WorldWideScience

Sample records for accelerated foxp2 evolution

  1. Accelerated FoxP2 evolution in echolocating bats.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination.

  2. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.

    Science.gov (United States)

    Scharff, Constance; Petri, Jana

    2011-07-27

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.

  3. Conservation and diversity of Foxp2 expression in muroid rodents: Functional implications

    OpenAIRE

    Campbell, Polly; Reep, Roger L.; Stoll, Margaret L.; Ophir, Alexander G.; Phelps, Steven M.

    2009-01-01

    FOXP2, the first gene causally linked to a human language disorder, is implicated in song acquisition, production and perception in oscine songbirds, the evolution of speech and language in hominids and the evolution of echolocation in bats. Despite the evident relevance of Foxp2 to vertebrate acoustic communication, a comprehensive description of neural expression patterns is currently lacking in mammals. Here we use immunocytochemistry to systematically describe the neural distribution of F...

  4. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  5. Analysis list: Foxp2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Foxp2 Liver,Pancreas + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Fo...xp2.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Foxp2.5.tsv http://dbarchive.biosciencedbc.j...p/kyushu-u/mm9/target/Foxp2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Foxp2.Liver.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Foxp2.Pancreas.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Liver.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Pancreas.gml ...

  6. Extinction Events Can Accelerate Evolution

    DEFF Research Database (Denmark)

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific......Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate...... evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending...

  7. Extinction events can accelerate evolution.

    Directory of Open Access Journals (Sweden)

    Joel Lehman

    Full Text Available Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

  8. Extinction Events Can Accelerate Evolution

    Science.gov (United States)

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  9. Foxp2 mutations impair auditory-motor association learning.

    Science.gov (United States)

    Kurt, Simone; Fisher, Simon E; Ehret, Günter

    2012-01-01

    Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.

  10. Foxp2 mutations impair auditory-motor association learning.

    Directory of Open Access Journals (Sweden)

    Simone Kurt

    Full Text Available Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.

  11. FOXP2 promotes the nuclear translocation of POT1, but FOXP2(R553H), mutation related to speech-language disorder, partially prevents it

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Yuko [Division of Development and Differentiation, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigasi, Kodaira 187-8511 (Japan); Fujita, Eriko [Division of Development and Differentiation, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigasi, Kodaira 187-8511 (Japan); Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 (Japan); Momoi, Takashi, E-mail: momoi@iuhw.ac.jp [Division of Development and Differentiation, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigasi, Kodaira 187-8511 (Japan); Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara, Tochigi 324-8501 (Japan)

    2011-07-08

    Highlights: {yields} We isolated protection of telomeres 1 (POT1) as a FOXP2-associated protein by a yeast two-hybrid. {yields} FOXP2 associated and co-localized with POT1 in the nuclei. {yields} FOXP2(R553H) also co-localized with POT1 in both the cytoplasm and nuclei. {yields} FOXP2(R553H) partially prevented the nuclear translocation of POT1. {yields} FOXP2(R553H) mutation may be associated with the pathogenesis of speech-language disorder. -- Abstract: FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein with a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation.

  12. The Key Regulator for Language and Speech Development, FOXP2, is a Novel Substrate for SUMOylation.

    Science.gov (United States)

    Meredith, Leslie J; Wang, Chiung-Min; Nascimento, Leticia; Liu, Runhua; Wang, Lizhong; Yang, Wei-Hsiung

    2016-02-01

    Transcription factor forkhead box protein P2 (FOXP2) plays an essential role in the development of language and speech. However, the transcriptional activity of FOXP2 regulated by the post-translational modifications remains unknown. Here, we demonstrated that FOXP2 is clearly defined as a SUMO target protein at the cellular levels as FOXP2 is covalently modified by both SUMO1 and SUMO3. Furthermore, SUMOylation of FOXP2 was significantly decreased by SENP2 (a specific SUMOylation protease). We further showed that FOXP2 is selectively SUMOylated in vivo on a phylogenetically conserved lysine 674 but the SUMOylation does not alter subcellular localization and stability of FOXP2. Interestingly, we observed that human etiological FOXP2 R553H mutation robustly reduces its SUMOylation potential as compared to wild-type FOXP2. In addition, the acidic residues downstream the core SUMO motif on FOXP2 are required for its full SUMOylation capacity. Finally, our functional analysis using reporter gene assays showed that SUMOylation may modulate transcriptional activity of FOXP2 in regulating downstream target genes (DISC1, SRPX2, and MiR200c). Altogether, we provide the first evidence that FOXP2 is a substrate for SUMOylation and SUMOylation of FOXP2 plays a functional role in regulating its transcriptional activity.

  13. Caractérisation des fonctions du facteur de transcription Foxp2 dans le cortex murin

    OpenAIRE

    Medvedeva, Vera

    2015-01-01

    Genetic disruptions of the forkhead box transcription factor FOXP2 in humans cause a severe autosomal-dominant speech and language disorder. FOXP2 expression pattern and genomic structure are highly conserved in distant vertebrates. We hypothesized that this conservation may allow the use of animal models to identify Foxp2 dependent neuronal circuits and molecular networks involved in social behaviors. Therefore I began characterizing Foxp2 functions in the mouse cortex in conventional hetero...

  14. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia.

    Science.gov (United States)

    Feuk, Lars; Kalervo, Aino; Lipsanen-Nyman, Marita; Skaug, Jennifer; Nakabayashi, Kazuhiko; Finucane, Brenda; Hartung, Danielle; Innes, Micheil; Kerem, Batsheva; Nowaczyk, Malgorzata J; Rivlin, Joseph; Roberts, Wendy; Senman, Lili; Summers, Anne; Szatmari, Peter; Wong, Virginia; Vincent, John B; Zeesman, Susan; Osborne, Lucy R; Cardy, Janis Oram; Kere, Juha; Scherer, Stephen W; Hannula-Jouppi, Katariina

    2006-11-01

    Mutations in FOXP2 cause developmental verbal dyspraxia (DVD), but only a few cases have been described. We characterize 13 patients with DVD--5 with hemizygous paternal deletions spanning the FOXP2 gene, 1 with a translocation interrupting FOXP2, and the remaining 7 with maternal uniparental disomy of chromosome 7 (UPD7), who were also given a diagnosis of Silver-Russell Syndrome (SRS). Of these individuals with DVD, all 12 for whom parental DNA was available showed absence of a paternal copy of FOXP2. Five other individuals with deletions of paternally inherited FOXP2 but with incomplete clinical information or phenotypes too complex to properly assess are also described. Four of the patients with DVD also meet criteria for autism spectrum disorder. Individuals with paternal UPD7 or with partial maternal UPD7 or deletion starting downstream of FOXP2 do not have DVD. Using quantitative real-time polymerase chain reaction, we show the maternally inherited FOXP2 to be comparatively underexpressed. Our results indicate that absence of paternal FOXP2 is the cause of DVD in patients with SRS with maternal UPD7. The data also point to a role for differential parent-of-origin expression of FOXP2 in human speech development.

  15. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.

    Directory of Open Access Journals (Sweden)

    Sonja C Vernes

    2011-07-01

    Full Text Available Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2 causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.

  16. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding.

    Directory of Open Access Journals (Sweden)

    Lingyan Xing

    Full Text Available foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd coding exon: a 17 base-pair (bp deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.

  17. FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets.

    Science.gov (United States)

    Iwai, Lena; Ohashi, Yohei; van der List, Deborah; Usrey, William Martin; Miyashita, Yasushi; Kawasaki, Hiroshi

    2013-09-01

    Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3-6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals.

  18. Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria.

    Science.gov (United States)

    Turner, Samantha J; Hildebrand, Michael S; Block, Susan; Damiano, John; Fahey, Michael; Reilly, Sheena; Bahlo, Melanie; Scheffer, Ingrid E; Morgan, Angela T

    2013-09-01

    Relatively little is known about the neurobiological basis of speech disorders although genetic determinants are increasingly recognized. The first gene for primary speech disorder was FOXP2, identified in a large, informative family with verbal and oral dyspraxia. Subsequently, many de novo and familial cases with a severe speech disorder associated with FOXP2 mutations have been reported. These mutations include sequencing alterations, translocations, uniparental disomy, and genomic copy number variants. We studied eight probands with speech disorder and their families. Family members were phenotyped using a comprehensive assessment of speech, oral motor function, language, literacy skills, and cognition. Coding regions of FOXP2 were screened to identify novel variants. Segregation of the variant was determined in the probands' families. Variants were identified in two probands. One child with severe motor speech disorder had a small de novo intragenic FOXP2 deletion. His phenotype included features of childhood apraxia of speech and dysarthria, oral motor dyspraxia, receptive and expressive language disorder, and literacy difficulties. The other variant was found in a family in two of three family members with stuttering, and also in the mother with oral motor impairment. This variant was considered a benign polymorphism as it was predicted to be non-pathogenic with in silico tools and found in database controls. This is the first report of a small intragenic deletion of FOXP2 that is likely to be the cause of severe motor speech disorder associated with language and literacy problems.

  19. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  20. Early Milestones in the Evolution of Accelerators

    Science.gov (United States)

    Courant, E. D.

    About 80 years ago Rutherford [1] expressed the hope that particles could be accelerated to energies exceeding those occurring in radioactivity, enabling the study of nuclei and their constituents. Physicists and engineers have more than met this challenge, and today the LHC (Large Hadron Collider) at CERN, Geneva is about to accelerate protons to 7 trillion (7 × 1012) eV. Here we describe some of the crucial steps that have gotten us there.

  1. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  2. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X.

    Directory of Open Access Journals (Sweden)

    Sebastian Haesler

    2007-12-01

    Full Text Available The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD, a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and learned vocalizations in songbirds bear behavioral and neural parallels, songbirds provide a genuine model for investigating the basic principles of speech and its pathologies. In zebra finch Area X, a basal ganglia structure necessary for song learning, FoxP2 expression increases during the time when song learning occurs. Here, we used lentivirus-mediated RNA interference (RNAi to reduce FoxP2 levels in Area X during song development. Knockdown of FoxP2 resulted in an incomplete and inaccurate imitation of tutor song. Inaccurate vocal imitation was already evident early during song ontogeny and persisted into adulthood. The acoustic structure and the duration of adult song syllables were abnormally variable, similar to word production in children with DVD. Our findings provide the first example of a functional gene analysis in songbirds and suggest that normal auditory-guided vocal motor learning requires FoxP2.

  3. FOXP2 Is Not a Major Susceptibility Gene for Autism or Specific Language Impairment

    Science.gov (United States)

    Newbury, D. F.; Bonora, E.; Lamb, J. A.; Fisher, S. E.; Lai, C. S. L.; Baird, G.; Jannoun, L.; Slonims, V.; Stott, C. M.; Merricks, M. J.; Bolton, P. F.; Bailey, A. J.; Monaco, A. P.

    2002-01-01

    The FOXP2 gene, located on human 7q31 (at the SPCH1 locus), encodes a transcription factor containing a polyglutamine tract and a forkhead domain. FOXP2 is mutated in a severe monogenic form of speech and language impairment, segregating within a single large pedigree, and is also disrupted by a translocation in an isolated case. Several studies of autistic disorder have demonstrated linkage to a similar region of 7q (the AUTS1 locus), leading to the proposal that a single genetic factor on 7q31 contributes to both autism and language disorders. In the present study, we directly evaluate the impact of the FOXP2 gene with regard to both complex language impairments and autism, through use of association and mutation screening analyses. We conclude that coding-region variants in FOXP2 do not underlie the AUTS1 linkage and that the gene is unlikely to play a role in autism or more common forms of language impairment. PMID:11894222

  4. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder.

    Science.gov (United States)

    Lai, Cecilia S L; Gerrelli, Dianne; Monaco, Anthony P; Fisher, Simon E; Copp, Andrew J

    2003-11-01

    Disruption of FOXP2, a gene encoding a forkhead-domain transcription factor, causes a severe developmental disorder of verbal communication, involving profound articulation deficits, accompanied by linguistic and grammatical impairments. Investigation of the neural basis of this disorder has been limited previously to neuroimaging of affected children and adults. The discovery of the gene responsible, FOXP2, offers a unique opportunity to explore the relevant neural mechanisms from a molecular perspective. In the present study, we have determined the detailed spatial and temporal expression pattern of FOXP2 mRNA in the developing brain of mouse and human. We find expression in several structures including the cortical plate, basal ganglia, thalamus, inferior olives and cerebellum. These data support a role for FOXP2 in the development of corticostriatal and olivocerebellar circuits involved in motor control. We find intriguing concordance between regions of early expression and later sites of pathology suggested by neuroimaging. Moreover, the homologous pattern of FOXP2/Foxp2 expression in human and mouse argues for a role for this gene in development of motor-related circuits throughout mammalian species. Overall, this study provides support for the hypothesis that impairments in sequencing of movement and procedural learning might be central to the FOXP2-related speech and language disorder.

  5. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    Science.gov (United States)

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw.

  6. Young and intense: FoxP2 immunoreactivity in Area X varies with age, song stereotypy, and singing in male zebra finches

    Directory of Open Access Journals (Sweden)

    Christopher Kirk Thompson

    2013-02-01

    Full Text Available FOXP2 is a transcription factor functionally relevant for learned vocalizations in humans and songbirds. In songbirds, FoxP2 mRNA expression in the medium spiny neurons of the basal ganglia song nucleus Area X is developmentally regulated and varies with singing conditions in different social contexts. How individual neurons in Area X change FoxP2 expression across development and in social contexts is not known, however. Here we address this critical gap in our understanding of FoxP2 as a link between neuronal networks and behavior. We used a statistically unbiased analysis of FoxP2-immunoreactivity (IR on a neuron-by-neuron basis and found a bimodal distribution of FoxP2-IR neurons in Area X: weakly-stained and intensely-stained. The density of intensely-stained FoxP2-IR neurons was 10 times higher in juveniles than in adults, exponentially decreased with age, and was negatively correlated with adult song stability. Three-week old neurons labeled with BrdU were more than five times as likely to be intensely-stained than weakly-stained. The density of FoxP2-IR putative migratory neurons with fusiform-shaped nuclei substantially decreased as birds aged. The density of intensely-stained FoxP2-IR neurons was not affected by singing whereas the density of weakly-stained FoxP2-IR neurons was. Together, these data indicate that young Area X medium spiny neurons express FoxP2 at high levels and decrease expression as they become integrated into existing neural circuits. Once integrated, levels of FoxP2 expression correlate with singing behavior. Together, these findings raise the possibility that FoxP2 levels may orchestrate song learning and song stereotypy in adults by a common mechanism.

  7. Rapid evolution accelerates plant population spread in fragmented experimental landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Kendall, Bruce E; Levine, Jonathan M

    2016-07-29

    Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species' spread velocity, but how landscape patchiness--an important control over traits under selection--influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions.

  8. Interaction between MAOA and FOXP2 in association with autism and verbal communication in a Korean population.

    Science.gov (United States)

    Park, YoungJoon; Won, SeongSik; Nam, Min; Chung, Joo-Ho; Kwack, KyuBum

    2014-12-01

    Expression levels of monoamine oxidase A (MAOA), the enzyme that related to monoamine neurotransmitters metabolism such as serotonin, are related to schizophrenia and autism spectrum disorder. Forkhead box protein P2 (FOXP2), a transcription factor, is associated with abnormal language development and is expressed in several areas of the central nervous system in response to serotonin. For this reason, we undertook interaction analysis between MAOA and FOXP2 in autism spectrum disorder, including testing the verbal communication score of the childhood autism rating scale. In interaction analysis, the FOXP2-TCGC (rs12531289-rs1350135-rs10230087-rs2061183) diplotype and MAOA-TCG (rs6323-rs1801291-rs3027407) haplotype were significantly associated with autism spectrum disorder in males. However, when the interaction term was omitted, neither MAOA nor FOXP2 was associated with autism spectrum disorder or verbal communication. These results indicate that language and speech ability is affected by an interaction between FOXP2 and MAOA, but not by either gene separately.

  9. Accelerated evolution of crotalinae snake venom gland serine proteases.

    Science.gov (United States)

    Deshimaru, M; Ogawa, T; Nakashima, K; Nobuhisa, I; Chijiwa, T; Shimohigashi, Y; Fukumaki, Y; Niwa, M; Yamashina, I; Hattori, S; Ohno, M

    1996-11-11

    Eight cDNAs encoding serine proteases isolated from Trimeresurus flavoviridis (habu snake) and T. gramineus (green habu snake) venom gland cDNA libraries showed that nonsynonymous nucleotide substitutions have accumulated in the mature protein-coding regions to cause amino acid changes. Southern blot analysis of T. flavoviridis genomic DNAs using two proper probes indicated that venom gland serine protease genes form a multigene family in the genome. These observations suggest that venom gland serine proteases have diversified their amino acid sequences in an accelerating manner. Since a similar feature has been previously discovered in crotalinae snake venom gland phospholipase A2 (PLA2) isozyme genes, accelerated evolution appears to be universal in plural isozyme families of crotalinae snake venom gland.

  10. Accelerated evolution of constraint elements for hematophagic adaptation in mosquitoes.

    Science.gov (United States)

    Wang, Ming-Shan; Adeola, Adeniyi C; Li, Yan; Zhang, Ya-Ping; Wu, Dong-Dong

    2015-11-18

    Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We found more than 540 000 constraint elements (CEs) in the Diptera genome, with the majority found in the intergenic, coding and intronic regions. Accelerated elements (AEs) identified in mosquitoes were mostly in the protein-coding regions (>93%), which differs from vertebrates in genomic distribution. Some genes functionally enriched in blood digestion, body temperature regulation and insecticide resistance showed rapid evolution not only in the lineage of the recent common ancestor of mosquitoes (RCAM), but also in some mosquito lineages. This may be associated with lineage-specific traits and/or adaptations in comparison with other insects. Our findings revealed that although universally fast evolution acted on biological systems in RCAM, such as hematophagy, same adaptations also appear to have occurred through distinct degrees of evolution in different mosquito species, enabling them to be successful blood feeders in different environments.

  11. FOXP2-positive diffuse large B-cell lymphomas exhibit a poor response to R-CHOP therapy and distinct biological signatures

    DEFF Research Database (Denmark)

    Wong, Kah Keng; Gascoyne, Duncan M; Soilleux, Elizabeth J;

    2016-01-01

    FOXP2 shares partially overlapping normal tissue expression and functionality with FOXP1; an established diffuse large B-cell lymphoma (DLBCL) oncogene and marker of poor prognosis. FOXP2 is expressed in the plasma cell malignancy multiple myeloma but has not been studied in DLBCL, where a poor p...

  12. Language Features in a Mother and Daughter of a Chromosome 7;13 Translocation Involving "FOXP2"

    Science.gov (United States)

    Tomblin, J. Bruce; O'Brien, Marlea; Shriberg, Lawrence D.; Williams, Charles; Murray, Jeff; Patil, Shivanand; Bjork, Jonathan; Anderson, Steve; Ballard, Kirrie

    2009-01-01

    Purpose: The aims of this study were (a) to locate the breakpoints of a balanced translocation (7;13) within a mother (B) and daughter (T); (b) to describe the language and cognitive skills of B and T; and (c) to compare this profile with affected family members of the KE family who have a mutation within "FOXP2." Method: The breakpoint locations…

  13. Sexual selection accelerates signal evolution during speciation in birds

    Science.gov (United States)

    Seddon, Nathalie; Botero, Carlos A.; Tobias, Joseph A.; Dunn, Peter O.; MacGregor, Hannah E. A.; Rubenstein, Dustin R.; Uy, J. Albert C.; Weir, Jason T.; Whittingham, Linda A.; Safran, Rebecca J.

    2013-01-01

    Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male–male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation. PMID:23864596

  14. A unified cosmic evolution: Inflation to late time acceleration

    CERN Document Server

    Chakraborty, Subenoy; Saha, Subhajit

    2015-01-01

    The present work deals with a cosmological model having particle creation mechanism in the framework of irreversible thermodynamics. In the second order non-equilibrium thermodynamical prescription, the particle creation rate is treated as the dissipative effect. The non-equilibrium thermodynamical process is assumed to be isentropic, and, as a consequence, the entropy per particle is constant, and, hence, the dissipative pressure can be expressed linearly in terms of the particle creation rate in the background of the homogeneous and isotropic flat FLRW model. By proper choice of the particle creation rate as a function of the Hubble parameter, the model shows the evolution of the universe starting from the inflationary scenario to the present accelerating phase, considering the cosmic matter as normal perfect fluid with barotropic equation of state.

  15. A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering.

    Science.gov (United States)

    Han, Tae-Un; Park, John; Domingues, Carlos F; Moretti-Ferreira, Danilo; Paris, Emily; Sainz, Eduardo; Gutierrez, Joanne; Drayna, Dennis

    2014-09-01

    A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls. This was compared to the distribution of variants in the GNPTAB, GNPTG, and NAGPA genes which have previously been associated with persistent stuttering. Using an expanded subject data set, we again found that NAGPA showed significantly different mutation frequencies in North Americans of European descent (p=0.0091) and a significant difference existed in the mutation frequency of GNPTAB in Brazilians (p=0.00050). No significant differences in mutation frequency in the FOXP2 and CNTNAP2 genes were observed between cases and controls. To examine the pattern of expression of these five genes in the human brain, real time quantitative reverse transcription PCR was performed on RNA purified from 27 different human brain regions. The expression patterns of FOXP2 and CNTNAP2 were generally different from those of GNPTAB, GNPTG and NAPGA in terms of relatively lower expression in the cerebellum. This study provides an improved estimate of the contribution of mutations in GNPTAB, GNPTG and NAGPA to persistent stuttering, and suggests that variants in FOXP2 and CNTNAP2 are not involved in the genesis of familial persistent stuttering. This, together with the different brain expression patterns of GNPTAB, GNPTG, and NAGPA compared to that of

  16. Expression of FOXP2 in the developing monkey forebrain: comparison with the expression of the genes FOXP1, PBX3, and MEIS2.

    Science.gov (United States)

    Takahashi, Kaoru; Liu, Fu-Chin; Oishi, Takao; Mori, Takuma; Higo, Noriyuki; Hayashi, Motoharu; Hirokawa, Katsuiku; Takahashi, Hiroshi

    2008-07-10

    By using the developing monkey brain as a model for human development, we investigated the expression pattern of the FOXP2 gene, a member of the FOX family of transcription factors in the developing monkey brain, and compared its expression pattern with transcription factors PBX3, MEIS2, and FOXP1. We observed FOXP2 mRNA expression in several brain structures, including the striatum, the islands of Calleja and other basal forebrain regions, the cerebral cortex, and the thalamus. FOXP2 mRNA was preferentially expressed in striosomal compartments during striatal development. The striosomal expression was transient and developmentally down-regulated in a topographical order. Specifically, during the perinatal state, striosomal FOXP2 expression was detected in both the caudate nucleus and the putamen, although expression was more prominent in the caudate nucleus than in the putamen. Striosomal FOXP2 expression declined during the postnatal period, first in the putamen and later in the caudate nucleus. During the same period, we also detected PBX3 mRNA in the striosomal compartment of the developing monkey striatum. FOXP2, as well as PBX3 and MEIS2, was expressed in the islands of Calleja and other cell clusters of the basal forebrain. FOXP2, in combination with PBX3 and MEIS2, may play a pivotal role in the development of striosomal neurons of the striatum and the islands of Calleja.

  17. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    Science.gov (United States)

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes.

  18. Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review.

    Science.gov (United States)

    Lennon, P A; Cooper, M L; Peiffer, D A; Gunderson, K L; Patel, A; Peters, Sarika; Cheung, S W; Bacino, C A

    2007-04-15

    We report on a young male with moderate mental retardation, dysmorphic features, and language delay who is deleted for 7q31.1-7q31.31. His full karyotype is 46,XY,der(7)del(7)(q31.1q31.31)ins(10;7)(q24.3;q31.1q31.31)mat. This child had language impairment, including developmental verbal dyspraxia, but did not meet criteria for autism according to standardized ADOS testing. Our patient's deletion, which is the smallest reported deletion including FOXP2, adds to the body of evidence that supports the role of FOXP2 in speech and language impairment, but not in autism. A reported association between autism and deletions of WNT2, a gene also deleted in our patient, is likewise not supported by our case. Previously, fine mapping with microsatellites markers within in a large three-generation family, in which half the members had severe specific language impairment, aided the localization of the SPCH1 locus to 7q31 within markers D7S2459 (107.1 Mb) and D7S643 (120.5 Mb). Additionally, chromosome rearrangement of 7q31 and mutational analyses have supported the growing evidence that FOXP2, a gene within the SPCH1 region, is involved with speech and language development. It is unclear however whether the AUTS1 (autistic spectrum 1) locus, highly linked to 7q31, overlaps with the SPCH1 and FOXP2.

  19. Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2.

    Science.gov (United States)

    Zeesman, Susan; Nowaczyk, Małgorzata J M; Teshima, Ikuko; Roberts, Wendy; Cardy, Janis Oram; Brian, Jessica; Senman, Lili; Feuk, Lars; Osborne, Lucy R; Scherer, Stephen W

    2006-03-01

    We report detailed clinical, cytogenetic, and molecular findings in a girl with a deletion of chromosome 7q31-q32. This child has a severe communication disorder with evidence of oromotor dyspraxia, dysmorphic features, and mild developmental delay. She is unable to cough, sneeze, or laugh spontaneously. Her deletion is on the paternally inherited chromosome and includes the FOXP2 gene, which has recently been associated with speech and language impairment and a similar form of oromotor dyspraxia in at least three other published cases. We hypothesize that our patient's communication disorder and oromotor deficiency are due to haploinsufficiency for FOXP2 and that her dysmorphism and developmental delay are a consequence of the absence of the other genes involved in the microdeletion. We propose that this patient, together with others reported in the literature, may define a new contiguous gene deletion syndrome encompassing the 7q31-FOXP2 region. Cytogenetic and molecular analysis of this region should be considered for other individuals displaying similar characteristics.

  20. A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice

    Science.gov (United States)

    Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R.; Radden, Taylor; Dunson, David B.; Fisher, Simon E.; Jarvis, Erich D.

    2016-01-01

    Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.

  1. Association between the FOXP2 gene and functional articulation disorders%FOXP2基因多态性与功能性构音障碍的关系

    Institute of Scientific and Technical Information of China (English)

    赵云静; 王岳平; 华天懿; 郗春艳

    2012-01-01

    目的 探讨FOXP2基因多态性与功能性构音障碍(FAD)的关系.方法 选择轻度FAD患儿42例(轻度FAD组)、中重度FAD患儿108例(中重度FAD组),同期选择140例正常健康体检者作为对照组.采用PCR-RFLP结合直接测序法测定各组FOXP2基因5′调控区3个单核苷酸多态位点(SNPs) rs923875、rs1852469和rs2396722的等位基因和基因型频率,同时构建单倍型.结果 轻度FAD组rs1852469位点4例,对照组rs2396722位点2例、rs1852469位点3例样本未能成功分型.其余FOXP2基因3个SNPs的等位基因和基因型频率均符合Hardy-Weinberg平衡定律.中重度FAD组rs1852469位点的等位基因及基因型频率与正常对照组比较有明显统计学意义(P<0.05).单倍型rs923875A/+rs2396722T/+rs1852469T在中重度FAD组的频率显著高于正常对照组(P<0.05).单倍型rs923875C/+ rs2396722C/+ rs1852469A在正常对照组的频率显著高于中重度FAD组,为保护性单倍型(P<0.05).结论 FOXP2基因可能与中重度FAD有关;含有rs923875A/+ rs2396722T/+ rs1852469T单倍型的个体发生FAD的相对风险较高.%Objective To investigate the association between the FOXP2 gene and functional articulation disorders. Methods 42 cases of mild function articulation disorders, 108 cases of moderate to severe functional articulation disorders and 140 cases of healthy unrelated controls of similar ethnic background were recruited. Three single nucleotide polymor-phisms (SNPs) rs923875, rs2396722, rsl852469 in the FOXP2 gene were selected. PCR was performed and the products were digested with restriction enzymes ApalI, VspⅠ, TrulⅠ respectively. The comparisons of allelic frequencies and geno-type analyses between patients and controls were performed using SHEsis program online. The haplotype analysis were also considered. Results Neither genotype nor allele frequency distribution of mild patients was different from control subjects. There were significant differences in the

  2. Angular momentum evolution in laser-plasma accelerators

    CERN Document Server

    Thaury, C; Corde, S; Lehe, R; Bouteiller, M Le; Phuoc, K Ta; Davoine, X; Rax, J -M; Rousse, A; Malka, V

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration.

  3. Angular-momentum evolution in laser-plasma accelerators.

    Science.gov (United States)

    Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V

    2013-09-27

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  4. Angular-Momentum Evolution in Laser-Plasma Accelerators

    CERN Document Server

    Thaury, C; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V; 10.1103/PhysRevLett.111.135002

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  5. Transcriptomic insights into human brain evolution: acceleration, neutrality, heterochrony.

    Science.gov (United States)

    Somel, Mehmet; Rohlfs, Rori; Liu, Xiling

    2014-12-01

    Primate brain transcriptome comparisons within the last 12 years have yielded interesting but contradictory observations on how the transcriptome evolves, and its adaptive role in human cognitive evolution. Since the human-chimpanzee common ancestor, the human prefrontal cortex transcriptome seems to have evolved more than that of the chimpanzee. But at the same time, most expression differences among species, especially those observed in adults, appear as consequences of neutral evolution at cis-regulatory sites. Adaptive expression changes in the human brain may be rare events involving timing shifts, or heterochrony, in specific neurodevelopmental processes. Disentangling adaptive and neutral expression changes, and associating these with human-specific features of the brain require improved methods, comparisons across more species, and further work on comparative development.

  6. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    Science.gov (United States)

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion.

  7. Tropics accelerate the evolution of hybrid male sterility in Drosophila.

    Science.gov (United States)

    Yukilevich, Roman

    2013-06-01

    Understanding the evolutionary mechanisms that facilitate speciation and explain global patterns of species diversity has remained a challenge for decades. The most general pattern of species biodiversity is the latitudinal gradient, whereby species richness increases toward the tropics. Although such a global pattern probably has a multitude of causes, recent attention has focused on the hypothesis that speciation and the evolution of reproductive isolation occur faster in the tropics. Here, I tested this prediction using a dataset on premating and postzygotic isolation between recently diverged Drosophila species. Results showed that while the evolution of premating isolation was not greater between tropical Drosophila relative to nontropical species, postzygotic isolation evolved faster in the tropics. In particular, hybrid male sterility was much greater among tropical Drosophila compared to nontropical species pairs of similar genetic age. Several testable explanations for the novel pattern are discussed, including greater role for sterility-inducing bacterial endosymbionts in the tropics and more intense sperm-sperm competition or sperm-egg sexual conflict in the tropics. The results imply that processes of speciation in the tropics may evolve at different rates or may even be somewhat different from those at higher latitudes.

  8. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  9. Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning.

    Science.gov (United States)

    Hara, Erina; Perez, Jemima M; Whitney, Osceola; Chen, Qianqian; White, Stephanie A; Wright, Timothy F

    2015-04-15

    Vocal learning underlies acquisition of both language in humans and vocal signals in some avian taxa. These bird groups and humans exhibit convergent developmental phases and associated brain pathways for vocal communication. The transcription factor FoxP2 plays critical roles in vocal learning in humans and songbirds. Another member of the forkhead box gene family, FoxP1 also shows high expression in brain areas involved in vocal learning and production. Here, we investigate FoxP2 and FoxP1 mRNA and protein in adult male budgerigars (Melopsittacus undulatus), a parrot species that exhibits vocal learning as both juveniles and adults. To examine these molecules in adult vocal learners, we compared their expression patterns in the budgerigar striatal nucleus involved in vocal learning, magnocellular nucleus of the medial striatum (MMSt), across birds with different vocal states, such as vocalizing to a female (directed), vocalizing alone (undirected), and non-vocalizing. We found that both FoxP2 mRNA and protein expressions were consistently lower in MMSt than in the adjacent striatum regardless of the vocal states, whereas previous work has shown that songbirds exhibit down-regulation in the homologous region, Area X, only after singing alone. In contrast, FoxP1 levels were high in MMSt compared to the adjacent striatum in all groups. Taken together these results strengthen the general hypothesis that FoxP2 and FoxP1 have specialized expression in vocal nuclei across a range of taxa, and suggest that the adult vocal plasticity seen in budgerigars may be a product of persistent down-regulation of FoxP2 in MMSt.

  10. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    Science.gov (United States)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  11. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP

    Science.gov (United States)

    Dugas, Diana V.; Hernandez, David; Koenen, Erik J.M.; Schwarz, Erika; Straub, Shannon; Hughes, Colin E.; Jansen, Robert K.; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T.; Hajrah, Nahid H.; Alharbi, Njud S.; Al-Malki, Abdulrahman L.; Sabir, Jamal S. M.; Bailey, C. Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  12. Accelerated evolution after gene duplication: a time-dependent process affecting just one copy.

    Science.gov (United States)

    Pegueroles, Cinta; Laurie, Steve; Albà, M Mar

    2013-08-01

    Gene duplication is widely regarded as a major mechanism modeling genome evolution and function. However, the mechanisms that drive the evolution of the two, initially redundant, gene copies are still ill defined. Many gene duplicates experience evolutionary rate acceleration, but the relative contribution of positive selection and random drift to the retention and subsequent evolution of gene duplicates, and for how long the molecular clock may be distorted by these processes, remains unclear. Focusing on rodent genes that duplicated before and after the mouse and rat split, we find significantly increased sequence divergence after duplication in only one of the copies, which in nearly all cases corresponds to the novel daughter copy, independent of the mechanism of duplication. We observe that the evolutionary rate of the accelerated copy, measured as the ratio of nonsynonymous to synonymous substitutions, is on average 5-fold higher in the period spanning 4-12 My after the duplication than it was before the duplication. This increase can be explained, at least in part, by the action of positive selection according to the results of the maximum likelihood-based branch-site test. Subsequently, the rate decelerates until purifying selection completely returns to preduplication levels. Reversion to the original rates has already been accomplished 40.5 My after the duplication event, corresponding to a genetic distance of about 0.28 synonymous substitutions per site. Differences in tissue gene expression patterns parallel those of substitution rates, reinforcing the role of neofunctionalization in explaining the evolution of young gene duplicates.

  13. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans...... is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel...... neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. Udgivelsesdato: 2005-Jun...

  14. Minimum-acceleration Trajectory Optimization for Humanoid Manipulator Based on Differential Evolution

    Directory of Open Access Journals (Sweden)

    Ren Ziwu

    2016-04-01

    Full Text Available A humanoid manipulator produces significantly reactive forces against a humanoid body when it operates in a rapid and continuous reaction environment (e.g., playing baseball, ping-pong etc.. This not only disturbs the balance and stability of the humanoid robot, but also influences its operation precision. To solve this problem, a novel approach, which is able to generate a minimum-acceleration and continuous acceleration trajectory for the humanoid manipulator, is presented in this paper. By this method, the whole trajectory of humanoid manipulation is divided into two processes, i.e., the operation process and the return process. Moreover, the target operation point is considered as a particular point that should be passed through. As such, the trajectory of each process is described through a quartic polynomial in the joint space, after which the trajectory planning problem for the humanoid manipulator can be formulated as a global constrained optimization problem. In order to alleviate the reactive force, a fitness function that aims to minimize the maximum acceleration of each joint of the manipulator is defined, while differential evolution is employed to determine the joint accelerations of the target operation point. Thus, a trajectory with a minimum-acceleration and continuous acceleration profile is obtained, which can reduce the effect on the body and be favourable for the balance and stability of the humanoid robot to a certain extent. Finally, a humanoid robot with a 7-DOF manipulator for ping-pong playing is employed as an example. Simulation experiment results show the effectiveness of this method for the trajectory planning problem being studied.

  15. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  16. Stability of cylindrical thin shell wormhole during evolution of universe from inflation to late time acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R. [Department of Science, Campus of Bijar, University of Kurdistan,Bijar (Iran, Islamic Republic of); Sepehri, A. [Faculty of Physics, Shahid Bahonar University,P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2015-03-16

    In this paper, we consider the stability of cylindrical wormholes during evolution of universe from inflation to late time acceleration epochs. We show that there are two types of cylindrical wormholes. The first type is produced at the corresponding point where k black F-strings are transited to BIon configuration. This wormhole transfers energy from extra dimensions into our universe, causes inflation, loses it’s energy and vanishes. The second type of cylindrical wormhole is created by a tachyonic potential and causes a new phase of acceleration. We show that wormhole parameters grow faster than the scale factor in this era, overtake it at ripping time and lead to the destruction of universe at big rip singularity.

  17. Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes.

    Science.gov (United States)

    Nobuhisa, I; Nakashima, K; Deshimaru, M; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Sakaki, Y; Hattori, S; Kihara, H; Ohno, M

    1996-06-26

    Three Trimeresurus okinavensis (To; himehabu snake, Crotalinae) venom gland phospholipase A2 (PLA2) isozymeencoding genes, gPLA2-o1, gPLA2-o2 and gPLA2-o3, were isolated from its genomic DNA library. The nucleotide (nt) sequence analysis revealed that two of the three genes (gPLA2-o2 and gPLA2-o3) occasionally have been converted to inactivated genes by introduction of one base insertion or substitution. It was confirmed from Southern blot analysis that the To haploid genome contains only three venom gland PLA2 isozyme genes herein isolated. Comparison of these genes showed that nonsynonymous nt substitutions have occurred more frequently than synonymous nt substitutions in the protein-coding regions, except for the signal-peptide coding domain, implying that To venom gland PLA2 isozyme genes have evolved via accelerated evolution. Such an evolutionary feature of To venom gland PLA2 isozyme genes proves the general universality of accelerated evolution previously drawn for venom gland PLA2 isozyme genes of other crotalinae snakes. The variability in the mature protein-coding regions of three To venom gland PLA2 isozyme genes appears to have been brought about by natural selection for point mutations.

  18. Molecular evolution of scorpion a-toxins--Accelerated substitutions and functional divergence

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Scorpion α-toxins are a family of toxic proteins with similar scaffold, but possess divergent pharmacological properties.Analysis of cDNA sequences reveals that the numbers of nucleotide substitutions per site (K) for 5' and 3' UTRs are smaller than those per synonymous site (Ks) for the mature peptide-coding sequences, whereas the numbers of nucleotide substitutions per nonsynonymous site (Ka) are close to or larger than Ks values for relevant pairs of cDNAs. These results, together with phylogenetic analysis, indicate that scorpion a-toxins have evolved by accelerated substitutions in the mature toxin regions. In addition, the 15 amino acids, absolutely conserved in all the scorpion α-toxins described so far, are mostly located in molecular interior, which may be involved in structural constraints for stabilizing the CSαβ fold in evolution of these molecules. Four hot spot mutation sites in the molecular surface are found to dis tribute in the putative functional regions of α-toxins, suggesting that positive Darwinian selection drives the accelerated evolution of scorpion α-toxins. These findings reasonably explain the relationship between three-dimensional structure conservation and functional divergence of scorpion α-toxins and are of important value in guiding us in our engineering experiments to obtain higher affinity ligands to Na+ channels.

  19. Comprehensive transcriptome analysis reveals accelerated genic evolution in a Tibet fish, Gymnodiptychus pachycheilus.

    Science.gov (United States)

    Yang, Liandong; Wang, Ying; Zhang, Zhaolei; He, Shunping

    2014-12-26

    Elucidating the genetic mechanisms of organismal adaptation to the Tibetan Plateau at a genomic scale can provide insights into the process of adaptive evolution. Many highland species have been investigated and various candidate genes that may be responsible for highland adaptation have been identified. However, we know little about the genomic basis of adaptation to Tibet in fishes. Here, we performed transcriptome sequencing of a schizothoracine fish (Gymnodiptychus pachycheilus) and used it to identify potential genetic mechanisms of highland adaptation. We obtained totally 66,105 assembled unigenes, of which 7,232 were assigned as putative one-to-one orthologs in zebrafish. Comparative gene annotations from several species indicated that at least 350 genes lost and 41 gained since the divergence between G. pachycheilus and zebrafish. An analysis of 6,324 orthologs among zebrafish, fugu, medaka, and spotted gar identified consistent evidence for genome-wide accelerated evolution in G. pachycheilus and only the terminal branch of G. pachycheilus had an elevated Ka/Ks ratio than the ancestral branch. Many functional categories related to hypoxia and energy metabolism exhibited rapid evolution in G. pachycheilus relative to zebrafish. Genes showing signature of rapid evolution and positive selection in the G. pachycheilus lineage were also enriched in functions associated with energy metabolism and hypoxia. The first genomic resources for fish in the Tibetan Plateau and evolutionary analyses provided some novel insights into highland adaptation in fishes and served as a foundation for future studies aiming to identify candidate genes underlying the genetic bases of adaptation to Tibet in fishes.

  20. TALENs-Assisted Multiplex Editing for Accelerated Genome Evolution To Improve Yeast Phenotypes.

    Science.gov (United States)

    Zhang, Guoqiang; Lin, Yuping; Qi, Xianni; Li, Lin; Wang, Qinhong; Ma, Yanhe

    2015-10-16

    Genome editing is an important tool for building novel genotypes with a desired phenotype. However, the fundamental challenge is to rapidly generate desired alterations on a genome-wide scale. Here, we report TALENs (transcription activator-like effector nucleases)-assisted multiplex editing (TAME), based on the interaction of designed TALENs with the DNA sequences between the critical TATA and GC boxes, for generating multiple targeted genomic modifications. Through iterative cycles of TAME to induce abundant semirational indels coupled with efficient screening using a reporter, the targeted fluorescent trait can be continuously and rapidly improved by accumulating multiplex beneficial genetic modifications in the evolving yeast genome. To further evaluate its efficiency, we also demonstrate the application of TAME for significantly improving ethanol tolerance of yeast in a short amount of time. Therefore, TAME is a broadly generalizable platform for accelerated genome evolution to rapidly improve yeast phenotypes.

  1. Mid-Infrared Evidence for Accelerated Evolution in Compact Group Galaxies

    CERN Document Server

    Walker, Lisa May; Gallagher, Sarah C; Hibbard, John E; Hornschemeier, Ann E; Charlton, Jane C; Jarrett, Thomas H

    2009-01-01

    We find evidence for accelerated evolution in compact group galaxies from the distribution in mid-infrared colorspace of 42 galaxies from 12 Hickson Compact Groups (HCGs) compared to the the distributions of several other samples including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are not uniformly distributed in colorspace, as well as quantitative evidence for a gap. Galaxies in the infall region of the Coma cluster also exhibit a non-uniform distribution and a less well defined gap, which may reflect a similarity with the compact group environment. Neither the Coma Center or interacting samples show evidence of a gap, leading us to speculate that the gap is unique to the environment of high galaxy density where gas has not been fully processed or stripped.

  2. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Science.gov (United States)

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-04

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  3. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Directory of Open Access Journals (Sweden)

    Layla Parker-Katiraee

    2007-05-01

    Full Text Available Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  4. 3D simulations of supernova remnants evolution including non-linear particle acceleration

    CERN Document Server

    Ferrand, Gilles; Ballet, Jean; Teyssier, Romain; Fraschetti, Federico

    2009-01-01

    If a sizeable fraction of the energy of supernova remnant shocks is channeled into energetic particles (commonly identified with Galactic cosmic rays), then the morphological evolution of the remnants must be distinctly modified. Evidence of such modifications has been recently obtained with the Chandra and XMM-Newton X-ray satellites. To investigate these effects, we coupled a semi-analytical kinetic model of shock acceleration with a 3D hydrodynamic code (by means of an effective adiabatic index). This enables us to study the time-dependent compression of the region between the forward and reverse shocks due to the back reaction of accelerated particles, concomitantly with the development of the Rayleigh-Taylor hydrodynamic instability at the contact discontinuity. Density profiles depend critically on the injection level eta of particles: for eta up to about 10^-4 modifications are weak and progressive, for eta of the order of 10^-3 modifications are strong and immediate. Nevertheless, the extension of the...

  5. Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes.

    Science.gov (United States)

    Chuman, Y; Nobuhisa, I; Ogawa, T; Deshimaru, M; Chijiwa, T; Tan, N H; Fukumaki, Y; Shimohigashi, Y; Ducancel, F; Boulain, J C; Ménez, A; Ohno, M

    2000-03-01

    In accordance with detection of a few phospholipase A2 (PLA2) isozyme genes by Southern blot analysis, only two cDNAs, named NnkPLA-I , and NnkPLA-II, encoding group I PLA2s, NnkPLA-I and NnkPLA-II, respectively, were isolated from the venom gland cDNA library of Elapinae Naja naja kaouthia of Malaysia. NnkPLA-I and NnkPLA-II showed four amino acid substitutions, all of which were brought about by single nucleotide substitution. No existence of clones encoding CM-II and CM-III, PLA2 isozymes which had been isolated from the venom of N. naja kaouthia of Thailand, in Malaysian N. naja kaouthia venom gland cDNA library was verified by dot blot hybridization analysis with particular probes. NnkPLA-I and NnkPLA-II differed from CM-II and CM-III with four and two amino acid substitutions, respectively, suggesting that their molecular evolution is regional. The comparison of NnkPLA-I, NnkPLA-II and cDNAs encoding other group I snake venom gland PLA2s indicated that the 5'- and 3'-untranslated regions are more conserved than the mature protein-coding region and that the number of nucleotide substitutions per nonsynonymous site is almost equal to that per synonymous site in the protein-coding region, suggesting that accelerated evolution has occurred in group I venom gland PLA2s possibly to acquire new physiological functions.

  6. Accelerated evolution and functional divergence of scorpion short-chain K+ channel toxins after speciation.

    Science.gov (United States)

    Gao, Bin; Zhu, Shunyi

    2012-10-01

    The α-KTx14 subfamily of scorpion toxins is a group of short-chain polypeptides affecting K(+) channels, including five known members which are restrictedly distributed in Mesobuthus martensii. Here, we describe seven new α-KTx14 peptides from M. martensii and its sibling species Mesobuthus eupeus, two of which (termed MarKTX-3 and MeuKTX-1) were chemically synthesized and refolded for structural and functional studies. Electrophysiological recordings of effects of these two peptides on an array of voltage-gated potassium channels revealed that MarKTX-3 was capable of inhibiting five mammalian K(v)1 isoforms (rK(v)1.1-rK(v)1.5) and the Drosophila Shaker channel with low potency whereas MeuKTX-1 lacks such activity. Circular dichroism spectroscopy analysis combined with homology modeling demonstrates that MarKTX-3 and MeuKTX-1 both adopt a similar cysteine-stabilized α-helical and β-sheet fold. Evolutionary analysis indicates accelerated amino acid substitutions in the mature-peptide-encoding regions of orthologous α-KTx14 peptides after speciation, thereby providing evidences for adaptive evolution and functional divergence of this subfamily.

  7. Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences.

    Science.gov (United States)

    Triant, Deborah A; Dewoody, J Andrew

    2006-01-01

    Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation.

  8. Metabolic acceleration and the evolution of human brain size and life history.

    Science.gov (United States)

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.

  9. Evolution of Wake Instabilities and the Acceleration of the Slow Solar Wind: Melon Seed and Expansion Effects

    Science.gov (United States)

    Rappazzo, A. F.; Velli, M.; Einaudi, G.; Dahlburg, R. B.

    2003-09-01

    We extend previous 2D simulation studies of slow solar wind acceleration due to the nonlinear evolution of the instability of the plasma/current sheet above streamers. We include the effects of the melon-seed force due to the overall magnetic field radial gradients on the plasmoid formed by the instability, as well as the subsequent expansion effects using the Expanding Box Model.

  10. Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions.

    Science.gov (United States)

    Ogawa, T; Nakashima, K; Nobuhisa, I; Deshimaru, M; Shimohigashi, Y; Fukumaki, Y; Sakaki, Y; Hattori, S; Ohno, M

    1996-01-01

    The nucleotide sequences of two cDNAs and four genes encoding Trimeresurus gramineus venom gland phospholipase A2 (PLA2) isozymes were determined and compared internally and externally with those encoding Trimeresurus flavoviridis venom gland PLA2 isozymes. It was revealed that the protein-coding regions are much more diversified than the 5' and 3' untranslated regions (UTRs) and the introns except for the signal peptide domain. The numbers of nucleotide substitutions per site (KN) for the UTRs and the introns were approximately one-quarter of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions and were at the same level as the KN value of T. gramineus and T. flavoviridis TATA box-binding protein (TBP) genes, indicating that the protein-coding regions of PLA2 isozyme genes are unusually variable and that the UTRs including the introns of venom gland PLA2 isozyme genes have evolved at similar rate to those of non-venomous genes. The numbers of nucleotide substitutions per non-synonymous site (KA) values were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes, indicating that the protein-coding regions of snake venom gland PLA2 isozyme genes have evolved via accelerated evolution. Furthermore, the evolutionary trees derived from the combined sequences of the 5' and 3' UTRs and the signal peptide domain of cDNAs were in accord with the consequences from taxonomy. In contrast, the evolutionary trees from the mature protein-coding region sequences of cDNAs and from the amino acid sequences showed random patterns. Estimations of nucleotide divergence of genes and the phylogenetic analysis reveal that snake venom group IJ PLA2 isozyme genes have been evolving under adaptive pressure to acquire new physiological activities.

  11. Role of accelerated segment switch in exons to alter targeting (ASSET in the molecular evolution of snake venom proteins

    Directory of Open Access Journals (Sweden)

    Kini R Manjunatha

    2009-06-01

    Full Text Available Abstract Background Snake venom toxins evolve more rapidly than other proteins through accelerated changes in the protein coding regions. Previously we have shown that accelerated segment switch in exons to alter targeting (ASSET might play an important role in its functional evolution of viperid three-finger toxins. In this phenomenon, short sequences in exons are radically changed to unrelated sequences and hence affect the folding and functional properties of the toxins. Results Here we analyzed other snake venom protein families to elucidate the role of ASSET in their functional evolution. ASSET appears to be involved in the functional evolution of three-finger toxins to a greater extent than in several other venom protein families. ASSET leads to replacement of some of the critical amino acid residues that affect the biological function in three-finger toxins as well as change the conformation of the loop that is involved in binding to specific target sites. Conclusion ASSET could lead to novel functions in snake venom proteins. Among snake venom serine proteases, ASSET contributes to changes in three surface segments. One of these segments near the substrate binding region is known to affect substrate specificity, and its exchange may have significant implications for differences in isoform catalytic activity on specific target protein substrates. ASSET therefore plays an important role in functional diversification of snake venom proteins, in addition to accelerated point mutations in the protein coding regions. Accelerated point mutations lead to fine-tuning of target specificity, whereas ASSET leads to large-scale replacement of multiple functionally important residues, resulting in change or gain of functions.

  12. Accelerated molecular evolution of insect orthologues of ERG28/C14orf1: a link with ecdysteroid metabolism?

    Indian Academy of Sciences (India)

    Reiner A. Veitia; Laurence D. Hurst

    2001-04-01

    We have analysed the evolution of ERG28/C14orf1, a gene coding for a protein involved in sterol biosynthesis. While primary sequence of the protein is well conserved in all organisms able to synthesize sterols de novo, strong divergence is noticed in insects, which are cholesterol auxotrophs. In spite of this virtual acceleration, our analysis suggests that the insect orthologues are evolving today at rates similar to those of the remaining members of the family. A plausible way to explain this acceleration and subsequent stabilization is that Erg28 plays a role in at least two different pathways. Discontinuation of the cholesterogenesis pathway in insects allowed the protein to evolve as much as the function in the other pathway was not compromised.

  13. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mehrling, T.J., E-mail: timon.mehrling@desy.de [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Robson, R.E. [Centre for Quantum Dynamics, School of Natural Sciences, Griffith University, Brisbane (Australia); Erbe, J-H.; Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany)

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  14. The evolution of tooling, techniques, and quality control for accelerator dipole magnet cables

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, R.M.

    1992-08-01

    The present generation of particle accelerators are utilizing the flattened, compacted, single layer cable design introduced nearly 20 years ago at Rutherford Laboratory. However, the requirements for current density, filament size, dimensional control long lengths, and low current degradation are much more stringent for the present accelerators compared with the earlier Tevatron and HERA accelerators. Also, in order to achieve higher field strengths with efficient use of superconductor, the new designs require wider cables with more strands. These requirements have stimulated an active research effort which has led to significant improvements in critical current density and conductor manufacturing. In addition they have stimulated the development of new cabling techniques, improved tooling, and better measurement techniques. The need to produce over 20 million meters of cable has led to the development of high speed cabling machines and on-line quality assurance measurements. These new developments will be discussed, and areas still requiring improvement will be identified.

  15. Accelerated evolution of small serum proteins (SSPs)-The PSP94 family proteins in a Japanese viper.

    Science.gov (United States)

    Aoki, Narumi; Matsuo, Hisashi; Deshimaru, Masanobu; Terada, Shigeyuki

    2008-12-15

    Five small serum proteins (SSPs) with molecular masses of 6.5-10 kDa were detected in Habu (Trimeresurus flavoviridis) serum; this included two novel proteins SSP-4 and SSP-5. The amino acid sequences of these proteins and of SSP-1, SSP-2, and SSP-3, which were reported previously, were determined on the basis of the nucleotide sequences of their cDNAs. Although these proteins exhibited only limited sequence identity to mammalian prostatic secretory protein of 94 amino acids (PSP94), the topological pattern of disulfide bonds in SSPs was identical to that of the mammalian proteins. SSP-3 and SSP-4 lacked approximately 30 residues at the C-terminal. Each of the full-length cDNAs encoded a mature protein of 62-90 residues and a highly conserved signal peptide. The evolutionary distances between SSPs estimated on the basis of the amino acid changes were significantly greater than those of the synonymous nucleotide substitutions; these finding, together with results from analyses of nonsynonymous to synonymous rates of change (dN/dS) suggest that snake SSPs have endured substantial accelerated adaptive protein evolution. Such accelerated positive selection in SSPs parallels other findings of similar molecular evolution in snake venom proteins and suggests that diversifying selection on both systems may be linked, and that snake SSP genes may have evolved by gene duplication and rapid diversification to facilitate the acquisition of various functions to block venom activity within venomous snakes.

  16. Acceleration and transport of anomalous cosmic rays: Investigating the spectral evolution at Voyager 1 beyond the termination shock

    Science.gov (United States)

    Senanayake, Udara K.

    Interstellar neutral atoms entering the heliosphere could become ionized by photo-ionization or charge exchange with solar-wind ions. These newly created ions are picked up by the solar wind and carried to the termination shock (TS) where they are believed to be accelerated by the diffusive shock acceleration process to high energies (˜1-100 MeV n-1). The accelerated ions are known as anomalous cosmic rays (ACRs). When NASA's space probe, Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. The model developed here is based on the suggestion that ACRs are still accelerated at the shock, but away from the Voyager crossing points. First, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary of 0.5 MeV n-1, is reached. Next, we propose that the solar cycle had an important effect on the evolving of the spectra in the heliosheath. To investigate this, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. In addition, we developed a charge consistent stochastic model to simulate multiply charged oxygen ACRs. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by combining intermediate-energy particles arriving from the heliotail

  17. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu

    2009-02-15

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.

  18. Temporal evolution of longitudinal bunch profile in a laser wakefield accelerator

    OpenAIRE

    Heigoldt, M; Popp, A; Khrennikov, K.; Wenz, J; Chou, SW; Karsch, S.; Bajlekov, SI; Hooker, SM; Schmidt, B.

    2015-01-01

    © 2015 authors. Published by the American Physical Society. We present single-shot measurements of the longitudinal bunch profile from a laser-wakefield accelerator with sub-fs resolution, based on detection of coherent transition radiation in a broad spectral range. A previously developed phase retrieval algorithm enables reconstruction of the bunch profile without prior assumptions about its shape. In this study, a variable-length gas target is used to explore the dynamics of bunch evolutio...

  19. Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome.

    Directory of Open Access Journals (Sweden)

    Leonardo Arbiza

    2006-04-01

    Full Text Available For years evolutionary biologists have been interested in searching for the genetic bases underlying humanness. Recent efforts at a large or a complete genomic scale have been conducted to search for positively selected genes in human and in chimp. However, recently developed methods allowing for a more sensitive and controlled approach in the detection of positive selection can be employed. Here, using 13,198 genes, we have deduced the sets of genes involved in rate acceleration, positive selection, and relaxation of selective constraints in human, in chimp, and in their ancestral lineage since the divergence from murids. Significant deviations from the strict molecular clock were observed in 469 human and in 651 chimp genes. The more stringent branch-site test of positive selection detected 108 human and 577 chimp positively selected genes. An important proportion of the positively selected genes did not show a significant acceleration in rates, and similarly, many of the accelerated genes did not show significant signals of positive selection. Functional differentiation of genes under rate acceleration, positive selection, and relaxation was not statistically significant between human and chimp with the exception of terms related to G-protein coupled receptors and sensory perception. Both of these were over-represented under relaxation in human in relation to chimp. Comparing differences between derived and ancestral lineages, a more conspicuous change in trends seems to have favored positive selection in the human lineage. Since most of the positively selected genes are different under the same functional categories between these species, we suggest that the individual roles of the alternative positively selected genes may be an important factor underlying biological differences between these species.

  20. Models of Metal Poor Stars with Gravitational Settling and Radiative Accelerations I. Evolution and Abundance Anomalies

    CERN Document Server

    Richard, O; Richer, J; Turcotte, S; Turck-Chièze, S; Van den Berg, D A; Berg, Don A. Vanden

    2002-01-01

    Evolutionary models have been calculated for Pop II stars of 0.5 to 1.0$M_\\odot$ from the pre-main-sequence to the lower part of the giant branch. Rosseland opacities and radiative accelerations were calculated taking into account the concentration variations of 28 chemical species, including all species contributing to Rosseland opacities in the OPAL tables. The effects of radiative accelerations, thermal diffusion and gravitational settling are included. While models were calculated both for Z=0.00017 and 0.0017, we concentrate on models with Z=0.00017 in this paper. These are the first Pop II models calculated taking radiative acceleration into account. It is shown that, at least in a 0.8$M_\\odot$ star, it is a better approximation not to let Fe diffuse than to calculate its gravitational settling without including the effects of $g_{rad}(Fe)$. In the absence of any turbulence outside of convection zones, the effects of atomic diffusion are large mainly for stars more massive than 0.7$M_\\odot$. Overabundan...

  1. Radio frequency for particle accelerators: evolution and anatomy of a technology

    CERN Document Server

    Vretenar, M

    2011-01-01

    This introductory lecture outlines the impressive progress of radio frequency technology, from the first table-top equipment to the present gigantic installations. The outcome of 83 years of evolution is subsequently submitted to an anatomical analysis, which allows identifying the main components of a modern RF system and their interrelations.

  2. Genetic basis of human brain evolution: accelerating along the primate speedway.

    Science.gov (United States)

    Hayakawa, Toshiyuki; Altheide, Tasha K; Varki, Ajit

    2005-01-01

    Using novel variations of traditional methods, report in the December 29(th) issue of Cell that diverse genes involved in neural biology (particularly those critical in development) show higher rates of protein evolution in primates than in rodents-particularly in the lineage leading to humans.

  3. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  4. Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration

    CERN Document Server

    Yonetoku, Daisuke; Murakami, Toshio; Emura, Naomi; Aoyama, Yuka; Kidamura, Takashi; Kodaira, Hironobu; Kodama, Yoshiki; Kozaka, Ryota; Nashimoto, Takuro; Okuno, Shinya; Yokota, Satoshi; Yoshinari, Satoru; Abe, Keiichi; Onda, Kaori; Tashiro, Makoto S; Urata, Yuji; Nakagawa, Yujin E; Sugita, Satoshi; Yamaoka, Kazutaka; Yoshida, Atsumasa; Ishimura, Takuto; Kawai, Nobuyuki; Shimokawabe, Takashi; Kinugasa, Kenzo; Kohmura, Takayoshi; Kubota, Kaori; Sugiyasu, Kei; Ueda, Yoshihiro; Masui, Kensuke; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Maeno, Shouta; Sonoda, Eri; Yamauchi, Makoto; Kuwahara, Makoto; Tamagawa, Toru; Matsuura, Daisuke; Suzuki, Motoko; Barthelmy, Scott; Gehrels, Neil; Nousek, John

    2007-01-01

    We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku satellites. We found rapid spectral softening during both the prompt tail phase and the decline phase of an X-ray flare in the BAT and XRT data. The observed spectra were fit by power-law photon indices which rapidly changed from $\\Gamma = 1.51^{+0.04}_{-0.03}$ to $\\Gamma = 5.30^{+0.69}_{-0.59}$ within a few hundred seconds in the prompt tail. This is one of the steepest X-ray spectra ever observed, making it quite difficult to explain by simple electron acceleration and synchrotron radiation. Then, we applied an alternative spectral fitting using a broken power-law with exponential cutoff (BPEC) model. It is valid to consider the situation that the cutoff energy is equivalent to the synchrotron frequency of the maximum energy electrons in their energy distribution. Since the spectral cutoff appears in the soft X-ray band, we conclude the electron acceleration has been inefficient in the internal shocks of GRB 060904A. These cutoff spectr...

  5. Evolution of the CERN Power Converter Function Generator/Controller for Operation in Fast Cycling Accelerators

    CERN Document Server

    Calcoen, D; Semanaz, PF

    2011-01-01

    Power converters in the LHC are controlled by the second generation of an embedded computer known as a Function Generator/Controller (FGC2). Following the success of this control system, new power converter installations at CERN will be based around an evolution of the design – a third generation called FGC3. The FGC3 will initially be used in the PS Booster and Linac4. This paper compares the hardware of the two generations of FGC and details the decisions made during the design of the FGC3.

  6. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution.

    Science.gov (United States)

    Mukherjee, Krishanu; Bürglin, Thomas R

    2007-08-01

    TALE homeodomain proteins are an ancient subgroup within the group of homeodomain transcription factors that play important roles in animal, plant, and fungal development. We have extracted the full complement of TALE superclass homeobox genes from the genome projects of seven protostomes, seven deuterostomes, and Nematostella. This was supplemented with TALE homeobox genes from additional species and phylogenetic analyses were carried out with 276 sequences. We found 20 homeobox genes and 4 pseudogenes in humans, 21 genes in mouse, 8 genes in Drosophila, and 5 genes plus one truncated gene in Caenorhabditis elegans. Apart from the previously identified TALE classes MEIS, PBC, IRO, and TGIF, a novel class is identified, termed MOHAWK (MKX). Further, we show that the MEIS class can be divided into two families, PREP and MEIS. Prep genes have previously only been described in vertebrates but are lacking in Drosophila. Here we identify orthologues in other insect taxa as well as in the cnidarian Nematostella. In C. elegans, a divergent Prep protein has lost the homeodomain. Full-length multiple sequence alignment of the protostome and deuterostome sequences allowed us to identify several novel conserved motifs within the MKX, TGIF, and MEIS classes. Phylogenetic analyses revealed fast-evolving PBC class genes; in particular, some X-linked PBC genes in nematodes are subject to rapid evolution. In addition, several instances of gene loss were identified. In conclusion, our comprehensive analysis provides a defining framework for the classification of animal TALE homeobox genes and the understanding of their evolution.

  7. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Science.gov (United States)

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C; Paoletti, Christopher; Nowak, Martin A

    2015-02-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  8. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Directory of Open Access Journals (Sweden)

    Benjamin Allen

    2015-02-01

    Full Text Available Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  9. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.;

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells...... that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, the tolerant phenotype in tetraploid cells, coupled with a doubling of chromosome aberrations per cell, allows...... chromosome abnormalities to evolve specifically in tetraploids, recapitulating chromosomal changes in genomically complex colorectal tumors. Finally, a genome-doubling event is independently predictive of poor relapse-free survival in early-stage disease in two independent cohorts in multivariate analyses...

  10. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa.

    Directory of Open Access Journals (Sweden)

    Peter L Oliver

    2009-12-01

    Full Text Available The onset of prezygotic and postzygotic barriers to gene flow between populations is a hallmark of speciation. One of the earliest postzygotic isolating barriers to arise between incipient species is the sterility of the heterogametic sex in interspecies' hybrids. Four genes that underlie hybrid sterility have been identified in animals: Odysseus, JYalpha, and Overdrive in Drosophila and Prdm9 (Meisetz in mice. Mouse Prdm9 encodes a protein with a KRAB motif, a histone methyltransferase domain and several zinc fingers. The difference of a single zinc finger distinguishes Prdm9 alleles that cause hybrid sterility from those that do not. We find that concerted evolution and positive selection have rapidly altered the number and sequence of Prdm9 zinc fingers across 13 rodent genomes. The patterns of positive selection in Prdm9 zinc fingers imply that rapid evolution has acted on the interface between the Prdm9 protein and the DNA sequences to which it binds. Similar patterns are apparent for Prdm9 zinc fingers for diverse metazoans, including primates. Indeed, allelic variation at the DNA-binding positions of human PRDM9 zinc fingers show significant association with decreased risk of infertility. Prdm9 thus plays a role in determining male sterility both between species (mouse and within species (human. The recurrent episodes of positive selection acting on Prdm9 suggest that the DNA sequences to which it binds must also be evolving rapidly. Our findings do not identify the nature of the underlying DNA sequences, but argue against the proposed role of Prdm9 as an essential transcription factor in mouse meiosis. We propose a hypothetical model in which incompatibilities between Prdm9-binding specificity and satellite DNAs provide the molecular basis for Prdm9-mediated hybrid sterility. We suggest that Prdm9 should be investigated as a candidate gene in other instances of hybrid sterility in metazoans.

  11. Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps.

    Directory of Open Access Journals (Sweden)

    Martin Kaltenpoth

    Full Text Available Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae, and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase. The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes. Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of

  12. Evolution on neutral networks accelerates the ticking rate of the molecular clock.

    Science.gov (United States)

    Manrubia, Susanna; Cuesta, José A

    2015-01-01

    Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive 'phenotypic entrapment' entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives.

  13. Evolution of Magnetic Fields and Cosmic Ray Acceleration in Supernova Remnants

    CERN Document Server

    Schure, K M; Achterberg, A; Keppens, R

    2009-01-01

    Observations show that the magnetic field in young supernova remnants (SNRs) is significantly stronger than can be expected from the compression of the circumstellar medium (CSM) by a factor of four expected for strong blast waves. Additionally, the polarization is mainly radial, which is also contrary to expectation from compression of the CSM magnetic field. Cosmic rays (CRs) may help to explain these two observed features. They can increase the compression ratio to factors well over those of regular strong shocks by adding a relativistic plasma component to the pressure, and by draining the shock of energy when CRs escape from the region. The higher compression ratio will also allow for the contact discontinuity, which is subject to the Rayleigh-Taylor (R-T) instability, to reach much further out to the forward shock. This could create a preferred radial polarization of the magnetic field. With an adaptive mesh refinement MHD code (AMRVAC), we simulate the evolution of SNRs with three different configurati...

  14. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  15. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution

    Directory of Open Access Journals (Sweden)

    Hood Leroy

    2004-11-01

    Full Text Available Abstract Background The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family, but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. Results Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. Conclusions Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.

  16. Recent acceleration of ice loss in the Northern Patagonia Icefield based on an updated decennial evolution

    Directory of Open Access Journals (Sweden)

    P. López

    2011-12-01

    Full Text Available Ice elevation changes of the Northern Patagonia Icefield (NPI were analyzed by comparing three Digital Elevation Models (DEM corresponding to 1975 (constructed based on topographic maps, the SRTM DEM of 2000 yr and a SPOT 5 DEM of 2005. In addition, the glacier length fluctuations and the surface area evolution between 2001 and 2011 of 25 glaciers of the NPI were studied: the information extracted from the Landsat ETM+ satellite image of 11 March 2001 was compared to the measurements performed based on the Landsat ETM+ satellite image of 19 February 2011. From a global point of view, the majority of the studied glaciers thinned, retreated and lost surface between 2001 and 2011, only few glaciers (Leones, Nef, Pared Sur and Soler located on the eastern side of the NPI have been stable. Glaciers located on the western side of the NPI suffered a stronger wasting compared to the glaciers located on the eastern side.

    Overall, over the ablation areas of the NPI (below 1150 m a.s.l. a more rapid thinning of 2.6 m yr−1 occurred between 2000 and 2005 yr compared to the period 1975–2000, in which a mean thinning of 1.7 m yr−1 was measured for the same zones of the NPI. For the whole period (1975–2005 the most important thinning of the ablation areas has been estimated for HPN-1 Glacier (4.4 m yr−1 followed by Benito (3.4 m yr−1, Fraenkel (2.4 m yr−1, Gualas (2.1 m yr−1 and Acodado glaciers, all of them located on the western side of the NPI.

    Between 2001 and 2011, a noteworthy retreat of 1.9 km was experienced by Gualas Glacier and by Reichert Glacier with 1.6 km, both located on the north-western side of the NPI. On the south-western side of the NPI, during the same decennia, Steffen Glacier experienced a remarkable retreat of 1.6 km as well. During the 2001–2011 period, Steffen Glacier more than doubled its rate of retreat (compared to the 1979–2001

  17. Recent acceleration of ice loss in the Northern Patagonia Icefield based on an updated decennial evolution

    Science.gov (United States)

    López, P.; Casassa, G.

    2011-12-01

    Ice elevation changes of the Northern Patagonia Icefield (NPI) were analyzed by comparing three Digital Elevation Models (DEM) corresponding to 1975 (constructed based on topographic maps), the SRTM DEM of 2000 yr and a SPOT 5 DEM of 2005. In addition, the glacier length fluctuations and the surface area evolution between 2001 and 2011 of 25 glaciers of the NPI were studied: the information extracted from the Landsat ETM+ satellite image of 11 March 2001 was compared to the measurements performed based on the Landsat ETM+ satellite image of 19 February 2011. From a global point of view, the majority of the studied glaciers thinned, retreated and lost surface between 2001 and 2011, only few glaciers (Leones, Nef, Pared Sur and Soler) located on the eastern side of the NPI have been stable. Glaciers located on the western side of the NPI suffered a stronger wasting compared to the glaciers located on the eastern side. Overall, over the ablation areas of the NPI (below 1150 m a.s.l.) a more rapid thinning of 2.6 m yr-1 occurred between 2000 and 2005 yr compared to the period 1975-2000, in which a mean thinning of 1.7 m yr-1 was measured for the same zones of the NPI. For the whole period (1975-2005) the most important thinning of the ablation areas has been estimated for HPN-1 Glacier (4.4 m yr-1) followed by Benito (3.4 m yr-1), Fraenkel (2.4 m yr-1), Gualas (2.1 m yr-1) and Acodado glaciers, all of them located on the western side of the NPI. Between 2001 and 2011, a noteworthy retreat of 1.9 km was experienced by Gualas Glacier and by Reichert Glacier with 1.6 km, both located on the north-western side of the NPI. On the south-western side of the NPI, during the same decennia, Steffen Glacier experienced a remarkable retreat of 1.6 km as well. During the 2001-2011 period, Steffen Glacier more than doubled its rate of retreat (compared to the 1979-2001 period) and experienced the disintegration of its main front as well as a lateral tongue that retreated 3.1 km. The

  18. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    Science.gov (United States)

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures.

  19. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes.

    Science.gov (United States)

    Nakashima, K; Nobuhisa, I; Deshimaru, M; Nakai, M; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, M; Sakaki, Y; Hattori, S

    1995-06-06

    The nucleotide sequences of four genes encoding Trimeresurus gramineus (green habu snake, crotalinae) venom gland phospholipase A2 (PLA2; phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) isozymes were compared internally and externally with those of six genes encoding Trimeresurus flavoviridis (habu snake, crotalinae) venom gland PLA2 isozymes. The numbers of nucleotide substitutions per site (KN) for the noncoding regions including introns were one-third to one-eighth of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions of exons, indicating that the noncoding regions are much more conserved than the protein-coding regions. The KN values for the introns were found to be nearly equivalent to those of introns of T. gramineus and T. flavoviridis TATA box-binding protein genes, which are assumed to be a general (nonvenomous) gene. Thus, it is evident that the introns of venom gland PLA2 isozyme genes have evolved at a similar rate to those of nonvenomous genes. The numbers of nucleotide substitutions per nonsynonymous site (KA) were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes. All of the data combined reveal that Darwinian-type accelerated evolution has universally occurred only in the protein-coding regions of crotalinae snake venom PLA2 isozyme genes.

  20. Fast 3D contrast enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction.

    Science.gov (United States)

    Xu, Bo; Spincemaille, Pascal; Chen, Gang; Agrawal, Mukta; Nguyen, Thanh D; Prince, Martin R; Wang, Yi

    2013-02-01

    Time-resolved imaging is crucial for the accurate diagnosis of liver lesions. Current contrast enhanced liver magnetic resonance imaging acquires a few phases in sequential breath-holds. The image quality is susceptible to bolus timing errors, which could result in missing the critical arterial phase. This impairs the detection of malignant tumors that are supplied primarily by the hepatic artery. In addition, the temporal resolution may be too low to reliably separate the arterial phase from the portal venous phase. In this study, a method called temporal resolution acceleration with constrained evolution reconstruction was developed with three-dimensional volume coverage and high-temporal frame rate. Data is acquired using a stack of spirals sampling trajectory combined with a golden ratio view order using an eight-channel coil array. Temporal frames are reconstructed from vastly undersampled data sets using a nonlinear inverse algorithm assuming that the temporal changes are small at short time intervals. Numerical and phantom experimental validation is presented. Preliminary in vivo results demonstrated high spatial resolution dynamic three-dimensional images of the whole liver with high frame rates, from which numerous subarterial phases could be easily identified retrospectively.

  1. Evidence of accelerated evolution and ectodermal-specific expression of presumptive BDS toxin cDNAs from Anemonia viridis.

    Science.gov (United States)

    Nicosia, Aldo; Maggio, Teresa; Mazzola, Salvatore; Cuttitta, Angela

    2013-10-30

    Anemonia viridis is a widespread and extensively studied Mediterranean species of sea anemone from which a large number of polypeptide toxins, such as blood depressing substances (BDS) peptides, have been isolated. The first members of this class, BDS-1 and BDS-2, are polypeptides belonging to the β-defensin fold family and were initially described for their antihypertensive and antiviral activities. BDS-1 and BDS-2 are 43 amino acid peptides characterised by three disulfide bonds that act as neurotoxins affecting Kv3.1, Kv3.2 and Kv3.4 channel gating kinetics. In addition, BDS-1 inactivates the Nav1.7 and Nav1.3 channels. The development of a large dataset of A. viridis expressed sequence tags (ESTs) and the identification of 13 putative BDS-like cDNA sequences has attracted interest, especially as scientific and diagnostic tools. A comparison of BDS cDNA sequences showed that the untranslated regions are more conserved than the protein-coding regions. Moreover, the KA/KS ratios calculated for all pairwise comparisons showed values greater than 1, suggesting mechanisms of accelerated evolution. The structures of the BDS homologs were predicted by molecular modelling. All toxins possess similar 3D structures that consist of a triple-stranded antiparallel β-sheet and an additional small antiparallel β-sheet located downstream of the cleavage/maturation site; however, the orientation of the triple-stranded β-sheet appears to differ among the toxins. To characterise the spatial expression profile of the putative BDS cDNA sequences, tissue-specific cDNA libraries, enriched for BDS transcripts, were constructed. In addition, the proper amplification of ectodermal or endodermal markers ensured the tissue specificity of each library. Sequencing randomly selected clones from each library revealed ectodermal-specific expression of ten BDS transcripts, while transcripts of BDS-8, BDS-13, BDS-14 and BDS-15 failed to be retrieved, likely due to under-representation in our

  2. Epoch-based likelihood models reveal no evidence for accelerated evolution of viviparity in squamate reptiles in response to cenozoic climate change.

    Science.gov (United States)

    King, Benedict; Lee, Michael S Y

    2015-09-01

    A broad scale analysis of the evolution of viviparity across nearly 4,000 species of squamates revealed that origins increase in frequency toward the present, raising the question of whether rates of change have accelerated. We here use simulations to show that the increased frequency is within the range expected given that the number of squamate lineages also increases with time. Novel, epoch-based methods implemented in BEAST (which allow rates of discrete character evolution to vary across time-slices) also give congruent results, with recent epochs having very similar rates to older epochs. Thus, contrary to expectations, there was no accelerated burst of origins of viviparity in response to global cooling during the Cenozoic or glacial cycles during the Plio-Pleistocene. However, if one accepts the conventional view that viviparity is more likely to evolve than to be lost, and also the evidence here that viviparity has evolved with similar regularity throughout the last 200 Ma, then the absence of large, ancient clades of viviparous squamates (analogs to therian mammals) requires explanation. Viviparous squamate lineages might be more prone to extinction than are oviparous lineages, due to their prevalance at high elevations and latitudes and thus greater susceptibility to climate fluctuations. If so, the directional bias in character evolution would be offset by the bias in extinction rates.

  3. ROLE OF EJECTA CLUMPING AND BACK-REACTION OF ACCELERATED COSMIC RAYS IN THE EVOLUTION OF TYPE Ia SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Bocchino, F.; Miceli, M. [INAF-Osservatorio Astronomico di Palermo ' G. S. Vaiana' , Piazza del Parlamento 1, 90134 Palermo (Italy); Petruk, O. [Institute for Applied Problems in Mechanics and Mathematics, Naukova Street, 3-b Lviv 79060 (Ukraine); Pumo, M. L., E-mail: orlando@astropa.inaf.it [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, 35122 Padova (Italy)

    2012-04-20

    We investigate the role played by initial clumping of ejecta and by efficient acceleration of cosmic rays (CRs) in determining the density structure of the post-shock region of a Type Ia supernova remnant (SNR) through detailed three-dimensional MHD modeling. Our model describes the expansion of an SNR through a magnetized interstellar medium, including the initial clumping of ejecta and the effects on shock dynamics due to back-reaction of accelerated CRs. The model predictions are compared to the observations of SN 1006. We found that the back-reaction of accelerated CRs alone cannot reproduce the observed separation between the forward shock and the contact discontinuity unless the energy losses through CR acceleration and escape are very large and independent of the obliquity angle. On the contrary, the clumping of ejecta can naturally reproduce the observed small separation and the occurrence of protrusions observed in SN 1006, even without the need of accelerated CRs. We conclude that forward shock-contact discontinuity separation is a probe of the ejecta structure at the time of explosion rather than a probe of the efficiency of CR acceleration in young SNRs.

  4. Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma.

    Science.gov (United States)

    Vernon, D; Gutell, R R; Cannone, J J; Rumpf, R W; Birky, C W

    2001-09-01

    Polytoma obtusum and Polytoma uvella are members of a clade of nonphotosynthetic chlorophyte algae closely related to Chlamydomonas humicola and other photosynthetic members of the Chlamydomonadaceae. Descended from a nonphotosynthetic mutant, these obligate heterotrophs retain a plastid (leucoplast) with a functional protein synthetic system, and a plastid genome (lpDNA) with functional genes encoding proteins required for transcription and translation. Comparative studies of the evolution of genes in chloroplasts and leucoplasts can identify modes of selection acting on the plastid genome. Two plastid genes--rrn16, encoding the plastid small-subunit rRNA, and tufA, encoding elongation factor Tu--retain their functions in protein synthesis after the loss of photosynthesis in two nonphotosynthetic Polytoma clades but show a substantially accelerated rate of base substitution in the P. uvella clade. The accelerated evolution of tufA is due, at least partly, to relaxed codon bias favoring codons that can be read without wobble, mainly in three amino acids. Selection for these codons may be relaxed because leucoplasts are required to synthesize fewer protein molecules per unit time than are chloroplasts (reduced protein synthetic load) and thus require a lower rate of synthesis of elongation factor Tu. Relaxed selection due to a lower protein synthetic load is also a plausible explanation for the accelerated rate of evolution of rrn16, but the available data are insufficient to test the hypothesis for this gene. The tufA and rrn16 genes in Polytoma oviforme, the sole member of a second nonphotosynthetic clade, are also functional but show no sign of relaxed selection.

  5. Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of Type Ia supernova remnants

    CERN Document Server

    Orlando, S; Miceli, M; Petruk, O; Pumo, M L

    2012-01-01

    We investigate the role played by initial clumping of ejecta and by efficient acceleration of cosmic rays (CRs) in determining the density structure of the post-shock region of a Type Ia supernova remnant (SNR) through detailed 3D MHD modeling. Our model describes the expansion of a SNR through a magnetized interstellar medium (ISM), including the initial clumping of ejecta and the effects on shock dynamics due to back-reaction of accelerated CRs. The model predictions are compared to the observations of SN 1006. We found that the back-reaction of accelerated CRs alone cannot reproduce the observed separation between the forward shock (FS) and the contact discontinuity (CD) unless the energy losses through CR acceleration and escape are very large and independent of the obliquity angle. On the contrary, the clumping of ejecta can naturally reproduce the observed small separation and the occurrence of protrusions observed in SN 1006, even without the need of accelerated CRs. We conclude that FS-CD separation i...

  6. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications; Irradiation de polyurethannes par electrons acceleres: evolution moleculaire et supramoleculaire, incidence sur les extractibles et implications biomedicales

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, C

    2002-11-15

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  7. Accelerators, Colliders, and Snakes

    Science.gov (United States)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  8. Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluences

    Science.gov (United States)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Maltsev, D.; Frolov, A.; Zabusov, O.; Erak, D.; Zhurko, D.

    2015-01-01

    In this paper comprehensive studies of structure and properties of VVER-1000 RPV steels after the accelerated irradiation to fluences corresponding to extended lifetime up to 60 years or more as well as comparative studies of materials irradiated with different fluxes were carried out. The significant flux effect is confirmed for the weld metal (nickel concentration ⩾1.35%) which is mainly due to development of reversible temper brittleness. The rate of radiation embrittlement of VVER-1000 RPV steels under operation up to 60 years and more (based on the results of accelerated irradiation considering flux effect for weld metal) is expected not to differ significantly from the observed rate under irradiation within surveillance specimens.

  9. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    Science.gov (United States)

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  10. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  11. Time-dependent galactic winds I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration

    CERN Document Server

    Dorfi, E A; 10.1051/0004-6361/201118082

    2013-01-01

    Cosmic rays are transported out of the galaxy by diffusion and advection due to streaming along magnetic field lines and resonant scattering off self-excited MHD waves. Thus momentum is transferred to the plasma via the frozen-in waves as a mediator assisting the thermal pressure in driving a galactic wind. The bulk of the Galactic CRs are accelerated by shock waves generated in SNRs, a significant fraction of which occur in OB associations on a timescale of several $10^7$ years. We examine the effect of changing boundary conditions at the base of the galactic wind due to sequential SN explosions on the outflow. Thus pressure waves will steepen into shock waves leading to in situ post-acceleration of GCRs. We performed simulations of galactic winds in flux tube geometry appropriate for disk galaxies, describing the CR diffusive-advective transport in a hydrodynamical fashion along with the energy exchange with self-generated MHD waves. Our time-dependent CR hydrodynamic simulations confirm the existence of ti...

  12. Human brain evolution: from gene discovery to phenotype discovery.

    Science.gov (United States)

    Preuss, Todd M

    2012-06-26

    The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for "phenotype discovery," providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes.

  13. Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex

    CERN Document Server

    Povich, Matthew S; Robitaille, Thomas P; Broos, Patrick S; Orbin, Wesley T; King, Robert R; Naylor, Tim; Whitney, Barbara A

    2016-01-01

    We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225$-$00.506, which forms the central regions of a larger cloud complex known as the M17 southwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by Spitzer Space Telescope archival data, we discover a population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS) that lack infrared excess emission from circumstellar disks. We model the infrared spectral energy distributions of this source population to measure its mass function and place new constraints on the inner dust disk destruction timescales for 2-8 $M_{\\odot}$ stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high ($\\dot{M}\\ge 0.007~M_{\\odot}$ yr$^{-1}$), equivalent to several Orion Nebula Clusters in G14.225$-$0.506 alone, and likely accelerating...

  14. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  15. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  16. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  17. Accelerated evolution of the Lyα luminosity function at z ≳ 7 revealed by the Subaru ultra-deep survey for Lyα emitters at z = 7.3

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Akira; Ouchi, Masami; Ono, Yoshiaki; Shibuya, Takatoshi; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa-no-ha, Kashiwa 277-8582 (Japan); Shimasaku, Kazuhiro; Nakajima, Kimihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Furusawa, Hisanori; Iye, Masanori, E-mail: konno@icrr.u-tokyo.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-12-10

    We present the ultra-deep Subaru narrowband imaging survey for Lyα emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (∼0.5 deg{sup 2}) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Lyα) = 2.4 × 10{sup 42} erg s{sup –1} (5σ) for z = 7.3 LAEs, about four times deeper than previous Subaru z ≳ 7 studies, which allows us to reliably investigate the evolution of the Lyα luminosity function (LF) for the first time down to the luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ∼65 LAEs by our survey in the case of no Lyα LF evolution from z = 6.6 to 7.3. We identify a decrease of the Lyα LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Lyα LF with the best-fit Schechter parameters of L{sub Lyα}{sup ∗}=2.7{sub −1.2}{sup +8.0}×10{sup 42} erg s{sup −1} and ϕ{sup ∗}=3.7{sub −3.3}{sup +17.6}×10{sup −4} Mpc{sup −3} for a fixed α = –1.5. Moreover, the evolution of the Lyα LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ∼ 7, but suggested only at z > 8, this accelerated Lyα LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Lyα production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Lyα cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds within

  18. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  19. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  20. Accelerated Evolution of Ly$\\alpha$ Luminosity Function at $\\textit{z} \\gtrsim 7$ Revealed by the Subaru Ultra-Deep Survey for Ly$\\alpha$ Emitters at $\\textit{z}=7.3$

    CERN Document Server

    Konno, Akira; Ono, Yoshiaki; Shimasaku, Kazuhiro; Shibuya, Takatoshi; Furusawa, Hisanori; Nakajima, Kimihiko; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong; Iye, Masanori

    2014-01-01

    We present the ultra-deep Subaru narrowband imaging survey for Lya emitters (LAEs) at $z=7.3$ in SXDS and COSMOS fields with a total integration time of 106 hours. Exploiting our new sharp bandwidth filter, NB101, installed on Suprime-Cam, we have reached $L(Lya)=2.4\\times10^{42} \\ erg \\ s^{-1}$ ($5\\sigma$) for $z=7.3$ LAEs, about 4 times deeper than previous Subaru $z \\gtrsim 7$ studies, which allows us to reliably investigate evolution of Lya luminosity function (LF), for the first time, down to the luminosity limit same as those of Subaru $z=3.1-6.6$ LAE samples. Surprisingly, we only find three and four LAEs in SXDS and COSMOS fields, respectively, while one expects a total of $\\sim 65$ LAEs by our survey in the case of no Lya LF evolution from $z=6.6$ to $7.3$.We identify a decrease of Lya LF from $z=6.6$ to $7.3$ at the $>90\\%$ confidence level from our $z=7.3$ Lya LF.Moreover, the evolution of Lya LF is clearly accelerated at $z>6.6$ beyond the measurement uncertainties including cosmic variance. Becau...

  1. Accelerating the dissolution of enteric coatings in the upper small intestine: evolution of a novel pH 5.6 bicarbonate buffer system to assess drug release.

    Science.gov (United States)

    Varum, Felipe J O; Merchant, Hamid A; Goyanes, Alvaro; Assi, Pardis; Zboranová, Veronika; Basit, Abdul W

    2014-07-01

    Despite rapid dissolution in compendial phosphate buffers, gastro resistant (enteric coated) products can take up to 2 h to disintegrate in the human small intestine, which clearly highlights the inadequacy of the in vitro test method to predict in vivo behaviour of these formulations. The aim of this study was to establish the utility of a novel pH 5.6 bicarbonate buffer, stabilized by an Auto pH™ System, as a better surrogate of the conditions of the proximal small intestine to investigate the dissolution behaviour of standard and accelerated release enteric double coating formulations. Prednisolone tablets were coated with 3 or 5 mg/cm(2) of partially neutralized EUDRAGIT(®) L 30 D-55, HP-55 or HPMC adjusted to pH 6 or 8. An outer layer of EUDRAGIT(®) L 30 D-55 was applied at 5mg/cm(2). For comparison purposes, a standard single layer of EUDRAGIT(®) L 30 D-55 was applied to the tablets. Dissolution was carried out using USP II apparatus in 0.1 M HCl for 2 h, followed by pH 5.6 bicarbonate buffer. EUDRAGIT(®) L 30 D-55 single-coated tablets showed a slow drug release with a lag time of 75 min in buffer, whereas release from the EUDRAGIT(®) L 30 D-55 double-coated tablets was accelerated. These in vitro lag times closely match the in vivo disintegration times for these coated tablets reported previously. Drug release was further accelerated from modified double coatings, particularly in the case of coatings with a thinner inner layer of HP-55 or HPMC (pH 8 and KH2PO4). This study confirms that the pH 5.6 bicarbonate buffer system offers significant advantages during the development of dosage forms designed to release the drug in the upper small intestine.

  2. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  3. Accelerated evolution of fetuin family proteins in Protobothrops flavoviridis (habu snake) serum and the discovery of an L1-like genomic element in the intronic sequence of a fetuin-encoding gene.

    Science.gov (United States)

    Tanaka, Yasuyoshi; Oyama, Sachiko; Hori, Shin-ichi; Ushio, Koya; Shioi, Narumi; Terada, Shigeyuki; Deshimaru, Masanobu

    2013-01-01

    Habu serum factor (HSF) and HSF-like protein (HLP) are fetuin family proteins isolated from Protobothrops flavoviridis (habu snake) serum with different physiological activities. A comparison of their cDNAs and intronic sequences revealed that nucleotide substitutions were primarily in protein-coding regions, and the substitution patterns indicated accelerated evolution of these proteins. Genomic DNA fragment analysis, including intron 1, revealed a 6.6-kb insertion homologous to the full-length mammalian LINE1 (L1) retrotransposable element (PfL1) only in the HLP gene. This segment retains an open reading frame (ORF) that encodes a reverse transcriptase (RT)-like protein (PfRT). We further found that a large number of homologous segments have dispersed in the habu snake genome, although we could not determine the enzymatic activities of their products. Moreover, an analysis of habu snake liver RNA indicated active transcription of the PfRT genes, suggesting that high levels of RT activity in this snake have driven the evolution of unique phenotypes of venom enzymes and serum inhibitors of them.

  4. Accelerated Unification

    OpenAIRE

    Arkani-Hamed, Nima; Cohen, Andrew; Georgi, Howard

    2001-01-01

    We construct four dimensional gauge theories in which the successful supersymmetric unification of gauge couplings is preserved but accelerated by N-fold replication of the MSSM gauge and Higgs structure. This results in a low unification scale of $10^{13/N}$ TeV.

  5. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  6. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  7. MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  8. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  9. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  10. Laser wakefield acceleration of polarized electron beams

    Science.gov (United States)

    Pugacheva, D. V.; Andreev, N. E.; Cros, B.

    2016-11-01

    The acceleration of highly polarized electron beams are widely used in state-of-the-art high-energy physics experiments. In this work, a model for investigation of polarization dynamics of electron beams in the laser-plasma accelerator depending on the initial energy of electrons was developed and tested. To obtain the evolution of the trajectory and momentum of the electron for modeling its acceleration the wakefield structure was determined. The spin precession of the beam electron was described by Thomas-Bargman-Michel-Telegdi equations. The evolution of the electron beam polarization was investigated for zero-emittance beams with zero-energy spread.

  11. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  12. Impact accelerations

    Science.gov (United States)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  13. Genetics Home Reference: FOXP2-related speech and language disorder

    Science.gov (United States)

    ... other language-related skills, such as reading, writing, spelling, and grammar. In some affected individuals, problems with ... slow growth, distinctive facial features, delayed development, and learning disabilities. Learn more about the gene and chromosome ...

  14. Universe acceleration in brane world models

    Science.gov (United States)

    Chiou-Lahanas, C.; Diamandis, G. A.; Georgalas, B. C.

    2014-05-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution, determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The possible species of the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  15. Universe Acceleration in Brane World Models

    CERN Document Server

    Chiou-Lahanas, C; Georgalas, B C

    2013-01-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The conditions imposed on the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  16. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  17. Self accelerating electron Airy beams

    CERN Document Server

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  18. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  19. Operational radiation protection in high-energy physics accelerators: implementation of ALARA in design and operation of accelerators.

    Science.gov (United States)

    Fassò, A; Rokni, S

    2009-11-01

    This paper considers the historical evolution of the concept of optimisation of radiation exposures, as commonly expressed by the acronym ALARA, and discusses its application to various aspects of radiation protection at high-energy accelerators.

  20. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, J. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain)], E-mail: jsanz@ind.uned.es; Garcia, M.; Sauvan, P.; Lopez, D. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain); Moreno, C.; Ibarra, A.; Sedano, L. [CIEMAT, 28040 Madrid (Spain)

    2009-04-30

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  1. The Modern Temperature-Accelerated Dynamics Approach.

    Science.gov (United States)

    Zamora, Richard J; Uberuaga, Blas P; Perez, Danny; Voter, Arthur F

    2016-06-07

    Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD.

  2. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  3. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  4. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  5. Acceleration feature points of unsteady shear flows

    CERN Document Server

    Kasten, Jens; Hotz, Ingrid; Hege, Hans-Christian; Noack, Bernd R; Daviller, Guillaume; Morzynski, Marek

    2014-01-01

    In this paper, we propose a novel framework to extract features such as vortex cores and saddle points in two-dimensional unsteady flows. This feature extraction strategy generalizes critical points of snapshot topology in a Galilean-invariant manner, allows to prioritize features according to their strength and longevity, enables to track the temporal evolution of features, is robust against noise and has no subjective parameters. These characteristics are realized via several constitutive elements. First, acceleration is employed as a feature identifier following Goto and Vassilicos (2006), thus ensuring Galilean invariance. Second, the acceleration magnitude is used as basis for a mathematically well-developed scalar field topology. The minima of this field are called acceleration feature points, a superset of the acceleration zeros. These points are discriminated into vortices and saddle points depending the spectral properties of the velocity Jacobian. Third, all operations are based on discrete topology...

  6. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  7. Accelerators and Dinosaurs

    CERN Document Server

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  8. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  9. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  10. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  11. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  12. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  13. A cyclic behavior of CME accelerations for accelerating and decelerating events

    Institute of Scientific and Technical Information of China (English)

    Peng-Xin Gao; Ke-Jun Li

    2009-01-01

    We investigate the cyclic evolutionary behavior of CME accelerations for accelerating and decelerating CME events in cycle 23 from 1997 January to 2007 December.It is found that the absolute values of semiannual mean accelerations of both accelerating and decelerating CME events roughly wax and wane in a cycle,delaying the sunspot cycle in time phase.We also investigate the semiannual number of CMEs with positive and negative acceleration and find that there are more decelerating CME events than accelerating CME events during the maximum period of a cycle (about three years),but there are more accelerating CME events than decelerating CME events during the rest of the time interval of the cycle.Our results seem to suggest that the different driving mechanisms may be acting accelerate and decelerate CME events: for accelerating CME events,the propelling force (Fp) statistically seems to play a significant role in pushing CMEs outward;for decelerating CME events,the drag (F_d) statistically seems to play a more effective role in determining CME kinematic evolution in the outer corona.During the maximum period of a cycle,because of the V_2 dependence,Fd is generally stronger; because of the magnetic field dependence,Fp is also generally stronger.Thus,the absolute values of both the negative and positive accelerations are generally larger during that time.Because of the V2 dependence,Fd may be more effective during the maximum period of a cycle.Hence,there are more decelerating CME events than accelerating CME events during that time.During the minimum time interval of a cycle,CMEs have relatively small speeds,and Fp may be more effective.Therefore,there are more accelerating CME events than decelerating CME events during that time.

  14. Accelerating DSMC data extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  15. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  16. Controlled quantum evolutions

    CERN Document Server

    Petroni, N C; De Siena, S; Illuminati, F; Petroni, Nicola Cufaro; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1999-01-01

    We perform a detailed analysis of the non stationary solutions of the evolution (Fokker-Planck) equations associated to either stationary or non stationary quantum states by the stochastic mechanics. For the excited stationary states of quantum systems with singular velocity fields we explicitely discuss the exact solutions for the HO case. Moreover the possibility of modifying the original potentials in order to implement arbitrary evolutions ruled by these equations is discussed with respect to both possible models for quantum measurements and applications to the control of particle beams in accelerators.

  17. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  18. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  19. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  20. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  1. FFAGS FOR MUON ACCELERATION.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.KAHN,S.PALMER,R.TRBOJEVIC,D.JOHNSTONE,C.KEIL,Y.OGITSU,T.OHMORI,C.SESSLER,A.KOSCIELNIAK,S.

    2003-06-26

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed.

  2. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  3. FFAGS for rapid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  4. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  5. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  6. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  7. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  8. Stiff Fluid in Accelerated Universes with Torsion

    Directory of Open Access Journals (Sweden)

    Almaz Galiakhmetov

    2013-01-01

    elucidated. It is shown that singular models with a de Sitter asymptotic and with the power-law asymptotic at late times are possible. It is found that is a specific value of the coupling constant. It is demonstrated that the bouncing models without the particle horizon and with an accelerated expansion by a de Sitter law of an evolution at late times are admissible.

  9. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  10. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  11. The Accelerated Kepler Problem

    CERN Document Server

    Namouni, Fathi

    2007-01-01

    The accelerated Kepler problem is obtained by adding a constant acceleration to the classical two-body Kepler problem. This setting models the dynamics of a jet-sustaining accretion disk and its content of forming planets as the disk loses linear momentum through the asymmetric jet-counterjet system it powers. The dynamics of the accelerated Kepler problem is analyzed using physical as well as parabolic coordinates. The latter naturally separate the problem's Hamiltonian into two unidimensional Hamiltonians. In particular, we identify the origin of the secular resonance in the accelerated Kepler problem and determine analytically the radius of stability boundary of initially circular orbits that are of particular interest to the problem of radial migration in binary systems as well as to the truncation of accretion disks through stellar jet acceleration.

  12. On Accelerated Black Holes

    CERN Document Server

    Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.

    1998-01-01

    The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.

  13. Cosmic particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano; Perri, Silvia [Universita della Calabria, Dipartimento di Fisica, 87036 Rende (Italy)

    2014-07-01

    The most popular mechanism for the acceleration of cosmic rays, which is thought to operate in supernova remnant shocks as well as at heliospheric shocks, is the diffusive shock acceleration, which is a Fermi mechanism based on normal diffusion. On the other hand, in the last few years it has been shown that the transport of plasma particles in the presence of electric and magnetic turbulence can be superdiffusive rather than normal diffusive. The term 'superdiffusive' refers to the mean square displacement of particle positions growing superlinearly with time, as compared to the normal linear growth. In particular, superdiffusion is characterized by a non Gaussian statistical process called Levy random walk. We show how diffusive shock acceleration is modified by superdiffusion, and how this yields new predictions for the cosmic ray spectral index, for the acceleration time, and for the spatial profile of energetic particles. A comparison with observations of particle acceleration at heliospheric shocks and at supernova remnant shocks is done. We discuss how superdiffusive shock acceleration allows to explain the observations of hard ion spectra at the solar wind termination shock detected by Voyager 2, of hard radio spectra due to synchrotron emission of electrons accelerated at supernova remnant shocks, and how it can help to explain the observations of 'thin rims' in the X-ray synchrotron emission.

  14. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  15. Application of Accelerators and Storage Rings: Accelerators in Medicine

    CERN Document Server

    Amaldi, U

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '11.3 Accelerators in Medicine' of the Chapter '11 Application of Accelerators and Storage Rings' with the content: 11.3 Accelerators in Medicine 11.3.1 Accelerators and Radiopharmaceuticals 11.3.2 Accelerators and Cancer Therapy

  16. Nonlinear Particle Acceleration and Thermal Particles in GRB Afterglows

    Science.gov (United States)

    Warren, Donald C.; Ellison, Donald C.; Barkov, Maxim V.; Nagataki, Shigehiro

    2017-02-01

    The standard model for GRB afterglow emission treats the accelerated electron population as a simple power law, N(E)\\propto {E}-p for p≳ 2. However, in standard Fermi shock acceleration, a substantial fraction of the swept-up particles do not enter the acceleration process at all. Additionally, if acceleration is efficient, then the nonlinear back-reaction of accelerated particles on the shock structure modifies the shape of the nonthermal tail of the particle spectra. Both of these modifications to the standard synchrotron afterglow impact the luminosity, spectra, and temporal variation of the afterglow. To examine the effects of including thermal particles and nonlinear particle acceleration on afterglow emission, we follow a hydrodynamical model for an afterglow jet and simulate acceleration at numerous points during the evolution. When thermal particles are included, we find that the electron population is at no time well fitted by a single power law, though the highest-energy electrons are; if the acceleration is efficient, then the power-law region is even smaller. Our model predicts hard–soft–hard spectral evolution at X-ray energies, as well as an uncoupled X-ray and optical light curve. Additionally, we show that including emission from thermal particles has drastic effects (increases by factors of 100 and 30, respectively) on the observed flux at optical and GeV energies. This enhancement of GeV emission makes afterglow detections by future γ-ray observatories, such as CTA, very likely.

  17. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  18. Friedman-Robertson-Walker Models with Late-Time Acceleration

    Institute of Scientific and Technical Information of China (English)

    Abdussattar; S. R. Prajapati2

    2011-01-01

    @@ In order to account for the observed cosmic acceleration, a modiGcation of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed.The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.%In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that ora modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  19. Vibration control in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  20. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  1. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  2. Dielectric assist accelerating structure

    Science.gov (United States)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  3. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  4. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  5. Friedmann-Robertson-Walker Models with Late-Time Acceleration

    CERN Document Server

    Abdussattar,

    2016-01-01

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  6. Friedman—Robertson—Walker Models with Late-Time Acceleration

    Science.gov (United States)

    Abdussattar; Prajapati, S. R.

    2011-02-01

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman—Robertson—Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  7. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  8. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  9. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  10. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  11. The parental antagonism theory of language evolution: preliminary evidence for the proposal.

    Science.gov (United States)

    Brown, William M

    2011-04-01

    Language--as with most communication systems--likely evolved by means of natural selection. Accounts for the genetical selection of language can usually be divided into two scenarios, either of which used in isolation of the other appear insufficient to explain the phenomena: (1) there are group benefits from communicating, and (2) there are individual benefits from being a better communicator. In contrast, it is hypothesized that language phenotypes emerged during a coevolutionary struggle between parental genomes via genomic imprinting, which is differential gene expression depending on parental origin of the genetic element. It is hypothesized that relatedness asymmetries differentially selected for patrigene-caused language phenotypes to extract resources from mother (early in development) and matrigene-caused language phenotypes to influence degree of cooperativeness among asymmetric kin (later in development). This paper reports that imprinted genes have a high frequency of involvement in language phenotypes (~36%), considering their presumed rarity in the human genome (~2%). For example, two well-studied genes associated with language impairments (FOXP2 and UBE3A) exhibit parent-of- origin effects. Specifically, FOXP2 is putatively paternally expressed, whereas UBE3A is a maternally expressed imprinted gene. It is also hypothesized that the more unique and cooperative aspects of human language emerged to the benefit of matrilineal inclusive fitness. Consistent with this perspective, it is reported here that the X-chromosome has higher involvement in loci that have associations with language than would be expected by chance. It is also reported, for the first time, that human and chimpanzee maternally expressed overlapping imprinted genes exhibit greater evolutionary divergence (in terms of the degree of overlapping transcripts) than paternally expressed overlapping imprinted genes. Finally, an analysis of global language patterns reveals that paternally but

  12. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  13. Fully vectorial accelerating diffraction-free Helmholtz beams.

    Science.gov (United States)

    Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N

    2012-11-16

    We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.

  14. Small type accelerator. Try for accelerator driven system

    CERN Document Server

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  15. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    Science.gov (United States)

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences.

  16. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    Directory of Open Access Journals (Sweden)

    Gareth eJones

    2013-05-01

    Full Text Available Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions (e.g. olfactory receptor genes and genes identified from mutations associated with sensory deficits (e.g. blindness and deafness. For example, the FoxP2 gene, underpinning vocal behaviour and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive olfactory receptor repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a ‘birth-and death’ evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to

  17. The GENEPI accelerator operation feedback at the MASURCA reactor facility

    Science.gov (United States)

    Destouches, C.; Fruneau, M.; Belmont, J. L.; Do Pinhal, J.; Albrand, S.; Carreta, J. M.; Chaussonnet, P.; De Conto, J. M.; Fontenille, A.; Fougeras, P.; Garrigue, A.; Guisset, M.; Laurens, J. M.; Loiseaux, J. M.; Marchand, D.; Micoud, R.; Mellier, F.; Perbet, E.; Planet, M.; Ravel, J. C.; Richaud, J. P.

    2006-06-01

    The MUSE-4 experiment, dedicated to the Accelerator Driven System (ADS) development studies, was achieved in the MASURCA nuclear reactor facility from 2000 to 2004. An external neutron source was introduced in a lead buffer zone located at the centre of the reactor core in order to simulate the spallation source. This paper deals with the GENEPI accelerator operation feedback at the MASURCA reactor facility during the MUSE-4 experimental campaign. After a presentation of the MASURCA mock-up facility and of the experimental programme objectives, the different phases of the accelerator design and realization are detailed. Its installation in the MASURCA nuclear facility, achieved in June 2000, is described concerning the technical and administrative topics. Then, the accelerator operation feedback is given concerning maintenance, tritium target management, source monitoring, technical evolutions, etc. The accelerator partial dismantling, achieved in the first part of 2005, is also presented. In addition, the GENEPI contribution to the MUSE-4 programme is presented in terms of experimental results and experimental measurement method improvements. Also, GENEPI 2, an evolution of the GENEPI concept, is described. This accelerator, is coupled to the PEREN facility which is dedicated to the nuclear cross-section measurements. Last, this paper makes a synthesis of the GENEPI operation feedback at the MASURCA facility and proposes recommendations for future projects involving accelerators used in nuclear reactor environment.

  18. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  19. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  20. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  1. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  2. Uniform Acceleration in General Relativity

    CERN Document Server

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  3. Microelectromechanical acceleration-sensing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  4. Studies of accelerated compact toruses

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-04

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.

  5. Accelerating News Issue 4

    CERN Document Server

    Szeberenyi, A; Wildner, E

    2012-01-01

    In this winter issue, we are very pleased to announce the approval of EuCARD-2 by the European Commission. We look at the conclusions of EUROnu in proposing future neutrino facilities at CERN, a new milestone reached by CLIC and progress on the SPARC upgrade using C-band technology. We also report on recent events: second Joint HiLumi LHC-LARP Annual Meeting and workshop on Superconducting technologies for the Next Generation of Accelerators aiming at closer collaboration with industry. The launch of the Accelerators for Society brochure is also highlighted.

  6. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  7. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  8. Brane assisted quintessential inflation with transient acceleration

    CERN Document Server

    Bento, M C; Santos, N M C

    2008-01-01

    A simple model of quintessential inflation with the modified exponential potential exp(-\\alpha \\phi) [A + (\\phi-\\phi_0)^2] is analyzed in the braneworld context. Considering reheating via instant preheating, it is shown that the evolution of the scalar field \\phi from inflation to the present epoch is consistent with the observational constraints in a wide region of the parameter space. The model exhibits transient acceleration at late times for 0.96 < A \\alpha^2 < 1.3 and 271 < \\phi_0 \\alpha < 273, while permanent acceleration is obtained for 2.5 10^{-9} < A \\alpha^2 < 0.98 and 252 < \\phi_0 \\alpha < 273. The steep parameter \\alpha is constrained to be in the range 5.3 < \\alpha < 11.2.

  9. Electron acceleration by magnetic collapse during decoupling

    Science.gov (United States)

    Bennet, Euan D.; Potts, Hugh E.; Teodoro, Luis F. A.; Diver, Declan A.

    2014-12-01

    This paper identifies the non-equilibrium evolution of magnetic field structures at the onset of large-scale recombination of an inhomogeneously ionized plasma. The context for this is the Universe during the epoch of recombination. The electromagnetic treatment of this phase transition can produce energetic electrons scattered throughout the Universe, localized near the edges of magnetic domains. This is confirmed by a numerical simulation in which a magnetic domain is modelled as a uniform field region produced by a thin surrounding current sheet. Conduction currents sustaining the magnetic structure are removed as the charges comprising them combine into neutrals. The induced electric field accompanying the magnetic collapse is able to accelerate ambient stationary electrons (that is, electrons not participating in the current sheet) to energies of up to order 10keV. This is consistent with theoretical predictions. The localized electron acceleration leads to local imbalances of charge which has implications for charge separation in the early Universe.

  10. Stratified wake of an accelerating hydrofoil

    CERN Document Server

    Ben-Gida, Hadar; Gurka, Roi

    2015-01-01

    Wakes of towed and self-propelled bodies in stratified fluids are significantly different from non-stratified wakes. Long time effects of stratification on the development of the wakes of bluff bodies moving at constant speed are well known. In this experimental study we demonstrate how buoyancy affects the initial growth of vortices developing in the wake of a hydrofoil accelerating from rest. Particle image velocimetry measurements were applied to characterize the wake evolution behind a NACA 0015 hydrofoil accelerating in water and for low Reynolds number and relatively strong and stably stratified fluid (Re=5,000, Fr~O(1)). The analysis of velocity and vorticity fields, following vortex identification and an estimate of the circulation, reveal that the vortices in the stratified fluid case are stretched along the streamwise direction in the near wake. The momentum thickness profiles show lower momentum thickness values for the stratified late wake compared to the non-stratified wake, implying that the dra...

  11. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  12. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  13. The CERN accelerator complex

    CERN Multimedia

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  14. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  15. Acceleration and Special Relativity

    CERN Document Server

    Yahalomi, E M

    2000-01-01

    The integration of acceleration over time before reaching the uniformvelocity turns out to be the source of all the special relativity effects. Itexplains physical phenomena like clocks comparisons. The equations forspace-time, mass and energy are presented. This phenomenon complements theexplanation for the twins paradox. A Universal reference frame is obtained.

  16. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  17. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  18. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  19. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  20. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  1. Combined generating-accelerating buncher for compact linear accelerators

    Science.gov (United States)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  2. Neurodegeneration in accelerated aging.

    Science.gov (United States)

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  3. Investigation of toroidal acceleration and potential acceleration forces in EAST and J-TEXT plasmas

    CERN Document Server

    Wang, Fudi; Pan, Xiayun; Cheng, Zhifeng; Chen, Jun; Cao, Guangming; Wang, Yuming; Han, Xiang; Li, Hao; Wu, Bin; Chen, Zhongyong; Bitter, Manfred; Hill, Kenneth; Rice, John; Morita, Shigeru; Li, Yadong; Zhuang, Ge; Ye, Minyou; Wan, Baonian; Shi, Yuejiang

    2014-01-01

    In order to produce intrinsic rotation, bulk plasmas must be collectively accelerated by the net force exerted on them, which results from both driving and damping forces. So, to study the possible mechanisms of intrinsic rotation generation, it is only needed to understand characteristics of driving and damping terms because the toroidal driving and damping forces induce net acceleration which generates intrinsic rotation. Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping up and ramping down. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between - 50 km/s^2 in counter-current direction and 70 km/s^2 in co-current direction. According to toroidal momentum equation, toroidal electric field (E\\-(\\g(f))), electron-ion toroidal friction, and toroidal viscous force etc. may play roles in the evolution of toroi...

  4. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  5. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  6. 人类大脑容量及语言进化的分子生物学证据与质疑%Controversial Researches on Molecular Evolution of Language and Brain Size

    Institute of Scientific and Technical Information of China (English)

    俞建梁

    2015-01-01

    Language and larger brain size than other primates are the deifning features of human beings. The evolution of language and brain size has been the research hotspot all the time. Over the past 20 years the research in the evolution of language and brain size through molecular biology, which transcends the disputes between nature and nurture in language aquisition, has made great achievement. But many test results are incongruous or even controversial over the questions whether the evolution of FOXP2 might underlie linguistic behavior and whether the evolution of genes such as MCPH1, ASPM and etc. has undergone positive selection or implicated in the brain size and intelligence. The discussion of these questions allows us to understand the current situation of the molecular evolution of language and brain size, and the developmental trend of biolinguistics.%语言和拥有比其他灵长类动物更大的脑容量是人类的显著特征。语言与大脑的进化一直是人们研究的热点。过去近20年有关人类语言与脑容量进化的分子生物学研究超越了思辨层面的先天论和后天论之争,取得了许多重要的发现。但许多研究结果相左,有的甚至相互矛盾:FOXP2基因的进化是否与语言相关;MCPH1、ASPM等基因的进化是否受到正向选择、是否影响大脑容量以及是否与智力有关等等。这些问题在分子生物学领域引起了诸多争论和质疑。对这些问题的了解有助于认识当前有关语言与大脑容量进化的研究现状和生物语言学的发展动态。

  7. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  8. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  9. SUPERDIFFUSIVE SHOCK ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G. [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy)

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  10. Accelerating QDP++ using GPUs

    CERN Document Server

    Winter, Frank

    2011-01-01

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an ...

  11. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  12. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  13. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  14. Accelerated Parallel Texture Optimization

    Institute of Scientific and Technical Information of China (English)

    Hao-Da Huang; Xin Tong; Wen-Cheng Wang

    2007-01-01

    Texture optimization is a texture synthesis method that can efficiently reproduce various features of exemplar textures. However, its slow synthesis speed limits its usage in many interactive or real time applications. In this paper, we propose a parallel texture optimization algorithm to run on GPUs. In our algorithm, k-coherence search and principle component analysis (PCA) are used for hardware acceleration, and two acceleration techniques are further developed to speed up our GPU-based texture optimization. With a reasonable precomputation cost, the online synthesis speed of our algorithm is 4000+ times faster than that of the original texture optimization algorithm and thus our algorithm is capable of interactive applications. The advantages of the new scheme are demonstrated by applying it to interactive editing of flow-guided synthesis.

  15. NEW ACCELERATION METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1984-07-01

    But a glance at the Livingston chart, Fig. 1, of accelerator particle energy as a function of time shows that the energy has steadily, exponentially, increased. Equally significant is the fact that this increase is the envelope of diverse technologies. If one is to stay on, or even near, the Livingston curve in future years then new acceleration techniques need to be developed. What are the new acceleration methods? In these two lectures I would like to sketch some of these new ideas. I am well aware that they will probably not result in high energy accelerators within this or the next decade, but conversely, it is likely that these ideas will form the basis for the accelerators of the next century. Anyway, the ideas are stimulating and suffice to show that accelerator physicists are not just 'engineers', but genuine scientists deserving to be welcomed into the company of high energy physicists. I believe that outsiders will find this field surprisingly fertile and, certainly fun. To put it more personally, I very much enjoy working in this field and lecturing on it. There are a number of review articles which should be consulted for references to the original literature. In addition there are three books on the subject. Given this material, I feel free to not completely reference the material in the remainder of this article; consultation of the review articles and books will be adequate as an introduction to the literature for references abound (hundreds are given). At last, by way of introduction, I should like to quote from the end of Ref. 2 for I think the remarks made there are most germane. Remember that the talk was addressed to accelerator physicists: 'Finally, it is often said, I think by physicists who are not well-informed, that accelerator builders have used up their capital and now are bereft of ideas, and as a result, high energy physics will eventually--rather soon, in fact--come to a halt. After all, one can't build too many

  16. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  17. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  18. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  19. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  20. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  1. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  2. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  3. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  4. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  5. French nuclear physics accelerator opens

    Science.gov (United States)

    Dumé, Belle

    2016-12-01

    A new €140m particle accelerator for nuclear physics located at the French Large Heavy Ion National Accelerator (GANIL) in Caen was inaugurated last month in a ceremony attended by French president François Hollande.

  6. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  7. Particle trajectories and acceleration during 3D fan reconnection

    CERN Document Server

    Dalla, S; 10.1051/0004-6361:200809771

    2008-01-01

    Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible...

  8. Time-Dependent Stochastic Acceleration Model for the Fermi Bubbles

    CERN Document Server

    Sasaki, Kento; Terasawa, Toshio

    2015-01-01

    We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin-Helmholtz, Rayleigh-Taylor or Richtmyer-Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the s...

  9. Gravitational acceleration and edge effects in molecular clouds

    CERN Document Server

    Li, Guang-Xing; Megeath, Tom; Wyrowski, Friedrich

    2016-01-01

    Gravity plays important roles in the evolution of molecular clouds. We present an acceleration mapping method to estimate the acceleration induced by gravitational interactions in molecular clouds based on observational data. We find that the geometry of a region has a significant impact on the behavior of gravity. In the Pipe nebula which can be approximated as a gas filament, we find that gravitational acceleration can effectively compress the end of this filament, which may have triggered star formation. We identify this as the "gravitational focusing" effect proposed by Burkert & Hartman (2004). In the sheet-like IC348-B3 region, gravity can lead to collapse at its edge, while in the centrally condensed NGC1333 cluster-forming region gravity can drive accretion towards the center. In general, gravitational acceleration tends to be enhanced in the localized regions around the ends of the filaments and the edges of sheet-like structures. Neglecting magnetic fields, these "gravitational focusing" and "ed...

  10. Accelerating in de Sitter spacetimes

    CERN Document Server

    Cotaescu, Ion I

    2014-01-01

    We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a result with a reasonable physical meaning.

  11. Particle Acceleration in Relativistic Jets Due to Weibel Instability

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  12. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  13. Cosmic Acceleration and the Helicity-0 Graviton

    CERN Document Server

    de Rham, Claudia; Heisenberg, Lavinia; Pirtskhalava, David

    2010-01-01

    We explore cosmology in the decoupling limit of a non-linear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the \\Lambda CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against ...

  14. Cosmic acceleration and the helicity-0 graviton

    Science.gov (United States)

    de Rham, Claudia; Gabadadze, Gregory; Heisenberg, Lavinia; Pirtskhalava, David

    2011-05-01

    We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the ΛCDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.

  15. Cosmic acceleration from matter-curvature coupling

    Science.gov (United States)

    Zaregonbadi, Raziyeh; Farhoudi, Mehrdad

    2016-10-01

    We consider f( {R,T} ) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We indicate that in this type of the theory, the coupling energy-momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy-momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area-distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.

  16. APT accelerator. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  17. Muon Acceleration - RLA and FFAG

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  18. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  19. 2014 CERN Accelerator Schools

    CERN Multimedia

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  20. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  1. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  2. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  3. Communicating Change The Promise of Human Evolution

    OpenAIRE

    James Lull; Eduardo Neiva

    2008-01-01

    In the present age, human evolution no longer follows the same principal of biological evolution, resulting from the adaptation and survival of competitive species in nature in terms of random mutations. This transformation varies in terms of cultural innovations and moral determinations, the hallmark human species, the only one to subordinate their interests to other genetic issues deems most relevant. The pace of change has accelerated remarkably in the last millennium, especially after the...

  4. Particle acceleration mechanisms

    CERN Document Server

    Petrosyan, V

    2008-01-01

    We review the possible mechanisms for production of non-thermal electrons which are responsible for non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We briefly review acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We consider two scenarios for production of non-thermal radiation. The first is hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic particles. Non-thermal tails are produced by accelerating electrons from the background plasma with an initial Maxwellian distribution. However, these tails are accompanied by significant heating and they are present for a short time of <10^6 yr, which is also the time that the tail will be thermalised. Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission...

  5. Accelerator School Success

    CERN Multimedia

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  6. Acceleration in Linear and Circular Motion

    Science.gov (United States)

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  7. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  8. Energy limitation of laser-plasma electron accelerators

    CERN Document Server

    Cardenas, D E; Xu, J; Hofmann, L; Buck, A; Schmid, K; Sears, C M S; Rivas, D E; Shen, B; Veisz, L

    2015-01-01

    We report on systematic and high-precision measurements of dephasing, an effect that fundamentally limits the performance of laser wakefield accelerators. Utilizing shock-front injection, a technique providing stable, tunable and high-quality electron bunches, acceleration and deceleration of few-MeV quasi-monoenergetic beams were measured with sub-5-fs and 8-fs laser pulses. Typical density dependent electron energy evolution with 65-300 micrometers dephasing length and 6-20 MeV peak energy was observed and is well described with a simple model.

  9. Electron Acceleration by a Focused Gaussian Laser Pulse in Vacuum

    Institute of Scientific and Technical Information of China (English)

    何峰; 余玮; 陆培祥; 徐涵

    2004-01-01

    By numerically solving the relativistic equations of motion of a single electron in laser fields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. When the drifting distance is comparable to or even longer than the corresponding Rayleigh length, the evolution of the beam waist cannot be neglected. The asymmetry of intensity in acceleration and deceleration leads to the conclusion that the electron can be accelerated effectively and extracted by the longitudinal ponderomotive force. For intensities above, an electron's energy gain about MeV can be realized, and the energetic electron is parallel with the propagation axis.

  10. Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe

    Institute of Scientific and Technical Information of China (English)

    张杨

    2003-01-01

    Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective YangMills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities Ω∧~ 0.7 for dark energy and Ωm ~ 0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.

  11. Investigation on laser accelerators. Plasma beat wave accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-04-01

    Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)

  12. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  13. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  14. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    Energy Technology Data Exchange (ETDEWEB)

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  15. Full velocity difference and acceleration model for a car-following theory

    Science.gov (United States)

    Yu, Shaowei; Liu, Qingling; Li, Xiuhai

    2013-05-01

    In order to describe the car-following behavior more actually in real traffic, a full velocity difference and acceleration model (for short, FVDAM) is proposed by synthetically taking into account headway, velocity difference and acceleration of the leading car on the basis of full velocity difference model. The analytical method and numerical simulation results show that the proposed model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that incorporating the acceleration of the leading car into car-following model can stabilize traffic flow, suppress the traffic jam and increase capacity, and that the following car in FVDAM can accelerate more quickly than in FVDM.

  16. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  17. HL-LHC Accelerator

    CERN Document Server

    Zimmermann, F

    2013-01-01

    The tentative schedule, key ingredients, as well as progress of pertinent R&D and component prototypes for the LHC luminosity upgrade, "HL-LHC," are reviewed. Also alternative scenarios based on performance-improving consolidations (PICs) instead of a full upgrade are discussed. Tentative time schedules and expected luminosity evolutions for the different scenarios are sketched. The important role of HL-LHC development as a step towards a future HE-LHC or VHE-LHC is finally highlighted. Presented at "Higgs & Beyond" Conference Tohoku University, Sendai 7 June 2013.

  18. HIGH ENERGY PARTICLE ACCELERATOR

    Science.gov (United States)

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  19. Hadron accelerators for radiotherapy

    Science.gov (United States)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  20. Dynamics of pyroelectric accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  1. Testing Gravity on Accelerators

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  2. Acceleration of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)], E-mail: berezhko@ikfia.ysn.ru

    2008-07-15

    Cosmic ray (CR) origin problem is briefly discussed. It is argued that CRs with energies up to 10{sup 17} eV are produced in galactic supernova remnants, whereas ultra high energy CRs are extragalactic. CR composition strongly changes within the transition from galactic to extragalactic CR component, therefore precise measurements of CR composition at energies 10{sup 17} - 10{sup 19} eV are needed for the reliable determination of this transition. The possible sources of extragalactic CRs are briefly discussed. It is argued that CR acceleration at the shock created by the expanding cocoons around active galactic nuclei has to be considered as a prime candidate for the sources of extragalactic CRs.

  3. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  4. Project X: Accelerator Reference Design

    CERN Document Server

    Holmes, S D; Chase, B; Gollwitzer, K; Johnson, D; Kaducak, M; Klebaner, A; Kourbanis, I; Lebedev, V; Leveling, A; Li, D; Nagaitsev, S; Ostroumov, P; Pasquinelli, R; Patrick, J; Prost, L; Scarpine, V; Shemyakin, A; Solyak, N; Steimel, J; Yakovlev, V; Zwaska, R

    2013-01-01

    Part 1 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". Part 1 contains the volume Preface and a description of the conceptual design for a high-intensity proton accelerator facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Subjects covered include performance goals, the accelerator physics design, and the technological basis for such a facility.

  5. NIIEFA accelerators for applied purposes

    Science.gov (United States)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  6. Landing the uniformly accelerating observers

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan; Gruber, Ronald P.

    2006-01-01

    Observers of the uniformly accelerating observers or the observers who make up the system of uniformly accelerating observers reach the same velocity V at different times ti which depends on V and on theirs acceleration gi. Considering a platform that moves with constant velocity V, the observers can land smoothly on it. Their ages and locations in the inertial reference frame attached to the platform are reckoned and compared.

  7. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  8. Thomas Precession by Uniform Acceleration

    CERN Document Server

    Pardy, Miroslav

    2015-01-01

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  9. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  10. The evolution of iron white dwarf stars

    Directory of Open Access Journals (Sweden)

    J. A. Panei

    2001-01-01

    Full Text Available Recent measurements by Hipparcos provide strong observational evidence supporting the existence of white dwarf stars with iron-rich core composition. Here we examine the evolution of iron-rich white dwarfs, for which the cooling is substancially accelerated as compared with the standard carbon-oxigen white dwarfs.

  11. Galaxy Evolution

    Science.gov (United States)

    Matteucci, F.

    We review both the observational and theoretical constraints on the evolution of the abundances of heavy elements in gas and stars in galaxies of different morphological type. The main aim of this work is to document the progress made in our understanding of the physical processes regulating the chemical evolution of galaxies during the last sixteen years since the appearance, in this same journal (volume 5, page 287), of the well know review of Beatrice Tinsley, to whom I dedicate this paper. Finally, this article is addressed particularly to readers who do not actively work on galactic chemical evolution and who might use it as a cook book where the main ingredients are discussed and useful recipes can be found.

  12. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, I-87036 Rende (Italy)

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.

  13. Feature-based Analysis of Plasma-based Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

    2013-07-05

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  14. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  15. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  16. COMPASS Accelerator Design Technical Overview

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff; /SLAC

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  17. Chameleon field and the late time acceleration of the Universe

    Indian Academy of Sciences (India)

    Narayan Banerjee; Sudipta Das; Koyel Ganguly

    2010-03-01

    In the present work, it is shown that a chameleon scalar field having a non-minimal coupling with dark matter can give rise to a smooth transition from a decelerated to an accelerated phase of expansion for the Universe. It is surprising to note that the coupling with the chameleon scalar field hardly affects the evolution of the dark matter sector, which still redshifts as −3.

  18. Accelerating cosmological expansion from shear and bulk viscosity

    CERN Document Server

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2015-01-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  19. Accelerating Cosmological Expansion from Shear and Bulk Viscosity

    Science.gov (United States)

    Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  20. Disassortative mixing accelerates consensus in the naming game

    CERN Document Server

    Yang, Han-Xin

    2015-01-01

    In this paper, we study the role of degree mixing in the naming game. It is found that consensus can be accelerated on disassortative networks. We provide a qualitative explanation of this phenomenon based on clusters statistics. Compared with assortative mixing, disassortative mixing can promote the merging of different clusters, thus resulting in a shorter convergence time. Other quantities, including the evolutions of the success rate, the number of total words and the number of different words, are also studied.

  1. Stochastic Particle Acceleration in Turbulence Generated by the Magnetorotational Instability

    CERN Document Server

    Kimura, Shigeo S; Suzuki, Takeru K; Inutsuka, Shu-ichiro

    2016-01-01

    We investigate stochastic particle acceleration in accretion flows. It is believed that the magnetorotational instability (MRI) generates turbulence inside accretion flows and that cosmic rays (CRs) are accelerated by the turbulence. We calculate equations of motion for CRs in the turbulent fields generated by MRI with the shearing box approximation without back reaction to the field. The results show that the CRs randomly gain or lose their energies through the interaction with the turbulent fields. The CRs diffuse in the configuration space anisotropically: The diffusion coefficient in direction of the unperturbed flow is about twenty times higher than the Bohm coefficient, while those in the other directions are only a few times higher than the Bohm. The momentum distribution is isotropic, and its evolution can be described by the diffusion equation in momentum space where the diffusion coefficient is a power-law function of the CR momentum. We show that the shear acceleration efficiently works for energet...

  2. Low- to medium-β cavities for heavy ion acceleration

    Science.gov (United States)

    Facco, Alberto

    2017-02-01

    Acceleration of low- and medium-β heavy ions by means of superconducting (SC) linear accelerators (linacs) was made possible by the development, during four decades, of a particular class of cavities characterized by low operation frequency, several different shapes and different electromagnetic modes of operation. Their performance, initially rather poor in operating accelerators, have steadily increased along with the technological progress and nowadays the gap with the high-β, elliptical cavities is close to be filled. Initially confined to a very small number of applications, this family of cavities evolved in many directions becoming one of the most widespread in linacs. Nowadays it is present in the majority of superconducting radio-frequency ion linac projects worldwide. An overview of low- and medium-β SC cavities for heavy ions, focused on their recent evolution and achievements, will be given.

  3. Intense tera-hertz laser driven proton acceleration in plasmas

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  4. Quantum Teleportation with an Accelerated Observer and Black Hole Information

    CERN Document Server

    Shiokawa, K

    2009-01-01

    Nonperturbative analysis of quantum entanglement and quantum teleportation protocol using oscillator variables carried by observers in relativistic motion under the continuous influence of the environment is given. The full time evolution of quantum entanglement among static and accelerated observers is studied. The environment plays a dual role. While it creates bipartite and tripartite entanglement among observers even when the initial state is separable, it suppresses the entanglement via decoherence. Motivated by the black hole information problem, we consider quantum teleportation between static and accelerated observers. Acceleration of the observer suppresses fidelity of teleportation. Some of the quantum information escapes outside of the horizon in the form of bipartite and tripartite entanglement during the teleportation process. Explicit calculation of information loss is provided. In addition to the loss due to the interaction with the environment, there is an intrinsic loss originated in a measur...

  5. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  6. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  7. The entangled accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Robles-Perez, Salvador [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)

    2009-08-31

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  8. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  9. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  10. Accelerated shallow water modeling

    Science.gov (United States)

    Gandham, Rajesh; Medina, David; Warburton, Timothy

    2015-04-01

    ln this talk we will describe our ongoing developments in accelerated numerical methods for modeling tsunamis, and oceanic fluid flows using two dimensional shallow water model and/or three dimensional incompressible Navier Stokes model discretized with high order discontinuous Galerkin methods. High order discontinuous Galerkin methods can be computationally demanding, requiring extensive computational time to simulate real time events on traditional CPU architectures. However, recent advances in computing architectures and hardware aware algorithms make it possible to reduce simulation time and provide accurate predictions in a timely manner. Hence we tailor these algorithms to take advantage of single instruction multiple data (SIMD) architecture that is seen in modern many core compute devices such as GPUs. We will discuss our unified and extensive many-core programming library OCCA that alleviates the need to completely re-design the solvers to keep up with constantly evolving parallel programming models and hardware architectures. We will present performance results for the flow simulations demonstrating performance leveraging multiple different multi-threading APIs on GPU and CPU targets.

  11. Actinides, accelerators and erosion

    Science.gov (United States)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  12. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  13. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  14. EXOTIC MAGNETS FOR ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  15. Particle Acceleration in Astrophysical Sources

    CERN Document Server

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  16. Shear Acceleration in Expanding Flows

    CERN Document Server

    Rieger, F M

    2016-01-01

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets of active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi-Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge ...

  17. The ISAC post-accelerator

    Science.gov (United States)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  18. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  19. Gauss-Bonnet Cosmology Unifying Late and Early-time Acceleration Eras with Intermediate Eras

    CERN Document Server

    Oikonomou, V K

    2016-01-01

    In this paper we demonstrate that with vacuum $F(G)$ gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the $F(G)$ description is no, since the resulting power spectrum is not scale invariant, in contrast to the $F(R)$ description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum $F(G)$ gravity, the evolu...

  20. LHC Accelerator Fault Tracker - First Experience

    CERN Document Server

    Apollonio, Andrea; Roderick, Chris; Schmidt, Ruediger; Todd, Benjamin; Wollmann, Daniel

    2016-01-01

    Availability is one of the key performance indicators of LHC operation, being directly correlated with integrated luminosity production. An effective tool for availability tracking is a necessity to ensure a coherent capture of fault information and relevant dependencies on operational modes and beam parameters. At the beginning of LHC Run 2 in 2015, the Accelerator Fault Tracking (AFT) tool was deployed at CERN to track faults or events affecting LHC operation. Information derived from the AFT is crucial for the identification of areas to improve LHC availability, and hence LHC physics production. For the 2015 run, the AFT has been used by members of the CERN Availability Working Group, LHC Machine coordinators and equipment owners to identify the main contributors to downtime and to understand the evolution of LHC availability throughout the year. In this paper the 2015 experience with the AFT for availability tracking is summarised and an overview of the first results as well as an outlook to future develo...

  1. Photon mirror acceleration in the quantum regime

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: josetitomend@gmail.com [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil); Fedele, R., E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Universitá di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy)

    2014-12-15

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  2. Test particle acceleration in explosive magnetohydrodynamic reconnection

    CERN Document Server

    Ripperda, Bart; Xia, Chun; Keppens, Rony

    2016-01-01

    Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...

  3. Particle Acceleration and Heating by Turbulent Reconnection

    CERN Document Server

    Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilios; Anastasiadis, Anastasios

    2016-01-01

    Turbulent flows in the solar wind, large scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains "turbulent reconnection". We constructed a 2D grid on which a number of randomly chosen grid points are acting as {\\bf scatterers} (i.e.\\ magnetic clouds or current sheets). In particular, we study how test particles respond inside this collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, their escape time distribution and we determine the transport coefficients from the particle dynamics. We have shown that our model describes very well the second order Fermi energization of non relativistic plasmas in open or periodic numerical boxes, when using magnetic clouds as scatterers. Replacing the "magnetic clouds" with current sheets, we have proven that the processes are much more efficient and particle heating and acceleration depends on...

  4. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Science.gov (United States)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  5. Abrupt plate accelerations shape rifted continental margins.

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  6. Abrupt plate accelerations shape rifted continental margins

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength-velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  7. Nonparaxial accelerating Bessel-like beams

    CERN Document Server

    Chremmos, Ioannis D

    2013-01-01

    A new class of nonparaxial accelerating optical waves is introduced. These are beams with a Bessel-like profile that are capable of shifting laterally along fairly arbitrary trajectories as the wave propagates in free space. The concept expands on our previous proposal of paraxial accelerating Bessel-like beams to include beams with subwavelength lobes and/or large trajectory angles. Such waves are produced when the phase at the input plane is engineered so that the interfering ray cones are made to focus along the prespecified path. When the angle of these cones is fixed, the beams possess a diffraction-free Bessel profile on planes that stay normal to their trajectory, which can be considered as a generalized definition of diffractionless propagation in the nonparaxial regime. The analytical procedure leading to these results is based on a ray optics interpretation of Rayleigh-Sommerfeld diffraction and is presented in detail. The evolution of the proposed waves is demonstrated through a series of numerical...

  8. Accelerated cleanup risk reduction

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  9. Ultrafast science using Laser Wakefield Accelerators

    Science.gov (United States)

    Thomas, Alec G. R.

    2016-10-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have considerable benefits for ultrafast science. Laser wakefield acceleration provides radiation pulses that have femtosecond duration and intrinsic synchronisation with the laser source, allowing for pump-probe measurements with unprecedented temporal resolution. These pulses can be used to study ultrafast dynamical phenomena in plasma and dense material, such as transient magnetic fields, rapidly evolving plasma dynamics and crystal lattice oscillations. In this talk, I will review recent experiments in laser wakefield acceleration and energetic photon generation using the laser systems HERCULES and Lambda-Cubed at the University of Michigan and their use for capturing the dynamics of laser-pumped samples. Studies of the electron beam hosing instability and the generation of annular phase space distributions increase X-ray flux while maintaining its femtosecond duration. Single-shot, spectrally resolved absorption measurements in laser pumped foils can be made on ultrafast timescales using this broadband photon source. Ultrafast electron radiography is able to temporally resolve relativistically expanding magnetic fields in high-intensity laser-solid interactions and the evolution of electric fields in low density plasma. Time-resolved electron diffraction captures structural dynamics in crystalline silicon. I will also discuss the technological needs for and potential impact of such revolutionary compact radiation sources for ultrafast science in the future. US Air Force Office of Scientific Research under Award Number FA9550-12-1-0310, the US National Science Foundation Grants No. 1054164, 0935197, 1535628 and 0810979, US Department of Energy Grant No. DE-NA0002372 and Army Research Office Grant No. W911NF1.

  10. Accelerated coffee pulp composting.

    Science.gov (United States)

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  11. Operation of the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Batzka, B.; Billquist, P.J. [and others

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  12. "small ACCELERATORS" 24 May - 2 June 2005

    CERN Multimedia

    2005-01-01

    CERN Accelerator School and Kernfysisch Versneller Instituut (KVI) Groningen, the Netherlands announce a course on "Small Accelerators", Hotel Golden Tulip Drenthe, Zeegse, the Netherlands, 24 May - 2 June 2005. This specialised course is dedicated to the physics and the main applications of small accelerators. The course will review the different accelerator types as well as their specificities in terms of accelerator physics.

  13. Proton Acceleration at Oblique Shocks

    Science.gov (United States)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  14. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  15. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  16. A Gradualist Scenario for Language Evolution: Precise Linguistic Reconstruction of Early Human (and Neandertal) Grammars.

    Science.gov (United States)

    Progovac, Ljiljana

    2016-01-01

    In making an argument for the antiquity of language, based on comparative evidence, Dediu and Levinson (2013) express hope that some combinations of structural features will prove so conservative that they will allow deep linguistic reconstruction. I propose that the earliest stages of syntax/grammar as reconstructed in Progovac (2015a), based on a theoretical and data-driven linguistic analysis, provide just such a conservative platform, which would have been commanded also by Neandertals and the common ancestor. I provide a fragment of this proto-grammar, which includes flat verb-noun compounds used for naming and insult (e.g., rattle-snake, cry-baby, scatter-brain), and paratactic (loose) combinations of such flat structures (e.g., Come one, come all; You seek, you find). This flat, binary, paratactic platform is found in all languages, and can be shown to serve as foundation for any further structure building. However, given the degree and nature of variation across languages in elaborating syntax beyond this proto-stage, I propose that hierarchical syntax did not emerge once and uniformly in all its complexity, but rather multiple times, either within Africa, or after dispersion from Africa. If so, then, under the uniregional hypothesis, our common ancestor with Neandertals, H. heidelbergensis, could not have commanded hierarchical syntax, but "only" the proto-grammar. Linguistic reconstructions of this kind are necessary for formulating precise and testable hypotheses regarding language evolution. In addition to the hominin timeline, this reconstruction can also engage, and negotiate between, the fields of neuroscience and genetics, as I illustrate with one specific scenario involving FOXP2 gene.

  17. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  18. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    2011-11-14

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  19. Distant Supernovae and the Accelerating Universe

    CERN Document Server

    Wright, E L

    2002-01-01

    The observation of SN 1997ff at redshift 1.7 has been claimed to refute alternative models such as grey dust or evolution for the faintness of distant supernovae, leaving only an accelerating Universe as a viable model. However, a very simple one parameter evolution model, with the peak luminosity varying as an exponential function of cosmic time, converts the flux vs. distance law of the critical density matter-dominated model into that of the concordance Omega_matter = 0.3 flat vacuum-dominated model with an error no larger than 0.03 mag over the range 0-2 in redshift. A grey dust model that matches this accuracy can easily be contrived but it still fails by overproducing the far-IR background or distorting the CMB. Models that involve oscillation between photons and axions could emulate an exponential function of cosmic time without violating these background constraints. Clearly a better and well-tested understanding of the Type Ia supernova explosion mechanism and the origin of the correlation between th...

  20. Cosmological evolution in exponential gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu; Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: bamba@phys.nthu.edu.tw, E-mail: geng@phys.nthu.edu.tw, E-mail: g9522545@oz.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China)

    2010-08-01

    We explore the cosmological evolution in the exponential gravity f(R) = R+c{sub 1}(1−e{sup −c{sub 2}R}) (c{sub 1,2} = constant). We summarize various viability conditions and explicitly demonstrate that the late-time cosmic acceleration following the matter-dominated stage can be realized. We also study the equation of state for dark energy and confirm that the crossing of the phantom divide from the phantom phase to the non-phantom (quintessence) one can occur. Furthermore, we illustrate that the cosmological horizon entropy globally increases with time.

  1. Cosmological evolution in exponential gravity

    CERN Document Server

    Bamba, Kazuharu; Lee, Chung-Chi

    2010-01-01

    We explore the cosmological evolution in the exponential gravity $f(R)=R +c_1 \\left(1-e^{- c_2 R} \\right)$ ($c_{1, 2} = \\mathrm{constant}$). We summarize various viability conditions and explicitly demonstrate that the late-time cosmic acceleration following the matter-dominated stage can be realized. We also study the equation of state for dark energy and confirm that the crossing of the phantom divide from the phantom phase to the non-phantom (quintessence) one can occur. Furthermore, we illustrate that the cosmological horizon entropy globally increases with time.

  2. Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations

    CERN Document Server

    Yang, Yiquan; Yu, Hongwei

    2016-01-01

    We investigate the entanglement dynamics of two uniformly accelerated atoms with the same acceleration perpendicular to their separation. The two-atom system is treated as an open system coupled with fluctuating electromagnetic fields in the Minkowski vacuum, and in the Born-Markov approximation the master equation that describes the completely positive time evolution of the two-atom system is derived. In particular, we investigate the phenomena of entanglement degradation, generation, revival and enhancement. As opposed to the scalar-field case, the entanglement dynamics is crucially dependent on the polarization directions of the atoms. For the two-atom system with certain acceleration and separation, the polarization directions of the atoms may determine whether entanglement generation, revival or enhancement happens, while for entanglement degradation, they affect the decay rate of entanglement. A comparison between the entanglement evolution of accelerated atoms and that of static ones immersed in a ther...

  3. Electron Acceleration in Contracting Magnetic Islands during Solar Flares

    Science.gov (United States)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I.; Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Antiochos, S. K.

    2017-01-01

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  4. HIGHLIGHTS LHC First Beam - Accelerating Science : 10 September 2008

    CERN Multimedia

    CERN Audiovisual Service

    2008-01-01

    First beam in the LHC - accelerating science A historic moment in the CERN Control Centre: the beam was successfully steered around the accelerator. Channel 1 : International Channel 2 : English guide A historic moment in the CERN Control Centre: the beam was successfully steered around the accelerator. Geneva, 10 September 2008. The first beam in the Large Hadron Collider at CERN1 was successfully steered around the full 27 kilometres of the world’s most powerful particle accelerator at 10h28 this morning. This historic event marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. “It’s a fantastic moment,” said LHC project leader Lyn Evans, “we can now look forward to a new era of understanding about the origins and evolution of the universe.” Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronized to under a billionth of a...

  5. Baldwin effect under multipeaked fitness landscapes: Phenotypic fluctuation accelerates evolutionary rate

    Science.gov (United States)

    Saito, Nen; Ishihara, Shuji; Kaneko, Kunihiko

    2013-05-01

    Phenotypic fluctuations and plasticity can generally affect the course of evolution, a process known as the Baldwin effect. Several studies have recast this effect and claimed that phenotypic plasticity accelerates evolutionary rate (the Baldwin expediting effect); however, the validity of this claim is still controversial. In this study, we investigate the evolutionary population dynamics of a quantitative genetic model under a multipeaked fitness landscape, in order to evaluate the validity of the effect. We provide analytical expressions for the evolutionary rate and average population fitness. Our results indicate that under a multipeaked fitness landscape, phenotypic fluctuation always accelerates evolutionary rate, but it decreases the average fitness. As an extreme case of the trade-off between the rate of evolution and average fitness, phenotypic fluctuation is shown to accelerate the error catastrophe, in which a population fails to sustain a high-fitness peak. In the context of our findings, we discuss the role of phenotypic plasticity in adaptive evolution.

  6. SNEAP 80: symposium of Northeastern Accelerator personnel

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J.H. (ed.)

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  7. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  8. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  9. IGBT accelerated aging data set.

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary data from thermal overstress accelerated aging using the aging and characterization system. The data set contains aging data from 6 devices, one device...

  10. Accelerator structure work for NLC

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gluckstern, R. [Maryland Univ., College Park, MD (United States); Ko, K.; Kroll, N. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  11. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  12. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  13. Particle acceleration around SNR shocks

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G., E-mail: morlino@arcetri.astro.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze (Italy)

    2013-08-21

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non-linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non-linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  14. Particle acceleration around SNR shocks

    CERN Document Server

    Morlino, Giovanni

    2012-01-01

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  15. Accelerating advanced-materials commercialization

    Science.gov (United States)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  16. Evolution of Chinese airport network

    CERN Document Server

    Zhang, Jun; Du, Wen-Bo; Cai, Kai-Quan

    2011-01-01

    With the rapid development of economy and the accelerated globalization process, the aviation industry plays more and more critical role in today's world, in both developed and developing countries. As the infrastructure of aviation industry, the airport network is one of the most important indicators of economic growth. In this paper, we investigate the evolution of Chinese airport network (CAN) via complex network theory. It is found that although the topology of CAN remains steady during the past several years, there are many dynamic switchings inside the network, which changes the relative relevance of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers and cargoes) on CAN. It is found that the traffic keeps growing in an exponential form and it has evident seasonal fluctuations. We also found that cargo traffic and passenger traffic are positively related but the correlations are quite different for different kinds of cities.

  17. The KEK Digital Accelerator and Its Brothers

    Science.gov (United States)

    Takayama, Ken

    Circular induction accelerators developed in the last 10 years are discussed. They are characterized by induction acceleration of a charged beam bunch trapped in the barrier bucket. This property enables acceleration of any ion species from an extremely low energy to relativistic energy in a single accelerator ring. In the future, a racetrack-shaped fixed field induction accelerator (induction microtron) could be realized as a unique accelerator for cluster ions such as C-60 and Si-100.

  18. Strong evidence for hadron acceleration in Tycho's supernova remnant

    Science.gov (United States)

    Morlino, G.; Caprioli, D.

    2012-02-01

    Context. Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS have provided new fundamental pieces of information for understanding particle acceleration and nonthermal emission in SNRs. Aims: We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics, and multiwavelength emission by accounting for particle acceleration at the forward shock via first-order Fermi mechanism. Methods: We adopt here a quick and reliable semi-analytical approach to nonlinear diffusive shock acceleration. It includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. Results: We find that Tycho's forward shock accelerates protons up to at least 500 TeV, channelling into CRs about 10% of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidence of very efficient magnetic field amplification (up to ~300 μG). In such a strong magnetic field, the velocity of the Alfvén waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction ∝ E-2. This effect is crucial for explaining GeV-to-TeV gamma-ray spectrum as the result of neutral pions decay produced in nuclear collisions between accelerated nuclei and the background gas. Conclusions: The self-consistency of such hadronic scenario, along with the inability of the concurrent leptonic mechanism (inverse Compton scattering of relativistic electrons on several photon backgrounds) to reproduce both the shape and the normalization of the detected gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.

  19. Technology of superconducting accelerator dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.

  20. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  1. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  2. BRIEF HISTORY OF FFAG ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    RUGGIERO, A.

    2006-12-04

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions.

  3. Hamiltonian mechanics of stochastic acceleration.

    Science.gov (United States)

    Burby, J W; Zhmoginov, A I; Qin, H

    2013-11-08

    We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

  4. Dark Energy or local acceleration?

    CERN Document Server

    Feoli, Antonio

    2016-01-01

    We find that an observer with a suitable acceleration relative to the frame comoving whit the cosmic fluid, in the context of the FRW decelerating universe, measures the same cosmological redshift as the LambdaCDM model. The estimated value of this acceleration is beta = 1.4x10^-9m/s^2. The problem of a too high peculiar velocity can be solved assuming, for the observer, a sort of helical motion.

  5. Accelerated stochastic and hybrid methods for spatial simulations of reaction-diffusion systems

    OpenAIRE

    Rossinelli, D; Bayati, B; Koumoutsakos, P.

    2008-01-01

    Spatial distributions characterize the evolution of reaction-diffusion models of several physical, chemical, and biological systems. We present two novel algorithms for the efficient simulation of these models: Spatial т-Leaping (Sт -Leaping), employing a unified acceleration of the stochastic simulation of reaction and diffusion, and Hybrid т-Leaping (Hт-Leaping), combining a deterministic diffusion approximation with a т-Leaping acceleration of the stochastic reactions. The algorithms are v...

  6. Modelling the reflective thermal contribution to the acceleration of the Pioneer spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, F., E-mail: frederico.francisco@ist.utl.pt [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O., E-mail: orfeu.bertolami@fc.up.pt [Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gil, P.J.S., E-mail: p.gil@dem.ist.utl.pt [Departamento de Engenharia Mecanica and IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Paramos, J., E-mail: paramos@ist.edu [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2012-05-23

    We present an improved method to compute the radiative momentum transfer in the Pioneer 10 and 11 spacecraft that takes into account both diffusive and specular reflection. The method allows for more reliable results regarding the thermal acceleration of the deep-space probes, confirming previous findings. A parametric analysis is performed in order to set upper and lower bounds for the thermal acceleration and its evolution with time.

  7. Vacuum Brazing of Accelerator Components

    Science.gov (United States)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  8. Ponderomotive Acceleration by Relativistic Waves

    CERN Document Server

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  9. High-Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  10. Interstellar Mapping and Acceleration Probe (IMAP)

    Science.gov (United States)

    Schwadron, Nathan

    2016-04-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. The "A" in IMAP refers to acceleration of energetic particles. With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the species and spectral coverage as well as unprecedented temporal resolution to associate emerging suprathermal tails with interplanetary structures and discover underlying physical acceleration processes. These key measurements will provide what has been a critical missing piece of suprathermal seed particles in our understanding of particle acceleration to high

  11. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  12. Art as A Playground for Evolution

    DEFF Research Database (Denmark)

    Beloff, Laura

    2016-01-01

    Art works which engage with the topic of human enhancement and evolution have begun appearing parallel to increased awareness about anthropogenic changes to our environment and acceleration of the speed of technological developments that impact us and our biological environment. The article...... connects artistic activity with play activity and evolution, which are considered on two levels. On the first level, play activity and its beneficial role to evolution is introduced through various science scholars’ research. On the second level, artistic activity that engages with human enhancement...... and related topics is proposed as play activity for adults, which simultaneously experiments directly with ideas concerning evolution and human development. The author proposes that these kinds of experimental art projects support our mental adaptation to evolutionary changes....

  13. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  14. CAS Accelerator Physics (RF for Accelerators) in Denmark

    CERN Multimedia

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  15. Acceleration schedules for a recirculating heavy-ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  16. Acceleration of injected electrons by the plasma beat wave accelerator

    Science.gov (United States)

    Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.

    1992-07-01

    In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.

  17. The Accelerator Markup Language and the Universal Accelerator Parser

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, D.; Forster, M.; /Cornell U., LNS; Bates, D.A.; /LBL, Berkeley; Wolski, A.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; /CERN; Walker, N.J.; /DESY; Larrieu, T.; Roblin, Y.; /Jefferson Lab; Pelaia, T.; /Oak Ridge; Tenenbaum, P.; Woodley, M.; /SLAC; Reiche, S.; /UCLA

    2006-10-06

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.

  18. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    CERN Document Server

    Congedo, Giuseppe

    2014-01-01

    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-...

  19. The Mechanisms of Electron Acceleration During Multiple X Line Magnetic Reconnection with a Guide Field

    CERN Document Server

    Wang, Huanyu; Huang, Can; Wang, Shui

    2016-01-01

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional (2-D) particle-in-cell (PIC) simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. The electrons remain almost magnetized, and we can then analyze the contributions of the parallel electric field, Fermi and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection by comparing with a guide-center theory. The results show that with the proceeding of magnetic reconnection, two magnetic islands are formed in the simulation domain. The electrons are accelerated by both the parallel electric field in the vicinity of the X lines and Fermi mechanism due to the contraction of the two magnetic islands. Then the two magnetic islands begin to merge into one, and in such a process electrons can be accelerated by the parallel electric field and betatron mechanisms. ...

  20. Derivation of Hamiltonians for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  1. Industrial Electron Accelerators Type ILU

    CERN Document Server

    Auslender, Vadim; Cheskidov, Vladimir; Faktorovich, Boris; Gorbunov, Vladimir; Gornakov, Igor; Nekhaev, V E; Panfilov, Alexander; Sidorov, Alexander; Tkachenko, Vadim; Tuvik, Alfred; Voronin, Leonid

    2005-01-01

    The report describes the electron accelerators of ILU series covering the energy range from 0.5 to 5 MeV with beam power up to 50 kW. The pulse linear accelerators type ILU are developed since 1970 in Budker institute of Nuclear Physics and are supplied to the industry. The ILU machines are purposed for wide application in various technological processes and designed for long continuous and round-the-clock work in industrial conditions. A principle of acceleration of electrons in the gap of HF resonator is used in the ILU machines. The HF resonator has toroidal form. The electron gun is placed in one of the protruding electrodes forming the accelerating gap of the resonator. The resonator is fed from HF autogenerator realized on the industrial triode, the feedback signal is given from the resonator. The absence of outer beam injection and usage of self-excited HF generator simplify the design of accelerator and ensure its reliable operation.

  2. Thought Evolution

    Directory of Open Access Journals (Sweden)

    Shadrikov V.D.

    2015-08-01

    Full Text Available The thought evolution is studied by historical reconstruction method that is based on the propositions of the theory of culturalhistorical determination of the psyche development, and the data of the morphological analysis and child development, and the conception of the psyche neuroontogenesis. The grounds for advisability of protothinking are presented. The protothinking is understood as the use of objective thought in cases of awareness absence. It is shown that protothinking is a form of transition from animal thinking to human speech. The particular attention is paid to the process of the word producing and thought generation in that process. The conditions of word producing as cooccurring acoustic pattern served for though expression are discussed. It is emphasized that a word is produced by a particular person. The historical development of the language and the specificity of this development are pointed out

  3. Community Evolution

    CERN Document Server

    Bródka, Piotr; Kazienko, Przemysław

    2016-01-01

    The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Having communities extracted, appropriate knowledge and methods for dynamic analysis may be applied in order to identify changes as well as to predict the future of all or some selected groups. Furthermore, knowing the most probably change of a given group some additional steps may be performed in order to change this predicted future according to specific needs. Such ability would be a powerful tool in the hands of human resource managers, personnel recruitment, marketing, telecommunication companies, etc.

  4. A Numerical and Experimental Study of a Shock-Accelerated Heavy Gas Cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Zoldi, Cindy Anne [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    2002-01-01

    In this thesis we study the evolution of an SF6 gas cylinder surrounded by air when accelerated by a planar Mach 1.2 shock wave. Vorticity generated by the interaction of the shock wave's pressure gradient with the density gradient at the air/SF6 interface drives the evolution of the cylinder into a vortex pair

  5. Accelerator Technology Division annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  6. 38 CFR 9.14 - Accelerated Benefits.

    Science.gov (United States)

    2010-07-01

    ...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...? ____ Yes__ No__ The patient applied for an accelerated benefit under his/her government life...

  7. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  8. Virtual gap dielectric wall accelerator

    Science.gov (United States)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  9. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  10. A Multibunch Plasma Wakefield Accelerator

    CERN Document Server

    Kallos, Efthymios; Ben-Zvi, Ilan; Katsouleas, Thomas C; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Yakimenko, Vitaly; Zhou, Feng

    2005-01-01

    We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.

  11. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  12. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  13. Aging in the Context of Cohort Evolution and Mortality Selection

    OpenAIRE

    2014-01-01

    This study examines historical patterns of aging through the perspectives of cohort evolution and mortality selection, where the former emphasizes the correlation across cohorts in the age dependence of mortality rates, and the latter emphasizes cohort change in the acceleration of mortality over the life course. In the analysis of historical cohort mortality data, I find support for both perspectives. The rate of demographic aging, or the rate at which mortality accelerates past age 70, is n...

  14. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  15. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  16. Geometric integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Etienne [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2006-05-12

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  17. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  18. Electron Cloud Effects in Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  19. Electron Cloud Effects in Accelerators

    CERN Document Server

    Furman, M A

    2013-01-01

    We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire "ECLOUD" series [122]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  20. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  1. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  2. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  3. Groupware requirements evolution patterns

    NARCIS (Netherlands)

    Pumareja, Dulce Trinidad

    2013-01-01

    Requirements evolution is a generally known problem in software development. Requirements are known to change all throughout a system's lifecycle. Nevertheless, requirements evolution is a poorly understood phenomenon. Most studies on requirements evolution focus on changes to written specifications

  4. Nonthermal radiation from relativistic electrons accelerated at spherically expanding shocks

    CERN Document Server

    Kang, Hyesung

    2014-01-01

    We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with the parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with the instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks by simple DSA models in the test-particle regime.

  5. Particle Acceleration at Shocks: Insights from Supernova Remnant Shocks

    Indian Academy of Sciences (India)

    T. W. Jones

    2011-12-01

    I review some basic properties of diffusive shock acceleration (DSA) in the context of young supernova remnants (SNRs). I also point out some key differences with cosmological, cluster-related shocks. DSA seems to be very efficient in strong, young SNR shocks. Provided the magnetic fields exceed some hundreds of Gauss (possibly amplified by CR related dynamics), these shocks can accelerate cosmic ray hadrons to PeV energies in the time available to them. Electron energies, limited by radiative losses, are likely limited to the TeV range. Injection of fresh particles at these shocks is poorly understood, but hadrons are much more easily injected than the more highly magnetized electrons. That seems supported by observational data, as well. So, while CR protons in young SNRs may play very major roles in the SNR evolution, the CR electron populations have minimal such impact, despite their observational importance.

  6. Customizable software architectures in the accelerator control system environment

    CERN Document Server

    Mejuev, I; Kadokura, E

    2001-01-01

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user customization has been extensively researched in applied computer science from HCI and software engineering perspectives. Customization allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user customization in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. We introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of a distributed monitoring application for the 12 GeV KEK Proton Synchrotron as an example. T...

  7. Gravitational energy as dark energy: Cosmic structure and apparent acceleration

    CERN Document Server

    Wiltshire, David L

    2011-01-01

    Below scales of about 100/h Mpc our universe displays a complex inhomogeneous structure dominated by voids, with clusters of galaxies in sheets and filaments. The coincidence that cosmic expansion appears to start accelerating at the epoch when such structures form has prompted a number of researchers to question whether dark energy is a signature of a failure of the standard cosmology to properly account, on average, for the distribution of matter we observe. Here I discuss the timescape scenario, in which cosmic acceleration is understood as an apparent effect, due to gravitational energy gradients that grow when spatial curvature gradients become significant with the nonlinear growth of cosmic structure. I discuss conceptual issues related to the averaging problem, and their impact on the calibration of local geometry to the solutions of the volume-average evolution equations corrected by backreaction, and the question of nonbaryonic dark matter in the timescape framework. I further discuss recent work on ...

  8. Cosmic Acceleration in a Model of Fourth Order Gravity

    CERN Document Server

    Banerjee, Shreya; Singh, Tejinder P

    2015-01-01

    We investigate a fourth order model of gravity, having a free length parameter, and no cosmological constant or dark energy. We consider cosmological evolution of a flat Friedmann universe in this model for the case that the length parameter is of the order of present Hubble radius. By making a suitable choice for the present value of the Hubble parameter, and value of third derivative of the scale factor (the jerk) we find that the model can explain cosmic acceleration to the same degree of accuracy as the standard concordance model. If the free length parameter is assumed to be time-dependent, and of the order of the Hubble parameter of the corresponding epoch, the model can still explain cosmic acceleration, and provides a possible resolution of the cosmic coincidence problem. We also compare redshift drift in this model, with that in the standard model.

  9. A tracking code for injection and acceleration studies in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lessner, E. [Argonne National Lab., IL (United States); Symon, K. [Argonne National Lab., IL (United States)]|[Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    1996-11-01

    CAPTURE-SPC is a Monte-Carlo-based tracking program that simulates the injection and acceleration processes in proton synchrotrons. The time evolution of a distribution of charged particles is implemented by a symplectic, second-order-accurate integration algorithm. The recurrence relations follow a time-stepping leap--frog method. The time-step can be varied optionally to reduce computer time. Space-charge forces are calculated by binning the phase-projected particle distribution. The statistical fluctuations introduced by the binning process are reduced by presmoothing the data by the cloud-in-cell method and by filtering. Both the bin size and amount of filtering can be varied during the acceleration cycle so that the bunch fine structure is retained while the short wavelength noise is attenuated. The initial coordinates of each macro particle together with its time of injection are retained throughout the calculations. This information is useful in determining low-loss injection schemes.

  10. Wind acceleration in AGB stars: Solid ground and loose ends

    CERN Document Server

    Höfner, Susanne

    2015-01-01

    The winds of cool luminous AGB stars are commonly assumed to be driven by radiative acceleration of dust grains which form in the extended atmospheres produced by pulsation-induced shock waves. The dust particles gain momentum by absorption or scattering of stellar photons, and they drag along the surrounding gas particles through collisions, triggering an outflow. This scenario, here referred to as Pulsation-Enhanced Dust-DRiven Outflow (PEDDRO), has passed a range of critical observational tests as models have developed from empirical and qualitative to increasingly self-consistent and quantitative. A reliable theory of mass loss is an essential piece in the bigger picture of stellar and galactic chemical evolution, and central for determining the contribution of AGB stars to the dust budget of galaxies. In this review, I discuss the current understanding of wind acceleration and indicate areas where further efforts by theorists and observers are needed.

  11. Exploding Stars and the Accelerating Universe

    Science.gov (United States)

    Kirshner, Robert P.

    2012-01-01

    Supernovae are exceptionally interesting astronomical objects: they punctuate the end of stellar evolution, create the heavy elements, and blast the interstellar gas with energetic shock waves. By studying supernovae, we can learn how these important aspects of cosmic evolution take place. Over the decades, we have learned that some supernovae are produced by gravitational collapse, and others by thermonuclear explosions. By understanding what supernovae are, or at least learning how they behave, supernovae explosions have been harnessed for the problem of measuring cosmic distances with some astonishing results. Carefully calibrated supernovae provide the best extragalactic distance indicators to probe the distances to galaxies and to measure the Hubble constant. Even more interesting is the evidence from supernovae that cosmic expansion has been speeding up over the last 5 billion years. We attribute this acceleration to a mysterious dark energy whose effects are clear, but whose nature is obscure. Combining the cosmic expansion history traced by supernovae with clues from galaxy clustering and cosmic geometry from the microwave background has produced today's standard, but peculiar, picture of a universe that is mostly dark energy, braked (with diminishing effect) by dark matter, and illuminated by a pinch of luminous baryons. In this talk, I will show how the attempt to understand supernovae, facilitated by ever-improving instruments, has led to the ability to measure the properties of dark energy. Looking ahead, the properties of supernovae as measured at infrared wavelengths seem to hold the best promise for more precise and accurate distances to help us understand the puzzle of dark energy. My own contribution to this work has been carried out in joyful collaboration with many excellent students, postdocs, and colleagues and with generous support from the places I have worked, the National Science Foundation, and from NASA.

  12. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  13. CERNois wins prestigious accelerator award

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    During the 2nd International Particle Accelerator Conference, CERN’s Rogelio Tomás García became the first Spaniard to receive the Frank Sacherer Prize for his work in particle beam optics.   Rogelio Tomás García at the 2nd International Particle Accelerator Conference. The Frank Sacherer Prize is awarded to physicists who have made a “significant, original contribution to the accelerator field" early on in their career. This year the prize was given to Rogelio Tomás García who, at only 35 years of age, has made important contributions to the optics design, optics measurement, and correction techniques applied at both the LHC and Brookhaven’s RHIC. “Tomás has had a vital impact on CERN’s beam optics studies and has made very impressive achievements in the field of beam optics,” says Oliver Brüning, Head of the Accelerators and Beam Physics...

  14. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  15. Program Evaluation: Accelerating Retained Students

    Science.gov (United States)

    Juneau, Lisa

    2014-01-01

    The purpose of this program evaluation was to evaluate the first year of an acceleration program that allowed students who were retained a grade level for not performing on academic level in early elementary school an opportunity to rejoin their age appropriate class. The primary focus of the evaluation was to evaluate the effectiveness of an…

  16. Cosmological Acceleration from Gravitational Waves

    CERN Document Server

    Marochnik, Leonid

    2015-01-01

    It is shown that the classical gravitational waves of super-horizon wavelengths are able to form the de Sitter accelerated expansion of the empty (with no matter fields) Universe. The contemporary Universe is about 70% empty and asymptotically is going to become completely empty, so the effect caused by emptiness should be already very noticeable. It could manifest itself as the dark energy.

  17. Observations of Collective Ion Acceleration.

    Science.gov (United States)

    1981-01-01

    possible benefit can be listed. In cancer therapy, radiation produced by ion beams may be more selectively directed into tumors. Ion beams in spallation...34Autoresonant Accelerator Concept," Phys. Rev. Lett. 31, 1234 (1973). 50. S. Humphries, J. J. Lee, and R. N. Sudan, "Generation of Incense Pulsed Ion Beams

  18. CLIC Drive Beam Accelerating Structures

    CERN Document Server

    Wegner, Rolf

    2012-01-01

    Travelling structures for accelerating the high-current (4.2 A) CLIC Drive Beam to an energy of 2.37 GeV are presented. The structures are optimised for efficiency (full beam loading operation) and a desired filling time. Higher order modes are studied and are reduced by detuning along the structure and by damping with silicon carbide loads.

  19. Physics Needs for Future Accelerators

    CERN Document Server

    Lykken, J D

    2000-01-01

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  20. Post-LHC accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  1. Repair of overheating linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

    2004-01-01

    Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

  2. Has Human Evolution Stopped?

    OpenAIRE

    TEMPLETON, Alan R

    2010-01-01

    It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important ...

  3. Bulk viscous matter and recent acceleration of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2015-07-15

    We consider a cosmological model dominated by bulk viscous matter with a total bulk viscosity coefficient proportional to the velocity and acceleration of the expansion of the universe in such a way that ζ = ζ{sub 0} + ζ{sub 1}(a)/(a) + ζ{sub 2}(a)/(a). We show that there exist two limiting conditions in the bulk viscous coefficients (ζ{sub 0}, ζ{sub 1}, ζ{sub 2}) which correspond to a universe having a Big Bang at the origin, followed by an early decelerated epoch and then making a smooth transition into an accelerating epoch. We have constrained the model using the type Ia Supernovae data, evaluated the best estimated values of all the bulk viscous parameters and the Hubble parameter corresponding to the two limiting conditions. We found that even though the evolution of the cosmological parameters are in general different for the two limiting cases, they show identical behavior for the best estimated values of the parameters from both limiting conditions. A recent acceleration would occur if ζ{sub 0} + ζ{sub 1} > 1 for the first limiting conditions and if ζ{sub 0} + ζ{sub 1} < 1 for the second limiting conditions. The age of the universe predicted by this model is found to be less than that predicted from the oldest galactic globular clusters. The total bulk viscosity seems to be negative in the past and becomes positive when z ≤ 0.8. So the model violates the local second law of thermodynamics. However, the model satisfies the generalized second law of thermodynamics at the apparent horizon throughout the evolution of the universe. We also made a statefinder analysis of the model and found that it is distinguishably different from the standard ΛCDM model at present, but it shows a de Sitter type behavior in the far future of the evolution. (orig.)

  4. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  5. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  6. Nudging Evolution?

    Directory of Open Access Journals (Sweden)

    Katharine N. Farrell

    2013-12-01

    Full Text Available This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institutional "fit" might play a role in helping to develop better understanding of the social components of interlinkages between the socioeconomic-cultural and ecological dynamics of social-ecological systems. Two clearly discernible patterns provide a map of this Special Feature: (1 One pattern is the authors' positions regarding the place and role of normativity within their studies and assessment of institutional fit. Some place this at the center of their studies, exploring phenomena endogenous to the process of defining what constitutes institutional fit, whereas others take the formation of norms as a phenomenon exogenous to their study. (2 Another pattern is the type of studies presented: critiques and elaborations of the theory, methods for judging qualities of fit, and/or applied case studies using the concept. As a body of work, these contributions highlight that self-understanding of social-ecological place, whether explicit or implicit, constitutes an important part of the study object, i.e., the role of institutions in social-ecological systems, and that this is, at the same time, a crucial point of reference for the scholar wishing to evaluate what constitutes institutional fit and how it might be brought into being.

  7. Induction Acceleration of a Single RF Bunch in the KEK PS

    CERN Document Server

    Takayama, Ken; Arakida, Yoshio; Horioka, Kazuhiko; Igarashi, Susumu; Iwashita, Taiki; Kawasaki, Atsushi; Kishiro, Junichi; Kono, Tadaaki; Koseki, Kunio; Nakamura, Eiji; Sakuda, Makoto; Sato, Hikaru; Shiho, Makoto; Shimosaki, Yoshito; Shirakata, Masashi; Sueno, Tsuyoshi; Tokuchi, Akira; Torikai, Kota; Toyama, Takeshi; Wake, Masayoshi; Watanabe, Masao; Yamane, Isao

    2005-01-01

    A single bunch trapped in an RF bucket was accelerated by induction devices from 500 MeV to 8GeV beyond transition energy in the KEK-PS. This is the first demonstration of induction acceleration in a high energy circular ring. The acceleration was confirmed by measuring a temporal evolution of the RF phase through an entire acceleration.* Key devices in an induction acceleration system are an induction accelerating cavity capable of generating an induced voltage of 2kV/cell, a pulse modulator to drive the cavity (switching driver), and a DSP system to control gate signals for switching. Their remarkable characteristics are its repetition ratio of about 1MHz and duty factor of 50%. All devices have been newly developed at KEK so as to meet this requirement. The pulse modulator employing MOSFETs as switching elements is connected with the accelerating cavity through a long transmission cable in order to avoid a high-dose irradiation in the accelerator tunnel. The induction system has been running beyond more th...

  8. CAS - CERN Accelerator School: Advanced Accelerator Physics Course

    CERN Document Server

    Herr, W

    2014-01-01

    This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN- 2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course.

  9. Quark-Gluon Plasma: from accelerator experiments to early Universe

    CERN Document Server

    Rosnet, P

    2015-01-01

    In the Big Bang scenario, the early Universe is characterized by the {\\it particle era}, i.e. a Universe made of particles. This period connects both scales of fundamental physics: infinitesimally small and infinitely large. So, particle physics and in particular experimental programs at accelerators can bring valuable inputs for the understanding of the early Universe and its evolution. These proceedings discuss the impact of the Quantum ChromoDynamics phase transition experienced by the {\\it particle era} in the expanding Universe, which is connected to the study of the Quark-Gluon Plasma produced in heavy-ion physics experiments.

  10. Fermions as sources of accelerated regimes in cosmology

    CERN Document Server

    Ribas, M O; Kremer, G M

    2005-01-01

    In this work it is investigated if fermionic sources could be responsible for accelerated periods during the evolution of a universe where a matter field would answer for the decelerated period. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. Irreversible processes of energy transfer between the matter and gravitational fields are also considered. It is shown that the fermionic field could behave like an inflaton field in the early universe and as dark energy for an old universe.

  11. ON THE DISTRIBUTION OF PARTICLE ACCELERATION SITES IN PLASMOID-DOMINATED RELATIVISTIC MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Nalewajko, Krzysztof [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uzdensky, Dmitri A.; Werner, Gregory R. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Cerutti, Benoit [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Begelman, Mitchell C., E-mail: knalew@stanford.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)

    2015-12-20

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  12. Phase Space Dynamics of Ionization Injection in Plasma Based Accelerators

    CERN Document Server

    Xu, X L; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C

    2013-01-01

    The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially to a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.

  13. Atmospheric Heating and Wind Acceleration in Cool Evolved Stars

    CERN Document Server

    Airapetian, Vladimir S

    2014-01-01

    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma...

  14. Accelerate!

    Science.gov (United States)

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  15. Evolution of iron core white dwarfs

    CERN Document Server

    Panei, J A; Benvenuto, O G

    1999-01-01

    Recent measurements made by Hipparcos (Provencal et al. 1998) present observational evidence supporting the existence of some white dwarf (WD) stars with iron - rich, core composition. In this connection, the present paper is aimed at exploring the structure and evolution of iron - core WDs by means of a detailed and updated evolutionary code. In particular, we examine the evolution of the central conditions, neutrino luminosity, surface gravity, crystallization, internal luminosity profiles and ages. We find that the evolution of iron - rich WDs is markedly different from that of their carbon - oxygen counterparts. In particular, cooling is strongly accelerated as compared with the standard case. Thus, if iron WDs were very numerous, some of them would have had time enough to evolve at lower luminosities than that corresponding to the fall - off in the observed WD luminosity function.

  16. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  17. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  18. Accelerating Expansion of the Universe

    CERN Document Server

    Chakraborty, Writambhara

    2011-01-01

    This thesis concentrates on the accelerated expansion of the Universe recently explored by measurements of redshift and luminosity-distance relations of type Ia Supernovae. We have considered a model of the universe filled with modified Chaplygin gas and barotropic fluid. The role of dynamical cosmological constant has been explored with Modified Chaplygin Gas as the background fluid. Various phenomenological models for \\Lambda have been studied in presence of the gravitational constant G to be constant or time dependent. A new form of the well known Chaplygin gas model has been presented by introducing inhomogeneity in the EOS. This model explains w=-1 crossing. An interaction of this model with the scalar field has also been investigated through a phenomenological coupling function. Tachyonic field has been depicted as dark energy model to represent the present acceleration of the Universe. A mixture of the tachyonic fluid has been considered with Generalized Chaplygin Gas to show the role of the later as a...

  19. History of hadron therapy accelerators.

    Science.gov (United States)

    Degiovanni, Alberto; Amaldi, Ugo

    2015-06-01

    In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.

  20. Hardware-Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-08-04

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

  1. Accelerating optimization by tracing valley

    Science.gov (United States)

    Li, Qing-Xiao; He, Rong-Qiang; Lu, Zhong-Yi

    2016-06-01

    We propose an algorithm to accelerate optimization when an objective function locally resembles a long narrow valley. In such a case, a conventional optimization algorithm usually wanders with too many tiny steps in the valley. The new algorithm approximates the valley bottom locally by a parabola that is obtained by fitting a set of successive points generated recently by a conventional optimization method. Then large steps are taken along the parabola, accompanied by fine adjustment to trace the valley bottom. The effectiveness of the new algorithm has been demonstrated by accelerating the Newton trust-region minimization method and the Levenberg-Marquardt method on the nonlinear fitting problem in exact diagonalization dynamical mean-field theory and on the classic minimization problem of the Rosenbrock's function. Many times speedup has been achieved for both problems, showing the high efficiency of the new algorithm.

  2. The US Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Y.; /IIT, Chicago; Kirk, H.; /Brookhaven; Bross, A.; Geer, Steve; Shiltsev, Vladimir; /Fermilab; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  3. Industrial Applications of Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, Jaewon; Lee, Chanyoung; and others

    2013-02-15

    PEFP(Proton Engineering Frontier Project) put its aim on development of high power linear proton accelerator and its beam applications. So, it has, since late 1990's, accumulated accelerator and ion source technologies, supplied beam utilization service to related industry. As of now, right after 10 year long project(PEFP), many of its low energy beam technologies seem to be successfully utilized for industrial purpose to meet the market needs, especially in improvement of production process and manufacturing performance, new substance development, etc. In this context, it is high time to carry out in-depth industrialization development on PEFP's retained ion beam technology prowess: To help them diffused profitable markets as soon as possible. So, in this work, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products.

  4. Particle Accelerators for PET radionuclides

    DEFF Research Database (Denmark)

    Jensen, Mikael

    2012-01-01

    The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost-effectively achie......The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost...... different manufacturers will be discussed the light of what is actually needed for a given PET site operation. Alternatives to the conventional cyclotron have been proposed and tested but have at present very limited use. These alternatives will be discussed, as well as the future possibilities of supplying...

  5. Observational Probes of Cosmic Acceleration

    CERN Document Server

    Weinberg, David H; Eisenstein, Daniel J; Hirata, Christopher; Riess, Adam G; Rozo, Eduardo

    2012-01-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of "dark energy" with exotic physical properties, or that Einstein's theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious experimental efforts to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit "Stage IV" dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski test, and direct meas...

  6. Greece welcomes CERN Accelerator School

    CERN Multimedia

    CAS School

    2011-01-01

    The CERN Accelerator School (CAS) and the University of the Aegean jointly organised a course on intermediate-level Accelerator Physics in Chios, Greece, from 19 to 30 September, 2011.   CAS Students pose for a group photo in Chios, Greece. This course followed the established format of the intermediate school, with lectures in the mornings and specialised courses in the afternoons. The latter provided “hands-on” education and experience in three topics: “RF Measurement Techniques”, “Beam Instrumentation and Diagnostics” and “Optics Design and Correction”.  Participants selected one of the three courses and followed the chosen topic throughout the school. Guided studies and tutorials on core subjects, seminars and a poster session completed the programme. An excursion included a visit to the Nea Moni monastery, a guided tour of two medieval villages, Pyrgi and Mesta, and finished with a typical Greek me...

  7. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  8. Accelerating structure with linear excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.; Srinivasan-Rao, T.

    1988-03-01

    The switched power linac (SPL) structures require a ring-shaped laser beam pulse of uniform intensity to avoid transverse field components of the accelerating field at the center. In order to also utilize the reflection of the outgoing EM wave, the switching element has to be very close to the outer edge of the structure to ensure nearly synchronous superposition at the beam hole with the original inward going wave. It is sometimes easier to produce linear (flat) laser beams, e.g., from powerful excimer lasers which have beams of rectangular cross section. Such flat beams could be used to excite linear photocathode switches or be used to produce flat electron beam pulses in electron sources. In this paper, an accelerator structure is proposed which may be considered a variant of the SPL disk structure, but could be used with linear beams. The structure utilizes a double parabolic horn. 8 refs., 9 figs.

  9. String worldsheet for accelerating quark

    Science.gov (United States)

    Hubeny, Veronika E.; Semenoff, Gordon W.

    2015-10-01

    We consider the AdS bulk dual to an external massive quark in SYM following an arbitrary trajectory on Minkowski background. While a purely outgoing boundary condition on the gluonic field allows one to express the corresponding string worldsheet in a closed form, the setup has curious consequences. In particular, we argue that any quark whose trajectory on flat spacetime approaches that of a light ray in the remote past (as happens e.g. in the case of uniform acceleration) must necessarily be accompanied by an anti-quark. This is puzzling from the field theory standpoint, since one would expect that a sole quark following any timelike trajectory should be allowed. We explain the resolution in terms of boundary and initial conditions. We analyze the configuration in global AdS, which naturally suggests a modification to the boundary conditions allowing for a single accelerated quark without accompanying anti-quark. We contrast this resolution with earlier proposals.

  10. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  11. Accelerating Around an Unbanked Curve

    Science.gov (United States)

    Mungan, Carl E.

    2006-02-01

    The December 2004 issue of TPT presented a problem concerning how a car should accelerate around an unbanked curve of constant radius r starting from rest if it is to avoid skidding. Interestingly enough, two solutions were proffered by readers.2 The purpose of this note is to compare and contrast the two approaches. Further experimental investigation of various turning strategies using a remote-controlled car and overhead video analysis could make for an interesting student project.

  12. Geometry for the accelerating universe

    CERN Document Server

    Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    The Lorentzian spacetime metric is replaced by an area metric which naturally emerges as a generalized geometry in quantum string and gauge theory. Employing the area metric curvature scalar, the gravitational Einstein-Hilbert action is re-interpreted as dynamics for an area metric. Without the need for dark energy or fine-tuning, area metric cosmology explains the observed small acceleration of the late Universe.

  13. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  14. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  15. An accelerator worth fighting for

    CERN Multimedia

    1996-01-01

    Financial pressures from member states have upset the calculations of the European Laboratory for Particle Physics's (CERN) major accelerator, the Large Hadron Collider (LHC). Despite preference for domestic high energy programs, CERN members accord high priority to LHC physics. Converting to a global facility can help spread the high annual cost of subscription. But given the political realities, a revision of the LHC project appears more feasible. CERN's management needs to deploy its skills to overcome the financial obstacles to the facility.

  16. Symplectic maps for accelerator lattices

    Energy Technology Data Exchange (ETDEWEB)

    Warnock, R.L.; Ruth, R.; Gabella, W.

    1988-05-01

    We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs.

  17. Self-accelerating Warped Braneworlds

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela; Lykken, Joseph; /Fermilab; Park, Minjoon; /UC, Davis; Santiago, Jose; /Fermilab

    2006-11-01

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze and Porrati (DGP) demonstrated the existence of a ''self-accelerating'' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, and the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.

  18. Time derivative of earthquake acceleration

    Institute of Scientific and Technical Information of China (English)

    Mai Tong; Guo-Quan Wang; George C.Lee

    2005-01-01

    Unlike acceleration, velocity, and displacement, the time derivative of acceleration (TDoA) of ground motion has not been extensively studied. In this paper, the basic characteristics of TDoA are evaluated based on records from the 1999Chi-Chi, earthquake (Mw 7.6) and one of its aftershocks (Mw 6.2). It is found that the maximum TDoA at a free-field station was over 31,200 crm/s3 (31.8 g/s); and the duration of "strong" TDoA, between the first and the last time points exceeding 2,000 cm/s3 (2 g/s), was almost one minute near the epicenter area. Since ground TDoA sensors are not commonly available,the time series are calculated by direct numerical differentiation of acceleration time series. Relative error analysis shows that the error is non-transitive and total error is within 4%. The density function of TDoA amplitude, frequency content and spatial distribution of peak ground jerk (PGJ) are evaluated. The study also includes examination of some TDoA responses from a seven-story building and comparison of ground TDoA with the limit TDoA used in the transportation industry for ride comfort. Some potential impacts of TDoA on humans have also been reviewed.

  19. Accelerated Hypertension after Venlafaxine Usage

    Directory of Open Access Journals (Sweden)

    Yüksel Kıvrak

    2014-01-01

    Full Text Available Venlafaxine is the first antidepressant that acts via inhibiting serotonin and noradrenaline reuptake. Hypertension is observed in doses exceeding 300 mg/day and is the most feared complication. We report a patient with accelerated hypertension after venlafaxine use observed at a dose of 150 mg/day. A 23-year-old patient with symptoms of insomnia, depression, anhedonia, fatigue admitted our clinic. Venlafaxine at a dose of 75 mg/day was initiated after he was diagnosed with major depressive disorder. After 5 months, venlafaxine dose was uptitrated to 150 mg/day due to inadequate response to drug. After using venlafaxine for ten months at the dose of 150 mg/day, he admitted our clinic with headache and epistaxis. He was hospitalized after his blood pressure was measured as 210/170 mmHg. No secondary causes for hypertension were found, and venlafaxine treatment was considered possible etiologic factor. After stopping venlafaxine treatment, his blood pressure was reverted back to normal limits. While mild elevation of blood pressure could be observed after venlafaxine treatment, this case shows that accelerated hypertension with a diastolic blood pressure rise above 120 mmHg could be observed at relatively low doses of venlafaxine. Close monitoring of blood pressure is necessary after initiation of treatment, as accelerated hypertension could cause endorgan damage with potentially catastrophic results.

  20. Compensation Techniques in Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Hisham Kamal [Old Dominion Univ., Norfolk, VA (United States)

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  1. Analytical tools in accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  2. Injector Design for Advanced Accelerators

    Science.gov (United States)

    Henestroza, Enrique; Faltens, A.

    1996-11-01

    Accelerator designs intended to provide acceleration at a much lower cost per Joule than the ILSE or ELISE designs are under study. For these designs, which typically have many beams, an injector of significantly lower cost is needed. A goal, which from our design appears to be achievable, is to reduce the transverse dimension to half that of the 2 MeV, 800 mA ILSE injector(E. Henestroza, ``Injectors for Heavy Ion Fusion", Proc. of the 11th International Wkshp. on Laser Interaction and Related Plasma Phenomena, 1993.) while generating about the same current. A single channel of a lower cost injector includes an 800 kV column, accelerating a 700 mA beam extracted from a potassium source of 4 cm radius by a 120 kV electrode. The beam passes into a superconducting 7 T solenoid of 15 cm aperture and 15 cm length. This high-field solenoid provides the focusing needed for a small beam without increasing the electric field gradient. The injector and its matching section, also designed, fit within a 12 cm radius, which is small enough to allow construction of attractive multi-beam injectors. We will present solutions for the generation and transport of 700 mA potassium beams of up to 1.6 MeV within the same transverse constraint.

  3. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  4. On the solutions to accelerating cosmologies

    CERN Document Server

    Ito, M

    2003-01-01

    Motivated by recent accelerating cosmological model, we derive the solutions to vacuum Einstein equation in $(d+1)$-dimensional Minkowski space with $n$-dimensional hyperbolic manifold. The conditions of accelerating expansion are given in such a set up.

  5. Symposium report on frontier applications of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  6. Snowmass 2013 Computing Frontier: Accelerator Science

    CERN Document Server

    Spentzouris, P; Joshi, C; Amundson, J; An, W; Bruhwiler, D L; Cary, J R; Cowan, B; Decyk, V K; Esarey, E; Fonseca, R A; Friedman, A; Geddes, C G R; Grote, D P; Kourbanis, I; Leemans, W P; Lu, W; Mori, W B; Ng, C; Qiang, Ji; Roberts, T; Ryne, R D; Schroeder, C B; Silva, L O; Tsung, F S; Vay, J -L; Vieira, J

    2013-01-01

    This is the working summary of the Accelerator Science working group of the Computing Frontier of the Snowmass meeting 2013. It summarizes the computing requirements to support accelerator technology in both Energy and Intensity Frontiers.

  7. Accelerated Cure Project for Multiple Sclerosis

    Science.gov (United States)

    ... main content Accelerating research toward a cure for multiple sclerosis Home Contact Us Search form Search Connect Volunteer ... is to accelerate efforts toward a cure for multiple sclerosis by rapidly advancing research that determines its causes ...

  8. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  9. A Critical Theory Perspective on Accelerated Learning.

    Science.gov (United States)

    Brookfield, Stephen D.

    2003-01-01

    Critically analyzes accelerated learning using concepts from Herbert Marcuse (rebellious subjectivity) and Erich Fromm (automaton conformity). Concludes that, by providing distance and separation, accelerated learning has more potential to stimulate critical autonomous thought. (SK)

  10. Evolution prediction from tomography

    Science.gov (United States)

    Dominy, Jason M.; Venuti, Lorenzo Campos; Shabani, Alireza; Lidar, Daniel A.

    2017-03-01

    Quantum process tomography provides a means of measuring the evolution operator for a system at a fixed measurement time t. The problem of using that tomographic snapshot to predict the evolution operator at other times is generally ill-posed since there are, in general, infinitely many distinct and compatible solutions. We describe the prediction, in some "maximal ignorance" sense, of the evolution of a quantum system based on knowledge only of the evolution operator for finitely many times 0evolution at times away from the measurement times. Even if the original evolution is unitary, the predicted evolution is described by a non-unitary, completely positive map.

  11. Tuning and Matching of Constant Impedance Travelling Wave Accelerating Structure

    Institute of Scientific and Technical Information of China (English)

    YANG; Jing-he; ZHU; Zhi-bin; WU; Qing-feng; ZENG; Zi-qiang; WANG; Xiu-long; ZHOU; Wen-zhen

    2015-01-01

    As the penetration depth of electron accelerated by 10MeV electron irradiating accelerator is deep,and the accelerator has broad application prospects.The performance of the accelerator is influenced,to a great extent,by the traveling wave accelerating tube,which is the core component of the accelerator.To develop the accelerator

  12. PROMETHEUS-A: A helicon plasma source for future wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Buttenschoen, Birger; Fahrenkamp, Nils; Grulke, Olaf [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2015-05-01

    High density plasma sources are of interest for a wide range of applications like plasma-wall interaction studies, plasma thrusters for space propulsion, or future plasma wakefield particle accelerators. In this contribution, we present a high power helicon cell designed for the world's first proton-beam driven plasma wakefield accelerator experiment AWAKE. Using a modular concept with four antennas distributed along a one meter long, five centimeter diameter prototype module providing up to 35 kW of rf power to the plasma, accelerator relevant densities of 6 . 10{sup 20} m{sup -3} are transiently achieved and exceeded. These high density plasmas are characterized for the use with wakefield accelerators, considering density evolution and its reproducibility, plasma profiles and neutral gas inventory.

  13. Resolving beam transport problems in electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Larson, J.D.

    1977-01-01

    A review is given of problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance.

  14. The universe evolution in exponential $F(R)$-gravity

    CERN Document Server

    Bamba, K; Myrzakulov, R; Odintsov, S D; Sebastiani, L

    2013-01-01

    A generic feature of viable exponential $F(R)$-gravity is investigated. An additional modification to stabilize the effective dark energy oscillations during matter era is proposed and applied to two viable models. An analysis on the future evolution of the universe is performed. Furthermore, a unified model for early and late-time acceleration is proposed and studied.

  15. Late Time Acceleration From Matter-Curvature Coupling

    CERN Document Server

    Zaregonbadi, Raziyeh

    2015-01-01

    We consider f(R,T) modified theory of gravity, in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We mainly focus on a particular model wherein matter is minimally coupled to the geometry in the metric formalism. In this type of the theory, the coupling energy-momentum tensor is not conserved; it determines the appearance of an extra force acting on the particles, and can cause the late time acceleration in the evolution of the universe. To check such a kind of effect, we obtain the corresponding Raychaudhuri dynamical equation that gives the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can cover the dynamic of the universe in the late time accelerating phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the...

  16. Acceleration of Thermal Protons By Generic Phenomenological Mechanisms

    CERN Document Server

    Petrosian, Vahé

    2016-01-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was carried out in Petrosian & East (2008) for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton-electron kinetic equation. We numerically solve the coupled Fokker-Plank equations and computes the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high energy nonthermal tail. We determine the evolution of nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas and the intracluster medium of galaxy clusters. We find that emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence nee...

  17. Modelling the spectral evolution of classical double radio sources

    CERN Document Server

    Manolakou, K

    2002-01-01

    The spectral evolution of powerful double radio galaxies (FR II's) is thought to be determined by the acceleration of electrons at the termination shock of the jet, their transport through the bright head region into the lobes and the production of the radio emission by synchrotron radiation in the lobes. Models presented to date incorporate some of these processes in prescribing the electron distribution which enters the lobes. We have extended these models to include a description of electron acceleration at the relativistic termination shock and a selection of transport models for the head region. These are coupled to the evolution of the electron spectrum in the lobes under the influence of losses due to adiabatic expansion, by inverse Compton scattering on the cosmic background radiation and by synchrotron radiation. The evolutionary tracks predicted by this model are compared to observation using the power/source-size (P-D) diagram. We find that the simplest scenario, in which accelerated particles suff...

  18. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  19. Health physics practices at research accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.H.

    1976-02-01

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators. (PMA)

  20. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  1. Critical role of blockage ratio for flame acceleration in channels with tightly spaced obstacles

    Science.gov (United States)

    Ugarte, Orlando J.; Bychkov, Vitaly; Sadek, Jad; Valiev, Damir; Akkerman, V'yacheslav

    2016-09-01

    A conceptually laminar mechanism of extremely fast flame acceleration in obstructed channels, identified by Bychkov et al. ["Physical mechanism of ultrafast flame acceleration," Phys. Rev. Lett. 101, 164501 (2008)], is further studied by means of analytical endeavors and computational simulations of compressible hydrodynamic and combustion equations. Specifically, it is shown how the obstacles length, distance between the obstacles, channel width, and thermal boundary conditions at the walls modify flame propagation through a comb-shaped array of parallel thin obstacles. Adiabatic and isothermal (cold and preheated) side walls are considered, obtaining minor difference between these cases, which opposes the unobstructed channel case, where adiabatic and isothermal walls provide qualitatively different regimes of flame propagation. Variations of the obstructed channel width also provide a minor influence on flame propagation, justifying a scale-invariant nature of this acceleration mechanism. In contrast, the spacing between obstacles has a significant role, although it is weaker than that of the blockage ratio (defined as the fraction of the channel blocked by obstacles), which is the key parameter of the problem. Evolution of the burning velocity and the dependence of the flame acceleration rate on the blockage ratio are quantified. The critical blockage ratio, providing the limitations for the acceleration mechanism in channels with comb-shaped obstacles array, is found analytically and numerically, with good agreement between both approaches. Additionally, this comb-shaped obstacles-driven acceleration is compared to finger flame acceleration and to that produced by wall friction.

  2. A Stochastic Acceleration Model of Radio Emission from Pulsar Wind Nebulae

    Science.gov (United States)

    Tanaka, S.; Asano, K.

    2016-06-01

    The broadband emission of Pulsar Wind Nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the difference of spectral indices at radio and X-rays are not reproduced by the standard shock particle acceleration and cooling processes, and then, for example, the broken power-law spectrum for the particle energy distribution at the injection has been groundlessly adopted. Here, we propose a possible resolution for the particle distribution; the radio emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside the PWNe. The turbulence may be induced by the interaction of the pulsar wind with the supernova ejecta. We upgrade our one-zone spectral evolution model including the stochastic acceleration and apply it to the Crab Nebula. We consider both continuous and impulsive injections of particles to the stochastic acceleration process. The radio emission in the Crab Nebula is reproduced by our stochastic acceleration model. The required forms of the momentum diffusion coefficient will be discussed.

  3. Stochastic acceleration by multi-island contraction during turbulent magnetic reconnection.

    Science.gov (United States)

    Bian, Nicolas H; Kontar, Eduard P

    2013-04-12

    The acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which produce adiabatic compression of the particles. The model takes into account the statistical fluctuations in the compression rate experienced by the particles during their transport in the acceleration region. The evolution of the particle distribution function is described as a simultaneous first- and second-order Fermi acceleration process. While the efficiency of the first-order process is controlled by the average rate of compression, the second-order process involves the variance in the compression rate. Moreover, the acceleration efficiency associated with the second-order process involves both the Eulerian properties of the compression field and the Lagrangian properties of the particles. The stochastic contribution to the acceleration is nonresonant and can dominate the systematic part in the case of a large variance in the compression rate. The model addresses the role of the second-order process, how the latter can be related to the large-scale turbulent transport of particles, and explains some features of the numerical simulations of particle acceleration by multi-island contraction during magnetic reconnection.

  4. Scale-free network models with accelerating growth

    Institute of Scientific and Technical Information of China (English)

    Huan LI

    2009-01-01

    Complex networks are everywhere. A typical ex-ample is software network. Basing on analyzing evolutive structure of the software networks, we consider accelerat-ing growth of network as power-law growth, which can be more easily generalized to real systems than linear growth. For accelerating growth via a power law and scale-free state with preferential linking, we focus on exploring the generic property of complex networks. Generally, two scenarios are possible. In one of them, the links are undirected. In the other scenario, the links are directed. We propose two mod-els that can predict the emergence of power-law growth and scale-free state in good agreement with these two scenar-ios and can simulate much more real systems than existing scale-free network models. Moreover, we use the obtained predictions to fit accelerating growth and the connectivity distribution of software networks describing scale-free struc-ture. The combined analytical and numerical results indicate the emergence of a novel set of models that considerably enhance our ability to understand and characterize complex networks, whose applicability reaches far beyond the quoted examples.

  5. Cosmic Acceleration in the Early and Present Universe

    Science.gov (United States)

    Yamaguchi, Masahide

    Cosmic accelerations in the early and present Universe play essentially important roles to determine the evolution, structure, and destiny of the Universe. Therefore, to identify the origins of cosmic accelerations is one of the most ultimate goals of cosmology. In this award talk for the C. N. Yang Award, I introduced my achievements on this mystery. First of all, we gave a natural mechanism to cause chaotic inflation, which is the most natural inflation model but had never been realized in the context of realistic particle physics for almost twenty years. We introduced a Nambu-Goldstone-like shift symmetry, which is now recognized as a key feature to control the Planck-scale physics, and solved the long standing difficulties to realize chaotic inflation. Second, we found a generic relation (now called Suyama-Yamaguchi inequality) between higher order correlations of the curvature perturbations, which is quite useful to identify what fields are actually responsible for the origin of primordial fluctuation. Finally, we mention our proposal (now called k-essence) for the present cosmic acceleration.

  6. Genes involved in convergent evolution of eusociality in bees.

    Science.gov (United States)

    Woodard, S Hollis; Fischman, Brielle J; Venkat, Aarti; Hudson, Matt E; Varala, Kranthi; Cameron, Sydney A; Clark, Andrew G; Robinson, Gene E

    2011-05-01

    Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality.

  7. Deuterium accelerator experiments for APT.

    Energy Technology Data Exchange (ETDEWEB)

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  8. Accelerated Adaptive MGS Phase Retrieval

    Science.gov (United States)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  9. Microwave View on Particle Acceleration in Flares

    CERN Document Server

    Fleishman, Gregory D

    2013-01-01

    The thermal-to-nonthermal partition was found to vary greatly from one flare to another resulting in a broad variety of cases from 'heating without acceleration' to 'acceleration without heating'. Recent analysis of microwave data of these differing cases suggests that a similar acceleration mechanism, forming a power-law nonthermal tail up to a few MeV or even higher, operates in all the cases. However, the level of this nonthermal spectrum compared to the original thermal distribution differs significantly from one case to another, implying a highly different thermal-to-nonthermal energy partition in various cases. This further requires a specific mechanism capable of extracting the charged particles from the thermal pool and supplying them to a bulk acceleration process to operate in flares \\textit{in addition} to the bulk acceleration process itself, which, in contrast, efficiently accelerates the seed particles, while cannot accelerate the thermal particles. Within this 'microwave' view on the flare ener...

  10. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  11. Cosmic-ray acceleration in young protostars

    CERN Document Server

    Padovani, Marco; Marcowith, Alexandre; Ferrière, Katia

    2015-01-01

    The main signature of the interaction between cosmic rays and molecular clouds is the high ionisation degree. This decreases towards the densest parts of a cloud, where star formation is expected, because of energy losses and magnetic effects. However recent observations hint to high levels of ionisation in protostellar systems, therefore leading to an apparent contradiction that could be explained by the presence of energetic particles accelerated within young protostars. Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient particle acceleration through the diffusive shock acceleration mechanism. We find that jet shocks can be strong accelerators of protons which can be boosted up to relativistic energies. Another possibly efficient acceleration site is located at protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate protons. Our results demonstrate the possibility of accelerating particles du...

  12. Introduction to Particle Acceleration in the Cosmos

    Science.gov (United States)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  13. Future HEP Accelerators: The US Perspective

    CERN Document Server

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  14. Electron Acceleration by Transient Ion Foreshock Phenomena

    Science.gov (United States)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  15. ACFA and IPAC announce accelerator prizes

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Steve Myers, CERN's Director for Accelerators and Technology. The Asian Committee for Future Accelerators (ACFA) has joined forces with the first International Particle Accelerator Conference, IPAC’10, to award prizes for outstanding work in the field of accelerators. The conference replaces the regional conferences of the Americas, Europe and Asia and will be hosted by the three regions on a rotational basis (see CERN Courier). The ACFA/IPAC’10 Prizes Selection Committee, chaired by Won Namkung of Pohang Accelerator Laboratory, decided on the prizes and the names of the winners at a meeting on 20 January. The awards will be made during IPAC’10, which will be held in Kyoto on 23-28 May. Jie Wei. (Courtesy Tsinghua University.) Steve Myers, Director for Accelerators and Technology at CERN, receives an Achievement Prize for Outstanding Work in the Accelerator Field with no Age Limit “for his numerous outstanding contributions to the design, construction, commissio...

  16. Plasma Channel Guided Laser Wakefield Accelerator

    CERN Document Server

    Geddes, C G

    2005-01-01

    High quality electron beams (several 109 electrons above 80 MeV energy with percent energy spread and low divergence) have been produced for the first time in a compact, high gradient, all-optical laser accelerator by extending the interaction distance using a pre-formed plasma density channel to guide the drive laser pulse. Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (wake) driven by the radiation pressure of an intense laser, have over the past decade demonstrated accelerating fields thousands of times greater than those achievable in conventional radio-frequency accelerators. This has spurred interest in them as compact next- generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance resulted in low-energy beams with 100 percent electron energy...

  17. Technical report on the accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Bex, L. [ed.

    1995-12-31

    GANIL operation and the technical studies performed in 1994 are described. The milestones for 1994 are: SISSI (Source d`Ions Secondaires a Supraconducteurs Intense) has been in operation and used for secondary beam production with four different primary beams. The 100 kV platform for beam injection in the CO1 has been in operation for production of metallic beams which demand is increasing. Finally the SPIRAL project (Systeme de Production d`Ions Radioactifs Acceleres en Ligne) is in progress. In late 1994 the civil work has started in view of the installation of the machine in the north part of the GANIL machine building. (K.A.). 48 refs.

  18. ACCELERATION GROWTH OF ICT MARKET

    Directory of Open Access Journals (Sweden)

    Drakulić Danica

    2007-06-01

    Full Text Available The wurk points to the importance of ICT (Information Communication Technologies, as one of the main trajectories by which advanced economies have come to the high dynamism and richness. How do the performsnces of these technological changes, determined mainly by ICT, exert influences on the economicgrowth or, in general, on production results at the aggregate, macroeconomic level. The U.S.A. supremacy in this field has faced challenges. It loses tempo, and the EU countries, after the multi-decade syndrome of technological catching up to U.S.A., go through faster into the future, giving an accelerating tone to the technological race.

  19. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  20. Decay of Quantum Accelerator Modes

    CERN Document Server

    Sheinman, M; Guarneri, I; Rebuzzini, L; Fishman, Shmuel; Guarneri, Italo; Rebuzzini, Laura; Sheinman, Michael

    2005-01-01

    Experimentally observable Quantum Accelerator Modes are used as a test case for the study of some general aspects of quantum decay from classical stable islands immersed in a chaotic sea. The modes are shown to correspond to metastable states, analogous to the Wannier-Stark resonances. Different regimes of tunneling, marked by different quantitative dependence of the lifetimes on 1/hbar, are identified, depending on the resolution of KAM substructures that is achieved on the scale of hbar. The theory of Resonance Assisted Tunneling introduced by Brodier, Schlagheck, and Ullmo [9], is revisited, and found to well describe decay whenever applicable.