WorldWideScience

Sample records for accelerated evolutionary rate

  1. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota

    Directory of Open Access Journals (Sweden)

    Blanco Oscar

    2008-09-01

    Full Text Available Abstract Background The rate of nucleotide substitutions is not constant across the Tree of Life, and departures from a molecular clock have been commonly reported. Within parmelioid lichens, the largest group of macrolichens, large discrepancies in branch lengths between clades were found in previous studies. Using an extended taxon sampling, we test for presence of significant rate discrepancies within and between these clades and test our a priori hypothesis that such rate discrepancies may be explained by shifts in moisture regime or other environmental conditions. Results In this paper, the first statistical evidence for accelerated evolutionary rate in lichenized ascomycetes is presented. Our results give clear evidence for a faster rate of evolution in two Hypotrachyna clades that includes species occurring in tropical and oceanic habitats in comparison with clades consisting of species occurring in semi-arid and temperate habitats. Further we explore potential links between evolutionary rates and shifts in habitat by comparing alternative Ornstein-Uhlenbeck models. Conclusion Although there was only weak support for a shift at the base of a second tropical clade, where the observed nucleotide substitution rate is high, overall support for a shift in environmental conditions at cladogenesis is very strong. This suggests that speciation in some lichen clades has proceeded by dispersal into a novel environment, followed by radiation within that environment. We found moderate support for a shift in moisture regime at the base of one tropical clade and a clade occurring in semi-arid regions and a shift in minimum temperature at the base of a boreal-temperate clade.

  2. Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots

    OpenAIRE

    Li Chun; Li Meng; Dunwell Jim M; Zhang Yuan-Ming

    2012-01-01

    Abstract Background Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. Results Gene duplication, evolutionary...

  3. Inferring the determinants of protein evolutionary rates in mammals.

    Science.gov (United States)

    Zou, Yang; Shao, Xiaojian; Dong, Dong

    2016-06-15

    Understanding the determinants of protein evolutionary rates is one of the most fundamental evolutionary questions. Previous studies have revealed that many biological variables are tightly associated with protein evolutionary rates in mammals. However, the dominant role of these biological variables and their combinatorial effects to evolutionary rates of mammalian proteins are still less understood. In this work, we derived a quantitative model to correlate protein evolutionary rates with the levels of these variables. The result showed that only a small number of variables are necessary to accurately predict protein evolutionary rates, among which miRNA regulation plays the most important role. Our result suggested that biological variables are extensively interrelated and suffer from hidden redundancies in determining protein evolutionary rates. Various variables should be considered in a natural ensemble to comprehensively assess the determinants of protein evolutionary rate.

  4. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    Energy Technology Data Exchange (ETDEWEB)

    Maljkovic-berry, Irina [Los Alamos National Laboratory; Athreya, Gayathri [Los Alamos National Laboratory; Daniels, Marcus [Los Alamos National Laboratory; Bruno, William [Los Alamos National Laboratory; Korber, Bette [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.

  5. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo

    Science.gov (United States)

    Knoll, A. H.

    1994-01-01

    In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of "higher" eukaryotic phyla. Observed diversity levels for protistan microfossils increased significantly at this time, as did turnover rates. Coincident with the Cambrian radiation of marine invertebrates, protistan microfossils again doubled in diversity and rates of turnover increased by an order of magnitude. Evidently, the Cambrian diversification of animals strongly influenced evolutionary rates, within clades already present in marine communities, implying an important role for ecology in fueling a Cambrian explosion that extends across kingdoms.

  6. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  7. Evolutionary comparison between viral lysis rate and latent period.

    Science.gov (United States)

    Bonachela, Juan A; Levin, Simon A

    2014-03-21

    Marine viruses shape the structure of the microbial community. They are, thus, a key determinant of the most important biogeochemical cycles in the planet. Therefore, a correct description of the ecological and evolutionary behavior of these viruses is essential to make reliable predictions about their role in marine ecosystems. The infection cycle, for example, is indistinctly modeled in two very different ways. In one representation, the process is described including explicitly a fixed delay between infection and offspring release. In the other, the offspring are released at exponentially distributed times according to a fixed release rate. By considering obvious quantitative differences pointed out in the past, the latter description is widely used as a simplification of the former. However, it is still unclear how the dichotomy "delay versus rate description" affects long-term predictions of host-virus interaction models. Here, we study the ecological and evolutionary implications of using one or the other approaches, applied to marine microbes. To this end, we use mathematical and eco-evolutionary computational analysis. We show that the rate model exhibits improved competitive abilities from both ecological and evolutionary perspectives in steady environments. However, rate-based descriptions can fail to describe properly long-term microbe-virus interactions. Moreover, additional information about trade-offs between life-history traits is needed in order to choose the most reliable representation for oceanic bacteriophage dynamics. This result affects deeply most of the marine ecosystem models that include viruses, especially when used to answer evolutionary questions. PMID:24361326

  8. Quantifying rates of evolutionary adaptation in response to ocean acidification.

    Science.gov (United States)

    Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W

    2011-01-01

    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.

  9. Time Dependency of Molecular Evolutionary Rates? Yes and No

    OpenAIRE

    Subramanian, Sankar; Lambert, David M.

    2011-01-01

    Some previous studies have suggested that rates of evolution inferred using molecular sequences vary substantially depending on the time frame over which they are measured, whereas a number of other studies have argued against this proposition. We examined this issue by separating positions of primate mitochondrial genomes that are under different levels of selection constraints. Our results revealed an order of magnitude variation in the evolutionary rates at constrained sites (including non...

  10. Molecular-clock methods for estimating evolutionary rates and timescales.

    Science.gov (United States)

    Ho, Simon Y W; Duchêne, Sebastián

    2014-12-01

    The molecular clock presents a means of estimating evolutionary rates and timescales using genetic data. These estimates can lead to important insights into evolutionary processes and mechanisms, as well as providing a framework for further biological analyses. To deal with rate variation among genes and among lineages, a diverse range of molecular-clock methods have been developed. These methods have been implemented in various software packages and differ in their statistical properties, ability to handle different models of rate variation, capacity to incorporate various forms of calibrating information and tractability for analysing large data sets. Choosing a suitable molecular-clock model can be a challenging exercise, but a number of model-selection techniques are available. In this review, we describe the different forms of evolutionary rate heterogeneity and explain how they can be accommodated in molecular-clock analyses. We provide an outline of the various clock methods and models that are available, including the strict clock, local clocks, discrete clocks and relaxed clocks. Techniques for calibration and clock-model selection are also described, along with methods for handling multilocus data sets. We conclude our review with some comments about the future of molecular clocks.

  11. Acceleration of evolutionary spread by long-range dispersal.

    Science.gov (United States)

    Hallatschek, Oskar; Fisher, Daniel S

    2014-11-18

    The spreading of evolutionary novelties across populations is the central element of adaptation. Unless populations are well mixed (like bacteria in a shaken test tube), the spreading dynamics depend not only on fitness differences but also on the dispersal behavior of the species. Spreading at a constant speed is generally predicted when dispersal is sufficiently short ranged, specifically when the dispersal kernel falls off exponentially or faster. However, the case of long-range dispersal is unresolved: Although it is clear that even rare long-range jumps can lead to a drastic speedup--as air-traffic-mediated epidemics show--it has been difficult to quantify the ensuing stochastic dynamical process. However, such knowledge is indispensable for a predictive understanding of many spreading processes in natural populations. We present a simple iterative scaling approximation supported by simulations and rigorous bounds that accurately predicts evolutionary spread, which is determined by a trade-off between frequency and potential effectiveness of long-distance jumps. In contrast to the exponential laws predicted by deterministic "mean-field" approximations, we show that the asymptotic spatial growth is according to either a power law or a stretched exponential, depending on the tails of the dispersal kernel. More importantly, we provide a full time-dependent description of the convergence to the asymptotic behavior, which can be anomalously slow and is relevant even for long times. Our results also apply to spreading dynamics on networks with a spectrum of long-range links under certain conditions on the probabilities of long-distance travel: These are relevant for the spread of epidemics.

  12. Diversity, disparity, and evolutionary rate estimation for unresolved Yule trees.

    Science.gov (United States)

    Crawford, Forrest W; Suchard, Marc A

    2013-05-01

    The branching structure of biological evolution confers statistical dependencies on phenotypic trait values in related organisms. For this reason, comparative macroevolutionary studies usually begin with an inferred phylogeny that describes the evolutionary relationships of the organisms of interest. The probability of the observed trait data can be computed by assuming a model for trait evolution, such as Brownian motion, over the branches of this fixed tree. However, the phylogenetic tree itself contributes statistical uncertainty to estimates of rates of phenotypic evolution, and many comparative evolutionary biologists regard the tree as a nuisance parameter. In this article, we present a framework for analytically integrating over unknown phylogenetic trees in comparative evolutionary studies by assuming that the tree arises from a continuous-time Markov branching model called the Yule process. To do this, we derive a closed-form expression for the distribution of phylogenetic diversity (PD), which is the sum of branch lengths connecting the species in a clade. We then present a generalization of PD which is equivalent to the expected trait disparity in a set of taxa whose evolutionary relationships are generated by a Yule process and whose traits evolve by Brownian motion. We find expressions for the distribution of expected trait disparity under a Yule tree. Given one or more observations of trait disparity in a clade, we perform fast likelihood-based estimation of the Brownian variance for unresolved clades. Our method does not require simulation or a fixed phylogenetic tree. We conclude with a brief example illustrating Brownian rate estimation for 12 families in the mammalian order Carnivora, in which the phylogenetic tree for each family is unresolved.

  13. MEASURING THE EVOLUTIONARY RATE OF COOLING OF ZZ Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Fraser, Oliver; Riecken, T. S.; Kronberg, M. E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Bischoff-Kim, Agnes [Georgia College and State University, Milledgeville, GA 31061 (United States); Corsico, A. H. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata (Argentina); Montgomery, M. H.; Winget, D. E.; Hermes, J. J.; Winget, K. I.; Falcon, Ross E.; Reaves, D. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Kepler, S. O.; Romero, A. D. [Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS (Brazil); Chandler, D. W. [Meyer Observatory, Central Texas Astronomical Society, 3409 Whispering Oaks, Temple, TX 76504 (United States); Kuehne, J. W. [McDonald Observatory, Fort Davis, TX 79734 (United States); Sullivan, D. J. [Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand); Von Hippel, T. [Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114 (United States); Mullally, F. [SETI Institute, NASA Ames Research Center, MS 244-30, Moffet Field, CA 94035 (United States); Shipman, H. [Delaware Asteroseismic Research Center, Mt. Cuba Observatory, Greenville, DE 19807 (United States); and others

    2013-07-01

    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 {+-} 1.4) Multiplication-Sign 10{sup -15} s s{sup -1} employing the O - C method and (5.45 {+-} 0.79) Multiplication-Sign 10{sup -15} s s{sup -1} using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 {+-} 1.0) Multiplication-Sign 10{sup -15} s s{sup -1}. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 {+-} 1.1) Multiplication-Sign 10{sup -15} s s{sup -1}. This value is consistent within uncertainties with the measurement of (4.19 {+-} 0.73) Multiplication-Sign 10{sup -15} s s{sup -1} for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.

  14. Burning phylogenies: fire, molecular evolutionary rates, and diversification.

    Science.gov (United States)

    Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2007-09-01

    Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters

  15. Time dependency of molecular evolutionary rates? Yes and no.

    Science.gov (United States)

    Subramanian, Sankar; Lambert, David M

    2011-01-01

    Some previous studies have suggested that rates of evolution inferred using molecular sequences vary substantially depending on the time frame over which they are measured, whereas a number of other studies have argued against this proposition. We examined this issue by separating positions of primate mitochondrial genomes that are under different levels of selection constraints. Our results revealed an order of magnitude variation in the evolutionary rates at constrained sites (including nonsynonymous sites, D-loop, and RNA) and virtually an identical rate of evolution at synonymous sites, independent of the timescales over which they were estimated. Although the evolutionary rate at nonsynonymous sites obtained using the European (H1 haplogroup) mitogenomes is 9-15 times higher than that estimated using the human-chimpanzee pair, in contrast, the rates at synonymous sites are similar between these comparisons. We also show that the ratio of divergence at nonsynonymous to synonymous sites estimated using intra- and interspecific comparisons vary up to nine times, which corroborates our results independent of calibration times. PMID:22016336

  16. Mutation and evolutionary rates in adelie penguins from the antarctic.

    Directory of Open Access Journals (Sweden)

    Craig D Millar

    Full Text Available Precise estimations of molecular rates are fundamental to our understanding of the processes of evolution. In principle, mutation and evolutionary rates for neutral regions of the same species are expected to be equal. However, a number of recent studies have shown that mutation rates estimated from pedigree material are much faster than evolutionary rates measured over longer time periods. To resolve this apparent contradiction, we have examined the hypervariable region (HVR I of the mitochondrial genome using families of Adélie penguins (Pygoscelis adeliae from the Antarctic. We sequenced 344 bps of the HVR I from penguins comprising 508 families with 915 chicks, together with both their parents. All of the 62 germline heteroplasmies that we detected in mothers were also detected in their offspring, consistent with maternal inheritance. These data give an estimated mutation rate (micro of 0.55 mutations/site/Myrs (HPD 95% confidence interval of 0.29-0.88 mutations/site/Myrs after accounting for the persistence of these heteroplasmies and the sensitivity of current detection methods. In comparison, the rate of evolution (k of the same HVR I region, determined using DNA sequences from 162 known age sub-fossil bones spanning a 37,000-year period, was 0.86 substitutions/site/Myrs (HPD 95% confidence interval of 0.53 and 1.17. Importantly, the latter rate is not statistically different from our estimate of the mutation rate. These results are in contrast to the view that molecular rates are time dependent.

  17. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota

    Institute of Scientific and Technical Information of China (English)

    Lumbsch; H.; THORSTEN

    2010-01-01

    Differences in rates of nucleotide or amino acid substitutions among major groups of organisms are repeatedly found and well documented. A growing body of evidence suggests a link between the rate of neutral molecular change within populations and the evolution of species diversity. More than 98% of terrestrial fungi belong to the phyla Ascomycota or Basidiomycota. The former is considerably richer in number of species than the latter. We obtained DNA sequences of 21 protein-coding genes from the lichenized fungus Rhizoplaca chrysoleuca and used them together with sequences from GenBank for subsequent analyses. Three datasets were used to test rate discrepancies between Ascomycota and Basidiomycota and that within Ascomycota: (i) 13 taxa including 105 protein-coding genes, (ii) nine taxa including 21 protein-coding genes, and (iii) nuclear LSU rDNA of 299 fungal species. Based on analyses of the 105 protein-coding genes and nuclear LSU rDNA datasets, we found that the evolutionary rate was higher in Ascomycota than in Basidiomycota. The differences in substitution rates between Ascomycota and Basidiomycota were significant. Within Ascomycota, the species-rich Sordariomycetes has the fastest evolutionary rate, while Leotiomycetes has the slowest. Our results indicate that the main contribution to the higher substitution rates in Ascomycota does not come from mutualism, ecological conditions, sterility, metabolic rate or shorter generation time, but is possibly caused by the founder effect. This is another example of the correlation between species number and evolutionary rates, which is consistent with the hypothesis that the founder effect is responsible for accelerated substitution rates in diverse clades.

  18. Characterization of evolutionary rates and constraints in three mammalian genomes

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Gregory M.; Brudno, Michael; Stone, Eric A.; Dubchak, Inna; Batzoglou, Serafim; Sidow, Arend

    2004-02-15

    We present an analysis of rates and patterns of microevolutionary phenomena that have shaped the human, mouse, and rat genomes since their last common ancestor. We find evidence for a shift in the mutational spectrum between the mouse and rat lineages, with the net effect being a relative increase in GC content in the rat genome. Our estimate for the neutral point substitution rate separating the two rodents is 0.196 substitutions per site, and 0.65 substitutions per site for the tree relating all three mammals. Small insertions and deletions of 1-10 bp in length (''microindels'') occur at approximately 5 percent of the point substitution rate. Inferred regional correlations in evolutionary rates between lineages and between types of sites support the idea that rates of evolution are influenced by local genomic or cell biological context. No substantial correlations between rates of point substitutions and rates of microindels are found, however, implying that the influences that affect these processes are distinct. Finally, we have identified those regions in the human genome that are evolving slowly, which are likely to include functional elements important to human biology. At least 5 percent of the human genome is under substantial constraint, most of which is noncoding.

  19. A Discrete Evolutionary Model for Chess Players' Ratings

    CERN Document Server

    Fenner, Trevor; Loizou, George

    2011-01-01

    The Elo system for rating chess players, also used in other games and sports, was adopted by the World Chess Federation over four decades ago. Although not without controversy, it is accepted as generally reliable and provides a method for assessing players' strengths and ranking them in official tournaments. It is generally accepted that the distribution of players' rating data is approximately normal but, to date, no stochastic model of how the distribution might have arisen has been proposed. We propose such an evolutionary stochastic model, which models the arrival of players into the rating pool, the games they play against each other, and how the results of these games affect their ratings. Using a continuous approximation to the discrete model, we derive the distribution for players' ratings at time $t$ as a normal distribution, where the variance increases in time as a logarithmic function of $t$. We validate the model using published rating data from 2007 to 2010, showing that the parameters obtained...

  20. The Impact of Trans-Regulation on the Evolutionary Rates of Metazoan Proteins

    Science.gov (United States)

    Chen, Yi-Ching; Cheng, Jen-Hao; Tsai, Zing Tsung-Yeh; Tsai, Huai-Kuang; Chuang, Trees-Juen

    2013-01-01

    Transcription factor (TF) and microRNA (miRNA) are two crucial trans-regulatory factors that coordinately control gene expression. Understanding the impacts of these two factors on the rate of protein sequence evolution is of great importance in evolutionary biology. While many biological factors associated with evolutionary rate variations have been studied, evolutionary analysis of simultaneously accounting for TF and miRNA regulations across metazoans is still uninvestigated. Here, we provide a series of statistical analyses to assess the influences of TF and miRNA regulations on evolutionary rates across metazoans (human, mouse and fruit fly). Our results reveal that the negative correlations between trans-regulation and evolutionary rates hold well across metazoans, but the strength of TF regulation as a rate indicator becomes weak when the other confounding factors that may affect evolutionary rates are controlled. We show that miRNA regulation tends to be a more essential indicator of evolutionary rates than TF regulation, and the combination of TF and miRNA regulations has a significant dependent effect on protein evolutionary rates. We also show that trans-regulation (especially miRNA regulation) is much more important in human/mouse than in fruit fly in determining protein evolutionary rates, suggesting a considerable variation in rate determinants between vertebrates and invertebrates. PMID:23658220

  1. Island colonisation and the evolutionary rates of body size in insular neonate snakes.

    Science.gov (United States)

    Aubret, F

    2015-10-01

    Island colonisation by animal populations is often associated with dramatic shifts in body size. However, little is known about the rates at which these evolutionary shifts occur, under what precise selective pressures and the putative role played by adaptive plasticity on driving such changes. Isolation time played a significant role in the evolution of body size in island Tiger snake populations, where adaptive phenotypic plasticity followed by genetic assimilation fine-tuned neonate body and head size (hence swallowing performance) to prey size. Here I show that in long isolated islands (>6000 years old) and mainland populations, neonate body mass and snout-vent length are tightly correlated with the average prey body mass available at each site. Regression line equations were used to calculate body size values to match prey size in four recently isolated populations of Tiger snakes. Rates of evolution in body mass and snout-vent length, calculated for seven island snake populations, were significantly correlated with isolation time. Finally, rates of evolution in body mass per generation were significantly correlated with levels of plasticity in head growth rates. This study shows that body size evolution occurs at a faster pace in recently isolated populations and suggests that the level of adaptive plasticity for swallowing abilities may correlate with rates of body mass evolution. I hypothesise that, in the early stages of colonisation, adaptive plasticity and directional selection may combine and generate accelerated evolution towards an 'optimal' phenotype.

  2. CONVERGENCE RATES FOR A CLASS OF EVOLUTIONARY ALGORITHMS WITH ELITIST STRATEGY

    Institute of Scientific and Technical Information of China (English)

    丁立新; 康立山

    2001-01-01

    This paper discusses the convergence rates about a class of evolutionary al-gorithms in general search spaces by means of the ergodic theory in Markov chain and some techniques in Banach algebra. Under certain conditions that transition probability functions of Markov chains corresponding to evolutionary algorithms satisfy, the authors obtain the convergence rates of the exponential order. Furthermore, they also analyze the characteristics of the conditions which can be met by genetic operators and selection strategies.

  3. The structure of heart rate asymmetry: deceleration and acceleration runs

    International Nuclear Information System (INIS)

    A family of new heart rate asymmetry measures is introduced, namely deceleration and acceleration runs, as well as entropic measures summarizing their distribution. We introduce the theoretical run distribution for shuffled data and use it as a reference for interpreting the results. The measures defined in the paper are applied to actual 24 h Holter ECG recordings from 87 healthy people, and it is demonstrated that the patterns of accelerations are different from those of decelerations. Acceleration runs are longer and more numerous: all runs of accelerations, with the exception of lengths 3 and 4, are more numerous than those of decelerations. These findings are reflected in the difference between the entropic measures for acceleration and deceleration runs: for 74 subjects the acceleration-related entropic parameter is greater than that of decelerations (p < 0.001). For shuffled data there is no difference in the above parameters, and there are more short runs and fewer long runs than in physiological data. The influence of the measuring equipment resolution is also discussed

  4. Accelerating degradation rate of pure iron by zinc ion implantation.

    Science.gov (United States)

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  5. A count rate based contamination control standard for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  6. Measuring the evolutionary rate of protein–protein interaction

    OpenAIRE

    Qian, Wenfeng; He, Xionglei; Chan, Edwin; Xu, Huailiang; Zhang, Jianzhi

    2011-01-01

    Despite our extensive knowledge about the rate of protein sequence evolution for thousands of genes in hundreds of species, the corresponding rate of protein function evolution is virtually unknown, especially at the genomic scale. This lack of knowledge is primarily because of the huge diversity in protein function and the consequent difficulty in gauging and comparing rates of protein function evolution. Nevertheless, most proteins function through interacting with other proteins, and prote...

  7. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.;

    2004-01-01

    . In addition we obtained an alignment of the 5' HIV-1 region that is more consistent with the structure than that currently in the database. We added randomized noise to the original values of the rates to investigate the stability of predictions to rate matrix deviations. We find that changes within a fairly...

  8. The Impact of Mutation Rate on the Computation Time of Evolutionary Dynamic Optimization

    CERN Document Server

    Chen, Tianshi; Tang, Ke; Chen, Guoliang; Yao, Xin

    2011-01-01

    Mutation has traditionally been regarded as an important operator in evolutionary algorithms. In particular, there have been many experimental studies which showed the effectiveness of adapting mutation rates for various static optimization problems. Given the perceived effectiveness of adaptive and self-adaptive mutation for static optimization problems, there have been speculations that adaptive and self-adaptive mutation can benefit dynamic optimization problems even more since adaptation and self-adaptation are capable of following a dynamic environment. However, few theoretical results are available in analyzing rigorously evolutionary algorithms for dynamic optimization problems. It is unclear when adaptive and self-adaptive mutation rates are likely to be useful for evolutionary algorithms in solving dynamic optimization problems. This paper provides the first rigorous analysis of adaptive mutation and its impact on the computation times of evolutionary algorithms in solving certain dynamic optimizatio...

  9. Phylogenetically patterned speciation rates and extinction risks change the loss of evolutionary history during extinctions.

    OpenAIRE

    Heard, S B; Mooers, A O

    2000-01-01

    If we are to plan conservation strategies that minimize the loss of evolutionary history through human-caused extinctions, we must understand how this loss is related to phylogenetic patterns in current extinction risks and past speciation rates. Nee & May (1997, Science 278, 692-694) showed that for a randomly evolving clade (i) a single round of random extinction removed relatively little evolutionary history, and (ii) extinction management (choosing which taxa to sacrifice) offered only ma...

  10. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations

    NARCIS (Netherlands)

    van der Graaf, Adriaan; Wardenaar, Renee; Neumann, Drexel A.; Taudt, Aaron; Shaw, Ruth G.; Jansen, Ritsert C.; Schmitz, Robert J.; Colome-Tatche, Maria; Johannes, Frank

    2015-01-01

    Stochastic changes in cytosine methylation are a source of heritable epigenetic and phenotypic diversity in plants. Using the model plant Arabidopsis thaliana, we derive robust estimates of the rate at which methylation is spontaneously gained (forward epimutation) or lost (backward epimutation) at

  11. Evolutionary rates at codon sites may be used to align sequences and infer protein domain function

    Directory of Open Access Journals (Sweden)

    Hazelhurst Scott

    2010-03-01

    Full Text Available Abstract Background Sequence alignments form part of many investigations in molecular biology, including the determination of phylogenetic relationships, the prediction of protein structure and function, and the measurement of evolutionary rates. However, to obtain meaningful results, a significant degree of sequence similarity is required to ensure that the alignments are accurate and the inferences correct. Limitations arise when sequence similarity is low, which is particularly problematic when working with fast-evolving genes, evolutionary distant taxa, genomes with nucleotide biases, and cases of convergent evolution. Results A novel approach was conceptualized to address the "low sequence similarity" alignment problem. We developed an alignment algorithm termed FIRE (Functional Inference using the Rates of Evolution, which aligns sequences using the evolutionary rate at codon sites, as measured by the dN/dS ratio, rather than nucleotide or amino acid residues. FIRE was used to test the hypotheses that evolutionary rates can be used to align sequences and that the alignments may be used to infer protein domain function. Using a range of test data, we found that aligning domains based on evolutionary rates was possible even when sequence similarity was very low (for example, antibody variable regions. Furthermore, the alignment has the potential to infer protein domain function, indicating that domains with similar functions are subject to similar evolutionary constraints. These data suggest that an evolutionary rate-based approach to sequence analysis (particularly when combined with structural data may be used to study cases of convergent evolution or when sequences have very low similarity. However, when aligning homologous gene sets with sequence similarity, FIRE did not perform as well as the best traditional alignment algorithms indicating that the conventional approach of aligning residues as opposed to evolutionary rates remains the

  12. Reduced evolutionary rate in reemerged Ebola virus transmission chains.

    Science.gov (United States)

    Blackley, David J; Wiley, Michael R; Ladner, Jason T; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L; Gregory, Christopher; D'ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W; Kuhn, Jens H; Hensley, Lisa E; Jahrling, Peter B; Ströher, Ute; Nichol, Stuart T; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-04-01

    On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over. PMID:27386513

  13. Reduced evolutionary rate in reemerged Ebola virus transmission chains

    Science.gov (United States)

    Blackley, David J.; Wiley, Michael R.; Ladner, Jason T.; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L.; Gregory, Christopher; D’ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W.; Kuhn, Jens H.; Hensley, Lisa E.; Jahrling, Peter B.; Ströher, Ute; Nichol, Stuart T.; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A.; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-01-01

    On 29 June 2015, Liberia’s respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak (“flare-up”) of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over. PMID:27386513

  14. Assessing fluctuating evolutionary pressure in yeast and mammal evolutionary rate covariation using bioinformatics of meiotic protein genetic sequences

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Holden, T.; Lieberman, D.; Cheung, T.

    2013-09-01

    The evolutionary rate co-variation in meiotic proteins has been reported for yeast and mammal using phylogenic branch lengths which assess retention, duplication and mutation. The bioinformatics of the corresponding DNA sequences could be classified as a diagram of fractal dimension and Shannon entropy. Results from biomedical gene research provide examples on the diagram methodology. The identification of adaptive selection using entropy marker and functional-structural diversity using fractal dimension would support a regression analysis where the coefficient of determination would serve as evolutionary pathway marker for DNA sequences and be an important component in the astrobiology community. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, clinical trial targeted cancer gene CD47, SIRT6 in spermatogenesis, and HLA-C in mosquito bite immunology demonstrate the diagram classification methodology. Comparisons to the SEPT4-XIAP pair in stem cell apoptosis, testesexpressed taste genes TAS1R3-GNAT3 pair, and amyloid beta APLP1-APLP2 pair with the yeast-mammal DNA sequences for meiotic proteins RAD50-MRE11 pair and NCAPD2-ICK pair have accounted for the observed fluctuating evolutionary pressure systematically. Regression with high R-sq values or a triangular-like cluster pattern for concordant pairs in co-variation among the studied species could serve as evidences for the possible location of common ancestors in the entropy-fractal dimension diagram, consistent with an example of the human-chimp common ancestor study using the FOXP2 regulated genes reported in human fetal brain study. The Deinococcus radiodurans R1 Rad-A could be viewed as an outlier in the RAD50 diagram and also in the free energy versus fractal dimension regression Cook's distance, consistent with a non-Earth source for this radiation resistant bacterium. Convergent and divergent fluctuating evolutionary

  15. Exploring the evolutionary rate differences between human disease and non-disease genes.

    Science.gov (United States)

    Chakraborty, Sandip; Panda, Arup; Ghosh, Tapash Chandra

    2016-07-01

    Comparisons of evolutionary features between human disease and non-disease genes have a wide implication to understand the genetic basis of human disease genes. However, it has not yet been resolved whether disease genes evolve at slower or faster rate than the non-disease genes. To resolve this controversy, here we integrated human disease genes from several databases and compared their protein evolutionary rates with non-disease genes in both housekeeping and tissue-specific group. We noticed that in tissue specific group, disease genes evolve significantly at a slower rate than non-disease genes. However, we found no significant difference in evolutionary rates between disease and non-disease genes in housekeeping group. Tissue specific disease genes have a higher protein complex number, elevated gene expression level and are also associated with conserve biological processes. Finally, our regression analysis suggested that protein complex number followed by protein multifunctionality independently modulates the evolutionary rate of human disease genes. PMID:26562439

  16. Position-dependent correlations between DNA methylation and the evolutionary rates of mammalian coding exons

    Science.gov (United States)

    Chuang, Trees-Juen; Chen, Feng-Chi; Chen, Yen-Zho

    2012-01-01

    DNA cytosine methylation is a central epigenetic marker that is usually mutagenic and may increase the level of sequence divergence. However, methylated genes have been reported to evolve more slowly than unmethylated genes. Hence, there is a controversy on whether DNA methylation is correlated with increased or decreased protein evolutionary rates. We hypothesize that this controversy has resulted from the differential correlations between DNA methylation and the evolutionary rates of coding exons in different genic positions. To test this hypothesis, we compare human–mouse and human–macaque exonic evolutionary rates against experimentally determined single-base resolution DNA methylation data derived from multiple human cell types. We show that DNA methylation is significantly related to within-gene variations in evolutionary rates. First, DNA methylation level is more strongly correlated with C-to-T mutations at CpG dinucleotides in the first coding exons than in the internal and last exons, although it is positively correlated with the synonymous substitution rate in all exon positions. Second, for the first exons, DNA methylation level is negatively correlated with exonic expression level, but positively correlated with both nonsynonymous substitution rate and the sample specificity of DNA methylation level. For the internal and last exons, however, we observe the opposite correlations. Our results imply that DNA methylation level is differentially correlated with the biological (and evolutionary) features of coding exons in different genic positions. The first exons appear more prone to the mutagenic effects, whereas the other exons are more influenced by the regulatory effects of DNA methylation. PMID:23019368

  17. Nucleotide sequence determines the accelerated rate of point mutations.

    Science.gov (United States)

    Kini, R Manjunatha; Chinnasamy, Arunkumar

    2010-09-01

    Although the theory of evolution was put forth about 150 years ago our understanding of how molecules drive evolution remains poor. It is well-established that proteins evolve at different rates, essentially based on their functional role and three-dimensional structure. However, the highly variable rates of evolution of different proteins - especially the rapidly evolving ones - within a single organism are poorly understood. Using examples of genes for fast-evolving toxins and human hereditary diseases, we show for the first time that specific nucleotide sequences appear to determine point mutation rates. Based on mutation rates, we have classified triplets (not just codons) into stable, unstable and intermediate groups. Toxin genes contain a relatively higher percentage of unstable triplets in their exons compared to introns, whereas non-toxin genes contain a higher percentage of unstable triplets in their introns. Thus the distribution of stable and unstable triplets is correlated with and may explain the accelerated evolution of point mutations in toxins. Similarly, at the genomic level, lower organisms with genes that evolve faster contain a higher percentage of unstable triplets compared to higher organisms. These findings show that mutation rates of proteins, and hence of the organisms, are DNA sequence-dependent and thus provide a proximate mechanism of evolution at the molecular level. PMID:20362603

  18. LS³: A Method for Improving Phylogenomic Inferences When Evolutionary Rates Are Heterogeneous among Taxa.

    Science.gov (United States)

    Rivera-Rivera, Carlos J; Montoya-Burgos, Juan I

    2016-06-01

    Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³.

  19. Evolutionary implications of the new triple-alpha nuclear reaction rate for low mass stars

    CERN Document Server

    Dotter, Aaron

    2009-01-01

    Context: Ogata et al. (2009; hereafter OKK) presented a theoretical determination of the triple-alpha nuclear reaction rate. Their rate differs from the NACRE rate by many orders of magnitude at temperatures relevant for low mass stars. Aims: We explore the evolutionary implications of adopting the OKK triple-alpha reaction rate in low mass stars and compare the results with those obtained using the NACRE rate. Methods: The triple-alpha reaction rates are compared by following the evolution of stellar models at 1 and 1.5 Msol with Z=0.0002 and Z=0.02. Results: Results show that the OKK rate has severe consequences for the late stages of stellar evolution in low mass stars. Most notable is the shortening--or disappearance--of the red giant phase. Conclusions: The OKK triple-alpha reaction rate is incompatible with observations of extended red giant branches and He burning stars in old stellar systems.

  20. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants.

    Science.gov (United States)

    Wicke, Susann; Müller, Kai F; dePamphilis, Claude W; Quandt, Dietmar; Bellot, Sidonie; Schneeweiss, Gerald M

    2016-08-01

    Because novel environmental conditions alter the selection pressure on genes or entire subgenomes, adaptive and nonadaptive changes will leave a measurable signature in the genomes, shaping their molecular evolution. We present herein a model of the trajectory of plastid genome evolution under progressively relaxed functional constraints during the transition from autotrophy to a nonphotosynthetic parasitic lifestyle. We show that relaxed purifying selection in all plastid genes is linked to obligate parasitism, characterized by the parasite's dependence on a host to fulfill its life cycle, rather than the loss of photosynthesis. Evolutionary rates and selection pressure coevolve with macrostructural and microstructural changes, the extent of functional reduction, and the establishment of the obligate parasitic lifestyle. Inferred bursts of gene losses coincide with periods of relaxed selection, which are followed by phases of intensified selection and rate deceleration in the retained functional complexes. Our findings suggest that the transition to obligate parasitism relaxes functional constraints on plastid genes in a stepwise manner. During the functional reduction process, the elevation of evolutionary rates reaches several new rate equilibria, possibly relating to the modified protein turnover rates in heterotrophic plastids. PMID:27450087

  1. Flagellated algae protein evolution suggests the prevalence of lineage-specific rules governing evolutionary rates of eukaryotic proteins.

    Science.gov (United States)

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics that are intermediate between yeasts and mammals. Using partial correlation analyses on the evolution of 6,921 orthologous proteins from Chlamydomonas reinhardtii and Volvox carteri, we examined factors influencing evolutionary rates of proteins in flagellated algae. Previous studies have shown that mRNA abundance and gene compactness are strong determinants for protein evolutionary rates in yeasts and mammals, respectively. We show that both factors also influence algae protein evolution with mRNA abundance having a larger impact than gene compactness on the rates of algae protein evolution. More importantly, among all the factors examined, coding sequence (CDS) length has the strongest (positive) correlation with protein evolutionary rates. This correlation between CDS length and the rates of protein evolution is not due to alignment-related issues or domain density. These results suggest no simple and universal rules governing protein evolutionary rates across different eukaryotic lineages. Instead, gene properties influence the rate of protein evolution in a lineage-specific manner. PMID:23563973

  2. Effects of the acceleration vector on transient burning rate of an aluminized solid propellant.

    Science.gov (United States)

    Northam, G. B.

    1971-01-01

    Experimental results concerning the transient burning-rate augmentation of a 16% aluminum polybutadiene acrylic acid (PBAA) propellant burned in a 2-in. web motor at pressure levels from 300 to 1200 psia with centrifugal accelerations from 0 to 140 g. The orientation of the acceleration vector was varied to determine its effect on the transient burning rate. The burning-rate augmentation was strongly dependent on (1) acceleration level, (2) propellant distance burned (or burn time), and (3) orientation of the acceleration vector with respect to the burning surface. This transient rate augmentation resulted from the retention of molten metallic residue on the burning surface by the normal acceleration loading. The presence of the residue altered the combustion zone heat transfer and caused increased localized burning rates, as evidenced by the pitted propellant surfaces that were observed from extinction tests conducted at various acceleration levels.

  3. Flagellated Algae Protein Evolution Suggests the Prevalence of Lineage-Specific Rules Governing Evolutionary Rates of Eukaryotic Proteins

    OpenAIRE

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics t...

  4. Evolution on neutral networks accelerates the ticking rate of the molecular clock.

    Science.gov (United States)

    Manrubia, Susanna; Cuesta, José A

    2015-01-01

    Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive 'phenotypic entrapment' entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives.

  5. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses.

    Science.gov (United States)

    Pyron, R Alexander; Burbrink, Frank T

    2013-12-01

    Phylogenies are used to estimate rates of speciation and extinction, reconstruct historical diversification scenarios, and link these to ecological and evolutionary factors, such as climate or organismal traits. Recent models can now estimate the effects of binary, multistate, continuous, and biogeographic characters on diversification rates. Others test for diversity dependence (DD) in speciation and extinction, which has become recognized as an important process in numerous clades. A third class incorporates flexible time-dependent functions, enabling reconstruction of major periods of both expanding and contracting diversity. Although there are some potential problems (particularly for estimating extinction), these methods hold promise for answering many classic questions in ecology and evolution, such as the origin of adaptive radiations, and the latitudinal gradient in species richness.

  6. The Temporal Relationship between Infant Heart Rate Acceleration and Crying in an Aversive Situation.

    Science.gov (United States)

    Vaughn, Brian; Sroufe, L. Alan

    1979-01-01

    Shows that the heart rate acceleration of 16 infants ranging in age from 8 to 16 months consistently began well before the onset of crying. This suggests that heart rate acceleration is not merely a by-product of crying but that it is associated with negative affect. (JMB)

  7. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses.

    Science.gov (United States)

    Sanjuán, Rafael

    2012-01-01

    Although evolution is a multifactorial process, theory posits that the speed of molecular evolution should be directly determined by the rate at which spontaneous mutations appear. To what extent these two biochemical and population-scale processes are related in nature, however, is largely unknown. Viruses are an ideal system for addressing this question because their evolution is fast enough to be observed in real time, and experimentally-determined mutation rates are abundant. This article provides statistically supported evidence that the mutation rate determines molecular evolution across all types of viruses. Properties of the viral genome such as its size and chemical composition are identified as major determinants of these rates. Furthermore, a quantitative analysis reveals that, as expected, evolution rates increase linearly with mutation rates for slowly mutating viruses. However, this relationship plateaus for fast mutating viruses. A model is proposed in which deleterious mutations impose an evolutionary speed limit and set an extinction threshold in nature. The model is consistent with data from replication kinetics, selection strength and chemical mutagenesis studies.

  8. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses.

    Directory of Open Access Journals (Sweden)

    Rafael Sanjuán

    Full Text Available Although evolution is a multifactorial process, theory posits that the speed of molecular evolution should be directly determined by the rate at which spontaneous mutations appear. To what extent these two biochemical and population-scale processes are related in nature, however, is largely unknown. Viruses are an ideal system for addressing this question because their evolution is fast enough to be observed in real time, and experimentally-determined mutation rates are abundant. This article provides statistically supported evidence that the mutation rate determines molecular evolution across all types of viruses. Properties of the viral genome such as its size and chemical composition are identified as major determinants of these rates. Furthermore, a quantitative analysis reveals that, as expected, evolution rates increase linearly with mutation rates for slowly mutating viruses. However, this relationship plateaus for fast mutating viruses. A model is proposed in which deleterious mutations impose an evolutionary speed limit and set an extinction threshold in nature. The model is consistent with data from replication kinetics, selection strength and chemical mutagenesis studies.

  9. Minimizing the symbol-error-rate for amplify-and-forward relaying systems using evolutionary algorithms

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2015-02-01

    In this paper, a new detector is proposed for an amplify-and-forward (AF) relaying system. The detector is designed to minimize the symbol-error-rate (SER) of the system. The SER surface is non-linear and may have multiple minimas, therefore, designing an SER detector for cooperative communications becomes an optimization problem. Evolutionary based algorithms have the capability to find the global minima, therefore, evolutionary algorithms such as particle swarm optimization (PSO) and differential evolution (DE) are exploited to solve this optimization problem. The performance of proposed detectors is compared with the conventional detectors such as maximum likelihood (ML) and minimum mean square error (MMSE) detector. In the simulation results, it can be observed that the SER performance of the proposed detectors is less than 2 dB away from the ML detector. Significant improvement in SER performance is also observed when comparing with the MMSE detector. The computational complexity of the proposed detector is much less than the ML and MMSE algorithms. Moreover, in contrast to ML and MMSE detectors, the computational complexity of the proposed detectors increases linearly with respect to the number of relays.

  10. Evolutionary enhancement of the SLIM-MAUD method of estimating human error rates

    Energy Technology Data Exchange (ETDEWEB)

    Zamanali, J.H. (Baltimore Gas and Electric, Lusby, MD (United States)); Hubbard, F.R. (FRH Inc., Baltimore, MD (United States)); Mosleh, A. (Univ. of Maryland, College Park (United States)); Waller, M.A. (Delta Prime, Inc., Glen Burnie, MD (United States))

    1992-01-01

    The methodology described in this paper assigns plant-specific dynamic human error rates (HERs) for individual plant examinations based on procedural difficulty, on configuration features, and on the time available to perform the action. This methodology is an evolutionary improvement of the success likelihood index methodology (SLIM-MAUD) for use in systemic scenarios. It is based on the assumption that the HER in a particular situation depends of the combined effects of a comprehensive set of performance-shaping factors (PSFs) that influence the operator's ability to perform the action successfully. The PSFs relate the details of the systemic scenario in which the action must be performed according to the operator's psychological and cognitive condition.

  11. Impacts of Pretranscriptional DNA Methylation, Transcriptional Transcription Factor, and Posttranscriptional microRNA Regulations on Protein Evolutionary Rate

    Science.gov (United States)

    Chuang, Trees-Juen; Chiang, Tai-Wei

    2014-01-01

    Gene expression is largely regulated by DNA methylation, transcription factor (TF), and microRNA (miRNA) before, during, and after transcription, respectively. Although the evolutionary effects of TF/miRNA regulations have been widely studied, evolutionary analysis of simultaneously accounting for DNA methylation, TF, and miRNA regulations and whether promoter methylation and gene body (coding regions) methylation have different effects on the rate of gene evolution remain uninvestigated. Here, we compared human–macaque and human–mouse protein evolutionary rates against experimentally determined single base-resolution DNA methylation data, revealing that promoter methylation level is positively correlated with protein evolutionary rates but negatively correlated with TF/miRNA regulations, whereas the opposite was observed for gene body methylation level. Our results showed that the relative importance of these regulatory factors in determining the rate of mammalian protein evolution is as follows: Promoter methylation ≈ miRNA regulation > gene body methylation > TF regulation, and further indicated that promoter methylation and miRNA regulation have a significant dependent effect on protein evolutionary rates. Although the mechanisms underlying cooperation between DNA methylation and TFs/miRNAs in gene regulation remain unclear, our study helps to not only illuminate the impact of these regulatory factors on mammalian protein evolution but also their intricate interaction within gene regulatory networks. PMID:24923326

  12. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction

    Science.gov (United States)

    Upchurch, Paul; Goswami, Anjali

    2016-01-01

    The effect of the Cretaceous–Palaeogene (K–Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K–Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K–Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K–Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene. PMID:27358361

  13. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous-Palaeogene mass extinction.

    Science.gov (United States)

    Halliday, Thomas John Dixon; Upchurch, Paul; Goswami, Anjali

    2016-06-29

    The effect of the Cretaceous-Palaeogene (K-Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K-Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K-Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K-Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene. PMID:27358361

  14. The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates.

    Science.gov (United States)

    Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe

    2014-04-01

    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the 'store and retrieve' hypothesis positing that viruses stored early in latently infected cells preferentially

  15. The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates.

    Directory of Open Access Journals (Sweden)

    Bram Vrancken

    2014-04-01

    Full Text Available Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1 evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the 'store and retrieve' hypothesis positing that viruses stored early in latently infected

  16. The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates.

    Science.gov (United States)

    Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe

    2014-04-01

    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the 'store and retrieve' hypothesis positing that viruses stored early in latently infected cells preferentially

  17. Sodium diethyldithiocarbamate as accelerator of the rate of copper cementation

    Directory of Open Access Journals (Sweden)

    Abeer A. El-Saharty

    2015-12-01

    Full Text Available The effects of Cu2+ ion concentration and temperature on the cementation rate of copper from copper sulphate on zinc and the effect of additives of the organic compound “sodium diethyldithiocarbamate” (NaDDC were studied. It was noticed that the cementation increases significantly by increasing the concentrations of NaDDC. The rate of cementation increased by 58.58−100.31%. Our data showed that sodium diethyldithiocarbamate reacts with the Cu2+ solution giving a complex of copper diethyldithiocarbamate, which enhances the rate of cementation.

  18. Effects of propellant composition variables on acceleration-induced burning-rate augmentation of solid propellants

    Science.gov (United States)

    Northam, G. B.

    1972-01-01

    This work was conducted to define further the effects of propellant composition variables on the acceleration-induced burning rate augmentation of solid propellants. The rate augmentation at a given acceleration was found to be a nonlinear inverse function of the reference burning rate and not controlled by binder or catalyst type at a given reference rate. A nonaluminized propellant and a low rate double-base propellant exhibited strong transient rate augmentation due to surface pitting resulting from the retention of hot particles on the propellant surface.

  19. STATISTICAL INFERENCE OF WEIBULL DISTRIBUTION FOR TAMPERED FAILURE RATE MODEL IN PROGRESSIVE STRESS ACCELERATED LIFE TESTING

    Institute of Scientific and Technical Information of China (English)

    WANG Ronghua; FEI Heliang

    2004-01-01

    In this note, the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time. For the parametric setting where the scale parameter satisfying the equation of the inverse power law is Weibull, maximum likelihood estimation is investigated.

  20. Some Analytical Properties of the Model for Stochastic Evolutionary Games in Finite Populations with Non-uniform Interaction Rate

    Institute of Scientific and Technical Information of China (English)

    QUAN Ji; WANG Xian-Jia

    2013-01-01

    Traditional evolutionary games assume uniform interaction rate,which means that the rate at which individuals meet and interact is independent of their strategies.But in some systems,especially biological systems,the players interact with each other discriminately.Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies.Their model is based on replicator dynamics which assumes an infinite size population.But in reality,the number of individuals in the population is always finite,and there will be some random interference in the individuals' strategy selection process.Therefore,it is more practical to establish the corresponding stochastic evolutionary model in finite populations.In fact,the analysis of evolutionary games in a finite size population is more difficult.Just as Taylor and Nowak said in the outlook section of their paper,"The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations." In this paper,we are exactly doing this work.We extend Taylor and Nowak's model from infinite to finite case,especially focusing on the influence of non-uniform connection characteristics on the evolutionary stable state of the system.We model the strategy evolutionary process of the population by a continuous ergodic Markov process.Based on the fimit distribution of the process,we can give the evolutionary stable state of the system.We make a complete classification of the symmetric 2 × 2 games.For each case game,the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough.In contrast with most literatures in evolutionary games using the simulation method,all our results obtained are analytical.Especially,in the dominant-case game,coexistence of the two strategies may become evolutionary stable states in our model.This result can be used to explain the emergence of

  1. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  2. Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals.

    Science.gov (United States)

    Beck, Robin M D; Lee, Michael S Y

    2014-10-22

    Analyses of a comprehensive morphological character matrix of mammals using 'relaxed' clock models (which simultaneously estimate topology, divergence dates and evolutionary rates), either alone or in combination with an 8.5 kb nuclear sequence dataset, retrieve implausibly ancient, Late Jurassic-Early Cretaceous estimates for the initial diversification of Placentalia (crown-group Eutheria). These dates are much older than all recent molecular and palaeontological estimates. They are recovered using two very different clock models, and regardless of whether the tree topology is freely estimated or constrained using scaffolds to match the current consensus placental phylogeny. This raises the possibility that divergence dates have been overestimated in previous analyses that have applied such clock models to morphological and total evidence datasets. Enforcing additional age constraints on selected internal divergences results in only a slight reduction of the age of Placentalia. Constraining Placentalia to less than 93.8 Ma, congruent with recent molecular estimates, does not require major changes in morphological or molecular evolutionary rates. Even constraining Placentalia to less than 66 Ma to match the 'explosive' palaeontological model results in only a 10- to 20-fold increase in maximum evolutionary rate for morphology, and fivefold for molecules. The large discrepancies between clock- and fossil-based estimates for divergence dates might therefore be attributable to relatively small changes in evolutionary rates through time, although other explanations (such as overly simplistic models of morphological evolution) need to be investigated. Conversely, dates inferred using relaxed clock models (especially with discrete morphological data and MrBayes) should be treated cautiously, as relatively minor deviations in rate patterns can generate large effects on estimated divergence dates.

  3. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress

    Directory of Open Access Journals (Sweden)

    J. B. T. Scott

    2009-05-01

    Full Text Available Pine Island Glacier, Antarctica, has been undergoing several related changes for at least two decades; these include acceleration, thinning and grounding line retreat. During the first major ground-based study between 2006 and 2008, GPS receivers were used to monitor ice flow from 55 km to 171 km inland, along the central flowline. At four sites both acceleration and thinning rates over the last two years exceeded rates observed at any other time over the last two decades. At the downstream site acceleration was 6.4% over 2007 and thinning was 3.5±0.5 ma−1. Acceleration and thinning have spread rapidly inland with the acceleration 171 km inland at 4.1% over 2007, greater than any measured annual flow increase along the whole glacier prior to 2006. Increases in surface slope, and hence gravitational driving stress, correlate well with the acceleration and no sustained change in longitudinal stress gradient is needed to explain the force balance. There is no indication that the glacier is approaching a new steady state.

  4. Unobtrusive heart rate estimation during physical exercise using photoplethysmographic and acceleration data.

    Science.gov (United States)

    Mullan, Patrick; Kanzler, Christoph M; Lorch, Benedikt; Schroeder, Lea; Winkler, Ludwig; Laich, Larissa; Riedel, Frederik; Richer, Robert; Luckner, Christoph; Leutheuser, Heike; Eskofier, Bjoern M; Pasluosta, Cristian

    2015-08-01

    Photoplethysmography (PPG) is a non-invasive, inexpensive and unobtrusive method to achieve heart rate monitoring during physical exercises. Motion artifacts during exercise challenge the heart rate estimation from wrist-type PPG signals. This paper presents a methodology to overcome these limitation by incorporating acceleration information. The proposed algorithm consisted of four stages: (1) A wavelet based denoising, (2) an acceleration based denoising, (3) a frequency based approach to estimate the heart rate followed by (4) a postprocessing step. Experiments with different movement types such as running and rehabilitation exercises were used for algorithm design and development. Evaluation of our heart rate estimation showed that a mean absolute error 1.96 bpm (beats per minute) with standard deviation of 2.86 bpm and a correlation of 0.98 was achieved with our method. These findings suggest that the proposed methodology is robust to motion artifacts and is therefore applicable for heart rate monitoring during sports and rehabilitation. PMID:26737687

  5. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution

    Science.gov (United States)

    Hopkins, Melanie J.; Smith, Andrew B.

    2015-03-01

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.

  6. Accelerated rate of molecular evolution for vittarioid ferns is strong and not driven by selection.

    Science.gov (United States)

    Rothfels, Carl J; Schuettpelz, Eric

    2014-01-01

    Molecular evolutionary rate heterogeneity-the violation of a molecular clock-is a prominent feature of many phylogenetic data sets. It has particular importance to systematists not only because of its biological implications, but also for its practical effects on our ability to infer and date evolutionary events. Here we show, using both maximum likelihood and Bayesian approaches, that a remarkably strong increase in substitution rate in the vittarioid ferns is consistent across the nuclear and plastid genomes. Contrary to some expectations, this rate increase is not due to selective forces acting at the protein level on our focal loci. The vittarioids bear no signature of the change in the relative strengths of selection and drift that one would expect if the rate increase was caused by altered post-mutation fixation rates. Instead, the substitution rate increase appears to stem from an elevated supply of mutations, perhaps limited to the vittarioid ancestral branch. This generalized rate increase is accompanied by extensive fine-scale heterogeneity in rates across loci, genomes, and taxa. Our analyses demonstrate the effectiveness and flexibility of trait-free investigations of rate heterogeneity within a model-selection framework, emphasize the importance of explicit tests for signatures of selection prior to invoking selection-related or demography-based explanations for patterns of rate variation, and illustrate some unexpected nuances in the behavior of relaxed clock methods for modeling rate heterogeneity, with implications for our ability to confidently date divergence events. In addition, our data provide strong support for the monophyly of Adiantum, and for the position of Calciphilopteris in the cheilanthoid ferns, two relationships for which convincing support was previously lacking.

  7. Does hybridization increase evolutionary rate? Data from the 28S-rDNA D8 domain in echinoderms.

    Science.gov (United States)

    Chenuil, Anne; Egea, Emilie; Rocher, Caroline; Touzet, Hélène; Féral, Jean-Pierre

    2008-11-01

    The divergent domain D8 of the large ribosomal RNA is very variable and extended in vertebrates compared to other eukaryotes. We provide data from 31 species of echinoderms and present the first comparative analysis of the D8 in nonvertebrate deuterostomes. In addition, we obtained 16S mitochondrial DNA sequences for the sea urchin taxa and analyzed single-strand conformation polymorphism (SSCP) of D8 in several populations within the species complex Echinocardium cordatum. A common secondary structure supported by compensatory substitutions and indels is inferred for echinoderms. Variation mostly arises at the tip of the longest stem (D8a), and the most variable taxa also display the longest and most stable D8. The most stable variants are the only ones displaying bulges in the terminal part of the stem, suggesting that selection, rather than maximizing stability of the D8 secondary structure, maintains it in a given range. Striking variation in D8 evolutionary rates was evidenced among sea urchins, by comparison with both 16S mitochondrial DNA and paleontological data. In Echinocardium cordatum and Strongylocentrotus pallidus and S. droebachiensis, belonging to very distant genera, the increase in D8 evolutionary rate is extreme. Their highly stable D8 secondary structures rule out the possibility of pseudogenes. These taxa are the only ones in which interspecific hybridization was reported. We discuss how evolutionary rates may be affected in nuclear relative to mitochondrial genes after hybridization, by selective or mutational processes such as gene silencing and concerted evolution. PMID:18949506

  8. Effects of normal acceleration on transient burning rate augmentation of an aluminized solid propellant

    Science.gov (United States)

    Northam, G. B.

    1972-01-01

    Instantaneous burning rate data for a polybutadiene acrylic acid propellant, containing 16 weight percent aluminum, were calculated from the pressure histories of a test motor with 96.77 sq cm of burning area and a 5.08-cm-thick propellant web. Additional acceleration tests were conducted with reduced propellant web thicknesses of 3.81, 2.54, and 1.27 cm. The metallic residue collected from the various web thickness tests was characterized by weight and shape and correlated with the instantaneous burning rate measurements. Rapid depressurization extinction tests were conducted in order that surface pitting characteristics due to localized increased burning rate could be correlated with the residue analysis and the instantaneous burning rate data. The acceleration-induced burning rate augmentation was strongly dependent on propellant distance burned, or burning time, and thus was transient in nature. The results from the extinction tests and the residue analyses indicate that the transient rate augmentation was highly dependent on local enhancement of the combustion zone heat feedback to the surface by the growth of molten residue particles on or just above the burning surface. The size, shape, and number density of molten residue particles, rather than the total residue weight, determined the acceleration-induced burning rate augmentation.

  9. The Relationships Among MicroRNA Regulation, Intrinsically Disordered Regions, and Other Indicators of Protein Evolutionary Rate

    Science.gov (United States)

    Chen, Sean Chun-Chang; Chuang, Trees-Juen; Li, Wen-Hsiung

    2011-01-01

    Many indicators of protein evolutionary rate have been proposed, but some of them are interrelated. The purpose of this study is to disentangle their correlations. We assess the strength of each indicator by controlling for the other indicators under study. We find that the number of microRNA (miRNA) types that regulate a gene is the strongest rate indicator (a negative correlation), followed by disorder content (the percentage of disordered regions in a protein, a positive correlation); the strength of disorder content as a rate indicator is substantially increased after controlling for the number of miRNA types. By dividing proteins into lowly and highly intrinsically disordered proteins (L-IDPs and H-IDPs), we find that proteins interacting with more H-IDPs tend to evolve more slowly, which largely explains the previous observation of a negative correlation between the number of protein–protein interactions and evolutionary rate. Moreover, all of the indicators examined here, except for the number of miRNA types, have different strengths in L-IDPs and in H-IDPs. Finally, the number of phosphorylation sites is weakly correlated with the number of miRNA types, and its strength as a rate indicator is substantially reduced when other indicators are considered. Our study reveals the relative strength of each rate indicator and increases our understanding of protein evolution. PMID:21398349

  10. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical.

  11. Sensory Constraints on Birdsong Syntax: Neural Responses to Swamp Sparrow Songs with Accelerated Trill Rates.

    Science.gov (United States)

    Prather, Jf; Peters, S; Mooney, R; Nowicki, S

    2012-06-01

    Both sensory and motor mechanisms can constrain behavioral performance. Sensory mechanisms may be especially important for constraining behaviors that depend on experience, such as learned birdsongs. Swamp sparrows learn to sing by imitating the song of a tutor, but sparrows fail to accurately imitate artificial tutor songs with abnormally accelerated trills, instead singing brief and rapid trills interrupted by silent gaps. This "broken syntax" has been proposed to arise from vocal-motor limitations. Here we consider whether sensory limitations exist that could also contribute to broken syntax. We tested this idea by recording auditory-evoked activity of sensorimotor neurons in the swamp sparrow's brain that are known to be important for the learning, performance and perception of song. In freely behaving adult sparrows that sang songs with normal syntax, neurons were detected that exhibited precisely time-locked activity to each repetition of the syllable in a trill when presented at a natural rate. Those cells failed to faithfully follow syllables presented at an accelerated rate, however, and their failure to respond to consecutive syllables increased as a function of trill rate. This "flickering" auditory representation in animals performing normal syntax reveals a central constraint on the sensory processing of rapid trills. Furthermore, because these neurons are implicated in both song learning and perception, and because auditory flickering began to occur at accelerated trill rates previously associated with the emergence of broken song syntax, these sensory constraints may contribute to the emergence of broken syntax.

  12. Developing a Corticopuncture system to accelerate the rate of tooth movement

    OpenAIRE

    Mostafa, Mohamed Moharam

    2014-01-01

    Introduction:Tooth movement is caused by inflammatory and cellular reactions within the bone in response to applied orthodontic forces. Several attempts have been made to increase the rate of bone turnover in order to achieve accelerated tooth movement. These attempts can be classified into two categories: physical trauma (such as Alveolar Corticotomy "Wilckodontics", Piezopuncture, Laser and Resonance Vibrations) and application of drugs (such as the systemic and local application of Vitami...

  13. Optimisation Studies of Accelerator Driven Fertile to Fissile Conversion Rates in Thorium Fuel Cycle

    OpenAIRE

    Bungau, Cristian; Barlow, Roger; Cywinski, R.

    2012-01-01

    The need for proliferation-resistance, longer fuel cycles, higher burn up and improvedwaste form characteristics has led to a renewed worldwide interest in thorium-based fuels and fuel cycles. In this paper the GEANT4 Monte Carlo code has been used to simulate the Thorium-Uranium fuel cycle. The accelerator driven fertile to fissile conversion rates have been calculated for various geometries. Several new classes have been added by the authors to the GEANT4 simulation ...

  14. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales.

    Science.gov (United States)

    Larson-Johnson, Kathryn

    2016-01-01

    As a primary determinant of spatial structure in angiosperm populations, fruit dispersal may impact large-scale ecological and evolutionary processes. Essential to understanding these mechanisms is an accurate reconstruction of dispersal mode over the entire history of an angiosperm lineage. A total-evidence phylogeny is presented for most fossil fruit and all extant genera in Fagales over its c. 95 million yr history. This phylogeny - the largest of its kind to include plant fossils - was used to reconstruct an evolutionary history directly informed by fossil morphologies and to assess relationships among dispersal mode, biogeographic range size, and diversification rate. Reconstructions indicate four transitions to wind dispersal and seven to biotic dispersal, with the phylogenetic integration of fossils crucial to understanding these patterns. Complexity further increased when more specialized behaviors were considered, with fluttering, gliding, autorotating, and scatter-hoarding evolving multiple times across the order. Preliminary biogeographic analyses suggest larger range sizes in biotically dispersed lineages, especially when pollination mode was held constant. Biotically dispersed lineages had significantly higher diversification rates than abiotically dispersed lineages, although transitions in dispersal mode alone cannot explain all detected diversification rate shifts across Fagales.

  15. Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data

    Directory of Open Access Journals (Sweden)

    Lespinet Olivier

    2007-11-01

    Full Text Available Abstract Background Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving. Results We have developed a suite of programs that automate three essential steps to study conservation of gene order, and validated them with a set of 107 bacteria and archaea that cover the majority of the prokaryotic taxonomic space. We identified the whole set of shared homologs between two or more species and computed the evolutionary distance separating each pair of homologs. We applied two strategies to extract from the set of homologs a collection of valid orthologs shared by at least two genomes. The first computes the Reciprocal Smallest Distance (RSD using the PAM distances separating pairs of homologs. The second method groups homologs in families and reconstructs each family's evolutionary tree, distinguishing bona fide orthologs as well as paralogs created after the last speciation event. Although the phylogenetic tree method often succeeds where RSD fails, the reverse could occasionally be true. Accordingly, we used the data obtained with either methods or their intersection to number the orthologs that are adjacent in for each pair of genomes, the Positional Orthologous Genes (POGs, and to further study their properties. Once all these synteny blocks have been detected, we showed that POGs are subject to more evolutionary constraints than orthologs outside synteny groups, whichever the taxonomic distance separating the compared organisms. Conclusion The suite of programs described in this paper allows a reliable detection of orthologs and is useful for evaluating gene

  16. The Formalism for Energy Changing Rate of an Accelerated Atom Coupled with Electromagnetic Vacuum Fluctuations

    Science.gov (United States)

    Zhang, Anwei

    2016-09-01

    The structure of the rate of variation of the atomic energy for an arbitrary stationary motion of the atom in interaction with a quantum electromagnetic field is investigated. Our main purpose is to rewrite the formalism in Zhu et al. (Phys Rev D 73:107501, 2006) and to deduce the general expressions of the Einstein A coefficients of an atom on an arbitrary stationary trajectory. The total rate of change of the energy and Einstein coefficients of the atom near a plate with finite temperature or acceleration are also investigated.

  17. Changes in acceleration rate of chloride ions depending on climatic conditions. Influence of rain

    Directory of Open Access Journals (Sweden)

    Corvo, F.

    2003-12-01

    Full Text Available Mild steel, copper and aluminium samples were exposed outdoors in two atmospheric test stations located in Havana, Cuba and Medellín, Colombia. Two parallel group of samples were formed, one for each station. They were submitted to accelerated outdoor test by intermittent spraying of a salt solution (SCAB test according to ISO 11474:98, receiving also the influence of the open atmosphere. The acceleration of corrosion rate of the three metals caused by the presence of chloride ions in both stations was determined. As expected, steel shows the higher corrosion rate and acceleration by chlorides, particularly at Cuban corrosion station. A remarkable difference in the acceleration rate of chloride ions for mild steel and copper between Cuban and Colombian acceleration rate of chloride ions of steel and copper. Steel corrosion products were analyzed by Mössbauer Spectroscopy. Water absorption was also studied. The presence of magnetite, goethite and other Iron compounds was determined.

    Probetas de acero de bajo carbono, cobre y aluminio se expusieron a la intemperie en dos estaciones de ensayo localizadas en la Habana, Cuba y Medellín, Colombia. Se formaron dos grupos paralelos de probetas, tomándose uno para cada estación. Ambos grupos fueron sometidos a ensayos acelerados a la intemperie mediante la aplicación de una niebla salina (SCAB TEST de acuerdo a la Norma ISO 11474:98, recibiendo también la influencia de la atmósfera abierta. Se determinó la aceleración de la velocidad de corrosión de los tres metales causada por la presencia de iones cloruro en ambas estaciones. Como era de esperar, el acero muestra la mayor velocidad de corrosión y aceleración por los iones cloruro, particularmente en la estación de ensayos cubana. Se determinó una notable diferencia en la velocidad de aceleración provocada por los cloruros para el acero de bajo carbono y el cobre entre las estaciones cubana y colombiana. La influencia de la lluvia

  18. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    International Nuclear Information System (INIS)

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in the steam generator (SG). The ETA injection is supposed to decrease the rate of flow accelerated corrosion (FAC) by increasing the pH of the secondary system. However, the water chemistry in the secondary system is very complicated and so water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, we use a model that assumes the FAC rate is proportional to the concentration gradient of magnetite. We then calculate the chemical concentration and magnetite solubility of the secondary system and approximately evaluate the change of FAC rate. It is shown that ETA injection reduces the FAC rate to about 1/3 - 1/22 of that of ammonia. In some portions of the secondary system, we also measured the effects of ETA injection experimentally by rotating disk test, and found that the FAC rate decreases under ETA conditions. The peak FAC rate shifted to a higher temperature after ETA injection. At 274degC, the FAC rates are nearly the same under the conditions of high pH of ETA and low pH of ammonia. (author)

  19. Heart transcriptome of the bank vole (Myodes glareolus: towards understanding the evolutionary variation in metabolic rate

    Directory of Open Access Journals (Sweden)

    Kuduk Katarzyna

    2010-06-01

    Full Text Available Abstract Background Understanding the genetic basis of adaptive changes has been a major goal of evolutionary biology. In complex organisms without sequenced genomes, de novo transcriptome assembly using a longer read sequencing technology followed by expression profiling using short reads is likely to provide comprehensive identification of adaptive variation at the expression level and sequence polymorphisms in coding regions. We performed sequencing and de novo assembly of the bank vole heart transcriptome in lines selected for high metabolism and unselected controls. Results A single 454 Titanium run produced over million reads, which were assembled into 63,581 contigs. Searches against the SwissProt protein database and the ENSEMBL collection of mouse transcripts detected similarity to 11,181 and 14,051 genes, respectively. As judged by the representation of genes from the heart-related Gene Ontology categories and UniGenes detected in the mouse heart, our detection of the genes expressed in the heart was nearly complete (> 95% and almost 90% respectively. On average, 38.7% of the transcript length was covered by our sequences, with notably higher (45.0% coverage of coding regions than of untranslated regions (24.5% of 5' and 32.7% of 3'UTRs. Lower sequence conservation between mouse and bank vole in untranslated regions was found to be partially responsible for poorer UTR representation. Our data might suggest a widespread transcription from noncoding genomic regions, a finding not reported in previous studies regarding transcriptomes in non-model organisms. We also identified over 19 thousand putative single nucleotide polymorphisms (SNPs. A much higher fraction of the SNPs than expected by chance exhibited variant frequency differences between selection regimes. Conclusion Longer reads and higher sequence yield per run provided by the 454 Titanium technology in comparison to earlier generations of pyrosequencing proved beneficial for the

  20. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    Science.gov (United States)

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  1. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia, a carnivorous plant with a minimal genome

    Directory of Open Access Journals (Sweden)

    Herrera-Estrella Alfredo

    2011-06-01

    Full Text Available Abstract Background The carnivorous plant Utricularia gibba (bladderwort is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution, and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS. Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey

  2. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    International Nuclear Information System (INIS)

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in steam generator (SG). The ETA injection is supposed to decrease flow accelerated corrosion (FAC) rate, because of secondary system pH increase. But the water chemistry in the secondary system is very complicated. So water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, it is assumed that the model of FAC rate is proportional to the concentration gradient of magnetite. Then chemical concentration and magnetite solubility of the secondary system are calculated and the change of FAC rate is evaluated in the outline. It has been clarified that the effect of ETA injection reduces the FAC rate to about 1/3-1/22 of that of ammonia. In some portions of the secondary system, the effects of ETA injection have been measured experimentally by rotary disk test. The FAC rate of ETA injection is larger than that of ammonia at high temperature. And the FAC rate peaks at about 180degC in the case of ammonia, but the peak seems to shift to higher temperatures in the case of ETA. (author)

  3. Controlling for Phylogenetic Relatedness and Evolutionary Rates Improves the Discovery of Associations Between Species’ Phenotypic and Genomic Differences

    Science.gov (United States)

    Prudent, Xavier; Parra, Genis; Schwede, Peter; Roscito, Juliana G.; Hiller, Michael

    2016-01-01

    The growing number of sequenced genomes allows us now to address a key question in genetics and evolutionary biology: which genomic changes underlie particular phenotypic changes between species? Previously, we developed a computational framework called Forward Genomics that associates phenotypic to genomic differences by focusing on phenotypes that are independently lost in different lineages. However, our previous implementation had three main limitations. Here, we present two new Forward Genomics methods that overcome these limitations by (1) directly controlling for phylogenetic relatedness, (2) controlling for differences in evolutionary rates, and (3) computing a statistical significance. We demonstrate on large-scale simulated data and on real data that both new methods substantially improve the sensitivity to detect associations between phenotypic and genomic differences. We applied these new methods to detect genomic differences involved in the loss of vision in the blind mole rat and the cape golden mole, two independent subterranean mammals. Forward Genomics identified several genes that are enriched in functions related to eye development and the perception of light, as well as genes involved in the circadian rhythm. These new Forward Genomics methods represent a significant advance in our ability to discover the genomic basis underlying phenotypic differences between species. Source code: https://github.com/hillerlab/ForwardGenomics/ PMID:27222536

  4. Controlling for Phylogenetic Relatedness and Evolutionary Rates Improves the Discovery of Associations Between Species' Phenotypic and Genomic Differences.

    Science.gov (United States)

    Prudent, Xavier; Parra, Genis; Schwede, Peter; Roscito, Juliana G; Hiller, Michael

    2016-08-01

    The growing number of sequenced genomes allows us now to address a key question in genetics and evolutionary biology: which genomic changes underlie particular phenotypic changes between species? Previously, we developed a computational framework called Forward Genomics that associates phenotypic to genomic differences by focusing on phenotypes that are independently lost in different lineages. However, our previous implementation had three main limitations. Here, we present two new Forward Genomics methods that overcome these limitations by (1) directly controlling for phylogenetic relatedness, (2) controlling for differences in evolutionary rates, and (3) computing a statistical significance. We demonstrate on large-scale simulated data and on real data that both new methods substantially improve the sensitivity to detect associations between phenotypic and genomic differences. We applied these new methods to detect genomic differences involved in the loss of vision in the blind mole rat and the cape golden mole, two independent subterranean mammals. Forward Genomics identified several genes that are enriched in functions related to eye development and the perception of light, as well as genes involved in the circadian rhythm. These new Forward Genomics methods represent a significant advance in our ability to discover the genomic basis underlying phenotypic differences between species. Source code: https://github.com/hillerlab/ForwardGenomics/. PMID:27222536

  5. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease

    International Nuclear Information System (INIS)

    We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 ± 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate atrophy rates in six regions: frontal, medial temporal, temporal (extramedial), parietal, occipital lobes and insular cortex. In MCI, the highest atrophy rate was observed in the medial temporal lobe, comparable with AD. AD patients showed even higher atrophy rates in the extramedial temporal lobe. Additionally, atrophy rates in frontal, parietal and occipital lobes were increased. Cox proportional hazard models showed that all regional atrophy rates predicted conversion to AD. Hazard ratios varied between 2.6 (95% confidence interval (CI) = 1.1-6.2) for occipital atrophy and 15.8 (95% CI = 3.5-71.8) for medial temporal lobe atrophy. In conclusion, atrophy spreads through the brain with development of AD. MCI is marked by temporal lobe atrophy. In AD, atrophy rate in the extramedial temporal lobe was even higher. Moreover, atrophy rates also accelerated in parietal, frontal, insular and occipital lobes. Finally, in nondemented elderly, medial temporal lobe atrophy was most predictive of progression to AD, demonstrating the involvement of this region in the development of AD. (orig.)

  6. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Sluimer, Jasper D. [VU University Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Diagnostic Radiology and Alzheimer Centre, PO Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der; Scheltens, Philip [VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Neurology, Amsterdam (Netherlands); Karas, Giorgos B.; Barkhof, Frederik [VU University Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); Schijndel, Ronald van [VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Informatics, Amsterdam (Netherlands); Barnes, Josephine; Boyes, Richard G. [UCL, Institute of Neurology, Dementia Research Centre, London (United Kingdom); Cover, Keith S. [VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands); Olabarriaga, Silvia D. [University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Amsterdam (Netherlands); Fox, Nick C. [VU University Medical Centre, Department of Neurology, Amsterdam (Netherlands); UCL, Institute of Neurology, Dementia Research Centre, London (United Kingdom); Vrenken, Hugo [VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands)

    2009-12-15

    We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 {+-} 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate atrophy rates in six regions: frontal, medial temporal, temporal (extramedial), parietal, occipital lobes and insular cortex. In MCI, the highest atrophy rate was observed in the medial temporal lobe, comparable with AD. AD patients showed even higher atrophy rates in the extramedial temporal lobe. Additionally, atrophy rates in frontal, parietal and occipital lobes were increased. Cox proportional hazard models showed that all regional atrophy rates predicted conversion to AD. Hazard ratios varied between 2.6 (95% confidence interval (CI) = 1.1-6.2) for occipital atrophy and 15.8 (95% CI = 3.5-71.8) for medial temporal lobe atrophy. In conclusion, atrophy spreads through the brain with development of AD. MCI is marked by temporal lobe atrophy. In AD, atrophy rate in the extramedial temporal lobe was even higher. Moreover, atrophy rates also accelerated in parietal, frontal, insular and occipital lobes. Finally, in nondemented elderly, medial temporal lobe atrophy was most predictive of progression to AD, demonstrating the involvement of this region in the development of AD. (orig.)

  7. The evolutionary synchronization of the exchange rate system in ASEAN+6

    Science.gov (United States)

    Feng, Xiaobing; Hu, Haibo; Wang, Xiaofan

    2010-12-01

    Although there are extensive researches on the behavior of the world currency network, the complexity of the Asian regional currency system is not well understood regardless of its importance. Using daily exchange rates this paper examines exchange rate co-movements in the region before and after the China exchange rate reform. It was found that the correlation between Asian currencies and the US Dollar, the previous regional key currency has become weaker and intra-Asia interactions have increased. Cross sample entropy and cross entropy approaches are also applied to examine the synchrony behavior among the Asian currencies. The study also shows that the Asian exchange rate markets featured are neither stochastic nor efficient. These findings may shed some light on the in-depth understanding of collective behaviors in a regional currency network; they will also lay a theoretical foundation for further policy formulation in Asian currency integration.

  8. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates.

    Science.gov (United States)

    Zhu, Andan; Guo, Wenhu; Gupta, Sakshi; Fan, Weishu; Mower, Jeffrey P

    2016-03-01

    Rates of nucleotide substitution were previously shown to be several times slower in the plastid inverted repeat (IR) compared with single-copy (SC) regions, suggesting that the IR provides enhanced copy-correction activity. To examine the generality of this synonymous rate dependence on the IR, we compared plastomes from 69 pairs of closely related species representing 52 families of angiosperms, gymnosperms, and ferns. We explored the breadth of IR boundary shifts in land plants and demonstrate that synonymous substitution rates are, on average, 3.7 times slower in IR genes than in SC genes. In addition, genes moved from the SC into the IR exhibit lower synonymous rates consistent with other IR genes, while genes moved from the IR into the SC exhibit higher rates consistent with other SC genes. Surprisingly, however, several plastid genes from Pelargonium, Plantago, and Silene have highly accelerated synonymous rates despite their IR localization. Together, these results provide strong evidence that the duplicative nature of the IR reduces the substitution rate within this region. The anomalously fast-evolving genes in Pelargonium, Plantago, and Silene indicate localized hypermutation, potentially induced by a higher level of error-prone double-strand break repair in these regions, which generates substitutional rate variation. PMID:26574731

  9. Resolved motion rate and resolved acceleration servo-control of wheeled mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Muir, P.F.; Neuman, C.P. (Sandia National Labs., Albuquerque, NM (USA); Carnegie-Mellon Univ., Pittsburgh, PA (USA). Dept. of Electrical and Computer Engineering)

    1989-01-01

    Accurate motion control of wheeled mobile robots (WMRs) is required for their application to autonomous, semi-autonomous and teleoperated tasks. The similarities between WMRs and stationary manipulators suggest that current, successful, model-based manipulator control algorithms may be applied to WMRs. Special characteristics of WMRs including higher-pairs, closed-chains, friction and unactuated and unsensed joints require innovative modeling methodologies. The WMR modeling challenge has been recently overcome, thus enabling the application of manipulator control algorithms to WMRs. This realization lays the foundation for significant technology transfer from manipulator control to WMR control. We apply two Cartesian-space manipulator control algorithms: resolved motion rate (kinematics-based) and resolved acceleration (dynamics-based) control to WMR servo-control. We evaluate simulation studies of two exemplary WMRs: Uranus (a three degree-of-freedom WMR constructed at Carnegie Mellon University), and Bicsun-Bicas (a two degree-of-freedom WMR being constructed at Sandia National Laboratories) under the control of these algorithms. Although resolved motion rate servo-control is adequate for the control of Uranus, resolved acceleration servo-control is required for the control of the mechanically simpler Bicsun-Bicas because it exhibits more dynamic coupling and nonlinearities. Successful accurate motion control of these WMRs in simulation is driving current experimental research studies. 18 refs., 7 figs., 5 tabs.

  10. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility.

    Science.gov (United States)

    Fischer, Valentin; Bardet, Nathalie; Benson, Roger B J; Arkhangelsky, Maxim S; Friedman, Matt

    2016-01-01

    Despite their profound adaptations to the aquatic realm and their apparent success throughout the Triassic and the Jurassic, ichthyosaurs became extinct roughly 30 million years before the end-Cretaceous mass extinction. Current hypotheses for this early demise involve relatively minor biotic events, but are at odds with recent understanding of the ichthyosaur fossil record. Here, we show that ichthyosaurs maintained high but diminishing richness and disparity throughout the Early Cretaceous. The last ichthyosaurs are characterized by reduced rates of origination and phenotypic evolution and their elevated extinction rates correlate with increased environmental volatility. In addition, we find that ichthyosaurs suffered from a profound Early Cenomanian extinction that reduced their ecological diversity, likely contributing to their final extinction at the end of the Cenomanian. Our results support a growing body of evidence revealing that global environmental change resulted in a major, temporally staggered turnover event that profoundly reorganized marine ecosystems during the Cenomanian. PMID:26953824

  11. Multi-Pulse Laser Wakefield Acceleration: A New Route to Efficient, High-Repetition-Rate Plasma Accelerators and High Flux Radiation Sources

    CERN Document Server

    Hooker, S M; Mangles, S P D; Tünnermann, A; Corner, L; Limpert, J; Seryi, A; Walczak, R

    2014-01-01

    Laser-driven plasma accelerators can generate accelerating gradients three orders of magnitude larger than radio-frequency accelerators and have achieved beam energies above 1 GeV in centimetre long stages. However, the pulse repetition rate and wall-plug efficiency of plasma accelerators is limited by the driving laser to less than approximately 1 Hz and 0.1% respectively. Here we investigate the prospects for exciting the plasma wave with trains of low-energy laser pulses rather than a single high-energy pulse. Resonantly exciting the wakefield in this way would enable the use of different technologies, such as fibre or thin-disc lasers, which are able to operate at multi-kilohertz pulse repetition rates and with wall-plug efficiencies two orders of magnitude higher than current laser systems. We outline the parameters of efficient, GeV-scale, 10-kHz plasma accelerators and show that they could drive compact X-ray sources with average photon fluxes comparable to those of third-generation light source but wi...

  12. Changes of deceleration and acceleration capacity of heart rate in patients with acute hemispheric ischemic stroke

    Directory of Open Access Journals (Sweden)

    Xu YH

    2016-03-01

    Full Text Available Yan-Hong Xu,1 Xing-De Wang,2 Jia-Jun Yang,1 Li Zhou,2 Yong-Chao Pan1 1Department of Neurology, 2Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China Background and purpose: Autonomic dysfunction is common after stroke, which is correlated with unfavorable outcome. Phase-rectified signal averaging is a newly developed technique for assessing cardiac autonomic function, by detecting sympathetic and vagal nerve activity separately through calculating acceleration capacity (AC and deceleration capacity (DC of heart rate. In this study, we used this technique for the first time to investigate the cardiac autonomic function of patients with acute hemispheric ischemic stroke. Methods: A 24-hour Holter monitoring was performed in 63 patients with first-ever acute ischemic stroke in hemisphere and sinus rhythm, as well as in 50 controls with high risk of stroke. DC, AC, heart rate variability parameters, standard deviation of all normal-to-normal intervals (SDNN, and square root of the mean of the sum of the squares of differences between adjacent normal-to-normal intervals (RMSSD were calculated. The National Institutes of Health Stroke Scale (NIHSS was used to assess the severity of stroke. We analyzed the changes of DC, AC, SDNN, and RMSSD and also studied the correlations between these parameters and NIHSS scores. Results: The R–R (R wave to R wave on electrocardiogram intervals, DC, AC, and SDNN in the cerebral infarction group were lower than those in controls (P=0.003, P=0.002, P=0.006, and P=0.043, but the difference of RMSSD and the D-value and ratio between absolute value of AC (|AC| and DC were not statistically significant compared with those in controls. The DC of the infarction group was significantly correlated with |AC|, SDNN, and RMSSD (r=0.857, r=0.619, and r=0.358; P=0.000, P=0.000, and P=0.004. Correlation analysis also showed that DC, |AC|, and SDNN

  13. Bayesian coalescent inference reveals high evolutionary rates and diversification of Zika virus populations.

    Science.gov (United States)

    Fajardo, Alvaro; Soñora, Martín; Moreno, Pilar; Moratorio, Gonzalo; Cristina, Juan

    2016-10-01

    Zika virus (ZIKV) is a member of the family Flaviviridae. In 2015, ZIKV triggered an epidemic in Brazil and spread across Latin America. By May of 2016, the World Health Organization warns over spread of ZIKV beyond this region. Detailed studies on the mode of evolution of ZIKV strains are extremely important for our understanding of the emergence and spread of ZIKV populations. In order to gain insight into these matters, a Bayesian coalescent Markov Chain Monte Carlo analysis of complete genome sequences of recently isolated ZIKV strains was performed. The results of these studies revealed a mean rate of evolution of 1.20 × 10(-3) nucleotide substitutions per site per year (s/s/y) for ZIKV strains enrolled in this study. Several variants isolated in China are grouped together with all strains isolated in Latin America. Another genetic group composed exclusively by Chinese strains were also observed, suggesting the co-circulation of different genetic lineages in China. These findings indicate a high level of diversification of ZIKV populations. Strains isolated from microcephaly cases do not share amino acid substitutions, suggesting that other factors besides viral genetic differences may play a role for the proposed pathogenesis caused by ZIKV infection. J. Med. Virol. 88:1672-1676, 2016. © 2016 Wiley Periodicals, Inc. PMID:27278855

  14. Bayesian coalescent inference reveals high evolutionary rates and diversification of Zika virus populations.

    Science.gov (United States)

    Fajardo, Alvaro; Soñora, Martín; Moreno, Pilar; Moratorio, Gonzalo; Cristina, Juan

    2016-10-01

    Zika virus (ZIKV) is a member of the family Flaviviridae. In 2015, ZIKV triggered an epidemic in Brazil and spread across Latin America. By May of 2016, the World Health Organization warns over spread of ZIKV beyond this region. Detailed studies on the mode of evolution of ZIKV strains are extremely important for our understanding of the emergence and spread of ZIKV populations. In order to gain insight into these matters, a Bayesian coalescent Markov Chain Monte Carlo analysis of complete genome sequences of recently isolated ZIKV strains was performed. The results of these studies revealed a mean rate of evolution of 1.20 × 10(-3) nucleotide substitutions per site per year (s/s/y) for ZIKV strains enrolled in this study. Several variants isolated in China are grouped together with all strains isolated in Latin America. Another genetic group composed exclusively by Chinese strains were also observed, suggesting the co-circulation of different genetic lineages in China. These findings indicate a high level of diversification of ZIKV populations. Strains isolated from microcephaly cases do not share amino acid substitutions, suggesting that other factors besides viral genetic differences may play a role for the proposed pathogenesis caused by ZIKV infection. J. Med. Virol. 88:1672-1676, 2016. © 2016 Wiley Periodicals, Inc.

  15. The evolutionary rates of HCV estimated with subtype 1a and 1b sequences over the ORF length and in different genomic regions.

    Directory of Open Access Journals (Sweden)

    Manqiong Yuan

    Full Text Available BACKGROUND: Considerable progress has been made in the HCV evolutionary analysis, since the software BEAST was released. However, prior information, especially the prior evolutionary rate, which plays a critical role in BEAST analysis, is always difficult to ascertain due to various uncertainties. Providing a proper prior HCV evolutionary rate is thus of great importance. METHODS/RESULTS: 176 full-length sequences of HCV subtype 1a and 144 of 1b were assembled by taking into consideration the balance of the sampling dates and the even dispersion in phylogenetic trees. According to the HCV genomic organization and biological functions, each dataset was partitioned into nine genomic regions and two routinely amplified regions. A uniform prior rate was applied to the BEAST analysis for each region and also the entire ORF. All the obtained posterior rates for 1a are of a magnitude of 10(-3 substitutions/site/year and in a bell-shaped distribution. Significantly lower rates were estimated for 1b and some of the rate distribution curves resulted in a one-sided truncation, particularly under the exponential model. This indicates that some of the rates for subtype 1b are less accurate, so they were adjusted by including more sequences to improve the temporal structure. CONCLUSION: Among the various HCV subtypes and genomic regions, the evolutionary patterns are dissimilar. Therefore, an applied estimation of the HCV epidemic history requires the proper selection of the rate priors, which should match the actual dataset so that they can fit for the subtype, the genomic region and even the length. By referencing the findings here, future evolutionary analysis of the HCV subtype 1a and 1b datasets may become more accurate and hence prove useful for tracing their patterns.

  16. Reverse and Forward Shock X-Ray Emission in an Evolutionary Model of Supernova Remnants Undergoing Efficient Diffusive Shock Acceleration

    Science.gov (United States)

    Lee, Shiu-Hang; Patnaude, Daniel J.; Ellison, Donald C.; Nagataki, Shigehiro; Slane, Patrick O.

    2014-08-01

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  17. Reverse and forward shock X-ray emission in an evolutionary model of supernova remnants undergoing efficient diffusive shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Patnaude, Daniel J.; Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ellison, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States); Nagataki, Shigehiro, E-mail: slee@astro.isas.jaxa.jp, E-mail: shiu-hang.lee@riken.jp, E-mail: shigehiro.nagataki@riken.jp, E-mail: slane@cfa.harvard.edu, E-mail: dpatnaude@cfa.harvard.edu, E-mail: don_ellison@ncsu.edu [RIKEN, Astrophysical Big Bang Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-08-20

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  18. Changes in growth rates of oral jaw elements produce evolutionary novelty in bahamian pupfish.

    Science.gov (United States)

    Lencer, Ezra S; Riccio, Mark L; McCune, Amy R

    2016-07-01

    To understand the origins of novelty and the evolution of biological diversity, it is important to investigate the processes that generate phenotypic variation from genotypic variation. A number of path-breaking studies have revealed the genetic basis for phenotypic differences between distantly related taxa, but how qualitative change is produced during the early stages of divergence is largely unexplored. Here, we focus on striking differences in jaw morphology exhibited by three closely related sympatric pupfish species (genus Cyprinodon) from San Salvador Island, Bahamas as a basis for investigating the genetic sources of morphological variation in recently diverged species. San Salvador Island pupfish are trophically diverse and display derived jaw morphologies distinct from any other species in the genus. We illustrate these qualitative morphological differences between species with 3D-reconstructed CT-images and camera lucida drawings of the skulls of wild-caught fish. Quantitative data representing the size of individual bony skull elements in wild fish show how qualitatively novel morphologies arise as a consequence of changes to the size and shape of individual skull elements, particularly the dentary, premaxilla, and maxilla bones associated with the oral jaws. Consistent with these comparative data is that the growth rate of individual bony skull elements, measured on a developmental time series of lab-reared fish, differs between species. Our data provide a critical foundation for future studies developing San Salvador Cyprinodon pupfishes as a model system to understand the evolution and development of novel morphologies at the species level. J. Morphol. 277:935-947, 2016. © 2016 Wiley Periodicals, Inc. PMID:27103074

  19. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Kroon, Kristel; Rikmann, Ergo; Tenno, Toomas; Tomingas, Martin; Vabamäe, Priit; Vlaeminck, Siegfried E; Tenno, Taavo

    2012-09-01

    In biological nitrogen removal, application of the autotrophic anammox process is gaining ground worldwide. Although this field has been widely researched in last years, some aspects as the accelerating effect of putative intermediates (mainly N₂H₄ and NH₂OH) need more specific investigation. In the current study, experiments in a moving bed biofilm reactor (MBBR) and batch tests were performed to evaluate the optimum concentrations of anammox process intermediates that accelerate the autotrophic nitrogen removal and mitigate a decrease in the anammox bacteria activity using anammox (anaerobic ammonium oxidation) biomass enriched on ring-shaped biofilm carriers. Anammox biomass was previously grown on blank biofilm carriers for 450 days at moderate temperature 26.0 (±0.5) °C by using sludge reject water as seeding material. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. With addition of 1.27 and 1.31 mg N L⁻¹ of each NH₂OH and N₂H₄, respectively, into the MBBR total nitrogen (TN) removal efficiency was rapidly restored after inhibitions by NO₂⁻. Various combinations of N₂H₄, NH₂OH, NH₄⁺, and NO₂⁻ were used as batch substrates. The highest total nitrogen (TN) removal rate with the optimum N₂H₄ concentration (4.38 mg N L⁻¹) present in these batches was 5.43 mg N g⁻¹ TSS h⁻¹, whereas equimolar concentrations of N₂H₄ and NH₂OH added together showed lower TN removal rates. Intermediates could be applied in practice to contribute to the recovery of inhibition-damaged wastewater treatment facilities using anammox technology.

  20. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2008-05-01

    Full Text Available Abstract Background Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR. Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony or as the sister to Pinus (the only conifer representative in a monophyletic gymnosperm clade (maximum likelihood, bayesian. Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion Although the basic organization of the Welwitschia plastome is typical, its

  1. Safety confirmation study of TRUEX solvent by accelerating rate calorimeter (ARC)

    International Nuclear Information System (INIS)

    In order to confirm the engineering safety on the TRUEX solvent (mixed solvent of CMPO/TBP/n-dodecane) for separating the transuranics from high-level activity liquid waste in advanced nuclear fuel recycling technological R and D, thermal behavior and pressure behavior in heating PUREX solvent (mixed solvent of 30% TBP-n-dodecane), TRUEX solvent and in the exothermic reaction of TRUEX solvent etc. and nitric acid in sealed adiabatic system which was severer condition than actual plant were measured by using accelerating rate calorimeter (ARC). The Arrhenius parameters (activation energy and frequency factor) which are necessary for the evaluation of reaction rate was examined from the measurement data in ARC. Analytical method and analysis condition of reaction products were examined in order to clarify chemical form of reaction products in exothermic reaction between solvent and nitric acid in ARC, and the qualitative evaluation was carried out. Main results are shown in the following. 1) TBP, CMPO, n-dodecane and 10 M nitric acid hardly exothermed in the simple substance. 2) On the solvent phase after the solvent contacted with 10 M nitric acid and the equilibrium has been attained (single-phase sample), the heat quantity per unit sample weight of the TRUEX solvent tended to be bigger than that of the PUREX solvent when heat quantity was evaluated in ARC. However, on the mixed sample of solvent and 10 M nitric acid enclosed in a sample container simultaneously (two phase system sample), the heat quantity per unit solvent weight was almost equivalent for PUREX solvent and TRUEX solvent. 3) The kinetic analysis was carried out, and on the TBP-10 M nitric acid single-phase sample, the activation energy of the reaction was evaluated to be 118 kJ/mol. Its activation energy was approximately equal to 112 kJ/mol by Nichols. The reaction rate constant was calculated, and it was shown that reaction rate constants of PUREX solvent-10 M nitric acid single-phase sample and

  2. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis.

    Science.gov (United States)

    Fokas, Alexander S; Cole, Daniel J; Ahnert, Sebastian E; Chin, Alex W

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  3. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry

    Science.gov (United States)

    Feng, Xuning; Fang, Mou; He, Xiangming; Ouyang, Minggao; Lu, Languang; Wang, Hao; Zhang, Mingxuan

    2014-06-01

    In this paper, the thermal runaway features of a 25 Ah large format prismatic lithium ion battery with Li(NixCoyMnz)O2 (NCM) cathode are evaluated using the extended volume-accelerating rate calorimetry (EV-ARC). 4 thermocouples are set at different positions of the battery. The temperature inside the battery is 870 °C or so, much higher than that outside the battery. The temperature difference is calculated from the recorded data. The temperature difference within the battery stays lower than 1 °C for 97% of the test period, while it rises to its highest, approximately 520 °C, when thermal runaway happens. The voltage of the battery is also measured during the test. It takes 15-40 s from the sharp drop of voltage to the instantaneous rise of temperature. Such a time interval is beneficial for early warning of the thermal runaway. Using a pulse charge/discharge profile, the internal resistance is derived from the quotient of the pulse voltage and the current during the ARC test. The internal resistance of the battery increases slowly from 20 mΩ to 60 mΩ before thermal runaway, while it rises to 370 mΩ when thermal runaway happens indicating the loss of the integrity of the separator or the battery swell.

  4. Shifting gears: Thermodynamics of genetic information storage suggest stress-dependence of mutation rate, which can accelerate adaptation

    CERN Document Server

    Hilbert, Lennart

    2011-01-01

    Background: Acceleration of adaptation dynamics by stress-induced hypermutation has been found experimentally. Evolved evolvability is a prominent explanation. We investigate a more generally applicable explanation by a physical constraint. Methods and Results: A generic thermodynamical analysis of genetic information storage obviates physical constraints on the integrity of genetic information. The capability to employ metabolic resources is found as a major determinant of mutation probability in stored genetic information. Incorporation into a non-recombinant, asexual adaptation toy model predicts cases of markedly accelerated adaptation, driven by a transient increase of mutation rate. No change in the mutation rate as a genetic trait is required. The mutation rate of one and the same genotype varies dependent on stress level. Implications: Stress-dependent mutation rates are physically necessary and challenge a condition-independent genotype to mutation rate mapping. This holds implications for evolutiona...

  5. Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Lorenzen, Ebbe L; Brink, Carsten

    2011-01-01

    ) as well as BVDR. Using CVDR opposed to BVDR for VMAT has the potential of reducing the treatment time but may lead to lower dosimetric accuracy due to faster moving accelerator parts. Using D7 and a test version of Integrity, differences in ability to control the accelerator, treatment efficiency...

  6. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    Science.gov (United States)

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  7. Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists.

    Science.gov (United States)

    Day, E H; Hua, X; Bromham, L

    2016-06-01

    Specialization has often been claimed to be an evolutionary dead end, with specialist lineages having a reduced capacity to persist or diversify. In a phylogenetic comparative framework, an evolutionary dead end may be detectable from the phylogenetic distribution of specialists, if specialists rarely give rise to large, diverse clades. Previous phylogenetic studies of the influence of specialization on macroevolutionary processes have demonstrated a range of patterns, including examples where specialists have both higher and lower diversification rates than generalists, as well as examples where the rates of evolutionary transitions from generalists to specialists are higher, lower or equal to transitions from specialists to generalists. Here, we wish to ask whether these varied answers are due to the differences in macroevolutionary processes in different clades, or partly due to differences in methodology. We analysed ten phylogenies containing multiple independent origins of specialization and quantified the phylogenetic distribution of specialists by applying a common set of metrics to all datasets. We compared the tip branch lengths of specialists to generalists, the size of specialist clades arising from each evolutionary origin of a specialized trait and whether specialists tend to be clustered or scattered on phylogenies. For each of these measures, we compared the observed values to expectations under null models of trait evolution and expected outcomes under alternative macroevolutionary scenarios. We found that specialization is sometimes an evolutionary dead end: in two of the ten case studies (pollinator-specific plants and host-specific flies), specialization is associated with a reduced rate of diversification or trait persistence. However, in the majority of studies, we could not distinguish the observed phylogenetic distribution of specialists from null models in which specialization has no effect on diversification or trait persistence. PMID

  8. The performance of Botswana's traditional arable agriculture: growth rates and the impact of the accelerated rainfed arable programme (ARAP)

    OpenAIRE

    Seleka, Tebogo B.

    1999-01-01

    This study assesses the performance of Botswana's traditional arable agriculture for the 1968-90 period. Growth rate and arable sub-sector production models are specified and estimated to determine how the sub-sector performed over time, and to capture the impact of the Accelerated Rainfed Arable Programme (ARAP). Growth rate model results indicate that cultivated area increased by about 2.2% per year during the 1968-90 period. However, crop output remained unchanged and yields declined by ab...

  9. A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing

    Directory of Open Access Journals (Sweden)

    Xu TJ

    2013-10-01

    Full Text Available Tian-Jiao Xu,1,2,* Qi Wang,1,* Xiao-Wen Ma,1 Zhen Zhang,3 Wei Zhang,1 Xiao-Chang Xue,1 Cun Zhang,1 Qiang Hao,1 Wei-Na Li,1 Ying-Qi Zhang,1 Meng Li11State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China; 2The Institute of Medicine, Qiqihar Medical University, Qiqihar, People’s Republic of China; 3Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA*These authors contributed equally to this workObjective: Thymosin beta 4 (Tβ4 is a peptide with 43 amino acids that is critical for repair and remodeling tissues on the skin, eye, heart, and neural system following injury. To fully realize its utility as a treatment for disease caused by injury, the authors constructed a cost-effective novel Tβ4 dimer and demonstrated that it was better able to accelerate tissue repair than native Tβ4.Methods: A prokaryotic vector harboring two complete Tβ4 genes with a short linker was constructed and expressed in Escherichia coli. A pilot-scale fermentation (10 L was performed to produce engineered bacteria and the Tβ4 dimer was purified by one-step hydrophobic interaction chromatography. The activities of the Tβ4 dimer to promote endothelial cell proliferation, migration, and sprouting were assessed by tetramethylbenzidine (methylthiazol tetrazolium, trans-well, scratch, and tube formation assays. The ability to accelerate dermal healing was assessed on rats.Results: After fermentation, the Tβ4 dimer accounted for about 30% of all the bacteria proteins. The purity of the Tβ4 dimer reached 98% after hydrophobic interaction chromatography purification. An average of 562.4 mg/L Tβ4 dimer was acquired using a 10 L fermenter. In each assay, the dimeric Tβ4 exhibited enhanced activities compared with native Tβ4. Notably, the ability of the dimeric Tβ4 to promote cell migration was almost two times higher

  10. Technology evaluation of man-rated acceleration test equipment for vestibular research

    Science.gov (United States)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  11. A population-based experimental model for protein evolution: Effects of mutation rate and selection stringency on evolutionary outcomes

    OpenAIRE

    Leconte, Aaron M; Dickinson, Bryan; Yang, David D.; Chen, Irene; Allen, Benjamin; Liu, David Ruchien

    2013-01-01

    Protein evolution is a critical component of organismal evolution and a valuable method for the generation of useful molecules in the laboratory. Few studies, however, have experimentally characterized how fundamental parameters influence protein evolution outcomes over long evolutionary trajectories or multiple replicates. In this work, we applied phage-assisted continuous evolution (PACE) as an experimental platform to study evolving protein populations over hundreds of rounds of evolution....

  12. Development of high power toroidal pulse transformer with 10-100 Hz repetition rate for linear induction accelerator

    International Nuclear Information System (INIS)

    Full text: An amorphous-core pulse transformer of 2.5kV /20kV, 20μs, 250J, 100 pps rating has been designed and fabricated for Linear Induction Accelerator. This accelerator will be used to generate intense electron beam pulses at high repetition rate for plastic modification and other material processing applications. The peak power and average power of the pulse transformer are 20MW and 25kW respectively. Modular design based on parallel operation of 6 identical modules has been incorporated in this pulse transformer. Single module has been tested up to 10pps for 10 minute durations. Full transformer assembly has been tested in single pulse mode

  13. Concept for calculating dose rates from activated groundwater at accelerator sites

    CERN Document Server

    Prolingheuer, N; Vanderborght, J; Schlögl, B; Nabbi, R; Moormann, R

    Licensing of particle accelerators requires the proof that the groundwater outside of the site will not be significantly contaminated by activation products formed below accelerator and target. In order to reduce the effort for this proof, a site independent simplified but conservative method is under development. The conventional approach for calculation of activation of soil and groundwater is shortly described on example of a site close to Forschungszentrum Juelich, Germany. Additionally an updated overview of a data library for partition coefficients for relevant nuclides transported in the aquifer at the site is presented. The approximate model for transport of nuclides with ground water including exemplary results on nuclide concentrations outside of the site boundary and of resulting effective doses is described. Further applications and developments are finally outlined.

  14. Rating forces grip and driving and accelerations of the car with drive different configuration

    Directory of Open Access Journals (Sweden)

    Kowalski Mariusz

    2015-12-01

    Full Text Available The paper shows a typical drive systems used in today's vehicles, mainly cars. Approximated scheme of the formation of the driving force of the vehicle and the necessary mathematical relations for the calculation. For example, a typical passenger car BMW 320 was analyzed and calculations obtained a driving force, of adhesion and acceleration. The calculations were performed for the drive system, the classical (i.e. the rear axle of the vehicle for front-wheel drive and four-wheel drive (4×4. Virtually assumed that to the above mentioned vehicle it is possible buildings of each of said system. These are shown graphically in diagrams bearing a distribution of the forces acting on the substrate and the reactions - the data necessary for the calculations. The resulting calculation is graphically shown in the diagrams, in which is illustrated a change value of the resulting adhesive strength, and the acceleration depending on the drive type vehicle.

  15. Transient accelerations of fetal heart rate analyzed by computerized cardiotocography in the third trimester of pregnancy

    Directory of Open Access Journals (Sweden)

    Ana Luisa Fernandes Lauletta

    2014-06-01

    Full Text Available Objective: the aim of this study was to investigate the patterns of transient FHR accelerations (10 bpm and 15 bpm in the third trimester of pregnancy, comparing the occurrence of this event before and after the 32nd gestational week. Methods: This is a prospective study comparing the results of the computerized cardiotocography of 46 low-risk women with singleton pregnancies, maternal age between 18 and 40 years, gestational age between 28 and 40 weeks, absence of maternal morbidity and adequate fetal growth according to ultrasound. Computed Cardiotocography (8002 Sonicaid System and Fetal Care System was performed for 30 minutes to analyze the variables of FHR. Results: twenty-three pregnant women underwent cardiotocography before 32 weeks (mean = 29.9 weeks, SD = 1.4 weeks and were compared with 23 pregnant women who were examined after 32 weeks (mean = 36.3 weeks, SD = 2.5 weeks. Regarding the characteristics of FHR, fetuses evaluated between 32 1/7 weeks and 40 weeks showed a significantly greater number of accelerations above 15 bpm (median = 5, variation 0-18 than the group of pregnant women from 28 to 32 weeks (median = 4, variation 0 to 10; P = 0.048. There was a significant positive correlation between the number of accelerations above 15 bpm and the gestational age at examination (rho = 0.33; P = 0.026. Conclusion: computerized cardiotocography showed an association regarding the number of transient accelerations greater than 15 bpm in the assessment of both periods before and after 32 weeks of gestational age, suggesting the influence of the maturation of the fetal autonomic nervous system with pregnancy progression.

  16. Transient accelerations of fetal heart rate analyzed by computerized cardiotocography in the third trimester of pregnancy

    OpenAIRE

    Ana Luisa Fernandes Lauletta; Roseli Mieko Yamamoto Nomura; Seizo Miyadahira; Rossana Pulcineli Vieira Francisco; Marcelo Zugaib

    2014-01-01

    Objective: the aim of this study was to investigate the patterns of transient FHR accelerations (10 bpm and 15 bpm) in the third trimester of pregnancy, comparing the occurrence of this event before and after the 32nd gestational week. Methods: This is a prospective study comparing the results of the computerized cardiotocography of 46 low-risk women with singleton pregnancies, maternal age between 18 and 40 years, gestational age between 28 and 40 weeks, absence of maternal morbidity and a...

  17. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    Science.gov (United States)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  18. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms

    Directory of Open Access Journals (Sweden)

    Buschiazzo Emmanuel

    2012-01-01

    Full Text Available Background Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis and loblolly pine (Pinus taeda, together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa, offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. Results Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10-9 synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. Conclusions Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations.

  19. Current evolutionary adaptiveness of psychiatric disorders: Fertility rates, parent-child relationship quality, and psychiatric disorders across the lifespan.

    Science.gov (United States)

    Jacobson, Nicholas C

    2016-08-01

    This study sought to evaluate the current evolutionary adaptiveness of psychopathology by examining whether these disorders impact the quantity of offspring or the quality of the parent-child relationship across the life span. Using the National Comorbidity Survey, this study examined whether DSM-III-R anxiety, posttraumatic stress, depressive, bipolar, substance use, antisocial, and psychosis disorders predicted later fertility and the quality of parent-child relationships across the life span in a national sample (N = 8,098). Using latent variable and varying coefficient models, the results suggested that anxiety in males and bipolar pathology in males and females were associated with increased fertility at younger ages. The results suggested almost all other psychopathology was associated with decreased fertility in middle to late adulthood. The results further suggested that all types of psychopathology had negative impacts on the parent-child relationship quality (except for antisocial pathology in males). Nevertheless, for all disorders, the impact of psychopathology on both fertility and the parent-child relationship quality was affected by the age of the participant. The results also showed that anxiety pathology is associated with a high-quantity, low-quality parenting strategy followed by a low-quantity, low-quality parenting strategy. Further, the results suggest that bipolar pathology is associated with an early high-quantity and a continued low-quality parenting strategy. Posttraumatic stress, depression, substance use, antisocial personality, and psychosis pathology are each associated with a low-quantity, low-quality parenting strategy, particularly in mid to late adulthood. These findings suggest that the evolutionary impact of psychopathology depends on the developmental context. (PsycINFO Database Record PMID:27362490

  20. Current evolutionary adaptiveness of psychiatric disorders: Fertility rates, parent-child relationship quality, and psychiatric disorders across the lifespan.

    Science.gov (United States)

    Jacobson, Nicholas C

    2016-08-01

    This study sought to evaluate the current evolutionary adaptiveness of psychopathology by examining whether these disorders impact the quantity of offspring or the quality of the parent-child relationship across the life span. Using the National Comorbidity Survey, this study examined whether DSM-III-R anxiety, posttraumatic stress, depressive, bipolar, substance use, antisocial, and psychosis disorders predicted later fertility and the quality of parent-child relationships across the life span in a national sample (N = 8,098). Using latent variable and varying coefficient models, the results suggested that anxiety in males and bipolar pathology in males and females were associated with increased fertility at younger ages. The results suggested almost all other psychopathology was associated with decreased fertility in middle to late adulthood. The results further suggested that all types of psychopathology had negative impacts on the parent-child relationship quality (except for antisocial pathology in males). Nevertheless, for all disorders, the impact of psychopathology on both fertility and the parent-child relationship quality was affected by the age of the participant. The results also showed that anxiety pathology is associated with a high-quantity, low-quality parenting strategy followed by a low-quantity, low-quality parenting strategy. Further, the results suggest that bipolar pathology is associated with an early high-quantity and a continued low-quality parenting strategy. Posttraumatic stress, depression, substance use, antisocial personality, and psychosis pathology are each associated with a low-quantity, low-quality parenting strategy, particularly in mid to late adulthood. These findings suggest that the evolutionary impact of psychopathology depends on the developmental context. (PsycINFO Database Record

  1. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    OpenAIRE

    He, Z.-H; Thomas, A. G. R.; Beaurepaire, B; Nees, J. A.; Hou, B.; Malka, Victor; Krushelnick, K; Faure, Jérôme

    2013-01-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wake-field accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source and the fact that its uncorrelated bu...

  2. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  3. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    International Nuclear Information System (INIS)

    We show that electron bunches in the 50–100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  4. Development of prediction method of flow accelerated corrosion (1). Evaluation of hydraulic factors and its correlation with thinning rate

    International Nuclear Information System (INIS)

    Flow Accelerated Corrosion (FAC) requires considerable attention in plant piping management, for its potential of catastrophic pipe rupture of main piping systems. In view of fluid dynamics, the most essential factor to be considered is mass transfer at the inner surface of the pipe. In the previous report, the authors have proposed a new mass transfer coefficient model, which is adaptable to various types of piping elements with strong turbulence, by introducing the idea of 'Effective Friction Velocity' from the hydraulics in the viscous sub-layer along the wall. And in the present report, the model has been revised with rational logic, and verified with additional data obtained in FAC experiments with AVT water condition and CFD for the flow in the experiments. Furthermore, some discussion was made by considering the correlation of the thinning rate and the product of mass transfer and iron solubility, for the prospect of thinning rate prediction. (author)

  5. Cyclodextrin-based artificial oxidases with high rate accelerations and selectivity

    DEFF Research Database (Denmark)

    Zhou, You; Lindbäck, Emil Anders; Pedersen, Christian Marcus;

    2014-01-01

    Three cyclodextrin derivatives with one to four 2-O-formylmethyl groups attached to the secondary rim were prepared and investigated as catalysts for the oxidation of aminophenols in buffered dilute hydrogen peroxide. The derivatives were found to be Michaelis-Menten catalysts and to give rate ac...

  6. UVB Exposure Does Not Accelerate Rates of Litter Decomposition in a Semiarid Riparian Ecosystem

    Science.gov (United States)

    Uselman, S. M.; Snyder, K. A.; Blank, R. R.; Jones, T. J.

    2010-12-01

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium

  7. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  8. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  9. No accelerated rate of protein evolution in male-biased Drosophila pseudoobscura genes.

    OpenAIRE

    Metta, Muralidhar; Gudavalli, Rambabu; Gibert, Jean-Michel; Schlotterer, Christian

    2006-01-01

    Sexually dimorphic traits are often subject to diversifying selection. Genes with a male-biased gene expression also are probably affected by sexual selection and have a high rate of protein evolution. We used SAGE to measure sex-biased gene expression in Drosophila pseudoobscura. Consistent with previous results from D. melanogaster, a larger number of genes were male biased (402 genes) than female biased (138 genes). About 34% of the genes changed the sex-related expression pattern between ...

  10. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial Coll., London; Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10:9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31:1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  11. The limits of predictability of volcanic eruptions from accelerating rates of earthquakes

    OpenAIRE

    Bell, A.F.; Naylor, M.; I. G. Main

    2013-01-01

    Volcanic eruptions are commonly preceded by increased rates of earthquakes. Previous studies argue that in some instances these sequences follow the inverse Omori law (IOL) and that this model could be the basis for forecasting the timing of eruption onset. However, the catalogue of pre-eruptive sequences is small, and the performance of the IOL as a forecasting tool remains largely untested. Here, we use simulations to quantify upper limits to the accuracy and bias of forecast eruption times...

  12. The Chemically Homogeneous Evolutionary Channel for Binary Black Hole Mergers: Rates and Properties of Gravitational-Wave Events Detectable by Advanced Ligo

    CERN Document Server

    de Mink, S E

    2016-01-01

    We explore the predictions for detectable gravitational-wave signals from merging binary black holes formed through chemically homogeneous evolution in massive short-period stellar binaries. We find that ~500 events per year could be detected with advanced ground-based detectors operating at full sensitivity. We analyze the distribution of detectable events, and conclude that there is a very strong preference for detecting events with nearly equal components (mass ratio >0.66 at 90% confidence in our default model) and high masses (total source-frame mass between 57 and $103\\, M_\\odot$ at 90% confidence). We consider multiple alternative variations to analyze the sensitivity to uncertainties in the evolutionary physics and cosmological parameters, and conclude that while the rates are sensitive to assumed variations, the mass distributions are robust predictions. Finally, we consider the recently reported results of the analysis of the first 16 double-coincident days of the O1 LIGO observing run, and find tha...

  13. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness...

  14. MRI-based brain atrophy rates in ADNI phase 2: acceleration and enrichment considerations for clinical trials.

    Science.gov (United States)

    Hua, Xue; Ching, Christopher R K; Mezher, Adam; Gutman, Boris A; Hibar, Derrek P; Bhatt, Priya; Leow, Alex D; Jack, Clifford R; Bernstein, Matt A; Weiner, Michael W; Thompson, Paul M

    2016-01-01

    The goal of this work was to assess statistical power to detect treatment effects in Alzheimer's disease (AD) clinical trials using magnetic resonance imaging (MRI)-derived brain biomarkers. We used unbiased tensor-based morphometry (TBM) to analyze n = 5,738 scans, from Alzheimer's Disease Neuroimaging Initiative 2 participants scanned with both accelerated and nonaccelerated T1-weighted MRI at 3T. The study cohort included 198 healthy controls, 111 participants with significant memory complaint, 182 with early mild cognitive impairment (EMCI) and 177 late mild cognitive impairment (LMCI), and 155 AD patients, scanned at screening and 3, 6, 12, and 24 months. The statistical power to track brain change in TBM-based imaging biomarkers depends on the interscan interval, disease stage, and methods used to extract numerical summaries. To achieve reasonable sample size estimates for potential clinical trials, the minimal scan interval was 6 months for LMCI and AD and 12 months for EMCI. TBM-based imaging biomarkers were not sensitive to MRI scan acceleration, which gave results comparable with nonaccelerated sequences. ApoE status and baseline amyloid-beta positron emission tomography data improved statistical power. Among healthy, EMCI, and LMCI participants, sample size requirements were significantly lower in the amyloid+/ApoE4+ group than for the amyloid-/ApoE4- group. ApoE4 strongly predicted atrophy rates across brain regions most affected by AD, but the remaining 9 of the top 10 AD risk genes offered no added predictive value in this cohort.

  15. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Science.gov (United States)

    Gagné-Bourque, François; Mayer, Boris F; Charron, Jean-Benoit; Vali, Hojatollah; Bertrand, Annick; Jabaji, Suha

    2015-01-01

    Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal

  16. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  17. Investigating the timing of origin and evolutionary processes shaping regional species diversity: Insights from simulated data and neotropical butterfly diversification rates.

    Science.gov (United States)

    Matos-Maraví, Pável

    2016-07-01

    Different diversification scenarios have been proposed to explain the origin of extant biodiversity. However, most existing meta-analyses of time-calibrated phylogenies rely on approaches that do not quantitatively test alternative diversification processes. Here, I highlight the shortcomings of using species divergence ranks, which is a method widely used in meta-analyses. Divergence ranks consist of categorizing cladogenetic events to certain periods of time, typically to either Pleistocene or to pre-Pleistocene ages. This approach has been claimed to shed light on the origin of most extant species and the timing and dynamics of diversification in any biogeographical region. However, interpretations drawn from such method often confound two fundamental questions in macroevolutionary studies, tempo (timing of evolutionary rate shifts) and mode ("how" and "why" of speciation). By using simulated phylogenies under four diversification scenarios, constant-rate, diversity-dependence, high extinction, and high speciation rates in the Pleistocene, I showed that interpretations based on species divergence ranks might have been seriously misleading. Future meta-analyses of dated phylogenies need to be aware of the impacts of incomplete taxonomic sampling, tree topology, and divergence time uncertainties, as well as they might be benefited by including quantitative tests of alternative diversification models that acknowledge extinction and diversity dependence. PMID:27240554

  18. Investigating the timing of origin and evolutionary processes shaping regional species diversity: Insights from simulated data and neotropical butterfly diversification rates.

    Science.gov (United States)

    Matos-Maraví, Pável

    2016-07-01

    Different diversification scenarios have been proposed to explain the origin of extant biodiversity. However, most existing meta-analyses of time-calibrated phylogenies rely on approaches that do not quantitatively test alternative diversification processes. Here, I highlight the shortcomings of using species divergence ranks, which is a method widely used in meta-analyses. Divergence ranks consist of categorizing cladogenetic events to certain periods of time, typically to either Pleistocene or to pre-Pleistocene ages. This approach has been claimed to shed light on the origin of most extant species and the timing and dynamics of diversification in any biogeographical region. However, interpretations drawn from such method often confound two fundamental questions in macroevolutionary studies, tempo (timing of evolutionary rate shifts) and mode ("how" and "why" of speciation). By using simulated phylogenies under four diversification scenarios, constant-rate, diversity-dependence, high extinction, and high speciation rates in the Pleistocene, I showed that interpretations based on species divergence ranks might have been seriously misleading. Future meta-analyses of dated phylogenies need to be aware of the impacts of incomplete taxonomic sampling, tree topology, and divergence time uncertainties, as well as they might be benefited by including quantitative tests of alternative diversification models that acknowledge extinction and diversity dependence.

  19. Accelerated partial-breast irradiation using high-dose-rate interstitial brachytherapy: 12-year update of a prospective clinical study

    International Nuclear Information System (INIS)

    Background and purpose: To report the 12-year updated results of accelerated partial-breast irradiation (APBI) using multicatheter interstitial high-dose-rate (HDR) brachytherapy (BT). Patients and methods: Forty-five prospectively selected patients with T1N0-N1mi, nonlobular breast cancer without the presence of an extensive intraductal component and with negative surgical margins were treated with APBI after breast-conserving surgery (BCS) using interstitial HDR BT. A total dose of 30.3 Gy (n = 8) and 36.4 Gy (n = 37) in seven fractions within 4 days was delivered to the tumour bed plus a 1-2 cm margin. The median follow-up time was 133 months for surviving patients. Local and regional control, disease-free (DFS), cancer-specific (CSS), and overall survival (OS), as well as late side effects, and cosmetic results were assessed. Results: Four (8.9%) ipsilateral breast tumour recurrences were observed, for a 5-, 10-, and 12-year actuarial rate of 4.4%, 9.3%, and 9.3%, respectively. A total of two regional nodal failures were observed for a 12-year actuarial rate of 4.4%. The 12-year DFS, CSS, and OS was 75.3%, 91.1%, and 88.9%, respectively. Grade 3 fibrosis was observed in one patient (2.2%). No patient developed grade 3 teleangiectasia. Fat necrosis requiring surgical intervention occurred in one woman (2.2%). Cosmetic results were rated excellent or good in 35 patients (77.8%). Conclusions: Twelve-year results with APBI using HDR multicatheter interstitial implants continue to demonstrate excellent long-term local tumour control, survival, and cosmetic results with a low-rate of late side effects.

  20. The degree of heart rate asymmetry is crucial for the validity of the deceleration and acceleration capacity indices of heart rate: A model-based study.

    Science.gov (United States)

    Pan, Qing; Zhou, Gongzhan; Wang, Ruofan; Yu, Yihua; Li, Feng; Fang, Luping; Yan, Jing; Ning, Gangmin

    2016-09-01

    The deceleration capacity (DC) and acceleration capacity (AC) of heart rate are a pair of indices used for evaluating the autonomic nervous system (ANS). We assessed the role of heart rate asymmetry (HRA) in defining the relative performance of DC and AC using a mathematical model, which is able to generate a realistic RR interval (RRI) time series with controlled ANS states. The simulation produced a set of RRI series with random sympathetic and vagal activities. The multi-scale DCs and ACs were computed from the RRI series, and the correlation of DC and AC with the ANS functions was analyzed to evaluate the performance of the indices. In the model, the HRA level was modified by changing the inspiration/expiration (I/E) ratio to examine the influence of HRA on the performances of DC and AC. The results show that on the conventional scales (T=1, s=2), an HRA level above 50% results in a stronger association of DC with the ANS, compared with AC. On higher scales (T=4, s=6), there was no HRA and DC showed a similar performance to AC for all I/E ratios. The data suggest that the HRA level determines which of DC or AC is the optimal index for expressing ANS functions. Future clinical applications of DC and AC should be accompanied by an HRA analysis to provide a better index for assessing ANS. PMID:27392228

  1. Neutron equivalent dose rates at the surroundings of the electron linear accelerator operated by the university of Sao Paulo - Physics institute

    International Nuclear Information System (INIS)

    For the determination of the neutron dose rates at the surroundings of an electron linear accelerators it is necessary the knowledge of the neutron spectrum or its mean energy, because the conversion factor of the flux in equivalent dose rates, is strongly dependent on the neutron energy. Taking this fact into consideration, equivalent dose rates were determined in the three representative sites of the IF/USP Linear Electron Accelerator. Also, due to the radiation field be pulsed, a theoretical and experimental study has been realized to evaluate the effect produced by the variation of the field on the detector. (author)

  2. Dual-rate-loop control based on disturbance observer of angular acceleration for a three-axis aerial inertially stabilized platform.

    Science.gov (United States)

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Cai, Tongtong

    2016-07-01

    This paper presents a dual-rate-loop control method based on disturbance observer (DOB) of angular acceleration for a three-axis ISP for aerial remote sensing applications, by which the control accuracy and stabilization of ISP are improved obviously. In stabilization loop of ISP, a dual-rate-loop strategy is designed through constituting inner rate loop and the outer rate loop, by which the capability of disturbance rejection is advanced. Further, a DOB-based on angular acceleration is proposed to attenuate the influences of the main disturbances on stabilization accuracy. Particularly, an information fusion method is suggested to obtain accurate angular acceleration in DOB design, which is the key for the disturbance compensation. The proposed methods are theoretically analyzed and experimentally validated to illustrate the effectiveness. PMID:27016450

  3. Effect of predictive sign of acceleration on heart rate variability in passive translation situation: preliminary evidence using visual and vestibular stimuli in VR environment

    Directory of Open Access Journals (Sweden)

    Watanabe Hiroshi

    2007-09-01

    Full Text Available Abstract Objective We studied the effects of the presentation of a visual sign that warned subjects of acceleration around the yaw and pitch axes in virtual reality (VR on their heart rate variability. Methods Synchronization of the immersive virtual reality equipment (CAVE and motion base system generated a driving scene and provided subjects with dynamic and wide-ranging depth information and vestibular input. The heart rate variability of 21 subjects was measured while the subjects observed a simulated driving scene for 16 minutes under three different conditions. Results When the predictive sign of the acceleration appeared 3500 ms before the acceleration, the index of the activity of the autonomic nervous system (low/high frequency ratio; LF/HF ratio of subjects did not change much, whereas when no sign appeared the LF/HF ratio increased over the observation time. When the predictive sign of the acceleration appeared 750 ms before the acceleration, no systematic change occurred. Conclusion The visual sign which informed subjects of the acceleration affected the activity of the autonomic nervous system when it appeared long enough before the acceleration. Also, our results showed the importance of the interval between the sign and the event and the relationship between the gradual representation of events and their quantity.

  4. Lower rates, better service, accelerated debt repayment: how best to sell a minority interest in Hydro One

    International Nuclear Information System (INIS)

    The sale of a minority stake in the provincially-owned, integrated electricity transmission and distribution company Hydro One is being contemplated by the Ontario government. Several options are open to the government to complete this sale, such as an income trust, an Initial Public Offering (IPO), straight sale of 49.9 per cent or less, and the separation and sale of the distribution operations. Some issues must be considered before proceeding with the divestiture: service quality and the current structure of the distribution sector in Ontario, the distribution and transmission rates, fostering competition in distribution, regulatory costs, tax leakage/stranded debt repayment, maximization of value to the province, public/stakeholder acceptance, foreign versus domestic ownership, accountability to consumers, and the policies/requirements of interconnected markets. The aim in the divestiture is to ensure customers in Ontario benefit from lower distribution rates, higher quality services, enhanced local accountability, a more efficient electricity industry, and accelerated stranded debt payoff. As a result, the Electricity Distributors Association is proposing that the government separate Hydro One's transmission and distribution. The rationale for the proposal was discussed in the paper, stressing the importance of making the decision now

  5. An Evolutionary Model for Collapsing Molecular Clouds and Their Star Formation Activity. II. Mass Dependence of the Star Formation Rate

    CERN Document Server

    Zamora-Avilés, Manuel

    2013-01-01

    In a previous study, we presented a semi-analytical model for the regulation of the star formation rate (SFR) and efficiency (SFE) in which the molecular clouds (MCs) were assumed to be in gravitational collapse, and the SFR was instantaneously controlled by evaporation of the cloud material by massive-star ionization feedback. In this model, the main parameter controlling the evolution of the clouds was found to be the gas mass involved in the process and here we discuss various properties of the SFR and SFE as a function of the cloud masses, that can be compared with observations and implemented in numerical models of galactic evolution. Because the model neglects magnetic fields, supernova explosions, and radiation pressure, the results presented are upper limits. We find that $\\SFRavg$ and $\\SFEavg$ are well represented as functions of the maximum cloud mass by the fits $\\SFRavg \\approx 100 (1+\\Mmax/2 \\times 10^5 ~ \\Msun)^{2} ~ \\Msun \\Myr^{-1}$ and $\\SFEavg \\approx 0.024 (\\Mmax/10^5 ~ \\Msun)^{0.28}$, resp...

  6. Evolutionary Economics

    OpenAIRE

    Dopfer, Kurt

    2006-01-01

    The paper provides an overview of major recent contributions in evolutionary economics. It starts of demonstrating that the pioneers of this approach such as Veblen, Schumpeter, Marshall and Hayek saw the economy as continuously changing and that this kind of "realism of perception" guides essentially also contemporary evolutionary economics. The economy is viewed as an evolving system of structured knowledge governing economic operations. Theoretically, a micro-meso-macro architecture is pro...

  7. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase

    Directory of Open Access Journals (Sweden)

    Martínez-Valencia María Asunción

    2015-06-01

    Full Text Available Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak, a peak rate of force development (RFDpeak and time to RFD (TRFD in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001 in sprint times (20 and 30 m sprint for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s−1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s−1, p ≤ 0.01. Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration.

  8. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase.

    Science.gov (United States)

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L L; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E

    2015-06-27

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s-1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s-1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration.

  9. Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-01-01

    Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.

  10. Lineage-specific sequence evolution and exon edge conservation partially explain the relationship between evolutionary rate and expression level in A. thaliana.

    Science.gov (United States)

    Bush, Stephen J; Kover, Paula X; Urrutia, Araxi O

    2015-06-01

    Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the 'edges' of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage-specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage-specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage-specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters. PMID:25930165

  11. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    International Nuclear Information System (INIS)

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M max ≲ 104 M ☉) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼104 M ☉ Myr–1, although their time-averaged SFR is only (SFR) ∼ 102 M ☉ Myr–1. The corresponding efficiencies are SFEfinal ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M max ≳ 105 M ☉), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M max/1.4 × 105 M ☉)1.68 M ☉ Myr–1 and (SFE) ≈ 0.03(M max/2.5 × 105 M ☉)0.33, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  12. Evolutionary macroecology

    Directory of Open Access Journals (Sweden)

    José Alexandre F. Diniz-Filho

    2013-10-01

    Full Text Available Macroecology focuses on ecological questions at broad spatial and temporal scales, providing a statistical description of patterns in species abundance, distribution and diversity. More recently, historical components of these patterns have begun to be investigated more deeply. We tentatively refer to the practice of explicitly taking species history into account, both analytically and conceptually, as ‘evolutionary macroecology’. We discuss how the evolutionary dimension can be incorporated into macroecology through two orthogonal and complementary data types: fossils and phylogenies. Research traditions dealing with these data have developed more‐or‐less independently over the last 20–30 years, but merging them will help elucidate the historical components of diversity gradients and the evolutionary dynamics of species’ traits. Here we highlight conceptual and methodological advances in merging these two research traditions and review the viewpoints and toolboxes that can, in combination, help address patterns and unveil processes at temporal and spatial macro‐scales.

  13. Evolutionary Expectations

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover......, they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary...

  14. Evolutionary medicine.

    Science.gov (United States)

    Swynghedauw, B

    2004-04-01

    Nothing in biology makes sense except in the light of evolution. Evolutionary, or darwinian, medicine takes the view that contemporary diseases result from incompatibility between the conditions under which the evolutionary pressure had modified our genetic endowment and the lifestyle and dietary habits in which we are currently living, including the enhanced lifespan, the changes in dietary habits and the lack of physical activity. An evolutionary trait express a genetic polymorphism which finally improve fitness, it needs million years to become functional. A limited genetic diversity is a necessary prerequisite for evolutionary medicine. Nevertheless, search for a genetic endowment would become nearly impossible if the human races were genetically different. From a genetic point of view, homo sapiens, is homogeneous, and the so-called human races have only a socio-economic definition. Historically, Heart Failure, HF, had an infectious origin and resulted from mechanical overload which triggered mechanoconversion by using phylogenically ancient pleiotropic pathways. Adaptation was mainly caused by negative inotropism. Recently, HF was caused by a complex remodelling caused by the trophic effects of mechanics, ischemia, senescence, diabetes and, neurohormones. The generally admitted hypothesis is that cancers were largely caused by a combination of modern reproductive and dietary lifestyles mismatched with genotypic traits, plus the longer time available for a confrontation. Such a concept is illustrated for skin and breast cancers, and also for the link between cancer risk and dietary habits.

  15. Evolutionary Psychology

    OpenAIRE

    Heylighen, Francis

    2011-01-01

    Evolutionary psychology (EP) is an approach to the study of the mind that is founded on Darwin’s theory of evolution by natural selection. It assumes that our mental abilities, emotions and preferences are adapted specifically for solving problems of survival and reproduction in humanity’s ancestral environment, and derives testable predictions from this assumption. This has important implications for our understanding of the conditions for human well-being.

  16. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  17. Evolutionary thinking

    OpenAIRE

    Hunt, Tam

    2015-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this de...

  18. Update of the water chemistry effect on the flow-accelerated corrosion rate of carbon steel: influence of hydrazine, boric acid, ammonia, morpholine and ethanolamine

    International Nuclear Information System (INIS)

    The influence of the water chemistry on Flow-Accelerated Corrosion (FAC) affecting carbon steel components has been studied for many years and is relatively well known and taken into account by the models. Nonetheless, experimental studies were conducted in the last few years at EDF on the CIROCO loop in order to check the influence of the water chemistry parameters (hydrazine, boric acid, ammonia, morpholine and ethanolamine) on the FAC rate of carbon steel in one phase flow conditions. The hydrazine impact on the FAC rate was shown to be minor in EDF's chemistry recommendation range, compared to other parameters' effects such as the pH effect. The presence of boric acid in the nominal secondary circuit conditions was negligible. Finally, as expected, the nature of the chemical conditioning (ammonia, morpholine or ethanolamine) did not modify the FAC rate, the influencing chemical variable being the at-temperature pH in one-phase flow conditions. (author)

  19. 分子绝对进化速率与物种分歧时间之间的定量关系%Quantitative analysis of relationship between absolute evolutionary rates and taxa divergence times

    Institute of Scientific and Technical Information of China (English)

    李可群

    2015-01-01

    By studying some protein and nucleotide sequences available from GenBank database in American National Center of Bio -technology Information (NCBI), a quantitative equation was discovered for the relationship between the absolute molecular evolutionary Ea rates and taxa divergence times as follow:lnk =-Rt +lnK0 , where Ea is the activation energy of locus mutation , k0 is extreme absolute molecular evolutionary rate , and R is a constant , its preliminary biological application was discussed .Data analysis also showed that a similar equation is also applicable for the relationship between extreme absolute molecular evolutionary rates and taxa divergence times , which means that the biological molecular evolution process may be under the control of "molecular o′clocks"of sequence locus muta-tion and evolution of taxa extreme molecular evolutionary rates , which can be called as "dual molecular o′clock".%通过对美国国家生物技术信息中心数据库GenBank提供的一些蛋白质和核苷酸序列进行比对和分析,发现生物分子绝对进化速率k与进化时间或物种分歧时间t之间存在下列定量关系:lnk =-Ea Rt +lnK0,式中Ea为位点突变活化能,k0为分子极限绝对进化速率,R为常数,并对其生物学意义进行了初步的探讨;数据分析还揭示出物种的分子极限绝对进化速率与进化时间或物种分歧时间之间也服从相似的定量公式,也就是说生物分子进化过程可能同时受到序列位点突变和控制物种分子极限绝对进化速率进化的两个“分子钟”作用,即存在“双重分子钟”现象。

  20. The need for speed: testing acceleration for estimating animal travel rates in terrestrial dead-reckoning systems.

    Science.gov (United States)

    Bidder, Owen R; Soresina, Marion; Shepard, Emily L C; Halsey, Lewis G; Quintana, Flavio; Gómez-Laich, Agustina; Wilson, Rory P

    2012-02-01

    Numerous methods are currently available to track animal movements. However, only one of these, dead-reckoning, has the capacity to provide continuous data for animal movements over fine scales. Dead-reckoning has been applied almost exclusively in the study of marine species, in part due to the difficulty of accurately measuring the speed of terrestrial species. In the present study we evaluate the use of accelerometers and a metric known as overall dynamic body acceleration (ODBA) as a proxy for the measurement of speed for use in dead-reckoning. Data were collated from previous studies, for 10 species locomoting on a treadmill and their ODBA measured by an attached data logger. All species except one showed a highly significant linear relationship between speed and ODBA; however, there was appreciable inter- and intra-specific variance in this relationship. ODBA was then used to estimate speed in a simple trial run of a dead-reckoning track. Estimating distance travelled using speed derived from prior calibration for ODBA resulted in appreciable errors. We describe a method by which these errors can be minimised, by periodic ground-truthing (e.g., by GPS or VHF telemetry) of the dead-reckoned track and adjusting the relationship between speed and ODBA until actual known positions and dead-reckoned positions accord.

  1. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    OpenAIRE

    Burbrink Frank T; Austin Christopher C; Castoe Todd A; Jiang Zhi J; Herron Matthew D; McGuire Jimmy A; Parkinson Christopher L; Pollock David D.

    2007-01-01

    Abstract Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of t...

  2. Doubling Graduation Rates: Three-Year Effects of CUNY's Accelerated Study in Associate Programs (ASAP) for Developmental Education Students

    Science.gov (United States)

    Scrivener, Susan; Weiss, Michael J.; Ratledge, Alyssa; Rudd, Timothy; Sommo, Colleen; Fresques, Hannah

    2015-01-01

    Community colleges offer a pathway to the middle class for low-income individuals. Although access to college has expanded, graduation rates at community colleges remain low, especially for students who need developmental (remedial) courses to build their math, reading, or writing skills. The City University of New York's (CUNY's) Accelerated…

  3. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Freer, Phoebe [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Lawenda, Brian [21st Century Oncology, Las Vegas, NV (United States); Alm El-Din, Mohamed A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Clinical Oncology, Tanta University Hospital, Tanta (Egypt); Gadd, Michele A.; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall's tau ({tau}{sub {beta}}) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4-14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome ({tau}{sub {beta}} 0.6, p < .0001), lower patient satisfaction ({tau}{sub {beta}} 0.5, p < .001), and worse fibrosis ({tau}{sub {beta}} 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias {>=}1 cm{sup 2}. Grade 3-4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose ({tau}{sub {beta}} 0.3-0.5, p {<=} .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence

  4. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    International Nuclear Information System (INIS)

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall’s tau (τβ) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4–14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome (τβ 0.6, p β 0.5, p β 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias ≥1 cm2. Grade 3–4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose (τβ 0.3–0.5, p ≤ .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence-free survival, and overall survival rate was 85% (95% confidence interval, 70–97%), 72% (95% confidence interval, 54–86%), and 87% (95% confidence

  5. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    A David Smith

    Full Text Available BACKGROUND: An increased rate of brain atrophy is often observed in older subjects, in particular those who suffer from cognitive decline. Homocysteine is a risk factor for brain atrophy, cognitive impairment and dementia. Plasma concentrations of homocysteine can be lowered by dietary administration of B vitamins. OBJECTIVE: To determine whether supplementation with B vitamins that lower levels of plasma total homocysteine can slow the rate of brain atrophy in subjects with mild cognitive impairment in a randomised controlled trial (VITACOG, ISRCTN 94410159. METHODS AND FINDINGS: Single-center, randomized, double-blind controlled trial of high-dose folic acid, vitamins B(6 and B(12 in 271 individuals (of 646 screened over 70 y old with mild cognitive impairment. A subset (187 volunteered to have cranial MRI scans at the start and finish of the study. Participants were randomly assigned to two groups of equal size, one treated with folic acid (0.8 mg/d, vitamin B(12 (0.5 mg/d and vitamin B(6 (20 mg/d, the other with placebo; treatment was for 24 months. The main outcome measure was the change in the rate of atrophy of the whole brain assessed by serial volumetric MRI scans. RESULTS: A total of 168 participants (85 in active treatment group; 83 receiving placebo completed the MRI section of the trial. The mean rate of brain atrophy per year was 0.76% [95% CI, 0.63-0.90] in the active treatment group and 1.08% [0.94-1.22] in the placebo group (P =  0.001. The treatment response was related to baseline homocysteine levels: the rate of atrophy in participants with homocysteine >13 µmol/L was 53% lower in the active treatment group (P =  0.001. A greater rate of atrophy was associated with a lower final cognitive test scores. There was no difference in serious adverse events according to treatment category. CONCLUSIONS AND SIGNIFICANCE: The accelerated rate of brain atrophy in elderly with mild cognitive impairment can be slowed by treatment

  6. Melanin pattern morphs do not differ in metabolic rate: implications for the evolutionary maintenance of a melanophore polymorphism in the green swordtail, Xiphophorus helleri

    Science.gov (United States)

    Meyer, Christiane I.; Kaufman, Robert; Cech, Joseph J.

    2006-10-01

    Variation in melanin patterns among individuals, populations, and species is common in fishes of the genus Xiphophorus. In the variable platyfish, Xiphophorus variatus, variation in metabolic rate is associated with melanin coloration and the color morphs appear to be physiological specialists adapted to particular environmental conditions. This study investigates whether a melanin polymorphism in the green swordtail, Xiphophorus helleri, is likewise associated with variation in metabolic rate. We measured metabolic rate as oxygen consumption rate of both adult male and juvenile X. helleri in static respirometers. The oxygen consumption rate does not differ significantly between the spotted and nonspotted morphs in either group, suggesting that-unlike in X. variatus-selection on metabolic rate is not involved in maintaining the polymorphism in X. helleri. We suggest that explanations need to be sought for the evolution of melanophore diversity in Xiphophorus that are pertinent to each melanin pattern polymorphism or groups of similar polymorphisms.

  7. Evolutionary status of Polaris

    CERN Document Server

    Fadeyev, Yu A

    2015-01-01

    Hydrodynamic models of short--period Cepheids were computed to determine the pulsation period as a function of evolutionary time during the first and third crossings of the instability strip. The equations of radiation hydrodynamics and turbulent convection for radial stellar pulsations were solved with the initial conditions obtained from the evolutionary models of population I stars (X=0.7, Z=0.02) with masses from 5.2 to 6.5 Msol and the convective core overshooting parameter 0.1 <= aov <= 0.3. In Cepheids with period of 4 d the rate of pulsation period change during the first crossing of the instability strip is over fifty times larger than that during the third crossing. Polaris is shown to cross the instability strip for the first time and to be the fundamental mode pulsator. The best agreement between the predicted and observed rates of period change was obtained for the model with mass of 5.4 Msol and the overshooting parameter aov=0.25. The bolometric luminosity and radius are L = 1.26e3 Lsol a...

  8. Evolutionary status of Polaris

    Science.gov (United States)

    Fadeyev, Yu. A.

    2015-05-01

    Hydrodynamic models of short-period Cepheids were computed to determine the pulsation period as a function of evolutionary time during the first and third crossings of the instability strip. The equations of radiation hydrodynamics and turbulent convection for radial stellar pulsations were solved with the initial conditions obtained from the evolutionary models of Population I stars (X = 0.7, Z = 0.02) with masses from 5.2 to 6.5 M⊙ and the convective core overshooting parameter 0.1 ≤ αov ≤ 0.3. In Cepheids with period of 4 d the rate of pulsation period change during the first crossing of the instability strip is over 50 times larger than that during the third crossing. Polaris is shown to cross the instability strip for the first time and to be the fundamental mode pulsator. The best agreement between the predicted and observed rates of period change was obtained for the model with mass of 5.4 M⊙ and the overshooting parameter αov = 0.25. The bolometric luminosity and radius are L = 1.26 × 103 L⊙ and R = 37.5 R⊙, respectively. In the HR diagram, Polaris is located at the red edge of the instability strip.

  9. Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd. (Scion Research.)

    2005-11-30

    A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell

  10. On the nature of rate acceleration in the synthesis and fragmentation of triazolines by Brønsted acid: secondary catalysis by water (hydronium triflate).

    Science.gov (United States)

    Hong, Ki Bum; Donahue, Matthew G; Johnston, Jeffrey N

    2008-02-20

    Rate acceleration of the addition of benzyl azide to an electron deficient olefin is characterized using in situ IR spectroscopy. Under strictly anhydrous conditions and at depressed temperature (-20 degrees C), a triazoline intermediate is selectively formed. The stability of this protonated triazoline intermediate at -20 degrees C is indefinite, but warming of the reaction mixture to 0 degrees C or above results in its conversion to the beta-amino oxazolidine dione observed under conditions used in our earlier report. As an alternative to warming, the same conversion can be effected by the addition of a single equivalent of water. Our experiments collectively demonstrate the metastability of the protonated triazoline intermediate and secondary catalysis of triazolinium ring fragmentation by water. This behavior is attributed to the ability of water to transfer a proton from N3 to N1 of the triazoline, thereby allowing ring fragmentation and nitrogen expulsion. PMID:18217758

  11. Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air-ice interface at low temperatures.

    Science.gov (United States)

    Ray, Debajyoti; Malongwe, Joseph K'Ekuboni; Klán, Petr

    2013-07-01

    The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.

  12. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  13. Structural and functional analysis of a FeoB A143S G5 loop mutant explains the accelerated GDP release rate.

    Science.gov (United States)

    Guilfoyle, Amy P; Deshpande, Chandrika N; Vincent, Kimberley; Pedroso, Marcelo M; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-05-01

    GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαβγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit. Structural and functional studies have implicated one of the nucleotide binding sequence motifs, the G5 motif, as playing an integral part in this release mechanism. Indeed, a Gαs G5 mutant (A366S) was shown to have an accelerated GDP release rate, mimicking a G protein-coupled receptor catalyzed release state. In the present study, we investigate the role of the equivalent residue in the G5 motif (residue A143) in the prokaryotic membrane protein FeoB from Streptococcus thermophilus, which includes an N-terminal soluble G protein domain. The structure of this domain has previously been determined in the apo and GDP-bound states and in the presence of a transition state analogue, revealing conformational changes in the G5 motif. The A143 residue was mutated to a serine and analyzed with respect to changes in GTPase activity, nucleotide release rate, GDP affinity and structural alterations. We conclude that the identity of the residue at this position in the G5 loop plays a key role in the nucleotide release rate by allowing the correct positioning and hydrogen bonding of the nucleotide base.

  14. Application of Overall Dynamic Body Acceleration as a Proxy for Estimating the Energy Expenditure of Grazing Farm Animals: Relationship with Heart Rate

    OpenAIRE

    Masafumi Miwa; Kazato Oishi; Yasuhiro Nakagawa; Hiromichi Maeno; Hiroki Anzai; Hajime Kumagai; Kanji Okano; Hisaya Tobioka; Hiroyuki Hirooka

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimati...

  15. How mutation affects evolutionary games on graphs.

    Science.gov (United States)

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E; Nowak, Martin A

    2012-04-21

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration.

  16. A Proof, Based on the Euler Sum Acceleration, of the Recovery of an Exponential (Geometric) Rate of Convergence for the Fourier Series of a Function with Gibbs Phenomenon

    CERN Document Server

    Boyd, John P

    2010-01-01

    When a function $f(x)$ is singular at a point $x_{s}$ on the real axis, its Fourier series, when truncated at the $N$-th term, gives a pointwise error of only $O(1/N)$ over the entire real axis. Such singularities spontaneously arise as "fronts" in meteorology and oceanography and "shocks" in other branches of fluid mechanics. It has been previously shown that it is possible to recover an exponential rate of convegence at all points away from the singularity in the sense that $|f(x) - f_{N}^{\\sigma}(x) | \\sim O(\\exp(- q(x) N))$ where $f_{N}^{\\sigma}(x)$ is the result of applying a filter or summability method to the partial sum $f_{N}(x)$ and $q(x)$ is a proportionality constant that is a function of $d(x) \\equiv |x-x_{s}|$, the distance from $x$ to the singularity. Here we give an elementary proof of great generality using conformal mapping in a dummy variable $z$; this is equivalent to applying the Euler acceleration. We show that $q(x) \\approx \\log(\\cos(d(x)/2))$ for the Euler filter when the Fourier perio...

  17. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  18. Evolutionary Explanation of Psychopaths

    OpenAIRE

    Seungbae Park

    2013-01-01

    Psychopaths are brutal individuals, having no empathetic concern for others. Initially, the existence of psychopaths seems to be a mystery from an evolutionary point of view. On close examination, however, it can be accommodated by evolutionary theory. Brutal individuals excelled meek individuals in the desperate circumstances where they had to fight their competitors over natural resources for survival and reproduction. This evolutionary explanation of psychopaths receives support from Pinke...

  19. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  20. Remembering the evolutionary Freud.

    Science.gov (United States)

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  1. Accelerated partial breast irradiation: An analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To perform a detailed analysis of variables associated with late tissue effects of high-dose-rate (HDR) interstitial brachytherapy accelerated partial breast irradiation (APBI) in a large cohort of patients with prolonged follow-up. Methods and Materials: Beginning in 1995, 75 women with Stage I/II breast cancer were enrolled in identical institutional trials evaluating APBI as monotherapy after lumpectomy. Patients eligible included those with T1-2, N0-1 (≤3 nodes positive), M0 tumors of nonlobular histology with negative surgical margins, no extracapsular nodal extension, and negative results on postexcision mammogram. All patients underwent surgical excision and postoperative irradiation with HDR interstitial brachytherapy. The planning target volume was defined as the excision cavity plus a 2-cm margin. Treatment was delivered with a high-activity Ir-192 source at 3.4 Gy per fraction twice daily for 5 days to a total dose of 34 Gy. Dosimetric analyses were performed with three-dimensional postimplant dose and volume reconstructions. All patients were evaluated at 3-6-month intervals and assessed with a standardized cosmetic rating scale and according to Radiation Therapy Oncology Group late normal tissue toxicity scoring criteria. Clinical and therapy-related features were analyzed for their relationship to cosmetic outcome and toxicity rating. Clinical features analyzed included age, volume of resection, history of diabetes or hypertension, extent of axillary surgery, and systemic therapies. Therapy-related features analyzed included volume of tissue encompassed by the 100%, 150%, and 200% isodose lines (V100, V150, and V200, respectively), the dose homogeneity index (DHI), number of source dwell positions, and planar separation. Results: The median follow-up of all patients was 73 months (range, 43-118 months). The cosmetic outcome at last follow-up was rated as excellent, good, and fair/poor in 67%, 24%, and 9% of patients, respectively

  2. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  3. 加速度对丁羟推进剂燃速影响的研究%Study of the Acceleration Effects on the Burning Rate of HTPB Propellant

    Institute of Scientific and Technical Information of China (English)

    郭彤; 侯晓

    2001-01-01

    通过试验研究了加速度场中丁羟推进剂的燃速的加速度敏感性。另外从加速度力作用下燃烧区压缩导致热反馈增大角度出发,建立了加速度条件下推进剂稳态燃烧模型,并编程计算、分析了影响推进剂燃速敏感性的因素,可为发动机内弹道设计提供参考。%In the paper, the acceleration effects on the burning rate of HTPB propellant are presented. Through the experiments of motors in the acceleration field, the experimental data can be got, inclouding the effects of the acceleration level and the acceleration orientation. Then based on the phenomenological model and multi-flame of BOP model, the model of the burning rate augmentation in the acceleration field has been built. The experimental data and the model data are uniform. The model can be available for reference to the qualitative analysis of the design of SRM.

  4. Evolutionary food web models in fragmented landscapes

    OpenAIRE

    Allhoff, Korinna Theresa

    2015-01-01

    Ecosystems all over the world currently experience dramatic changes in their environment. The direct consequences are increased extinction rates. Food webs, which are networks of predator-prey interactions, provide a basic understanding of ecosystems and therefore help to identify reasonable conservation strategies. In this thesis, I analyze evolutionary metacommunities, which can be modeled as evolutionary networks of networks: The outer networks represent fragmented landscapes of sever...

  5. Evolutionary humanoid robotics

    CERN Document Server

    Eaton, Malachy

    2015-01-01

    This book examines how two distinct strands of research on autonomous robots, evolutionary robotics and humanoid robot research, are converging. The book will be valuable for researchers and postgraduate students working in the areas of evolutionary robotics and bio-inspired computing.

  6. Polymorphic Evolutionary Games.

    Science.gov (United States)

    Fishman, Michael A

    2016-06-01

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. PMID:27016340

  7. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins

    Science.gov (United States)

    Nevado, Bruno; Atchison, Guy W.; Hughes, Colin E.; Filatov, Dmitry A.

    2016-01-01

    The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. PMID:27498896

  8. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    Science.gov (United States)

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation.

  9. Recombination accelerates adaptation on a large-scale empirical fitness landscape in HIV-1.

    Science.gov (United States)

    Moradigaravand, Danesh; Kouyos, Roger; Hinkley, Trevor; Haddad, Mojgan; Petropoulos, Christos J; Engelstädter, Jan; Bonhoeffer, Sebastian

    2014-06-01

    Recombination has the potential to facilitate adaptation. In spite of the substantial body of theory on the impact of recombination on the evolutionary dynamics of adapting populations, empirical evidence to test these theories is still scarce. We examined the effect of recombination on adaptation on a large-scale empirical fitness landscape in HIV-1 based on in vitro fitness measurements. Our results indicate that recombination substantially increases the rate of adaptation under a wide range of parameter values for population size, mutation rate and recombination rate. The accelerating effect of recombination is stronger for intermediate mutation rates but increases in a monotonic way with the recombination rates and population sizes that we examined. We also found that both fitness effects of individual mutations and epistatic fitness interactions cause recombination to accelerate adaptation. The estimated epistasis in the adapting populations is significantly negative. Our results highlight the importance of recombination in the evolution of HIV-I.

  10. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  11. Study of the characteristics of neutron monitor area applied to the evaluation of dose rates in a 15 MeV radiotherapy accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Candido M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica]. E-mail: candido_1998@yahoo.com; Patrao, Karla C.S.; Pereira, Walsan W.; Fonseca, Evaldo S.; Giannoni, Ricardo A. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Neutrons]. E-mails: karla@ird.gov.br; walsan@ird.gov.br; Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Setor de Fisica Medica]. E-mail: delano@inca.gov.br

    2007-07-01

    Currently, in Radiotherapy, the use of linear accelerators is becoming each time more common. From Radiation Protection point of view, these instruments represent an advance in relation to the cobalt and caesium irradiators, mainly due to absence of the radioactive material. On the other hand, accelerators with the energies superior to 10 MeV produce contamination of the therapeutic beam with the presence of neutrons generated in the interaction of high-energy photons with high atomic number materials from the own irradiator. The present work carries through measurements in a linear accelerator of 15 MeV using three neutron area monitors for a comparison of the response of these instruments, evaluating its adequacy to this measurement. Characteristics of use and operation associates to parameters such as: monitor dead time, monitor gamma rejection, and calibration results are also analyzed in this study. (author)

  12. Laser accelerator

    OpenAIRE

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  13. When development matters: From evolutionary psychology to evolutionary developmental psychology

    OpenAIRE

    Hernández Blasi, Carlos; Bjorklund, David F.; Gardiner, Amy K.

    2008-01-01

    This article presents evolutionary developmental psychology (EDP) as an emerging field of evolutionary psychology (EP). In describing the core tenets of both approaches and the differences between them, we emphasize the important roles that evolution and development have in understanding human behaviour. We suggest that developmental psychologists should pay more attention to evolutionary issues and, conversely, evolutionary psychologists should take development seriously ...

  14. Evolutionary Theorizing in Economics

    OpenAIRE

    Richard R. Nelson; Winter, Sidney G.

    2002-01-01

    This paper reviews the case for an evolutionary approach to problems of economic analysis, ranging from the details of individual firm behavior in the short run through industrial dynamics to the historical evolution of institutions and technologies. We draw upon a substantial body of recent research contributions. We characterize micro behavior as governed by skills and routines that are shaped by learning and selection. We then consider major areas of application of evolutionary thinking, i...

  15. Music and evolutionary computation

    OpenAIRE

    Reis, Cecília; Marques, Viriato M.; Machado, J. A. Tenreiro

    2011-01-01

    This paper presents a brief history of the western music: from its genesis to serialism and the Darmstadt school. Also some mathematical aspects of music are then presented and confronted with music as a form of art. The question is, are these two distinct aspects compatible? Can computers be of real help in automatic composition? The more appealing algorithmic approach is evolutionary computation as it offers creativity potential. Therefore, the Evolutionary Algorithms are then introduced an...

  16. Accelerators for energy production

    International Nuclear Information System (INIS)

    A tremendous progress of accelerators for these several decades, has been motivated mainly by the research on subnuclear physics. The culmination in high energy accelerators might be SSC, 20 TeV collider in USA, probably the ultimate accelerator being built with the conventional principle. The technology cultivated and integrated for the accelerator development, can now stably offer the high power beam which could be used for the energy problems. The Inertial Confinement Fusion (ICF) with high current, 10 kA and short pulse, 20 ns heavy ion beam (HIB) of mass number ∼200, would be the most promising application of accelerators for energy production. In this scenario, the fuel containing D-T mixture, will be compressed to the high temperature, ∼10 keV and to the high density state, ∼1000 times the solid density with the pressure of ablative plasma or thermal X ray produced by bombarding of high power HIB. The efficiency, beam power/electric power for accelerator, and the repetition rate of HIB accelerators could be most suitable for the energy production. In the present paper, the outline of HIB ICF (HIF) is presented emphasizing the key issues of high current heavy ion accelerator system. (author)

  17. Morphological Comparison of the ZKD 3 and 5 Skulls and the Probable Population Isolation as Reflected by Evolutionary Rates%周口店直立人3号与5号头骨形态特征对比及其演化速率所反映的群体隔离

    Institute of Scientific and Technical Information of China (English)

    邢松; 张银运; 刘武

    2012-01-01

    In 1941, Pere Teilhard de Chardin emphasized the morphological stability of Homo erectus from Zhoukoudian throughout the 50 meters of sediments of Locality 1. He believed that not a single anatomical difference could be detected between the skull remains found at the very bottom of the deposit and those collected at the very top. This morphological stability was evidence of a slowness that characterized biological evolution whenever not obscured, disturbed or accelerated by the intrusive immigration of foreign elements. The present study employs both traditional metrics and recently developed 3D scanning techniques to explore the morphological variations of skulls between the probable first and last inhabitants, represented by ZKD 3 and 5. Also these variations are scaled by those between NJ 1 and 2 skulls, whose owners probably spent the same duration as ZKD 3 and 5. After comparison, the skull of the latest (or top) inhabitant at Zhoukoudian Locality 1 was found to have increased in every direction related to the earliest (or bottom) inhabitant, while the shape seems to be relatively stable though the hundreds of thousand years that passed in the interim. In the present study, evolutionary rates of Homo erectus from Zhoukoudian were determined using 11 cranial measurements. The results show that biological evolutionary rate is very slow, compared with that of hominid from Nanjing. The Homo erectus crania from Zhoukoudian may represent an isolated population, and as a result, lacked evidence of gene flow from outside populations.%德日进认为周口店直立人保持着形态上的稳定性;这种进化上的缓慢性表明周口店直立人进化过程中无论何时都未曾发生过外来移民的闯入,从而打乱、干扰或推进其进化过程.本项研究采用三维结构重叠和精确测量数据的方式对比了周口店第一地点晚期代表周口店直立人(ZKD)5号头骨相对于早期代表ZKD3的形态特征演化

  18. Heterostyly accelerates diversification via reduced extinction in primroses.

    Science.gov (United States)

    de Vos, Jurriaan M; Hughes, Colin E; Schneeweiss, Gerald M; Moore, Brian R; Conti, Elena

    2014-06-01

    The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower-pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.

  19. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  20. Metabolism at Evolutionary Optimal States

    Directory of Open Access Journals (Sweden)

    Iraes Rabbers

    2015-06-01

    Full Text Available Metabolism is generally required for cellular maintenance and for the generation of offspring under conditions that support growth. The rates, yields (efficiencies, adaptation time and robustness of metabolism are therefore key determinants of cellular fitness. For biotechnological applications and our understanding of the evolution of metabolism, it is necessary to figure out how the functional system properties of metabolism can be optimized, via adjustments of the kinetics and expression of enzymes, and by rewiring metabolism. The trade-offs that can occur during such optimizations then indicate fundamental limits to evolutionary innovations and bioengineering. In this paper, we review several theoretical and experimental findings about mechanisms for metabolic optimization.

  1. Implementation of Constant Dose Rate and Constant Angular Spacing Intensity-modulated Arc Therapy for Cervical Cancer by Using a Conventional Linear Accelerator

    Science.gov (United States)

    Zhang, Ruo-Hui; Fan, Xiao-Mei; Bai, Wen-Wen; Cao, Yan-Kun

    2016-01-01

    Background: Volumetric-modulated arc therapy (VMAT) can only be implemented on the new generation linacs such as the Varian Trilogy® and Elekta Synergy®. This prevents most existing linacs from delivering VMAT. The purpose of this study was to investigate the feasibility of using a conventional linear accelerator delivering constant dose rate and constant angular spacing intensity-modulated arc therapy (CDR-CAS-IMAT) for treating cervical cancer. Methods: Twenty patients with cervical cancer previously treated with intensity-modulated radiation therapy (IMRT) using Varian Clinical 23EX were retreated using CDR-CAS-IMAT. The planning target volume (PTV) was set as 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), target volume conformity index (CI), the dose to organs at risk, radiation delivery time, and monitor units (MUs) were also compared. The paired t-test was used to analyze the two data sets. All statistical analyses were performed using SPSS 19.0 software. Results: Compared to the IMRT group, the CDR-CAS-IMAT group showed better PTV CI (0.85 ± 0.03 vs. 0.81 ± 0.03, P = 0.001), clinical target volume CI (0.46 ± 0.05 vs. 0.43 ± 0.05, P = 0.001), HI (0.09±0.02 vs. 0.11 ± 0.02, P = 0.005) and D95 (5196.33 ± 28.24 cGy vs. 5162.63 ± 31.12 cGy, P = 0.000), and cord D2 (3743.8 ± 118.7 cGy vs. 3806.2 ± 98.7 cGy, P = 0.017) and rectum V40 (41.9 ± 6.1% vs. 44.2 ± 4.8%, P = 0.026). Treatment time (422.7 ± 46.7 s vs. 84.6 ± 7.8 s, P = 0.000) and the total plan Mus (927.4 ± 79.1 vs. 787.5 ± 78.5, P = 0.000) decreased by a factor of 0.8 and 0.15, respectively. The IMRT group plans were superior to the CDR-CAS-IMAT group plans considering decreasing bladder V50 (17.4 ± 4.5% vs. 16.6 ± 4.2%, P = 0.049), bowel V30 (39.6 ± 6.5% vs. 36.6 ± 7.5%, P = 0.008), and low-dose irradiation volume; there were no significant differences in other statistical indexes. Conclusions

  2. Statistical correlation of the soil incubation and the accelerated laboratory extraction methods to estimate nitrogen release rates of slow- and controlled-release fertilizers.

    Science.gov (United States)

    Medina, L Carolina; Sartain, Jerry; Obreza, Thomas; Hall, William L; Thiex, Nancy J

    2014-01-01

    Several technologies have been proposed to characterize the nutrient release patterns of enhanced-efficiency fertilizers (EEFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product-specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize nutrient release of slow-release fertilizer (SRF) and controlled-release fertilizer (CRF) materials, no official method exists to assess their nutrient release patterns. However, the increased production and distribution of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. Nonlinear regression was used to establish a correlation between the data generated from a 180-day soil incubation-column leaching procedure and 74 h accelerated lab extraction method, and to develop a model that can predict the 180-day nitrogen (N) release curve for a specific SRF and CRF product based on the data from the accelerated laboratory extraction method. Based on the R2 > 0.90 obtained for most materials, results indicated that the data generated from the 74 h accelerated lab extraction method could be used to predict N release from the selected materials during 180 days, including those fertilizers that require biological activity for N release. PMID:25051612

  3. Statistical correlation of the soil incubation and the accelerated laboratory extraction methods to estimate nitrogen release rates of slow- and controlled-release fertilizers.

    Science.gov (United States)

    Medina, L Carolina; Sartain, Jerry; Obreza, Thomas; Hall, William L; Thiex, Nancy J

    2014-01-01

    Several technologies have been proposed to characterize the nutrient release patterns of enhanced-efficiency fertilizers (EEFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product-specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize nutrient release of slow-release fertilizer (SRF) and controlled-release fertilizer (CRF) materials, no official method exists to assess their nutrient release patterns. However, the increased production and distribution of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. Nonlinear regression was used to establish a correlation between the data generated from a 180-day soil incubation-column leaching procedure and 74 h accelerated lab extraction method, and to develop a model that can predict the 180-day nitrogen (N) release curve for a specific SRF and CRF product based on the data from the accelerated laboratory extraction method. Based on the R2 > 0.90 obtained for most materials, results indicated that the data generated from the 74 h accelerated lab extraction method could be used to predict N release from the selected materials during 180 days, including those fertilizers that require biological activity for N release.

  4. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution.

  5. Paleoanthropology and evolutionary theory.

    Science.gov (United States)

    Tattersall, Ian

    2012-01-01

    Paleoanthropologists of the first half of the twentieth century were little concerned either with evolutionary theory or with the technicalities and broader implications of zoological nomenclature. In consequence, the paleoanthropological literature of the period consisted largely of a series of descriptions accompanied by authoritative pronouncements, together with a huge excess of hominid genera and species. Given the intellectual flimsiness of the resulting paleoanthropological framework, it is hardly surprising that in 1950 the ornithologist Ernst Mayr met little resistance when he urged the new postwar generation of paleoanthropologists to accept not only the elegant reductionism of the Evolutionary Synthesis but a vast oversimplification of hominid phylogenetic history and nomenclature. Indeed, the impact of Mayr's onslaught was so great that even when developments in evolutionary biology during the last quarter of the century brought other paleontologists to the realization that much more has been involved in evolutionary histories than the simple action of natural selection within gradually transforming lineages, paleoanthropologists proved highly reluctant to follow. Even today, paleoanthropologists are struggling to reconcile an intuitive realization that the burgeoning hominid fossil record harbors a substantial diversity of species (bringing hominid evolutionary patterns into line with that of other successful mammalian families), with the desire to cram a huge variety of morphologies into an unrealistically minimalist systematic framework. As long as this theoretical ambivalence persists, our perception of events in hominid phylogeny will continue to be distorted.

  6. Acceleration performance of individual European sea bass Dicentrarchus labrax measured with a sprint performance chamber: comparison with high-speed cinematography and correlates with ecological performance.

    Science.gov (United States)

    Vandamm, Joshua P; Marras, Stefano; Claireaux, Guy; Handelsman, Corey A; Nelson, Jay A

    2012-01-01

    Locomotor performance can influence the ecological and evolutionary success of a species. For fish, favorable outcomes of predator-prey encounters are often presumably due to robust acceleration ability. Although escape-response or "fast-start" studies utilizing high-speed cinematography are prevalent, little is known about the contribution of relative acceleration performance to ecological or evolutionary success in a species. This dearth of knowledge may be due to the time-consuming nature of analyzing film, which imposes a practical limit on sample sizes. Herein, we present a high-throughput potential alternative for measuring fish acceleration performance using a sprint performance chamber (SPC). The acceleration performance of a large number of juvenile European sea bass (Dicentrarchus labrax) from two populations was analyzed. Animals from both hatchery and natural ontogenies were assessed, and animals of known acceleration ability had their ecological performance measured in a mesocosm environment. Individuals from one population also had their acceleration performance assessed by both high-speed cinematography and an SPC. Acceleration performance measured in an SPC was lower than that measured by classical high-speed video techniques. However, short-term repeatability and interindividual variation of acceleration performance were similar between the two techniques, and the SPC recorded higher sprint swimming velocities. Wild fish were quicker to accelerate in an SPC and had significantly greater accelerations than all groups of hatchery-raised fish. Acceleration performance had no significant effect on ecological performance (as assessed through animal growth and survival in the mesocosms). However, it is worth noting that wild animals did survive predation in the mesocosm better than farmed ones. Moreover, the hatchery-originated fish that survived the mesocosm experiment, when no predators were present, displayed significantly increased acceleration

  7. Archaeogenetics in evolutionary medicine.

    Science.gov (United States)

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming. PMID:27289479

  8. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  9. Behavior Trees for Evolutionary Robotics.

    Science.gov (United States)

    Scheper, Kirk Y W; Tijmons, Sjoerd; de Visser, Cornelis C; de Croon, Guido C H E

    2016-01-01

    Evolutionary Robotics allows robots with limited sensors and processing to tackle complex tasks by means of sensory-motor coordination. In this article we show the first application of the Behavior Tree framework on a real robotic platform using the evolutionary robotics methodology. This framework is used to improve the intelligibility of the emergent robotic behavior over that of the traditional neural network formulation. As a result, the behavior is easier to comprehend and manually adapt when crossing the reality gap from simulation to reality. This functionality is shown by performing real-world flight tests with the 20-g DelFly Explorer flapping wing micro air vehicle equipped with a 4-g onboard stereo vision system. The experiments show that the DelFly can fully autonomously search for and fly through a window with only its onboard sensors and processing. The success rate of the optimized behavior in simulation is 88%, and the corresponding real-world performance is 54% after user adaptation. Although this leaves room for improvement, it is higher than the 46% success rate from a tuned user-defined controller. PMID:26606468

  10. Behavior Trees for Evolutionary Robotics.

    Science.gov (United States)

    Scheper, Kirk Y W; Tijmons, Sjoerd; de Visser, Cornelis C; de Croon, Guido C H E

    2016-01-01

    Evolutionary Robotics allows robots with limited sensors and processing to tackle complex tasks by means of sensory-motor coordination. In this article we show the first application of the Behavior Tree framework on a real robotic platform using the evolutionary robotics methodology. This framework is used to improve the intelligibility of the emergent robotic behavior over that of the traditional neural network formulation. As a result, the behavior is easier to comprehend and manually adapt when crossing the reality gap from simulation to reality. This functionality is shown by performing real-world flight tests with the 20-g DelFly Explorer flapping wing micro air vehicle equipped with a 4-g onboard stereo vision system. The experiments show that the DelFly can fully autonomously search for and fly through a window with only its onboard sensors and processing. The success rate of the optimized behavior in simulation is 88%, and the corresponding real-world performance is 54% after user adaptation. Although this leaves room for improvement, it is higher than the 46% success rate from a tuned user-defined controller.

  11. Evolutionary Computation:ao Overview

    Institute of Scientific and Technical Information of China (English)

    HeZhenya; WeiChengjian

    1997-01-01

    Evolutionary computation is a field of simulating evolution on a computer.Both aspects of it ,the problem solving aspect and the aspect of modeling natural evolution,are important.Simulating evolution on a computer results in stochastic optimization techniques that can outperform classical methods of optimization when applied to difficult real-world problems.There are currently four main avenues of research in simulated evolution:genetic algorithms,evolutionary programming,evolution strategies,and genetic programming.This paper presents a brief overview of thd field on evolutionary computation,including some theoretical issues,adaptive mechanisms,improvements,constrained optimizqtion,constrained satisfaction,evolutionary neural networks,evolutionary fuzzy systems,hardware evolution,evolutionary robotics,parallel evolutionary computation,and co-evolutionary models.The applications of evolutionary computation for optimizing system and intelligent information processing in telecommunications are also introduced.

  12. Studies in evolutionary agroecology

    DEFF Research Database (Denmark)

    Wille, Wibke

    of Evolutionary Agroecology that the highest yielding individuals do not necessarily perform best as a population. The investment of resources into strategies and structures increasing individual competitive ability carries a cost. If a whole population consists of individuals investing resources to compete......Darwinian evolution by natural selection is driven primarily by differential survival and reproduction among individuals in a population. When the evolutionary interest of an individual is in conflict with the interests of the population, the genes increasing individual fitness at the cost...

  13. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  14. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    Part E, Evolutionary Computation, edited by Professors Frank Neumann, Carsten Witt, Peter Merz, Carlos A. Coello Coello, Oliver Schütze, Thomas Bartz-Beielstein, Jörn Mehnen, and Günther Raidl, concerns the third fundamental element of what is traditionally being considered to be the core of Comp...

  15. Learning: An Evolutionary Analysis

    Science.gov (United States)

    Swann, Joanna

    2009-01-01

    This paper draws on the philosophy of Karl Popper to present a descriptive evolutionary epistemology that offers philosophical solutions to the following related problems: "What happens when learning takes place?" and "What happens in human learning?" It provides a detailed analysis of how learning takes place without any direct transfer of…

  16. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    Ellen Clarke

    2014-04-01

    An `evolutionary transition in individuality’ or `major transition’ is a transformation in the hierarchical level at which natural selection operates on a population. In this article I give an abstract (i.e. level-neutral and substrate-neutral) articulation of the transition process in order to precisely understand how such processes can happen, especially how they can get started.

  17. Evolutionary Phase Transitions in Random Environments

    Science.gov (United States)

    Skanata, Antun; Kussell, Edo

    2016-07-01

    We present analytical results for long-term growth rates of structured populations in randomly fluctuating environments, which we apply to predict how cellular response networks evolve. We show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively under random (i.e., nonperiodic) environments. We identify the evolutionary phase diagram for simple response networks, which we show can exhibit both continuous and discontinuous transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral epidemics to emergence of drug resistance.

  18. Recent Advances in Evolutionary Computation

    Institute of Scientific and Technical Information of China (English)

    Xin Yao; Yong Xu

    2006-01-01

    Evolutionary computation has experienced a tremendous growth in the last decade in both theoretical analyses and industrial applications. Its scope has evolved beyond its original meaning of "biological evolution" toward a wide variety of nature inspired computational algorithms and techniques, including evolutionary, neural, ecological, social and economical computation, etc., in a unified framework. Many research topics in evolutionary computation nowadays are not necessarily "evolutionary". This paper provides an overview of some recent advances in evolutionary computation that have been made in CERCIA at the University of Birmingham, UK. It covers a wide range of topics in optimization, learning and design using evolutionary approaches and techniques, and theoretical results in the computational time complexity of evolutionary algorithms. Some issues related to future development of evolutionary computation are also discussed.

  19. An evolutionary model with Turing machines

    CERN Document Server

    Feverati, Giovanni

    2007-01-01

    The development of a large non-coding fraction in eukaryotic DNA and the phenomenon of the code-bloat in the field of evolutionary computations show a striking similarity. This seems to suggest that (in the presence of mechanisms of code growth) the evolution of a complex code can't be attained without maintaining a large inactive fraction. To test this hypothesis we performed computer simulations of an evolutionary toy model for Turing machines, studying the relations among fitness and coding/non-coding ratio while varying mutation and code growth rates. The results suggest that, in our model, having a large reservoir of non-coding states constitutes a great (long term) evolutionary advantage.

  20. Accelerating Universe and Event Horizon

    OpenAIRE

    He, Xiao-Gang(INPAC, SKLPPC and Department of Physics, Shanghai Jiao Tong University, Shanghai, China)

    2001-01-01

    It has been argued in the literature that if a universe is expanding with an accelerating rate indefinitely, it presents a challenge to string theories due to the existence of event horizons. We study the fate of a currently accelerating universe. We show that the universe will continue to accelerate indefinitely if the parameter $\\omega = p/\\rho$ of the equation of state is a constant, no matter how many different types of energy (matter, radiation, quintessence, cosmological constant and et...

  1. The Evolutionary Origins of Hierarchy.

    Directory of Open Access Journals (Sweden)

    Henok Mengistu

    2016-06-01

    Full Text Available Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments. Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  2. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial

    OpenAIRE

    A David Smith; Smith, Stephen M.; de Jager, Celeste A.; Philippa Whitbread; Carole Johnston; Grzegorz Agacinski; Abderrahim Oulhaj; Bradley, Kevin M.; Robin Jacoby; Helga Refsum

    2010-01-01

    BACKGROUND: An increased rate of brain atrophy is often observed in older subjects, in particular those who suffer from cognitive decline. Homocysteine is a risk factor for brain atrophy, cognitive impairment and dementia. Plasma concentrations of homocysteine can be lowered by dietary administration of B vitamins. OBJECTIVE: To determine whether supplementation with B vitamins that lower levels of plasma total homocysteine can slow the rate of brain atrophy in subjects with mild cognitive im...

  3. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo.

    OpenAIRE

    Knoll, Andrew

    1994-01-01

    In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of ''higher'' eukaryotic phyla. Observed diversity levels for protistan m...

  4. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  5. Evolutionary status of Entamoeba

    Institute of Scientific and Technical Information of China (English)

    DONG Jiuhong; WEN Jianfan; XIN Dedong; LU Siqi

    2004-01-01

    In addition to its medical importance as parasitic pathogen, Entamoeba has aroused people's interest in its evolutionary status for a long time. Lacking mitochondrion and other intracellular organelles common to typical eukaryotes, Entamoeba and several other amitochondrial protozoans have been recognized as ancient pre-mitochondriate eukaryotes and named "archezoa", the most primitive extant eukaryotes. It was suggested that they might be living fossils that remained in a primitive stage of evolution before acquisition of organelles, lying close to the transition between prokaryotes and eukaryotes. However, recent studies revealed that Entamoeba contained an organelle, "crypton" or "mitosome", which was regarded as specialized or reductive mitochondrion. Relative molecular phylogenetic analyses also indicated the existence or the probable existence of mitochondrion in Entamoeba. Our phylogenetic analysis based on DNA topoisomerase II strongly suggested its divergence after some mitchondriate eukaryotes. Here, all these recent researches are reviewed and the evolutionary status of Entamoeba is discussed.

  6. Evolutionary biology of cancer.

    Science.gov (United States)

    Crespi, Bernard; Summers, Kyle

    2005-10-01

    Cancer is driven by the somatic evolution of cell lineages that have escaped controls on replication and by the population-level evolution of genes that influence cancer risk. We describe here how recent evolutionary ecological studies have elucidated the roles of predation by the immune system and competition among normal and cancerous cells in the somatic evolution of cancer. Recent analyses of the evolution of cancer at the population level show how rapid changes in human environments have augmented cancer risk, how strong selection has frequently led to increased cancer risk as a byproduct, and how anticancer selection has led to tumor-suppression systems, tissue designs that slow somatic evolution, constraints on morphological evolution and even senescence itself. We discuss how applications of the tools of ecology and evolutionary biology are poised to revolutionize our understanding and treatment of this disease.

  7. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  8. Analysis of Accelerated Gossip Algorithms

    NARCIS (Netherlands)

    Liu, J.; Anderson, B.D.O.; Cao, M.; Morse, A.S.

    2009-01-01

    This paper investigates accelerated gossip algorithms for distributed computations in networks where shift-registers are utilized at each node. By using tools from matrix analysis, we prove the existence of the desired acceleration and establish the fastest rate of convergence in expectation for two

  9. Accelerator operations

    International Nuclear Information System (INIS)

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  10. Introduction to Evolutionary Algorithms

    CERN Document Server

    Yu, Xinjie

    2010-01-01

    Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti

  11. Evolutionary health psychology

    OpenAIRE

    Dickins, Thomas E.

    2006-01-01

    For the last decade and a half the discipline of Evolutionary Psychology (EP) has been developing with great success. The first collection of significant papers was published in 1992 (Barkow et al.) and recently a landmark handbook has been produced summing the progress so far, as well as setting an agenda for future study (Buss, 2005). Unlike other areas within Psychology, EP extends its interest to all behaviours, rightly seeing them as part of an evolved phenotype, and health has not escap...

  12. Evolutionary economics and psychology

    OpenAIRE

    Witt, Ulrich

    2006-01-01

    Evolutionary economics is a paradigm for explaining the transformation of the economy. To achieve its goal, it needs being founded on a proper theory of economic behavior. The paper discusses these foundations. It is argued that the historical malleability of economic behavior is based on the interactions between innate behavior dispositions and adaptation mechanisms on the one hand and the limited, and always selective, cognitive and observational learning that contributes to an ever more ex...

  13. Evolutionary game design

    CERN Document Server

    Browne, Cameron

    2011-01-01

    The book describes the world's first successful experiment in fully automated board game design. Evolutionary methods were used to derive new rule sets within a custom game description language, and self-play trials used to estimate each derived game's potential to interest human players. The end result is a number of new and interesting games, one of which has proved popular and gone on to be commercially published.

  14. Evolutionary theory of cancer.

    Science.gov (United States)

    Attolini, Camille Stephan-Otto; Michor, Franziska

    2009-06-01

    As Theodosius Dobzhansky famously noted in 1973, "Nothing in biology makes sense except in the light of evolution," and cancer is no exception to this rule. Our understanding of cancer initiation, progression, treatment, and resistance has advanced considerably by regarding cancer as the product of evolutionary processes. Here we review the literature of mathematical models of cancer evolution and provide a synthesis and discussion of the field.

  15. Diversity dynamics in Nymphalidae butterflies: effect of phylogenetic uncertainty on diversification rate shift estimates.

    Science.gov (United States)

    Peña, Carlos; Espeland, Marianne

    2015-01-01

    The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.

  16. Diversity dynamics in Nymphalidae butterflies: effect of phylogenetic uncertainty on diversification rate shift estimates.

    Directory of Open Access Journals (Sweden)

    Carlos Peña

    Full Text Available The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.

  17. Evolutionary mysteries in meiosis.

    Science.gov (United States)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. PMID:27619705

  18. Evolutionary consequences of autopolyploidy.

    Science.gov (United States)

    Parisod, Christian; Holderegger, Rolf; Brochmann, Christian

    2010-04-01

    Autopolyploidy is more common in plants than traditionally assumed, but has received little attention compared with allopolyploidy. Hence, the advantages and disadvantages of genome doubling per se compared with genome doubling coupled with hybridizations in allopolyploids remain unclear. Autopolyploids are characterized by genomic redundancy and polysomic inheritance, increasing effective population size. To shed light on the evolutionary consequences of autopolyploidy, we review a broad range of studies focusing on both synthetic and natural autopolyploids encompassing levels of biological organization from genes to evolutionary lineages. The limited evidence currently available suggests that autopolyploids neither experience strong genome restructuring nor wide reorganization of gene expression during the first generations following genome doubling, but that these processes may become more important in the longer term. Biogeographic and ecological surveys point to an association between the formation of autopolyploid lineages and environmental change. We thus hypothesize that polysomic inheritance may provide a short-term evolutionary advantage for autopolyploids compared to diploid relatives when environmental change enforces range shifts. In addition, autopolyploids should possess increased genome flexibility, allowing them to adapt and persist across heterogeneous landscapes in the long run. PMID:20070540

  19. Advanced accelerators

    International Nuclear Information System (INIS)

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  20. Accelerating structures pre-stripping section the milac heavy ion linear Accelerator MILAC

    International Nuclear Information System (INIS)

    Researches on development of new variants of accelerating structures for acceleration of the ions with A/q=20 in pre-stripping section PSS-20 are carried out. On an initial part of acceleration of ions from 6 up to 150 keV/u high capture in process of acceleration of the injected ions is provided interdigital (IH) accelerating structure with Radio-Frequency Quadrupole (RFQ) focusing. On the second part of acceleration of ions from 150 keV/u up to 1 MeV/u the highest rate of acceleration is created interdigital (IH) accelerating structure with drift tubes with the modified radio-frequency focusing.

  1. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    Science.gov (United States)

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  2. Dose volume histogram analysis of normal structures associated with accelerated partial breast irradiation delivered by high dose rate brachytherapy and comparison with whole breast external beam radiotherapy fields

    Directory of Open Access Journals (Sweden)

    Mutyala Subhakar

    2008-11-01

    Full Text Available Abstract Purpose To assess the radiation dose delivered to the heart and ipsilateral lung during accelerated partial breast brachytherapy using a MammoSite™ applicator and compare to those produced by whole breast external beam radiotherapy (WBRT. Materials and methods Dosimetric analysis was conducted on patients receiving MammoSite breast brachytherapy following conservative surgery for invasive ductal carcinoma. Cardiac dose was evaluated for patients with left breast tumors with a CT scan encompassing the entire heart. Lung dose was evaluated for patients in whom the entire lung was scanned. The prescription dose of 3400 cGy was 1 cm from the balloon surface. MammoSite dosimetry was compared to simulated WBRT fields with and without radiobiological correction for the effects of dose and fractionation. Dose parameters such as the volume of the structure receiving 10 Gy or more (V10 and the dose received by 20 cc of the structure (D20, were calculated as well as the maximum and mean doses received. Results Fifteen patients were studied, five had complete lung data and six had left-sided tumors with complete cardiac data. Ipsilateral lung volumes ranged from 925–1380 cc. Cardiac volumes ranged from 337–551 cc. MammoSite resulted in a significantly lower percentage lung V30 and lung and cardiac V20 than the WBRT fields, with and without radiobiological correction. Conclusion This study gives low values for incidental radiation received by the heart and ipsilateral lung using the MammoSite applicator. The volume of heart and lung irradiated to clinically significant levels was significantly lower with the MammoSite applicator than using simulated WBRT fields of the same CT data sets. Trial registration Dana Farber Trial Registry number 03-179

  3. Estimation of precipitation rates by measurements of {sup 36}Cl in the GRIP ice core with the PSI/ETH tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.; Baumgartner, S.; Beer, J. [EAWAG, Duebendorf (Switzerland); Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Within the European Greenland ice core project (GRIP) {sup 36}Cl AMS measurements have been performed on ice core samples from Summit (Greenland, 73{sup o}N, 37{sup o}W). Most data analysed so far are from the lower part of the ice core. The {sup 36}Cl concentration is well correlated with {delta}{sup 18}O, which is considered as a proxy for paleotemperatures. Assuming that the deposition rate of radionuclides is independent of {delta}{sup 18}O, {sup 36}Cl is used to estimate the relationship between accumulation and {delta}{sup 18}O. The results confirm that the rapid changes of {delta}{sup 18}O, the so-called Dansgaard-Oeschger events, are also reflected in the precipitation rate. (author) 1 fig., 3 refs.

  4. KEKB accelerator

    International Nuclear Information System (INIS)

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  5. Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain?

    OpenAIRE

    Zheng, Ya-Jun; Bruice, Thomas C.

    1997-01-01

    Nitriles are good inhibitors for the cysteine protease papain. However, a single amino acid mutation (Gln-19 → Glu-19) in the active site makes the mutant enzyme a good catalyst for nitrile hydrolysis. A theoretical approach was used to examine the differential transition state stabilization in the papain mutant relative to the wild-type enzyme. Based on this study, we concluded that strong hydrogen bonding in the transition state is responsible for the observed rate enhancement of 4 × 105.

  6. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  7. Accelerating networks

    International Nuclear Information System (INIS)

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  8. Evolutionary triangulation: informing genetic association studies with evolutionary evidence.

    Science.gov (United States)

    Huang, Minjun; Graham, Britney E; Zhang, Ge; Harder, Reed; Kodaman, Nuri; Moore, Jason H; Muglia, Louis; Williams, Scott M

    2016-01-01

    Genetic studies of human diseases have identified many variants associated with pathogenesis and severity. However, most studies have used only statistical association to assess putative relationships to disease, and ignored other factors for evaluation. For example, evolution is a factor that has shaped disease risk, changing allele frequencies as human populations migrated into and inhabited new environments. Since many common variants differ among populations in frequency, as does disease prevalence, we hypothesized that patterns of disease and population structure, taken together, will inform association studies. Thus, the population distributions of allelic risk variants should reflect the distributions of their associated diseases. Evolutionary Triangulation (ET) exploits this evolutionary differentiation by comparing population structure among three populations with variable patterns of disease prevalence. By selecting populations based on patterns where two have similar rates of disease that differ substantially from a third, we performed a proof of principle analysis for this method. We examined three disease phenotypes, lactase persistence, melanoma, and Type 2 diabetes mellitus. We show that for lactase persistence, a phenotype with a simple genetic architecture, ET identifies the key gene, lactase. For melanoma, ET identifies several genes associated with this disease and/or phenotypes related to it, such as skin color genes. ET was less obviously successful for Type 2 diabetes mellitus, perhaps because of the small effect sizes in known risk loci and recent environmental changes that have altered disease risk. Alternatively, ET may have revealed new genes involved in conferring disease risk for diabetes that did not meet nominal GWAS significance thresholds. We also compared ET to another method used to filter for phenotype associated genes, population branch statistic (PBS), and show that ET performs better in identifying genes known to associate with

  9. Stochastic modeling of Lagrangian accelerations

    Science.gov (United States)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  10. Constraints as evolutionary systems

    CERN Document Server

    Rácz, István

    2016-01-01

    The constraint equations for smooth $[n+1]$-dimensional (with $n\\geq 3$) Riemannian or Lorentzian spaces satisfying the Einstein field equations are considered. It is shown, regardless of the signature of the primary space, that the constraints can be put into the form of an evolutionary system comprised either by a first order symmetric hyperbolic system and a parabolic equation or, alternatively, by a strongly hyperbolic system and a subsidiary algebraic relation. In both cases the (local) existence and uniqueness of solutions are also discussed.

  11. A High-Fat Diet Containing Lard Accelerates Prostate Cancer Progression and Reduces Survival Rate in Mice: Possible Contribution of Adipose Tissue-Derived Cytokines

    Directory of Open Access Journals (Sweden)

    Han Jin Cho

    2015-04-01

    Full Text Available To examine the effects of high-fat diet (HFD containing lard on prostate cancer development and progression and its underlying mechanisms, transgenic adenocarcinoma mouse prostate (TRAMP and TRAMP-C2 allograft models, as well as in vitro culture models, were employed. In TRAMP mice, HFD feeding increased the incidence of poorly differentiated carcinoma and decreased that of prostatic intraepithelial neoplasia in the dorsolateral lobes of the prostate, which was accompanied by increased expression of proteins associated with proliferation and angiogenesis. HFD feeding also led to increased metastasis and decreased survival rate in TRAMP mice. In the allograft model, HFD increased solid tumor growth, the expression of proteins related to proliferation/angiogenesis, the number of lipid vacuoles in tumor tissues, and levels of several cytokines in serum and adipose tissue. In vitro results revealed that adipose tissue-conditioned media from HFD-fed mice stimulated the proliferation and migration of prostate cancer cells and angiogenesis compared to those from control-diet-fed mice. These results indicate that the increase of adipose tissue-derived soluble factors by HFD feeding plays a role in the growth and metastasis of prostate cancer via endocrine and paracrine mechanisms. These results provide evidence that a HFD containing lard increases prostate cancer development and progression, thereby reducing the survival rate.

  12. 加快推进我国利率市场化进程:借鉴与建议%Accelerate the Process of Marketization of Interest Rates:Reference and Recommendations

    Institute of Scientific and Technical Information of China (English)

    刘东庆; 刘美春

    2014-01-01

    近年,我国利率市场化速度明显加快。人民币国际化以及资本项目自由化的加快对利率市场化进程提出了客观要求。利率市场化是把双刃剑,本文在分析我国利率市场化的国内外环境的基础上,指出我国利率市场化改革存在的问题。借鉴宏、微形势颇为相似的印度全面利率化一年半来的经验教训,提出深化利率改革和建立适合我国国情的利率市场化建议。%In recent years, China's interest rate marketization significantly faster. RMB internationalization and liberalization of capital projects objective accelerate proposed demand interest rate marketization. That is a double-edged sword, the paper analysis of the domestic and foreign interest rate marketization environment, pointed out our problems. Indian,macro and micro situation is quite similar to China , overall interest marketization for year and a half ,the experiences and lessons are good example to learn. On these basis,proposed deepen reform and establishment suitable for China's interest rate marketization recommendations.

  13. Effects of Different Methods of Accelerated Germination on Germination Rate of Pinus sylvestris var .mongolica%不同催芽方式对樟子松发芽率的影响

    Institute of Scientific and Technical Information of China (English)

    杨丽清

    2015-01-01

    In order to grasp the effects of different methods of accelerated germination on germination rate of Pinus sylvestris var .mongolica seeds ,the germination experiments were conducted at room temperature .Result shows that the germination rate of Pinus sylvestris var .mongolica is not the same by using different methods of acceler‐ated germination;among of which the effect is optimal by soaking 200 mg ▌L -1 GA3 ,the germination rate being 60% ,followed by 40 ℃ warm water soaking ,the germination rate being 57% .%为了解不同催芽方式对樟子松种子发芽率的影响,在室温下进行了发芽试验。结果表明,不同催芽方式樟子松种子发芽率不相同,其中200mg▌L-1赤霉素溶液浸种效果最好,发芽率达到60%;其次为40℃温水浸种,发芽率达到57%。

  14. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  15. Testing for Independence between Evolutionary Processes.

    Science.gov (United States)

    Behdenna, Abdelkader; Pothier, Joël; Abby, Sophie S; Lambert, Amaury; Achaz, Guillaume

    2016-09-01

    Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens. PMID:27208890

  16. Evolutionary Psychology: The Academic Debate

    OpenAIRE

    Suplizio, Jean

    2005-01-01

    This dissertation examines the academic debate that surrounds the new field called "Evolutionary Psychology." Evolutionary psychology has emerged as the most popular successor theory to human sociobiology. Its proponents search for evolved psychological mechanisms and emphasize universal features of the human mind. My thesis is that in order to flourish evolutionary psychologists must engage other researchers on equal terms -- something they have not been doing. To show this, I examine the...

  17. Virulence in malaria: an evolutionary viewpoint.

    OpenAIRE

    Margaret J Mackinnon; Andrew F Read

    2004-01-01

    Malaria parasites cause much morbidity and mortality to their human hosts. From our evolutionary perspective, this is because virulence is positively associated with parasite transmission rate. Natural selection therefore drives virulence upwards, but only to the point where the cost to transmission caused by host death begins to outweigh the transmission benefits. In this review, we summarize data from the laboratory rodent malaria model, Plasmodium chabaudi, and field data on the human mala...

  18. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  19. On accelerated clocks and the quantum theory

    International Nuclear Information System (INIS)

    It is shown that the locality hypothesis of relativity breaks down for large proper accelerations which are relevant to semiclassical phenomena. A general modification for the rate of accelerated clocks incorporating the effect of proper acceleration is thus proposed. Connection is made with Caianiello's quantum line element

  20. Seismic-induced accelerations detected by two parallel gravity meters in continuous recording with a high sampling rate at Etna volcano

    Directory of Open Access Journals (Sweden)

    P. Stefanelli

    2008-06-01

    Full Text Available We analyse a microgravity data set acquired from two spring LaCoste & Romberg gravity meters operated in parallel at the same site on Etna volcano (Italy for about two months (August – September 2005. The high sampling rate acquisition (2Hz allowed the correlation of short-lasting gravity fluctuations with seismic events. After characterizing the oscillation behavior of the meters, through the study of spectral content and the background noise level of both sequences, we recognized fluctuations in the gravity data, spanning a range of periods from 1 second to about 30 seconds dominated by components with a period of about 15 ÷ 25 seconds, during time intervals encompassing both local seismic events and large worldwide earthquakes. The data analyses demonstrate that observed earthquake-induced gravity fluctuations have some differences due to diverse spectral content of the earthquakes. When local seismic events which present high frequency content excite the meters, the correlation between the two gravity signals is poor (factor < 0.3. Vice versa, when large worldwide earthquakes occur and low frequency seismic waves dominate the ensuing seismic wavefield, the resonance frequencies of the meters are excited and they react according to more common features. In the latter case, the signals from the two instruments are strongly correlated to each other (up to 0.9. In this paper the behaviors of spring gravimeters in the frequency range of the disturbances produced by local and large worldwide earthquakes are presented and discussed.

  1. Evolutionary Computation for Realizing Distillation Separation Sequence Optimization Synthesis

    Institute of Scientific and Technical Information of China (English)

    Dong Hongguang; Qin Limin; Wang Kefeng; Yao Pingjing

    2005-01-01

    Evolutionary algorithm is applied for distillation separation sequence optimization synthesis problems with combination explosion. The binary tree data structure is used to describe the distillation separation sequence, and it is directly applied as the coding method. Genetic operators, which ensure to prohibit illegal filial generations completely, are designed by using the method of graph theory. The crossover operator based on a single parent or two parents is designed successfully. The example shows that the average ratio of search space from evolutionary algorithm with two-parent genetic operation is lower, whereas the rate of successful minimizations from evolutionary algorithm with single parent genetic operation is higher.

  2. A Simple General Model of Evolutionary Dynamics

    Science.gov (United States)

    Thurner, Stefan

    Evolution is a process in which some variations that emerge within a population (of, e.g., biological species or industrial goods) get selected, survive, and proliferate, whereas others vanish. Survival probability, proliferation, or production rates are associated with the "fitness" of a particular variation. We argue that the notion of fitness is an a posteriori concept in the sense that one can assign higher fitness to species or goods that survive but one can generally not derive or predict fitness per se. Whereas proliferation rates can be measured, fitness landscapes, that is, the inter-dependence of proliferation rates, cannot. For this reason we think that in a physical theory of evolution such notions should be avoided. Here we review a recent quantitative formulation of evolutionary dynamics that provides a framework for the co-evolution of species and their fitness landscapes (Thurner et al., 2010, Physica A 389, 747; Thurner et al., 2010, New J. Phys. 12, 075029; Klimek et al., 2009, Phys. Rev. E 82, 011901 (2010). The corresponding model leads to a generic evolutionary dynamics characterized by phases of relative stability in terms of diversity, followed by phases of massive restructuring. These dynamical modes can be interpreted as punctuated equilibria in biology, or Schumpeterian business cycles (Schumpeter, 1939, Business Cycles, McGraw-Hill, London) in economics. We show that phase transitions that separate phases of high and low diversity can be approximated surprisingly well by mean-field methods. We demonstrate that the mathematical framework is suited to understand systemic properties of evolutionary systems, such as their proneness to collapse, or their potential for diversification. The framework suggests that evolutionary processes are naturally linked to self-organized criticality and to properties of production matrices, such as their eigenvalue spectra. Even though the model is phrased in general terms it is also practical in the sense

  3. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  4. Evolutionary Model of the Growth and Size of Firms

    OpenAIRE

    Joachim Kaldasch

    2012-01-01

    The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into acc...

  5. Earthquake accelerogram simulation with statistical law of evolutionary power spectrum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cui-ran; CHEN Hou-qun; LI Min

    2007-01-01

    By using the technique for evolutionary power spectrum proposed by Nakayama and with reference to the Kameda formula, an evolutionary spectrum prediction model for given earthquake magnitude and distance is established based on the 80 near-source acceleration records at rock surface with large magnitude from the ground motion database of western U.S.. Then a new iteration method is developed for generation of random accelerograms non-stationary both in amplitude and frequency which are compatible with target evolutionary spectrum. The phase spectra of those simulated accelerograms are also non-stationary in time and frequency domains since the interaction between amplitude and phase angle has been considered during the generation. Furthermore, the sign of the phase spectrum increment is identified to accelerate the iteration. With the proposed statistical model for predicting evolutionary power spectra and the new method for generating compatible time history, the artificial random earthquake accelerograms non-stationary both in amplitude and frequency for certain magnitude and distance can be provided.

  6. Two Aspects of Evolutionary Algorithms

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper we discuss the paradigm of evolutionary algorithms (Eas). We argue about the need for new heuristics in real-world problem solving, discussing reasons why some problems are difficult tosolve. After introducing the main concepts of evolutionary algorithms, we concentrate on two issues:(1)self-adaptation of the parameters of EA, and (2) handling constraints.

  7. Topics of Evolutionary Computation 2001

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    This booklet contains the student reports from the course: Topics of Evolutionary Computation, Fall 2001, given by Thiemo Krink, Rene Thomsen and Rasmus K. Ursem......This booklet contains the student reports from the course: Topics of Evolutionary Computation, Fall 2001, given by Thiemo Krink, Rene Thomsen and Rasmus K. Ursem...

  8. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots. PMID:26581015

  9. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  10. Evolutionary Design of Boolean Functions

    Institute of Scientific and Technical Information of China (English)

    WANG Zhang-yi; ZHANG Huan-guo; QIN Zhong-ping; MENG Qing-shu

    2005-01-01

    We use evolutionary computing to synthesize Boolean functions randomly. By using specific crossover and mutation operator in evolving process and modifying search space and fitness function, we get some high non-linearity functions which have other good cryptography characteristics such as autocorrelation etc. Comparing to other heuristic search techniques, evolutionary computing approach is more effective because of global search strategy and implicit parallelism.

  11. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  12. Accelerated GLAS exposure station

    International Nuclear Information System (INIS)

    The Geoscience Laser Altimeter System (GLAS) is being developed by NASA/GSFC to measure the dynamics of the ice sheet mass balance, land, and cloud and atmospheric properties. An instrument altimetric resolution of 10 cm per shot is required. The laser transmitter will be a diode pumped, Q-switched, Nd:YAG laser producing 1064 nm, 100 mJ, 4 ns pulses at 40 Hz repetition rate in a TEM∞ mode. A minimum lifetime goal of 2 billion shots is required per laser transmitter. The performance of the GLAS laser can be limited by physical damage to the optical components caused by the interaction of intense laser energy with the optical coatings and substrates. Very little data exists describing the effects of long duration laser exposure, of 4 ns pulses, on an optical component. An Accelerated GLAS Exposure Station (AGES) is being developed which will autonomously operate and monitor the GLAS laser at an accelerated rate of 500 Hz. The effects of a large number of laser shots will be recorded. Parameters to be monitored include: laser power, pulsewidth, beam size, laser diode drive current and power, Q-switch drive voltage, temperature, and humidity. For comparison, one set of AGES-sister optical components will be used in the non-accelerated GLAS laser and another will be evaluated by a commercial optical damage test facility

  13. Evolutionary Computation Techniques for Predicting Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Amine Marref

    2013-01-01

    Full Text Available Corrosion occurs in many engineering structures such as bridges, pipelines, and refineries and leads to the destruction of materials in a gradual manner and thus shortening their lifespan. It is therefore crucial to assess the structural integrity of engineering structures which are approaching or exceeding their designed lifespan in order to ensure their correct functioning, for example, carrying ability and safety. An understanding of corrosion and an ability to predict corrosion rate of a material in a particular environment plays a vital role in evaluating the residual life of the material. In this paper we investigate the use of genetic programming and genetic algorithms in the derivation of corrosion-rate expressions for steel and zinc. Genetic programming is used to automatically evolve corrosion-rate expressions while a genetic algorithm is used to evolve the parameters of an already engineered corrosion-rate expression. We show that both evolutionary techniques yield corrosion-rate expressions that have good accuracy.

  14. Caianiello's maximal acceleration. Recent developments

    OpenAIRE

    Papini, G.

    2004-01-01

    A quantum mechanical upper limit on the value of particle accelerations is consistent with the behavior of a class of superconductors and well known particle decay rates. It also sets limits on the mass of the Higgs boson and affects the stability of compact stars. In particular, type-I superconductors in static conditions offer an example of a dynamics in which acceleration has an upper limit.

  15. Human Germline Mutation and the Erratic Evolutionary Clock

    Science.gov (United States)

    Przeworski, Molly

    2016-01-01

    Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive. PMID:27760127

  16. Human growth: evolutionary and life history perspectives.

    Science.gov (United States)

    Gluckman, Peter D; Beedle, Alan S; Hanson, Mark A; Low, Felicia M

    2013-01-01

    Evolutionary and life history perspectives allow a fuller understanding of both patterns of growth and development and variations in disease risk. Evolutionary processes act to ensure successful reproduction and not the preservation of health and longevity, and this entails trade-offs both between traits and across the life course. Developmental plasticity adjusts the developmental trajectory so that the phenotype in childhood and through peak reproduction will suit predicted environmental conditions - a capacity that may become maladaptive should early-life predictions be inaccurate. Bipedalism and consequent pelvic narrowing in humans have led to the evolution of secondary altricialism. Shorter inter-birth intervals enabled by appropriate social support structures have allowed increased fecundity/fitness. The age at puberty has fallen over the past two centuries, perhaps resulting from changes in maternal and infant health and nutrition. The timing of puberty is also advanced by conditions of high extrinsic mortality in hunter-gatherers and is reflected in developed countries where a poor or disadvantaged start to life may also accelerate maturation. The postpubertal individual is physically and psychosexually mature, but neural executive function only reaches full maturity in the third decade of life; this mismatch may account for increased adolescent morbidity and mortality in those with earlier pubertal onset. PMID:23502143

  17. Quantifying the evolutionary divergence of protein structures: the role of function change and function conservation.

    Science.gov (United States)

    Pascual-García, Alberto; Abia, David; Méndez, Raúl; Nido, Gonzalo S; Bastolla, Ugo

    2010-01-01

    The molecular clock hypothesis, stating that protein sequences diverge in evolution by accumulating amino acid substitutions at an almost constant rate, played a major role in the development of molecular evolution and boosted quantitative theories of evolutionary change. These studies were extended to protein structures by the seminal paper by Chothia and Lesk, which established the approximate proportionality between structure and sequence divergence. Here we analyse how function influences the relationship between sequence and structure divergence, studying four large superfamilies of evolutionarily related proteins: globins, aldolases, P-loop and NADP-binding. We introduce the contact divergence, which is more consistent with sequence divergence than previously used structure divergence measures. Our main findings are: (1) Small structure and sequence divergences are proportional, consistent with the molecular clock. Approximate validity of the clock is also supported by the analysis of the clustering coefficient of structure similarity networks. (2) Functional constraints strongly limit the structure divergence of proteins performing the same function and may allow to identify incomplete or wrong functional annotations. (3) The rate of structure versus sequence divergence is larger for proteins performing different functions than for proteins performing the same function. We conjecture that this acceleration is due to positive selection for new functions. Accelerations in structure divergence are also suggested by the analysis of the clustering coefficient. (4) For low sequence identity, structural diversity explodes. We conjecture that this explosion is related to functional diversification. (5) Large indels are almost always associated with function changes.

  18. Modeling tumor evolutionary dynamics

    Directory of Open Access Journals (Sweden)

    Beatriz eStransky

    2013-02-01

    Full Text Available Tumorigenesis can be seen as an evolutionary process, in which the transformation of a normal cell into a tumor cell involves a number of limiting genetic and epigenetic events, occurring in a series of discrete stages. However, not all mutations in a cell are directly involved in cancer development and it is likely that most of them (passenger mutations do not contribute in any way to tumorigenesis. Moreover, the process of tumor evolution is punctuated by selection of advantageous (driver mutations and clonal expansions. Regarding these driver mutations, it is uncertain how many limiting events are required and / or sufficient to promote a tumorigenic process or what are the values associated with the adaptive advantage of different driver mutations. In spite of the availability of high-quality cancer data, several assumptions about the mechanistic process of cancer initiation and development remain largely untested, both mathematically and statistically. Here we review the development of mathematical/computational models where some assumptions were tested and discuss the impact of these models to the field of tumor biology.

  19. Industrial Applications of Evolutionary Algorithms

    CERN Document Server

    Sanchez, Ernesto; Tonda, Alberto

    2012-01-01

    This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the

  20. Two evolutionary lineages: Machiavellian and Bohrian intelligence

    CERN Document Server

    Skopec, Robert

    2007-01-01

    Two evolutionary lineages: Machiavellian and Bohrian intelligence Mutation and natural selection are the two most basic processes of evolution, yet the study of their interplay remains a challenge for theoretical and empirical research. Darwinian evolution favors genotypes with high replication rates, a process called survival of the fittest representing lineage of the Machiavellian inteligence. According to quasi-species theory, selection favors the cloud of genotypes, interconnected by mutation, whose average replication rate is highest: mutation acts as a selective agent to shape the entire genome so that is robust with respect to mutation. Thus survival of the flattest and inventivest representing lineage of the Bohrian intelligence at high mutation rates. Quasi-species theory predicts that, under appropriate conditions (high mutation pressure), such a mutation can be fixed in an evolving population, despite its lower replication rate.

  1. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    S. Whiteson

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces, a

  2. Evolutionary Processes and Mental Deficiency

    Science.gov (United States)

    Spitz, Herman H.

    1973-01-01

    The author hypothesizes that central nervous system damage of deficiency associated with mental retardation affects primarily those cortical processes which developed at a late stage in man's evolutionary history. (Author)

  3. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  4. The evolutionary ecology of C4 plants.

    Science.gov (United States)

    Christin, Pascal-Antoine; Osborne, Colin P

    2014-12-01

    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche--growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification.

  5. Investigating intertemporal choice through experimental evolutionary robotics.

    Science.gov (United States)

    Paglieri, Fabio; Parisi, Domenico; Patacchiola, Massimiliano; Petrosino, Giancarlo

    2015-06-01

    In intertemporal choices, subjects face a trade-off between value and delay: achieving the most valuable outcome requires a longer time, whereas the immediately available option is objectively poorer. Intertemporal choices are ubiquitous, and comparative studies reveal commonalities and differences across species: all species devalue future rewards as a function of delay (delay aversion), yet there is a lot of inter-specific variance in how rapidly such devaluation occurs. These differences are often interpreted in terms of ecological rationality, as depending on environmental factors (e.g., feeding ecology) and the physiological and morphological constraints of different species (e.g., metabolic rate). Evolutionary hypotheses, however, are hard to verify in vivo, since it is difficult to observe precisely enough real environments, not to mention ancestral ones. In this paper, we discuss the viability of an approach based on evolutionary robotics: in Study 1, we evolve robots without a metabolism in five different ecologies; in Study 2, we evolve metabolic robots (i.e., robots that consume energy over time) in three different ecologies. The intertemporal choices of the robots are analyzed both in their ecology and under laboratory conditions. Results confirm the generality of delay aversion and the usefulness of studying intertemporal choice through experimental evolutionary robotics.

  6. Evolutionary computation for trading systems

    OpenAIRE

    Kaucic, Massimiliano

    2008-01-01

    Evolutionary computations, also called evolutionary algorithms, consist of several heuristics, which are able to solve optimization tasks by imitating some aspects of natural evolution. They may use different levels of abstraction, but they are always working on populations of possible solutions for a given task. The basic idea is that if only those individuals of a population which meet a certain selection criteria reproduce, while the remaining individuals die, the population wi...

  7. Counterpunishment revisited: an evolutionary approach

    OpenAIRE

    Wolff, Irenaeus

    2009-01-01

    Evolutionary game theory has shown that in environments characterised by a social-dilemma situation punishment may be an adaptive behaviour. Experimental evidence closely corresponds to this finding but yields contradictory results on the cooperation-enhancing effect of punishment if players are allowed to retaliate against their punishers. The present study sets out to examine the question of whether cooperation will still be part of an evolutionary stable strategy if we allow for counterpun...

  8. Behaviour Trees for Evolutionary Robotics

    OpenAIRE

    Scheper, Kirk Y. W.; Tijmons, Sjoerd; de Visser, Coen C.; de Croon, Guido C. H. E.

    2014-01-01

    Evolutionary Robotics allows robots with limited sensors and processing to tackle complex tasks by means of sensory-motor coordination. In this paper we show the first application of the Behaviour Tree framework to a real robotic platform using the Evolutionary Robotics methodology. This framework is used to improve the intelligibility of the emergent robotic behaviour as compared to the traditional Neural Network formulation. As a result, the behaviour is easier to comprehend and manually ad...

  9. Evolutionary status of Be stars

    Science.gov (United States)

    Zorec, J.; Frémat, Y.; Cidale, L.

    2004-12-01

    Fundamental parameters of nearly 50 field Be stars have been determined. Correcting these parameters from gravity darkening effects induced the fast rotation, we deduced the evolutionary phase of the studied stars. We show that the evolutionary phase at which appear the Be phenomenon is mass dependent: the smaller the stellar mass the elder the phase in the main sequence at which the Be phenomenon seem to appear.

  10. Evolutionary Explanations of Eating Disorders

    OpenAIRE

    Igor Kardum; Asmir Gračanin; Jasna Hudek-Knežević

    2008-01-01

    This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evoluti...

  11. Evolutionary economics and regional policy

    OpenAIRE

    Lambooy, Jan G.; Boschma, Ron

    2001-01-01

    The principal objective of this paper is to formulate some possible links between evolutionary economics and regional policy, a topic that has not (yet) been covered by the literature. We firstly give a brief overview of some issues of regional policy, conceived as a strategy to influence the spatial matrix of economic development. Then, we outline what we take to be the essential arguments and components of evolutionary economics. More in particular, we focus attention on the economic founda...

  12. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  13. Application of electron accelerator worldwide

    International Nuclear Information System (INIS)

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  14. PROTON ACCELERATION AT OBLIQUE SHOCKS

    International Nuclear Information System (INIS)

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  15. Proton Acceleration at Oblique Shocks

    Science.gov (United States)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  16. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  17. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  18. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katsouleas, Thomas C. [Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering; Sahai, Aakash A. [Imperial College, London (United Kingdom). Dept. of Physics

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of the laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.

  19. Evolutionary pattern of fusulinacean foraminifer in Maokouan, middle Permian

    Institute of Scientific and Technical Information of China (English)

    杨湘宁; 周建平; 刘家润; 施贵军

    1999-01-01

    A composite standard section (CSS) has been established for the Maokouan (≈Guadalupian) in Guizhou Province, southwestern China, which includes stratigraphical ranges of 179 fusulinacean species from five sections of the Maokou Formation in this area. Based on statistical results of the first and last appearances of fusulinacean species in the CSS, three evolutionary radiations and four pulses of extinction, characterized by high rates of species origination and extinction significantly different from the rates of background evolution, are recognized in the Maokouan fusulinacean fauna. The evolutionary pattern of fusulinacean foraminifer suggests that the Maokouan mass extinction probably started at the middle Maokouan and dramatically intensified in the late Maokouan.

  20. Objective and Longitudinal Assessment of Dermatitis After Postoperative Accelerated Partial Breast Irradiation Using High-Dose-Rate Interstitial Brachytherapy in Patients With Breast Cancer Treated With Breast Conserving Therapy: Reduction of Moisture Deterioration by APBI

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Eiichi [Department of Radiation Oncology, National Hospital Organization, Osaka National Hospital, Osaka (Japan); Yamazaki, Hideya, E-mail: hideya10@hotmail.com [Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yoshida, Ken; Takenaka, Tadashi [Department of Radiation Oncology, National Hospital Organization, Osaka National Hospital, Osaka (Japan); Masuda, Norikazu [Department of Surgery and Breast Oncology, National Hospital Organization, Osaka National Hospital, Osaka (Japan); Kotsuma, Tadayuki; Yoshioka, Yasuo; Inoue, Takehiro [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita (Japan)

    2011-11-15

    Purpose: To objectively evaluate the radiation dermatitis caused by accelerated partial breast irradiation (APBI) using high-dose-rate interstitial brachytherapy. Patients and Methods: The skin color and moisture changes were examined using a newly installed spectrophotometer and corneometer in 22 patients who had undergone APBI using open cavity implant high-dose-rate interstitial brachytherapy (36 Gy in six fractions) and compared with the corresponding values for 44 patients in an external beam radiotherapy (EBRT) control group (50-60 Gy in 25-30 fractions within 5-6 weeks) after breast conserving surgery. Results: All values changed significantly as a result of APBI. The extent of elevation in a Asterisk-Operator (reddish) and reduction in L Asterisk-Operator (black) values caused by APBI were similar to those for EBRT, with slightly delayed recovery for 6-12 months after treatment owing to the surgical procedure. In contrast, only APBI caused a change in the b Asterisk-Operator values, and EBRT did not, demonstrating that the reduction in b Asterisk-Operator values (yellowish) depends largely on the surgical procedure. The changes in moisture were less severe after APBI than after EBRT, and the recovery was more rapid. The toxicity assessment using the Common Toxicity Criteria, version 3, showed that all dermatitis caused by APBI was Grade 2 or less. Conclusion: An objective analysis can quantify the effects of APBI procedures on color and moisture cosmesis. The radiation dermatitis caused by APBI using the present schedule showed an equivalent effect on skin color and a less severe effect on moisture than the effects caused by standard EBRT.

  1. A cyclic behavior of CME accelerations for accelerating and decelerating events

    Institute of Scientific and Technical Information of China (English)

    Peng-Xin Gao; Ke-Jun Li

    2009-01-01

    We investigate the cyclic evolutionary behavior of CME accelerations for accelerating and decelerating CME events in cycle 23 from 1997 January to 2007 December.It is found that the absolute values of semiannual mean accelerations of both accelerating and decelerating CME events roughly wax and wane in a cycle,delaying the sunspot cycle in time phase.We also investigate the semiannual number of CMEs with positive and negative acceleration and find that there are more decelerating CME events than accelerating CME events during the maximum period of a cycle (about three years),but there are more accelerating CME events than decelerating CME events during the rest of the time interval of the cycle.Our results seem to suggest that the different driving mechanisms may be acting accelerate and decelerate CME events: for accelerating CME events,the propelling force (Fp) statistically seems to play a significant role in pushing CMEs outward;for decelerating CME events,the drag (F_d) statistically seems to play a more effective role in determining CME kinematic evolution in the outer corona.During the maximum period of a cycle,because of the V_2 dependence,Fd is generally stronger; because of the magnetic field dependence,Fp is also generally stronger.Thus,the absolute values of both the negative and positive accelerations are generally larger during that time.Because of the V2 dependence,Fd may be more effective during the maximum period of a cycle.Hence,there are more decelerating CME events than accelerating CME events during that time.During the minimum time interval of a cycle,CMEs have relatively small speeds,and Fp may be more effective.Therefore,there are more accelerating CME events than decelerating CME events during that time.

  2. Extinction Events Can Accelerate Evolution

    DEFF Research Database (Denmark)

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate...... evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending...... computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific...

  3. Evolutionary biology and life histories

    Directory of Open Access Journals (Sweden)

    Brown, C. R.

    2004-06-01

    Full Text Available The demographic processes that drive the spread of populations through environments and in turn determine the abundance of organisms are the same demographic processes that drive the spread of genes through populations and in turn determine gene frequencies and fitness. Conceptually, marked similarities exist in the dynamic processes underlying population ecology and those underlying evolutionary biology. Central to an understanding of both disciplines is life history and its component demographic rates, such as survival, fecundity, and age of first breeding, and biologists from both fields have a vested interest in good analytical machinery for the estimation and analysis of these demographic rates. In the EURING conferences, we have been striving since the mid 1980s to promote a quantitative understanding of demographic rates through interdisciplinary collaboration between ecologists and statisticians. From the ecological side, the principal impetus has come from population biology, and in particular from wildlife biology, but the importance of good quantitative insights into demographic processes has long been recognized by a number of evolutionary biologists (e.g., Nichols & Kendall, 1995; Clobert, 1995; Cooch et al., 2002. In organizing this session, we have aimed to create a forum for those committed to gaining the best possible understanding of evolutionary processes through the application of modern quantitative methods for the collection and interpretation of data on marked animal populations. Here we present a short overview of the material presented in the session on evolutionary biology and life histories. In a plenary talk, Brown & Brown (2004 explored how mark–recapture methods have allowed a better understanding of the evolution of group–living and alternative reproductive tactics in colonial cliff swallows (Petrochelidon pyrrhonota. By estimating the number of transient birds passing through colonies of different sizes, they

  4. The major synthetic evolutionary transitions.

    Science.gov (United States)

    Solé, Ricard

    2016-08-19

    Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID:27431528

  5. The major synthetic evolutionary transitions

    Science.gov (United States)

    Solé, Ricard

    2016-01-01

    Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528

  6. Evolutionary genetics of maternal effects.

    Science.gov (United States)

    Wolf, Jason B; Wade, Michael J

    2016-04-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single-locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype-phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype-phenotype relationship frequency dependent, resulting in the appearance of negative frequency-dependent selection, while additive MGEs contribute a component of parent-of-origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be "available" to the evolving population. PMID:26969266

  7. Discovery and Optimization of Materials Using Evolutionary Approaches.

    Science.gov (United States)

    Le, Tu C; Winkler, David A

    2016-05-25

    Materials science is undergoing a revolution, generating valuable new materials such as flexible solar panels, biomaterials and printable tissues, new catalysts, polymers, and porous materials with unprecedented properties. However, the number of potentially accessible materials is immense. Artificial evolutionary methods such as genetic algorithms, which explore large, complex search spaces very efficiently, can be applied to the identification and optimization of novel materials more rapidly than by physical experiments alone. Machine learning models can augment experimental measurements of materials fitness to accelerate identification of useful and novel materials in vast materials composition or property spaces. This review discusses the problems of large materials spaces, the types of evolutionary algorithms employed to identify or optimize materials, and how materials can be represented mathematically as genomes, describes fitness landscapes and mutation operators commonly employed in materials evolution, and provides a comprehensive summary of published research on the use of evolutionary methods to generate new catalysts, phosphors, and a range of other materials. The review identifies the potential for evolutionary methods to revolutionize a wide range of manufacturing, medical, and materials based industries. PMID:27171499

  8. Discovery and Optimization of Materials Using Evolutionary Approaches.

    Science.gov (United States)

    Le, Tu C; Winkler, David A

    2016-05-25

    Materials science is undergoing a revolution, generating valuable new materials such as flexible solar panels, biomaterials and printable tissues, new catalysts, polymers, and porous materials with unprecedented properties. However, the number of potentially accessible materials is immense. Artificial evolutionary methods such as genetic algorithms, which explore large, complex search spaces very efficiently, can be applied to the identification and optimization of novel materials more rapidly than by physical experiments alone. Machine learning models can augment experimental measurements of materials fitness to accelerate identification of useful and novel materials in vast materials composition or property spaces. This review discusses the problems of large materials spaces, the types of evolutionary algorithms employed to identify or optimize materials, and how materials can be represented mathematically as genomes, describes fitness landscapes and mutation operators commonly employed in materials evolution, and provides a comprehensive summary of published research on the use of evolutionary methods to generate new catalysts, phosphors, and a range of other materials. The review identifies the potential for evolutionary methods to revolutionize a wide range of manufacturing, medical, and materials based industries.

  9. IDEA: Interactive Display for Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Carlton Jane M

    2008-12-01

    Full Text Available Abstract Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses, an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  10. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as...

  11. Neuronal boost to evolutionary dynamics

    Science.gov (United States)

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  12. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  13. Particle acceleration by combined diffusive shock acceleration and downstream multiple magnetic island acceleration

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.

    2015-09-01

    As a consequence of the evolutionary conditions [28; 29], shock waves can generate high levels of downstream vortical turbulence. Simulations [32-34] and observations [30; 31] support the idea that downstream magnetic islands (also called plasmoids or flux ropes) result from the interaction of shocks with upstream turbulence. Zank et al. [18] speculated that a combination of diffusive shock acceleration (DSA) and downstream reconnection-related effects associated with the dynamical evolution of a “sea of magnetic islands” would result in the energization of charged particles. Here, we utilize the transport theory [18; 19] for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets to investigate a combined DSA and downstream multiple magnetic island charged particle acceleration mechanism. We consider separately the effects of the anti-reconnection electric field that is a consequence of magnetic island merging [17], and magnetic island contraction [14]. For the merging plasmoid reconnection- induced electric field only, we find i) that the particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory, and ii) that the solution is constant downstream of the shock. For downstream plasmoid contraction only, we find that i) the accelerated particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory; ii) for a given energy, the particle intensity peaks downstream of the shock, and the peak location occurs further downstream of the shock with increasing particle energy, and iii) the particle intensity amplification for a particular particle energy, f(x, c/c0)/f(0, c/c0), is not 1, as predicted by DSA theory, but increases with increasing particle energy. These predictions can be tested against observations of electrons and ions accelerated at interplanetary shocks and the heliospheric

  14. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    Science.gov (United States)

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion.

  15. A Hierachical Evolutionary Algorithm for Multiobjective Optimization in IMRT

    CERN Document Server

    Holdsworth, Clay; Liao, Jay; Phillips, Mark H

    2012-01-01

    Purpose: Current inverse planning methods for IMRT are limited because they are not designed to explore the trade-offs between the competing objectives between the tumor and normal tissues. Our goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: We developed a hierarchical evolutionary multiobjective algorithm designed to quickly generate a diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the trade-offs in the plans. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then...

  16. Evolutionary optimization of optical antennas

    CERN Document Server

    Feichtner, Thorsten; Kiunke, Markus; Hecht, Bert

    2012-01-01

    The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.

  17. The evolutionary psychology of hunger.

    Science.gov (United States)

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. PMID:27328100

  18. Evolutionary Aesthetics and Print Advertising

    Directory of Open Access Journals (Sweden)

    Kamil Luczaj

    2015-06-01

    Full Text Available The article analyzes the extent to which predictions based on the theory of evolutionary aesthetics are utilized by the advertising industry. The purpose of a comprehensive content analysis of print advertising is to determine whether the items indicated by evolutionists such as animals, flowers, certain types of landscapes, beautiful humans, and some colors are part of real advertising strategies. This article has shown that many evolutionary hypotheses (although not all of them are supported by empirical data. Along with these hypotheses, some inferences from Bourdieu’s cultural capital theory were tested. It turned out that advertising uses both biological schemata and cultural patterns to make an image more likable.

  19. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...

  20. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard [Univ. of Maryland, College Park, MD (United States)

    2016-07-01

    This grant supported basic experimental, theoretical and computer simulation research into developing a compact, high pulse repetition rate laser accelerator using the direct laser acceleration mechanism in plasma-based slow wave structures.

  1. 绝热加速量热仪表征含能材料热感度的探讨%Thermal Sensitivity of Energetic Materials Characterized by Accelerating Rate Calorimeter(ARC)

    Institute of Scientific and Technical Information of China (English)

    刘颖; 杨茜; 陈利平; 何中其; 陆燕; 陈网桦

    2011-01-01

    对现有的固体含能材料热感度表征方法进行了简述,并针对现有表征方法无法适用于液态含能材料热感度测试的局限性,提出了采用绝热加速量热仪( ARC)表征含能材料热感度的方法.用ARC测试了4种固体含能材料太安(PETN)、黑索今(RDX)、奥克托今(HMX)、梯恩梯(TNT)以及2种液态含能材料硝基乙烷(NE)、硝酸异辛酯(EHN)的绝热分解过程,根据所得热动力学数据计算得出了这些被测试样不同爆炸延滞期对应的爆发点.就4种固体含能材料而言,ARC测试得到的热感度排序为PETN >RDX >HMX >TNT,此结果与传统的伍德合金浴法的测试结论一致,认为ARC可以应用于固体及液态含能材料的热感度测试.6种被测试样的热感度排序为EHN>PETN >RDX>HMX>TNT>NE.%Traditional test methods for thermal sensitivity of solid energetic materials were summarized. Aiming at the limitation of the fact that these methods cannot be applied to liquid energetic materials, a method using Accelerating Rate Calorimeter (ARC) to test thermal sensitivity of energetic materials was put forward. The decompositions of four solid explosives Pentaerythritol tetranitrate ( PETN ), Hexogen (RDX), Octogen (HMX), 2,4,6-Trinitrotoluene (TNT) and two liquid energetic materials Nitroethane (NE), 2-Ethylhexyl nitrate (EHN) were studied by ARC. Kinetic and thermodynamics parameters were calculated and analyzed. Temperature corresponding different time to maximum rate under adiabatic condition (0) was calculated. Thermal sensitivity of four solid energetic materials is PETN > RDX >HMX >TNT, which is consistent with the conclusion obtained by the traditional Wood's alloy bath method, therefore ARC can be employed to the test of the thermal sensitivity of both solid and liquid energetic material. The thermal sensitivity order of six energetic materials from high to low is EHN >PETN >RDX >HMX >TNT>NE.

  2. Instability in evolutionary games.

    Directory of Open Access Journals (Sweden)

    Zimo Yang

    Full Text Available BACKGROUND: Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities, quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of individuals interacting through the prisoner's dilemma and incorporating three mechanisms: (i imitation and mutation, (ii preferred selection on successful individuals, and (iii networking effects. METHODOLOGY/PRINCIPAL FINDINGS: We study the importance of each mechanism using simplified models. The models are studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of instability and the network topology is found to have almost no impact on instability if new links are added in a global manner. The results are valid in both the contexts of the snowdrift game and prisoner's dilemma. CONCLUSIONS/SIGNIFICANCE: The imitation and mutation mechanism, which gives a heterogeneous rate of change in the system's composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.

  3. Marriage: an evolutionary perspective.

    Science.gov (United States)

    Weisfeld, Glenn E; Weisfeld, Carol C

    2002-12-01

    Marriage is universal, and pair bonding is found in other species too with highly dependent young. So marriage functions as a reproductive social arrangement that traditionally involved the extended family. The sexes are not identical in their biological contributions to children's survival, so they seek somewhat different attributes in a mate. Men seek a young, attractive, sexually faithful bride. Women seek a man who is older, taller, and (as in many other species) socially dominant. Both sexes prefer a kind, healthy, attractive, similar mate who is emotionally attached to them. A spouse who fails to maintain sufficiently high mate value is vulnerable to divorce. Infertility and sexual dissatisfaction predict divorce, as does death of a child, but the more children, the stabler the marriage. Cross-cultural data suggest that cruel or subdominant men (e.g., poor providers) and unfaithful women are prone to divorce. Marriages in which the wife dominates the husband in economic contributions, nonverbal behavior, and decision making tend to be less satisfying. In societies in which wives are economically independent of husbands, divorce rates are high. As women's economic power has risen with industrialization, divorce rates have climbed. Economic and fitness considerations also help explain cultural differences in polygyny, age at marriage, arranged marriage, concern with the bride's sexual chastity, and marriage ceremonies. Other factors also affect marital dynamics, such as state subsidies to families, the sex ratio, and influence of the couple's parents.

  4. Micro Evolutionary Processes and Adaptation

    Institute of Scientific and Technical Information of China (English)

    SHADMANOV; R; K; RUBAN; I; N; VOROPAEVA; N; L; SHADMANOVA; A; R

    2008-01-01

    It would be well to note that in the absence of clear data about the formation of adaptation systems,or mechanisms of their occurrence,all that is recognized is the realization of the micro evolutionary processes.There is no well-defined connection between information exchange and formation of

  5. Evolutionary models of human personality

    NARCIS (Netherlands)

    Haysom, H.J.; Verweij, C.J.H.; Zietsch, B.P.

    2015-01-01

    Behavioral genetic studies have shown that around a third to a half of the between-individual variation in personality traits can be accounted for by genetic differences between individuals. There is rapidly growing interest in understanding the evolutionary basis of this genetic variation. In this

  6. Evolutionary Computation and its Application

    Institute of Scientific and Technical Information of China (English)

    Licheng Jiao; Lishan Kang; Zhenya He; Tao Xie

    2006-01-01

    @@ On Mar.23,2006,a project in the Major Program of NSFC-"Evolutionary computation and its application",managed by Prof.Licheng Jiao,Prof.Lishan Kang,Prof.Zhenya He,and Prof.Tao Xie,passed its Final Qualification Process and was evaluated as Excellent.

  7. Evolutionary dynamics of mammalian karyotypes

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-12-01

    Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....

  8. The Challange of Evolutionary Learning.

    Science.gov (United States)

    Banathy, Bela H.

    Emerging educational needs in the interdependent world of the Information Age are explored. The current global human predicament in the historical context of the evolution of human systems is examined. A description is given of a systems view of the current evolutionary stage and the new educational needs of the Information Age that can be derived…

  9. Evolutionary perspective in child growth.

    Science.gov (United States)

    Hochberg, Ze'ev

    2011-07-01

    Hereditary, environmental, and stochastic factors determine a child's growth in his unique environment, but their relative contribution to the phenotypic outcome and the extent of stochastic programming that is required to alter human phenotypes is not known because few data are available. This is an attempt to use evolutionary life-history theory in understanding child growth in a broad evolutionary perspective, using the data and theory of evolutionary predictive adaptive growth-related strategies. Transitions from one life-history phase to the next have inherent adaptive plasticity in their timing. Humans evolved to withstand energy crises by decreasing their body size, and evolutionary short-term adaptations to energy crises utilize a plasticity that modifies the timing of transition from infancy into childhood, culminating in short stature in times of energy crisis. Transition to juvenility is part of a strategy of conversion from a period of total dependence on the family and tribe for provision and security to self-supply, and a degree of adaptive plasticity is provided and determines body composition. Transition to adolescence entails plasticity in adapting to energy resources, other environmental cues, and the social needs of the maturing adolescent to determine life-span and the period of fecundity and fertility. Fundamental questions are raised by a life-history approach to the unique growth pattern of each child in his given genetic background and current environment.

  10. Evolutionary Perspective in Child Growth

    Directory of Open Access Journals (Sweden)

    Ze’ev Hochberg

    2011-07-01

    Full Text Available Hereditary, environmental, and stochastic factors determine a child’s growth in his unique environment, but their relative contribution to the phenotypic outcome and the extent of stochastic programming that is required to alter human phenotypes is not known because few data are available. This is an attempt to use evolutionary life-history theory in understanding child growth in a broad evolutionary perspective, using the data and theory of evolutionary predictive adaptive growth-related strategies. Transitions from one life-history phase to the next have inherent adaptive plasticity in their timing. Humans evolved to withstand energy crises by decreasing their body size, and evolutionary short-term adaptations to energy crises utilize a plasticity that modifies the timing of transition from infancy into childhood, culminating in short stature in times of energy crisis. Transition to juvenility is part of a strategy of conversion from a period of total dependence on the family and tribe for provision and security to self-supply, and a degree of adaptive plasticity is provided and determines body composition. Transition to adolescence entails plasticity in adapting to energy resources, other environmental cues, and the social needs of the maturing adolescent to determine life-span and the period of fecundity and fertility. Fundamental questions are raised by a life-history approach to the unique growth pattern of each child in his given genetic background and current environment.

  11. Genetical Genomics for Evolutionary Studies

    NARCIS (Netherlands)

    Prins, J.C.P.; Smant, G.; Jansen, R.C.

    2012-01-01

    enetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome i

  12. Evolutionary trends in directional hearing

    DEFF Research Database (Denmark)

    Carr, Catherine E; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and...

  13. Evolutionary Psychology and Intelligence Research

    Science.gov (United States)

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…

  14. Analyzing Nonstationary Random Response of a SDOF System under the Evolutionary Random Excitation by Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LI Fang-bing; ZHANG Tian-shu

    2006-01-01

    For evolutionary random excitations, a general method of analyzing nonstationary random responses of systems was presented in this paper. Firstly, for the evolutionary random excitation model, the evolutionary power spectrum density function (EPSD) of a random excitation was given by wavelet transform. Based on the EPSD, the nonstationary responses of a SDOF system subjected to evolutionary random excitations were studied. The application and validity of presented method were illustrated by numerical examples. In numerical examples, the recently developed stochastic models for EI Contro (1934) and Mexico City (1985) earthquakes which preserve the nonstationary evolutions of amplitude and frequency content of ground accelerations were used as excitations. The nonstationary random mean-square responses of a SDOF system under these two excitations were evaluated and compared with simulated results.

  15. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  16. The direction of acceleration

    Science.gov (United States)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  17. Virtual gap dielectric wall accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  18. OPTIMISED RANDOM MUTATIONS FOR EVOLUTIONARY ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Sean McGerty

    2014-07-01

    Full Text Available To demonstrate our approaches we will use Sudoku puzzles, which are an excellent test bed for evolutionary algorithms. The puzzles are accessible enough for people to enjoy. However the more complex puzzles require thousands of iterations before an evolutionary algorithm finds a solution. If we were attempting to compare evolutionary algorithms we could count their iterations to solution as an indicator of relative efficiency. Evolutionary algorithms however include a process of random mutation for solution candidates. We will show that by improving the random mutation behaviours we were able to solve problems with minimal evolutionary optimisation. Experiments demonstrated the random mutation was at times more effective at solving the harder problems than the evolutionary algorithms. This implies that the quality of random mutation may have a significant impact on the performance of evolutionary algorithms with Sudoku puzzles. Additionally this random mutation may hold promise for reuse in hybrid evolutionary algorithm behaviours.

  19. Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome.

    Directory of Open Access Journals (Sweden)

    Leonardo Arbiza

    2006-04-01

    Full Text Available For years evolutionary biologists have been interested in searching for the genetic bases underlying humanness. Recent efforts at a large or a complete genomic scale have been conducted to search for positively selected genes in human and in chimp. However, recently developed methods allowing for a more sensitive and controlled approach in the detection of positive selection can be employed. Here, using 13,198 genes, we have deduced the sets of genes involved in rate acceleration, positive selection, and relaxation of selective constraints in human, in chimp, and in their ancestral lineage since the divergence from murids. Significant deviations from the strict molecular clock were observed in 469 human and in 651 chimp genes. The more stringent branch-site test of positive selection detected 108 human and 577 chimp positively selected genes. An important proportion of the positively selected genes did not show a significant acceleration in rates, and similarly, many of the accelerated genes did not show significant signals of positive selection. Functional differentiation of genes under rate acceleration, positive selection, and relaxation was not statistically significant between human and chimp with the exception of terms related to G-protein coupled receptors and sensory perception. Both of these were over-represented under relaxation in human in relation to chimp. Comparing differences between derived and ancestral lineages, a more conspicuous change in trends seems to have favored positive selection in the human lineage. Since most of the positively selected genes are different under the same functional categories between these species, we suggest that the individual roles of the alternative positively selected genes may be an important factor underlying biological differences between these species.

  20. Accelerator vacuum system elements

    International Nuclear Information System (INIS)

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  1. Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential.

    Science.gov (United States)

    Stapleford, Kenneth A; Coffey, Lark L; Lay, Sreyrath; Bordería, Antonio V; Duong, Veasna; Isakov, Ofer; Rozen-Gagnon, Kathryn; Arias-Goeta, Camilo; Blanc, Hervé; Beaucourt, Stéphanie; Haliloğlu, Türkan; Schmitt, Christine; Bonne, Isabelle; Ben-Tal, Nir; Shomron, Noam; Failloux, Anna-Bella; Buchy, Philippe; Vignuzzi, Marco

    2014-06-11

    The high replication and mutation rates of RNA viruses can result in the emergence of new epidemic variants. Thus, the ability to follow host-specific evolutionary trajectories of viruses is essential to predict and prevent epidemics. By studying the spatial and temporal evolution of chikungunya virus during natural transmission between mosquitoes and mammals, we have identified viral evolutionary intermediates prior to emergence. Analysis of virus populations at anatomical barriers revealed that the mosquito midgut and salivary gland pose population bottlenecks. By focusing on virus subpopulations in the saliva of multiple mosquito strains, we recapitulated the emergence of a recent epidemic strain of chikungunya and identified E1 glycoprotein mutations with potential to emerge in the future. These mutations confer fitness advantages in mosquito and mammalian hosts by altering virion stability and fusogenic activity. Thus, virus evolutionary trajectories can be predicted and studied in the short term before new variants displace currently circulating strains.

  2. Evolutionary traps and range shifts in a rapidly changing world.

    Science.gov (United States)

    Hale, Robin; Morrongiello, John R; Swearer, Stephen E

    2016-06-01

    Humans are altering the environment at an unprecedented rate. Although behavioural plasticity has allowed many species to respond by shifting their ranges to more favourable conditions, these rapid environmental changes may cause 'evolutionary traps', whereby animals mistakenly prefer resources that reduce their fitness. The role of evolutionary traps in influencing the fitness consequences of range shifts remains largely unexplored. Here, we review these interactions by considering how climate change may trigger maladaptive developmental pathways or increase the probability of animals encountering traps. We highlight how traps could selectively remove some phenotypes and compromise population persistence. We conclude by highlighting emerging areas of research that would improve our understanding of when interactions between evolutionary traps and range shifts are likely to be most detrimental to animals. PMID:27330167

  3. Electron accelerators for radiation sterilization

    International Nuclear Information System (INIS)

    Industrial radiation processes using high power electron accelerators are attractive because the throughput rates are very high and the treatment costs per unit of product are often competitive with more conventional chemical processes. The utilization of energy in e-beam processing is more efficient than typical thermal processing. The use of volatiles or toxic chemicals can be avoided. Strict temperature or moisture controls may not be needed. Irradiated materials are usable immediately after processing. These capabilities are unique in that beneficial changes can be induced rapidly in solid materials and preformed products. In recent years, e-beam accelerators have emerged as the preferred alternative for industrial processing as they offer advantages over isotope radiation sources, such as (a) increased public acceptance since the storage, transport and disposal of radioactive material is not an issue; (b) the ability to hook up with the manufacturing process for in-line processing; (c) higher dose rates resulting in high throughputs. During the 1980s and 1990s, accelerator manufacturers dramatically increased the beam power available for high energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed, since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain low unit costs for the treatment. During the late 1980s and early 1990s, advances in e-beam technology produced new high energy, high power e-beam accelerators suitable for use in sterilization on an industrial scale. These newer designs achieved high levels of reliability and proved to be competitive with gamma sterilization by 60Co and fumigation with EtO. In parallel, technological advances towards 'miniaturization' of accelerators also made it possible to

  4. An Evolutionary Framework for 3-SAT Problems

    OpenAIRE

    Borgulya, István

    2003-01-01

    In this paper we present a new evolutionary framework for 3-SAT. This method can be divided into three stages, where each stage is an evolutionary algorithm. The first stage improves the quality of the initial population. The second stage improves the speed of the algorithm periodically generating new solutions. The 3rd stage is a hybrid evolutionary algorithm, which improves the solutions with a local search. The key points of our algorithm are the evolutionary framework and the mutation ope...

  5. From computers to cultivation: reconceptualizing evolutionary psychology

    OpenAIRE

    Louise eBarrett; Thomas ePollet; Gert eStulp

    2014-01-01

    Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behaviour, and the rigour with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated...

  6. From computers to cultivation: reconceptualizing evolutionary psychology

    OpenAIRE

    Barrett, Louise; Pollet, Thomas V.; Stulp, Gert

    2014-01-01

    Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated....

  7. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  8. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  9. Standing wave linear accelerator

    International Nuclear Information System (INIS)

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  10. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  11. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  12. The citation field of evolutionary economics

    NARCIS (Netherlands)

    Dolfsma, Wilfred; Leydesdorff, Loet

    2010-01-01

    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal tha

  13. Maximal Acceleration Is Nonrotating

    OpenAIRE

    Page, Don N.

    1997-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruenc...

  14. A Solid state accelerator

    International Nuclear Information System (INIS)

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  15. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  16. Accelerators at school

    International Nuclear Information System (INIS)

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  17. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  18. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  19. Accelerators and Dinosaurs

    CERN Document Server

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  20. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  1. Evolutionary Approaches to Expensive Optimisation

    Directory of Open Access Journals (Sweden)

    Maumita Bhattacharya

    2013-03-01

    Full Text Available Surrogate assisted evolutionary algorithms (EA are rapidly gaining popularity where applications of EA in complex real world problem domains are concerned. Although EAs are powerful global optimizers, finding optimal solution to complex high dimensional, multimodal problems often require very expensive fitness function evaluations. Needless to say, this could brand any population-based iterative optimization technique to be the most crippling choice to handle such problems. Use of approximate model or surrogates provides a much cheaper option. However, naturally this cheaper option comes with its own price! This paper discusses some of the key issues involved with use of approximation in evolutionary algorithm, possible best practices and solutions. Answers to the following questions have been sought: what type of fitness approximation to be used; which approximation model to use; how to integrate the approximation model in EA; how much approximation to use; and how to ensure reliable approximation.

  2. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light......This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...

  3. Evolutionary Games and Social Conventions

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2007-01-01

    in Aumann (1976) and which, together with the assumptions of perfect rationality, came to be defining of classical game theory. However, classical game theory is currently undergoing severe crisis as a tool for exploring social phenomena; a crisis emerging from the problem of equilibrium selection around...... which any theory of convention must revolve. In response, the so-called evolutionary turn has developed. While retaining the broad framework, in which games are described in terms of strategies and payoffs, this marks a transition from the classical assumptions of perfect rationality and common...... knowledge to assumptions characterising agents as conditioned for playing certain strategies upon the population of which evolutionary processes operate. By providing accounts of equilibrium selection and stability properties of behaviours, the resulting frameworks have been brought to work as well...

  4. Evolutionary model of stock markets

    Science.gov (United States)

    Kaldasch, Joachim

    2014-12-01

    The paper presents an evolutionary economic model for the price evolution of stocks. Treating a stock market as a self-organized system governed by a fast purchase process and slow variations of demand and supply the model suggests that the short term price distribution has the form a logistic (Laplace) distribution. The long term return can be described by Laplace-Gaussian mixture distributions. The long term mean price evolution is governed by a Walrus equation, which can be transformed into a replicator equation. This allows quantifying the evolutionary price competition between stocks. The theory suggests that stock prices scaled by the price over all stocks can be used to investigate long-term trends in a Fisher-Pry plot. The price competition that follows from the model is illustrated by examining the empirical long-term price trends of two stocks.

  5. Evaluation of the environmental equivalent dose rate using area monitors for neutrons in clinical linear accelerators; Avaliacao da taxa de equivalente de dose ambiente utilizando monitores de area para neutrons em aceleradores lineares clinicos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da, E-mail: asalgado@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The Neutron Laboratory of the Radioprotection and Dosimetry Institute - IRD/CNEN, Rio de Janeiro, Brazil, initiated studies on the process of calibration of neutron area monitors and the results of the measurements performed at radiotherapy treatment rooms, containing clinical accelerators

  6. Evolutionary biology and life histories

    OpenAIRE

    Brown, C R; Thomson, D. L.

    2004-01-01

    The demographic processes that drive the spread of populations through environments and in turn determine the abundance of organisms are the same demographic processes that drive the spread of genes through populations and in turn determine gene frequencies and fitness. Conceptually, marked similarities exist in the dynamic processes underlying population ecology and those underlying evolutionary biology. Central to an understanding of both disciplines is life history and its component demogr...

  7. Evolutionary potential games on lattices

    OpenAIRE

    Szabo, Gyorgy; Borsos, Istvan

    2015-01-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition h...

  8. Evolutionary robotics – A review

    Indian Academy of Sciences (India)

    Dilip Kumar Pratihar

    2003-12-01

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to solve this problem. This paper provides a survey on some of these important studies carried out in the recent past.

  9. Testing evolutionary convergence on Europa

    International Nuclear Information System (INIS)

    A major objective in solar system exploration is the insertion of appropriate biology-oriented experiments in future missions. We discuss various reasons for suggesting that this type of research be considered a high priority for feasibility studies and, subsequently, for technological development of appropriate melters and submersibles. Based on numerous examples, we argue in favour of the assumption that Darwin's theory is valid for the evolution of life anywhere in the universe. We have suggested how to obtain preliminary insights into the question of the distribution of life in the universe. Universal evolution of intelligent behaviour is at the end of an evolutionary pathway, in which evolution of ion channels in the membrane of microorganisms occurs in its early stages. Further, we have argued that a preliminary test of this conjecture is feasible with experiments on the Europan surface or ocean, involving evolutionary biosignatures (ion channels). This aspect of the exploration for life in the solar system should be viewed as a complement to the astronomical approach for the search of evidence of the later stages of the evolutionary pathways towards intelligent behaviour. (author)

  10. Direct Laser Acceleration in Laser Wakefield Accelerators

    OpenAIRE

    Shaw, Jessica

    2016-01-01

    In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are t...

  11. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  12. Maternal capital and the metabolic ghetto: An evolutionary perspective on the transgenerational basis of health inequalities.

    Science.gov (United States)

    Wells, Jonathan C K

    2010-01-01

    There is particular interest in understanding socioeconomic and ethnic variability in health status. The developmental origins of disease hypothesis emphasize the importance of growth patterns across the life-course in relation to noncommunicable disease risk. The physiological components of cardiovascular risk, collectively termed the metabolic syndrome, derive in part from a disparity between the homeostatic "metabolic capacity" of vital organs and the "metabolic load" induced by large tissue masses, a rich diet and sedentary behavior. From an evolutionary perspective, the risk of such disparity is decreased by maternal physiology regulating offspring growth trajectory during gestation and lactation. Maternal capital, defined as phenotypic resources enabling investment in the offspring, allows effective buffering of the offspring from nutritional perturbations and represents the environmental niche initially occupied by the offspring. Offspring growth patterns are sensitive to the magnitude of maternal capital during early windows of plasticity. Offspring life-history strategy can then respond adaptively to further factors across the life-course, but only within the context of this initial maternal influence on growth. Maternal somatic capital is primarily gained or lost across generations, through variable rates of fetal and infant growth. I argue that the poor nutritional experience of populations subjected to colonialism resulted in a systematic loss of maternal capital, reflected in downward secular trends in stature. Accelerating the recovery of somatic capital within generations overloads metabolic capacity and exacerbates cardiovascular risk, reflected in increased disease rates in urbanizing and emigrant populations. Public health policies need to benefit metabolic capacity without exacerbating metabolic load.

  13. Functionality of intergenic transcription: an evolutionary comparison.

    Directory of Open Access Journals (Sweden)

    Philipp Khaitovich

    2006-10-01

    Full Text Available Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts.

  14. Functionality of Intergenic Transcription: An Evolutionary Comparison

    Science.gov (United States)

    Visagie, Johann; Giger, Thomas; Joerchel, Sabrina; Petzold, Ekkehard; Green, Richard E; Lachmann, Michael; Pääbo, Svante

    2006-01-01

    Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts. PMID:17040132

  15. An Evolutionary Perspective on the Crabtree Effect

    Directory of Open Access Journals (Sweden)

    Thomas ePfeiffer

    2014-10-01

    Full Text Available The capability to ferment sugars into ethanol is a key metabolic trait of yeasts. Crabtree-positive yeasts use fermentation even in the presence of oxygen, where they could, in principle, rely on the respiration pathway. This is surprising because fermentation has a much lower ATP yield than respiration (2 ATP vs. approximately 18 ATP per glucose. While genetic events in the evolution of the Crabtree effect have been identified, the selective advantages provided by this trait remain controversial. In this review we analyse explanations for the emergence of the Crabtree effect from an evolutionary and game-theoretical perspective. We argue that an increased rate of ATP production is likely the most important factor behind the emergence of the Crabtree effect.

  16. Detection of linear ego-acceleration from optic flow.

    Science.gov (United States)

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  17. Top predators induce the evolutionary diversification of intermediate predator species.

    Science.gov (United States)

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. PMID:26431773

  18. Top predators induce the evolutionary diversification of intermediate predator species.

    Science.gov (United States)

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct.

  19. Induction linear accelerators

    Science.gov (United States)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typicallymarriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  20. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  1. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  2. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  3. Preliminary simulation of implants breast through the accelerated partial irradiation technique: coverage rates and homogeneity; Simulacion previa de implates de mama mediante la tecnica de irradiacion parcial acelerada: indices de cubrimiento y homegeneidad

    Energy Technology Data Exchange (ETDEWEB)

    Moral Sanchez, S. C.; Paula Carranza, B. de; Erzibengoa, M.; Bragado Alvarez, L.; Guisasola Berasetegui, A.

    2013-07-01

    In this work we present and evaluate the process of pre-simulation we have drawn up when it comes to treatments of accelerated partial irradiation of breast. Previous simulation that we will allow you to have greater control over the location of catheters with respect to the area to radiate. The goodness of this procedure is evaluated through representative quality indexes of the implant. (Author)

  4. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  5. Accelerator optimization using a network control and acquisition system

    International Nuclear Information System (INIS)

    Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process

  6. Evolutionary Origin of the Proepicardium

    Directory of Open Access Journals (Sweden)

    Elena Cano

    2013-05-01

    Full Text Available The embryonic epicardium and the cardiac mesenchyme derived from it are critical to heart development. The embryonic epicardium arises from an extracardiac progenitor tissue called the proepicardium, a proliferation of coelomic cells located at the limit between the liver and the sinus venosus. A proepicardium has not been described in invertebrates, and the evolutionary origin of this structure in vertebrates is unknown. We herein suggest that the proepicardium might be regarded as an evolutionary derivative from an ancient pronephric external glomerulus that has lost its excretory role. In fact, we previously described that the epicardium arises by cell migration from the primordia of the right pronephric external glomerulus in a representative of the most primitive vertebrate lineage, the lamprey Petromyzon marinus. In this review, we emphasize the striking similarities between the gene expression profiles of the proepicardium and the developing kidneys, as well as the parallelisms in the signaling mechanisms involved in both cases. We show some preliminary evidence about the existence of an inhibitory mechanism blocking glomerular differentiation in the proepicardium. We speculate as to the possibility that this developmental link between heart and kidney can be revealing a phylogenetically deeper association, supported by the existence of a heart-kidney complex in Hemichordates. Finally, we suggest that primitive hematopoiesis could be related with this heart-kidney complex, thus accounting for the current anatomical association of the hematopoietic stem cells with an aorta-gonad-mesonephros area. In summary, we think that our hypothesis can provide new perspectives on the evolutionary origin of the vertebrate heart.

  7. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  8. Switched Matrix Accelerator

    International Nuclear Information System (INIS)

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  9. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  10. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  11. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  12. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  13. Evolutionary robotics: model or design?

    OpenAIRE

    Trianni, Vito

    2014-01-01

    In this paper, I review recent work in evolutionary robotics (ER), and discuss the perspectives and future directions of the field. First, I propose to draw a crisp distinction between studies that exploit ER as a design methodology on the one hand, and studies that instead use ER as a modeling tool to better understand phenomena observed in biology. Such a distinction is not always that obvious in the literature, however. It is my conviction that ER would profit from an explicit commitment t...

  14. Micro Evolutionary Processes and Adaptation

    Institute of Scientific and Technical Information of China (English)

    SHADMANOV R K; RUBAN I N; VOROPAEVA N L; SHADMANOVA A R

    2008-01-01

    @@ It would be well to note that in the absence of clear data about the formation of adaptation systems,or mechanisms of their occurrence,all that is recognized is the realization of the micro evolutionary processes.There is no well-defined connection between information exchange and formation of adaptation systems.Obviously,it occurs because mechanisms and systems reacting to any external actions are not considered from the point of view of "coexistence" of dynamic and static processes and structures.

  15. Steps Towards an Evolutionary Physics

    CERN Document Server

    Tiezzi, E

    2006-01-01

    If thermodynamics is to physics as logic is to philosophy, recent theoretical advancements lend new coherence to the marvel and dynamism of life on Earth. Enzo Tiezzi's "Steps Towards an Evolutionary Physics" is a primer and guide, to those who would to stand on the shoulders of giants to attain this view: Heisenberg, Planck, Bateson, Varela, and Prigogine as well as notable contemporary scientists. The adventure of such a free and enquiring spirit thrives not so much on answers as on new questions. The book offers a new gestalt on the uncertainty principle and concept of probability. A wide r

  16. Support for the evolutionary speed hypothesis from intraspecific population genetic data in the non-biting midge Chironomus riparius.

    Science.gov (United States)

    Oppold, Ann-Marie; Pedrosa, João A M; Bálint, Miklós; Diogo, João B; Ilkova, Julia; Pestana, João L T; Pfenninger, Markus

    2016-02-24

    The evolutionary speed hypothesis (ESH) proposes a causal mechanism for the latitudinal diversity gradient. The central idea of the ESH is that warmer temperatures lead to shorter generation times and increased mutation rates. On an absolute time scale, both should lead to an acceleration of selection and drift. Based on the ESH, we developed predictions regarding the distribution of intraspecific genetic diversity: populations of ectothermic species with more generations per year owing to warmer ambient temperatures should be more differentiated from each other, accumulate more mutations and show evidence for increased mutation rates compared with populations in colder regions. We used the multivoltine insect species Chironomus riparius to test these predictions with cytochrome oxidase I (COI) sequence data and found that populations from warmer regions are indeed significantly more differentiated and have significantly more derived haplotypes than populations from colder regions. We also found a significant correlation of the annual mean temperature with the population mutation parameter θ that serves as a proxy for the per generation mutation rate under certain assumptions. This pattern could be corroborated with two nuclear loci. Overall, our results support the ESH and indicate that the thermal regime experienced may be crucially driving the evolution of ectotherms and may thus ultimately govern their speciation rate. PMID:26888029

  17. Evolutionary Pathways for Asteroid Satellites

    Science.gov (United States)

    Jacobson, Seth Andrew

    2015-08-01

    The YORP-induced rotational fission hypothesis is a proposed mechanism for the creation of small asteroid binaries, which make up approximately 1/6-th of the near-Earth asteroid and small Main Belt asteroid populations. The YORP effect is a radiative torque that rotationally accelerates asteroids on timescales of thousands to millions of years. As asteroids rotationally accelerate, centrifugal accelerations on material within the body can match gravitational accelerations holding that material in place. When this occurs, that material goes into orbit. Once in orbit that material coalesces into a companion that undergoes continued dynamical evolution.Observations with radar, photometric and direct imaging techniques reveal a diverse array of small asteroid satellites. These systems can be sorted into a number of morphologies according to size, multiplicity of members, dynamical orbit and spin states, and member shapes. For instance, singly synchronous binaries have short separation distances between the two members, rapidly rotating oblate primary members, and tidally locked prolate secondary members. Other confirmed binary morphologies include doubly synchronous, tight asynchronous and wide asynchronous binaries. Related to these binary morphologies are unbound paired asteroid systems and bi-lobate contact binaries.A critical test for the YORP-induced rotational fission hypothesis is whether the binary asteroids produced evolve to the observed binary and related systems. In this talk I will review how this evolution is believed to occur according to gravitational dynamics, mutual body tides and the binary YORP effect.

  18. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  19. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low power microwave cold test and high power, high gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  20. Estimating stellar parameters and interstellar extinction from evolutionary tracks

    Science.gov (United States)

    Sichevsky, S.; Malkov, O.

    Developing methods for analyzing and extracting information from modern sky surveys is a challenging task in astrophysical studies. We study possibilities of parameterizing stars and interstellar medium from multicolor photometry performed in three modern photometric surveys: GALEX, SDSS, and 2MASS. For this purpose, we have developed a method to estimate stellar radius from effective temperature and gravity with the help of evolutionary tracks and model stellar atmospheres. In accordance with the evolution rate at every point of the evolutionary track, star formation rate, and initial mass function, a weight is assigned to the resulting value of radius that allows us to estimate the radius more accurately. The method is verified for the most populated areas of the Hertzsprung-Russell diagram: main-sequence stars and red giants, and it was found to be rather precise (for main-sequence stars, the average relative error of radius and its standard deviation are 0.03% and 3.87%, respectively).

  1. Improving DNA Computing Using Evolutionary Techniques

    Directory of Open Access Journals (Sweden)

    Godar J. Ibrahim

    2016-03-01

    Full Text Available the field of DNA Computing has attracted many biologists and computer scientists as it has a biological interface, small size and substantial parallelism. DNA computing depends on DNA molecules’ biochemical reactions which they can randomly anneal and they might accidentally cause improper or unattractive computations. This will inspire opportunities to use evolutionary computation via DNA. Evolutionary Computation emphasizes on probabilistic search and optimization methods which are mimicking the organic evolution models. The research work aims at offering a simulated evolutionary DNA computing model which incorporates DNA computing with an evolutionary algorithm. This evolutionary approach provides the likelihood for increasing dimensionality through replacing the typical filtering method by an evolutionary one. Thus, via iteratively increasing and recombination a population of strands, eliminating incorrect solutions from the population, and choosing the best solutions via gel electrophoresis, an optimal or near-optimal solution can be evolved rather than extracted from the initial population.

  2. The evolution of growth trajectories: what limits growth rate?

    Science.gov (United States)

    Dmitriew, Caitlin M

    2011-02-01

    According to life-history theory, growth rates are subject to strong directional selection due to reproductive and survival advantages associated with large adult body size. Yet, growth is commonly observed to occur at rates lower than the maximum that is physiologically possible and intrinsic growth rates often vary among populations. This implies that slower growth is favoured under certain conditions. Realized growth rate is thus the result of a compromise between the costs and advantages of growing rapidly, and the optimal rate of growth is not equivalent to the fundamental maximum rate. The ecological and evolutionary factors influencing growth rate are reviewed, with particular emphasis on how growth might be constrained by direct fitness costs. Costs of accelerating growth might contribute to the variance in fitness that is not attributable to age or size at maturity, as well as to the variation in life-history strategies observed within and among species. Two main approaches have been taken to study the fitness trade-offs relating to growth rate. First, environmental manipulations can be used to produce treatment groups with different rates of growth. Second, common garden experiments can be used to compare fitness correlates among populations with different intrinsic growth rates. Data from these studies reveal a number of potential costs for growth over both the short and long term. In order to acquire the energy needed for faster growth, animals must increase food intake. Accordingly, in many taxa, the major constraint on growth rate appears to arise from the trade-off between predation risk and foraging effort. However, growth rates are also frequently observed to be submaximal in the absence of predation, suggesting that growth trajectories also impact fitness via other channels, such as the reallocation of finite resources between growth and other traits and functions. Despite the prevalence of submaximal growth, even when predators are absent, there

  3. The Evolutionary Puzzle of Suicide

    Directory of Open Access Journals (Sweden)

    Henri-Jean Aubin

    2013-12-01

    Full Text Available Mechanisms of self-destruction are difficult to reconcile with evolution’s first rule of thumb: survive and reproduce. However, evolutionary success ultimately depends on inclusive fitness. The altruistic suicide hypothesis posits that the presence of low reproductive potential and burdensomeness toward kin can increase the inclusive fitness payoff of self-removal. The bargaining hypothesis assumes that suicide attempts could function as an honest signal of need. The payoff may be positive if the suicidal person has a low reproductive potential. The parasite manipulation hypothesis is founded on the rodent—Toxoplasma gondii host-parasite model, in which the parasite induces a “suicidal” feline attraction that allows the parasite to complete its life cycle. Interestingly, latent infection by T. gondii has been shown to cause behavioral alterations in humans, including increased suicide attempts. Finally, we discuss how suicide risk factors can be understood as nonadaptive byproducts of evolved mechanisms that malfunction. Although most of the mechanisms proposed in this article are largely speculative, the hypotheses that we raise accept self-destructive behavior within the framework of evolutionary theory.

  4. Evolutionary potential games on lattices

    Science.gov (United States)

    Szabó, György; Borsos, István

    2016-04-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the "equilibrium state" by adding non-potential components representing games of cyclic dominance.

  5. Evolutionary epistemology a multiparadigm program

    CERN Document Server

    Pinxten, Rik

    1987-01-01

    This volume has its already distant origin in an inter­national conference on Evolutionary Epistemology the editors organized at the University of Ghent in November 1984. This conference aimed to follow up the endeavor started at the ERISS (Epistemologically Relevant Internalist Sociology of Science) conference organized by Don Campbell and Alex Rosen­ berg at Cazenovia Lake, New York, in June 1981, whilst in­ jecting the gist of certain current continental intellectual developments into a debate whose focus, we thought, was in danger of being narrowed too much, considering the still underdeveloped state of affairs in the field. Broadly speaking, evolutionary epistemology today con­ sists of two interrelated, yet qualitatively distinct inves­ tigative efforts. Both are drawing on Darwinian concepts, which may explain why many people have failed to discriminate them. One is the study of the evolution of the cognitive apparatus of living organisms, which is first and foremost the province of biologists and...

  6. Evolutionary expansion of the Monogenea.

    Science.gov (United States)

    Kearn, G C

    1994-12-01

    The evolutionary expansion of the monogeneans has taken place in parallel with the diversification of the fish-like vertebrates. In this article the main trends in monogenean evolution are traced from a hypothetical skin-parasitic ancestor on early vertebrates. Special consideration is given to the following topics: early divergence between skin feeders and blood feeders; diversification and specialization of the haptor for attachment to skin; transfer from host to host, viviparity and the success of the gyrodactylids; predation on skin parasites and camouflage; colonization of the buccal and branchial cavities; diversification and specialization of the haptor for attachment to the gills; phoresy in gill parasites; the development of endoparasitism and the origin of the cestodes; the success of dactylogyroidean gill parasites; the uniqueness of the polyopisthocotyleans; ovoviviparity and the colonization of the tetrapods. Host specificity has been the guiding force of coevolution between monogeneans and their vertebrate hosts, but the establishment of monogeneans on unrelated hosts sharing the same environment (host-switching) may have been underestimated. Host-switching has provided significant opportunities for evolutionary change of direction and is probably responsible for the establishment of monogeneans on cephalopod molluscs, on the hippopotamus and possibly on chelonians. There are indications that host-switching may be more common in monogeneans that spread by direct transfer of adults/juveniles from host to host. A limitation on the further expansion of monogeneans is the need for water for the dispersal of the infective larva (oncomiracidium).

  7. Evolutionary development of tensegrity structures.

    Science.gov (United States)

    Lobo, Daniel; Vico, Francisco J

    2010-09-01

    Contributions from the emerging fields of molecular genetics and evo-devo (evolutionary developmental biology) are greatly benefiting the field of evolutionary computation, initiating a promise of renewal in the traditional methodology. While direct encoding has constituted a dominant paradigm, indirect ways to encode the solutions have been reported, yet little attention has been paid to the benefits of the proposed methods to real problems. In this work, we study the biological properties that emerge by means of using indirect encodings in the context of form-finding problems. A novel indirect encoding model for artificial development has been defined and applied to an engineering structural-design problem, specifically to the discovery of tensegrity structures. This model has been compared with a direct encoding scheme. While the direct encoding performs similarly well to the proposed method, indirect-based results typically outperform the direct-based results in aspects not directly linked to the nature of the problem itself, but to the emergence of properties found in biological organisms, like organicity, generalization capacity, or modularity aspects which are highly valuable in engineering. PMID:20619314

  8. EVOLUTIONARY THEORY AND THE MARKET COMPETITION

    OpenAIRE

    Nicoleta SIRGHI

    2014-01-01

    Evolutionary theory study of processes that transform economy for firms, institutions, industries, employment, production, trade and growth within, through the actions of diverse agents from experience and interactions, using evolutionary methodology. Evolutionary theory analyses the unleashing of a process of technological and institutional innovation by generating and testing a diversity of ideas which discover and accumulate more survival value for the costs incurred than competing alterna...

  9. Evolutionary robotics: what, why, and where to

    OpenAIRE

    Doncieux, Stephane; Bredeche, Nicolas; Mouret, Jean-Baptiste; Eiben, Agoston E. (Gusz)

    2015-01-01

    Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of e...

  10. The Citation Field of Evolutionary Economics

    OpenAIRE

    Dolfsma, Wilfred; Leydesdorff, Loet

    2010-01-01

    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal that is indispensable in the exchange of expert knowledge on topics and using approaches that relate naturally with it. Analyzing citation data for the relevant academic field for the Journal of Evolu...

  11. The emerging empirics of evolutionary economic geography

    OpenAIRE

    Boschma, RA; Frenken, K Koen

    2010-01-01

    Following last decade’s programmatic papers on Evolutionary Economic Geography, we report on recent empirical advances and how this empirical work can be positioned vis-à-vis other strands of research in economic geography. First, we review studies on the path dependent nature of clustering, and how the evolutionary perspective relates to that of New Economic Geography. Second, we discuss research on agglomeration externalities in Regional Science, and how Evolutionary Economic Geography cont...

  12. An introduction to evolutionary developmental psychology.

    Science.gov (United States)

    Machluf, Karin; Liddle, James R; Bjorklund, David F

    2014-04-29

    Evolutionary developmental psychology represents a synthesis of modern evolutionary theory and developmental psychology. Here we introduce the special issue on evolutionary developmental psychology by briefly discussing the history of this field and then summarizing the variety of topics that are covered. In this special issue, leading researchers provide a collection of theoretical and empirical articles that highlight recent findings and propose promising areas for future research.

  13. Regional systems of innovation: an evolutionary perspective

    OpenAIRE

    Cooke, P.; M G Uranga; G Etxebarria

    1998-01-01

    The authors develop the concept of regional systems of innovation and relate it to preexisting research on national systems of innovation. They argue that work conducted in the 'new regional science' field is complementary to systems of innovation approaches. They seek to link new regional work to evolutionary economics, and argue for the development of evolutionary regional science. Common elements of interest to evolutionary innovation research and new regional science are important in unde...

  14. Acceleration Statistics in Rotating and Sheared Turbulence

    Science.gov (United States)

    Jacobitz, Frank; Schneider, Kai; Bos, Wouter; Farge, Marie

    2012-11-01

    Acceleration statistics are of fundamental interest in turbulence ranging from theoretical questions to modeling of dispersion processes. Direct numerical simulations of sheared and rotating homogeneous turbulence are performed with different ratios of Coriolis parameter to shear rate. The statistics of Lagrangian and Eulerian acceleration are studied with a particular focus on the influence of the rotation ratio and also on the scale dependence of the statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian acceleration show a strong and similar influence on the rotation ratio. The flatness further quantifies its influence and yields values close to three for strong rotation. For moderate and vanishing rotation, the flatness of the Eulerian acceleration is larger than that of the Lagrangian acceleration, contrary to previous results for isotropic turbulence. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian acceleration increases as scale decreases. For strong rotation, the Eulerian acceleration is more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation.

  15. Evolutionary reduction of developmental plasticity in desert spadefoot toads

    OpenAIRE

    Kulkarni, S.R.; Gómez-Mestre, Iván; Moskalik, C.L.; Storz, B.L.; Buchholz, D.R.

    2011-01-01

    Organisms vary their rates of growth and development in response to environmental inputs. Such developmental plasticity may be adaptive and positively correlate with environmental heterogeneity. However, the evolution of developmental plasticity among closely related taxa is not well understood. To determine the evolutionary pattern of plasticity, we compared plasticity in time to and size at metamorphosis in response to water desiccation in tadpoles among spadefoot species that differ in bre...

  16. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, J. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain)], E-mail: jsanz@ind.uned.es; Garcia, M.; Sauvan, P.; Lopez, D. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain); Moreno, C.; Ibarra, A.; Sedano, L. [CIEMAT, 28040 Madrid (Spain)

    2009-04-30

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  17. EXOTIC MAGNETS FOR ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  18. Is Global Warming Accelerating?

    Science.gov (United States)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  19. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  20. Pulsed Superconductivity Acceleration

    CERN Document Server

    Liepe, M

    2000-01-01

    The design of the proposed linear collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities, operated in pulsed mode. Within the framework of an international collaboration the TESLA Test Facility (TTF) has been set up at DESY, providing the infrastructure for cavity R&D towards higher gradients. More than 60 nine-cell cavities were tested, accelerating gradients as high as 30 MV/m were measured. In the second production of TTF-cavities the average gradient was measured to be 24.7 MV/m. Two modules, each containing eight resonators, are presently used in the TTF-linac. These cavities are operated in pulsed mode: 0.8 ms constant gradient with up to 10 Hz repetitions rate. We will focus on two aspects: Firstly, the cavity fabrication and treatment is discussed, allowing to reach high gradients. Latest results of single cell cavities will be shown, going beyond 40 MV/m. Secondly, the pulsed mode operation of superconducting cavities is reviewed. This includes Lorentz force detuning, mechanic...

  1. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  2. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  3. Angular velocities, angular accelerations, and coriolis accelerations

    Science.gov (United States)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  4. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  5. Accelerated coffee pulp composting.

    Science.gov (United States)

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  6. Evolutionary Status of Dwarf ``Transition'' Galaxies

    Science.gov (United States)

    Knezek, Patricia M.; Sembach, Kenneth R.; Gallagher, John S., III

    1999-03-01

    We present deep B-band, R-band, and Hα imaging of three dwarf galaxies: NGC 3377A, NGC 4286, and IC 3475. Based on previous broadband imaging and H I studies, these mixed morphology galaxies have been proposed to be, respectively, a gas-rich low surface brightness Im dwarf, a nucleated dwarf that has lost most of its gas and is in transition from Im to dS0, N, and the prototypical example of a gas-poor ``huge low surface brightness'' early-type galaxy. From the combination of our broadband and Hα imaging with the published information on the neutral gas content of these three galaxies, we find that (1) NGC 3377A is a dwarf spiral, similar to those found by Schombert and coworkers and Matthews & Gallagher; (2) both NGC 3377A and NGC 4286 have comparable amounts of ongoing star formation, as indicated by their Hα emission, while IC 3475 has no detected H II regions to a very low limit; (3) the global star formation rates are at least a factor of 20 below those of 30 Doradus for NGC 3377A and NGC 4286; (4) while the amount of star formation is comparable, the distribution of star-forming regions is very different between NGC 3377A and NGC 4286, with Hα emission scattered over most of the optical face of NGC 3377A and all contained within the inner half of the optical disk of NGC 4286; (5) given their current star formation rates and gas contents, both NGC 3377A and NGC 4286 can continue to form stars for more than a Hubble time; (6) both NGC 3377A and NGC 4286 have integrated total B-R colors that are redder than the integrated total B-R color for IC 3475 and thus it is unlikely that either galaxy will ever evolve into an IC 3475 counterpart; and (7) IC 3475 is too blue to be a dE. We thus conclude that we have not identified potential precursors to galaxies such as IC 3475, and unless significant changes occur in the star formation rates, neither NGC 3377A nor NGC 4286 will evolve into a dwarf elliptical or dwarf spheroidal within a Hubble time. Furthermore

  7. Accelerator transmutation of 129I

    International Nuclear Information System (INIS)

    Iodine-129 is one of several long-lived reactor products that is being considered for transmutation by the Los Alamos Accelerator Transmutation of Waste (ATW) program. A reasonable rate of transmutation of 1291 is possible in this system because of the anticipated high neutron flux generated from the accelerator. This report summarizes previous papers dealing with the transmutation of 1291 where reactor technologies have been employed for neutron sources. The transmutation process is considered marginal under these conditions. Presented here are additional information concerning the final products that could be formed from the transmutation process in the ATW blanket. The transmutation scheme proposes the use of solid iodine as the target material and the escape of product xenon from the containers after van Dincklange (1981). Additional developmental plans are considered

  8. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  9. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  10. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  11. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  12. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  13. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  14. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO2, excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  15. Maximal Acceleration Is Nonrotating

    CERN Document Server

    Page, D N

    1998-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry...

  16. Linear induction accelerator

    International Nuclear Information System (INIS)

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  17. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  18. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  19. Simulation of Resource Usage in Parallel Evolutionary Peptide Optimization using JavaSpaces Technology

    CERN Document Server

    Wira-Alam, Andias

    2009-01-01

    Peptide Optimization is a highly complex problem and it takes very long time of computation. This optimization process uses many software applications in a cluster running GNU/Linux Operating System that perform special tasks. The application to organize the whole optimization process had been already developed, namely SEPP (System for Evolutionary Pareto Optimization of Peptides/Polymers). A single peptide optimization takes a lot of computation time to produce a certain number of individuals. However, it can be accelerated by increasing the degree of parallelism as well as the number of nodes (processors) in the cluster. In this master thesis, I build a model simulating the interplay of the programs so that the usage of each resource (processor) can be determined and also the approximated time needed for the overall optimization process. There are two Evolutionary Algorithms that could be used in the optimization, namely Generation-based and Steady-state Evolutionary Algorithm. The results of each Evolution...

  20. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy

    Directory of Open Access Journals (Sweden)

    Yu-Xian Zhang

    2016-01-01

    Full Text Available For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.

  1. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy.

    Science.gov (United States)

    Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui

    2016-01-01

    For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And H ε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy. PMID:27057159

  2. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  3. Evolutionary advantages of adaptive rewarding

    CERN Document Server

    Szolnoki, Attila

    2012-01-01

    Our wellbeing depends as much on our personal success, as it does on the success of our society. The realization of this fact makes cooperation a very much needed trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remain elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly reach social dynamics that explains why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding that is due to over-aggression, which in turn hinders optimal utiliz...

  4. Evolutionary Industrial Physical Model Generation

    Science.gov (United States)

    Carrascal, Alberto; Alberdi, Amaia

    Both complexity and lack of knowledge associated to physical processes makes physical models design an arduous task. Frequently, the only available information about the physical processes are the heuristic data obtained from experiments or at best a rough idea on what are the physical principles and laws that underlie considered physical processes. Then the problem is converted to find a mathematical expression which fits data. There exist traditional approaches to tackle the inductive model search process from data, such as regression, interpolation, finite element method, etc. Nevertheless, these methods either are only able to solve a reduced number of simple model typologies, or the given black-box solution does not contribute to clarify the analyzed physical process. In this paper a hybrid evolutionary approach to search complex physical models is proposed. Tests carried out on a real-world industrial physical process (abrasive water jet machining) demonstrate the validity of this approach.

  5. Evolutionary history of exon shuffling.

    Science.gov (United States)

    França, Gustavo S; Cancherini, Douglas V; de Souza, Sandro J

    2012-06-01

    Exon shuffling has been characterized as one of the major evolutionary forces shaping both the genome and the proteome of eukaryotes. This mechanism was particularly important in the creation of multidomain proteins during animal evolution, bringing a number of functional genetic novelties. Here, genome information from a variety of eukaryotic species was used to address several issues related to the evolutionary history of exon shuffling. By comparing all protein sequences within each species, we were able to characterize exon shuffling signatures throughout metazoans. Intron phase (the position of the intron regarding the codon) and exon symmetry (the pattern of flanking introns for a given exon or block of adjacent exons) were features used to evaluate exon shuffling. We confirmed previous observations that exon shuffling mediated by phase 1 introns (1-1 exon shuffling) is the predominant kind in multicellular animals. Evidence is provided that such pattern was achieved since the early steps of animal evolution, supported by a detectable presence of 1-1 shuffling units in Trichoplax adhaerens and a considerable prevalence of them in Nematostella vectensis. In contrast, Monosiga brevicollis, one of the closest relatives of metazoans, and Arabidopsis thaliana, showed no evidence of 1-1 exon or domain shuffling above what it would be expected by chance. Instead, exon shuffling events are less abundant and predominantly mediated by phase 0 introns (0-0 exon shuffling) in those non-metazoan species. Moreover, an intermediate pattern of 1-1 and 0-0 exon shuffling was observed for the placozoan T. adhaerens, a primitive animal. Finally, characterization of flanking intron phases around domain borders allowed us to identify a common set of symmetric 1-1 domains that have been shuffled throughout the metazoan lineage.

  6. Evolutionary primacy of sodium bioenergetics

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2008-04-01

    Full Text Available Abstract Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts and V-type (found in archaea, some bacteria, and eukaryotic vacuoles ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.

  7. Radiation Transfer of Models of Massive Star Formation. III. The Evolutionary Sequence

    OpenAIRE

    Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi

    2013-01-01

    We present radiation transfer (RT) simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high surface densities. The protostellar evolution is calculated with a detailed multi-zone model, with the accretion rate regulated by feedback from an evolving disk-wind outflow cavity. Disk and envelope evolutions are calculated self-consistently. In this framework, an evolutionary track is determined by three environmental initial conditions: t...

  8. Evolutionary design assistants for architecture

    Directory of Open Access Journals (Sweden)

    N. Onur Sönmez

    2015-04-01

    Full Text Available In its parallel pursuit of an increased competitivity for design offices and more pleasurable and easier workflows for designers, artificial design intelligence is a technical, intellectual, and political challenge. While human-machine cooperation has become commonplace through Computer Aided Design (CAD tools, a more improved collaboration and better support appear possible only through an endeavor into a kind of artificial design intelligence, which is more sensitive to the human perception of affairs.Considered as part of the broader Computational Design studies, the research program of this quest can be called Artificial / Autonomous / Automated Design (AD. The current available level of Artificial Intelligence (AI for design is limited and a viable aim for current AD would be to develop design assistants that are capable of producing drafts for various design tasks. Thus, the overall aim of this thesis is the development of approaches, techniques, and tools towards artificial design assistants that offer a capability for generating drafts for sub-tasks within design processes. The main technology explored for this aim is Evolutionary Computation (EC, and the target design domain is architecture. The two connected research questions of the study concern, first, the investigation of the ways to develop an architectural design assistant, and secondly, the utilization of EC for the development of such assistants.While developing approaches, techniques, and computational tools for such an assistant, the study also carries out a broad theoretical investigation into the main problems, challenges, and requirements towards such assistants on a rather overall level. Therefore, the research is shaped as a parallel investigation of three main threads interwoven along several levels, moving from a more general level to specific applications. The three research threads comprise, first, theoretical discussions and speculations with regard to both existing

  9. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    and enhance the global search ability. A large number of tests show that the proposed algorithm has higher convergence speed and better optimizing ability than quantum evolutionary algorithm, real-coded quantum evolutionary algorithm and hybrid quantum genetic algorithm. Tests also show that when chaos...

  10. Oversimplifying Evolutionary Psychology Leads to Explanatory Gaps

    Science.gov (United States)

    Tate, Chuck; Ledbetter, Jay N.

    2010-01-01

    Comments on Evolutionary psychology: Controversies, questions, prospects, and limitations by Confer et al. They argued that SST cannot explain the existence of either homosexuality or suicide within the human species. We contend that a sufficiently nuanced evolutionary position has no difficulties explaining either phenomenon. Also in this…

  11. On Economic Applications of Evolutionary Game Theory

    OpenAIRE

    Daniel Friedman

    2010-01-01

    Evolutionary games have considerable unrealized potential for modeling substantive economic issues. They promise richer predictions than orthodox game models but often require more extensive specifications. This paper exposits the specification of evolutionary game models and classifies the possible asymptotic behavior for one and two dimensional models.

  12. Handbook of differential equations evolutionary equations

    CERN Document Server

    Dafermos, CM

    2008-01-01

    The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts

  13. Information Geometry and Evolutionary Game Theory

    CERN Document Server

    Harper, Marc

    2009-01-01

    The Shahshahani geometry of evolutionary game theory is realized as the information geometry of the simplex, deriving from the Fisher information metric of the manifold of categorical probability distributions. Some essential concepts in evolutionary game theory are realized information-theoretically. Results are extended to the Lotka-Volterra equation and to multiple population systems.

  14. On the Evolutionary Stability of Bargaining Inefficiency

    DEFF Research Database (Denmark)

    Poulsen, Anders

    This paper investigates whether 'tough' bargaining behavior, which gives rise to inefficiency, can be evolutionary stable. We show that in a two-stage Nash Demand Game tough behavior survives. Indeed, almost all the surplus may be wasted. We also study the Ultimatum Game. Here evolutionary...

  15. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  16. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  17. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  18. Collective ion acceleration

    International Nuclear Information System (INIS)

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  19. Acceleration of Particles in Imbalanced Magnetohydrodynamic Turbulence

    CERN Document Server

    Teaca, Bogdan; Jenko, Frank; Schlickeiser, Reinhard

    2014-01-01

    The present work investigates the acceleration of test particles in balanced and imbalanced Alfv\\'{e}nic turbulence, relevant to the solar-wind problem. These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and non-resonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behaviour is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

  20. Acceleration of particles in imbalanced magnetohydrodynamic turbulence.

    Science.gov (United States)

    Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

  1. The Citation Field of Evolutionary Economics

    CERN Document Server

    Dolfsma, Wilfred

    2010-01-01

    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal that is indispensable in the exchange of expert knowledge on topics and using approaches that relate naturally with it. Analyzing citation data for the relevant academic field for the Journal of Evolutionary Economics, we use insights from scientometrics and social network analysis to find that, indeed, the JEE is a central player in this interdisciplinary field aiming mostly at understanding technological and regional dynamics. It does not, however, link firmly with the natural sciences (including biology) nor to management sciences, entrepreneurship, and organization studies. Another journal that could be perceived to have evolutionary acumen, the Journal of Economic Issues, does relate to heterodox economics journa...

  2. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  3. Hadron accelerators in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). Accelerator School; Silari, M. [Consiglio Nazionale delle Ricerche, Milan (Italy)

    1996-12-31

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author) 28 refs.

  4. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  5. Entropic accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)

    2011-01-31

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  6. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  7. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  8. The particle accelerator

    International Nuclear Information System (INIS)

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  9. Evolutionary model of the growth and size of firms

    Science.gov (United States)

    Kaldasch, Joachim

    2012-07-01

    The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms, the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into account the characteristic property of human activities to occur in bursts, the model allows also an explanation of the size-variance relationship of the growth rate distribution of products and firms. Further the product life cycle, the learning (experience) curve and the market size in terms of the mean number of firms that can survive in a market are derived. The model also suggests the existence of an invariant of a market as the ratio of total profit to total revenue. The relationship between a neo-classic and an evolutionary view of a market is discussed. The comparison with empirical investigations suggests that the theory is able to describe the main stylized facts concerning the size and growth of firms.

  10. Agricultural management affects evolutionary processes in a migratory songbird

    Science.gov (United States)

    Perlut, N.G.; Freeman-Gallant, C. R.; Strong, A.M.; Donovan, T.M.; Kilpatrick, C.W.; Zalik, N.J.

    2008-01-01

    Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes. ?? 2008 The Authors.

  11. Evolutionary Psychiatry and Nosology: Prospects and Limitations

    Directory of Open Access Journals (Sweden)

    Luc Faucher

    2012-11-01

    Full Text Available In this paper, I explain why evolutionary psychiatry is not where the next revolution in psychiatry will come from. I will proceed as follows. Firstly, I will review some of the problems commonly attributed to current nosologies, more specifically to the DSM. One of these problems is the lack of a clear and consensual definition of mental disorder; I will then examine specific attempts to spell out such a definition that use the evolutionary framework. One definition that deserves particular attention (for a number of reasons that I will mention later, is one put forward by Jerome Wakefield. Despite my sympathy for his position, I must indicate a few reasons why I think his attempt might not be able to resolve the problems related to current nosologies. I suggest that it might be wiser for an evolutionary psychiatrist to adopt the more integrative framework of “treatable conditions” (Cosmides and Tooby, 1999. As it is thought that an evolutionary approach can contribute to transforming the way we look at mental disorders, I will provide the reader with a brief sketch of the basic tenets of evolutionary psychology. The picture of the architecture of the human mind that emerges from evolutionary psychology is thought by some to be the crucial backdrop to identifying specific mental disorders and distinguishing them from normal conditions. I will also provide two examples of how evolutionary thinking is supposed to change our thinking about some disorders. Using the case of depression, I will then show what kind of problems evolutionary explanations of particular psychopathologies encounter. In conclusion, I will evaluate where evolutionary thinking leaves us in regard to what I identify as the main problems of our current nosologies. I’ll then argue that the prospects of evolutionary psychiatry are not good.

  12. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  13. Operation of the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Batzka, B.; Billquist, P.J. [and others

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  14. Genetic Evolutionary Approach for Cutting Forces Prediction in Hard Milling

    Science.gov (United States)

    Taylan, Fatih; Kayacan, Cengiz

    2011-11-01

    Hard milling is a very common used machining procedure in the last years. Therefore the prediction of cutting forces is important. The paper deals with this prediction using genetic evolutionary programming (GEP) approach to set mathematical expression for out cutting forces. In this study, face milling was performed using DIN1.2842 (90MnCrV8) cold work tool steel, with a hardness of 61 HRC. Experimental parameters were selected using stability measurements and simulations. In the hard milling experiments, cutting force data in a total of three axes were collected. Feed direction (Fx) and tangential direction (Fy) cutting forces generated using genetic evolutionary programming were modelled. Cutting speed and feed rate values were treated as inputs in the models, and average cutting force values as output. Mathematical expressions were created to predict average Fxand Fy forces that can be generated in hard material milling.

  15. Inflated impact factors? The true impact of evolutionary papers in non-evolutionary journals.

    Science.gov (United States)

    Postma, Erik

    2007-01-01

    Amongst the numerous problems associated with the use of impact factors as a measure of quality are the systematic differences in impact factors that exist among scientific fields. While in theory this can be circumvented by limiting comparisons to journals within the same field, for a diverse and multidisciplinary field like evolutionary biology, in which the majority of papers are published in journals that publish both evolutionary and non-evolutionary papers, this is impossible. However, a journal's overall impact factor may well be a poor predictor for the impact of its evolutionary papers. The extremely high impact factors of some multidisciplinary journals, for example, are by many believed to be driven mostly by publications from other fields. Despite plenty of speculation, however, we know as yet very little about the true impact of evolutionary papers in journals not specifically classified as evolutionary. Here I present, for a wide range of journals, an analysis of the number of evolutionary papers they publish and their average impact. I show that there are large differences in impact among evolutionary and non-evolutionary papers within journals; while the impact of evolutionary papers published in multidisciplinary journals is substantially overestimated by their overall impact factor, the impact of evolutionary papers in many of the more specialized, non-evolutionary journals is significantly underestimated. This suggests that, for evolutionary biologists, publishing in high-impact multidisciplinary journals should not receive as much weight as it does now, while evolutionary papers in more narrowly defined journals are currently undervalued. Importantly, however, their ranking remains largely unaffected. While journal impact factors may thus indeed provide a meaningful qualitative measure of impact, a fair quantitative comparison requires a more sophisticated journal classification system, together with multiple field-specific impact statistics per

  16. Inflated impact factors? The true impact of evolutionary papers in non-evolutionary journals.

    Directory of Open Access Journals (Sweden)

    Erik Postma

    Full Text Available Amongst the numerous problems associated with the use of impact factors as a measure of quality are the systematic differences in impact factors that exist among scientific fields. While in theory this can be circumvented by limiting comparisons to journals within the same field, for a diverse and multidisciplinary field like evolutionary biology, in which the majority of papers are published in journals that publish both evolutionary and non-evolutionary papers, this is impossible. However, a journal's overall impact factor may well be a poor predictor for the impact of its evolutionary papers. The extremely high impact factors of some multidisciplinary journals, for example, are by many believed to be driven mostly by publications from other fields. Despite plenty of speculation, however, we know as yet very little about the true impact of evolutionary papers in journals not specifically classified as evolutionary. Here I present, for a wide range of journals, an analysis of the number of evolutionary papers they publish and their average impact. I show that there are large differences in impact among evolutionary and non-evolutionary papers within journals; while the impact of evolutionary papers published in multidisciplinary journals is substantially overestimated by their overall impact factor, the impact of evolutionary papers in many of the more specialized, non-evolutionary journals is significantly underestimated. This suggests that, for evolutionary biologists, publishing in high-impact multidisciplinary journals should not receive as much weight as it does now, while evolutionary papers in more narrowly defined journals are currently undervalued. Importantly, however, their ranking remains largely unaffected. While journal impact factors may thus indeed provide a meaningful qualitative measure of impact, a fair quantitative comparison requires a more sophisticated journal classification system, together with multiple field

  17. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  18. SPS accelerating cavity

    CERN Multimedia

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  19. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  20. Dimension Driven Accelerating Universe

    CERN Document Server

    Chatterjee, S

    2009-01-01

    The current acceleration of the universe leads us to investigate higher dimensional gravity theory, which is able to explain acceleration from a theoretical view point without the need of introducing dark energy by hand. We argue that the terms containing higher dimensional metric coefficients produce an extra negative pressure that apparently drives an acceleration of the 3D space, tempting us to suggest that the accelerating universe seems to act as a window to the existence of extra spatial dimensions. Interesting to point out that in this case our cosmology apparently mimics the well known quintessence scenario fuelled by a generalised Chaplygin-type of fluid where a smooth transition from a dust dominated model to a de Sitter like one takes place. Correspondence to models generated by a tachyonic form of matter is also briefly discussed.

  1. Revisiting Caianiello's Maximal Acceleration

    OpenAIRE

    Papini, G.

    2003-01-01

    A quantum mechanical limit on the speed of orthogonality evolution justifies the last remaining assumption in Caianiello's derivation of the maximal acceleration. The limit is perfectly compatible with the behaviour of superconductors of the first type.

  2. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  3. Laser acceleration... now with added fibre

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Laser acceleration technology is plagued by two main issues: efficiency and repetition rates. In other words, lasers consume too much power and cannot sustain accelerating particles long enough to produce collisions. ICAN, a new EU-funded project, is examining how fibre lasers may help physicists tackle these issues.   A diode-pumped fibre laser. (Image courtesy of Laser Zentrum Hannover.) The International Coherent Amplification Network (ICAN) is studying the potential of lasers for collision physics. CERN is a beneficiary of the project and will collaborate with 15 other institutes from around the world, including KEK in Japan, Fermilab in the USA, and DESY in Germany. “The network is looking into existing fibre laser technology, which we believe has fantastic potential for accelerators,” says Gerard Mourou, ICAN co-ordinator at the École Polytechnique in France. “The hope is to make laser acceleration competitive with traditional radio-fre...

  4. A symmetrical rail accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  5. Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  6. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  7. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  8. Designing reliability into accelerators

    International Nuclear Information System (INIS)

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed

  9. Accelerated cyclic corrosion tests

    OpenAIRE

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  10. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  11. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A. [Dassault Aviation, 92 - Saint Cloud (France)

    1996-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  12. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  13. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  14. Quantifying the evolutionary dynamics of language.

    Science.gov (United States)

    Lieberman, Erez; Michel, Jean-Baptiste; Jackson, Joe; Tang, Tina; Nowak, Martin A

    2007-10-11

    Human language is based on grammatical rules. Cultural evolution allows these rules to change over time. Rules compete with each other: as new rules rise to prominence, old ones die away. To quantify the dynamics of language evolution, we studied the regularization of English verbs over the past 1,200 years. Although an elaborate system of productive conjugations existed in English's proto-Germanic ancestor, Modern English uses the dental suffix, '-ed', to signify past tense. Here we describe the emergence of this linguistic rule amidst the evolutionary decay of its exceptions, known to us as irregular verbs. We have generated a data set of verbs whose conjugations have been evolving for more than a millennium, tracking inflectional changes to 177 Old-English irregular verbs. Of these irregular verbs, 145 remained irregular in Middle English and 98 are still irregular today. We study how the rate of regularization depends on the frequency of word usage. The half-life of an irregular verb scales as the square root of its usage frequency: a verb that is 100 times less frequent regularizes 10 times as fast. Our study provides a quantitative analysis of the regularization process by which ancestral forms gradually yield to an emerging linguistic rule.

  15. EVOLUTIONARY ASPECTS OF THE GEORGIAN BANKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Tamar ATANELISHVILI

    2016-08-01

    Full Text Available Georgian monetary relations have a centuries-old history. Credit associations were first founded in 11-13th centuries. Network of credit institutions became larger in the 19th century – independent commercial banks were established in the second half of the 19th century. Central State Bank of Georgia was established in the Democratic Republic of Georgia in the beginning of the 20th century. At the same time, there were efforts to create independent two-level banking system, although those efforts failed due to forceful sovietization of Georgia. But still, independent banking system was founded in Georgia after the collapse of the former Soviet Union. This work examines afore-mentioned evolutionary processes and some of peculiarities of modern banking system. The research shows that modern Georgian banking system is growing fast but it contains signs of oligopoly which contradicts the interests of vast masses of population and entrepreneurial development, while stimulating retaining of high interest rates and devaluation of national currency.

  16. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  17. Evolutionary genomics of animal personality.

    Science.gov (United States)

    van Oers, Kees; Mueller, Jakob C

    2010-12-27

    Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future. PMID:21078651

  18. How evolutionary crystal structure prediction works--and why.

    Science.gov (United States)

    Oganov, Artem R; Lyakhov, Andriy O; Valle, Mario

    2011-03-15

    Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an

  19. Evolutionary theory and the naturalist fallacy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2008-01-01

    The article is an invited response to a target article by Joseph Carroll entitled "An evolutionary paradigm for literary study". It argues that the target article  misuse the fact that works of art are based on adaptations that were fitness-enhancing in the era of evolutionary adaptations to claim...... that great work of art are also automatically fitness-enhancing in the present day environment, at that there are simple correllations between whether a work of art has a high aesthetic value and whether it is fitness-enhancing or not.  Keywords :  Evolutionary aesthetics, film theory, literary theory...

  20. Development and validation of evolutionary algorithm software as an optimization tool for biological and environmental applications.

    Science.gov (United States)

    Sys, K; Boon, N; Verstraete, W

    2004-06-01

    A flexible, extendable tool for the optimization of (micro)biological processes and protocols using evolutionary algorithms was developed. It has been tested using three different theoretical optimization problems: 2 two-dimensional problems, one with three maxima and one with five maxima and a river autopurification optimization problem with boundary conditions. For each problem, different evolutionary parameter settings were used for the optimization. For each combination of evolutionary parameters, 15 generations were run 20 times. It has been shown that in all cases, the evolutionary algorithm gave rise to valuable results. Generally, the algorithms were able to detect the more stable sub-maximum even if there existed less stable maxima. The latter is, from a practical point of view, generally more desired. The most important factors influencing the convergence process were the parameter value randomization rate and distribution. The developed software, described in this work, is available for free.