: results from a dose escalation phase II trial

    International Nuclear Information System (INIS)

    Recent recommendations regarding indications of accelerated partial breast irradiation (APBI) have been put forward for selected breast cancer (BC) patients. However, some treatment planning parameters, such as total dose, are not yet well defined. The Institut Gustave Roussy has initiated a dose escalation trial at the 40 Gy/10 fractions/5 days and at a further step of total dose (TD) of 42 Gy/10 fractions/ 5 days. Here, we report early results of the latest step compared with the 40 Gy dose level. From October 2007 to March 2010, a total of 48 pT1N0 BC patients were enrolled within this clinical trial: 17 patients at a TD of 42 Gy/10f/5d and 31 at a TD of 40 Gy/10f/5d. Median follow-up was 19 months (min-max, 12–26). All the patients were treated by APBI using a technique with 2 minitangents and an “enface” electrons delivering 20% of the total dose. Toxicities were systematically assessed at 1; 2; 6 months and then every 6 months. Patients’ recruitment of 42 Gy step was ended owing to persistent grade 3 toxicity 6 months after APBI completion (n = 1). Early toxicities were statistically higher after a total dose of 42 Gy regarding grade ≥2 dry (p = 0.01) and moist (p = 0.05) skin desquamation. Breast pain was also statistically higher in the 42 Gy step compared to 40 Gy step (p = 0.02). Other late toxicities (grade ≥2 fibrosis and telangectasia) were not statistically different between 42 Gy and 40 Gy. Early toxicities were more severe and higher rates of late toxicities were observed after 42 Gy/10 fractions/5 days when compared to 40 Gy/10 fractions/5 days. This data suggest that 40 Gy/10 fractions/ 5 days could potentially be the maximum tolerance for PBI although longer follow-up is warranted to better assess late toxicities

  8. Anatomical imaging for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Philip M [Joint Physics Department, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)], E-mail: phil.evans@icr.ac.uk

    2008-06-21

    scans is taken on different days. Both allow planning to account for variability intrinsic to the patient. Treatment verification has been carried out using a variety of technologies including: MV portal imaging, kV portal/fluoroscopy, MVCT, conebeam kVCT, ultrasound and optical surface imaging. The various methods have their pros and cons. The four x-ray methods involve an extra radiation dose to normal tissue. The portal methods may not generally be used to visualize soft tissue, consequently they are often used in conjunction with implanted fiducial markers. The two CT-based methods allow measurement of inter-fraction variation only. Ultrasound allows soft-tissue measurement with zero dose but requires skilled interpretation, and there is evidence of systematic differences between ultrasound and other data sources, perhaps due to the effects of the probe pressure. Optical imaging also involves zero dose but requires good correlation between the target and the external measurement and thus is often used in conjunction with an x-ray method. The use of anatomical imaging in radiotherapy allows treatment uncertainties to be determined. These include errors between the mean position at treatment and that at planning (the systematic error) and the day-to-day variation in treatment set-up (the random error). Positional variations may also be categorized in terms of inter- and intra-fraction errors. Various empirical treatment margin formulae and intervention approaches exist to determine the optimum strategies for treatment in the presence of these known errors. Other methods exist to try to minimize error margins drastically including the currently available breath-hold techniques and the tracking methods which are largely in development. This paper will review anatomical imaging techniques in radiotherapy and how they are used to boost the therapeutic benefit of the treatment. (topical review)

  9. Status of Radiotherapy in Kenya: The Milestones and Challenges

    International Nuclear Information System (INIS)

    According to Gobacan 2012, seventy eight (78) Kenyans die daily of cancer related complications. Ratiotherapy is the treatment of cancer using high energy radiation targeting the tumour cells. The three main modalities used in treatment are radiotherapy, chemotherapy and surgery. More than 50% of cases are treated using radiotherapy. Radiotherapy is divided into two brad categoeis, namely external beam radiotherapy (EBRT) or teletherapy and internal radiotherapy (Brachytherapy). In Kenya, the machines available for EBRT are Cobalt-60 and linear accelerators. Co-60 source emits gamma-ray with energy of 1.25 MV while linear accelerators available locally emit photons (x-rays) and electrons ranging between 6 to 8MV. Until 2010, there was only one (public) radiotherapy facility using the co-60. Currently, four private facilities using linear accelerations have joined the fray. Two more public institutions are at different stages of putting up radiotherapy facilities. Owing to the high energy range, a lot of radiation safety considerations are made prior to installation, during acceptance testing and commissioning and during the operation. These include, but not limited to shielding integrity checks, Dosimetry checks, mechanical checks and emergency procedures check. In view of these, a lot of capacity building still needs to be done in term of skilled staff development as well as equipment

  10. Radiotherapy for Hodgkin lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena [Rigshospitalet Copenhagen Univ. (Denmark). Depts. of Oncology and Haematology; Yahalom, Joachim (eds.) [Memorial Sloan-Kettering Cancer, New York, NY (United States). Dept. of Radiation Oncology

    2011-07-01

    This book deals in detail with all aspects of the best practice in modern radiotherapy for Hodgkin lymphoma. It provides the background and rationale for the inclusion of radiotherapy in today's combined-modality approach, including special clinical situations such as Hodgkin lymphoma in children, in the pregnant patient, and in the elderly. Radiotherapy planning using state-of-the-art imaging, target definition, planning software, and treatment equipment is expounded in detail. Acute and long-term side effects of radiotherapy are analyzed, and the implications for modern radiotherapy approaches in Hodgkin lymphomas are explained. (orig.)

  11. Radiotherapy for Hodgkin lymphoma

    International Nuclear Information System (INIS)

    This book deals in detail with all aspects of the best practice in modern radiotherapy for Hodgkin lymphoma. It provides the background and rationale for the inclusion of radiotherapy in today's combined-modality approach, including special clinical situations such as Hodgkin lymphoma in children, in the pregnant patient, and in the elderly. Radiotherapy planning using state-of-the-art imaging, target definition, planning software, and treatment equipment is expounded in detail. Acute and long-term side effects of radiotherapy are analyzed, and the implications for modern radiotherapy approaches in Hodgkin lymphomas are explained. (orig.)

  12. Radiotherapy of adult nodal non Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    The role of radiotherapy in the treatment of nodal non-Hodgkin's lymphoma has been modified by the introduction of efficient chemotherapy and the development of different pathological classifications. The recommended treatment of early-stage aggressive lymphomas is primarily a combination chemotherapy. The interest of adjuvant radiotherapy remains unclear and has to be established through large prospective trials. If radiation therapy has to be delivered, the historical results of exclusive radiation therapy showed that involved-fields and a dose of 35-40 Gy (daily fraction of 1.8 Gy, 5 days a week) are the optimal schedule. The interest of radiotherapy in the treatment of advanced-stage aggressive lymphoma is yet to be proven. Further studies had to stratify localized stages according to the factors of the International Prognostic Index. For easy-stage low-grade lymphoma, radiotherapy remains the standard treatment. However, the appropriate technique to use is controversial. Involved-field irradiation at a dose of 35 Gy seems to be the optimal schedule, providing a 10 year disease-free survival rate of 50 % and no major toxicity. There is no standard indication of radiotherapy in the treatment advanced-stage low-grade lymphoma. For 'new' nodal lymphoma's types, the indication of radiotherapy cannot be established (mantle-zone lymphoma, marginal zone B-cell lymphoma) or must take into account the natural history (Burkitt's lymphoma, peripheral T-cell lymphoma) and the sensibility to others therapeutic methods. (authors)

  13. Monte Carlo techniques for the study of cancer patients fractionation in head and neck treated with radiotherapy; Tecnicas de Monte Carlo para el estudio del fraccionamiento en pacientes de cancer de cabeza y cuello tratados con radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco Herrera, M. A.; Jimenez Dominguez, M.; Perucha Ortega, M.; Herrador Cordoba, M.

    2011-07-01

    The dose fractionation than the standard head and neck cancer in some situations involve a significant increase of local control and overall survival. There is clinical evidence of these results in case of hyperfractionated treatments, although the choice of optimal fractionation generally is not obtained from the results of any model, in this study has provided the tumor control probability (TCP) for various subdivisions modified (hypo fractionated and hyperfractionated) using Monte Carlo simulation techniques.

  14. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    International Nuclear Information System (INIS)

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers

  15. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  16. Interim Cosmetic Results and Toxicity Using 3D Conformal External Beam Radiotherapy to Deliver Accelerated Partial Breast Irradiation in Patients With Early-Stage Breast Cancer Treated With Breast-Conserving Therapy

    International Nuclear Information System (INIS)

    Purpose: We present our ongoing clinical experience utilizing three-dimensional (3D)-conformal radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer treated with breast-conserving therapy. Methods and Materials: Ninety-one consecutive patients were treated with APBI using our previously reported 3D-CRT technique. The clinical target volume consisted of the lumpectomy cavity plus a 10- to 15 -mm margin. The prescribed dose was 34 or 38.5 Gy in 10 fractions given over 5 consecutive days. The median follow-up was 24 months. Twelve patients have been followed for ≥4 years, 20 for ≥3.5 years, 29 for >3.0 years, 33 for ≥2.5 years, and 46 for ≥2.0 years. Results: No local recurrences developed. Cosmetic results were rated as good/excellent in 100% of evaluable patients at ≥ 6 months (n = 47), 93% at 1 year (n = 43), 91% at 2 years (n = 21), and in 90% at ≥3 years (n = 10). Erythema, hyperpigmentation, breast edema, breast pain, telangiectasias, fibrosis, and fat necrosis were evaluated at 6, 24, and 36 months after treatment. All factors stabilized by 3 years posttreatment with grade I or II rates of 0%, 0%, 0%, 0%, 9%, 18%, and 9%, respectively. Only 2 patients (3%) developed grade III toxicity (breast pain), which resolved with time. Conclusions: Delivery of APBI with 3D-CRT resulted in minimal chronic (≥6 months) toxicity to date with good/excellent cosmetic results. Additional follow-up is needed to assess the long-term efficacy of this form of APBI

  17. Quality control programme for radiotherapy

    International Nuclear Information System (INIS)

    A 3 years pilot programme started in January 2000 with 33 philanthropic cancer institutions that provides medical services to 60% of the patients from the national social security system. Brazil has today 161 radiotherapy services (144 operating with megavoltage equipment). These 33 institutions are distributed over 19 Brazilian states. The aim of this programme is: To create conditions to allow the participants to apply the radiotherapy with quality and efficacy; To promote up dating courses for the physicians, physicists and technicians of these 33 Institutions. With the following objectives: To recommend dosimetric and radiological protection procedures in order to guarantee the tumor prescribed dose and safe working conditions; To help in establishing and implementing these procedures. The main activities are: local quality control evaluations, postal TLD audits in reference conditions, postal TLD audits in off axis conditions and training. The local quality control program has already evaluated 22 institutions with 43 machines (25 Co-60 and 18 linear accelerators). In these visits we perform dosimetric, electrical, mechanical and safety tests. As foreseen, we found more problems among the old Co-60 machines i.e., field flatness, size, symmetry and relative output factors; lasers positioning system alignment; optical distance indicator; radiation and light field coincidence; optical and mechanical distance indicators agreement, than among the linear accelerators i.e., field flatness and size; lasers positioning system alignment; tray interlocking and wedge filter factors

  18. Biological basis for modifying radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Standard radiotherapy is administered as a series of equal doses usually 5/week for several weeks, a process termed fractionation. Each equal dose 'fraction' kills the same proportion of cells. A common daily dose is 200 centiGray (previous terminology: 200 rad) which reduces tumor cell survival to about 50%. A similar dose administered the next day will further reduce survival by 50%, that is to 25% of the original population. This equal proportionate effect results in a logarithmic decline in total cell number with increase in number of dose fractions. Breaking the total dose into a series of dose fractions amplifies therapeutic differential between normal tissues and tumors for several reasons; 4 R's: repair of cellular injury, repopulation by surviving cells, redistribution within the division cycle, reoxygenation of the tumor. Additional modifications of fractionation aim at increasing the advantage already gained from standard fractionation. (author). 4 refs

  19. Analysis of late toxicity associated with external beam radiation therapy for prostate cancer with uniform setting of classical 4-field 70 Gy in 35 fractions: a survey study by the Osaka Urological Tumor Radiotherapy Study Group

    OpenAIRE

    Yoshioka, Yasuo; Suzuki, Osamu; Nishimura, Kazuo; Inoue, Hitoshi; Hara, Tsuneo; Yoshida, Ken; Imai, Atsushi; Tsujimura, Akira; Nonomura, Norio; Ogawa, Kazuhiko

    2012-01-01

    We aimed to analyse late toxicity associated with external beam radiation therapy (EBRT) for prostate cancer using uniform dose-fractionation and beam arrangement, with the focus on the effect of 3D (CT) simulation and portal field size. We collected data concerning patients with localized prostate adenocarcinoma who had been treated with EBRT at five institutions in Osaka, Japan, between 1998 and 2006. All had been treated with 70 Gy in 35 fractions, using the classical 4-field technique wit...

  20. Advanced accelerators

    International Nuclear Information System (INIS)

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  1. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  2. Japanese structure survey of high-precision radiotherapy in 2012 based on institutional questionnaire about the patterns of care

    International Nuclear Information System (INIS)

    The purpose of this study was to clarify operational situations, treatment planning and processes, quality assurance and quality control with relevance to stereotactic radiotherapy, intensity-modulated radiotherapy and image-guided radiotherapy in Japan. We adopted 109 items as the quality indicators of high-precision radiotherapy to prepare a questionnaire. In April 2012, we started to publicly open the questionnaire on the website, requesting every institution with radiotherapy machines for response. The response ratio was 62.1% (490 out of 789 institutions responded). Two or more radiotherapy technologists per linear accelerator managed linear accelerator operation in ∼90% of the responded institutions while medical physicists/radiotherapy quality managers were engaged in the operation in only 64.9% of the institutions. Radiotherapy certified nurses also worked in only 18.4% of the institutions. The ratios of the institutions equipped for stereotactic radiotherapy of lung tumor, intensity-modulated radiotherapy and image-guided radiotherapy were 43.3, 32.6 and 46.8%, respectively. In intensity-modulated radiotherapy planning, radiation oncologists were usually responsible for delineation while medical physicists/radiotherapy quality managers or radiotherapy technologists set up beam in 33.3% of the institutions. The median time required for quality assurance of intensity-modulated radiotherapy at any site of brain, head and neck and prostate was 4 h. Intensity-modulated radiotherapy quality assurance activity had to be started after clinical hours in > 60% of the institutions. This study clarified one major issue in the current high-precision radiotherapy in Japan. A manpower shortage should be corrected for high-precision radiotherapy, especially in the area relevant to quality assurance/quality control. (author)

  3. Radiotherapy of Cervical Cancer.

    Science.gov (United States)

    Vordermark, Dirk

    2016-01-01

    Curative-intent radical radiotherapy of cervical cancer consists of external-beam radiotherapy, brachytherapy, and concomitant chemotherapy with cisplatin. For each element, new developments aim to improve tumor control rates or treatment tolerance. Intensity-modulated radiotherapy (IMRT) has been shown to reduce gastrointestinal toxicity and can be used to selectively increase the radiotherapy dose. Individualized, image-guided brachytherapy enables better adaptation of high-dose volumes to the tumor extension. Intensification of concomitant or sequential systemic therapy is under evaluation. PMID:27614991

  4. IART® (Intra-Operative Avidination for Radionuclide Therapy) for accelerated radiotherapy in breast cancer patients. Technical aspects and preliminary results of a phase II study with 90Y-labelled biotin

    OpenAIRE

    Paganelli, G.; De Cicco, C; M. E. Ferrari; McVie, G.; Pagani, G; Leonardi, M C; Cremonesi, M.; Ferrari, A.; Pacifici, M.; Di Dia, A; Botta, F; De Santis, R; Galimberti, V.; Luini, A.; Orecchia, R.

    2010-01-01

    Background: Breast conserving surgery (BCS) plus external beam radiotherapy (EBRT) is considered the standard treatment for early breast cancer. We have investigated the possibility of irradiating the residual gland, using an innovative nuclear medicine approach named IART® (Intra-operative Avidination for Radionuclide Therapy). Aim: The objective of this study was to determine the optimal dose of avidin with a fixed activity (3.7 GBq) of 90Y-biotin, in order to provide a boost of 20 Gy, foll...

  5. Carbon ion radiotherapy for pancreatic cancer

    International Nuclear Information System (INIS)

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Carbon ion therapy offers the potential advantages of improved dose localization and enhanced biological effects. It has been suggested that carbon ion therapy is effective against radioresistant pancreatic cancer. In April 2000, clinical studies examining the treatment of pancreatic cancer with carbon ions were begun at the HIMAC. As of February 2010, 48 patients treated with preoperative carbon ion radiotherapy and 89 patients treated for locally advanced pancreatic cancer were enrolled into the clinical trials. Both protocols are still ongoing. The interim results of these clinical trials suggest that carbon ion radiotherapy provides good local control and offers a survival advantage for patients with otherwise hard to cure pancreatic cancer, without unacceptable morbidity. (author)

  6. Radiotherapy status in 2007. Key figures from the radiotherapy observatory 2006-2007

    International Nuclear Information System (INIS)

    This document briefly comments graphs and tables of data concerning the activity, the equipment and the human resources of French radiotherapy centres: numbers of public and private centres, numbers, types and age of installed accelerators, expected evolution of this stock, techniques used in external radiotherapy, numbers of the different involved professionals in the private sector or public sector. It indicates the status of these centres with respect to the different agreement criteria. The second part gives graphs and tables of data concerning the curie-therapy activity: curietherapy centres, medical treatment activities, used isotopes, types of curietherapy (high, low and pulsed rate)

  7. The feasibility of high-dose multiple daily fraction and its combination with anoxic cell sensitizers in the treatment of head and neck cancer: a pilot study of the radiotherapy group of the EORTC (European Organisation for Research on Treatment of Cancer)

    International Nuclear Information System (INIS)

    From 1978 to the end of 1980, 179 patients with advanced head and neck tumors were accrued in a multicenter pilot study of the EORTC Radiotherapy Group, investigating the feasibility of high dose multiple daily fractionation (MDF) and its combination with misonidazole. The irradiation scheme consisted of three daily fractions of 1.6 Gy (four hour intervals) to a total dose of 48 Gy in two weeks, followed 3 to 4 weeks later by a boost to a total of about 70 Gy in 6 to 7 weeks. Misonidazole was given in daily doses of 1 g/m2 (total 13 or 14 g/m2) to 53 patients, thus sensitizing every radiation session. All patients had large head and neck tumors, with a poor prognosis. Acute reactions were well tolerated. Skin reactions were very moderate: mucosal reaction started at day 10 to 12. Tumor regression was very impressive, so that palliation was obtained quickly. Nine patients died from treatment related causes. It is difficult to assess local control at this time, but at the time of analysis (August 1981), the actuarial control rate was 48% at 20 months, with misonidazole 57%. This difference, however, is not statistically significant. Survival of the total group is 31% at 20 months. In these patients with a heavy tumor burden the early results were considered a success by all participants. For patients with sufficient follow-up, late reactions can be evaluated. Some edema and fibrosis is seen, but did not exceed a degree which could be expected with single daily fractionation to the same dose. This study demonstrates the possibility of giving highly concentrated treatments to total doses equal to those used in conventional fractionation

  8. ARCON in experimental and clinical radiotherapy

    OpenAIRE

    Rojas Callejas, Ana Maria

    2004-01-01

    xHypoxia and repopulation of tumour clonogens are two important determinants of treatment outcome in radiotherapy. In general clinical evidence indicates that loco-regional control may be reduced with long overall treatment times and for tumours with low pre-treatment levels of oxygen. Experimental studies with normobaric carbogen and oxygen showed a two-fold enhancement of the efficacy of radiation in a mouse tumour model when combining oxygen with treatment acceleration. It was then demonst...

  9. Training logbook for radiotherapy.

    NARCIS (Netherlands)

    Hunter, R.; Maciejewski, B.; Leer, J.W.H.; Kinay, M.; Heeren, G.

    2004-01-01

    AIM: To develop a structured logbook for trainees in the medical specialty of radiotherapy with Europe that records the increasing experience throughout their training period. MATERIAL AND METHODS: A working party appointed by the European Board of Radiotherapy developed a draft version of a Europea

  10. [Radiotherapy of skin cancers].

    Science.gov (United States)

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules. PMID:27522189

  11. Targeted tumor radiotherapy

    Directory of Open Access Journals (Sweden)

    Unak Perihan

    2002-01-01

    Full Text Available Targeted tumor radiotherapy is selectively delivery of curative doses of radiation to malignant sites. The aim of the targeted tumor radiotherapy is to use the radionuclides which have high LET particle emissions conjugated to appropriate carrier molecules. The radionuclides are selectively collected by tumor cells, depositing lethal doses to tumor cells while no admission occur to normal cells. In theory, targeted radiotherapy has several advantages over conventional radiotherapy since it allows a high radiation dose to be administered without causing normal tissue toxicity, although there are some limitations in the availability of appropriate targeting agents and in the calculations of administered doses. Therefore, for routine clinical applications more progress is still needed. In this article, the potential use of targeted tumor radiotherapy is briefly reviewed. More general aspects and considerations, such as potential radionuclides, mechanisms of tumor targeting was also outlined.

  12. To understand radiotherapy

    International Nuclear Information System (INIS)

    Dealing with the use of radiotherapy for adults, this guide indicates when a radiotherapy is suggested, how it acts, how the treatment is chosen, which are the professionals involved. It describes how an external radiotherapy takes place and its various techniques, the different types of side effects (general, specific to the treated zone, late effects). It indicates which organs can be treated by curie-therapy, the different curie-therapy treatment modalities, how a curie-therapy takes place and which are its side effects. It outlines how to better cope with radiotherapy (how to be supported, the important role of relatives, everyday life questions, rights). It indicates and comments the different measures adopted for the safety and quality of radiotherapy

  13. The effect of increasing the treatment time beyond three weeks on the control of T2 and T3 laryngeal cancer using radiotherapy

    International Nuclear Information System (INIS)

    Local control of cancer by radiotherapy may be prejudiced by accelerated tumor clonogen repopulation particularly during protracted treatment schedules. A series of 496 cases of T2 and T3 larynx cancer treated here by radiotherapy has been studied to examine the impact on local control of treatment durations ranging from 9-41 days. Data were analysed using a linear-quadratic formulation describing the fractionation sensitivity, with the incorporation of a parameter relating to treatment time. Using combined T2 and T3 data, the increase in dose required to maintain a constant local control (the time factor) was between 0.5-0.6 Gy/day. These values are similar to those reported for 4 weeks or more in the literature. Also, the calculated dose to control 50% of tumors, given over the standard Christie duration of 21 days, was on the line projected back from literature data over 28-66 days. The present data are consistent with the presence of such a time factor following a lag phase of not more than 3 weeks after starting radio-therapy. Hence, further consideration should be given to using shorter overall treatment times in radiotherapy for head and neck cancer. (author). 17 refs.; 2 figs.; 4 tabs

  14. The effect of increasing the treatment time beyond three weeks on the control of T[sub 2] and T[sub 3] laryngeal cancer using radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Slevin, N.J. (Christie Hospital and Holt Radium Inst., Manchester (United Kingdom)); Hendry, J.H.; Roberts, S.A.; Agren-Cronqvist, A. (Christie Hospital and Holt Radium Inst., Manchester (United Kingdom). Paterson Labs.)

    1992-08-01

    Local control of cancer by radiotherapy may be prejudiced by accelerated tumor clonogen repopulation particularly during protracted treatment schedules. A series of 496 cases of T[sub 2] and T[sub 3] larynx cancer treated here by radiotherapy has been studied to examine the impact on local control of treatment durations ranging from 9-41 days. Data were analysed using a linear-quadratic formulation describing the fractionation sensitivity, with the incorporation of a parameter relating to treatment time. Using combined T[sub 2] and T[sub 3] data, the increase in dose required to maintain a constant local control (the time factor) was between 0.5-0.6 Gy/day. These values are similar to those reported for 4 weeks or more in the literature. Also, the calculated dose to control 50% of tumors, given over the standard Christie duration of 21 days, was on the line projected back from literature data over 28-66 days. The present data are consistent with the presence of such a time factor following a lag phase of not more than 3 weeks after starting radio-therapy. Hence, further consideration should be given to using shorter overall treatment times in radiotherapy for head and neck cancer. (author). 17 refs.; 2 figs.; 4 tabs.

  15. Mathematical modeling of liver metastases tumour growth and control with radiotherapy

    International Nuclear Information System (INIS)

    Generating an optimized radiation treatment plan requires understanding the factors affecting tumour control. Mathematical models of tumour dynamics may help in future studies of factors predicting tumour sensitivity to radiotherapy. In this study, a time-dependent differential model, incorporating biological cancer markers, is presented to describe pre-treatment tumour growth, response to radiation, and recurrence. The model uses Gompertzian-Exponential growth to model pre-treatment tumour growth. The effect of radiotherapy is handled by a realistic cell-kill term that includes a volume-dependent change in tumour sensitivity. Post-treatment, a Gompertzian, accelerated, delayed repopulation is employed. As proof of concept, we examined the fit of the model's prediction using various liver enzyme levels as markers of metastatic liver tumour growth in a liver cancer patient. A tumour clonogen population model was formulated. Each enzyme was coupled to the same tumour population, and served as surrogates of the tumour. This dynamical model was solved numerically and compared to the measured enzyme levels. By minimizing the mean-squared error of the model enzyme predictions, we determined the following tumour model parameters: growth rate prior to treatment was 0.52% per day; the fractional radiation cell kill for the prescribed dose (60 Gy in 15 fractions) was 42% per day, and the tumour repopulation rate was 2.9% per day. These preliminary results provided the basis to test the model in a larger series of patients, to apply biological markers for improving the efficacy of radiotherapy by determining the underlying tumour dynamics.

  16. Current status and potential perspectives in classical radiotherapy technology

    Directory of Open Access Journals (Sweden)

    Dabić-Stanković Kata M.

    2004-01-01

    Full Text Available Introduction and potentials of classical radiotherapy After purchase of radiotherapy equipment in 2003, classic radiation therapy in Serbia will reach the highest world level. In order to define the highest standards in radiation technology, we analyzed the current status and potential perspectives of radiation therapy. Technological levels of radiotherapy in developed countries An analysis of present situation in the USA, assumed as the most developed in the world, was done. Available data, collected in the last 3 years (equipment assortment, therapy modalities, workload and manpower for 284 radiotherapy centers, out of potential 2050, were analyzed. Results were presented as crude percentage and mached to point current status. Results of analysis and discussion The analysis showed that CLINAC accelerators are the most popular (82.7%, as well as, ADAC (43.7% and Focus (CMS (27.4% systems for therapy planning. Movement towards virtual simulation is evident (59.3%, although classic ”simulation” is not fully eliminated from the radiotherapy chain. The most popular brachytherapy afterloader is Microselectron HDR (71%. About 64.4% centers use IMPAC communication/verification/record system that seems more open than Varis. All centers practice modern radiotherapy modalities and techniques (CFRT, IMRT, SRS/SRT, TBI, IORT, IVBHRT, HDR BHRT, etc.. CT and MRI availability is out of question, but PET is available in 3% of centers, however this percentage is rapidly growing. Up to 350 new patients per year are treated by one accelerator (about 35 pts. a day. Centers are relatively small and utilize 2-3 accelerators on average. Average FTE staffing norm is 4 radiation oncologists, 2-3 medical radiotherapy physicists, about 3 certified medical dosimetrists and about 6 radiotherapy technologists. Technological aspects and conclusion In the past 5 years relative stagnation in classic radiotherapy has been observed. In spite of substantial investments in

  17. Hypofractionated whole breast radiotherapy: current perspectives

    Directory of Open Access Journals (Sweden)

    Koulis TA

    2015-10-01

    Full Text Available Theodora A Koulis, Tien Phan, Ivo A Olivotto Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, AB, Canada Abstract: Adjuvant radiotherapy (RT is an important part of breast cancer management but the dose and fractionation schedules used are variable. A total of 50 Gy in 25 daily fractions delivered over 5 weeks is often considered the "standard" adjuvant RT prescription. Hypofractionated regimes such as 42.5 Gy in 16 daily fractions or 40 Gy in 15 daily fractions following breast-conserving surgery have proven to be equally effective and achieve similar or better cosmetic and normal tissue outcomes for both invasive and in situ diseases and when treating the regional nodes. Hypofractionation is more convenient for patients and less costly. However, certain patients at higher risk of RT late effects may benefit from a less intense, even more extended fractionation schedule. This review describes the indications for whole breast hypofractionated adjuvant RT for patients with breast cancer following breast-conserving surgery and proposes that hypofractionation should be the new "standard" for adjuvant breast cancer RT. Keywords: fractionation, breast cancer, cosmesis, radiotherapy

  18. Radiotherapy of unicentric mediastinal Castleman's disease

    Institute of Scientific and Technical Information of China (English)

    Yue-Min Li; Yong-Dong Pu; Peng-Hui Liu; Yu-Hai Zhang; Huo-Sheng Xia; Liang-Liang Li; Yi-Mei Qu; Yong Wu; Shou-Yun Han; Guo-Qing Liao

    2011-01-01

    Castleman's disease is a slowly progressive and rare lymphoproliferative disorder. Here, we report a 55-year-old woman with superior mediastinal Castleman's disease being misdiagnosed for a long term. We found a 4.3 cm mass localized in the superior mediastinum accompanied with severe clinical symptoms. The patient underwent an exploratory laparotomy, but the mass failed to be totally excised. Pathologic examination revealed a mediastinal mass of Castleman's disease. After radiotherapy of 30 Gy by 15 fractions, the patient no longer presented previous symptoms. At 3 months after radiotherapy of 60 Gy by 30 fractions, Computed tomography of the chest showed significantly smaller mass, indicating partial remission. Upon a 10-month follow-up, the patient was alive and free of symptoms.

  19. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  20. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    International Nuclear Information System (INIS)

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  1. Fractional Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  2. Fractional randomness

    Science.gov (United States)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  3. Advances of Precise Radiotherapy for Lung Cancer

    OpenAIRE

    Xin WANG; Xu, Feng; Wei, Yuquan

    2011-01-01

    At present lung tumor radiation therapy has entered the accurate radiotherapy era. Precise radiotherapy includes intensity modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT) and stereotactic body radiotherapy (SBRT). During the process of implementing precise radiotherapy, these problems should be fully considered to ensure executing precise radiotherapy accurately: patient positioning, controlling of the lung tumor motion, selecting of image techniques, PTV margin, dose prescrip...

  4. Radiotherapy-induced emesis. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Feyer, P.; Buchali, A.; Hinkelbein, M.; Budach, V. [Department Radiotherapy, Humboldt-University Berlin (Germany); Zimmermann, J.S. [Department Radiotherapy, Christian Albrechts-University Kiel (Germany); Titlbach, O.J. [Department of Medicine I, Hospital Friedrichshain, Berlin (Germany)

    1998-11-01

    Background: A significant number of patients receiving radiotherapy experience the distressing side effects of emesis and nausea. These symptoms are some of the most distressing problems for the patients influencing their quality of life. Methods: International study results concerning radiotherapy-induced emesis are demonstrated. A German multicenter questionnaire examining the strategies to prevent or to treat radiotherapy-induced nausea and emesis is presented. An international analysis concerning incidence of emesis and nausea in fractionated radiotherapy patients is discussed. Finally the consensus of the consensus conference on antiemetic therapy from the Perugia International Cancer Conference V is introduced. Results: Untreated emesis can lead to complications like electrolyte disorders, dehydration, metabolic disturbances and nutrition problems with weight loss. Prophylactic antiemetics are often given to patients receiving single high-dose radiotherapy to the abdomen. A survey has revealed that antiemetic prophylaxis is not routinely offered to the patients receiving fractionated radiotherapy. However, there is a need for an effective treatment of emesis for use in this group of patients, too. In 20% of patients nausea and emesis can cause a treatment interruption because of an inadequate control of symptoms. Like in chemotherapy strategies there exist high, moderate, and low emetogenic treatment regimens in radiotherapy as well. The most emetogenic potential has the total body irradiation followed by radiotherapy to the abdomen. Radiotherapy induced emesis can be treated effectively with conventional antiemetics up to 50%. Conclusions: Studies with total body irradiation, fractionated treatment and high-dose single exposures have cleary demonstrated the value of 5-HT3-receptor antagonist antiemetics. There is a response between 60 and 97%. There is no difference in the efficacy of the different 5-HT3-antagonists. High-risk patients should be prophylactic

  5. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  6. Radiotherapy in the management of Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Koh-ichi; Hareyama, Masato; Oouchi, Atsushi; Shidou, Mitsuo; Nagakura, Hisayasu; Morita, Kazuo; Osanai, Hajime; Ohtsuka, Kenji; Hinoda, Yuji [Sapporo Medical Univ. (Japan). School of Medicine

    1998-06-01

    To report the results of radiotherapy for patients with failure, adverse reactions or relative contraindications to the use of steroids or immunosuppressants, by using newly developed quantitative indexes. Fourteen female and six male patients with Graves` ophthalmopathy were treated with radiotherapy between 1989 and 1996. Prior to radiotherapy, eight patients received treatment with prednisone, four received immunosuppressants and four received a combination of both. Four patients with contraindications to steroids were initially managed with radiotherapy. Most of the patients received a dose of 24-28 Gy in 2 Gy fractions. We used the newly developed motility limitation index to assess extraocular motility. Treatment was well tolerated. There have been no late complications. All 12 patients with soft tissue signs such as edema, irritation, tearing and pain were improved. Proptosis did not improve or improved only slightly, 3 mm at best. However, proptosis in all but two has been stabilized and has not deteriorated in the follow-up period. Most of the patients have experienced an improvement of eye-muscle motility. Extraocular muscles that work for elevation were impaired more severely than the other muscles and this tended to remain. Of the 16 patients using steroids before or when radiotherapy was initiated, 15 were tapered off and only one patient required additional steroids, thus sparing the majority from steroid adverse reactions. Radiotherapy was effective in preventing exacerbations of active inflammatory ophthalmopathy in patients with Graves` disease with minimal morbidity and thus eliminated the adverse reactions associated with protracted corticosteroid use. The newly developed motility limitation index was useful in detecting delicate changes in motility of individual extraocular muscles. (author)

  7. Craniospinal radiotherapy in adult medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Selek, U.; Zorlu, F.; Hurmuz, P.; Cengiz, M.; Gurkaynak, M. [Hacettepe Univ., Ankara (Turkey). Dept. of Radiation Oncology; Turker, A. [Hacettepe Univ., Ankara (Turkey). Dept. of Internal Medicine; Soylemezoglu, F. [Hacettepe Univ., Ankara (Turkey). Dept. of Pathology

    2007-05-15

    Purpose: To evaluate the outcome and prognostic factors of adult patients with medulloblastoma. Patients and Methods: 26 adult medulloblastoma patients with a median age of 27 were subjected to craniospinal radiotherapy. A dose of 30.6 Gy with 1.8 Gy/fraction/day was prescribed to M0 patients, while 36 Gy were to be applied in patients with positive cerebrospinal liquor findings. The posterior fossa was boosted to 54 Gy. While 20 patients underwent external-beam radiotherapy alone, only six received sequential adjuvant chemotherapy. Results: Male/female ratio was 1.2. Preradiotherapy Karnofsky performance status was recorded as median 100%. 50% were classified as poor risk (n = 10, subtotal resection; n = 3, M+). The median follow-up time was 46.5 months. The 5-year actuarial survival rates for recurrence-free, distant metastasis-free, disease-free, and overall survival were 82.5%, 90.8%, 73.5%, and 89.7%, respectively. Patient characteristics, treatment factors and tumor characteristics failed to show any significance in univariate analysis. Grade 3 or 4 late morbidities were not observed. Conclusion: Yet, the current standard of care seems to remain craniospinal irradiation after maximal surgical resection of the primary neoplasm without clear indications for adjuvant chemotherapy. (orig.)

  8. Promising results with image guided intensity modulated radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    To describe the feasibility of image guided intensity modulated radiotherapy (IG-IMRT) using daily soft tissue matching in the treatment of bladder cancer. Twenty-eight patients with muscle-invasive carcinoma of the bladder were recruited to a protocol of definitive radiation using IMRT with accelerated hypofractionation with simultaneous integrated boost (SIB). Isotropic margins of .5 and 1 cm were used to generate the high risk and intermediate risk planning target volumes respectively. Cone beam CT (CBCT) was acquired daily and a soft tissue match was performed. Cystoscopy was scheduled 6 weeks post treatment. The median age was 83 years (range 58-92). Twenty patients had stage II or III disease, and eight were stage IV. Gross disease received 66 Gy in 30 fractions in 11 patients (ten with concurrent chemotherapy) or 55 Gy in 20 fractions for those of poorer performance status or with palliative intent. All patients completed radiation treatment as planned. Three patients ceased chemotherapy early due to toxicity. Six patients (21 %) had acute Grade ≥ 2 genitourinary (GU) toxicity and six (21 %) had acute Grade ≥ 2 gastrointestinal (GI) toxicity. Five patients (18 %) developed Grade ≥2 late GU toxicity and no ≥2 late GI toxicity was observed. Nineteen patients underwent cystoscopy following radiation, with complete response (CR) in 16 cases (86 %), including all patients treated with chemoradiotherapy. Eight patients relapsed, four of which were local relapses. Of the patients with local recurrence, one underwent salvage cystectomy. For patients treated with definitive intent, freedom from locoregional recurrence (FFLR) and overall survival (OS) was 90 %/100 % for chemoradiotherapy versus 86 %/69 % for radiotherapy alone. IG- IMRT using daily soft tissue matching is a feasible in the treatment of bladder cancer, enabling the delivery of accelerated synchronous integrated boost with good early local control outcomes and low toxicity

  9. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  10. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 20. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel (eds.)

    2011-07-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  11. Palliative radiotherapy for multiple myeloma

    International Nuclear Information System (INIS)

    This study reviews the experience of palliative radiotherapy to patients with multiple myeloma to define the optimal dose for pain relief. The records of 31 patients (66 sites) with multiple myeloma irradiated for palliation at Kumamoto University hospital between 1985 and 1994 were reviewed. Total dose ranged from 8 to 50 Gy, with a mean of 32.2 Gy. Symptoms included pain (78.1%), neurological abnormalities (28.1%), and palpable masses (34.3%). Symptomatic remission was obtained in 45 of 46 evaluable sites (97.8%). Complete remission of symptoms were obtained in 28.3%, and partial remission in 69.6%. According to fraction size, there was no significant difference between 3-5 Gy and 1.8-2 Gy. The incidence of complete remission increased when a total dose of more than 20 Gy was given. When the quality of life is considered, hypofractionation was recommended for the palliative radiation therapy of multiple myeloma. (author)

  12. [Radiotherapy of benign intracranial tumors].

    Science.gov (United States)

    Delannes, M; Latorzeff, I; Chand, M E; Huchet, A; Dupin, C; Colin, P

    2016-09-01

    Most of the benign intracranial tumors are meningiomas, vestibular schwannomas, pituitary adenomas, craniopharyngiomas, and glomus tumors. Some of them grow very slowly, and can be observed without specific treatment, especially if they are asymptomatic. Symptomatic or growing tumors are treated by surgery, which is the reference treatment. When surgery is not possible, due to the location of the lesion, or general conditions, radiotherapy can be applied, as it is if there is a postoperative growing residual tumor, or a local relapse. Indications have to be discussed in polydisciplinary meetings, with precise evaluation of the benefit and risks of the treatments. The techniques to be used are the most modern ones, as multimodal imaging and image-guided radiation therapy. Stereotactic treatments, using fractionated or single doses depending on the size or the location of the tumors, are commonly realized, to avoid as much a possible the occurrence of late side effects. PMID:27523417

  13. Adjuvant radiotherapy for gallbladder cancer: A dosimetric comparison of conformal radiotherapy and intensity-modulated radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Xiao-Nan Sun; Qi Wang; Ben-Xing Gu; Yan-Hong Zhu; Jian-Bin Hu; Guo-Zhi Shi; Shu Zheng

    2011-01-01

    AIM: To assess the efficacy and toxicity of conformal radiotherapy (CRT) and compare with intensity-modulated radiotherapy (IMRT) in the treatment of gallbladder cancer.METHODS: Between November 2003 and January 2010, 20 patients with gallbladder cancer were treated with CRT with or without chemotherapy after surgical resection. Preliminary survival data were collected and examined using both Kaplan-Meier and actuarial analysis. Demographic and treatment parameters were collected. All patients were planned to receive 46-56 Gy in 1.8 or 2.0 Gy per fraction. CRT planning was compared with IMRT.RESULTS: The most common reported acute toxicities requiring medication (Radiation Therapy Oncology Group, Radiation Therapy Oncology Group Grade2) were nausea (10/20 patients) and diarrhea (3/20).There were no treatment-related deaths. Compared with CRT planning, IMRT significantly reduced the volume of right kidney receiving > 20 Gy and the volume of liver receiving > 30 Gy. IMRT has a negligible impact on the volume of left kidney receiving > 20 Gy. The 95% of prescribed dose for a planning tumor volume using either 3D CRT or IMRT planning were 84.0% ±6.7%, 82.9% ± 6.1%, respectively (P > 0.05).CONCLUSION: IMRT achieves similar excellent target coverage as compared with CRT planning, while reducingthe mean liver dose and volume above threshold dose. IMRT offers better sparing of the right kidney compared with CRT planning, with a significantly lower mean dose and volume above threshold dose.

  14. Post-external radiotherapy hypothyroidism: 15 cases

    International Nuclear Information System (INIS)

    Post-external radiotherapy hypothyroidism: 15 cases. Hypothyroidism frequency is estimated to be between 10 and 45% after radiotherapy alone, and 40 to 67% after radiotherapy associated with thyroidectomy. This hypothyroidism is infra-clinical in 60% of the cases. Our study concerned 15 cases of hypothyroidism after external radiotherapy delivered between and 1991 and 1999. An irradiation of the cervical, cerebral and thorax regions was indicated for different types of cancers. Larynx carcinoma epidermoid was the most frequent cancer (seven cases); the radiation treatment used cobalt 60 with conventional fractionation, i.e., 2 Gy per treatment, five treatments a week. In nine cases, the hypothyroidism was discovered during a systematic examination; it was clinically evident in the six remaining cases. Hypothyroidism appeared after an irradiation dose average of 50 Gy (extremes 30-65 Gy). The average duration of the irradiation was about 7 weeks and the hypothyroidism appeared in a mean 22 months. In all cases, the substituting treatment was initiated with a favorable progression. Faced with the risk of hypothyroidism, it is necessary to check patients who have undergone external irradiation of the neck. (authors)

  15. A Phase I Trial of Preoperative Partial Breast Radiotherapy: Patient Selection, Target Delineation, and Dose Delivery

    Science.gov (United States)

    Blitzblau, Rachel C.; Arya, Ritu; Yoo, Sua; Baker, Jay A.; Chang, Zheng; Palta, Manisha; Duffy, Eileen; Horton, Janet K.

    2015-01-01

    Purpose Diffusion of accelerated partial breast irradiation (APBI) into clinical practice is limited by the need for specialized equipment and training. The accessible external beam technique yields unacceptable complication rates, likely due to large post-operative target volumes. We designed a phase I trial evaluating preoperative radiotherapy to the intact tumor utilizing widely available technology. Methods Patients received 15, 18, or 21Gy in a single fraction to the breast tumor plus margin. Magnetic resonance imaging (MRI) was used in conjunction with standard computed tomography (CT)-based planning to identify contrast enhancing tumor. Skin markers and an intra-tumor biopsy marker were utilized for verification during treatment. Results MRI imaging was critical for target delineation as not all breast tumors were reliably identified on CT scan. Breast shape differences were consistently seen between CT and MRI but did not impede image registration or tumor identification. Target volumes were markedly smaller than historical post-operative volumes and normal tissue constraints were easily met. A biopsy marker within the breast proved sufficient for set up localization. Conclusions This single fraction linear-accelerator based ABPI approach can be easily incorporated at most treatment centers. In vivo targeting may improve accuracy and can reduce the dose to normal tissues. PMID:25834942

  16. Automated Image-Based Procedures for Adaptive Radiotherapy

    DEFF Research Database (Denmark)

    Bjerre, Troels

    Fractionated radiotherapy for cancer treatment is a field of constant innovation. Developments in dose delivery techniques have made it possible to precisely direct ionizing radiation at complicated targets. In order to further increase tumour control probability (TCP) and decrease normal...... to encourage bone rigidity and local tissue volume change only in the gross tumour volume and the lungs. This is highly relevant in adaptive radiotherapy when modelling significant tumour volume changes. - It is described how cone beam CT reconstruction can be modelled as a deformation of a planning CT scan...... be employed for contour propagation in adaptive radiotherapy. - MRI-radiotherapy devices have the potential to offer near real-time intrafraction imaging without any additional ionising radiation. It is detailed how the use of multiple, orthogonal slices can form the basis for reliable 3D soft tissue tracking....

  17. 全基因组表达谱芯片筛选非小细胞肺癌常规分割和大分割放疗差异基因的初步研究*%Identifying the genetic pattern of conventional fractionated and hypofractionated radiotherapy using whole genome expression microarray in a non-small-cell lung cancer cell line

    Institute of Scientific and Technical Information of China (English)

    孙健; 刘宁波; 曲晨慧; 王宝虎; 郭华; 王平

    2013-01-01

    目的:获得稳定的非小细胞肺癌(NSCLC)放射抗拒细胞系,明确常规分割和大分割放疗后肿瘤基因表达改变。方法:采用A549细胞系,6MV X线常规照射(2 Gy×17 f)和大分割照射(4 Gy×7 f),克隆形成实验和γ-H2AX免疫荧光染色结合共聚焦显微镜验证细胞的放射抗拒特性。提取mRNA,全基因组表达谱芯片检测差异基因表达,分析2倍以上改变的基因(P<0.05),同时对芯片结果行Pathway分析(Q<0.05)。结果:获得了2株放疗抗拒细胞系A549R2Gy-R和A549R4Gy-R。表达谱芯片显示,A549与A549R2Gy-R相比,差异表达基因为1701个(357个上调,1344个下调);A549与A549R4Gy-R相比,944个基因上调,2602个基因下调。A549R2Gy-R与A549R4Gy-R相比,318个基因上调,699个基因下调。常规分割照射与大分割照射的pathway显著性富集分析显示,PI3K和Erb B通路等多条信号通路激酶出现显著性差异。结论:多种基因和信号通路参与了NSCLC常规分割和大分割放疗抗拒过程,进一步研究能明确NSCLC放射抗拒机制和为放疗增敏药物开发提供新靶点。%Objective:To obtain stable radioresistant non-small-cell lung cancer (NSCLC) cell lines and identify the genetic pattern of conventional fractioned and hypofractionated radiotherapy. Methods:A549 NSCLC cells were treated with 6 MV of x-rays through conventional fractionated (2 Gy, 17 f) and hypofractionated irradiation (4 Gy, 7 f) to establish a radiation resistance cell model. Tumor cell radioresistance was determined using a clonogenic assay andγ-H2AX immunofluorescence staining combined with confocal microscopy. After extracting total mRNA from the cells, a whole genome expression microarray was applied to detect differential gene expression. The genes with at least a twofold increase in expression (P<0.05) were analyzed, and the pathway (Q<0.05) methods were used to further analyze the chip results

  18. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  19. Effects of radiotherapy on corticotrophic macro-tumors in dog

    International Nuclear Information System (INIS)

    A retrospective study was conducted to evaluate efficacy of low dose radiotherapy for treatment of pituitary corticotrophic macro-tumors in dogs. Twelve dogs with pituitary-dependent hyper-adrenocorticism and a large pituitary tumor treated with 36 Gy of radiation were included in this report. Radiation was delivered in twelve fractions of 3 Gy during a 4- week period. Effects of radiation therapy on tumor size were assessed by CT scans and a decrease was observed in ten dogs (decrease > 50% in four dogs). The mean and median survival times following the initiation of radiotherapy were 21,6 and 18 months, respectively. These cases support previous findings, based on high dose radiation, that radiotherapy is a valuable option in the treatment of pituitary corticotrophic macro-tumors in the dog. Use of smaller total dose and smaller dose fractions remains effective providing a cure with minimal side effects and allowing a second irradiation if necessary. (author)

  20. The efficacy of radiotherapy for vertebral hemangiomas.

    Science.gov (United States)

    Miszczyk, L; Ficek, K; Trela, K; Spindel, J

    2001-01-01

    Vertebral hemangiomas are benign, slowly growing tumors sometimes causing local pain in the spine and/or neurologic disorders. The present paper includes 14 cases of painful vertebral hemangiomas treated by radiotherapy. All patients were irradiated using standard fractionation scheme with a total dose 20-30 Gy. One month after the treatment complete pain relief was noted in 36% of cases, five months later in 67% of cases, but in the remaining cases partial pain relief was noted. No correlation between treatment outcome and different biological and technical factors was found. No dose-response relationship was noted. The results suggest that anti-inflamatory effect of radiation plays the major role in this kind of treatment and that radiotherapy for vertebral hemangiomas is easy, short and highly effective analgetic treatment modality.

  1. Complications of radiotherapy in oncologic patients

    International Nuclear Information System (INIS)

    Reasons, mechanisms of development and features of clinical course of radiation response (injuries) in different organs and systems in patients with lung, uterus neck, mammary and thyroid gland cancer are described. Their clinical classification is presented. Dependences of frequency, severity and time of occurrence of radiation reactions (injuries) on the absorbed radiation dose value, time-dose-fractioning factor, localization and size of the neoplasm and on other parameters are demonstrated. Results of complex examination of oncologic patients with radiation reactions and injuries are presented. Principles of prophylactic medical examination of patients subjected to radiotherapy are described. Recommendation on the optimization of radiotherapy methods and prophylaxis of its complications are given. 56 refs.; 22 figs.; 4 tabs

  2. Long-term results of radiotherapy for pituitary adenomas. Evaluation of tumor control and hypopituitarism after radiotherapy

    International Nuclear Information System (INIS)

    To evaluate the results of conventional radiotherapy for pituitary adenomas assessed with computed tomography (CT) or magnetic resonance imaging (MRI). Endpoints include tumor control, normalization of hormone levels in functioning adenomas, and hypopituitarism after radio