WorldWideScience

Sample records for accelerated electrochemical testing

  1. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-01-01

    Previous work in our laboratory and elsewhere has suggested that MIC of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possibly a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. Similar test procedures are applicable to other environments of interest to this symposium

  2. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests

    Energy Technology Data Exchange (ETDEWEB)

    Koetz, R.; Ruch, P.W.; Cericola, D. [General Energy Research Department, Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2010-02-01

    Electrochemical double layer capacitors of the BCAP0350 type (Maxwell Technologies) were tested under constant load conditions at different voltages and temperatures. The aging of the capacitors was monitored during the test in terms of capacitance, internal resistance and leakage current. Aging was significantly accelerated by elevated temperature or increased voltage. Only for extreme conditions at voltages of 3.5 V or temperatures above 70 C the capacitors failed due to internal pressure build-up. No other failure events such as open circuit or short circuit were detected. Impedance measurements after the tests showed increased high frequency resistance, an increased distributed resistance and most likely an increase in contact resistance between electrode and current collector together with a loss of capacitance. Capacitors aged at elevated voltages (3.3 V) exhibited a tilting of the low frequency component, which implies an increase in the heterogeneity of the electrode surface. This feature was not observed upon aging at elevated temperatures (70 C). (author)

  3. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-11-01

    Previous work in our laboratory and elsewhere has suggested that microbially influenced corrosion (MIC) of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate-reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possible a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. This report discusses the adaption of these procedures to study corrosion of nuclear waste containers. (author). 20 refs., 2 tabs., 7 figs

  4. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  5. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  6. Electrochemical migration technique to accelerate ageing of cementitious materials

    Directory of Open Access Journals (Sweden)

    Abbas Z.

    2013-07-01

    Full Text Available Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen’s micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  7. Electrochemical migration technique to accelerate ageing of cementitious materials

    Science.gov (United States)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  8. Study of variables for accelerating lifetime testing of SOFCs

    DEFF Research Database (Denmark)

    Ploner, Alexandra; Hagen, Anke; Hauch, Anne

    Solid oxide fuel cell (SOFC) applications require lifetimes of several years on the system level. A big challenge is to proof/confirm/demonstrate such exceptionally long lifetimes.Accelerated or compressed testing are possible methods. Activities in this area have been carried out without arriving...... at different current load cycling profiles revealed a strong deviation between predicted and measured lifetime [3].In this study, we present a detailed analysis of durability results for degradation mechanisms of single SOFC components as function of operating conditions. Electrochemical impedance data...

  9. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    Science.gov (United States)

    2014-07-01

    Spray. Journal of Failure Analysis and Prevention 2008, 8 (2), 164–175. 34. Aluminium Alloy 5083, Plate and Sheet; SAE-AMS-QQ-A-250/6S; SAE...Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods...Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods Brian E. Placzankis, Joseph P

  10. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  11. Tractor accelerated test on test rig

    Directory of Open Access Journals (Sweden)

    M. Mattetti

    2013-09-01

    Full Text Available The experimental tests performed to validate a tractor prototype before its production, need a substantial financial and time commitment. The tests could be reduced using accelerated tests able to reproduce on the structural part of the tractor, the same damage produced on the tractor during real life in a reduced time. These tests were usually performed reproducing a particular harsh condition a defined number of times, as for example using a bumpy road on track to carry out the test in any weather condition. Using these procedures the loads applied on the tractor structure are different with respect to those obtained during the real use, with the risk to apply loads hard to find in reality. Recently it has been demonstrated how, using the methodologies designed for cars, it is possible to also expedite the structural tests for tractors. In particular, automotive proving grounds were recently successfully used with tractors to perform accelerated structural tests able to reproduce the real use of the machine with an acceleration factor higher than that obtained with the traditional methods. However, the acceleration factor obtained with a tractor on proving grounds is in any case reduced due to the reduced speed of the tractors with respect to cars. In this context, the goal of the paper is to show the development of a methodology to perform an accelerated structural test on a medium power tractor using a 4 post test rig. In particular, several proving ground testing conditions have been performed to measure the loads on the tractor. The loads obtained were then edited to remove the not damaging portion of signals, and finally the loads obtained were reproduced in a 4 post test rig. The methodology proposed could be a valid alternative to the use of a proving ground to reproduce accelerated structural tests on tractors.

  12. Development of an accelerated test for Internal Sulfate Attack study

    Directory of Open Access Journals (Sweden)

    Khelil Nacim

    2014-04-01

    Full Text Available Internal Sulfate Attack (ISA is a pathology that occurs under certain conditions in concrete having undergone heating above 70 °C at early age (through heating in pre-casting industry or due to hydration in large concrete parts. This reaction deemed very slow, numerous methods to speed up reactions leading to delayed ettringite formation have been developed. These methods are all based on the material damage. Another type of test is currently under development. It is based on rehabilitation techniques such as electrochemical chloride extraction (ECE in order to accelerate the leaching of alkalis that could be one of the triggers of the pathology. The study presented in this paper focused on concrete specimens prepared from cement (CEM I 52.5 N enriched with Na2SO4. These concretes have undergone a heat treatment typical of those used in precast plants (up to 24 hours with a maximum temperature of 80 °C. Various paths were explored for the development of the accelerated test. The first results showed that it was necessary to use a removable titanium anode ruthenium anode instead of stainless steel embedded in the concrete. Then tests with de-ionized water as the solute to the cathode did not accelerate the onset of expansions. The experiment has been modified and potassium carbonate was added to the solution. This modification didn’t show any significant improvement, and other experiments are being carried out to explain this result.

  13. The Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.

    1993-04-01

    During the past several years, there has been tremendous progress the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report oil the status of the design, component development, and construction of the NLC Test Accelerator

  14. Accelerated life testing of spacecraft subsystems

    Science.gov (United States)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  15. Accelerated battery-life testing - A concept

    Science.gov (United States)

    Mccallum, J.; Thomas, R. E.

    1971-01-01

    Test program, employing empirical, statistical and physical methods, determines service life and failure probabilities of electrochemical cells and batteries, and is applicable to testing mechanical, electrical, and chemical devices. Data obtained aids long-term performance prediction of battery or cell.

  16. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  17. Electrochemical tests for pitting and crevice corrosion susceptibility

    International Nuclear Information System (INIS)

    Postlethwaite, J.

    1983-01-01

    Passive metals are being considered as container materials for the disposal of nuclear waste by deep burial. Localized corrosion is a potential problem and electrochemical techniques have an important role in the assessment of the susceptibility of these container materials to crevice and pitting corrosion. This paper critically reviews both the theoretical background and the experimental details of the electrochemical test methods presently used in both industrial and scientific studies of localized corrosion in both halide and non-halide solutions and identifies those areas where theory and experimental behaviour are in agreement and those areas for which there is neither well established theory nor an experimental test method

  18. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  19. Investigation of the cut-edge corrosion of organically-coated galvanized steel after accelerated atmospheric corrosion test

    Directory of Open Access Journals (Sweden)

    Reşit Yıldız

    2015-11-01

    Full Text Available The cut edge corrosion of organically coated (epoxy, polyurethane and polyester galvanized steel was investigated using electrochemical impedance spectroscopy (EIS. Measurements were performed on specimens that had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 10 s fogging and 1 h awaiting cycles in an exposure cabinet (120 and 180 days with artificial acid rain solution. According to the investigation, the coatings were damaged from the cut edge into the sheet, this distance was about 0.8 cm. These defects were more pronounced at after 180 days in proportion to after 120 days.

  20. Accelerated test program

    Science.gov (United States)

    Ford, F. E.; Harkness, J. M.

    1977-01-01

    A brief discussion on the accelerated testing of batteries is given. The statistical analysis and the various aspects of the modeling that was done and the results attained from the model are also briefly discussed.

  1. Role of failure-mechanism identification in accelerated testing

    Science.gov (United States)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  2. Acceleration test with mixed higher harmonics in HIMAC

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sugiura, A.; Misu, T.

    2004-01-01

    In HIMAC synchrotron, beam tests with a magnetic ally loaded cavity have been performed. This cavity has very low Q-value of about 0.5, and can be added higher harmonics with fundamental acceleration frequency. In our tested system for higher harmonics, wave form of a DDS (Direct Digital Synthesizer) can be rewrite, and arbitrary wave form can be used for beam acceleration. In the beam test, second and third harmonic wave were added on the fundamental acceleration frequency, and increases of the accelerated beam intensity have been achieved. In this paper, results of the beam test and the acceleration system are presented. (author)

  3. Accelerated Solar-UV Test Chamber

    Science.gov (United States)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  4. On-line electrochemical monitoring of microbially influenced corrosion

    International Nuclear Information System (INIS)

    Dowling, N.J.E.; Stansbury, E.E.; White, D.C.; Borenstein, S.W.; Danko, J.C.

    1989-01-01

    Newly emerging electrochemical measurement techniques can provide on-line, non-destructive monitoring of the average corrosion rate and indications of localized pitting corrosion together with insight into fundamental electrochemical mechanisms responsible for the corrosion process. This information is relevant to evaluating, monitoring, understanding and controlling microbially influenced corrosion (MIC). MIC of coupons exposed in sidestream devices on site or in laboratory-based experiments, where the corrosion response is accelerated by exposure to active consortia of microbes recovered from specific sites, can be utilized to evaluate mitigation strategies. The average corrosion rates can be determined by small amplitude cyclic voltametry (SACV), and AC impedance spectroscopy (EIS). EIS can also give insight into the mechanisms of the MIC and indications of localized corrosion. Pitting corrosion can be detected non-destructively with open circuit potential monitoring (OCP). OCP also responds to bacterial biofilm activities such as oxygen depletion and other electrochemical activities. Utilizing these methods, accelerated tests can be designed to direct the selection of materials, surface treatments of materials, and welding filler materials, as well as the optimization of chemical and mechanical countermeasures with the microbial consortia recovered and characterized from the specific sites of interest

  5. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    Science.gov (United States)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  6. A Statistical Perspective on Highly Accelerated Testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  7. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  8. Quantitative accelerated degradation testing: Practical approaches

    International Nuclear Information System (INIS)

    Mohammadian, S. Hossein; Ait-Kadi, Daoud; Routhier, Francois

    2010-01-01

    The concept of accelerated testing by tracking degradation of samples over test time needs to be developed for reliability estimation. This paper aims at proposing practical approaches to conduct accelerated degradation testing on new and available used samples. For this purpose, product failure is related to a suitable physical property. Then, its failure time is defined as the expected time in which its property reaches the critical level. Degradation model of field samples returned from service due to a degrading failure mode has been estimated based on the least square method, and available gap between manufacturer criterion and user's claim (to report a failure) has also been discussed. For a product under some stresses, a general formula has been proposed by the superposition principle in order to estimate its degradation for independent and dependent failure modes. If used samples are available, and acceleration factor of the related test is unknown, partial aging method has been presented to considerably shorten the test time.

  9. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S.; McDonald, K.T.; Russell, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO 2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  10. Accelerated leach test development program

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

    1990-11-01

    In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs

  11. Accelerated life testing effects on CMOS microcircuit characteristics

    Science.gov (United States)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  12. Accelerated stress testing of terrestrial solar cells

    Science.gov (United States)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  13. Life estimation I and C cable insulation materials based on accelerated life testing accelerated life testing

    International Nuclear Information System (INIS)

    Santhosh, T.V.; Ramteke, P.K.; Shrestha, N.B.; Ahirwar, A.K.; Gopika, V.

    2016-01-01

    Accelerated Iife tests are becoming increasingly popular in today's industry due to the need for obtaining life data quickly and reliably. Life testing of products under higher stress levels without introducing additional failure modes can provide significant savings of both time and money. Correct analysis of data gathered via such accelerated life testing will yield parameters and other information for the product's life under use stress conditions. To be of practical use in assessing the operational behaviour of cables in NPPs, laboratory ageing aims to mimic the type of degradation observed under operational conditions. Conditions of testing therefore need to be carefully chosen to ensure that the degradation mechanism occurring in the accelerated tests are similar to those which occur in service. This paper presents the results of an investigation in which the elongation-at-break (EAB) measurements were carried on a typical control cable to predict the mean life at service conditions. A low voltage polyvinyl chloride (PVC) insulated and PVC sheathed control cable, used in NPP instrumentation and control (I and C) applications, was subjected thermal ageing at three elevated temperatures

  14. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  15. Electrochemical Impedance Study of Zinc Yellow Polypropylene-Coated Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhi-hua Sun

    2010-01-01

    Full Text Available Performance of zinc yellow polypropylene-coated aluminum alloy 7B04 during accelerated degradation test is studied using electrochemical impedance spectroscopy (EIS. It has been found that the zinc yellow polypropylene paint has few flaw and acts as a pure capacitance before accelerated test. After 336-hour exposure to the test, the impedance spectroscopy shows two time constants, and water has reached to the aluminum alloy/paint interface and forms corrosive microcell. For the scratched samples, the reaction of metal corrosion and the hydrolysis of zinc yellow ion can occur simultaneously. The impedance spectroscopy indicates inductance after 1008-hour exposure to the test, but the inductance disappears after 1344-hour exposure and the passivation film has pitting corrosion.

  16. Laboratory Test of Newton's Second Law for Small Accelerations

    International Nuclear Information System (INIS)

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-01-01

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10 -14 m/s 2

  17. Simulated body-fluid tests and electrochemical investigations on biocompatibility of metallic glasses

    International Nuclear Information System (INIS)

    Lin, C.H.; Huang, C.H.; Chuang, J.F.; Lee, H.C.; Liu, M.C.; Du, X.H.; Huang, J.C.; Jang, J.S.C.; Chen, C.H.

    2012-01-01

    This paper presents the in-vitro and electrochemical investigations of four metallic glasses (MGs) for finding potential MG-based bio-materials. The simulation body-fluid Hanks solution is utilized for testing the corrosion resistance of MGs, and microorganisms of Escherichia coli are used in testing the bio-toxicity. In addition, a simple cyclic voltammetry method is used for rapid verification of the potential electrochemical responses. It is found that the Zr-based MG can sustain in the body-fluid, exhibiting the best corrosion resistance and electrochemical stability. The microbiologic test shows that E. coli can grow on the surface of the Zr-based metallic glass, confirming the low cell toxicity of this Zr-based MG. Highlights: ► Vanadium is added in Cu–Zr–Al alloy to induce B2-CuZr formation. ► The more induced B2-CuZr phase can improve compressive plasticity. ► The plasticity improvement might be caused by B2 phase dynamic coarsening.

  18. OPTIMUM DESIGN OF EXPERIMENTS FOR ACCELERATED RELIABILITY TESTING

    Directory of Open Access Journals (Sweden)

    Sebastian Marian ZAHARIA

    2014-05-01

    Full Text Available In this paper is presented a case study that demonstrates how design to experiments (DOE information can be used to design better accelerated reliability tests. In the case study described in this paper, will be done a comparison and optimization between main accelerated reliability test plans (3 Level Best Standard Plan, 3 Level Best Compromise Plan, 3 Level Best Equal Expected Number Failing Plan, 3 Level 4:2:1 Allocation Plan. Before starting an accelerated reliability test, it is advisable to have a plan that helps in accurately estimating reliability at operating conditions while minimizing test time and costs. A test plan should be used to decide on the appropriate stress levels that should be used (for each stress type and the amount of the test units that need to be allocated to the different stress levels (for each combination of the different stress types' levels. For the case study it used ALTA 7 software what provides a complete analysis for data from accelerated reliability tests

  19. Vehicle accelerated corrosion test procedures for automotive in Malaysia

    Directory of Open Access Journals (Sweden)

    Anuar Liza

    2017-01-01

    Full Text Available An accelerated corrosion test, known as proving ground accelerated test, is commonly performed by automotive manufacturers to evaluate the corrosion performance of a vehicle. The test combines corrosion and durability inputs to detect potential failures that may occur during in-service conditions. Currently, the test is conducted at an external test center overseas. Such test is aimed to simulate the effects of one year accelerated corrosion in severe corrosive environment of the north-east and south east of America. However, the test results obtained do not correlate with the actual corrosion conditions observed in the Malaysian market, which is likely attributed to the different test environment of the tropical climate of vehicles in service. Therefore, a vehicle accelerated corrosion test procedure that suits the Malaysian market is proposed and benchmarked with other global car manufacturers that have their own dedicated corrosion test procedure. In the present work, a test track is used as the corrosion test ground and consists of various types of roads for structural durability exposures. Corrosion related facilities like salt trough, mud trough and gravel road are constructed as addition to the existing facilities. The establishment of accelerated corrosion test facilities has contributed to the development of initial accelerated corrosion test procedure for the national car manufacturer. The corrosion exposure is monitored by fitting test coupons at the underbody of test vehicle using mass loss technique so that the desired corrosion rate capable of simulating the real time corrosion effects for its target market.

  20. Earthquake acceleration amplification based on single microtremor test

    Science.gov (United States)

    Jaya Syahbana, Arifan; Kurniawan, Rahmat; Soebowo, Eko

    2018-02-01

    Understanding soil dynamics is needed to understand soil behaviour, including the parameters of earthquake acceleration amplification. Many researchers now conduct single microtremor tests to obtain amplification of velocity and natural periods of soil at test sites. However, these amplification parameters are rarely used, so a method is needed to convert the velocity amplification to acceleration amplification. This paper will discuss the proposed process of changing the value of amplification. The proposed method is to integrate the time histories of the synthetic earthquake acceleration of the soil surface under the deaggregation at that location so the time histories of the velocity earthquake will be obtained. Next is to conduct a “fitting curve” between amplification by a single microtremor test with amplification of the synthetic earthquake velocity time histories. After obtaining the fitting curve time histories of velocity, differentiation will be conducted to obtain fitting curve acceleration time histories. The final step after obtaining the fitting curve is to compare the acceleration of the “fitting curve” against the histories time of the acceleration of synthetic earthquake at bedrocks to obtain single microtremor acceleration amplification factor.

  1. Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization.

    Science.gov (United States)

    Minnikanti, Saugandhika; Diao, Guoqing; Pancrazio, Joseph J; Xie, Xianzong; Rieth, Loren; Solzbacher, Florian; Peixoto, Nathalia

    2014-02-01

    The lifetime and stability of insulation are critical features for the reliable operation of an implantable neural interface device. A critical factor for an implanted insulation's performance is its barrier properties that limit access of biological fluids to the underlying device or metal electrode. Parylene C is a material that has been used in FDA-approved implantable devices. Considered a biocompatible polymer with barrier properties, it has been used as a substrate, insulation or an encapsulation for neural implant technology. Recently, it has been suggested that a bilayer coating of Parylene C on top of atomic-layer-deposited Al2O3 would provide enhanced barrier properties. Here we report a comprehensive study to examine the mean time to failure of Parylene C and Al2O3-Parylene C coated devices using accelerated lifetime testing. Samples were tested at 60°C for up to 3 months while performing electrochemical measurements to characterize the integrity of the insulation. The mean time to failure for Al2O3-Parylene C was 4.6 times longer than Parylene C coated samples. In addition, based on modeling of the data using electrical circuit equivalents, we show here that there are two main modes of failure. Our results suggest that failure of the insulating layer is due to pore formation or blistering as well as thinning of the coating over time. The enhanced barrier properties of the bilayer Al2O3-Parylene C over Parylene C makes it a promising candidate as an encapsulating neural interface. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  3. Recent progress of the advanced test accelerator

    International Nuclear Information System (INIS)

    Prono, D.S.

    1985-01-01

    The Advanced Test Accelerator (ATA) of Lawrence Livermore National Laboratory is a linear induction accelerator whose electron beam parameters are 10 kA, 50 MeV, and 70 ns. This accelerator structure basically is a 2.5 MeV injector followed by 190 identical induction accelerator cores each of which incrementally adds 250 kV to the electron beam as it threads the center of the core. Recent work on beam stability, beam emittance and beam brightness is reported

  4. Test Stand for Linear Induction Accelerator Optimization

    International Nuclear Information System (INIS)

    Ong, M; DeHope, B; Griffin, K; Goerz, D; Kihara, R; Vogtlin, G; Zentler, J M; Scarpetti, R

    2003-01-01

    Lawrence Livermore National Laboratory has designed and constructed a test stand to improve the voltage regulation in our Flash X-Ray (FXR) accelerator cell. The goal is to create a more mono-energetic electron beam that will create an x-ray source with a smaller spot size. Studying the interaction of the beam and pulse-power system with the accelerator cell will improve the design of high-current accelerators at Livermore and elsewhere. On the test stand, a standard FXR cell is driven by a flexible pulse-power system and the beam current is simulated with a switched center conductor. The test stand is fully instrumented with high-speed digitizers to document the effect of impedance mismatches when the cell is operated under various full-voltage conditions. A time-domain reflectometry technique was also developed to characterize the beam and cell interactions by measuring the impedance of the accelerator and pulse-power component. Computer models are being developed in parallel with the testing program to validate the measurements and evaluate different design changes. Both 3D transient electromagnetic and circuit models are being used

  5. Advanced Test Accelerator (ATA) pulse power technology development

    International Nuclear Information System (INIS)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  6. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  7. Inspection of piping wall loss with flow accelerated corrosion accelerated simulation test

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun

    2009-01-01

    Flow Accelerated Corrosion (FAC) has become a hot issue for aging of passive components. Ultrasonic Technique (UT) has been adopted to inspect the secondary piping of Nuclear Power Plants (NPPs). UT, however, uses point detection method, which results in numerous detecting points and thus takes time. We developed an Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to monitor the thickness of piping that covers wide range of piping at once time. Since the ES-DCPD method covers area, not a point, it needs less monitoring time. This can be a good approach to broad carbon steel piping system such as secondary piping of NPPs. In this paper, FAC accelerated simulation test results is described. We realized accelerated FAC phenomenon by 2 times test: 23.7% thinning in 216.7 hours and 51% thinning in 795 hours. These were monitored by ES-DCPD and traditional UT. Some parameters of water chemistry are monitored and controlled to accelerate FAC process. As sensitive factors on FAC, temperature and pH was changed during the test. The wall loss monitored results reflected these changes of water chemistry successfully. Developed electrodes are also applied to simulation loop to monitor water chemistry. (author)

  8. Cathodic Delamination Accelerated Life Test Method

    National Research Council Canada - National Science Library

    Ramotowski, Thomas S

    2007-01-01

    A method for conducting an accelerated life test of a polymer coated metallic sample includes placing the sample below the water surface in a test tank containing water and an oxygen containing gas...

  9. Significance of acceleration period in a dynamic strength testing study.

    Science.gov (United States)

    Chen, W L; Su, F C; Chou, Y L

    1994-06-01

    The acceleration period that occurs during isokinetic tests may provide valuable information regarding neuromuscular readiness to produce maximal contraction. The purpose of this study was to collect the normative data of acceleration time during isokinetic knee testing, to calculate the acceleration work (Wacc), and to determine the errors (ERexp, ERwork, ERpower) due to ignoring Wacc during explosiveness, total work, and average power measurements. Seven male and 13 female subjects attended the test by using the Cybex 325 system and electronic stroboscope machine for 10 testing speeds (30-300 degrees/sec). A three-way ANOVA was used to assess gender, direction, and speed factors on acceleration time, Wacc, and errors. The results indicated that acceleration time was significantly affected by speed and direction; Wacc and ERexp by speed, direction, and gender; and ERwork and ERpower by speed and gender. The errors appeared to increase when testing the female subjects, during the knee flexion test, or when speed increased. To increase validity in clinical testing, it is important to consider the acceleration phase effect, especially in higher velocity isokinetic testing or for weaker muscle groups.

  10. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  11. Accelerated Leach Test(s) Program: Annual report

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1986-09-01

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms

  12. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  13. Accelerated life assessment of coating on the radar structure components in coastal environment.

    Science.gov (United States)

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  14. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    Science.gov (United States)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  15. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  16. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  17. Accelerated Testing Of Photothermal Degradation Of Polymers

    Science.gov (United States)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  18. Electrochemical corrosion testing of metal waste forms

    International Nuclear Information System (INIS)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  19. Accelerated testing of space batteries

    Science.gov (United States)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  20. Developing MESA : an accelerated reliability test

    NARCIS (Netherlands)

    Baskoro, G.; Rouvroye, J.L.; Bacher, W.; Brombacher, A.C.

    2003-01-01

    This paper describes the on-going research on an accelerated reliability test strategy called MESA (Multiple Environment Stress Analysis) intended to find in a fast and efficient manner (potential) reliability problems during the design phase of high volume consumer products. This test has shown

  1. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-01-01

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ∼250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year

  2. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Zongyue Yu

    2014-01-01

    Full Text Available A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testing plan including both the high temperatures and low temperatures is designed, and a statistical analysis method is developed. The reliability function of the product with multiple failure modes under variable working conditions is given by the proposed statistical analysis method. Finally, a numerical example is studied to illustrate the proposed accelerated testing. The results show that the proposed accelerated testing is rather efficient.

  3. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society.

  4. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-01-01

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator

  5. Operation of the graded-β electron test accelerator

    International Nuclear Information System (INIS)

    Fraser, J.S.; McKeown, J.; McMichael, G.E.; Diamond, W.T.

    1976-01-01

    The Electron Test Accelerator has been built to model the behaviour of the high energy portion of a proton linear accelerator which would be suitable for breeding fissile material. The test accelerator and its control systems have been tested at 100% duty factor producing a beam of electrons at 1.5 MeV and currents up to 20 mA where the incident rf power is shared equally between the structure dissipation and the beam loading. The structure has performed satisfactorily in all respects at dissipation power densities up to 5 kW/cell where the mean energy gradient was 1.1 MeV/m. Experiments have been done on the beam loading effects in the coupling of the transmission line to the cavity, the amplitude depression in and phase tilt along the structure, and the phase lag of the structure field. The phase acceptance, the variation of transmission with buncher-accelerator phase shift and the beam energy spread are in qualitative agreement with beam dynamics calculations. (author)

  6. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  7. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  8. Optimizing conditions for an accelerated leach test

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Heiser, J.; Franz, E.M.; Colombo, P.

    1988-01-01

    An accelerated leach test for low-level radioactive waste forms is being developed to provide, in a short time, data that can be extrapolated to long time periods. The approach is to provide experimental conditions that will accelerate leaching without changing the dominant release mechanism. Experimental efforts have focused on combining individual factors that have been observed to accelerate leaching. These include elevated temperature, increased leachant volume, and reduced specimen size. The response of diffusion coefficients to various acceleration factors have been evaluated and provide information on experimental parameters that need to be optimized to increase leach rates. Preliminary modeling using a diffusion mechanism (allowing for depletion) of a finite cylinder geometry indicates that during early portions of experiments (daily sampling intervals), leaching is diffusion controlled and more rapid than later in the same experiments (weekly or greater sampling intervals). For cement waste forms, this reduction in rate may be partially controlled by changes in physical structure and chemistry (sometimes related to environmental influences such as CO 2 ), but it is more likely associated with the duration of the sampling interval. By using a combination of mathematical modeling and by experimentally investigating various leach rate controlling factors, a more complete understanding of leaching processes is being developed. This, in turn, is leading to optimized accelerating conditions for a leach test

  9. Quick setup of test unit for accelerator control system

    International Nuclear Information System (INIS)

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-01-01

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  10. Accelerated testing of composites

    Science.gov (United States)

    Papazian, H. A.

    1983-01-01

    It is shown that the Zhurkov method for testing the strength of solids can be applied to dynamic tension and to cyclic loading and provides a viable approach to accelerated testing of composites. Data from the literature are used to demonstrate a straightforward application of the method to dynamic tension of glass fiber and cyclic loading for glass/polymer, metal matrix, and graphite/epoxy composites. Zhurkov's equation can be used at relatively high loads to obtain failure times at any temperature of interest. By taking a few data points at one or two other temperatures the spectrum of failure times can be expanded to temperatures not easily accessible.

  11. Preloading To Accelerate Slow-Crack-Growth Testing

    Science.gov (United States)

    Gyekenyesi, John P.; Choi, Sung R.; Pawlik, Ralph J.

    2004-01-01

    An accelerated-testing methodology has been developed for measuring the slow-crack-growth (SCG) behavior of brittle materials. Like the prior methodology, the accelerated-testing methodology involves dynamic fatigue ( constant stress-rate) testing, in which a load or a displacement is applied to a specimen at a constant rate. SCG parameters or life prediction parameters needed for designing components made of the same material as that of the specimen are calculated from the relationship between (1) the strength of the material as measured in the test and (2) the applied stress rate used in the test. Despite its simplicity and convenience, dynamic fatigue testing as practiced heretofore has one major drawback: it is extremely time-consuming, especially at low stress rates. The present accelerated methodology reduces the time needed to test a specimen at a given rate of applied load, stress, or displacement. Instead of starting the test from zero applied load or displacement as in the prior methodology, one preloads the specimen and increases the applied load at the specified rate (see Figure 1). One might expect the preload to alter the results of the test and indeed it does, but fortunately, it is possible to account for the effect of the preload in interpreting the results. The accounting is done by calculating the normalized strength (defined as the strength in the presence of preload the strength in the absence of preload) as a function of (1) the preloading factor (defined as the preload stress the strength in the absence of preload) and (2) a SCG parameter, denoted n, that is used in a power-law crack-speed formulation. Figure 2 presents numerical results from this theoretical calculation.

  12. Accelerated Leach Test(s) Program. Annual report

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-09-01

    This report summarizes the work performed for the Accelerated Leach Test(s) Program at Brookhaven National Laboratory in Fiscal Year 1985 under the sponsorship of the US Department of Energy's Low-Level Waste Management Program (LLWMP). Programmatic activities were concentrated in three areas, as listed and described in the following paragraphs. (1) A literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. Available mathematical models are based on diffusion as the predominant mechanism. Although numerous factors that affect leaching have been identified, they have been conveniently categorized as factors related to the entire leaching system, to the leachant or to the waste form. A report has been published on the results of this literature survey. (2) A computerized data base of LLW leaching data and mathematical models is being developed. The data are being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. (3) Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected

  13. Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-11-01

    Full Text Available Carbon fiber-reinforced polymer (CFRP is recognized as a promising anode material to prevent steel corrosion in reinforced concrete. However, the electrochemical performance of CFRP itself is unclear. This paper focuses on the understanding of electrochemical and mechanical properties of CFRP in an oxygen evolution environment by conducting accelerated polarization tests. Different amounts of current density were applied in polarization tests with various test durations, and feeding voltage and potential were measured. Afterwards, tensile tests were carried out to investigate the failure modes for the post-polarization CFRP specimens. Results show that CFRP specimens had two typical tensile-failure modes and had a stable anodic performance in an oxygen evolution environment. As such, CFRP can be potentially used as an anode material for impressed current cathodic protection (ICCP of reinforced concrete structures, besides the fact that CFRP can strengthen the structural properties of reinforced concrete.

  14. Standard Operating Procedure for Accelerated Corrosion Testing at ARL

    Science.gov (United States)

    2017-11-01

    ARL-TN-0855 ● NOV 2017 US Army Research Laboratory Standard Operating Procedure for Accelerated Corrosion Testing at ARL by... Corrosion Testing at ARL by Thomas A Considine Weapons and Materials Research Directorate, ARL Approved for public...November 2017 2. REPORT TYPE Technical Note 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Standard Operating Procedure for Accelerated

  15. High gradient test of X-band accelerating structure at GLCTA

    International Nuclear Information System (INIS)

    Watanabe, K.; Higo, T.; Hayano, H.; Terunuma, N.; Saeki, T.; Kudo, N.; Sanuki, T.; Seuhara, T.

    2004-01-01

    GLCTA (Global Linear Collider Test Accelerator) is the high power test facility for X-band acceleration. We have installed an X-band 60cm structure in April 2004 and have been processing it for more than 3 months. Now it is under test on long-term operation. We report here the installation process and high power test result to date. (author)

  16. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  17. NLC. A test accelerator for the next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.; Boyce, R.F.; Burke, D.L.; Callin, R.; Caryotakis, G.; Cassel, R.; Clark, S.L.; Deruyter, H.; Fant, K.; Fuller, R.; Heifets, S.; Hoag, H.; Humphrey, R.; Kheifets, S.; Koontz, R.; Kroll, N.M.; Lavine, T.; Loew, G.A.; Menegat, A.; Miller, R.H.; Nantista, C.; Paterson, J.M.; Pearson, C.; Phillips, R.; Rifkin, J.; Spencer, J.; Tantawi, S.; Thompson, K.A.; Vlieks, A.; Vylet, V.; Wang, J.W.; Wilson, P.B.; Yeremian, A.; Youngman, B.

    1993-01-01

    At SLAC, we are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and be upgradable to at least 1.0 TeV. To achieve this high energy, we have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, we present the design of a 'Next Linear Collider Test Accelerator' (NLCTA). The goal of the NLCTA is to incorporate the new technologies of X-band accelerator structures, RF pulse compression systems and klystrons into a short linac which will then be a test bed for beam dynamics issues related to high-gradient acceleration. (orig.)

  18. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program

  19. Some problems in the technique of high-voltage testing of the accelerating tube gaps in electrostatic accelerators

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Mukhametshin, V.I.; Dmitriev, E.P.; Kidalov, A.I.

    1983-01-01

    Problems arising during high-voltage testing and training of accelerating taubes of electrostatic accelrators are discussed. A rig and technique of the accelerating tube testing and program designed for the processing of the data obtained and sorting out of the samples investigated are described

  20. Vacuum system for Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Denhoy, B.S.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10 -6 torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing

  1. Vacuum system for Advanced Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  2. Accelerated stress testing of thin film solar cells: Development of test methods and preliminary results

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    If thin film cells are to be considered a viable option for terrestrial power generation their reliability attributes will need to be explored and confidence in their stability obtained through accelerated testing. Development of a thin film accelerated test program will be more difficult than was the case for crystalline cells because of the monolithic construction nature of the cells. Specially constructed test samples will need to be fabricated, requiring committment to the concept of accelerated testing by the manufacturers. A new test schedule appropriate to thin film cells will need to be developed which will be different from that used in connection with crystalline cells. Preliminary work has been started to seek thin film schedule variations to two of the simplest tests: unbiased temperature and unbiased temperature humidity. Still to be examined are tests which involve the passage of current during temperature and/or humidity stress, either by biasing in the forward (or reverse) directions or by the application of light during stress. Investigation of these current (voltage) accelerated tests will involve development of methods of reliably contacting the thin conductive films during stress.

  3. Operation of the Brookhaven national laboratory accelerator test facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; Van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program. (Author) 5 refs., 4 figs., tab

  4. A 1MeV, 1A negative ion accelerator test facility

    International Nuclear Information System (INIS)

    Hanada, M.; Dairaku, M.; Inoue, T.; Miyamoto, K.; Ohara, Y.; Okumura, Y.; Watanabe, K.; Yokoyama, K.

    1995-01-01

    For the Proof-of-Principle test of negative ion acceleration up to 1 MeV, the beam energy required for ITER, a negative ion test facility named MeV Test Facility (MTF) and an ion source/accelerator have been designed and constructed. They are designed to produce a 1 MeV H- beam at a low source pressure of 0.13Pa. The MTF has a power supply system, which constituts of a 1MV, 1A, 60 s Cockcroft-Walton type dc high energy generator and power supplies for negative ion generation and extraction (ion source power supplies). The negative ion source/accelerator is composed of a cesiated volume source and a 5-stage, multi-aperture, electrostatic accelerator. The MTF and the ion source/accelerator have been completed, and the accelertion test up to 1 MeV of the H- ions has started. (orig.)

  5. A test accelerator for the next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.; Boyce, R.F.; Burke, D.L.; Callin, R.; Caryotakis, G.; Cassel, R.; Clark, S.L.; Deruyter, H.; Fant, K.; Fuller, R.; Heifets, S.; Hoag, H.; Humphrey, R.; Kheifets, S.; Koontz, R.; Lavine, T.; Loew, G.A.; Menegat, A.; Miller, R.H.; Paterson, J.M.; Pearson, C.; Phillips, R.; Rifkin, J.; Spencer, J.; Tantawi, S.; Thompson, K.A.; Vlieks, A.; Vylet, V.; Wang, J.W.; Wilson, P.B.; Yeremian, A.; Youngman, B.; Kroll, N.M.; Nantista, C.

    1993-07-01

    At SLAC, the authors are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and be upgradable to at least 1.0 TeV. To achieve this high energy, they have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, they present the design of a open-quotes Next Linear Collider Test Acceleratorclose quotes (NLCTA). The goal of the NLCTA is to incorporate the new technologies of X-band accelerator structures, RF pulse compression systems and klystrons into a short linac which will then be a test bed for beam dynamics issues related to high-gradient acceleration

  6. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  7. The electron test accelerator safety in design and operation

    International Nuclear Information System (INIS)

    McKeown, J.

    1980-06-01

    The Electron Test Accelerator is being designed as an experiment in accelerator physics and technology. With an electron beam power of up to 200 kW the operation of the accelerator presents a severe radiation hazard as well as rf and electrical hazards. The design of the safety system provides fail-safe protection while permitting flexibility in the mode of operation and minimizing administrative controls. (auth)

  8. An accelerated test method for efflorescence in clay bricks

    International Nuclear Information System (INIS)

    Beggan, John Edward

    1998-01-01

    An investigation into the creation of accelerated efflorescence in clay bricks was undertaken with a view to creating a viable test procedure for determining efflorescence potential. The testing programme incorporated ambient conditions similar to those which promote efflorescence growth in bricks in use. Theoretical investigations into the physical mechanism underlying the creation of efflorescence directed the attempts to accelerate the process. It was found that calcium sulphate efflorescence could not be sufficiently accelerated such that a useful efflorescence test procedure could be proposed. The inability to produce accelerated efflorescence in brick samples was attributed to limitations associated with time dependent salt diffusion in the efflorescence mechanism. The preliminary testing that was undertaken into the creation of efflorescence prompted the use of acid assisted methods to accelerate efflorescence. The acid assisted method that was adopted to provide a possible indication of efflorescence potential relies upon the transformation of low solubility calcium to a more soluble form. The movement of the transformed salt is then induced by cyclic temperature exposure at temperatures similar to those experienced in Spring. The appearance of the transformed calcium salt on the surface of the brick specimen provides an indication of the efflorescence potential. Brick piers constructed on an exposed site and monitored over a 12 month period provided information on the validity of the acid assisted test method. The efflorescence observed on the piers correlated well with that predicted by the acid assisted test, suggesting that the new test has the potential to accurately predict the efflorescence potential of clay bricks Relationships between other properties such as air permeability, sorptivity and tensile strength were investigated such that an alternative method of predicting efflorescence could be achieved. It was found that (within the bounds of the

  9. On-line monitoring system development for single-phase flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, Na Young; Lee, Seung Gi; Ryu, Kyung Ha; Hwang, Il Soon

    2007-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover a wide area in an on-line application. We suggest an integrated approach to monitor the flow accelerated corrosion (FAC) susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible and that cover wide area, since we do not know where the FAC occurs. For this purpose, we introduce the wearing rate model which focuses on the electrochemical parameters. Using this model, we can predict the wearing rate and then compare testing results. Through analysis we identified feasibility and then developed electrochemical sensors for high temperature application; we also introduced a mechanical monitoring system which is still under development. To support the validation of the monitored results, we adopted high temperature ultrasonic transducer (UT), which shows good resolution in the testing environment. As such, all the monitored results can be compared in terms of thickness. Our validation tests demonstrated the feasibility of sensors. To support direct thickness measurement for a wide-area, the direct current potential drop (DCPD) method will be researched to integrate into the developed framework

  10. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  11. Accelerated Test Method for Corrosion Protective Coatings

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as...

  12. Accelerated pavement testing of low-volume paved roads with geocell reinforcement.

    Science.gov (United States)

    2015-03-01

    The Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the highway : departments of Kansas, Iowa, Missouri, and New York, has supported an accelerated pavement testing (APT) project : to study the rehabilitation of low-volum...

  13. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  14. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada); Campbell, S. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada)

    2008-04-15

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 C and compared to that of HiSpec 4000 trademark Pt/Vulcan XC-72R in 0.5 M H{sub 2}SO{sub 4}. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000 trademark. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization. (author)

  15. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    Science.gov (United States)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  16. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb$_{3}$Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  17. Manufacturing and Testing of Accelerator Superconducting Magnets

    International Nuclear Information System (INIS)

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process

  18. Manufacturing and Testing of Accelerator Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  19. The first acceleration test of polarized protons in KEK PS

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori; Sato, Hikaru; Toyama, Takeshi

    1984-03-01

    The outline of the polarized proton acceleration project at KEK and the results of the first acceleration test are described. Depolarization in the 500 MeV booster synchrotron was investigated as the first step of this program. The beam polarization was measured in the 20 MeV beam transport line from the linac to the booster and in the main ring at the injection energy. About 40 % of the linac beam polarization was kept in the main ring. This acceleration test encouraged us to proceed with this program. (author)

  20. Accelerated Performance Testing on the 2006 NCAT Pavement Test Track

    Science.gov (United States)

    2009-12-01

    The original National Center for Asphalt Technology (NCAT) Pavement Test Track was built in 2000 in Opelika, Alabama where it has served as a state-of-the-art, full-scale, closed-loop accelerated loading facility. The construction, operation, and res...

  1. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  2. Cosmological consistency tests of gravity theory and cosmic acceleration

    Science.gov (United States)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  3. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year

  4. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  5. On the application of design of experiments to accelerated life testing

    International Nuclear Information System (INIS)

    Hakim-Mashhadi, M.

    1992-01-01

    Today, there is an increasing demand for improved quality and reliability due to increasing system complexity and increasing demands from customer. Continuous improvement of quality is not only a means of competition but also a matter of staying in the market. Accelerated life testing and statistical design of experiments are two needed methods for improvement of quality. The combined use of them is very advantageous and increases the test efficiency. Accelerated life testing is a quick way to provide information on the life distribution of materials and products. By subjecting the test unit to conditions more severe than those at normal usage, the test time can be highly reduced. Estimates of life at normal stress levels are obtained by extrapolating the available information through a reasonable acceleration model. Accelerated life testing has mostly been used to measure reliability but it is high time to use it for improvement of quality. Design of experiments serves to find out the effect of design parameters and other interesting factors on performance measure and its variability. The obtained information is essential for a continuous improvement of quality. As an illustration, two sets of experiment are designed and performed at highly increased stress levels. The results are analysed and discussed and a time saving alternative is proposed. The combination of experimental design and accelerated life testing is discussed and illustrated. The combined use of these methods can be argued for in two different cases. One is for an exploratory improvement investigation and the other is for verification of reliability. In either case, the combined use is advantageous and improves the testing efficiency. Some general conclusions are drawn to be used for planning and performance of statistically designed accelerated life testing experiments. (70 refs.) (au)

  6. Sequential accelerated tests: Improving the correlation of accelerated tests to module performance in the field

    Science.gov (United States)

    Felder, Thomas; Gambogi, William; Stika, Katherine; Yu, Bao-Ling; Bradley, Alex; Hu, Hongjie; Garreau-Iles, Lucie; Trout, T. John

    2016-09-01

    DuPont has been working steadily to develop accelerated backsheet tests that correlate with solar panels observations in the field. This report updates efforts in sequential testing. Single exposure tests are more commonly used and can be completed more quickly, and certain tests provide helpful predictions of certain backsheet failure modes. DuPont recommendations for single exposure tests are based on 25-year exposure levels for UV and humidity/temperature, and form a good basis for sequential test development. We recommend a sequential exposure of damp heat followed by UV then repetitions of thermal cycling and UVA. This sequence preserves 25-year exposure levels for humidity/temperature and UV, and correlates well with a large body of field observations. Measurements can be taken at intervals in the test, although the full test runs 10 months. A second, shorter sequential test based on damp heat and thermal cycling tests mechanical durability and correlates with loss of mechanical properties seen in the field. Ongoing work is directed toward shorter sequential tests that preserve good correlation to field data.

  7. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    Science.gov (United States)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  8. Accelerated storage testing of freeze-dried Pseudomonas ...

    African Journals Online (AJOL)

    Accelerated storage testing of freeze-dried Pseudomonas fluorescens BTP1, ... of all P. fluorescens strains were not significantly different and thermal inactivation ... useful to the development of improved reference materials and samples held ...

  9. Ultra-accelerated natural sunlight exposure testing

    Science.gov (United States)

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  10. Accelerated weathering of fire-retardant-treated wood for fire testing

    Science.gov (United States)

    Robert H. White

    2009-01-01

    Fire-retardant-treated products for exterior applications must be subjected to actual or accelerated weathering prior to fire testing. For fire-retardant-treated wood, the two accelerated weathering methods have been Method A and B of ASTM D 2898. The rain test is Method A of ASTM D 2898. Method B includes exposures to ultraviolet (UV) sunlamps in addition to water...

  11. Next Linear Collider Test Accelerator conceptual design report

    International Nuclear Information System (INIS)

    1993-08-01

    This document presents the scientific justification and the conceptual design for the open-quotes Next Linear Collider Test Acceleratorclose quotes (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the open-quotes dark currentclose quotes generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m

  12. Accelerated aging as vigor test for sunn hemp seeds

    OpenAIRE

    Silva, Clíssia Barboza da; Barbosa, Rafael Marani; Vieira, Roberval Daiton

    2016-01-01

    ABSTRACT: This study aimed to determine the most appropriate method to assess the sunn hemp ( Crotalaria juncea L.) seed vigor in the accelerated aging test. Five seed lots from harvest 2007/2008 were evaluated for germination, vigor and seedling emergence in the field. Accelerated aging test was performed at 41°C during 48, 72 and 96 hours, with and without sodium chloride saturated solution. Then, the promising procedure was also performed for 2008/2009 and 2009/2010 harvests. In the tradit...

  13. Accelerated aging as vigor test for sunn hemp seeds

    OpenAIRE

    Silva,Clíssia Barboza da; Barbosa,Rafael Marani; Vieira,Roberval Daiton

    2017-01-01

    ABSTRACT: This study aimed to determine the most appropriate method to assess the sunn hemp ( Crotalaria juncea L.) seed vigor in the accelerated aging test. Five seed lots from harvest 2007/2008 were evaluated for germination, vigor and seedling emergence in the field. Accelerated aging test was performed at 41°C during 48, 72 and 96 hours, with and without sodium chloride saturated solution. Then, the promising procedure was also performed for 2008/2009 and 2009/2010 harvests. In the tradit...

  14. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    Science.gov (United States)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  15. A comparative study of accelerated tests to simulate atmospheric corrosion

    International Nuclear Information System (INIS)

    Assis, Sergio Luiz de

    2000-01-01

    In this study, specimens coated with five organic coating systems were exposed to accelerated tests for periods up to 2000 hours, and also to weathering for two years and six months. The accelerated tests consisted of the salt spray test, according to ASTM B-117; Prohesion (ASTM G 85-98 annex 5A); Prohesion combined with cyclic exposure to UV-A radiation and condensation; 'Prohchuva' a test described by ASTM G 85-98 using a salt spray with composition that simulated the acid rain of Sao Paulo, but one thousand times more concentrated, and 'Prohchuva' combined with cyclic exposure to UV-A radiation and condensation. The coated specimens were exposed with and without incision to expose the substrate. The onset and progress of corrosion at and of the exposed metallic surface, besides coating degradation, were followed by visual observation, and photographs were taken. The coating systems were classified according to the extent of corrosion protection given to the substrate, using a method based on ASTM standards D-610, D-714, D-1654 and D-3359. The rankings of the coatings obtained from accelerated tests and weathering were compared and contrasted with classification of the same systems obtained from literature, for specimens exposed to an industrial atmosphere. Coating degradation was strongly dependent on the test, and could be attributed to differences in test conditions. The best correlation between accelerated test and weathering was found for the test Prohesion alternated with cycles of exposure to UV-A radiation and condensation. (author)

  16. Accelerated spike resampling for accurate multiple testing controls.

    Science.gov (United States)

    Harrison, Matthew T

    2013-02-01

    Controlling for multiple hypothesis tests using standard spike resampling techniques often requires prohibitive amounts of computation. Importance sampling techniques can be used to accelerate the computation. The general theory is presented, along with specific examples for testing differences across conditions using permutation tests and for testing pairwise synchrony and precise lagged-correlation between many simultaneously recorded spike trains using interval jitter.

  17. Model- and calibration-independent test of cosmic acceleration

    International Nuclear Information System (INIS)

    Seikel, Marina; Schwarz, Dominik J.

    2009-01-01

    We present a calibration-independent test of the accelerated expansion of the universe using supernova type Ia data. The test is also model-independent in the sense that no assumptions about the content of the universe or about the parameterization of the deceleration parameter are made and that it does not assume any dynamical equations of motion. Yet, the test assumes the universe and the distribution of supernovae to be statistically homogeneous and isotropic. A significant reduction of systematic effects, as compared to our previous, calibration-dependent test, is achieved. Accelerated expansion is detected at significant level (4.3σ in the 2007 Gold sample, 7.2σ in the 2008 Union sample) if the universe is spatially flat. This result depends, however, crucially on supernovae with a redshift smaller than 0.1, for which the assumption of statistical isotropy and homogeneity is less well established

  18. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  19. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  20. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  1. Accelerated testing for studying pavement design and performance (FY 2003) : research summary.

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...

  2. SLAC High Gradient Testing of a KEK X-Band Accelerator Structure

    International Nuclear Information System (INIS)

    Loewen, Rod

    2000-01-01

    The high accelerating gradients required for future linear colliders demands a better study of field emission and RF breakdown in accelerator structures. Changes in structure geometry, vacuum pumping, fabrication methods, and surface finish can all potentially impact the conditioning process, dark current emission, and peak RF power handling capability. Recent tests at SLAC of KEK's ''M2'' travelling wave x-band accelerator section provides an opportunity to investigate some of these effects by comparing its performance to previously high power tested structures at SLAC. In addition to studying ultimate power limitations, this test also demonstrates the use of computer automated conditioning to reach practical, achievable gradients

  3. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J

    2012-07-01

    This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  4. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  5. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  6. Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions

    Science.gov (United States)

    Cui, Z. Y.; Liu, Z. Y.; Wang, L. W.; Ma, H. C.; Du, C. W.; Li, X. G.; Wang, X.

    2015-11-01

    In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.

  7. Accelerated testing for studying pavement design and performance (FY 2002) : research summary.

    Science.gov (United States)

    2004-01-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing : Laboratory at Kansas State University. The project was selected and funded by the : Midwest States Accelerated Testing Pooled Fund Program, which includes Iowa, Ka...

  8. High gradient tests of SLAC Linear Collider Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Deruyter, H.; Eichner, J.; Fant, K.H.; Hoag, H.A.; Koontz, R.F.; Lavine, T.; Loew, G.A.; Loewen, R.; Menegat, L.

    1994-08-01

    This paper describes the current SLAC R ampersand D program to develop room temperature accelerator structures for the Next Linear Collider (NLC). The structures are designed to operate at 11.4 GHz at an accelerating gradient in the range of 50 to 100 MV/m. In the past year a 26 cm constant-impedance traveling-wave section, a 75 cm constant-impedance traveling-wave section, and a 1.8 m traveling-wave section with detuned deflecting modes have been high-power tested. The paper presents a brief description of the RF test setup, the design and manufacturing details of the structures, and a discussion of test results including field emission, RF processing, dark current spectrum and RF breakdown

  9. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Gannon, J.; Kraushaar, P.; Mcinturff, A.; Nehring, R.; Saladin, V.; Savord, T.; Sorrensen, G.; Smellie, R.; Tool, G.; Voy, D.

    1993-05-01

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  10. Development of laboratory acceleration test method for service life prediction of concrete structures

    International Nuclear Information System (INIS)

    Cho, M. S.; Song, Y. C.; Bang, K. S.; Lee, J. S.; Kim, D. K.

    1999-01-01

    Service life prediction of nuclear power plants depends on the application of history of structures, field inspection and test, the development of laboratory acceleration tests, their analysis method and predictive model. In this study, laboratory acceleration test method for service life prediction of concrete structures and application of experimental test results are introduced. This study is concerned with environmental condition of concrete structures and is to develop the acceleration test method for durability factors of concrete structures e.g. carbonation, sulfate attack, freeze-thaw cycles and shrinkage-expansion etc

  11. Solutions for acceleration measurement in vehicle crash tests

    Science.gov (United States)

    Dima, D. S.; Covaciu, D.

    2017-10-01

    Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

  12. Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts

    International Nuclear Information System (INIS)

    Park, Sang Soon; Lee, Min Woo

    2014-01-01

    Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were investigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition

  13. Electrochemical corrosion of Zircaloy-2 under PWR water chemistry but at room temperature

    International Nuclear Information System (INIS)

    Waheed, Abdel-Aziz Fahmy; Kandil, Abdel-Hakim Taha; Hamed, Hani M.

    2016-01-01

    Highlights: • There is no simple relation between the corrosion rate and LiOH concentration. • At low concentration, 100 ppm Li, an increase of the rate is due to the pH impact. • LiOH in concentrated solution led to accelerated corrosion by pH effect and porosity. • Boron abates the lithium effect by pH neutralizing and participation in the corrosion. - Abstract: Electrochemical corrosion of Zircaloy-2 was tested at room temperature in lithium hydroxide (LiOH) concentrations that ranged from 2.2 to 7000 ppm and boric acid (H 3 BO 3 ) concentrations that ranged from 50 to 4000 ppm. Following the corrosion experiments, the oxide films of specimens were examined by SEM to examine the oxide existence. LiOH concentrations as high as 1 M (7000-ppm lithium) can lead to significantly increased electrochemical corrosion rate. It is suggested that the accelerated corrosion in concentrated solution is caused by the synergetic effect of LiOH, pH and porosity generation. In solutions containing 100 ppm of lithium, the presence of boron had an ameliorating effect on the corrosion rates of Zircaloy-2. Similar to acceleration of corrosion by lithium, the inhibition by boron is due to a combined effect of pH neutralizing and its participation in the corrosion process.

  14. Development of an accelerated leach test(s) for low-level waste forms

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1986-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected

  15. Pilot instrumentation of a Superpave test section at the Kansas Accelerated Testing laboratory

    Science.gov (United States)

    2003-04-01

    Two Superpave test sections were constructed at the Kansas Accelerated Testing Laboratory (K-ATL) with 12.5 mm (2 in) nominal maximum size Superpave mixture (SM-2A) with varying percentages (15 and 30 percent) of river sand. A 150 kN (34 kip) tandem ...

  16. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  17. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-01-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  18. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-05-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  19. Real-time and accelerated outdoor endurance testing of solar cells

    Science.gov (United States)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  20. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Directory of Open Access Journals (Sweden)

    Hussein Jwad Habeeb

    2018-03-01

    Full Text Available Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl using electrochemical measurements test includes PD (Potentiodynamic, EIS (Electrochemical impedance spectroscopy, OCP (Open circuit potential and EFM (electrochemical frequency modulation. The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases. Keywords: Hydroxybenzylideneaminomethy, Potentiodynamic, Electrochemical frequency modulation, Impedance

  1. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    OpenAIRE

    Zongyue Yu; Zhiqian Ren; Junyong Tao; Xun Chen

    2014-01-01

    A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testi...

  2. An accelerated test method of luminous flux depreciation for LED luminaires and lamps

    International Nuclear Information System (INIS)

    Qian, C.; Fan, X.J.; Fan, J.J.; Yuan, C.A.; Zhang, G.Q.

    2016-01-01

    Light Emitting Diode (LED) luminaires and lamps are energy-saving and environmental friendly alternatives to traditional lighting products. However, current luminous flux depreciation test at luminaire and lamp level requires a minimum of 6000 h testing, which is even longer than the product development cycle time. This paper develops an accelerated test method for luminous flux depreciation to reduce the test time within 2000 h at an elevated temperature. The method is based on lumen maintenance boundary curve, obtained from a collection of LED source lumen depreciation data, known as LM-80 data. The exponential decay model and Arrhenius acceleration relationship are used to determine the new threshold of lumen maintenance and acceleration factor. The proposed method has been verified by a number of simulation studies and experimental data for a wide range of LED luminaire and lamp types from both internal and external experiments. The qualification results obtained by the accelerated test method agree well with traditional 6000 h tests. - Highlights: • We develop an accelerated test method for LED luminaires and lamps. • The method is proposed based on a “Boundary Curve” concept. • The parameters of the boundary curve are extracted from LM-80 test reports. • Qualification results from the proposed method agree with ES requirements.

  3. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    Science.gov (United States)

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature...... swing in a short cycle period and to change the temperature cycle period easily. Thanks to a short temperature cycle period, test results can be obtained in a reasonable test time. A detailed explanation of apparatus such as configuration and control methods for the different functions of accelerated...

  5. An integrated electrochemical device based on immunochromatographic test strip and enzyme labels for sensitive detection of disease-related biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhexiang; Wang, Jun; Wang, Hua; Li, Yao Q.; Lin, Yuehe

    2012-05-30

    A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensor in this study. Some critical parameters governing the performance of the sensor were investigated in detail. The sensor was further utilized to detect HBsAg in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population

  6. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  7. Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, M.

    2014-03-01

    Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

  8. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    International Nuclear Information System (INIS)

    Feng, Huajun; Liang, Yuxiang; Guo, Kun; Long, Yuyang; Cong, Yanqing; Shen, Dongsheng

    2015-01-01

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO_2"− achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO_2"−, respectively. The residual NO_2"− was less than 0.5 mg/L in the reactor containing added NO_2"−, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  9. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  10. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  11. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    Science.gov (United States)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  12. Verification of mechanistic-empirical design models for flexible pavements through accelerated pavement testing.

    Science.gov (United States)

    2014-08-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway : departments of Kansas, Iowa, and Missouri, has supported an accelerated pavement testing (APT) project to : validate several models incorporated in the NCH...

  13. Accelerated testing of space mechanisms

    Science.gov (United States)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  14. Accelerated pavement testing of low-volume paved roads with geocell reinforcement : [technical summary].

    Science.gov (United States)

    2015-03-01

    The Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed : by the highway departments of Kansas, Iowa, Missouri, and New York, has : supported an accelerated pavement testing (APT) project to study the rehabilitation : of low-vol...

  15. Accelerated corrosion test for metal drainage pipes : final report.

    Science.gov (United States)

    1987-06-01

    This study represents an attempt to develop an accelerated test which would assist the highway engineer in evaluating the usefulness of a new type of coated steel culvert. The test method was to be short in duration (in the order of days), and the re...

  16. An acceleration test for stress corrosion cracking using humped specimen

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Fukumura, Takuya; Totsuka, Nobuo

    2003-01-01

    By using the humped specimen, which is processed by the humped die, in the slow strain rate technique (SSRT) test, fracture facet due to stress corrosion cracking (SCC) can be observed in relatively short duration. Although the cold work and concentrated stress and strain caused by the characteristic shape of the specimen accelerate the SCC, to date these acceleration effects have not been examined quantitatively. In the present study, the acceleration effects of the humped specimen were examined through experiments and finite element analyses (FEA). The experiments investigated the SCC of alloy 600 in the primary water environment of a pressurized water reactor. SSRT tests were conducted using two kinds of humped specimen: one was annealed after hump processing in order to eliminate the cold work, and the other was hump processed after the annealing treatment. The work ratio caused by the hump processing and stress/strain conditions during SSRT test were evaluated by FEA. It was found that maximum work ratio of 30% is introduced by the hump processing and that the distribution of the work ratio is not uniform. Furthermore, the work ratio is influenced by the friction between the specimen and dies as well as by the shape of dies. It was revealed that not only the cold work but also the concentrated stress and strain during SSRT test accelerate the crack initiation and growth of the SCC. (author)

  17. Accelerated leach testing of radionuclides from solidified low-level waste

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Franz, E.M.; Heiser, J. III; Colombo, P.

    1989-01-01

    This paper describes some of the work performed to develop an accelerated leach test designed to provide data that show long-term leaching behavior of solidified waste in a relatively short period of testing (1,2). The need for an accelerated leach test stems from the fact that the response of an effectively solidified waste form to the leaching process is so slow that a very long time is required to complete a test which shows the long-term leaching behavior of a waste form. Because of time limitations, as well as economic considerations, most studies have been limited to the early stages of the leaching process which is predominantly controlled by diffusion, although acknowledged to be due to also dissolution, corrosion or ion-exchange

  18. Evaluation of Accelerated Graphitic Corrosion Test of Gray Cast Iron

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Hong, Jong Dae; Chang Heui; Na, Kyung Hwan; Lee, Jae Gon

    2011-01-01

    In operating nuclear power plants, gray cast iron is commonly used as materials for various non-safety system components including pipes in fire water system, valve bodies, bonnets, and pump castings. In such locations, operating condition does not require alloy steels with excellent mechanical properties. But, a few corrosion related degradation, or graphitic corrosion is frequently occurred to gray cast iron during the long-term operation in nuclear power plant. Graphitic corrosion is selective leaching of iron from gray cast iron, where iron gets removed and graphite grains remain intact. In U.S.A., one-time visual inspection and hardness measurement are required from regulatory body to detect the graphitic corrosion for the life extension evaluation of the operating nuclear power plant. In this study, experiments were conducted to make accelerated graphitic corrosion of gray cast iron using electrochemical method, and hardness was measured for the specimens to establish the correlation between degree of graphitic corrosion and surface hardness of gray cast iron

  19. Time-dependent diffusive acceleration of test particles at shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Dublin Inst. for Advanced Studies (Ireland))

    1991-07-15

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author).

  20. Time-dependent diffusive acceleration of test particles at shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1991-01-01

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author)

  1. Development of an accelerated leach test(s) for low-level waste forms

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected. 10 refs., 5 figs

  2. High gradient test of the C-band choke-mode type accelerating structure

    International Nuclear Information System (INIS)

    Inagaki, T.; Shintake, T.; Baba, H.; Togawa, K.; Onoe, K.; Marechal, X.; Takashima, T.; Takahashi, S.; Matsumoto, H.

    2004-01-01

    The C-band (5712 MHz) choke-mode type accelerating structure will be used for SPring-8 Compact SASE-FEL Source (SCSS). To make the accelerator length short, we designed the field gradient as high as 40 MV/m. Since it is higher gradient than other traditional electron accelerators, we have to carefully check its performance (RF breakdown, dark current emission, etc.) in the high gradient test stand. The first experiment will be scheduled in this summer. In this paper, we will describe the preparation progress for the test. (author)

  3. ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING

    Energy Technology Data Exchange (ETDEWEB)

    WYRWAS RB; DUNCAN JB

    2008-11-20

    This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

  4. Technical report for fabrication and performance test of electrochemical/spectroscopic measurement system

    International Nuclear Information System (INIS)

    Park, Yong Joon; Cho, Young Hwan; Bae, Sang Eun; Im, Hee Jung; Song, Kyu Seok

    2010-01-01

    Development of evaluation technology of electrochemical reactions is very essential to understand chemical behavior of actinides and lanthanides in molten salt media in relation to the development of Pyrochemical process. The on-line electrochemical/spectroscopic measurement system is to produce electrochemical parameters and thermodynamic parameters of actinides and lanthanides in molten salts by using spectroscopic techniques such as UV-VIS absorption as well as electrochemical in-situ measurement techniques. The on-line electrochemical/spectroscopic measurement system can be applied to understand the chemical reactions and oxidation states of actinides and lanthanides in molten salts eventually for the Pyrochemical process

  5. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    Science.gov (United States)

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  6. Commissioning of the Ground Test Accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations

  7. Commissioning of the ground test accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Garnott, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohsen, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Sandoval, D.P.; Saadatmand, K.; Stevens, R.R.Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on line. The commissioning stages are the 35-keV H - injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2-MeV first 2-βλ drift tube linac (DTL-1) module, the 8.7-MeV 2-βλDTL (modules 1-5), and the 24-MeV GTA (all 10 DTL modules). Commissioning results from the RFQ beam experiments are presented along with comparisons with simulations. (Author) 8 refs., 9 figs

  8. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test---the Next Linear Collider Test Accelerator (NLCTA)---which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy. copyright 1995 American Institute of Physics

  9. High power testing oa ANL X-band dielectric-loaded accelerating structures

    International Nuclear Information System (INIS)

    Power, J. G.; Gai, W.; Jing, C.; Konecny, R.; Gold, S. H.; Kinkead, A. K.

    2002-01-01

    In the second phase of a program to develop a compact accelerator based on a dielectric-loaded accelerating structure, we have conducted high power tests on a traveling-wave and a standing-wave prototype. Indications are that the traveling-wave structure achieved an accelerating gradient of 3-5 MV/m before the input coupling window failed, while the standing wave structure was poorly matched at high power due to contamination of copper residue on its coupling window. To solve both of these problems, a new method for coupling RF into the structures has been developed. The new couplers and the rest of the modular structure are currently under construction and will be tested at the Naval Research Laboratory shortly

  10. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yu-Seok [Dongguk Univ.., Gyeongju (Korea, Republic of)

    2014-10-15

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand.

  11. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Jeong-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub; Kim, Yu-Seok

    2014-01-01

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand

  12. Test Particles with Acceleration-Dependent Lagrangian

    OpenAIRE

    Toller, M.

    2005-01-01

    We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the principal fibre bundle of all the Lorentz frames. We discuss in this framework the general form of the Lagrange equations and the connection between symmetries and conservation laws (Noether theorem). We apply these results to...

  13. Some practical observations on the accelerated testing of Nickel-Cadmium Cells

    Science.gov (United States)

    Mcdermott, P. P.

    1979-01-01

    A large scale test of 6.0 Ah Nickel-Cadmium Cells conducted at the Naval Weapons Support Center, Crane, Indiana has demonstrated a methodology for predicting battery life based on failure data from cells cycled in an accelerated mode. After examining eight variables used to accelerate failure, it was determined that temperature and depth of discharge were the most reliable and efficient parameters for use in accelerating failure and for predicting life.

  14. Corrosion resistance test based on electrochemical noise-limiting the number of long-lasting and costly climate chamber tests

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.B.; Veldman, D.; Gouwen, R.J.; Bende, E.E.; Eerenstein, W.

    2013-10-15

    Damp-heat testing of PV modules is a time-consuming process, taking months. The electrochemical noise (EcN) set-up is a fast, direct corrosion measurement of solar cells, whereby results can be obtained within one hour. EcN measurements are presented for several solar cell concepts and different environments. It correlates with damp-heat degradation involving corrosion, which is rather common in EVA-encapsulated crystalline Si modules. Furthermore, the EcN test can be done as an evaluation tool when probing alternative brands, formulations or processing for metallisation pastes and as a screening test for new batches of metallisation paste.

  15. Accelerated testing statistical models, test plans, and data analysis

    CERN Document Server

    Nelson, Wayne B

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering.""-Dev G.

  16. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Huajun [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Liang, Yuxiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Guo, Kun [Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Long, Yuyang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shen, Dongsheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China)

    2015-12-30

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO{sub 2}{sup −} achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO{sub 2}{sup −}, respectively. The residual NO{sub 2}{sup −} was less than 0.5 mg/L in the reactor containing added NO{sub 2}{sup −}, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  17. Group SkSP-R sampling plan for accelerated life tests

    Indian Academy of Sciences (India)

    Muhammad Aslam

    2017-09-15

    Sep 15, 2017 ... SkSP-R sampling; life test; Weibull distribution; producer's risk; ... designed a sampling plan under a time-truncated life test .... adjusted using an acceleration factor. ... where P is the probability of lot acceptance for a single.

  18. Optimizing conditions for an accelerated leach test

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Heiser, J.; Franz, E.M.; Colombo, P.

    1988-01-01

    An accelerated leach test for low-level radioactive waste forms is being developed to provide, in a short time, data that can be extrapolated to long time periods. The approach is to provide experimental conditions that will accelerate leaching without changing the dominant release mechanism. Experimental efforts have focused on combining individual factors that have been observed to accelerate leaching. These include elevated temperature, increased leachant volume, and reduced specimen size. The response of diffusion coefficients to various acceleration factors have been evaluated and provide information on experimental parameters that need to be optimized to increase leach rates. For example, these data show that large volumes of leachant are required when leaching portland cement waste forms at elevated temperatures because of high concentrations of dissolved species. Sr-85 leaching is particularly susceptible to suppression due to concentration effects while Cs-137 leaching is less so. Preliminary modeling using a diffusion mechanism (allowing for depletion) of a finite cylinder geometry indicates that during early portions of experiments (daily sampling intervals), leaching is diffusion controlled and more rapid than later in the same experiments (weekly or greater sampling intervals). For cement waste forms, this reduction in rate may be partially controlled by changes in physical structure and chemistry (sometimes related to environmental influences such as CO 2 ), but it is more likely associated with the duration of the sampling interval. 9 refs., 6 figs

  19. Radiation testing of thick-wall objects using a linear accelerator or Co-60

    International Nuclear Information System (INIS)

    Depending on the energy required, a 60 Co source or various types of betatrons and linear accelerators may be used for radiation testing of thick-walled metal parts. While 60 Co sources are easily transported, accelerators are not, but a transportable linear accelerator is described

  20. Accelerated stress testing of amorphous silicon solar cells

    Science.gov (United States)

    Stoddard, W. G.; Davis, C. W.; Lathrop, J. W.

    1985-01-01

    A technique for performing accelerated stress tests of large-area thin a-Si solar cells is presented. A computer-controlled short-interval test system employing low-cost ac-powered ELH illumination and a simulated a-Si reference cell (seven individually bandpass-filtered zero-biased crystalline PIN photodiodes) calibrated to the response of an a-Si control cell is described and illustrated with flow diagrams, drawings, and graphs. Preliminary results indicate that while most tests of a program developed for c-Si cells are applicable to a-Si cells, spurious degradation may appear in a-Si cells tested at temperatures above 130 C.

  1. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  2. Development of on-line monitoring system for flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, N.Y.; Lee, S.G.; Hwang, I.S.; Kim, J.T.; Luk, V.K.

    2005-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover wide area in the on-line application. We suggested integrated approach to monitor the FAC-susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible, and that cover wide area, since we don't know where the FAC occurs. For this purpose, we introduced wearing rate model, which concentrates on the electrochemical parameters. By the model, we can predict the wearing rate and then can compare the testing result. After we identified feasibility by analytical way, we developed electrochemical sensors for high temperature application, and introduced mechanical monitoring system, which is still under development. To support the validation of the monitored results, we adopted high temperature UT, which shows good resolution in the testing environment. By this way, all the monitored results can be compared in terms of thickness. Validation test shows the feasibility of sensors. To support direct thickness measurement for wide-area, Direct Current Potential Drop method will be researched to integrate to the developed framework. (authors)

  3. ECLSS Sustaining Metal Materials Compatibility Final Report, Electrochemical and Crevice Corrosion Test Results

    Science.gov (United States)

    Lee, R. E.

    2015-01-01

    Electrochemical test results are presented for six noble metals evaluated in two acidic test solutions which are representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The two test solutions consisted of fresh waste liquid which had been modified with a proposed or alternate pretreatment formulation and its associated brine concentrate. The six test metals included three titanium grades, (Commercially Pure, 6Al-4V alloy and 6Al-4V Low Interstitial alloy), two nickel-chromium alloys (Inconel® 625 and Hastelloy® C276), and one high tier stainless steel (Cronidur® 30).

  4. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    Science.gov (United States)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  5. Battery Test Facility- Electrochemical Analysis and Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery developers with reliable, independent, and unbiased performance evaluations of their...

  6. An Integration Testing Facility for the CERN Accelerator Controls System

    CERN Document Server

    Stapley, N; Bau, J C; Deghaye, S; Dehavay, C; Sliwinski, W; Sobczak, M

    2009-01-01

    A major effort has been invested in the design, development, and deployment of the LHC Control System. This large control system is made up of a set of core components and dependencies, which although tested individually, are often not able to be tested together on a system capable of representing the complete control system environment, including hardware. Furthermore this control system is being adapted and applied to CERN's whole accelerator complex, and in particular for the forthcoming renovation of the PS accelerators. To ensure quality is maintained as the system evolves, and toimprove defect prevention, the Controls Group launched a project to provide a dedicated facility for continuous, automated, integration testing of its core components to incorporate into its production process. We describe the project, initial lessons from its application, status, and future directions.

  7. Electrochemical study of the tarnish layer of silver deposited on glass

    OpenAIRE

    Ben Amor , Yasser; Sutter , Eliane; Takenouti , Hisasi; Tribollet , Bernard; Boinet , M.; Faure , R.; Balencie , J.; Durieu , G.

    2014-01-01

    International audience; Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the tarnished thin layer of silver deposited on glass. Instead of natural tarnishing in air environment, an acceleration of tarnishing process was realized by immersion of Ag covered glass in 10 μM K2S medium. The X-ray photoelectron spectroscopy (XPS) shows that tarnishing product formed on the silver surface consisted of Ag2S and Ag2O. As electrochemical characterizatio...

  8. Scientists confirm delay in testing new CERN particle accelerator

    CERN Multimedia

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inswitzerland on Monday confirmed a delay in tests of a massive new particle accelerator." (1 page)

  9. Review of test methods used to determine the corrosion rate of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    The purpose of this literature review is to give an overview of test methods previously used to evaluate the corrosion of metals in contact with wood. This article reviews the test methods used to evaluate the corrosion of metals in contact with wood by breaking the experiments into three groups: exposure tests, accelerated exposure tests, and electrochemical tests....

  10. Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm

    OpenAIRE

    Catterall, S.; Karamov, S.

    2001-01-01

    We describe a Fourier Accelerated Hybrid Monte Carlo algorithm suitable for dynamical fermion simulations of non-gauge models. We test the algorithm in supersymmetric quantum mechanics viewed as a one-dimensional Euclidean lattice field theory. We find dramatic reductions in the autocorrelation time of the algorithm in comparison to standard HMC.

  11. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  12. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  13. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    Science.gov (United States)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  14. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  15. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo

    2005-01-01

    in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates......Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm...

  16. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Science.gov (United States)

    Habeeb, Hussein Jwad; Luaibi, Hasan Mohammed; Dakhil, Rifaat Mohammed; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer

    2018-03-01

    Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl) using electrochemical measurements test includes PD (Potentiodynamic), EIS (Electrochemical impedance spectroscopy), OCP (Open circuit potential) and EFM (electrochemical frequency modulation). The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases.

  17. Evaluation of the BYG Carba Test, a New Electrochemical Assay for Rapid Laboratory Detection of Carbapenemase-Producing Enterobacteriaceae

    Science.gov (United States)

    Yunus, Sami; Massart, Marion; Huang, Te-Din; Glupczynski, Youri

    2015-01-01

    Accurate detection of carbapenemase-producing Enterobacteriaceae (CPE) constitutes a major laboratory diagnostic challenge. We evaluated an electrochemical technique (the BYG Carba test) which allows detection of CPE in less than 35 min. The BYG Carba test was first validated in triplicate against 57 collection isolates with previously characterized β-lactam resistance mechanisms (OXA-48, n = 12; KPC, n = 8; NDM, n = 8; VIM, n = 8; IMP, n = 3; GIM, n = 1; GES-6, n = 1; no carbapenemase, n = 16) and against a panel of 10 isolates obtained from the United Kingdom National External Quality Assessment Service (NEQAS). The test was then evaluated prospectively against 324 isolates referred to the national reference center for suspicion of CPE. The BYG Carba test results were compared with those obtained with the Carba NP test using multiplex PCR sequencing as the gold standard. Of the 57 collection and the 10 NEQAS isolates, all but one GES-6-producing isolate were correctly identified by the Carba BYG test. Among the 324 consecutive Enterobacteriaceae isolates tested prospectively, 146 were confirmed as noncarbapenemase producers by PCR while 178 harbored a carbapenemase gene (OXA-48, n = 117; KPC, n = 25; NDM, n = 23; and VIM, n = 13). Prospectively, in comparison with PCR results, the BYG Carba test displayed 95% sensitivity and 100% specificity versus 89% and 100%, respectively, for the Carba NP test. The BYG Carba test is a novel, rapid, and efficient assay based on an electro-active polymer biosensing technology discriminating between CPE and non-CPE. The precise electrochemical signal (electrochemical impedance variations) allows the establishment of real-time objective measurement and interpretation criteria which should facilitate the accreditation process of this technology. PMID:26637378

  18. Environmental Exposure and Accelerated Testing of Rubber-to-Metal Vulcanized Bonded Assemblies

    Science.gov (United States)

    1974-11-01

    btadiene/acrylonitrile ( NBR ) rubber -to-metat -. canized bonded assemblies at the two exposure sites are shown in Table 5. After exposure for one year...AD-A0-17 368 EN~VIRONMENTAL EXPOSURE AND ACCELERATED TESTING OF RUBBER -TO-METAL VULCANIZED BONDED ASSEMBLIES John A. WilliamsI Rock Island Arseital...COMMERCE 325116 1AD R-TR-75-013 ENViRONMENTAL EXPOSURE AND ACCELERATED TESTING OF RUBBER -TO-METAL VULCANIZED BONDED ASSEMBLIES by __ John A. Williams

  19. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    Science.gov (United States)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  20. Accelerated aging tests of liners for uranium mill tailings disposal

    International Nuclear Information System (INIS)

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing

  1. Benefits of Considering More than Temperature Acceleration for GaN HEMT Life Testing

    Directory of Open Access Journals (Sweden)

    Ronald A. Coutu

    2016-06-01

    Full Text Available The purpose of this work was to investigate the validity of Arrhenius accelerated-life testing when applied to gallium nitride (GaN high electron mobility transistors (HEMT lifetime assessments, where the standard assumption is that only critical stressor is temperature, which is derived from operating power, device channel-case, thermal resistance, and baseplate temperature. We found that power or temperature alone could not explain difference in observed degradation, and that accelerated life tests employed by industry can benefit by considering the impact of accelerating factors besides temperature. Specifically, we found that the voltage used to reach a desired power dissipation is important, and also that temperature acceleration alone or voltage alone (without much power dissipation is insufficient to assess lifetime at operating conditions.

  2. Online monitoring method using Equipotential Switching Direct Current potential drop for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Lee, Tae Hyun; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun; Park, Jin Ho; Sohn, Chang Ho

    2010-01-01

    The flow accelerated corrosion (FAC) phenomenon persistently impacts plant reliability and personnel safety. We have shown that Equipotential Switching Direct Current Potential Drop (ES-DCPD) can be employed to detect piping wall loss induced by FAC. It has been demonstrated to have sufficient sensitivity to cover both long and short lengths of piping. Based on this, new FAC screening and inspection approaches have been developed. For example, resolution of ES-DCPD can be adjusted according to its monitoring purpose. The developed method shows good integrity during long test periods. It also shows good reproducibility. The Seoul National University FAC Accelerated Simulation Loop (SFASL) has been constructed for ES-DCPD demonstration purposes. During one demonstration, the piping wall was thinned by 23.7% through FAC for a 13,000 min test period. In addition to the ES-DCPD method, ultrasonic technique (UT) has been applied to SFASL for verification while water chemistry was continually monitored and controlled using electrochemical sensors. Developed electrochemical sensors showed accurate and stable water conditions in the SFASL during the test period. The ES-DCPD results were also theoretically predicted by the Sanchez-Caldera's model. The UT, however, failed to detect thinning because of its localized characteristics. Online UT that covers only local areas cannot assure the detection of wall loss.

  3. Induction accelerator test module for HIF

    International Nuclear Information System (INIS)

    Faltens, A.

    1991-04-01

    An induction linac test module suitable for investigating the drive requirements and the longitudinal coupling impedance of a high-power ion induction linac has been constructed by the Heavy Ion Fusion (HIF) group at LBL. The induction linac heavy ion driver for inertial confinement fusion (ICF) as presently envisioned uses multiple parallel beams which are transported in separate focusing channels but accelerated together in the induction modules. The resulting induction modules consequently have large beam apertures-1--2 meters in diameter- and correspondingly large outside diameters. The module geometry is related to a low-frequency ''gap capacity'' and high-frequency structural resonances, which are affected by the magnetic core loading and the module pulser impedance. A description of the test module and preliminary results are presented. 3 figs

  4. An induction accelerator for the Heidelberg Test Storage Ring TSR

    International Nuclear Information System (INIS)

    Ellert, C.; Habs, D.; Music, M.; Schwalm, D.; Wolf, A.; Jaeschke, E.; Kambara, T.; Sigray, P.

    1992-01-01

    An induction accelerator has been installed in the heavy ion test storage ring TSR in Heidelberg. It allows for constant acceleration or deceleration of stored coasting ion beams without affecting their velocity profile and is well suited for ion beam manipulation in cooling experiments and for measurements of velocity dependent cooling forces. The design and operation of the device and first applications to laser cooling and to measurements of laser and electron cooling forces are described. (orig.)

  5. Accelerated pavement testing efforts using the heavy vehicle simulator

    CSIR Research Space (South Africa)

    Du Plessis, Louw

    2017-10-01

    Full Text Available This paper provides a brief description of the technological developments involved in the development and use of the Heavy Vehicle Simulator (HVS) accelerated pavement testing equipment. This covers the period from concept in the late 1960’s...

  6. Electrochemical heterogeneity and corrosion resistance of a welded titanium-zirconium joint

    International Nuclear Information System (INIS)

    Polyakov, S.G.; Goncharov, A.B.; Onoprienko, L.M.; Smiyan, O.D.

    1992-01-01

    The electrochemical behavior and corrosion resistance of various welded joints of zirconium alloy N-2.5 with commercial titanium VT1 made by the argon-arc method are studied. Electrochemical heterogeneity is studied by measuring the distribution of potentials over the surface, galvanic currents, and recording of polarization curves for different zones of a welded joint in 5% sulfuric acid solution at 340 K. It is established that electrochemical heterogeneity of the zones of an N-2.5 + VT1 welded joint leads to acceleration of the cathodic process in a welded joint and the anodic process along the fusion line from the titanium direction where the greatest hydrogenation of the metal and corrosion damage is correspondingly observed

  7. Verification of mechanistic-empirical design models for flexible pavements through accelerated pavement testing : technical summary.

    Science.gov (United States)

    2014-08-01

    Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the : highway departments of Kansas, Iowa, and Missouri, has supported an accelerated : pavement testing (APT) project to validate several models incorporated in the NCHRP :...

  8. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Science.gov (United States)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  9. Flow-accelerated corrosion characteristics of galvanically coupled dissimilar metals

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Kim, Jnng Gu

    2001-01-01

    Flow accelerated galvanic corrosion characteristics of a carbon steel coupled to stainless steel were investigated in deaerated alkaline-chloride solutions as a function of flow velocities, pH and temperatures. The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE(Rotating Cylinder Electrode). Carbon steel showed active behavior in the deaerated alkaline-chloride solution. The galvanic current density of carbon steel increased with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at 25 deg. C, whereas the flow velocity increased galvanic current density significantly at 50 .deg. C and 75 .deg. C. This might be due to the increased solubility of magnetite at the higher temperatures

  10. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    Energy Technology Data Exchange (ETDEWEB)

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; /Titan Beta, Dublin; Miller, R.; /Titan Beta, Dublin /SLAC; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  11. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Science.gov (United States)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  12. Test of the law of gravitation at small accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, H. [Wuppertal Univ. (Germany); Lohrmann, E.; Schubert, S. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Bartel, W.; Glazov, A.; Loehr, B.; Niebuhr, C.; Wuensch, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Joensson, L.; Kempf, G. [Lund Univ. (Sweden)

    2011-12-15

    Newton's Law of Gravitation has been tested at small values a of the acceleration, down to a {approx}10{sup -10} ms{sup -2}, the approximate value of MOND's constant a{sub 0}. No deviations were found. (orig.)

  13. A general Bayes weibull inference model for accelerated life testing

    International Nuclear Information System (INIS)

    Dorp, J. Rene van; Mazzuchi, Thomas A.

    2005-01-01

    This article presents the development of a general Bayes inference model for accelerated life testing. The failure times at a constant stress level are assumed to belong to a Weibull distribution, but the specification of strict adherence to a parametric time-transformation function is not required. Rather, prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels and the common shape parameter. Using the approach, Bayes point estimates as well as probability statements for use-stress (and accelerated) life parameters may be inferred from a host of testing scenarios. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known MCMC (Markov Chain Monte Carlo) methods to derive posterior approximations. The approach is illustrated with an example

  14. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    International Nuclear Information System (INIS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-01-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects

  15. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Chou, T.S.; Fernow, R.C.

    1988-01-01

    The Brookhaven Accelerator Test Facility (ATF) will consist of a 50--100 MeV/c electron linac and a 100 GW CO 2 laser system. A high brightness RF-gun operating at 2856 MHz is to be used as the injector into the linac. The RF-gun contains a Nd:Yag-laser-driven photocathode capable of producing a stream of six ps electron pulses separated by 12.5 ns. The maximum charge in a micropulse will be one nano-Coulomb. The CO 2 laser pulse length will be a few picoseconds and will be synchronized with the electron pulse. The first experimental beam is expected in Fall 89. The design electron beam parameters are given and possible initial experiments are discussed. 9 refs., 1 fig., 3 tabs

  16. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    International Nuclear Information System (INIS)

    Park, Sae-Hoon; Kim, Yu-Seok; Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2015-01-01

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber

  17. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  18. Quantitative Accelerated Life Testing of MEMS Accelerometers.

    Science.gov (United States)

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-11-20

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature) and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the"worst case" being smaller than 10 -7 h -1 .

  19. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    Science.gov (United States)

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Estimation for a Weibull accelerated life testing model

    International Nuclear Information System (INIS)

    Glaser, R.E.

    1984-01-01

    It is sometimes reasonable to assume that the lifetime distribution of an item belongs to a certain parametric family, and that actual parameter values depend upon the testing environment of the item. In the two-parameter Weibull family setting, suppose both the shape and scale parameters are expressible as functions of the testing environment. For various models of functional dependency on environment, maximum likelihood methods are used to estimate characteristics of interest at specified environmental levels. The methodology presented handles exact, censored, and grouped data. A detailed accelerated life testing analysis of stress-rupture data for Kevlar/epoxy composites is given. 10 references, 1 figure, 2 tables

  1. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests.

    Science.gov (United States)

    Smith, Koren; Balter, Peter; Duhon, John; White, Gerald A; Vassy, David L; Miller, Robin A; Serago, Christopher F; Fairobent, Lynne A

    2017-07-01

    The purpose of this guideline is to provide a list of critical performance tests in order to assist the Qualified Medical Physicist (QMP) in establishing and maintaining a safe and effective quality assurance (QA) program. The performance tests on a linear accelerator (linac) should be selected to fit the clinical patterns of use of the accelerator and care should be given to perform tests which are relevant to detecting errors related to the specific use of the accelerator. A risk assessment was performed on tests from current task group reports on linac QA to highlight those tests that are most effective at maintaining safety and quality for the patient. Recommendations are made on the acquisition of reference or baseline data, the establishment of machine isocenter on a routine basis, basing performance tests on clinical use of the linac, working with vendors to establish QA tests and performing tests after maintenance. The recommended tests proposed in this guideline were chosen based on the results from the risk analysis and the consensus of the guideline's committee. The tests are grouped together by class of test (e.g., dosimetry, mechanical, etc.) and clinical parameter tested. Implementation notes are included for each test so that the QMP can understand the overall goal of each test. This guideline will assist the QMP in developing a comprehensive QA program for linacs in the external beam radiation therapy setting. The committee sought to prioritize tests by their implication on quality and patient safety. The QMP is ultimately responsible for implementing appropriate tests. In the spirit of the report from American Association of Physicists in Medicine Task Group 100, individual institutions are encouraged to analyze the risks involved in their own clinical practice and determine which performance tests are relevant in their own radiotherapy clinics. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on

  2. Application of Nano-Structured Coatings for Mitigation of Flow-Accelerated Corrosion in Secondary Pipe Systems of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun; Kim, Jong Jin; Yoo, Seung Chang; Huh, Jae Hoon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Flow-accelerated corrosion (FAC) is a complex corrosion process combined with mechanical reaction with fluid. There were lots of research to mitigate FAC such as controlling temperature or water chemistry but in this research, we adopt active coating techniques especially nano-particle reinforced coatings. One of the general characteristics of FAC and its mitigation is that surface friction due to surface morphology makes a significant effect on FAC. Therefore to form a uniform coating layers, nano-particles including TiO2, SiC, Fe-Cr-W and Graphene were utilized. Those materials are known as greatly improve the corrosion resistance of substrates such as carbon steels but their effects on mitigation of FAC are not revealed clearly. Therefore in this research, the FAC resistive performance of nano-structured coatings were tested by electrochemical impedance spectroscopy (EIS) in room temperature 15 wt% sulfuric acid. As the flow-accelerated corrosion inhibitors in secondary piping system of nuclear power plants, various kinds of nano-structured coatings were prepared and tested in room-temperature electrochemical cells. SHS7740 with two types of Densifiers, electroless nickel plating with TiO2 are prepared. Electropolarization curves shows the outstanding corrosion mitigation performance of SHS7740 but EIS results shows the promising potential of Ni-P and Ni-P-TiO2 electroless nickel plating. For future work, high-temperature electrochemical analysis system will be constructed and in secondary water chemistry will be simulated.

  3. CERN Technical training 2008 - Learning for the LHC: Special Workshop demonstrating reliability with accelerated testing

    CERN Multimedia

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrates that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the electro...

  4. CERN Technical training 2008 - Learning for the LHC: Special Workshop demonstrating reliability with accelerated testing

    CERN Multimedia

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrate that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of the utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the elec...

  5. CERN Technical training 2008 - Learning for the LHC: Special workshop demonstrating reliability with accelerated testing

    CERN Multimedia

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrate that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of the utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the elec...

  6. Electrochemical permeation tests on the kinetics of the hydrogen absorption of palladium and iron

    International Nuclear Information System (INIS)

    Dafft, E.G.

    1977-01-01

    Electrochemical permeation tests were performed to investigate the kinetics of the hydrogen development and hydrogen absorption. The cathode side of the samples was galvanostatically cathodically polarized in different electrolyte solutions with and without additions. THe hydrogen atoms diffusing out of the opposite side for iron and α-palladium were oxidized with potentiostatic, sufficiently anodic polarization. The thus registered stationary current is proportional to the hydrogen activity on the cathode side. Test apparatus and conditions are described. The measurements on iron are discussed. (orig./HPOE) [de

  7. Development of an accelerated reliability test schedule for terrestrial solar cells

    Science.gov (United States)

    Lathrop, J. W.; Prince, J. L.

    1981-01-01

    An accelerated test schedule using a minimum amount of tests and a minimum number of cells has been developed on the basis of stress test results obtained from more than 1500 cells of seven different cell types. The proposed tests, which include bias-temperature, bias-temperature-humidity, power cycle, thermal cycle, and thermal shock tests, use as little as 10 and up to 25 cells, depending on the test type.

  8. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High Power Test of an X-Band Slotted-IRIS Accelerator Structure at NLCTA

    International Nuclear Information System (INIS)

    Doebert, S.; Fandos, R.; Grudiev, A.; Heikkinen, S.; Rodriquez, J.A.; Taborelli, M.; Wuensch, W.; Adolphsen, Chris E.; Laurent, L.

    2007-01-01

    The CLIC study group at CERN has built two X-band HDS (hybrid damped structure) accelerating structures for high-power testing in NLCTA at SLAC. These accelerating structures are novel with respect to their rf- design and their fabrication technique. The eleven-cell constant impedance structures, one made out of copper and one out of molybdenum, are assembled from clamped high-speed milled quadrants. They feature the same heavy higher-order-mode damping as nominal CLIC structures achieved by slotted irises and radial damping waveguides for each cell. The X-band accelerators are exactly scaled versions of structures tested at 30 GHz in the CLIC test facility, CTF3. The results of the X-band tests are presented and compared to those at 30 GHz to determine frequency scaling, and are compared to the extensive copper data from the NLC structure development program to determine material dependence and make a basic validation of the HDS design

  10. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    Science.gov (United States)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  11. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  12. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Chou, T.S.; Fernow, R.C.; Fischer, J.; Gallardo, J.; Kirk, H.G.; Koul, R.; Palmer, R.B.; Pellegrini, C.; Sheehan, J.; Srinivasan-Rao, T.; Ulc, S.; Woodle, M.; Bigio, I.; Kurnit, N.; McDonald, K.T.

    1989-01-01

    The Brookhaven Accelerator Test Facility ATF will consist of a 50-100 MeV/c electron linac and a 100 GW CO 2 laser system. A high brightness RF-gun operating at 2,856 MHz is to be used as the injector into the linac. The RF-gun contains a Nd:Yag-laser-driven photocathode capable of producing a stream of six ps electron pulses separated by 12.5 ns. The maximum charge in a micropulse will be one nano-Coulomb. The CO 2 laser pulse length will be a few picoseconds and will be synchronized with the electron pulse. The first experimental beam is expected in Fall 89. The design electron beam parameters are given and possible initial experiments are discussed. 9 refs., 1 fig., 3 tabs

  13. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    Science.gov (United States)

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  15. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  16. Results of Investigative Tests of Gas Turbine Engine Compressor Blades Obtained by Electrochemical Machining

    Science.gov (United States)

    Kozhina, T. D.; Kurochkin, A. V.

    2016-04-01

    The paper highlights results of the investigative tests of GTE compressor Ti-alloy blades obtained by the method of electrochemical machining with oscillating tool-electrodes, carried out in order to define the optimal parameters of the ECM process providing attainment of specified blade quality parameters given in the design documentation, while providing maximal performance. The new technological methods suggested based on the results of the tests; in particular application of vibrating tool-electrodes and employment of locating elements made of high-strength materials, significantly extend the capabilities of this method.

  17. Commissioning of the Ground Test Accelerator Intertank Matching Section

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented

  18. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    Science.gov (United States)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  19. Accounting for measurement error in log regression models with applications to accelerated testing.

    Science.gov (United States)

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  20. Accounting for measurement error in log regression models with applications to accelerated testing.

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  1. In situ electrochemical etching and examination by SPM of titanate ceramics

    International Nuclear Information System (INIS)

    Thorogood, G.J.; Short, K.T; Zhang, Y.

    2002-01-01

    Full text: The aqueous durability of titanate related ceramics is of great importance for the immobilisation of high level radioactive waste-in order to observe the reaction progress at the solid-liquid interface of these durable ceramics, we have attempted to accelerate the dissolution process via electrochemical means by using a SPM cell with electrochemical capability. The experiment involves placing a titanate ceramic disk (with flat polished surfaces) in the electrochemical cell. The cell is then set up with the ceramic acting as one electrode and another electrode being placed in the solution. In a flow through cell it is possible to select the pH and observe the change, not only in surface morphology as dissolution occurs, but also the frictional characteristics of the surface. The SPM tip plays no role in the electrochemical reaction. We will be presenting results from our work and discussing possible mechanisms for dissolution and future directions of the work. Copyright (2002) Australian Society for Electron Microscopy Inc

  2. Electrochemical testing of passivity state and corrosion resistance of supermartensitic stainless steels

    Directory of Open Access Journals (Sweden)

    S. Lasek

    2010-01-01

    Full Text Available On low interstitial - supermartensitic stainless steels (X1CrNiMo 12-5-1, X2CrNiMo 13-6-2, X1CrNiMo 12-6-2 the electrochemical potentiodynamic polarization tests were carried out and the passive state stability and localized corrosion resistance were compared and evaluated. The effect of quenching and tempering as well as the changes in microstructure on polarisation curves and corrosion properties at room temperature were established. Small differences in chemical composition of steels were also registered on their corrosion parameters changes and resistance.

  3. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    International Nuclear Information System (INIS)

    Wady, P.T.; Draude, A.; Shubeita, S.M.; Smith, A.D.; Mason, N.; Pimblott, S.M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5–6 cm"2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr–25Ni–Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  4. Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper.

    Energy Technology Data Exchange (ETDEWEB)

    Maines, Warren Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kittell, David E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hobbs, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State at the tube wall. And we estimated Gurney velocity both at the test cap and tube wall. Our experiments and simulations are within expected uncertainty. The test and the analysis effectively reduce costs while keeping similar fidelity compared with more expensive tests.

  5. A Bayesian Optimal Design for Sequential Accelerated Degradation Testing

    Directory of Open Access Journals (Sweden)

    Xiaoyang Li

    2017-07-01

    Full Text Available When optimizing an accelerated degradation testing (ADT plan, the initial values of unknown model parameters must be pre-specified. However, it is usually difficult to obtain the exact values, since many uncertainties are embedded in these parameters. Bayesian ADT optimal design was presented to address this problem by using prior distributions to capture these uncertainties. Nevertheless, when the difference between a prior distribution and actual situation is large, the existing Bayesian optimal design might cause some over-testing or under-testing issues. For example, the implemented ADT following the optimal ADT plan consumes too much testing resources or few accelerated degradation data are obtained during the ADT. To overcome these obstacles, a Bayesian sequential step-down-stress ADT design is proposed in this article. During the sequential ADT, the test under the highest stress level is firstly conducted based on the initial prior information to quickly generate degradation data. Then, the data collected under higher stress levels are employed to construct the prior distributions for the test design under lower stress levels by using the Bayesian inference. In the process of optimization, the inverse Gaussian (IG process is assumed to describe the degradation paths, and the Bayesian D-optimality is selected as the optimal objective. A case study on an electrical connector’s ADT plan is provided to illustrate the application of the proposed Bayesian sequential ADT design method. Compared with the results from a typical static Bayesian ADT plan, the proposed design could guarantee more stable and precise estimations of different reliability measures.

  6. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    Science.gov (United States)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  7. A study on the reliability evaluation of shot peened aluminium alloy using accelerated life test

    International Nuclear Information System (INIS)

    Nam, Ji Hun; Cheong, Seong Kyun; Kang, Min Woo

    2006-01-01

    In this paper, the concept of accelerated life test, which is a popular research field nowadays, is applied to the shot peened material. To predict the efficient and exact room temperature fatigue characteristics from the high temperature fatigue data, the adequate accelerated model is investigated. Ono type rotary bending fatigue tester and high temperature chamber were used for the experiment. Room temperature fatigue lives were predicted by applying accelerated models and doing reliability evaluation. Room temperature fatigue tests were accomplished to check the effectiveness of predicted data and the adequate accelerated life test models were presented by considering errors. Experimental result using Arrhenius model, fatigue limit obtain almost 5.45% of error, inverse power law has about 1.36% of error, so we found that inverse power law is applied well to temperature-life relative of shot peended material

  8. Influence of aqueous phase on electrochemical biocorrosion tests in diesel/water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bento, F.M. [Dept. of Soils, Faculty of Agronomy, UFRGS, 7712 Bento Goncalves Avenue, CEP: 91540-001, POA, RS (Brazil); Englert, G.E.; Muller, I.L. [Dept. of Metallurgy, Biocorrosion and Biofilms Lab, UFRGS, 99 Osvaldo Aranha Avenue s.615D, CEP: 90035-190, POA, RS (Brazil); Gaylarde, C.C. [Dept. of Biophisics, UFRGS POA, RS (Brazil)

    2004-08-01

    Storage tanks containing microbially contaminated diesel oil are susceptible to corrosion. This process may be evaluated electrochemically in the laboratory using simulated storage systems containing diesel oil and an aqueous phase. The simulated aqueous phase must supply mineral nutrients for microbial growth, together with adequate electrical conductivity, without, however, being too corrosive, so as to allow the aggressive nature of the microbial metabolites to be detected. In this investigation, microbial growth was measured in six electrically conductive media overlaid with metropolitan diesel oil containing an additive package. The microorganisms were the filamentous fungi, Hormoconis resinae, Paecilomyces variotii and Aspergillus fumigatus, the bacterium Bacillus subtilis and the yeast Candida silvicola, all previously isolated from contaminated diesel oil. After 60 days incubation with pure or mixed inocula of these microorganisms, pH, conductivity and viable microorganisms were measured. The electrochemical behaviour of carbon steel ASTM 283-93-C was determined in each of the six media (uninoculated) and in selected inoculated medium via measurements of open circuit potential and potentiostatic polarization curves. The uptake of phosphate (corrosion inhibitor), microbial growth, pH, conductivity and anodic and cathodic polarization curves were assessed in the water phase after 30 and 60 days of incubation with each single species Aspergillus fumigatus and Hormoconis resinae and with the consortium. The medium which proved most appropriate was Bushnell-Haas medium modified by the omission of chlorides, which allowed satisfactory microbial growth and had low aggressivity towards the steel. The performance of electrochemical tests in aerated, rather than deaerated, electrolyte solutions is suggested to be important to allow the detection of microbial influence on passive film formation and stability. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  9. Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion

    International Nuclear Information System (INIS)

    Wang, Han; Zhao, Yu; Ma, Xiaobing; Wang, Hongyu

    2017-01-01

    In this paper, we propose the M-optimality criterion for designing constant-stress accelerated degradation tests (ADTs). The newly proposed criterion concentrates on the degradation mechanism equivalence rather than evaluation precision or prediction accuracy which is usually considered in traditional optimization criteria. Subject to the constraints of total sample number, test termination time as well as the stress region, an optimum constant-stress ADT plan is derived by determining the combination of stress levels and the number of samples allocated to each stress level, when the degradation path comes from inverse Gaussian (IG) process model with covariates and random effects. A numerical example is presented to verify the robustness of our proposed optimum plan and compare its efficiency with other test plans. Results show that, with a slightly relaxed requirement of evaluation precision and prediction accuracy, our proposed optimum plan reduces the dispersion of the estimated acceleration factor between the usage stress level and a higher accelerated stress level, which makes an important contribution to reliability demonstration and assessment tests. - Highlights: • We establish the necessary conditions for degradation mechanism equivalence of ADTs. • We propose the M-optimality criterion for designing constant-stress ADT plans. • The M-optimality plan reduces the dispersion of the estimated accelerated factors. • An electrical connector with its stress relaxation data is used for illustration.

  10. Accelerated testing for cosmic soft-error rate

    International Nuclear Information System (INIS)

    Ziegler, J.F.; Muhlfeld, H.P.; Montrose, C.J.; Curtis, H.W.; O'Gorman, T.J.; Ross, J.M.

    1996-01-01

    This paper describes the experimental techniques which have been developed at IBM to determine the sensitivity of electronic circuits to cosmic rays at sea level. It relates IBM circuit design and modeling, chip manufacture with process variations, and chip testing for SER sensitivity. This vertical integration from design to final test and with feedback to design allows a complete picture of LSI sensitivity to cosmic rays. Since advanced computers are designed with LSI chips long before the chips have been fabricated, and the system architecture is fully formed before the first chips are functional, it is essential to establish the chip reliability as early as possible. This paper establishes techniques to test chips that are only partly functional (e.g., only 1Mb of a 16Mb memory may be working) and can establish chip soft-error upset rates before final chip manufacturing begins. Simple relationships derived from measurement of more than 80 different chips manufactured over 20 years allow total cosmic soft-error rate (SER) to be estimated after only limited testing. Comparisons between these accelerated test results and similar tests determined by ''field testing'' (which may require a year or more of testing after manufacturing begins) show that the experimental techniques are accurate to a factor of 2

  11. Sensory shelf life of mantecoso cheese using accelerated testing

    OpenAIRE

    Sánchez-González, Jesús A.; Pérez, Joel A.

    2016-01-01

    The aim of this research was to estimate sensory shelf life of "huacariz" and "cefop" mantecoso cheese, vacuum packaging: "cefop" and packaging to the atmospheric pressure: "huacariz"; brands marketed in Cajamarca, using accelerated shelf life testing. For this purpose, "huacariz" cheese was stored at 20, 28, 35 y 40 °C, while it was set at 20, 28, 35 °C storage for "cefop" cheese, performing acceptability sensory tests according to time storage with both 41 consumers constants. The results f...

  12. Accelerated Strength Testing of Thermoplastic Composites

    Science.gov (United States)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  13. Life prediction of OLED for constant-stress accelerated degradation tests using luminance decaying model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianping, E-mail: jpzhanglzu@163.com [College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Li, Wenbin [College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Cheng, Guoliang; Chen, Xiao [Shanghai Tianyi Electric Co., Ltd., Shanghai 201611 (China); Wu, Helen [School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney 2751 (Australia); Herman Shen, M.-H. [Department of Mechanical and Aerospace Engineering, The Ohio State University, OH 43210 (United States)

    2014-10-15

    In order to acquire the life information of organic light emitting diode (OLED), three groups of constant stress accelerated degradation tests are performed to obtain the luminance decaying data of samples under the condition that the luminance and the current are respectively selected as the indicator of performance degradation and the test stress. Weibull function is applied to describe the relationship between luminance decaying and time, least square method (LSM) is employed to calculate the shape parameter and scale parameter, and the life prediction of OLED is achieved. The numerical results indicate that the accelerated degradation test and the luminance decaying model reveal the luminance decaying law of OLED. The luminance decaying formula fits the test data very well, and the average error of fitting value compared with the test data is small. Furthermore, the accuracy of the OLED life predicted by luminance decaying model is high, which enable rapid estimation of OLED life and provide significant guidelines to help engineers make decisions in design and manufacturing strategy from the aspect of reliability life. - Highlights: • We gain luminance decaying data by accelerated degradation tests on OLED. • The luminance decaying model objectively reveals the decaying law of OLED luminance. • The least square method (LSM) is employed to calculate Weibull parameters. • The plan designed for accelerated degradation tests proves to be feasible. • The accuracy of the OLED life and the luminance decaying fitting formula is high.

  14. Life prediction of OLED for constant-stress accelerated degradation tests using luminance decaying model

    International Nuclear Information System (INIS)

    Zhang, Jianping; Li, Wenbin; Cheng, Guoliang; Chen, Xiao; Wu, Helen; Herman Shen, M.-H.

    2014-01-01

    In order to acquire the life information of organic light emitting diode (OLED), three groups of constant stress accelerated degradation tests are performed to obtain the luminance decaying data of samples under the condition that the luminance and the current are respectively selected as the indicator of performance degradation and the test stress. Weibull function is applied to describe the relationship between luminance decaying and time, least square method (LSM) is employed to calculate the shape parameter and scale parameter, and the life prediction of OLED is achieved. The numerical results indicate that the accelerated degradation test and the luminance decaying model reveal the luminance decaying law of OLED. The luminance decaying formula fits the test data very well, and the average error of fitting value compared with the test data is small. Furthermore, the accuracy of the OLED life predicted by luminance decaying model is high, which enable rapid estimation of OLED life and provide significant guidelines to help engineers make decisions in design and manufacturing strategy from the aspect of reliability life. - Highlights: • We gain luminance decaying data by accelerated degradation tests on OLED. • The luminance decaying model objectively reveals the decaying law of OLED luminance. • The least square method (LSM) is employed to calculate Weibull parameters. • The plan designed for accelerated degradation tests proves to be feasible. • The accuracy of the OLED life and the luminance decaying fitting formula is high

  15. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol

    International Nuclear Information System (INIS)

    Duan, Xiaoyue; Zhao, Cuimei; Liu, Wei; Zhao, Xuesong; Chang, Limin

    2017-01-01

    Highlights: • A novel PbO 2 electrode with a GNS interlayer (GSN-PbO 2 ) was prepared. • The GNS interlayer reduced grain size of β-PbO 2 crystals. • The GNS interlayer enhanced electrochemical activity of PbO 2 electrode. • The lifetime of GSN-PbO 2 electrode was 1.93 times that of PbO 2 electrode. • An electrochemical mineralization mechanism of 2-chlorophenol was proposed. - Abstract: A novel PbO 2 electrode with a graphene nanosheet interlayer (marked as GNS-PbO 2 ) was prepared combining electrophoretic deposition and electro-deposition technologies. The micro morphology, crystal structure and surface chemical states of GNS-PbO 2 electrodes were characterized using scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Their electrochemical properties and stability were determined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ·OH radicals test and accelerated life test, and compared with traditional PbO 2 electrodes. Besides, their potential application in the electrochemical degradation of 2-chlorophenol (2-CP) was investigated. The GNS-PbO 2 electrode possessed perfect octahedral β-PbO 2 microcrystals, and its grain size was much smaller than that of traditional PbO 2 electrode. It exhibited higher electrochemical activity than traditional PbO 2 electrode due to its larger electrochemical active surface area and stronger ·OH radicals generation ability. The service lifetime of GNS-PbO 2 electrode (107.9 h) was 1.93 times longer than that of traditional PbO 2 electrode (55.9 h). The electrochemical degradation rate constant of 2-CP on GNS-PbO 2 electrode (k app = 2.75 × 10 −2 min −1 ) is much higher than for PbO 2 electrode (k app = 1.76 × 10 −2 min −1 ). 2-CP oxidation yielded intermediates including aromatic compounds (catechol, phenol and ortho-benzoquinone) and organic acids (oxalic acid, maleic acid and

  16. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment...... catalysts based on this. Suited for upper-level high school and first-year university students, this exercise involves using a basic two-cell electrochemical setup to test multiple electrode materials as catalysts at one applied potential, and then constructing a volcano curve with the resulting currents...

  17. PXIe-based LLRF architecture and versatile test bench for heavy ion linear acceleration

    OpenAIRE

    Jugo, I. Badillo J.; Portilla, J.; Feutchwanger, J.; Vicente, C. San; Etxebarria, V.

    2014-01-01

    This work describes the architecture of a digital LLRF system for heavy-ion acceleration developed under the specification of the projected future heavy-ion accelerator facility in Huelva, Spain. A prototype LLRF test bench operating at 80MHz in CW mode has been designed and built. The core LLRF control has been digitally implemented on a PXIe chassis, including an FPGA for digital signal processing and a real time controller. The test bench is completed with a good quality signal generator u...

  18. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    Directory of Open Access Journals (Sweden)

    Ma Xiaobing

    2015-01-01

    Full Text Available An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation. Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could be improved obviously, and the results showed that the accuracy of this method increased by 35%.

  19. Binder-free carbon nanotube electrode for electrochemical removal of chromium.

    Science.gov (United States)

    Wang, Haitao; Na, Chongzheng

    2014-11-26

    Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.

  20. Initial measurements of beam breakup instability in the advanced test accelerator

    International Nuclear Information System (INIS)

    Chong, Y.P.; Caporaso, G.T.; Struve, K.W.

    1985-01-01

    This paper reports the measurements of beam breakup (BBU) instability performed on the Advanced Test Accelerator (ATA) up to the end of February 1984. The main objective was to produce a high current usable electron beam at the ATA output. A well-known instability is BBU which arises from the accelerator cavity modes interacting with the electron beam. The dominant mode is TM130 at a frequency of approximately 785 MHz. It couples most strongly to the beam motion and has been observed to grow in the Experimental Test Accelerator (ETA), which has only eight accelerator cavities. ATA has one hundred and seventy cavities and therefore the growth of BBU is expected to be more severe. In this paper, BBU measurements are reported for ATA with beam currents of 4 to 7 kA. Analysis showed that the growth of the instability with propagation distance was as expected for the lower currents. However, the high current data showed an apparent higher growth rate than expected. An explanation for this anomaly is given in terms of a ''corkscrew'' excitation. The injector BBU noise level for a field emission brush cathode was found to be an order of magnitude lower than for a cold plasma discharge cathode. These injector rf amplitudes agree very well with values obtained using the method of differenced Btheta loops

  1. Applying an overstress principle in accelerated testing of absorbing mechanisms

    Science.gov (United States)

    Tsyss, V. G.; Sergaeva, M. Yu; Sergaev, A. A.

    2018-04-01

    The relevance of using overstress test as a forced one to determine the pneumatic absorber lifespan was studied. The obtained results demonstrated that at low load overstress the relative error for the absorber lifespan evaluation is no more than 3%. This means that the test results spread has almost no effect on the lifespan evaluation, and this effect is several times less than that at high load overstress tests. Accelerated testing of absorbers with low load overstress is more acceptable since the relative error for the lifespan evaluation is negligible.

  2. Study of Operating Parameters for Accelerated Anode Degradation in SOFCs

    DEFF Research Database (Denmark)

    Ploner, Alexandra; Hagen, Anke; Hauch, Anne

    2017-01-01

    Solid oxide fuel cell (SOFC) applications require lifetimes of several years on the system level. A big challenge is to demonstrate such exceptionally long lifetimes in ongoing R&D projects. Accelerated or compressed testing are alternative methods to obtain this. Activities in this area have been...... carried out without arriving at a generally accepted methodology. This is mainly due to the complexity of degradation mechanisms on the single SOFC components as function of operating parameters. In this study, we present a detailed analysis of approx. 180 durability tests regarding degradation of single...... SOFC components as function of operating conditions. Electrochemical impedance data were collected on the fresh and long-term tested SOFCs and used to de-convolute the individual losses of single SOFC cell components – electrolyte, cathode and anode. The main findings include a time-dependent effect...

  3. LLRF and timing system for the SCSS test accelerator at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji, E-mail: otake@spring8.or.jp [RIKEN, SPring-8 Center, XFEL Research and Development Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); JASRI, XFEL Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ohshima, Takashi [RIKEN, SPring-8 Center, XFEL Research and Development Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); JASRI, XFEL Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoda, Naoyasu [JASRI, XFEL Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Maesaka, Hirokazu; Fukui, Toru [RIKEN, SPring-8 Center, XFEL Research and Development Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); JASRI, XFEL Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kitamura, Masanobu [Hitachi Zosen Corporation, 7-89, Nanko-kita 1-chome, Suminoe-ku, Osaka 559-8559 (Japan); Shintake, Tsumoru [The Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-Son, Kunigami, Okinawa 904-0495 (Japan)

    2012-12-22

    The 250 MeV SCSS test accelerator as an extreme-ultra violet (EUV) laser source has been built at SPring-8. The accelerator comprises a 500 kV thermionic gun, a velocity bunching system using multi-sub-harmonic bunchers (SHB) in an injector and a magnetic bunch compressor using a chicane of 4 bending magnets, a 5712 MHz main accelerator to accelerate an electron beam up to 250 MeV, and undulators to radiate the EUV laser. These bunch compression processes make short bunched electrons with a 300 A peak current and a 300 fs pulse width. The pulse width and peak current of an electron beam, which strongly affect the pulse width and intensity of the laser light, are mainly decided by the pulse compression ratio of the velocity bunching and the magnetic bunch compressing processes. The compression ratio is also determined due to an energy chirp along the beam bunch generated by an off-crest rf field at the SHB and cavities before the chicane. To constantly keep the beam pulse-width conducted by rf and timing signals, which are temporally controlled within subpicoseconds of the designed value, the low-level rf and timing system of the test accelerator has been developed. The system comprises a very low-noise and temporally stable reference signal source, in-phase and quadrature (IQ) modulators and demodulators, as well as VME type 12 bits analog-to-digital and digital-to-analog converter modules to manipulate an rf phase and amplitude by IQ functions for the cavity. We achieved that the SSB noise of the 5712 MHz reference signal source was less than -120 dBc/Hz at 1 kHz offset from the reference frequency; the phase setting and detecting resolution of the IQ-modulators and demodulators were within +/-0.5 Degree-Sign at 5712 MHz. A master trigger VME module and a trigger delay VME module were also developed to activate the components of the test accelerator. The time jitter of the delay module was less than 0.7 ps, sufficient for our present requirement. As a result, a

  4. Database requirements for the Advanced Test Accelerator project

    International Nuclear Information System (INIS)

    Chambers, F.W.

    1984-01-01

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  5. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    Science.gov (United States)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  6. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  7. Acceleration tests of the INS 25.5-MHz split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, S.; Imanishi, A.; Morimoto, T.; Tojyo, E.; Tokuda, N.; Shibuya, S.

    1991-05-01

    The INS 25.5-MHz split coaxial RFQ, a linac that accelerates ions with a charge-to-mass ratio greater than 1/30 from 1 to 45.4 keV/u, is now undergoing acceleration tests with a beam of molecular nitrogen (N 2 + ) ions. Results so far obtained show that the RFQ operates in accordance with the design. Presented are preliminary results on the beam performance: emittances of the in- and output beams, output energy and its spread, and beam transmission. (author)

  8. Integrating Electrochemical Detection with Centrifugal Microfluidics for Real-Time and Fully Automated Sample Testing

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Kwasny, Dorota; Amato, Letizia

    2015-01-01

    Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical experime......Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical...

  9. Calibration of full-scale accelerated pavement testing data using long-term pavement performance data

    CSIR Research Space (South Africa)

    VdM Steyn, WJ

    2012-09-01

    Full Text Available Accelerated Pavement Testing (APT) has always been conducted with the objective of improving the understanding of real pavements under real traffic and environmental conditions. While APT provides an accelerated view of some of the major structural...

  10. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  11. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    OpenAIRE

    Ma Xiaobing; Zhang Yongbo

    2015-01-01

    An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life ...

  12. An accelerated test design for use with synchronous orbit. [on Ni-Cd cell degradation behavior

    Science.gov (United States)

    Mcdermott, P. P.; Vasanth, K. L.

    1980-01-01

    The Naval Weapons Support Center at Crane, Indiana has conducted a large scale accelerated test of 6.0 Ah Ni-Cd cells. Data from the Crane test have been used to develop an equation for the description of Ni-Cd cell behavior in geosynchronous orbit. This equation relates the anticipated time to failure for a cell in synchronous orbit to temperature and overcharge rate sustained by the cell during the light period. A test design is suggested which uses this equation for setting test parameters for future accelerated testing.

  13. Accelerated tests of coil coatings

    Directory of Open Access Journals (Sweden)

    Rosales, B. M.

    2003-12-01

    Full Text Available Accelerated laboratory tests on 12 materials in study in the Subgroup 6 of the PATINA Network (CYTED, are discussed for different exposition periods in salt spray, SO2 and Prohesion chambers. International standards used to evaluate failures caused by the different aggressive agents of these laboratory tests are the same as those applied for outdoor expositions. The results exposed contribute to a better understanding of the mechanisms occurred in the diverse natural environments, being mentioned the main analogies and differences respect to factors affecting natural tests. They also allowed to evidence the advantages and limitations in the application of these tests during several days, as compared to the years required to attain similar failure magnitudes through outdoor tests.

    En este trabajo se discuten los ensayos de laboratorio acelerados, realizados sobre 12 materiales de estudio en el Subgrupo 6 de la Red PATINA (CYTED, a diferentes periodos de exposición en cámaras de niebla salina, SO2 y Prohesion. Se utilizaron las normas internacionales para evaluar los fallos causados por los diferentes agentes agresivos de estos ensayos de laboratorio, las cuales se aplican también para los ensayos de exposición a la intemperie. Los resultados expuestos contribuyen a una mejor comprensión de los mecanismos ocurridos en los diversos ambientes naturales, mencionándose las principales analogías y diferencias respecto de los factores que afectan los ensayos naturales. También permitieron evidenciar las ventajas y limitaciones en la aplicación de estos ensayos durante varios días, en comparación con los años requeridos para alcanzar magnitudes de fallos similares por medio de ensayos a intemperie.

  14. Further developments of a poultice for electrochemical desalination of porous building materials

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2015-01-01

    and should be avoided. Previously, an electrochemical method has been adapted and optimized for desalination of brick masonry and a high efficiency was obtained. Unfortunately, an accelerated weathering was seen among others in shape of crumbling of mortar below the cathode poultice and further developments...

  15. Failure-censored accelerated life test sampling plans for Weibull distribution under expected test time constraint

    International Nuclear Information System (INIS)

    Bai, D.S.; Chun, Y.R.; Kim, J.G.

    1995-01-01

    This paper considers the design of life-test sampling plans based on failure-censored accelerated life tests. The lifetime distribution of products is assumed to be Weibull with a scale parameter that is a log linear function of a (possibly transformed) stress. Two levels of stress higher than the use condition stress, high and low, are used. Sampling plans with equal expected test times at high and low test stresses which satisfy the producer's and consumer's risk requirements and minimize the asymptotic variance of the test statistic used to decide lot acceptability are obtained. The properties of the proposed life-test sampling plans are investigated

  16. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    The electrochemical behavior of the molten V2O5-M2S2O7 (M = K, Cs, or Na) system was studied using a gold working electrode at 440 degrees C in argon and air atmosphere. The aim of the present investigation was to find a possible correlation between the promoting effect of Cs+ and Na+ ions...... on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...... in the catalytic SO, oxidation most likely is the oxidation of V(IV) to V(V) and the Na+ and Cs+ promoting effect is based on the acceleration of this stage. It has also been proposed that voltammetric measurements can be used for fast optimization of the composition of the vanadium catalyst (which...

  17. The Effect of Normal Force on Tribocorrosion Behaviour of Ti-10Zr Alloy and Porous TiO2-ZrO2 Thin Film Electrochemical Formed

    Science.gov (United States)

    Dănăilă, E.; Benea, L.

    2017-06-01

    The tribocorrosion behaviour of Ti-10Zr alloy and porous TiO2-ZrO2 thin film electrochemical formed on Ti-10Zr alloy was evaluated in Fusayama-Mayer artificial saliva solution. Tribocorrosion experiments were performed using a unidirectional pin-on-disc experimental set-up which was mechanically and electrochemically instrumented, under various solicitation conditions. The effect of applied normal force on tribocorrosion performance of the tested materials was determined. Open circuit potential (OCP) measurements performed before, during and after sliding tests were applied in order to determine the tribocorrosion degradation. The applied normal force was found to greatly affect the potential during tribocorrosion experiments, an increase in the normal force inducing a decrease in potential accelerating the depassivation of the materials studied. The results show a decrease in friction coefficient with gradually increasing the normal load. It was proved that the porous TiO2-ZrO2 thin film electrochemical formed on Ti-10Zr alloy lead to an improvement of tribocorrosion resistance compared to non-anodized Ti-10Zr alloy intended for biomedical applications.

  18. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    Science.gov (United States)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  19. Electrochemical capacitance of NiO/Ru{sub 0.35}V{sub 0.65}O{sub 2} asymmetric electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chang-Zhou; Gao, Bo; Zhang, Xiao-Gang [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2007-11-08

    A designed asymmetric hybrid electrochemical capacitor was presented where NiO and Ru{sub 0.35}V{sub 0.65}O{sub 2} as the positive and negative electrode, respectively, both stored charge through reversible faradic pseudocapacitive reactions of the anions (OH{sup -}) with electroactive materials. And the two electrodes had been individually tested in 1 M KOH aqueous electrolyte to define the adequate balance of the active materials in the hybrid system as well as the working voltage of the capacitor based on them. The electrochemical tests demonstrated that the maximum specific capacitance and energy density of the asymmetric hybrid electrochemical capacitor were 102.6 F g{sup -1} and 41.2 Wh kg{sup -1}, respectively, delivered at a current density of 7.5 A cm{sup -2}. And the specific energy density decreased to 23.0 Wh kg{sup -1} when the specific power density increased up to 1416.7 W kg{sup -1}. The hybrid electrochemical capacitor also exhibited a good electrochemical stability with 83.5% of the initial capacitance over consecutive 1500 cycle numbers. (author)

  20. ESCAR, tests of superconducting bending magnets at the accelerator site

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Lambertson, G.R.; Meuser, R.B.; Rechen, J.B.

    1979-03-01

    ESCAR (Experimental Superconducting Accelerator Ring) was conceived as a project in accelerator technology development which would provide data and experience to insure that planning for larger superconducting synchrotrons would proceed in a knowledgeable and responsible manner. It was to consist of the fabrication and operation of a relatively small proton synchrotron and storage ring with superconducting magnet elements for all of the main ring. The project was funded and design work began in July 1974. During the next two years it became increasingly apparent that the funding rate was directly limiting the rate of completion of ESCAR and that an intermediate goal, a test of the unconventional aspects of the project, was desirable. To that end, twelve dipole bending magnets, one-half of those required for the total ring, were installed at the site along with the 1500 watt helium refrigerator, cryogenic distribution system, electrical power supplies, vacuum systems, and necessary instrumentation. This truncated system was put through an extended series of tests which were completed in June 1978 at which time the ESCAR Project was terminated. ESCAR, and the dipole magnets have been described previously. The results of the systems tests have also been reported. The tests involving the dipole magnets are described

  1. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  2. Accelerated Physical Stability Testing of Amorphous Dispersions.

    Science.gov (United States)

    Mehta, Mehak; Suryanarayanan, Raj

    2016-08-01

    The goal was to develop an accelerated physical stability testing method of amorphous dispersions. Water sorption is known to cause plasticization and may accelerate drug crystallization. In an earlier investigation, it was observed that both the increase in mobility and decrease in stability in amorphous dispersions was explained by the "plasticization" effect of water (Mehta et al. Mol. Pharmaceutics 2016, 13 (4), 1339-1346). In this work, the influence of water concentration (up to 1.8% w/w) on the correlation between mobility and crystallization in felodipine dispersions was investigated. With an increase in water content, the α-relaxation time as well as the time for 1% w/w felodipine crystallization decreased. The relaxation times of the systems, obtained with different water concentration, overlapped when the temperature was scaled (Tg/T). The temperature dependencies of the α-relaxation time as well as the crystallization time were unaffected by the water concentration. Thus, the value of the coupling coefficient, up to a water concentration of 1.8% w/w, was approximately constant. Based on these findings, the use of "water sorption" is proposed to build predictive models for crystallization in slow crystallizing dispersions.

  3. Development and test of a planar R-band accelerating structure

    CERN Document Server

    Merte, R; Peikert, M; Yu, D

    1999-01-01

    Planar accelerating structures, so called muffin tins, are of great interest for new accelerating techniques which are operating at high frequencies. At present the upper frequency limit for high power sources is 29.9855 GHz available at CERN. Therefore a new design of a planar traveling wave constant impedance accelerating structure is presented. A fully engineered 37-cell prototype with an operating frequency of 29.9855 GHz, which is designed for the 2 pi /3-mode, was fabricated by CNC milling technology. The design includes a power coupler, a cavity geometry optimized to compensate the effect of transverse forces, vacuum flanges and beam pipe flanges. Shown are the frequency scan of transmission and reflection measurements compared to numerical simulations with GdfidL. Further, a non resonant bead pull measurement was made to determine and verify the fundamental modes of the structure. The cavity is planned to be powered at the CLIC test stand at CERN. (4 refs).

  4. Conceptual design of multi-purpose accelerator-driven transmutation test facility

    International Nuclear Information System (INIS)

    Hirota, Koichi; Hida, Kenzo; Yokobori, Hitoshi; Kamishima, Yoshio

    1999-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been developing a concept of accelerator-driven transmutation system using a high-power proton linac. To demonstrate the technical feasibility of this concept, accelerator-driven spallation experiments will be necessary. We believe our proposal of a multi-purpose test facility is a promising concept to clarify its feasibility from the basic neutronics and engineering standpoint. The main feature of our initial proposal is using an inclined beam injection. It enables to simplify the head of the test vessel as well as to facilitate easy replacing of the beam window and the testing device containing the test specimen, and also this system will minimize the complexity of the vessel head and surrounding structures. Next proposal is using an ordinary overhead beam injection system and is modified to be simple structural concept of the test vessel from inclined beam injection. At the first step, the basic neutronics experiments will be performed. At this step, the test device and the cooling device are simpler ones, due to only small heat will be generated. Then we plan using a gas cooling. At the following steps, the test device and the vessel internal structures will be remodeled or remade to adjust to the test purposes, if necessary. At these steps, target material tests and thermal hydraulic tests using some liquid metal coolants will be done. In this case, the natural circulation cooling will be done. To verify the transmutation technology, a larger heat will be generated, so a forced coolant circulation system will be installed in the test vessel. This system consists of a heat exchanger and a circulation pump. The vessel internal structure will be remade. Doing such step-wise remaking, initial construction cost of the proposed test facility will be expected to be reasonable. (author)

  5. Vacuum system design considerations of the Los Alamos Accelerator Test Stand (ATS)

    International Nuclear Information System (INIS)

    Wilson, N.G.

    1986-01-01

    The accelerator test stand (ATS), in operation at the Los Alamos National Laboratory, includes a hydrogen ion source, low- and high-energy beam-transport sections, and a 425-MHz radio-frequency quadrupole (RFQ) linear accelerator. A 425-MHz drift-tube linac (DTL) and a powered ''buncher'' matching section have been constructed and will be installed on the ATS. The vacuum systems required for the various sections of the ATS are designed to provide: (1) high gas-load capability, as required in the ion source, and (2) high-vacuum capability in the high-power, radio-frequency accelerator sections (where fast vacuum-system response time is of importance) through the use of distributed, differential pumping as a principal vacuum-system feature. This paper describes properties of accelerator materials, vacuum-systems engineering and analysis, vacuum equipment used, and ATS vacuum-system performance

  6. Comparative investigation of the adhesion of Ce conversion layers and silane layers to a AA 2024-T3 substrate through mechanical and electrochemical tests

    Directory of Open Access Journals (Sweden)

    Luis Enrique Morales Palomino

    2007-12-01

    Full Text Available Cerium conversion layers and silane films are among the potential substitutes for the carcinogenic chromate conversion layers used to protect high-strength Al alloys. In the present work the adhesion of a cerium conversion layer and of a silane film to an aluminium alloy (AA 2024-T3 substrate was investigated using mechanical and electrochemical tests. Scanning electron microscopy (SEM- X ray energy dispersive spectroscopy (EDS, Fourier transform infrared spectroscopy (FT-IR and X ray photoelectron spectroscopy (XPS were used to characterize the layers prior and after the mechanical test consisting of ultrasonic rinse in deionized water during 30 minutes. Mechanically tested and untested layers were also submitted to electrochemical impedance spectroscopy (EIS and anodic polarization measurements in 0.1 M NaCl solution. The results of the characterization tests have pointed to a stronger adhesion of the Ce layer to the substrate in comparison with the silane film, which was confirmed by the electrochemical tests. The adhesion between the silane film and the Ce conversion layer was also tested, to evaluate the possibility of using the system as a protective bi-layer in accordance with the new trends being developed to substitute chromate conversion layers.

  7. Simulation of 20-year deterioration of acrylic IOLs using severe accelerated deterioration tests.

    Science.gov (United States)

    Kawai, Kenji; Hayakawa, Kenji; Suzuki, Takahiro

    2012-09-20

    To investigate IOL deterioration by conducting severe accelerated deterioration testing of acrylic IOLs. Department of Ophthalmology, Tokai University School of Medicine Methods: Severe accelerated deterioration tests performed on 7 types of acrylic IOLs simulated 20 years of deterioration. IOLs were placed in a screw tube bottle containing ultra-pure water and kept in an oven (100°C) for 115 days. Deterioration was determined based the outer appearance of the IOL in water and under air-dried conditions using an optical microscope. For accelerated deterioration of polymeric material, the elapse of 115 days was considered to be equivalent to 20 years based on the Arrhenius equation. All of the IOLs in the hydrophobic acrylic group except for AU6 showed glistening-like opacity. The entire optical sections of MA60BM and SA60AT became yellowish white in color. Hydrophilic acrylic IOL HP60M showed no opacity at any of the time points examined. Our data based on accelerated testing showed differences in water content to play a major role in transparency. There were differences in opacity among manufacturers. The method we have used for determining the relative time of IOL deterioration might not represent the exact clinical setting, but the appearance of the materials would presumably be very similar to that seen in patients.

  8. Simulation of dynamic traffic loading based on accelerated pavement testing (APT)

    CSIR Research Space (South Africa)

    Steyn, WJvdM

    2004-03-01

    Full Text Available The objective of this paper is to introduce the latest Heavy Vehicle Simulator (HVS) technology as part of the South African Accelerated Pavement Testing (APT) efforts, its capabilities and expected impact on road pavement analysis....

  9. Accelerated Desensitization with Adaptive Attitudes and Test Gains with 5th Graders

    Science.gov (United States)

    Miller, Melanie; Morton, Jerome; Driscoll, Richard; Davis, Kai A.

    2006-01-01

    The study evaluates an easily-administered test-anxiety reduction program. An entire fifth grade was screened, and 36 students identified as test-anxious were randomly assigned to an Intervention or a non-participant Control group. The intervention was an accelerated desensitization and adaptive attitudes (ADAA) treatment which involved…

  10. Vertical and horizontal test results of 3.9-GHz accelerating cavities at FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.; Edwards, H.; Foley, M.; Harms, E.; Hocker, James Andrew; Mitchell, D.; Rowe, A.; Solyak, N.; /Fermilab

    2008-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the VUV FEL, FLASH. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. Seven 9-cell Nb cavities were tested and six of them did reach accelerating gradient up to 24 MV/m almost twice more than design value of 14 MV/m. Two of these cavities are with new HOM couplers with improved design. In this paper we present all results of the vertical and horizontal tests.

  11. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Hurricane Isabel gives accelerators a severe test

    International Nuclear Information System (INIS)

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  13. Current state of X-band accelerating structure high gradient test. Be held at high energy accelerator organization on April 15, 2005

    International Nuclear Information System (INIS)

    Watanabe, Ken; Higo, Toshiyasu

    2005-01-01

    XTF (X-band Test Facility, Old name is GLCTA) is the high gradient test facility for X-band acceleration. We have installed an X-band 60cm structure (KX01) in the April 2004 and have been processing it for more than 10 months. Now it is under test on long-term operation. We report here the high gradient test result to date. (author)

  14. Some questions of the technique of high-voltage testing of accele-- rating tube space in electrostatic accelerators

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Mukhametshin, V.I.; Dmitriev, E.P.; Kidalov, A.I.

    1983-01-01

    In the course of high-voltage testing of accelerating spaces a wide spread of experimental values of electric strength is observed. This circumstance is determined by a number of factors one of which is the technique used for high-voltage testing. For the purpose of obtaining more reliable experimental data on electric strength of accelerating spaces it is suggested to take for a criterion of electric strength of an accelerating space in long accelerating tubes a long-time withstood voltage which is equal approximately to a doubled working space voltage obtained as a result of a smooth voltage rise at dark current density not exceeding (1...5)x10 -2 A/cm 2 . In the course of testing of accelerating spaces of 25 mm height with total working area of electrodes approximately 360 cm 2 and insulator area onto vacuum approximately 150 cm 2 a long-time 70 kV voltage with dark current less than 1.10 -8 A is obtained

  15. Establishment of a radiotherapy service with a linear accelerator (photons): acceptance tests, dosimetry and quality control

    International Nuclear Information System (INIS)

    Berdaky, Mafalda Feliciano

    2000-01-01

    This work presents the operational part of the final process of the establishment of a radiotherapy service with a linear accelerator (6 MeV photon beams), including the acceptance tests, commissioning tests and the implementation of a quality control program through routine mechanical and radiation tests. All acceptance tests were satisfactory, showing results below the allowed limits of the manufacturer, the commissioning tests presented results within those of the international recommendations. The quality control program was performed during 34 months and showed an excellent stability of this accelerator. (author)

  16. High power testing of the multiple-loop radio-frequency drive concept for the FMIT accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Patton, R.D.

    1984-04-01

    The Fusion Materials Irradiation Test (FMIT) accelerator requires several 600-kW rf systems to simultaneously supply rf power to a single accelerator tank. Each rf-system output must be carefully phase and amplitude controlled to achieve the proper system performance. Two 80-MHz, 600-kW rf amplifiers with phase- and amplitude-control systems have been tested into a single, high-Q resonant cavity. Experimental results are presented

  17. High voltage tests of an electrostatic accelerator for different mixtures of gases at various pressures

    International Nuclear Information System (INIS)

    Hellborg, R.

    1996-01-01

    An account is given of high voltage tests of an electrostatic accelerator. High voltage conditioning is measured and is reported for the same accelerator tube after different periods of usage. Tests of different mixtures of sulphur hexafluoride and nitrogen have been performed. A considerable amount of data was obtained for various parameters connected with the high voltage system for different proportions of nitrogen in sulphur hexafluoride at various gas pressures. (orig.)

  18. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  19. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  20. Beam Extraction for 1-MV Electrostatic Accelerator at the 300 kV Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Seoul (Korea, Republic of); Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. A beam extraction experiment for the test stand was performed, and the beam current was measured using a faraday cup in the chamber. A beam extraction results for the RF ion source will be presented. Beam extraction from the RF ion source of the test stand is verified by measuring the beam current with a faraday cup in the chamber. Thus far NI Labview, PLC and faraday cup have been used to measure the beam current. The OPC server is useful for monitoring the PLC values. The average beam current of (a), (b) and (c) shown in figure 2 are 110.241µA, 105.8597µA and 103.5278µA respectively.

  1. Accelerated Desensitization and Adaptive Attitudes Interventions and Test Gains with Academic Probation Students

    Science.gov (United States)

    Driscoll, Richard; Holt, Bruce; Hunter, Lori

    2005-01-01

    The study evaluates the test-gain benefits of an accelerated desensitization and adaptive attitudes intervention for test-anxious students. College students were screened for high test anxiety. Twenty anxious students, half of them on academic probation, were assigned to an Intervention or to a minimal treatment Control group. The Intervention was…

  2. Using the accelerated Brazilian concrete prism test (ABCPT to evaluate alkali aggregate reaction (AAR

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    Full Text Available There are many test methods used in the laboratory to detect potential alkali-aggregate reactions (AAR. However, up to now, there is no consensus if they are reliable and efficient. This work presents the development of a new and accelerated concrete prism test called ABCPT (accelerate Brazilian concrete prism test as an attempt to create a reliable and fast test that can analyze and classify the potential reactivity of aggregates in the laboratory. For this research, six aggregates from different lithotypes were used. The methods CPT, ACPT and ABCPT were carried out with all the aggregates and a comparative analysis among all tests was performed. ABCPT seems to have a great potential to analyze and classify aggregates in the laboratory, although it needs further testing with other lithotypes to be confirmed as feasible.

  3. Testing and interfacing intelligent power supplies for the Los Alamos National Laboratory Accelerator Complex

    International Nuclear Information System (INIS)

    Sturrock, J.C.; Cohen, S.; Weintraub, B.L.; Hayden, D.J.; Archuleta, S.F.

    1992-01-01

    New high-current, high-precision microprocessor-controlled power supplies, built by Alpha Scientific Electronics of Hayward, CA, have been installed at the Los Alamos National Laboratory Accelerator Complex. Each unit has sophisticated microprocessor control on-board and communicates via RS-422 (serial communications). The units use a high level ASCII-based control protocol. Performance tests were conducted to verify adherence to specification and to ascertain ultimate long-term stability. The ''front-end'' software used by the accelerator control system has been written to accommodate these new devices. The supplies are interfaced to the control system through a terminal server port connected to the site-wide ediernet backbone. Test design and results as well as details of the software implementation for the analog and digital control of the supplies through the accelerator control system are presented

  4. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    Science.gov (United States)

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  5. Electrochemical behavior of amorphous metal-silicon-carbon nanocomposites based on titanium or tungsten nanophase

    International Nuclear Information System (INIS)

    Pleskov, Yu.V.; Krotova, M.D.; Shupegin, M.L.; Bozhko, A.D.

    2009-01-01

    Electrode behavior of nanocomposite films containing titanium- or tungsten-based conducting nanophase embedded in dielectric silicon-carbon matrix, deposited onto glassceramics substrate, is studied by cyclic voltammetry and electrochemical impedance spectroscopy. As the films' resistivity decreases, their electrochemical behavior gradually changes from that of 'poor conductor' to the nearly metal-like behavior. In particular, the differential capacitance increases, the charge transfer in a model redox system [Fe(CN) 6 ] 3-/4- accelerates, which may be explained by the increasing number of metal-containing clusters at the film/electrolyte solution interface

  6. Accelerated testing for studying pavement design and performance (FY 2004) : research summary.

    Science.gov (United States)

    2009-03-01

    The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays.

  7. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  8. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    Science.gov (United States)

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  9. Virtual accelerator concept, implementation and preliminary test

    International Nuclear Information System (INIS)

    Uriot, D.; Duperrier, R.

    2006-05-01

    A virtual accelerator is the coupling of a simulation code with the control system of a real machine. 3 operating modes are considered. First, the monitoring mode in which any action on the control system has an impact on both real and virtual machines. This mode allows a direct comparison between simulation results and the real behaviour of the accelerator. Secondly, the flight simulation mode, this mode allows the accelerator operators to simulate the effect of any change in the parameters of the control system before transferring them to the real machine. The main advantage of this mode is to allow the assessment of operating procedures before implementing them on the real machine. The third mode is the automatic steering mode in which the simulation code assumes the reins of the control system of the real machine. This mode allows the making of complex and time-consuming adjustment procedures in an automatic way. TraceWin is a simulation code dedicated to the behaviour of charged-particle beams in a linear accelerator. TraceWin is consistent with the EPICS technology on which the control system of most accelerators is based. A virtual accelerator composed of the SILHI injector combined to the TraceWin code via the EPICS environment has showed its efficiency in the automatic steering mode. (A.C.)

  10. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  11. Accelerated pavement testing of thin RCC over soil cement pavements

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2016-05-01

    Full Text Available Three full-scale roller compacted concrete (RCC pavement sections built over a soil cement base were tested under accelerated pavement testing (APT. The RCC thicknesses varied from 102 mm (4 in. to 152 mm (6 in. and to 203 mm (8 in., respectively. A bi-directional loading device with a dual-tire load assembly was used for this experiment. Each test section was instrumented with multiple pressure cells and strain gages. The objective was to evaluate the structural performance and load carrying capacity of thin RCC-surfaced pavements under accelerated loading. The APT results generally indicated that all three RCC pavement sections tested in this study possessed very high load carrying capacity; an estimated pavement life in terms of equivalent single axle load (ESAL for the thinnest RCC section (i.e., RCC thickness of 102 mm evaluated was approximately 19.2 million. It was observed that a fatigue failure would be the primary pavement distress type for a thin RCC pavement under trafficking. Specifically, the development of fatigue cracking was found to originate from a longitudinal crack at the edge or in the center of a tire print, then extended and propagated, and eventually merged with cracks of other directions. Instrumentation results were used to characterize the fatigue damage under different load magnitudes. Finally, based on the APT performance of this experiment, two fatigue models for predicting the fatigue life of thin RCC pavements were developed. Keywords: Roller compacted concrete, APT, Pavement performance, Non-destructive testing, Fatigue analysis

  12. An experimental test of Newton's law of gravitation for small accelerations

    International Nuclear Information System (INIS)

    Schubert, Sven

    2011-10-01

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10 -10 m/s 2 . These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a 0 ∼ 1.2.10 -10 m/s 2 , where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  13. Electrochemical characterization of liquid resistors

    International Nuclear Information System (INIS)

    Wilson, J.M.; Whiteley, R.V.

    1983-01-01

    During the first two years of operation of Sandia's Particle Beam Fusion Accelerator (PBFA I) the reliability of the CuSO 4 solution resistors in the Marx Generator Energy Storage System has been unsatisfactory. Resistor failure, which is characterized by a large increase in resistance, has been attributed to materials, production techniques, and operating parameters. The problems associated with materials and production techniques have been identified and solutions are proposed. Non-ideal operating parameters are shown to cause polarization of the cathode in the resistor. This initiates electrochemical reactions in the resistor. These reactions often lead to resistance changes and to eventual resistor failure

  14. ACCELERATED AGING TEST IN DETERMINING THE VIGOUR OF SUNFLOWER SEEDS WITH AND WITHOUT PERICARP

    Directory of Open Access Journals (Sweden)

    K. R. Ducatti

    2014-09-01

    Full Text Available The standard germination test alone is insufficient to attest the quality of seeds, making necessary correlation’s with vigour tests, to determine more accurately the physiological potential of a seeds lot. The accelerated aging test is an option for determine the vigour and consists in submits seeds to high temperatures and humidity, for different periods of time, has not yet standardized. The objective of this work was to analyze the efficiency of the accelerated aging test in the assessment of the effect of a lot of sunflower seed, by three periods of aging (48, 56 and 72 hours in 42 °C temperature, in seeds with and without pericarp (manually removed and relate the results with electrical conductivity test and germination first count. The experimental design was a completely randomized design and the comparison of averages made using Tukey's test at 5% probability. The results showed that standard germination, electrical conductivity and germination first count, the seeds without pericarp showed better performance. In relation to the accelerated aging, only in the period of 72 hours of aging there was no significant difference between the treatments. In this way, the appropriate period to identify differences in force between the treatments was 72 hours, which showed a positive correlation with the germination first count and electrical conductivity.

  15. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    Science.gov (United States)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  16. Molten salt engineering for thorium cycle. Electrochemical studies as examples

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    1998-01-01

    A Th-U nuclear energy system utilizing accelerator driven subcritical molten salt breeder reactor has several advantages compared to conventional U-Pu nuclear system. In order to obtain fundamental data on molten salt engineering of Th-U system, electrochemical study was conducted. As the most primitive simulated study of beam irradiation of molten salt, discharge electrolysis was investigated in molten LiCl-KCl-AgCl system. Stationary discharge was generated under atmospheric argon gas and fine Ag particles were obtained. Hydride ion (H - ) behavior in molten salts was also studied to predict the behavior of tritide ion (T - ) in molten salt fuel. Finally, hydrogen behavior in metals at high temperature was investigated by electrochemical method, which is considered to be important to confine and control tritium. (author)

  17. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Timothy [Research Engineer; Motupally, Sathya [Research Engineer

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  18. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  19. Ground test accelerator control system software

    International Nuclear Information System (INIS)

    Burczyk, L.; Dalesio, R.; Dingler, R.; Hill, J.; Howell, J.A.; Kerstiens, D.; King, R.; Kozubal, A.; Little, C.; Martz, V.; Rothrock, R.; Sutton, J.

    1988-01-01

    This paper reports on the GTA control system that provides an environment in which the automation of a state-of-the-art accelerator can be developed. It makes use of commercially available computers, workstations, computer networks, industrial 110 equipment, and software. This system has built-in supervisory control (like most accelerator control systems), tools to support continuous control (like the process control industry), and sequential control for automatic start-up and fault recovery (like few other accelerator control systems). Several software tools support these levels of control: a real-time operating system (VxWorks) with a real-time kernel (VRTX), a configuration database, a sequencer, and a graphics editor. VxWorks supports multitasking, fast context-switching, and preemptive scheduling. VxWorks/VRTX is a network-based development environment specifically designed to work in partnership with the UNIX operating system. A data base provides the interface to the accelerator components. It consists of a run time library and a database configuration and editing tool. A sequencer initiates and controls the operation of all sequence programs (expressed as state programs). A graphics editor gives the user the ability to create color graphic displays showing the state of the machine in either text or graphics form

  20. Study on the limiting acceleration rate in the VLEPP linear accelerator

    International Nuclear Information System (INIS)

    Balakin, V.E.; Brezhnev, O.N.; Zakhvatkin, M.N.

    1987-01-01

    To realize the design of colliding linear electron-positron beams it is necessary to solve the radical problem of production of accelerating structure with acceleration rate of approximately 100 MeV/m which can accelerate 10 12 particles in a bunch. Results of experimental studies of the limiting acceleration rate in the VLEPP accelerating structure are presented. Accelerating sections of different length were tested. When testing sections 29 cm long the acceleration rate of 55 MeV/m was attained, and for 1 m section the value reached 40 MeV/m. The maximum rate of acceleration (90 MeV/m) was attained when electric field intensity on the structure surface constituted more than 150 MV/m

  1. A statistical comparison of accelerated concrete testing methods

    OpenAIRE

    Denny Meyer

    1997-01-01

    Accelerated curing results, obtained after only 24 hours, are used to predict the 28 day strength of concrete. Various accelerated curing methods are available. Two of these methods are compared in relation to the accuracy of their predictions and the stability of the relationship between their 24 hour and 28 day concrete strength. The results suggest that Warm Water accelerated curing is preferable to Hot Water accelerated curing of concrete. In addition, some other methods for improving the...

  2. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  3. A Study on the Storage Reliability of LSINS Based on Step-stress Accelerated Life Test

    Directory of Open Access Journals (Sweden)

    Teng Fei

    2015-01-01

    Full Text Available Based on the step-stress accelerated life test and the laser strap-down inertial navigation system, this paper studies the accelerated life model and the test method, provides the likelihood function, the likelihood equation and the two-order derivative when the stress level is k, evaluates the effectiveness of the method with the simulation test model established by MATLAB, applies the research findings in the storage reliability study of the XX laser strap-down inertial navigation system, and puts forward an effective evaluation method of the storage life of the inertial navigation system.

  4. Bayesian Approach for Constant-Stress Accelerated Life Testing for Kumaraswamy Weibull Distribution with Censoring

    Directory of Open Access Journals (Sweden)

    Abeer Abd-Alla EL-Helbawy

    2016-09-01

    Full Text Available The accelerated life tests provide quick information on the life time distributions by testing materials or products at higher than basic conditional levels of stress such as pressure, high temperature, vibration, voltage or load to induce failures. In this paper, the acceleration model assumed is log linear model. Constant stress tests are discussed based on Type I and Type II censoring. The Kumaraswmay Weibull distribution is used. The estimators of the parameters, reliability, hazard rate functions and p-th percentile at normal condition, low stress, and high stress are obtained. In addition, credible intervals for parameters of the models are constructed. Optimum test plan are designed. Some numerical studies are used to solve the complicated integrals such as Laplace and Markov Chain Monte Carlo methods.

  5. Bayesian Approach for Constant-Stress Accelerated Life Testing for Kumaraswamy Weibull Distribution with Censoring

    Directory of Open Access Journals (Sweden)

    Abeer Abd-Alla EL-Helbawy

    2016-12-01

    Full Text Available The accelerated life tests provide quick information on the life time distributions by testing materials or products at higher than basic conditional levels of stress such as pressure, high temperature, vibration, voltage or load to induce failures. In this paper, the acceleration model assumed is log linear model. Constant stress tests are discussed based on Type I and Type II censoring. The Kumaraswmay Weibull distribution is used. The estimators of the parameters, reliability, hazard rate functions and p-th percentile at normal condition, low stress, and high stress are obtained. In addition, credible intervals for parameters of the models are constructed. Optimum test plan are designed. Some numerical studies are used to solve the complicated integrals such as Laplace and Markov Chain Monte Carlo methods.

  6. Empirical Modeling of Lithium-ion Batteries Based on Electrochemical Impedance Spectroscopy Tests

    International Nuclear Information System (INIS)

    Samadani, Ehsan; Farhad, Siamak; Scott, William; Mastali, Mehrdad; Gimenez, Leonardo E.; Fowler, Michael; Fraser, Roydon A.

    2015-01-01

    Highlights: • Two commercial Lithium-ion batteries are studied through HPPC and EIS tests. • An equivalent circuit model is developed for a range of operating conditions. • This model improves the current battery empirical models for vehicle applications • This model is proved to be efficient in terms of predicting HPPC test resistances. - ABSTRACT: An empirical model for commercial lithium-ion batteries is developed based on electrochemical impedance spectroscopy (EIS) tests. An equivalent circuit is established according to EIS test observations at various battery states of charge and temperatures. A Laplace transfer time based model is developed based on the circuit which can predict the battery operating output potential difference in battery electric and plug-in hybrid vehicles at various operating conditions. This model demonstrates up to 6% improvement compared to simple resistance and Thevenin models and is suitable for modeling and on-board controller purposes. Results also show that this model can be used to predict the battery internal resistance obtained from hybrid pulse power characterization (HPPC) tests to within 20 percent, making it suitable for low to medium fidelity powertrain design purposes. In total, this simple battery model can be employed as a real-time model in electrified vehicle battery management systems

  7. Methodology for predicting the life of waste-package materials, and components using multifactor accelerated life tests

    International Nuclear Information System (INIS)

    Thomas, R.E.; Cote, R.W.

    1983-09-01

    Accelerated life tests are essential for estimating the service life of waste-package materials and components. A recommended methodology for generating accelerated life tests is described in this report. The objective of the methodology is to define an accelerated life test program that is scientifically and statistically defensible. The methodology is carried out using a select team of scientists and usually requires 4 to 12 man-months of effort. Specific agendas for the successive meetings of the team are included in the report for use by the team manager. The agendas include assignments for the team scientists and a different set of assignments for the team statistician. The report also includes descriptions of factorial tables, hierarchical trees, and associated mathematical models that are proposed as technical tools to guide the efforts of the design team

  8. Monte Carlo Method to Study Properties of Acceleration Factor Estimation Based on the Test Results with Varying Load

    Directory of Open Access Journals (Sweden)

    N. D. Tiannikova

    2014-01-01

    Full Text Available G.D. Kartashov has developed a technique to determine the rapid testing results scaling functions to the normal mode. Its feature is preliminary tests of products of one sample including tests using the alternating modes. Standard procedure of preliminary tests (researches is as follows: n groups of products with m elements in each start being tested in normal mode and, after a failure of one of products in the group, the remained products are tested in accelerated mode. In addition to tests in alternating mode, tests in constantly normal mode are conducted as well. The acceleration factor of rapid tests for this type of products, identical to any lots is determined using such testing results of products from the same lot. A drawback of this technique is that tests are to be conducted in alternating mode till the failure of all products. That is not always is possible. To avoid this shortcoming, the Renyi criterion is offered. It allows us to determine scaling functions using the right-censored data thus giving the opportunity to stop testing prior to all failures of products.In this work a statistical modeling of the acceleration factor estimation owing to Renyi statistics minimization is implemented by the Monte-Carlo method. Results of modeling show that the acceleration factor estimation obtained through Renyi statistics minimization is conceivable for rather large n . But for small sample volumes some systematic bias of acceleration factor estimation, which decreases with growth n is observed for both distributions (exponential and Veybull's distributions. Therefore the paper also presents calculation results of correction factors for a case of exponential distribution and Veybull's distribution.

  9. Electrokinetic and electrochemical corrosion studies related to crud formation

    International Nuclear Information System (INIS)

    Scenini, Fabio; Palumbo, Gaetano; Stevens, Nicholas; Cook, Tony; Banks, Andrew

    2012-09-01

    A potentially important mechanism for the flow-induced deposition of CRUD from pressurised high temperature primary water is the effect of 'streaming potentials' that develop across the electrochemical double layer of a metallic surface as a result of fluid flow across a pressure gradient or orifice. Thus, under such conditions, streaming currents develop normal to a surface and may result in preferential oxidation, for example of dissolved ferrous to ferric ions with their subsequent deposition as an oxide. The approach presented in this paper was to consider the electrokinetic problem is to firstly consider the magnitude of currents that can be developed under a given set of flow/mass transport conditions and, secondly, to consider the way in which these relatively small currents might give rise to oxide deposition. Electrochemical measurements on 304L samples were carried out over a range of temperatures in hydrogenated, alkaline water. The test conditions were chosen in order to simulate PWR primary water conditions. Furthermore, in order to facilitate the electrochemical studies, the ferrous ion concentration in the solution was also enhanced by the presence of a mild steel plate left in the autoclave to corrode. By employing the cyclic voltammetry technique interpreted using the Randles-Sevcik equation it was possible to calculate the concentration of ferrous ions and their diffusion coefficient. A miniature flow cell was designed for the purpose of creating regions of accelerated flow with consequent formation of anodic and cathodic regions so as to be able to measure the streaming currents. A study was carried out in order to better understand the potential which is associated with the streaming potential as function of the velocity and temperature at fixed pH. (authors)

  10. Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2013-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium-ion batteries. The results obtained at the end of the accelerated ageing process can be used for the parametrization of a performance-degradation lifetime model. In the proposed...... methodology both calendar and cycling lifetime tests are considered since both components are influencing the lifetime of Lithium-ion batteries. The methodology proposes also a lifetime model verification stage, where Lithium-ion battery cells are tested at normal operating conditions using an application...

  11. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  12. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components.

    Science.gov (United States)

    Kurtz, S M; Siskey, R; Reitman, M

    2010-05-01

    The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.

  13. Advanced Accelerator Test Facility (AATF) upgrade plan

    International Nuclear Information System (INIS)

    Gai, W.; Ho, C.; Konecny, R.

    1989-01-01

    We have successfully demonstrated the principles of wake-field acceleration using structures (cavity, dielectric) and plasmas as wake-field devices using the AATF at Argonne National Laboratory. Due to the limited driver electron pulse intensity and relative long pulse length, only modest accelerating gradients were observed. In order to study the wake field effects in much greater detail and demonstrate the feasibility of wake-field accelerator for high energy physics, we are considering construction of a laser photocathode injector on the existing 20 MeV Chem-Linac to produce very intense and short electron pulses. 10 refs., 5 figs

  14. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    Aim The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Background Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Materials and methods Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm3 and 0.65 cm3 Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.1–8 Results All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.7 Conclusion Results confirmed that the linear accelerator is capable of performing accurate VMAT. PMID:24416566

  15. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy.

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm(3) and 0.65 cm(3) Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.(1-8.) All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.(7.) Results confirmed that the linear accelerator is capable of performing accurate VMAT.

  16. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  17. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  18. Electrochemical Polishing Applications and EIS of a Vitamin B4-Based Ionic Liquid

    International Nuclear Information System (INIS)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.; Abdel-Fattah, Tarek M.

    2013-01-01

    Modern particle accelerators require minimal interior surface roughness for Niobium superconducting radio frequency (SRF) cavities. Polishing of the Nb is currently achieved via electrochemical polishing with concentrated mixtures of sulfuric and hydrofluoric acids. This acid-based approach is effective at reducing the surface roughness to acceptable levels for SRF use, but due to acid-related hazards and extra costs (including safe disposal of used polishing solutions), an acid-free method would be preferable. This study focuses on an alternative electrochemical polishing method for Nb, using a novel ionic liquid solution containing choline chloride, also known as Vitamin B 4 (VB 4 ). Potentiostatic electrochemical impedance spectroscopy (EIS) was also performed on the VB4-based system. Nb polished using the VB4-based method was found to have a final surface roughness comparable to that achieved via the acid-based method, as assessed by atomic force microscopy (AFM). These findings indicate that acid-free VB 4 -based electrochemical polishing of Nb represents a promising replacement for acid-based methods of SRF cavity preparation

  19. Stripline kicker for integrable optics test accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  20. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    Science.gov (United States)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  1. Performance tests of a 1.6-MV Van de Graaff accelerator of tandem type, 1

    International Nuclear Information System (INIS)

    Yano, Syukuro; Nakajima, Tadashi; Kitamura, Akira

    1981-01-01

    Experimental studies on the performance of a 1.6-MV Van de Graaff accelerator of tandem type, Model 5SDH of NEC, are reported. Two kinds of performance test were conducted. First, it was successfully demonstrated that the beam currents observed at two positions, 1m and 7m apart from a switching magnet in the +15 0 beam line, exceed the values accepted for our test according to the specifications of NEC. Second, it turned out that the beam transmission could be kept maximum by selecting the optimum number of live sections in the lower energy accelerator tube depending on terminal voltage. Moreover, the plot of optimum insulating SF 6 gas pressure against terminal voltage prepared by us is found very useful for efficient operation of the 5SDH accelerator. (author)

  2. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    International Nuclear Information System (INIS)

    Fischer, Richard P.; Gold, Steven H.

    2016-01-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements in the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.

  3. Accelerated life testing and reliability of high K multilayer ceramic capacitors

    Science.gov (United States)

    Minford, W. J.

    1981-01-01

    The reliability of one lot of high K multilayer ceramic capacitors was evaluated using accelerated life testing. The degradation in insulation resistance was characterized as a function of voltage and temperature. The times to failure at a voltage-temperature stress conformed to a lognormal distribution with a standard deviation approximately 0.5.

  4. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    Science.gov (United States)

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  5. Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Muti, Mihrican; Erdem, Arzum; Caliskan, Ayfer; Sınag, Ali; Yumak, Tugrul

    2011-08-01

    The effect of the SnO(2) nanoparticles (SNPs) on the behaviour of voltammetric carbon paste electrodes were studied for possible use of this material in biosensor development. The electrochemical behaviour of SNP modified carbon paste electrodes (CPE) was first investigated by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The performance of the SNP modified electrodes were compared to those of unmodified ones and the parameters affecting the response of the modified electrode were optimized. The SNP modified electrodes were then tested for the electrochemical sensing of DNA purine base adenine to explore their further development in biosensor applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Nichols, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-27

    This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility. In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.

  7. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  8. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...

  9. A statistical comparison of accelerated concrete testing methods

    Directory of Open Access Journals (Sweden)

    Denny Meyer

    1997-01-01

    Full Text Available Accelerated curing results, obtained after only 24 hours, are used to predict the 28 day strength of concrete. Various accelerated curing methods are available. Two of these methods are compared in relation to the accuracy of their predictions and the stability of the relationship between their 24 hour and 28 day concrete strength. The results suggest that Warm Water accelerated curing is preferable to Hot Water accelerated curing of concrete. In addition, some other methods for improving the accuracy of predictions of 28 day strengths are suggested. In particular the frequency at which it is necessary to recalibrate the prediction equation is considered.

  10. Two frequency beam-loading compensation in the drive-beam accelerator of the CLIC Test Facility

    CERN Document Server

    Braun, Hans Heinrich

    1999-01-01

    The CLIC Test Facility (CTF) is a prototype two-beam accelerator, in which a high-current "drive beam" is used to generate the RF power for the main-beam accelerator. The drive-beam accelerator consists of two S-band structures which accelerate a bunch train with a total charge of 500 nC. The substantial beam loading is compensated by operating the two accelerating structures at 7.81 MHz above and below the bunch repetition frequency, respectively. This introduces a change of RF phase from bunch to bunch, which leads, together with off-crest injection into the accelerator, to an approximate compensation of the beam loading. Due to the sinusoidal time-dependency of the RF field, an energy spread of about 7% remains in the bunch train. A set of idler cavities has been installed to reduce this residual energy spread further. In this paper, the considerations that motivated the choice of the parameters of the beam-loading compensation system, together with the experimental results, are presented.

  11. Statistical characteristics of mechanical heart valve cavitation in accelerated testing.

    Science.gov (United States)

    Wu, Changfu; Hwang, Ned H C; Lin, Yu-Kweng M

    2004-07-01

    Cavitation damage has been observed on mechanical heart valves (MHVs) undergoing accelerated testing. Cavitation itself can be modeled as a stochastic process, as it varies from beat to beat of the testing machine. This in-vitro study was undertaken to investigate the statistical characteristics of MHV cavitation. A 25-mm St. Jude Medical bileaflet MHV (SJM 25) was tested in an accelerated tester at various pulse rates, ranging from 300 to 1,000 bpm, with stepwise increments of 100 bpm. A miniature pressure transducer was placed near a leaflet tip on the inflow side of the valve, to monitor regional transient pressure fluctuations at instants of valve closure. The pressure trace associated with each beat was passed through a 70 kHz high-pass digital filter to extract the high-frequency oscillation (HFO) components resulting from the collapse of cavitation bubbles. Three intensity-related measures were calculated for each HFO burst: its time span; its local root-mean-square (LRMS) value; and the area enveloped by the absolute value of the HFO pressure trace and the time axis, referred to as cavitation impulse. These were treated as stochastic processes, of which the first-order probability density functions (PDFs) were estimated for each test rate. Both the LRMS value and cavitation impulse were log-normal distributed, and the time span was normal distributed. These distribution laws were consistent at different test rates. The present investigation was directed at understanding MHV cavitation as a stochastic process. The results provide a basis for establishing further the statistical relationship between cavitation intensity and time-evolving cavitation damage on MHV surfaces. These data are required to assess and compare the performance of MHVs of different designs.

  12. Methodology of Accelerated Life-Time Tests For Stirling-Type "Bae-Co"-Made Cryocoolers Against Displacer-Blockage by Cryo-Pollutant Deposits

    National Research Council Canada - National Science Library

    Getmanits, Vladimir

    2000-01-01

    ...: The contractor will investigate techniques for accelerated testing of cryocooler technology. During this phase of the effort the contractor will perform a detailed design of the equipment needed to conduct accelerated testing...

  13. Lessons learned on the Ground Test Accelerator control system

    International Nuclear Information System (INIS)

    Kozubal, A.J.; Weiss, R.E.

    1994-01-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers' toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ''Experimental Physics and Industrial Control System'' (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects

  14. Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-ion Batteries used in Augmented Wind Power Plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2014-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium ion batteries. The results obtained at the end of the accelerated ageing process were used for the parametrization of a performance-degradation lifetime model, which is able to predict...... both the capacity fade and the power capability decrease of the selected Lithium-ion battery cells. In the proposed methodology both calendar and cycling lifetime tests were considered since both components are influencing the lifetime of Lithium-ion batteries. Furthermore, the proposed methodology...

  15. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components

  16. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  17. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  18. ORR irradiation experiment OF-1: accelerated testing of HTGR fuel

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Long, E.L. Jr.; Kania, M.J.; Thoms, K.R.; Allen, E.J.

    1977-08-01

    The OF-1 capsule, the first in a series of High-Temperature Gas-Cooled Reactor fuel irradiations in the Oak Ridge Research Reactor, was irradiated for more than 9300 hr at full reactor power (30 MW). Peak fluences of 1.08 x 10 22 neutrons/cm 2 (> 0.18 MeV) were achieved. General Atomic Company's magazine P13Q occupied the upper two-thirds of the test space and the ORNL magazine OF-1 the lower one-third. The ORNL portion tested various HTGR recycle particles and fuel bonding matrices at accelerated flux levels under reference HTGR irradiation conditions of temperature, temperature gradient, and fast fluence exposure

  19. Models of f(R) cosmic acceleration that evade solar system tests

    International Nuclear Information System (INIS)

    Hu, Wayne; Sawicki, Ignacy

    2007-01-01

    We study a class of metric-variation f(R) models that accelerates the expansion without a cosmological constant and satisfies both cosmological and solar-system tests in the small-field limit of the parameter space. Solar-system tests alone place only weak bounds on these models, since the additional scalar degree of freedom is locked to the high-curvature general-relativistic prediction across more than 25 orders of magnitude in density, out through the solar corona. This agreement requires that the galactic halo be of sufficient extent to maintain the galaxy at high curvature in the presence of the low-curvature cosmological background. If the galactic halo and local environment in f(R) models do not have substantially deeper potentials than expected in ΛCDM, then cosmological field amplitudes |f R | > or approx.10 -6 will cause the galactic interior to evolve to low curvature during the acceleration epoch. Viability of large-deviation models therefore rests on the structure and evolution of the galactic halo, requiring cosmological simulations of f(R) models, and not directly on solar-system tests. Even small deviations that conservatively satisfy both galactic and solar-system constraints can still be tested by future, percent-level measurements of the linear power spectrum, while they remain undetectable to cosmological-distance measures. Although we illustrate these effects in a specific class of models, the requirements on f(R) are phrased in a nearly model-independent manner

  20. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries

    Science.gov (United States)

    Ferg, Ernst; Rossouw, Claire; Loyson, Peter

    2013-03-01

    For electric vehicles, a supercapacitor can be coupled to the electrical system in order to increase and optimize the energy and power densities of the drive system during acceleration and regenerative breaking. This study looked at the charge acceptance and maximum discharge ability of a valve regulated lead acid (VRLA) and a Li-ion battery connected in parallel to supercapacitors. The test procedure evaluated the advantage of using a supercapacitor at a 2 F:1 Ah ratio with the battery types at various states of charge (SoC). The results showed that about 7% of extra charge was achieved over a 5-s test time for a Li-ion hybrid system at 20% SoC, whereas at the 80% SoC the additional capacity was approximately 16%. While for the VRLA battery hybrid system, an additional charge of up to 20% was achieved when the battery was at 80% SoC, with little or no benefit at the 20% SoC. The advantage of the supercapacitor in parallel with a VRLA battery was noticeable on its discharge ability, where significant extra capacity was achieved for short periods of time for a battery at the 60% and 40% SoC when compared to the Li-ion hybrid system. The study also made use of Electrochemical Impedance Spectroscopy (EIS) with a suitable equivalent circuit model to explain, in particular, the internal resistance and capacitance differences observed between the different battery chemistries with and without a supercapacitor.

  1. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    Science.gov (United States)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.

  2. Accelerated life testing design using geometric process for pareto distribution

    OpenAIRE

    Mustafa Kamal; Shazia Zarrin; Arif Ul Islam

    2013-01-01

    In this paper the geometric process is used for the analysis of accelerated life testing under constant stress for Pareto Distribution. Assuming that the lifetimes under increasing stress levels form a geometric process, estimates of the parameters are obtained by using the maximum likelihood method for complete data. In addition, asymptotic interval estimates of the parameters of the distribution using Fisher information matrix are also obtained. The statistical properties of the parameters ...

  3. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  4. Accelerated bridge paint test program.

    Science.gov (United States)

    2011-07-06

    The accelerated bridge paint (AB-Paint) program evaluated a new Sherwin-Williams two-coat, : fast-curing paint system. The system is comprised of an organic zinc-rich primer (SW Corothane I : Galvapac One-Pack Zinc-Rich Primer B65 G11) and a polyurea...

  5. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing.

    Science.gov (United States)

    Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J

    2011-11-01

    This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics

  6. Repair mortars based on lime. Accelerated aging tests

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1995-06-01

    Full Text Available The behaviour under different accelerated aging tests (freeze/thaw and crystallization cycles of a new lime mortar with biocide properties destinated to monumental repair has been studied. New mortars (which have the biocide impregnated in a clay called sepiolite have a similar behaviour to lime mortars used as a reference. After the aging tests, the biocide properties of the mortars have been tried.

    Se ha estudiado el comportamiento frente a distintos ensayos de envejecimiento acelerado (ciclos de hielo/deshielo y cristalización de sales de un nuevo mortero de cal con propiedades biocidas, destinado a la reparación monumental. Se ha comprobado que los nuevos morteros (que llevan incorporado el biocida impregnado en una arcilla denominada sepiolita tienen un comportamiento muy similar a los morteros de cal utilizados como referencia. Tras los ensayos de envejecimiento se ha visto que las propiedades biocidas de los morteros se mantienen.

  7. The first picosecond terawatt CO2 laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO 2 laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse

  8. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    International Nuclear Information System (INIS)

    1979-08-01

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125 0 C, 54,000 at 165 0 C, 48,000 at 185 0 C, and 8500 at 225 0 C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125 0 C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125 0 C. It was concluded that, for a heat pipe temperature of 125 0 C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125 0 C) and 98% (based on 1,430,000 accelerated pipe-h at 125 0 C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  9. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    Science.gov (United States)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  10. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration...... of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge...... effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set...

  11. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    International Nuclear Information System (INIS)

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-01-01

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed

  12. Beam loading and cavity compensation for the ground test accelerator

    International Nuclear Information System (INIS)

    Jachim, S.P.; Natter, E.F.

    1989-01-01

    The Ground Test Accelerator (GTA) will be a heavily beam-loaded H/sup minus/ linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outlined. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs

  13. Performance report on the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.

    1994-01-01

    The Ground Test Accelerator (GTA) uses a radio-frequency quadrupole (RFQ) to bunch and accelerate a 35 keV input beam to a final energy of 2.5 MeV. Most measured parameters of the GTA RFQ agreed with simulated predictions. The relative shape of the transmission versus the vane-voltage relationship and the Courant-Snyder (CS) parameters of the output beam's transverse and longitudinal phase spaces agreed well with predictions. However, the transmission of the RFQ was significantly lower than expected. Improved simulation studies included image charges and multipole effects in the RFQ. Most of the predicted properties of the RFQ, such as input matched-beam conditions and output-beam shapes were unaffected by these additional effects. However, the comparison of measured with predicted absolute values of transmitted beam was much improved by the inclusion of these effects in the simulations. The comparison implied a value for the input emittance that is consistent with measurements

  14. Laserwire at the Accelerator Test Facility 2 with submicrometer resolution

    Directory of Open Access Journals (Sweden)

    L. J. Nevay

    2014-07-01

    Full Text Available A laserwire transverse electron beam size measurement system has been developed and operated at the Accelerator Test Facility 2 at the High Energy Accelerator Research Organization, Japan (KEK. Special electron beam optics were developed to create an approximately 1×100  μm (vertical×horizontal electron beam at the laserwire location, which was profiled using 150 mJ, 71 ps laser pulses with a wavelength of 532 nm. The precise characterization of the laser propagation allows the non-Gaussian laserwire scan profiles caused by the laser divergence to be deconvolved. A minimum vertical electron beam size of 1.07±0.06(stat±0.05(sys  μm was measured. A vertically focusing quadrupole just before the laserwire was varied while making laserwire measurements and the projected vertical emittance was measured to be 82.56±3.04  pm rad.

  15. Reliability and Lifetime Prediction of Remote Phosphor Plates in Solid-State Lighting Applications Using Accelerated Degradation Testing

    NARCIS (Netherlands)

    Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q.

    2015-01-01

    A methodology, based on accelerated degradation testing, is developed to predict the lifetime of remote phosphor plates used in solid-state lighting (SSL) applications. Both thermal stress and light intensity are used to accelerate degradation reaction in remote phosphor plates. A reliability model,

  16. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Flox, Cristina; Skoumal, Marcel; Rubio-Garcia, Javier; Andreu, Teresa; Morante, Juan Ramón

    2013-01-01

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt 3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO 2+ /VO 2 + redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt 3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt 3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm −2 ) up to 30th cycle, indicating a promising alternative for improving the VFB

  17. Metal and elastomer seal tests for accelerator applications

    International Nuclear Information System (INIS)

    Welch, K.M.; McIntyre, G.T.; Tuozzolo, J.E.; Skelton, R.; Pate, D.J.; Gill, S.M.

    1989-01-01

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs

  18. Detection of radiation-induced changes in electrochemical properties of austenitic stainless steels using miniaturized specimens and the single-loop electrochemical potentiokinetic reactivation method

    International Nuclear Information System (INIS)

    Inazumi, T.; Bell, G.E.C.; Kenik, E.A.; Kiuchi, K.

    1993-01-01

    Single-loop electrochemical potentiokinetic reactivation testing of miniaturized (TEM) specimens can provide reliable data comparable to data obtained with larger specimens. Significant changes in electrochemical properties (increased reactivation current and Flade potential) were detected for PCA and type 316 stainless steels irradiated at 200--420 degrees C up to 7--9 dpa. Irradiations in the FFTF Materials Open Test Assembly and in the Oak Ridge Research Reactor are reported on. 45 figs., 5 tabs., 52 refs

  19. Comparison of accelerated pavement test results with long term pavement behaviour and performance

    CSIR Research Space (South Africa)

    Jooste, FJ

    1997-08-01

    Full Text Available The aim of this study was to investigate the following:how accelerated pavement testing predictions compare with actual road behaviour and performance the relative influences of load and environmental factors on pavement deterioration and how well...

  20. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  1. Supercapacitive characteristics of electrochemically active porous materials

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-06-01

    Full Text Available The results of an investigation of the capacitive characteristics of sol–gel-processed titanium- and carbon-supported electrochemically active noble metal oxides, as representatives of porous electrode materials, are presented in the lecture. The capacitive properties of these materials were correlated to their composition, the preparation conditions of the oxides and coatings, the properties of the carbon support and to the composition of the electrolyte. The results of the electrochemical test methods, cyclic voltammetry and electrochemical impedance spectroscopy, were employed to resolve the possible physical structures of the mentioned porous materials, which are governed by the controlled conditions of the preparation of the oxide by the sol–gel process.

  2. Study on the chloride diffusion coefficient in concrete obtained in electrically accelerated tests

    NARCIS (Netherlands)

    Spiesz, P.R.; Brouwers, H.J.H.; Gulikers, J.J.W.; Polder, R.; Andrade, C.

    2015-01-01

    This study presents an analysis of the chloride diffusion coefficient (DRCM), obtained in electrically accelerated chloride migration tests. As demonstrated here, the obtained chloride diffusion coefficient does not represent the apparent one, as it is independent of chloride binding. This is

  3. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-12

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.

  4. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  5. Assessment of Real-Time Compaction Quality Test Indexes for Rockfill Material Based on Roller Vibratory Acceleration Analysis

    Directory of Open Access Journals (Sweden)

    Tianbo Hua

    2018-01-01

    Full Text Available Compaction quality is directly related to the structure and seepage stability of a rockfill dam. To timely and accurately test the compaction quality of the rockfill material, four real-time test indexes were chosen to characterize the soil compaction degree based on the analysis of roller vibratory acceleration, including acceleration peak value (ap, acceleration root mean square value (arms, crest factor value (CF, and compaction meter value (CMV. To determine which of these indexes is the most appropriate, a two-part field compaction experiment was conducted using a vibratory roller in different filling zones of the dam body. Data on rolling parameters, real-time test indexes, and compaction quality indexes were collected to perform statistical regression analyses. Combined with the spectrum analysis of the acceleration signal, it was found that the CF index best characterizes the compaction degree of the rockfill material among the four indexes. Furthermore, the quantitative relations between the real-time index and compaction quality index were established to determine the control criterion of CF, which can instruct the site work of compaction quality control in the rockfill rolling process.

  6. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode

    International Nuclear Information System (INIS)

    Lan, Yandi; Coetsier, Clémence; Causserand, Christel; Groenen Serrano, Karine

    2017-01-01

    Refractory pharmaceuticals remain in biologically treated wastewater and are continuously discharged into aquatic systems due to their limited biodegradability. Electrochemical oxidation is promising for the treatment of such refractory compounds, in particular using a boron doped diamond (BDD) anode. This study investigates the role of salts, such as sulfates and chlorides in the electrochemical treatment of wastewater. The presence of sulfates accelerated the removal of ciprofloxacin and sulfamethoxazole, but had no effect on the oxidation of salbutamol. This comparison highlights the selectivity of the reaction between organics and sulfate radicals. The addition of chlorides into the solution led to a remarkably-faster degradation of ciprofloxacin. However, incomplete mineralization was observed at high current densities due to the significant formation of halogenated organic compounds (AOX). The formation of refractory and toxic compounds such as ClO_4"− and AOX can be limited under the control of (i) applied current intensity and (ii) duration of electrolysis. Electrochemical oxidation of concentrated biologically-treated hospital wastewater investigated the excellent removal of biorefractory pharmaceuticals and confirmed the acceleration effect of salts on pharmaceutical degradation.

  7. The electrochemical property of the electrodeposited magnetite electrode with different pH values

    International Nuclear Information System (INIS)

    Kim, Myong-Jin; Kim, Dong Jin; Kim, Hong Pyo

    2014-01-01

    Flow accelerated corrosion (FAC) is influenced by many factors such as the water chemistry (temperature, pH, dissolved oxygen (D.O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of the change in the magnetite layer. On the other hand, it is necessary to measure the experimental solubility to compare the theoretical data and the experimental data. In addition, the solubility of magnetite can be predicted by measuring the electrochemical experiments. However, there are few studies related to the electrochemical property of magnetite owing to the difficulty of the electrode fabrication. In the present work, a magnetite electrode was prepared using the electrochemical-assisted precipitation method, and the electrochemical property of the fabricated magnetite electrode was measured in an alkaline solution. The magnetite electrode was fabricated by using the electrochemical-assisted precipitation method for the measurement of the solubility of the magnetite. The prepared magnetite electrode showed the characteristic of the magnetite by an XRD spectrum

  8. Four nondestructive electrochemical tests for detecting sensitization in type 304 and 304L stainless steels

    International Nuclear Information System (INIS)

    Majidi, A.P.; Streicher, A.

    1986-01-01

    Three different electrochemical reactivation tests are compared with etch structures produced in the electrolytic oxalic acid etch test. These nondestructive tests are needed to evaluate welded stainless steel pipes and other plant equipment for susceptibility to intergranular attack. Sensitization associated with precipitates of chromium carbides at grain boundaries can make these materials subject to intergranular attack in acids and, in particular, to intergranular stress corrosion cracking in high-temperature (289 0 C) water on boiling water nuclear reactor power plants. In the first of the two older reactivation tests, sensitization is detected by the electrical charge generated during reactivation. In the second, it is measured by the ratio of maximum currents generated by a prior anodic loop and the reactivation loop. A third, simpler reactivation method based on a measurement of the maximum current generated during reactivation is proposed. If the objective of the field tests, which are to be carried out with portable equipment, is to distinguish between nonsensitized and sensitized material, this can be accomplished most simply, most rapidly, and at lowest cost by an evaluation of oxalic acid etch structures

  9. How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle

    Energy Technology Data Exchange (ETDEWEB)

    Varoquaux, G; Nyman, R A; Geiger, R; Cheinet, P; Bouyer, P [Laboratoire Charles Fabry de l' Institut d' Optique, Campus Polytechnique, RD 128, 91127 Palaiseau (France); Landragin, A [LNE-SYRTE, UMR8630, UPMC, Observatoire de Paris, 61 avenue de l' Observatoire, 75014 Paris (France)], E-mail: philippe.bouyer@institutoptique.fr

    2009-11-15

    We propose a scheme for testing the weak equivalence principle (universality of free-fall (UFF)) using an atom-interferometric measurement of the local differential acceleration between two atomic species with a large mass ratio as test masses. An apparatus in free fall can be used to track atomic free-fall trajectories over large distances. We show how the differential acceleration can be extracted from the interferometric signal using Bayesian statistical estimation, even in the case of a large mass and laser wavelength difference. We show that this statistical estimation method does not suffer from acceleration noise of the platform and does not require repeatable experimental conditions. We specialize our discussion to a dual potassium/rubidium interferometer and extend our protocol with other atomic mixtures. Finally, we discuss the performance of the UFF test developed for the free-fall (zero-gravity) airplane in the ICE project (http://www.ice-space.fr)

  10. How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle

    International Nuclear Information System (INIS)

    Varoquaux, G; Nyman, R A; Geiger, R; Cheinet, P; Bouyer, P; Landragin, A

    2009-01-01

    We propose a scheme for testing the weak equivalence principle (universality of free-fall (UFF)) using an atom-interferometric measurement of the local differential acceleration between two atomic species with a large mass ratio as test masses. An apparatus in free fall can be used to track atomic free-fall trajectories over large distances. We show how the differential acceleration can be extracted from the interferometric signal using Bayesian statistical estimation, even in the case of a large mass and laser wavelength difference. We show that this statistical estimation method does not suffer from acceleration noise of the platform and does not require repeatable experimental conditions. We specialize our discussion to a dual potassium/rubidium interferometer and extend our protocol with other atomic mixtures. Finally, we discuss the performance of the UFF test developed for the free-fall (zero-gravity) airplane in the ICE project (http://www.ice-space.fr).

  11. Laser-accelerated particle beams for stress testing of materials.

    Science.gov (United States)

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  12. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  13. Accelerated testing for studying pavement design and performance (FY 2003) : evaluation of the chemical stabilized subgrade soil (CISL Experiment No. 12).

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway departments : of Missouri, Iowa, Kansas and Nebraska, has supported an accelerated pavement testing (APT) project to compare : the performance of stabilized ...

  14. Allowance for insulation aging in the new concept of accelerated life tests of high-voltage power transformers

    International Nuclear Information System (INIS)

    Levit, A.G.; Grechko, O.N.; Shchipunova, N.P.

    1992-01-01

    This paper reports that the existing system of type and acceptance tests of high-voltage transformer insulation does not take into account insulation ageing, which is particularly objectionable with respect to equip-met with reduced insulation levels. Suggested in the paper is a new concept of accelerated life tests based on integrated simulation of basic operating loads, both periodic (surge) and long-term ones; by making a long-term accelerated test simulating the working conditions, with exposure of test object and/or its insulation to periodic operating surges (overvoltages and overcurrents). This test replaces a group of conventional individual acceptance tests and provides more ample and more precise information on performance and dependability of the equipment. The test procedure was checked in test of a small lot of 1600 kVA 35 kV power transformers

  15. Electrochemical behaviour of aluminum alloy containing various stanum concentration tested in tropical seawater

    International Nuclear Information System (INIS)

    Siti Radiah Mohd Kamarudin; Muhamad Daud; Mohd Shariff Satar

    2004-01-01

    A study has been carried out to investigate the electrochemical behaviour of sacrificial anodes with different Sh concentration in tropical seawater environment. In this work, samples of Aluminum alloy with the addition of Sn in a range of 1. 0% - 1. 7% were tested in tropical seawater at room temperature. Tafel technique was used to produce a graph of the measured current versus potential for each different Sh concentration of aluminum alloy. The results show that the variation in alloy compositions affected the values of corrosion rate, corrosion current density and potential compared to alloy without Sn content. Furthermore, it was found that small addition of Sn successfully increased aluminum ion dissolution into seawater by producing a higher value of corrosion current density and corrosion rate. (Author)

  16. LeRC rail accelerators: test designs and diagnostic techniques

    International Nuclear Information System (INIS)

    Zana, L.M.; Kerslake, W.R.; Sturman, J.C.; Wang, S.Y.; Terdan, F.F.

    1984-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed. 15 references

  17. A Quantitative PCR-Electrochemical Genosensor Test for the Screening of Biotech Crops

    Directory of Open Access Journals (Sweden)

    Suely Moura-Melo

    2017-04-01

    Full Text Available The design of screening methods for the detection of genetically modified organisms (GMOs in food would improve the efficiency in their control. We report here a PCR amplification method combined with a sequence-specific electrochemical genosensor for the quantification of a DNA sequence characteristic of the 35S promoter derived from the cauliflower mosaic virus (CaMV. Specifically, we employ a genosensor constructed by chemisorption of a thiolated capture probe and p-aminothiophenol gold surfaces to entrap on the sensing layer the unpurified PCR amplicons, together with a signaling probe labeled with fluorescein. The proposed test allows for the determination of a transgene copy number in both hemizygous (maize MON810 trait and homozygous (soybean GTS40-3-2 transformed plants, and exhibits a limit of quantification of at least 0.25% for both kinds of GMO lines.

  18. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    Science.gov (United States)

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. A study on the flow-accelerated corrosion characteristics of galvanically coupled dissimilar metals

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Kim, Jung Gu

    2002-01-01

    The flow-accelerated corrosion characteristics of a carbon steel(CS) coupled to stainless steel(SS) were investigated in deaerated alkaline-chloride solutions with velocities (0, 0.2, 0.4 and 0.6 m/s), pH (8, 9 and 10) and temperatures (25, 50 and 75 .deg. C). The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE (Rotating Cylinder Electrode). CS did not show passive behavior while SS show passive behavior in the alkaline-chloride solution. Galvanic corrosion tests were conducted as a function of flow velocities, pH and temperature. The galvanic current density increases with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at 25 .deg. C, whereas the flow velocity increased galvanic current density significantly at 50 and 75 .deg. C. This might be due to the increased solubility of magnetite at the higher temperature

  20. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  1. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  2. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    Science.gov (United States)

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  3. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    Science.gov (United States)

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. © 2014 Wiley Periodicals, Inc.

  4. An experimental test of Newton's law of gravitation for small accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sven

    2011-10-15

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10{sup -10} m/s{sup 2}. These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a{sub 0} {approx} 1.2.10{sup -10} m/s{sup 2}, where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  5. Development of railgun pellet injector using a laser-induced plasma armature. Results of dummy pellet acceleration tests

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo; Ogino, Mutsuo

    1995-01-01

    Using the low electric energy railgun system, dummy pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. The primary objective of the development is to improve the pellet acceleration efficiency and durability of the rail materials. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. As low electric energy was used, rail materials were used for multiple operations. Tungsten-alloy rail provided longer durability and slightly higher energy conversion coefficient than copper rail. The energy conversion coefficient was from 0.3 to 0.5% using a plastic insulator. A ceramic insulator improved the energy conversion coefficient by 80%. The highest pellet velocity was 1.7 km/s using wooden pellets accelerated by 1m-long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km/s using a 3m-long railgun. (author)

  6. Development of railgun pellet injector using a laser-induced plasma armature. Results of dummy pellet acceleration tests

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo; Ogino, Mutsuo [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Nuclear Energy Systems Engineering Center

    1995-03-01

    Using the low electric energy railgun system, dummy pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. The primary objective of the development is to improve the pellet acceleration efficiency and durability of the rail materials. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. As low electric energy was used, rail materials were used for multiple operations. Tungsten-alloy rail provided longer durability and slightly higher energy conversion coefficient than copper rail. The energy conversion coefficient was from 0.3 to 0.5% using a plastic insulator. A ceramic insulator improved the energy conversion coefficient by 80%. The highest pellet velocity was 1.7 km/s using wooden pellets accelerated by 1m-long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km/s using a 3m-long railgun. (author).

  7. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2006-05-01

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage

  8. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, William H. [Meadow End Farm, Farnham (United Kingdom)

    2006-05-15

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage.

  9. BFROST: binary features from robust orientation segment tests accelerated on the GPU

    CSIR Research Space (South Africa)

    Cronje, J

    2011-11-01

    Full Text Available purpose parallel algo- rithms. The CUDA (Compute Unified Device Architecture) [1] framework from NVidia provides a programmable interface for GPUs. FAST (Features from Accelerated Segment Tests) [2], [3] is one of the fastest and most reliable corner... runs. Our detector detects slightly more keypoints because the decision tree of FAST does not perform a complete segment test. Timing comparisons were performed on a NVidia GeForce GTX 460 for our GPU implementation and on a Intel Core i7 2.67 GHz...

  10. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  11. Electrochemical behavior and pH stability of artificial salivas for corrosion tests.

    Science.gov (United States)

    Queiroz, Gláucia Maria Oliveira de; Silva, Leandro Freitas; Ferreira, José Tarcísio Lima; Gomes, José Antônio da Cunha P; Sathler, Lúcio

    2007-01-01

    It is assumed that the compositions of artificial salivas are similar to that of human saliva. However, the use of solutions with different compositions in in vitro corrosion studies can lead dissimilar electrolytes to exhibit dissimilar corrosivity and electrochemical stability. This study evaluated four artificial salivas as regards pH stability with time, redox potentials and the polarization response of an inert platinum electrode. The tested solutions were: SAGF medium, Mondelli artificial saliva, UFRJ artificial saliva (prepared at the School of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil) and USP-RP artificial saliva (prepared at the School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil). It was observed that pH variations were less than 1 unit during a 50-hour test. The SAGF medium, and the UFRJ and USP-RP solutions exhibited more oxidizing characteristics, whereas the Mondelli solution presented reducing properties. Anodic polarization revealed oxidation of the evaluated electrolytes at potentials below +600 mV SCE. It was observed that the UFRJ and USP-RP solutions presented more intense oxidation and reduction processes as compared to the Mondelli and SAGF solutions.

  12. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  13. The use of an electro-chemical process for corrosion testing of different quality materials no. 1.4306 in nitric acid

    International Nuclear Information System (INIS)

    Simon, R.; Schneider, M.; Leistikow, S.

    1987-01-01

    A typical appearance of corrosion in austenitic steels, which are used in reprocessing plants as container and construction materials, is intercrystalline corrosion at high anodic potentials, grain decomposition and the attack on widened grain boundaries stimulated by corrosion products. For safety reasons, the materials used in the nitric acid Purex process area are subjected to extensive corrosion tests. A particularly suitable process for testing materials for chemically and thermally highly stressed parts of the plant is the standard HUEY test standardised on by ASTM and Euronorm, which, however, is time, cost and labour intensive. The test routine introduced here, anodic polarisation at +1250 mV (nhe) makes it possible to give comparative information on the liability to intercrystalline corrosion of Austenitic steels of similar composition after a much shorter time. The principle consists of an electrochemical simulation of the actual potential causing intercrystalline corrosion of the group of materials. While the results are comparable with those of the HUEY test, the necessary test time is shortened from 5x48 hours to 1 hour. The evaluation of the surface and structure attack, which has occurred is done by observation of the measured electrical, metallographic and gravimetric data. The test routine described here offers an alternative (at least for the purpose of pre-selection) with a value equivalent to a standard HUEY test, but with greatly reduced amounts of time and work. However, it requires electro-chemical pre-examination of the groups of materials of interest in nitric acid to determine the critical anodic potentials, due to the constant effects of which it is possible to shorten the test period. (orig./RB) [de

  14. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  15. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, Carol M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  16. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    2016-01-01

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  17. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity β = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is Δf/f = 1.6 x 10 -6 E/sub a/ 2

  18. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity ..beta.. = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is ..delta..f/f = 1.6 x 10/sup -6/ E/sub a//sup 2/.

  19. Preliminary temperature Accelerated Life Test (ALT) on III-V commercial concentrator triple-junction solar cells

    OpenAIRE

    Espinet González, Pilar; Algora del Valle, Carlos; Orlando Carrillo, Vincenzo; Nuñez Mendoza, Neftali; Vázquez López, Manuel; Bautista Villares, Jesus; Xiugang, He; Barrutia Poncela, Laura; Rey-Stolle Prado, Ignacio; Araki, Kenji

    2012-01-01

    A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three e...

  20. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  1. Testing general relativity on accelerators

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-11-01

    Full Text Available Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  2. Front-end and back-end electrochemistry of molten salt in accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Williamson, M.A.; Venneri, F.

    1995-01-01

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods (i.e., electrowinning). The same method provides the separation of the so-called noble metal fission products at the back-end of the fuel cycle. Both implementations would have important diversion safeguards. The proposed separation processes and a thermodynamic analysis of the electrochemical separation method are presented

  3. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Science.gov (United States)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  4. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2018-03-01

    Full Text Available A Low-level radio-frequency (LLRF control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  5. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    Science.gov (United States)

    Billing, M. G.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.

  6. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-06

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particular interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.

  7. Design study of prototype accelerator and MeV test facility for demonstration of 1 MeV, 1 A negative ion beam production

    International Nuclear Information System (INIS)

    Inoue, Takashi; Hanada, Masaya; Miyamoto, Kenji; Ohara, Yoshihiro; Okumura, Yoshikazu; Watanabe, Kazuhiro; Maeno, Shuichi.

    1994-08-01

    In fusion reactors such as ITER, a neutral beam injector of MeV class beam energy and several tens MW class power is required as one of candidates of heating and current drive systems. However, the beam energy of existing high power accelerators are one order of magnitude lower than the required value. In order to realize a neutral beam injector for the fusion reactor, 'Proof-of-Principle' of such high energy acceleration is a critical issue at a reactor relevant beam current and pulse length. An accelerator and an accelerator facility which are necessary to demonstrate the Proof-of-Principle acceleration of negative ion beams up to 1 MeV, have been designed in the present study. The accelerator is composed of a cesium-volume type ion source and a multi-stage electrostatic acceleration system [Prototype Accelerator]. A negative hydrogen ion beam with the current of about one ampere (1 A) can be accelerated up to 1 MeV at a low operating pressure. Two types of acceleration system, a multi-multi type and a multi-single type, have been studied. The test facility has sufficient capability for the test of the Prototype Accelerator [MeV Test Facility]. The dc high voltage generator for negative ion acceleration is a Cockcroft-Walton type and capable of delivering 1 A at 1 MV (=1 MW) for 60 s. High voltage components including Prototype Accelerator are installed in a SF 6 vessel pressurized at 6 kg/cm 2 to overcome high voltage gradients. The vessel and the beamline are installed in a X-ray shield. (author)

  8. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    Science.gov (United States)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best

  9. Electrochemical impedance spectroscopy study during accelerated life test of conductive oxides: Ti/(Ru + Ti + Ce)O2-system

    International Nuclear Information System (INIS)

    Silva, Leonardo M. da; Fernandes, Karla C.; Faria, Luiz A. de; Boodts, Julien F.C.

    2004-01-01

    Ti-supported (Ru + Ti + Ce)O 2 -electrodes were prepared at 450d deg. C and the service life, t 6V , determined recording chronopotentiometric curves at 0.75Acm -2 (25 ± 1 deg. C). The results revealed a strong influence of the nominal cerium concentration, [CeO 2 ] N , on t 6V , showing substitution of Ti by Ce causes a major decrease in t 6V . The degree of electrode instability, Λ, calculated from the slope of the linear segment present in the chronopotentiometric profiles, showed [CeO 2 ] N exerts a strong influence on Λ. Voltammetric curves recorded at several anodisation times, t, support final electrode deactivation is due to Ti-support passivation. The chronopotentiometric and voltammetric data permitted to present a model for the porous electrode/electrolyte interface. The electrochemical impedance spectroscopic, EIS, investigation as function of t supports the proposed model denouncing a fast growth a TiO 2 interlayer at the Ti o /oxide interface for [CeO 2 ] N >= 30mol%. The studies also support substitution of Ti by Ce leads to an increase in the coating porosity, thus favouring electrode deactivation by passivation of the Ti-substrate. The model proposed for the porous electrode/electrolyte interface combined with the results of the EIS investigation permitted to propose an equivalent circuit to describe the modifications occurring in the electrode structure during anodisation. The true electrocatalytic activity for the oxygen evolution reaction, OER, depends on t and [CeO 2 ] N . The dependency of the inductive behaviour on t was investigated according to the model proposed for the effective inductance, L E , in the high frequency domain

  10. Accelerated testing for studying pavement design and performance (FY 2002) : performance of foamed asphalt stabilized base in full depth reclaimed asphalt pavement.

    Science.gov (United States)

    2004-08-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing Laboratory at Kansas : State University. The project was selected and funded by the Midwest Accelerated Testing Pooled Fund Program , : which includes Iowa, Kansas, ...

  11. Electrochemical reduction of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lund Traulsen, M.

    2012-04-15

    NO and NO{sub 2} (collectively referred to as NO{sub x}) are air pollutants, and the largest single contributor to NO{sub x} pollution is automotive exhaust. This study investigates electrochemical deNO{sub x}, a technology which aims to remove NO{sub x} from automotive diesel exhaust by electrochemical reduction of NO{sub x} to N{sub 2} and O{sub 2}. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNO{sub x} by addition of NO{sub x} storage compounds to the electrodes. Two different composite electrodes, La{sub 0.85}Sr{sub 0.15}MnO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSM15-CGO10) and La{sub 0.85}Sr{sub 0.15}FeO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSF15-CGO10), have been investigated in combination with three different NO{sub x} storage compounds: BaO, K{sub 2}O and MnO{sub x}. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy and cyclic voltammetry. In addition, infrared spectroscopy has been performed to study how NO{sub x} adsorption on the electrodes is affected by the presence of the aforementioned NO{sub x} storage compounds. Furthermore, non-tested and tested electrode microstructures have been thoroughly evaluated by scanning electron microscopy. The studies reveal addition of MnO{sub x} or K{sub 2}O to the electrodes cause severe degradation problems, and addition of these compounds is thus unsuitable for electrode improvement. In contrast, addition of BaO to LSM15-CGO10 electrodes is shown to have a very positive impact on the NO{sub x} conversion. The increased NO{sub x} conversion, following the BaO addition, is attributed to a combination of 1) a decreased electrode polarisation resistance and 2) an altered NO{sub x} adsorption. The NO{sub x} conversion is observed to increase strongly with polarisation, and during 9 V polarisation of an

  12. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  13. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  14. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  15. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  16. Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study

    Science.gov (United States)

    Clements, Anna; Shindo, David; Modica, Cathy

    2011-01-01

    The International Space Station Program recognizes the risk of microbial contamination in their potable and non-potable water sources. With the end of the Space Shuttle Program, the ability to send up shock-kits of biocides in the event of an outbreak becomes even more difficult. Currently, the US Segment water system relies primarily on iodine to mitigate contamination concerns. To date, several small cases of contamination have occurred which have been remediated. NASA, however, realizes that having a secondary method of combating a microbial outbreak is a prudent investment. NASA is looking into developing hardware that can generate biocides electrochemically, and potentially deploying that hardware. The specific biocides that the technology could generate include: hydrogen peroxide, oxone, hypochlorite and peracetic acid. In order to use these biocides on deployed water systems, the project must determine that all the materials in the potential application are compatible with the biocides at their anticipated administered concentrations. This paper will detail the materials test portion of the feasibility assessment including the plan for both metals and non-metals along with results to date.

  17. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Ben [NICADD, DeKalb; Mihalcea, Daniel [NICADD, DeKalb; Panuganti, Harsha [NICADD, DeKalb; Piot, Philippe [Fermilab; Brau, Charles [Vanderbilt U.; Choi, Bo [Vanderbilt U.; Gabella, William [Vanderbilt U.; Ivanov, Borislav [Vanderbilt U.; Mendenhall, Marcus [Vanderbilt U.; Lynn, Christopher [Swarthmore Coll.; Sen, Tanaji [Fermilab; Wagner, Wolfgang [Forschungszentrum Dresden Rossendorf

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  18. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  19. Relativistic Klystron Two-Beam Accelerator studies at the RTA test facility

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Houck, T.L.; Anderson, D.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two- Beam Accelerator (RK-TBA) concept is being constructed at LBNL to study physics, engineering, and costing issues. The prototype, called RTA, is described and compared to a full scale design appropriate for driving the Next Linear Collider. Specific details of the induction core test and pulsed power system are presented. Details of the 1-MeV, 1.2-kA induction gun currently under construction are described

  20. Accelerated Comparative Fatigue Strength Testing of Belt Adhesive Joints

    Science.gov (United States)

    Bajda, Miroslaw; Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    Belt joints are the weakest link in the serial structure that creates an endless loop of spliced belt segments. This affects not only the lower strength of adhesive joints of textile belts in comparison to vulcanized splices, but also the replacement of traditional glues to more ecological but with other strength parameters. This is reflected in the lowered durability of adhesive joints, which in underground coal mines is nearly twice shorter than the operating time of belts. Vulcanized splices require high precision in performance, they need long time to achieve cross-linking of the friction mixture and, above all, they require specialized equipment (vulcanization press) which is not readily available and often takes much time to be delivered down, which means reduced mining output or even downtime. All this reduces the reliability and durability of adhesive joints. In addition, due to the consolidation on the Polish coal market, mines are joined into large economic units serviced by a smaller number of processing plants. The consequence is to extend the transport routes downstream and increase reliability requirements. The greater number of conveyors in the chain reduces reliability of supply and increases production losses. With high fixed costs of underground mines, the reduction in mining output is reflected in the increase in unit costs, and this at low coal prices on the market can mean substantial losses for mines. The paper describes the comparative study of fatigue strength of shortened samples of adhesive joints conducted to compare many different variants of joints (various adhesives and materials). Shortened samples were exposed to accelerated fatigue in the usually long-lasting dynamic studies, allowing more variants to be tested at the same time. High correlation between the results obtained for shortened (100 mm) and traditional full-length (3×250 mm) samples renders accelerated tests possible.

  1. Accelerating Rate Calorimetry Tests of Lithium-Ion Cells Before and After Storage Degradation at High Temperature

    Directory of Open Access Journals (Sweden)

    Mendoza-Hernandez Omar Samuel

    2017-01-01

    Full Text Available Understanding the behavior of Li-ion cells during thermal runaway is critical to evaluate the safety of these energy storage devices under outstanding conditions. Li-ion cells possess a high energy density and are used to store and supply energy to many aerospace applications. Incidents related to the overheating or thermal runaway of these cells can cause catastrophic damages that could end up costly space missions; therefore, thermal studies of Li-ion cells are very important for ensuring safety and reliability of space missions. This work evaluates the thermal behavior of Li-ion cells before and after storage degradation at high temperature using accelerating rate calorimeter (ARC equipment to analyze the thermal behavior of Li-ion cells under adiabatic conditions. Onset temperature points of self-heating and thermal runaway reactions are obtained. The onset points are used to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge. The results obtained can be useful to develop accurate thermo-electrochemical models of Li-ion cells.

  2. Note: An online testing method for lifetime projection of high power light-emitting diode under accelerated reliability test.

    Science.gov (United States)

    Chen, Qi; Chen, Quan; Luo, Xiaobing

    2014-09-01

    In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r(2) = 0.954) and testing duration can be shortened.

  3. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    Science.gov (United States)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  4. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis

    Directory of Open Access Journals (Sweden)

    Jinxing Deng

    2017-04-01

    Full Text Available To understand the electrochemical capacity fading of the polyaniline (PANI electrodes in supercapacitors, for the first time, their chemical structure change during electrochemical cycles was traced with XPS analysis after the HCl doped PANI electrodes were subjected to the cyclic voltammetry test in 1.0 M H2SO4 electrolyte for different cycle numbers. The results showed that the chlorine disappeared in the electrode surface, while the surface element contents of sulfur and oxygen increased with the electrochemical cycles increased. It demonstrated that the hydrolytic degradation of the PANI chains and exchange of dopant occurred during the electrochemical cycling, causing the fading in the mechanical and electrochemical performance of the PANI electrodes. This understanding should lead to better design of the conductive polymer-based energy storage devices.

  5. Standard Test Method for Measuring Dose for Use in Linear Accelerator Pulsed Radiation Effects Tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers a calorimetric measurement of the total dose delivered in a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode) used as an ionizing source in radiation-effects testing. The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are“thin” compared to the range of these electrons in the materials of which they are constructed. 1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy (matl) (500 rd (matl)) or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. Matl refers to the material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity...

  6. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment

    International Nuclear Information System (INIS)

    Zou, Shiwen; Li, Xiaogang; Dong, Chaofang; Ding, Kangkang; Xiao, Kui

    2013-01-01

    Highlights: •The electrochemical migration, whisker formation, and corrosion behavior of PCB under wet H 2 S environment were observed and studied systematically. •The process of electrochemical migration of solder joints is explained. •The corrosion mechanism of PCB interconnectors induced by micro pores under wet H 2 S environment is discussed, and the corrosion reaction model is proposed. -- Abstract: Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board (PCB) under wet H 2 S environment were analyzed by environment scanning electron microscope (ESEM), Energy dispersive X-ray spectroscopy (EDS) with mapping and element phase cluster (EPC) techniques, Raman Spectrum analysis and electrochemical impedance spectroscopy (EIS) technology. The results showed that nonuniform corrosion behavior occurred on PCB surfaces under 1 ppm wet H 2 S at 40 °C; whiskers formed on the inner sidewall of via-holes with a growth rate of 1.2 Å/s; numerous corrosion products migrated through the pore of plated gold layer, which broke off the protective layer. The corrosion rate was accelerated according to the big-cathode-small-anode model

  7. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  8. Beam based alignment at the KEK accelerator test facility

    International Nuclear Information System (INIS)

    Ross, M.; Nelson, J.; Woodley, M.; Wolski, A.

    2002-01-01

    The KEK Accelerator Test Facility (ATF) damping ring is a prototype low emittance source for the NLC/JLC linear collider. To achieve the goal normalized vertical emittance gey = 20 nm-rad, magnet placement accuracy better than 30 mm must be achieved. Accurate beam-based alignment (BBA) is required. The ATF arc optics uses a FOBO cell with two horizontally focusing quadrupoles, two sextupoles and a horizontally defocusing gradient dipole, all of which must be aligned with BBA. BBA at ATF uses the quadrupole and sextupole trim windings to find the trajectory through the center of each magnet. The results can be interpreted to assess the accuracy of the mechanical alignment and the beam position monitor offsets

  9. The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

    Directory of Open Access Journals (Sweden)

    Abdalla Ahmed Abdel-Ghaly

    2016-06-01

    Full Text Available This paper suggests the use of the conditional probability integral transformation (CPIT method as a goodness of fit (GOF technique in the field of accelerated life testing (ALT, specifically for validating the underlying distributional assumption in accelerated failure time (AFT model. The method is based on transforming the data into independent and identically distributed (i.i.d Uniform (0, 1 random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.

  10. Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Hyun-Seung; Lee, Kang-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the B{sub 0.004} life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

  11. Development and testing of an electrochemical separation process for cutting activated steel components

    International Nuclear Information System (INIS)

    Stang, W.; Fischer, A.; Pott, P.

    1991-01-01

    Electrochemical decontamination has a great importance for the decommissioning works at KRB A. By this method the metal surface is slightly removed due to a galvanic process in an electrolytic solution. Using the same principle it is also possible to remove material locally (ECM-technique). Many advantages of this method indicated that it could be used for cutting activated steel during decommissioning of nuclear power plants. In the frame of this research contract, experiments with non-active material from a reactor pressure vessel were investigated. The essential results demonstrated - which procedures and cathodes are suitable for high cutting velocities - and which amount of sludge (waste) will be produced in the electrolyte. The research programme has been carried out in cooperation with AEG-Elotherm, Remscheid. The test facility, the execution as well as the evaluation of the experiments were made by AEG-Elotherm

  12. The interplay between inner and outer frost damage and its implication for accelerated freeze-thaw testing

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    In the present project salt frost scaling was registered during an accelerated freeze-thaw test (CEN/TS 12390-9). After the test, inner damage was evaluated by observing the crack patterns on fluorescence impregnated plane sections. The results indicate that the developments of inner and outer...

  13. Speeding up pyrogenicity testing: Identification of suitable cell components and readout parameters for an accelerated monocyte activation test (MAT).

    Science.gov (United States)

    Stoppelkamp, Sandra; Würschum, Noriana; Stang, Katharina; Löder, Jasmin; Avci-Adali, Meltem; Toliashvili, Leila; Schlensak, Christian; Wendel, Hans Peter; Fennrich, Stefan

    2017-02-01

    Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1β, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1β and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    Science.gov (United States)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  15. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.

    Science.gov (United States)

    Jung, Juhae; Park, Byungil; Kim, Junbom

    2012-01-05

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

  16. Electrochemical characterization of anode passivation mechanisms in copper electrorefining

    Science.gov (United States)

    Moats, Michael Scott

    Anode passivation can decrease productivity and quality while increasing costs in modern copper electrorefineries. This investigation utilized electrochemical techniques to characterize the passivation behavior of anode samples from ten different operating companies. It is believed that this collection of anodes is the most diverse set ever to be assembled to study the effect of anode composition on passivation. Chronopotentiometry was the main electrochemical technique, employing a current density of 3820 A m-2. From statistical analysis of the passivation characteristics, increasing selenium, tellurium, silver, lead and nickel were shown to accelerate passivation. Arsenic was the only anode impurity that inhibited passivation. Oxygen was shown to accelerate passivation when increased from 500 to 1500 ppm, but further increases did not adversely affect passivation. Nine electrolyte variables were also examined. Increasing the copper, sulfuric acid or sulfate concentration of the electrolyte accelerated passivation. Arsenic in the electrolyte had no effect on passivation. Chloride and optimal concentrations of thiourea and glue delayed passivation. Linear sweep voltammetry, cyclic voltammetry, and impedance spectroscopy provided complementary information. Analysis of the electrochemical results led to the development of a unified passivation mechanism. Anode passivation results from the formation of inhibiting films. Careful examination of the potential details, especially those found in the oscillations just prior to passivation, demonstrated the importance of slimes, copper sulfate and copper oxide. Slimes confine dissolution to their pores and inhibit diffusion. This can lead to copper sulfate precipitation, which blocks more of the surface area. Copper oxide forms because of the resulting increase in potential at the interface between the copper sulfate and anode. Ultimate passivation occurs when the anode potential is high enough to stabilize the oxide film in

  17. Microstructure and mechanical properties of friction welded AISI 1040/AISI 304L steels before and after electrochemical corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sarsilmaz, Furkan [Firat Univ., Elazig (Turkey). Dept. of Mechatronics Engineering; Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi [Firat Univ., Elazig (Turkey)

    2018-03-01

    The aim of the present study is to investigate the effect of welding parameters both on the electrochemical corrosion behavior and tensile strength of pre- and post-electrochemical corrosion of friction welded dissimilar steels. The microstructural changes of AISI 1040/AISI 304L friction welded couples and also parent materials were analyzed by using scanning electron microscopy. The electrochemical behaviors of AISI1040/AISI304L joints were comparatively investigated by potentiodynamic polarization curve test and by electrochemical impedance spectra. Moreover, tensile strength experiments were carried out determining the behavior of friction welded joints of pre- and post-electrochemical corrosion and results indicated that the maximum tensile test value of the dissimilar welded pre-electrochemical corrosion was higher than those of post-electrochemical corrosion and was also very close to AISI 1040 parent material value.

  18. Test simulation of neutron damage to electronic components using accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    King, D.B., E-mail: dbking@sandia.gov; Fleming, R.M.; Bielejec, E.S.; McDonald, J.K.; Vizkelethy, G.

    2015-12-15

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III–V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  19. A microwiggler Free-Electron Laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Kirk, H.; Pellegrini, C.; van Steenbergen, A.; Bhowmik, A.; Rockwell International Corp., Canoga Park, CA

    1989-01-01

    We report the design and status of an FEL experiment at the Brookhaven National Laboratory Accelerator Test Facility. A 50 MeV high brightness electron beam will be utilized for an oscillator experiment in the visible wavelength region. The microwiggler to be used is a superferric planar undulator with a 0.88 cm period, 60 cm length and K = 0.35. The optical cavity is a 368 cm long stable resonator with broadband dielectric coated mirrors. 8 refs., 2 figs., 4 tabs

  20. The intense proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1990-01-01

    The Science and Technology Agency of Japan has formulated the OMEGA project, in which incineration of nuclear wastes by use of accelerators is defined as one of the important tasks. Japan Atomic Energy Research Institute (JAERI) has been engaged for several years in basic studies in incineration technology with use of an intense proton linear accelerator. The intense proton accelerator program intends to provide a large scale proton linear accelerator called Engineering Test Accelerator. The principal purpose of the accelerator is to develop nuclear waste incineration technology. The accelerator will also be used for other industrial applications and applied science studies. The present report further outlines the concept of incineration of radio-activities of nuclear wastes, focusing on nuclear reactions and a concept of incineration plant. Features of Engineering Test Accelerator are described focusing on the development of the accelerator, and research and development of incineration technology. Applications of science and technology other than nuclear waste incineration are also discussed. (N.K.)

  1. Virtual accelerator concept, implementation and preliminary test; Accelerateur virtuel Concept, implementation et premier test

    Energy Technology Data Exchange (ETDEWEB)

    Uriot, D.; Duperrier, R

    2006-05-15

    A virtual accelerator is the coupling of a simulation code with the control system of a real machine. 3 operating modes are considered. First, the monitoring mode in which any action on the control system has an impact on both real and virtual machines. This mode allows a direct comparison between simulation results and the real behaviour of the accelerator. Secondly, the flight simulation mode, this mode allows the accelerator operators to simulate the effect of any change in the parameters of the control system before transferring them to the real machine. The main advantage of this mode is to allow the assessment of operating procedures before implementing them on the real machine. The third mode is the automatic steering mode in which the simulation code assumes the reins of the control system of the real machine. This mode allows the making of complex and time-consuming adjustment procedures in an automatic way. TraceWin is a simulation code dedicated to the behaviour of charged-particle beams in a linear accelerator. TraceWin is consistent with the EPICS technology on which the control system of most accelerators is based. A virtual accelerator composed of the SILHI injector combined to the TraceWin code via the EPICS environment has showed its efficiency in the automatic steering mode. (A.C.)

  2. Die degradation effect on aging rate in accelerated cycling tests of SiC power MOSFET modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Baker, Nick; Iannuzzo, Francesco

    2017-01-01

    In order to distinguish the die and bond wire degradations, in this paper both the die and bond wire resistances of SiC MOSFET modules are measured and tested during the accelerated cycling tests. It is proved that, since the die degradation under specific conditions increases the temperature swing...

  3. A link of full-scale accelerated pavement testing to long-term pavement performance study in the Western Cape Province of South Africa

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph K

    2016-09-01

    Full Text Available of Accelerated Pavement Testing in Pavement Sustainability A Link of Full-Scale Accelerated Pavement Testing to Long-Term Pavement Performance Study in the Western Cape Province of South Africa J. K. Anochie-Boateng W. JvdM Steyn C. Fisher L. Truter...

  4. Spectro-electrochemical and DFT study of tenoxicam metabolites formed by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Galano, A.; Rojas-Hernández, A.; Corona-Avendaño, S.; Romero-Romo, M.; Palomar-Pardavé, M.

    2013-01-01

    Highlights: • Tenoxicam deprotonation and electrochemical oxidation were studied. • Both spectro-electrochemical and theoretical DFT studies were considered. • It was found that the ampholitic species of tenoxicam is a zwitterion. • Electrochemical oxidation of tenoxicam yields two non-electroactive products. • The nature of these fragments was further confirmed by a chromatography study. -- Abstract: From experimental (spectro-electrochemical) and theoretical (DFT) studies, the mechanisms of tenoxicam deprotonation and electrochemical oxidation were assessed. From these studies, new insights on the nature of the ampholitic species involved during tenoxicam's deprotonation in aqueous solution are presented; see scheme A. Moreover, it is shown that, after the analysis of two different reaction schemes that involve up to 10 different molecules and 12 reaction paths, the electrochemical oxidation of tenoxicam, yields two non-electroactive products that are predominately formed by its fragmentation, after the loss of two electrons. The nature of these fragments was further confirmed by a chromatography study

  5. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine.

    Science.gov (United States)

    Yasukawa, Tomoyuki; Kiba, Yuya; Mizutani, Fumio

    2015-01-01

    A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide. A sandwich-type immunocomplex was formed by albumin and antibody labeled with glucose oxidase (GOx). Captured GOx catalyzed the reduction of Fe(CN)6(3-) to Fe(CN)6(4-), which was oxidized electrochemically to determine the captured albumin. The responses for creatinine and albumin increased with the concentrations in millimolar order and over the range 18.75 - 150 μg mL(-1), respectively. The present sensor would be a distinct demonstration for producing quantitative dual-assays for various biomolecules used for clinical diagnoses.

  6. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This paper reports an accelerated degradation test of a high temperature PEM fuel cell under repeated H2 starvation condition. The H2 stoichiometry is cycled between 3.0 and 0.8 every 2 min during the test. The experimental results show that the polarity of the fuel cell is reversed under H2......, there is only a slight decrease in open circuit voltage of the fuel cell which implies the membrane is not affected by the test. The electrochemical impedance spectrum measurement shows that the H2 starvation can cause significant increase in the ohmic resistance and charge transfer resistance. By looking...... starvation condition, and the cell performance indicated by cell voltage at H2 stoichiometry of 3.0 declines from 0.59 V to 0.41 V in 19 cycles. Since CO2 is detected in anode exhaust under H2 starvation condition, carbon corrosion is believed to be the reason for the degradation in this test. After the test...

  7. New particle accelerations by magnetized plasma shock waves

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi

    2005-01-01

    Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions

  8. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    International Nuclear Information System (INIS)

    Onofrio, Nicolas; Strachan, Alejandro

    2015-01-01

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices

  9. Accelerator structure work for NLC

    International Nuclear Information System (INIS)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B.; Gluckstern, R.; Ko, K.; Kroll, N.; California Univ., San Diego, La Jolla, CA

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun

  10. Study on constant-step stress accelerated life tests in white organic light-emitting diodes.

    Science.gov (United States)

    Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X

    2014-11-01

    In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1992-06-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  12. Instrumentation and control system for the AT-2 accelerator test stand

    International Nuclear Information System (INIS)

    Wadlinger, E.A.; Holtkamp, D.B.; Holt, H.D.

    1984-01-01

    A data-driven subroutine package, written for our accelerator test stand (ATS), is described. This flexible package permits the rapid writing and modifying of data acquisition, control, and analysis programs for the many diverse experiments performed on the ATS. These structurally simple and easy to maintain routines help to control administratively the integrity of the ATS through the use of the database. Our operating experience indicates that the original design goals have been met. We describe the subroutines, database, and our experiences with this system

  13. Design and test of a new MITL for the Yang accelerator

    International Nuclear Information System (INIS)

    Song Shengyi; Gu Yuanchao; Zhou Rongguo; Wei Bing; Han Wenhui; Yang Liang; Wang Xiong; Xie Weiping

    2005-01-01

    In this paper the physical design and test of a new MITL for the Yang accelerator have been introduced. With reducing the total length of the MITL and width of the insulator, the common-vertex-coaxial-circular-cones-like MITL has been employed to displace the old one, resulting in the decrease of structural inductance from 70.9 nH of the old to 31.7 nH of the new, and electrical stress criterion for some special locations has also been satisfied by reiteration and modification, and minimum magnetic current has been kept below that of the old. The tests both with short load and wire array load have shown that the performance of the new MITL was improved. (authors)

  14. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes

    International Nuclear Information System (INIS)

    Beline, Thamara; Garcia, Camila S.; Ogawa, Erika S.; Marques, Isabella S.V.; Matos, Adaias O.; Sukotjo, Cortino; Mathew, Mathew T.

    2016-01-01

    The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sandblasted with Al 2 O 3 , and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (R p ) (P < .0001) and the highest capacitance (CPE) (P < .006), corrosion current density (I corr ) and corrosion rate (P < .0001). In contrast, acid etching increased R p and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced R p (P < .008) and increased I corr and corrosion rate (P < .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P < .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi. - Highlights: • Acid etching enhanced the electrochemical stability of cpTi. • Hydrogen peroxide and sodium fluoride reduced the corrosion resistance of cpTi. • Chlorhexidine gluconate and cetylpyridinium chloride can be safely used.

  15. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes

    Energy Technology Data Exchange (ETDEWEB)

    Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br — Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch (Brazil); Garcia, Camila S. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Ogawa, Erika S. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br — Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Matos, Adaias O. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br — Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL 60612 (United States); IBTN — Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN — Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison, Chicago, IL 60612 (United States); and others

    2016-02-01

    The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sandblasted with Al{sub 2}O{sub 3}, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (R{sub p}) (P < .0001) and the highest capacitance (CPE) (P < .006), corrosion current density (I{sub corr}) and corrosion rate (P < .0001). In contrast, acid etching increased R{sub p} and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced R{sub p} (P < .008) and increased I{sub corr} and corrosion rate (P < .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P < .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi. - Highlights: • Acid etching enhanced the electrochemical stability of cpTi. • Hydrogen peroxide and sodium fluoride reduced the corrosion resistance of cpTi. • Chlorhexidine gluconate and cetylpyridinium chloride can be safely used.

  16. Electrochemical studies of the corrosion behavior of the fine-grained structural steel DIN W.Nr. 1.0566 between 55 and 90deg C in simulated salt brine repository environments

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-05-01

    The electrochemical corrosion of the fine-grained structural steel DIN W. Nr. 1.0566 was tested between 55 and 90deg C in three simulated salt brines of similar compositions as analyzed for the Gorleben repository environment. As test parameters the temperature, the salt brine composition, the stirring velocity and the oxygen content as well as the state of the steel surface were varied. As experimental results are presented: (1) the free corrosion potentials of the steel in three brines, (2) Tafel plots of current densities as measured potentiodynamically in the anodic and cathodic vicinity of the corrosion potentials and being representative for the rate of metal dissolution, (3) the surface morphology of the corroded specimens. As mechanisms - in the absence of oxygen - the cathodic reduction of water and the anodic dissolution of iron are considered to prevail the corrosion reaction. It is shown that the applied electrochemical techniques are able to determine within an accelerated procedure the most important corrosion parameters in respect to their influence on rate of metal dissolution and morphology of corrosion attack. (orig.) [de

  17. Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Lin, Ying-Ying; Wang, Jun; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2007-10-15

    We describe a disposable electrochemical immunosensor diagnosis device that is based on the immunochromatographic strip technique and an electrochemical immunoassay based on quantum dot (QD, CdS@ZnS) labels. The device takes advantage of the speed and low-cost of the conventional immunochromatographic strip test and the high-sensitivity of the nanoparticle-based electrochemical immunoassay. A sandwich immunoreaction was performed on the immunochromatographic strip, and the captured QD labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane on the test zone. The new device coupled with a portable electrochemical analyzer shows great promise for in-field and point-of-care quantitative testing of disease-related protein biomarkers. The parameters (e.g., voltammetric measurement of QD labels, antibody immobilization, the loading amount of QD-antibody, and the immunoreaction time) that govern the sensitivity and reproducibility of the device were optimized with IgG model analyte. The voltammetric response of the optimized device is highly linear over the range of 0.1 to 10 ng mL-1 IgG, and the limit of detection is estimated to be 30 pg mL-1 in association with a 7-min immunoreaction time. The detection limit was improved to 10 pg mL-1 using a 20-min immunoreaction time. The new disposable electrochemical diagnosis device thus provides a more user-friendly, rapid, clinically accurate, less expensive, and quantitative tool for protein detection.

  18. Reliability assessment for metallized film pulse capacitors with accelerated degradation test

    International Nuclear Information System (INIS)

    Zhao Jianyin; Liu Fang; Xi Wenjun; He Shaobo; Wei Xiaofeng

    2011-01-01

    The high energy density self-healing metallized film pulse capacitor has been applied to all kinds of laser facilities for their power conditioning systems, whose reliability is straightforward affected by the reliability level of capacitors. Reliability analysis of highly reliable devices, such as metallized film capacitors, is a challenge due to cost and time restriction. Accelerated degradation test provides a way to predict its life cost and time effectively. A model and analyses for accelerated degradation data of metallized film capacitors are described. Also described is a method for estimating the distribution of failure time. The estimation values of the unknown parameters in this model are 9.066 9 x 10 -8 and 0.022 1. Both the failure probability density function (PDF) and the cumulative distribution function (CDF) can be presented by this degradation failure model. Based on these estimation values and the PDF/CDF, the reliability model of the metallized film capacitors is obtained. According to the reliability model, the probability of the capacitors surviving to 20 000 shot is 0.972 4. (authors)

  19. Boric Acid as an Accelerator of Cerium Surface Treatment on Aluminum

    Directory of Open Access Journals (Sweden)

    K. Cruz-Hernández

    2014-01-01

    Full Text Available Aluminum pieces are often used in various industrial processes like automotive and aerospace manufacturing, as well as in ornamental applications, so it is necessary to develop processes to protect these materials, processes that can be industrialized to protect the aluminum as well or better than chromate treatments. The purpose of this research is to evaluate boric acid as an accelerator by optimizing its concentration in cerium conversion coatings (CeCC with 10-minute immersion time with a concentration of 0.1 g L−1 over aluminum to protect it. The evaluation will be carried out by measuring anticorrosion properties with electrochemical techniques (polarization resistance, Rp, polarization curves, PC, and electrochemical impedance spectroscopy, EIS in NaCl 3.5% wt. aqueous solution and surface characterization with scanning electron microscopy (SEM.

  20. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel

    International Nuclear Information System (INIS)

    Mohammadi, Somayeh; Shariatpanahi, Homeira; Taromi, Faramarz Afshar; Neshati, Jaber

    2016-01-01

    Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed by FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.

  1. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Somayeh, E-mail: somaye.mohammadi32@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shariatpanahi, Homeira [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Taromi, Faramarz Afshar [Department of Polymer Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Neshati, Jaber [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed by FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.

  2. An Electrochemical Method to Predict Corrosion Rates in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Dafter, M. R. [Hunter Water Australia Pty Ltd, Newcastle (Australia)

    2016-10-15

    Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provide a useful predictive tool in determining the current and future conditions of an asset{sup 1)}. A number of LPR tests have been developed on soil by various researchers over the years{sup 1)}, but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

  3. Generation of ozone and safety aspects in an accelerator facility of BARC

    International Nuclear Information System (INIS)

    Dubey, Praveen; Sawatkar, Aparna R.; Sathe, Arun P.; Soundararajan, S.; Sarma, K.S.S.

    2009-01-01

    Industrial electron beam accelerators up to 10 MeV are commonly employed for different applications. During normal operation of an accelerator, the principal hazard is the high radiation level produced. Experiments and applications in which the electron beam is used to irradiate materials outside the accelerator vacuum system are associated with problems such as radiation damage and production of considerable quantities of ozone. The possible generation of ozone during the operation of an electron beam accelerator is of special interest due to reactivity, corrosivity and the toxic characteristics of ozone. Industrial hygiene surveys were conducted to estimate the airborne concentration of ozone during operations of the electron beam accelerator (Type: ILU-6; 2 MeV; 20 KW) at varied operating parameters. The ozone concentration in the accelerator room was measured at different powers of the accelerator and the ozone decay pattern was also observed after beam shut down. Ozone in the accelerator room was measured by different methods such as colorimetry using neutral buffered potassium iodide, chemiluminescence method using ethylene and by using electrochemical sensor. An air velocity meter was used to measure the linear air velocity across the exhaust grills and the number of air changes available in the accelerator room was calculated. Necessary control measures were suggested to keep the occupational exposure of the personnel to ozone concentrations well within the Threshold Limit Values. (author)

  4. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used...... as infiltration material to enhance the effect of polarization on propene oxidation rate, especially at low temperatures. The influence of infiltrated material, as a function of heat treatment, on the reactor electrochemical behavior has been evaluated by using electrochemical impedance spectroscopy...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  5. Vacuum-to-air interface for the advanced test accelerator beam director

    International Nuclear Information System (INIS)

    Cruz, G.E.; Edwards, W.F.; Kavanagh, D.P.; Addis, R.B.; Weiss, W.C.; Livenspargar, C.M.

    1986-01-01

    A vacuum-to-air transition was created to facilitate the Lawrence Livermore National Laboratory's Advanced Test Accelerator (ATA) electron beam 1-Hz pulse rate. It is necessary that a pulsed particle beam go from a region at 10 -6 torr through a 1-cm-diam maximum aperture into a region at 760 torr. This must be accomplished without the use of windows or solid barriers. Two tests will be conducted on the vacuum-to-air interface. The first determines pressure profiles through 1.0-mm- and 10.0-mm-diam orifices. The second test employs an expendable foil and foil advancement mechanism. In this paper, the experimental results of the orifice test are presented and the analytical results are compared with the empirical results. The foil advancement test will be documented after the test is completed. The mechanism serves both as an orifice and as a fast-acting vacuum valve. In operation, the electron beam penetrates the thin foil, thereby creating an aperture of minimum geometry. During the balance of the pulse cycle, after the beam duration, the foil is advanced to seal the opening and recover the almost negligible loss in vacuum

  6. Electrochemical cleaning of Sv-08G2S wire surface

    International Nuclear Information System (INIS)

    Kozlov, E.I.; Degtyarev, V.G.; Novikov, M.P.

    1981-01-01

    Results of industrial tests of the Sv-08G2S wire with different state of surface fwith technological lubrication, after mechanical cleaning, with electrochemically cleaned surface) are presented. Advantages of welding-technological properties of the wire with electroe chemically cleaned surface are shown. An operation principle of the electrochemical cleaning facility is described. A brief specf ification f of the facility is given [ru

  7. Electrochemical supercapacitor behaviour of functionalized candle ...

    Indian Academy of Sciences (India)

    ... and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte. The functionalized candle soot electrode showed an enhanced specific capacitance value of ...

  8. Assessing high reliability via Bayesian approach and accelerated tests

    International Nuclear Information System (INIS)

    Erto, Pasquale; Giorgio, Massimiliano

    2002-01-01

    Sometimes the assessment of very high reliability levels is difficult for the following main reasons: - the high reliability level of each item makes it impossible to obtain, in a reasonably short time, a sufficient number of failures; - the high cost of the high reliability items to submit to life tests makes it unfeasible to collect enough data for 'classical' statistical analyses. In the above context, this paper presents a Bayesian solution to the problem of estimation of the parameters of the Weibull-inverse power law model, on the basis of a limited number (say six) of life tests, carried out at different stress levels, all higher than the normal one. The over-stressed (i.e. accelerated) tests allow the use of experimental data obtained in a reasonably short time. The Bayesian approach enables one to reduce the required number of failures adding to the failure information the available a priori engineers' knowledge. This engineers' involvement conforms to the most advanced management policy that aims at involving everyone's commitment in order to obtain total quality. A Monte Carlo study of the non-asymptotic properties of the proposed estimators and a comparison with the properties of maximum likelihood estimators closes the work

  9. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: yanzhang@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Hao, Huilian, E-mail: huilian.hao@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Wang, Linlin, E-mail: wlinlin@mail.ustc.edu.cn [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-12-30

    Highlights: • Different morphologies of ERGO on the surface of GCE were prepared via different methods. • The defect densities of ERGO were controlled by tuning the mass or concentration of GO. • A higher defect density of ERGO accelerates electron transfer rate. • ERGO with more exposed edge planes shows significantly higher electron transfer kinetics. • Both edge planes and defect density contribute to electron transfer of ERGO. - Abstract: Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k{sup 0}) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k{sup 0} values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k{sup 0} valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  10. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    International Nuclear Information System (INIS)

    Zhang, Yan; Hao, Huilian; Wang, Linlin

    2016-01-01

    Highlights: • Different morphologies of ERGO on the surface of GCE were prepared via different methods. • The defect densities of ERGO were controlled by tuning the mass or concentration of GO. • A higher defect density of ERGO accelerates electron transfer rate. • ERGO with more exposed edge planes shows significantly higher electron transfer kinetics. • Both edge planes and defect density contribute to electron transfer of ERGO. - Abstract: Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k"0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k"0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k"0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  11. Real time data acquisition system for the High Current Test Facility proton accelerator

    International Nuclear Information System (INIS)

    Langlais, C.E.; Erickson, P.D.; Caissie, L.P.

    1975-01-01

    A real time data acquisition system was developed to monitor and control the High Current Test Facility Proton Accelerator. It is a PDP-8/E computer system with virtual memory capability that is fully interrupt driven and operates under a real-time, multi-tasking executive. The application package includes mode selection to automatically modify programs and optimize operation under varying conditions. (U.S.)

  12. Fast Extraction Kicker for the Accelerator Test Facility

    International Nuclear Information System (INIS)

    De Santis, Stefano; Urakawa, Junji; Naito, Takashi

    2007-01-01

    We present the results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. This activity is carried on in the framework of the ATF2 project, which will be built on the KEK Tsukuba campus as an extension of the existing ATF, taking advantage of the worlds smallest normalized emittance achieved there. ATF2's primary goal is to operate as a test facility and establish the hardware and beam handling technologies envisaged for the International Linear Collider. In particular, the fast extraction kicker object of the present paper is an important component of the ILC damping rings, since its rise and fall time define the minimum distance between bunches and ultimately the damping rings length itself. Building on the initial results presented at EPAC '06, we report on the present status of the kicker design and define the minimum characteristics for pulsers and other subsystems. In addition to the original scheme with multiple stripline modules producing a total deflection of 5 mrad, we also investigated a scheme with a single kicker module for a reduced deflection of 1 mrad placed inside a closed orbit bump, which takes the electron closer to the extraction septum

  13. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    Science.gov (United States)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  14. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    Science.gov (United States)

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  15. Development and testing of a superconducting acceleration resonator using new methods in design and fabrication

    International Nuclear Information System (INIS)

    Steck, M.

    1986-01-01

    A superconducting quarter-wave resonator at 325 MHz was studied for the implementation at the Heidelberg post-accelerator. Using the computer programs SUPERFISH and URMEL the first design derived from analytical approaches was optimized regarding the superconducting operation. The measurements on the model showed good agreement with the calculations. By modification of the standard techniques the fabrication of the resonator body and the preparation of the superconducting surface could be simplified. On the superconducting resonator 1 μm thick superconducting surfaces of pure lead as well as a lead/tin alloy were tested. Thereby with lead a quality of the resonator Q 0 =8.5.10 7 and a maximal electrical acceleration field in the continuous region of epsilonsub(acc)=2.16 MV/m at Q=1.10 7 were reached. The measurements with a surface of lead/tin yielded Q 0 =1.4.10 8 and as maximal acceleration field epsilonsub(acc)=1.93 MV/m at Q=1.10 7 . A further increasing of the maximal electric field by conditioning of the resonator can be expected because of the test results. The excellent mechanical stability not reachable with other resonator types which manifests by a static frequency shift of 4 Hz/(MV/m) 2 and rapid frequency oscillations [de

  16. Pendugaan Umur Simpan Fruit Leather Nangka (Arrtocarpus Heterophyllus) Dengan Penambahan Gum Arab Menggunakan Metode Accelerated Shelf Life Test (Aslt) Model Arrhenius

    OpenAIRE

    Rahmanto, Sandy Agus; Parnanto, Nur Her Riyadi; Nursiwi, Asri

    2014-01-01

    Penelitian ini bertujuan untuk mengetahui umur simpan fruit leather nangka dengan Accelerated Shelf Life Testing (ASLT) metodeberdasarkan model Arrhenius. Menentukan umur simpan dengan menggunakan Accelerated Shelf Life Test (ASLT) dilakukandengan mempercepat proses degradasi atau reaksi dalam percobaan, yaitu meningkatkan suhu penyimpanan pada beberapa suhu diatas suhu kamar, sehingga mempercepat umur simpan analisis waktu. Metode ASLT yang digunakan dalam menentukan masakadaluwarsanya fruit...

  17. Developments on the RF system for the Fusion Materials Irradiation Test Facility accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Riggin, D.M.

    1979-01-01

    The rf system for the Fusion Materials Irradiation Test (FMIT) accelerator is currently in the design phase at the Los Alamos Scientific Laboratory (LASL). The 35-MeV, 100-mA deuteron beam will require approximately 6 MW of rf power at 80 MHz. The EIMAC 8973 power tetrode, capable of a 600-kW cw output, has been chosen as the final amplifier tube for each of 15 amplifier chains. The final power stage of each chain is designed to perform as a linear Class B amplifier. Each low-power rf system (less than or equal to 100W) is to be phase, amplitude, and frequency controlled to provide a drive signal for each high-power amplifier. Beam dynamics for particle acceleration and for minimal beam spill require each rf amplifier output to be phase controlled to +-1 0 . The amplitude of the accelerating field must be held to +-1%. A varactor-tuned electronic phase shifter and a linear phase detector are under development for use in this system. To complement hardware development, analog computer simulations are being performed to optimize the closed-loop control characteristics of the system

  18. A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Soon; So, Byung-Tak [Sangmyung University, Cheonan (Korea, Republic of)

    2016-01-15

    In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the 30th freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

  19. Aging Depth Test of Rubber Blocks by Accelerated Thermal Oxidation Test

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Young-Sun; Kim, Min Kyu

    2015-01-01

    In this study, the accelerated thermal oxidation tests of rubber block were performed to investigate the aging depth of rubber bearing. From the tests, it was found the critical aging depth in rubber block. Also the property variation of rubber was investigated along the depth. The deterioration pattern from the aging depth tests was found from surface to inside and the critical aging depth was to be about 10 mm. The analytical model for rubber bearing with aging can be developed based on the relationship between the property variation and aging depth investigated from this study. The mechanical properties of rubber bearings were changed with time. Because the aging effect of rubber material was generally higher than that of other structure materials it is needed that the aging properties of seismically isolators should be evaluated to ensure the safety of seismically isolated nuclear power plants (NPPs) over the lifetime. NRC and ASCE required the tests of seismically isolators for investigating the aging properties. JNES also required the seismic response analysis for the seismically isolated NPPs when the properties of seismically isolators were extremely changed. If the aging properties of seismically isolators such as rubber bearings are evaluated by analysis the analytical model of seismically isolators should be developed considering aging effect of rubber material. From the previous research, it was reported that the behavior of aged rubber material mainly affected by temperature and oxidation. The material properties between surface and inside can be different by the oxidation of rubber. Therefore, the aging depth should be investigated for exactly evaluating the seismic behavior of aged rubber bearing. The aging depth of rubber baring was not influenced by the size of seismically isolators but environment condition. Therefore, the detail analysis considering aging depth was not required for NPPs with large seismically isolators. But the seismic response

  20. Studies of the Use of Electrochemical Impedance Spectroscopy to Characterize and Assess the Performance of Lacquers Used to Protect Aluminum Sheet and Can Ends

    Science.gov (United States)

    Ali, Mohammad

    This study involved investigating the feasibility of using Electrochemical Impedance Spectroscopy to assess the performance of coatings used to protect aluminum in beverage containers, and developing an accelerated testing procedure. In the preliminary investigation, tests were performed to ensure that the EIS systems at hand are capable, functional and consistent. This was followed by EIS testing of kitchen-aluminum foil and high-impedance epoxy polymer as a baseline for chemically-active and chemically-inert systems. The ability of EIS to differentiate between intact and flawed coatings was tested by investigating deliberately damaged coatings. The effects of varying the pH and oxygen content on the performance of the coated aluminum samples were also tested. From this investigation, it has been concluded that EIS can be used to differentiate between intact and flawed coatings and detect corrosion before it is visually observable. Signatures of corrosion have been recorded and a preliminary testing procedure has been drawn.